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Abstract—The DNA storage channel is considered, where
each codeword is comprised of M unordered DNA molecules.
At reading time, the molecules are sampled N times with
replacement, and then sequenced. A coded-index concatenated-
coding scheme is proposed, in which the mth molecule of the
codeword is restricted to an inner code, unique for each index.
A low-complexity decoder is proposed that is based on separated
decoding of each molecule (inner code), followed by decoding the
sequence of molecules (outer code). Mild assumptions are made
on the sequencing channel, in the form of the existence of an inner
code and decoder with vanishing error probability. The error
probability of a random code for the storage system is analyzed
and shown to decay exponentially with N . This establishes the
importance of high coverage depth N/M for achieving low error
probability.

I. INTRODUCTION

Various authors have recently proposed and analyzed coding
methods for data storage systems based on a Deoxyribonucleic
acid (DNA) medium (see a survey in [1]). In this channel
model, information is stored in a pool of M DNA molecules,
where each molecule is comprised of two complementary
length-L strands of four nucleotides (Adenine, Cytosine, Gua-
nine, and Thymine). The M molecules cannot be spatially
ordered, and during reading, N molecules are independently
sampled from the DNA pool, with replacement. Then, each
of these sampled molecules is sequenced in order to obtain a
length-L vector describing the synthesized nucleotides, and the
N sequenced molecules is the channel output. Roughly speak-
ing, the impairments of this channel include: (1) Molecule
errors – e.g., the event in which some of the molecules are
not sampled at all (erased). (2) Symbol errors – modeled by
a channel W (L) which specifies the probability of sequencing
some L-symbol vector conditioned that the information was
(possibly other) L symbols. In this paper, we propose a
random coding ensemble and a low-complexity decoder for
this channel model, and analyze the average error probability.

In terms of fundamental limits, it was the capacity of such
a channel which was first addressed [1], with the general con-
clusion that the capacity is positive only when L = β logM ,
with β > 1. Under this scaling, [1]–[4], have derived bounds
on the capacity, assuming a constant coverage depth N/M ,
and a discrete memoryless sequencing channel. In this paper,
we focus on a somewhat different model for the following

reasons: First, the tightest achievable bound for a discrete
memoryless channel (DMC) [4] require a computationally
intensive decoder, which is difficult to implement in practice.
Second, in practice, the sequencing channel is not a DMC, and
may include deletions and insertions [5], or constraints on the
codeword symbols [6], [7]. Third, as was also established in
[4], the error probability is dominated by molecule errors (era-
sures), and so the error probability decays as e−Θ(M) rather
than the e−Θ(ML) decay rate anticipated from a blocklength
of ML. This slow decay of the error probability is significant
for practical systems of finite blocklength.

Accordingly, and following [2], in this paper, we theoret-
ically analyze the error probability of a simple, yet general,
coding method. The scheme follows a practical approach [8]–
[11] in which the lack of order of the molecules is resolved
by an index. The simplest version of indexing-based schemes
uses the first log2M bits of each DNA molecule to specify
its index m ∈ [M ], and is capacity achieving for noiseless
sequencing channels, despite its rate loss of 1/β, which seems
to be inevitable [1], [3], [4], [12], [13]. Nonetheless, if the
payload bits (the last (β − 1) log2M bits of the molecule)
are arbitrary, then an erroneous ordering of the molecules can
be caused by a single channel bit flip. This motivates us to
consider in this paper coded-indexing based schemes for noisy
sequencing channels. In such a scheme, the possible molecules
of the codeword are chosen from a inner code – a sub-code
B(L) ⊂ XL of all possible molecules. Moreover, this inner
code is further partitioned into M equal size sub-codes B(L)

m

so that the mth molecule of a codeword is chosen only from
B(L)
m . The inner code B(L) thus also protects the index from

sequencing errors. An outer code then specifies the valid sets
of molecules.

Our proposed decoder is based on a decoder for the inner
code B(L), which is used to independently decode each of
the N sequenced molecules to a sequence in B(L). Since
the decoder operates on a molecule-by-molecule basis, future
design of codes based on this scheme is a feasible goal (L is
typically on the order of 102−103), and is much simpler than
the decoder of [4] (the clustering-based decoder [12] also has
a low complexity of Θ(N), but there are no guarantees on the
decay rate of the error probability). A decoder for the outer
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code is then used to resolve molecule erasures and undetected
errors. Hence, the proposed coded-index based scheme is
practically oriented, and its analysis is general, in the sense
that very little is assumed on the sequencing channel. It is only
required that a decoder for the inner code exists whose error
probability decays to zero with increasing L. This addresses
the first two issues raised above.

Regarding the third issue, as explained in [4], for fixed
coverage depth (N = αM for some fixed α > 1) the slow
e−Θ(M) decay rate of the error probability is the result of
molecule errors (erasures), rather than sequencing errors. So,
apparently, faster decay rate is only possible by increasing
N . In accordance, we consider in this paper the scaling
N = αMM , where αM is (possibly) an increasing function
of M (though rather slowly). Our main result is a single-
letter upper bound on the error probability which decays
as e−Θ(N), achieved by a coded-index based scheme. An
important consequence of this result is that operating at a
large coverage depth N/M is of importance for low error
probability. This is in opposed to capacity analysis, for which
large N/M only provides marginal capacity gains [1, Sec. I].
We remark that our scheme is not capacity achieving under
the DMC and fixed α model studied in [1]–[4], as it does
not exploit multiple observations of the same molecule to
increase the rate. However, the rate loss is small for sequencing
channels which are fairly clean, as multiple observations only
marginally increase the capacity in this case. Anyway, adapting
our scheme to achieve capacity is an important open problem.

Previously, [12] has considered an (explicit) coded-indexing
and concatenated coding scheme, whose decoder is based on
(hard) output clustering, and so is mainly tailored to the binary
symmetric channel. As described above, we consider here
general sequencing channels, and focus on error probability
analysis and simple decoding (see [14] for a detailed compar-
ison with this, as well as with additional related work [15]). In
our context, the conclusion is that the loss is more profound
for small β. The rest of the paper is organized as follows. In
Sec. II we establish notation conventions, formulate the DNA
storage channel and coded-index based systems. In Sec. III
we state our main result, and in Sec. IV we outline the proof.
All proofs and further results and discussions are available in
a full version of the paper [14]).

II. PROBLEM FORMULATION

We begin with notation conventions. Random variables will
be denoted by capital letters, specific values they may take
will be denoted by the corresponding lower case letters, and
their alphabets will be denoted by calligraphic letters. Random
vectors and their realizations will be super-scripted by their
dimension. The probability of the event E will be denoted
by P(E), and its indicator function will be denoted by 1(E).
The expectation operator will be denoted by E[·]. Logarithms
and exponents will be understood to be taken to the natural
base. The binary Kullback–Leibler (KL) divergence db: [0, 1]×
(0, 1) → R+ by db(a||b) := a log a

b + (1 − a) log (1−a)
(1−b) . The

number of distinct elements of a finite multiset A will be

denoted by |A|. The equivalence relation will be denoted by
≡, and will mainly be used to simplify notation. Asymptotic
Bachmann–Landau notation will be used. For a positive integer
N we will denote [N ] := {0, 1, . . . , N − 1}, where scalar
multiplications of these sets will be used, e.g., as 1

N [N +1] =
{0, 1

N , . . .
N−1
N , 1}.

Next, we formulate a sequence of channels, encoders and
decoders for the DNA storage channel, indexed by M , the
number of molecules in a codeword.

The channel model (reading mechanism): A DNA
molecule is a sequence of L ≡ LM ∈ N+ nucleotides
(symbols) chosen from an arbitrary alphabet X (in physical
systems X = {A,C,G,T}, and in some previous works
[1]–[3] a binary alphabet X = {0, 1} was assumed for
simplicity). Thus, each molecule is uniquely represented by
a sequence xL ∈ XL. An input to the DNA channel is a
sequence of M molecules, xLM = (xL0 , . . . x

L
M−1) where

xLm ∈ XL for all m ∈ [M ]. A message is synthesized
into a sequence of M molecules, xLM . The DNA storage
channel model is determined by the number of molecule
samples N ≡ NM ∈ N+, and by the sequencing channel
W (L):XL → YL. The operation of the channel on the stored
codeword is modeled as a two-stage process:

1) Sampling: N molecules are sampled uniformly from
the M molecules of xLM , independently, with replacement.
Let UN ∼ Uniform([M ]N ) be such that Un is the sampled
molecule at sampling event n ∈ [N ]. The result of the
sampling stage is the vector (xLU0

, xLU1
, . . . , xLUN−1

) ∈ (XL)N .
We also denote by Sm the number of times that molecule m
was sampled, to wit Sm =

∑
n∈[N ] 1{Un = m}, the empirical

count of UN . It then holds that SM = (S0, . . . , SM−1) ∼
Multinomial(N ; ( 1

M , 1
M , . . . 1

M )).
2) Sequencing: For each n ∈ [N ], xLUn is sequenced to

Y Ln ∈ YL, where the sequencing of xLUn is independent
for all n ∈ [N ]. Denoting the channel output by Y LN =
(Y L0 , . . . , Y

L
N−1) ∈ (YL)N it thus holds that

P
[
Y LN = yLN | xLM , UN

]
=
∏

n∈[N ]

W (L)
(
yLn | xLUn

)
.

(1)
We make the following assumptions on the channel: (1) L ≡
LM = β logM where β > 1 is the molecule length parameter.
(2) N/M where α ≡ αM > 1 is the coverage depth scaling
function.

The encoder: A codebook is a set of different possi-
ble codewords C = {xLM (j)}. We propose the following
restricted set of coded-index based codebooks:

Definition 1. Let {B(L)
m }m∈[M ] be a collection of pairwise

disjoint sets B(L)
m ⊂ XL of equal cardinality, and let B(L) :=

∪m∈[M ]B(L)
m be their union. A DNA storage codebook is said

to be a coded-index based codebook if xLm(j) ∈ B(L)
m for all

m ∈ [M ] and all j ∈ [|C|].
To wit, a codeword contains exactly a single molecule from

each of the M sets {B(L)
m }m∈[M ]. The identity of the set from
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which xLm(j) was chosen from is considered an “index” of the
molecule that is used by the decoder to order the molecules
that has been decoded. A coded-index based codebook, can
be thought of as a concatenated code. The set B(L) is an
inner-code, which is used to clean the output molecules from
sequencing errors, and the dependency between molecules of
different index m can be considered an outer-code which is
used to cope with erasures (mainly due to the sampling stage).

The decoder: A general decoder is a mapping
D: (YL)N → [|C|]. We propose the following class of de-
coders, which are suitable for coded-index based codebooks. A
decoder from this class is equipped with an inner-code decoder
Db:YL → B(L), and a threshold T ∈ R+, and decodes the
channel output yLN in three steps:

1) Correction of individual molecules: The decoder em-
ploys the inner-code decoder for each of the received
molecules yLn , for each n ∈ [N ], and set zLn = Db(y

L
n ).

Following this stage, it holds that zLN = (zL0 , . . . , z
L
N−1) is

such that zLn ∈ B(L) for all n ∈ [N ].
2) Threshold for each index: For each index m ∈ [M ], if

there exists a bL ∈ B(L)
m such that

∑

n∈[N ]

1{zLn = bL} ≥ T > max
b̃L∈B(L)

m \{bLl }

∑

n∈[N ]

1{zLn = b̃L}

(2)
then the decoder sets x̂Lm = bL. That is, x̂Lm = bL if bL is
a unique molecule in B(L)

m whose number of appearances in
zLN is larger than T . Otherwise x̂Lm = e, where e is a symbol
representing an erasure.

3) Codeword decoding: Let

j∗ = arg min
j∈[|C|]

ρ(x̂LM , xLM (j)) (3)

where (with a slight abuse of notation)

ρ(x̂L, xL) :=

{
1{x̂L 6= xL}, x̂L 6= e

0, x̂L = e
(4)

and ρ(x̂LM , xLM ) :=
∑
m∈[M ] ρ(x̂Lm, x

L
m), which is a Ham-

ming distance with zero contribution in case of erasures.
The DNA storage channel is thus indexed by M and param-
eterized by (αM , β, {W (L)}L∈N+

). The (storage) rate of the
codebook C is given by R = log|C|

ML , and the error probability
of D given that xLM (j) ∈ C was stored is given by

pe(C,D | xLM (j)) := P
[
D(y) 6= j | xLM (j)

]
. (5)

Let ψM :N+ → N+ be a monotonic strictly increasing
sequence. An error exponent E(R) w.r.t. scaling ψM is
achievable for channel DNA at rate R, if there exists a
sequence {CM ,DM}M∈N+

so that the average error probability
is bounded as

− log


 1

|CM |
∑

j∈[|CM |]
pe(CM ,DM | xLM (j))




≥ ψM · E(R)− o(ψM ). (6)

In this paper, we will obtain single-letter expressions for
error exponents achieved under coded-index codebook and the
class of decoders defined above. Throughout, we only make
the following assumptions on the sequencing channel: 1) Inner
code rate: Rb := 1

L log|B(L)|> 1/β. 2) Vanishing inner code
(maximal) error probability:

peb(B(L)) := max
bL∈B(L)

W (L)
[
Db(y

L) 6= bL | bL
]

= o(1). (7)

As |B(L)
m |= eRbL

M = exp[Rbβ logM ]
exp[logM ] , the assumption on Rb

assures that B(L)
m is not empty. The assumption on the er-

ror probability assures that the error probability at the first
decoding step tends to zero as L = β logM → ∞. Thus, if
the sequencing channel W (L) has capacity C(W (L)) (with
rate normalized to single symbol), then it must hold that
Rb ≤ C(W (L)). For example, for sequencing DMC, the error
probability decays as e−E(Rb)·L, where E(Rb) is the error ex-
ponent. For general sequencing channels, the decay rate could
be slower even for optimal codes. Thus, for concreteness, we
set peb(B(L)) = e−Θ(Lζ), where ζ > 0, and as we shall see,
ζ will not affect the achievable exponent of the DNA storage
system. Therefore, even sub-optimal codes can be used, for
example, polar codes, whose error scales as e−Θ(

√
N) for

standard DMCs [16], and of e−Θ(N1/3) for channel which
include insertions, deletions, and substitutions [17].

Our achievable error exponent will be based on the follow-
ing coded-index based random coding ensemble:

Definition 2. Following Definition 1, let C = {XLM (j)} be a
random coded such that XL

m(j) is chosen uniformly at random
from B(L)

m independently for all m ∈ [M ] and all j ∈ [|C|].

III. MAIN RESULT

Our main result is as follows:

Theorem 3. Let an inner code B(L) ⊂ XL, and let Db be a
decoder which satisfy the assumptions on the inner code (Rb >
1/β, peb(B(L)) = e−Θ(Lζ)). Then, there exists a sequence of
codebooks {CM} and corresponding threshold-based decoders
{DM} (as described in Sec. II) so that the following holds: If
N/M = Θ(1) then for any R < (Rb − 1/β)(1− e− N

M ),

− log pe(CM ,DM )

≥M · db
(

1− R

Rb − 1/β

∣∣∣∣
∣∣∣∣ e−

N
M

)
−O

(
M

logM

)
. (8)

If N/M = ω(1) then for any R < Rb − 1/β,

− log pe(CM ,DM ) ≥ N

2

[
1− R

Rb − 1/β

]
−O(M) (9)

if N
ML < 2(Rb − 1/β), and

− log pe(CM ,DM ) ≥ML [Rb − 1/β −R]−O
(

N

logM

)

(10)
if 2(Rb − 1/β) ≤ N

ML .
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Discussion:
1) The bound is not continuous in N (that is, there is

a phase transition), and a the behavior is different between
N = Θ(M) and N = ω(M). As stems from the proof, in
both regimes, the threshold is chosen as T ≡ TM = o(M).
This follows since the error probability of the inner code is
e−Θ(Lζ) = e−Θ(logζM), and so the number of erroneously
sequenced molecules is o(M), with an average of less than a
single erroneous molecule per index.

2) The result does not depend on ζ, the assumed scaling
of the inner code error probability (peb(B(L)) = e−Θ(Lζ)),
and manifests the fact that sampling events dominate the error
probability, compared to sequencing error events.

3) For the standard channel coding problem over DMCs
with blocklength N , the method of types leads to random
coding and expurgated bounds which tend to their asymptotic
values up to a O((logN)/N) term (this can be avoided for
Gallager’s method [18, Ch. 5], see also [19, Problem 10.33]).
Here, it is evident that the decay is much slower, and could
be as slow as O(1/logM). As discussed in [4, Sec. VII] this
seems to be an inherent property of this channel.

4) Proving tightness of Theorem 3 is challenging, even for
optimal decoders. The main difficulty is in the Poissonization
of the multinomial effect which is used to upper bound the
large-deviations behavior of the number of under-sampled
number of molecules in Lemma 4 to follow (as proposed in [1],
[12]). This upper bound is tight at the center of the multinomial
distribution, but may be loose at its tails. Developing lower
bounds on the error probability is thus an open problem.

5) An expurgated bound is also proved in [14], which im-
proves the error probability at the regime N

ML > 4(Rb−1/β).

IV. MAIN STEPS OF THE PROOF

The proof begins by analyzing the probability of channel-
related events, and specifically, the event in which some of
the molecules are not sampled enough times, or the event
of excessive number of sequencing errors. Let the threshold
T ≡ Tτ := N

M (1 −
√

2τ) of the decoder D be parameterized
by a parameter τ ∈ (0, 1/2). In coded-index based coding,
each codeword xLM (j) contains exactly a single molecule
from each of the sub-codes B(L)

m , and the molecule xLm(j)
is sampled Sm times. Let Km ∈ [Sm + 1] be the number
of copies of the molecule xLm(j) that have been erroneously
sequenced, let K :=

∑
m∈[M ]Km ∈ [N + 1] be the total

number of molecules which have been erroneously sequenced,
and let Vm ∈ [K + 1] be the number of molecules xLm′(j) for
m′ ∈ [M ]\{m} which have been erroneously sequenced to
have index m. Note that

∑
m∈[M ] Vm = K holds too. The

event in which the molecule xLm was not decoded correctly in
the second stage of the operation of the decoder is included
in a union of the following events:

1) Sm < Tτ , that is, the molecule have not been sampled
enough times in the sampling stage.

2) Sm ≥ Tτ yet Sm−Km < Tτ , that is, the molecule have
been sampled enough times in the sampling stage step, but Km

sequencing errors have caused the number of appearances of
xLm(j) to drop below the threshold T .

3) Vm ≥ Tτ , that is, there are more than T molecules with
index m, which are not the correct molecule xLm(j).
On the face of it, the event Vm ≥ Tτ can lead to a crude upper
bound, since the Vm molecules which are erroneously mapped
to index m are not likely to be the exact same molecule in
B(L)
m . However, a more precise analysis of this event would

require making assumptions on the structure of the sub-codes
{B(L)

m }, which we avoid here altogether.
Corresponding to these events, we define the following sets:

Mσ := {m ∈ [M ]:Sm < Tτ} (11)
Mκ := {m ∈ [M ]:Sm ≥ Tτ , Sm −Km < Tτ} (12)
Mν := {m ∈ [M ]:Vm ≥ Tτ} , (13)

The next lemma addresses the cardinality of Mσ:

Lemma 4. Let xLM (j) be a codeword from a coded-index
codebook. Let S̃ ∼ Pois(N/M) and

ϕτ := − 1

N/M
logP

[
S̃ ≤ Tτ

]
. (14)

If N/M = Θ(1) then

P
[
|Mσ|≥ σM | xLM (j)

]
≤ 3 ·exp

[
−M · db

(
σ
∣∣∣
∣∣∣ e−ϕτ NM

)]

(15)
for σ ∈ (e−ϕτ

N
M , 1]. If N/M = ω(1) then

P
[
|Mσ|≥ σM | xLM (j)

]
≤ 4e−στN (16)

for σ ∈ (e−τ
N
M , 1].

Proof outline: The empirical count vector SM follows
a multinomial distribution, whose components are depen-
dent. The proof utilizes the Poissonization of the multino-
mial distribution effect [20, Thm. 5.6]: If Ñ ∼ Pois(λ)
and S̃M ∼ Multinomial(Ñ , ( 1

M , . . . , 1
M )) conditioned on Ñ ,

then {S̃m}m∈[M ] are independent and identically distributed
(i.i.d.) S̃m ∼ Pois( λM ) (unconditioned on Ñ ). Let A ≡∑
m∈[M ] 1{Sm < Tτ} and Ã ≡ ∑m∈[M ] 1{S̃m < Tτ}. The

Poissonization effect is used to prove the upper bound (see
also [20, Exercise 5.14])

P [A ≥ σM ] ≤ 2 · (1 + o(1)) · P
[
Ã ≥ σM

]
, (17)

and as Ã is a sum of i.i.d. random variables {S̃m}, the right
probability is then evaluated by a standard Chernoff bound on
the binomial distribution.

The following lemma is used to bound the total number
of sequencing errors K, which, in turn, is used to bound the
cardinalities of Mκ and Mν :

Lemma 5. Let K be the total number of erroneously se-
quenced molecules. Let U ⊆ [M ]N be a sampling event, and
assume that peb(B(L)) = e−c·L

ζ

. Then, P[K ≥ κN | U ] ≤
e−c·κNL

ζ

for any κ ∈ (0, 1].

Proof outline: The proof is based on a Chernoff bound
over the N independent sequencing operations, for which the
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probability of error is at most e−c·L
ζ

. It requires, however, a
more refined argument, since the sequencing errors are not be
independent for a given codebook B(L).

The channel/decoder operation is more directly defined by
the set of erased molecules and the set of molecules with
undetected errors as

Me :=
{
m ∈ [M ]: x̂Lm = e

}
, (18)

Mu :=
{
m ∈ [M ]: x̂Lm 6= e, x̂Lm 6= xLm(j)

}
. (19)

Lemmas 4, and 5 are utilized to analyze the cardinality ofMe

and Mu. As it turns out, the dominating event is P[|Mσ|≥
σM ], to wit, the probability that the molecules have not been
amplified enough times, which is on the exponential order of
N , compared to the probability evaluated in Lemma 5 which
are on the exponential order of LN = Nβ logM .

Lemma 6. Consider a decoder D for a coded-index based
codebook. For the erasure set Me: If N/M = Θ(1) then

− logP [|Me|≥ θM ] ≥Mdb

(
θ||e−ϕτ NM

)
+ o(M) (20)

for all θ ∈ (e−ϕτ
N
M , 1]. If N/M = ω(1) then

− logP [|Me|≥ θM ] ≥ θτN · [1 + o(1)] (21)

for all θ ∈ (e−τ
N
M , 1]. For the undetected error set Mu:

− logP [|Mu|≥ θM ] ≥ c · (1−
√

2τ)θNLζ . (22)

Proof outline: By deriving relations between K and
|Mκ|, |Mν |, and then between these sets and |Mσ|, to |Me|
and |Mu|, and utilizing Lemmas 4 and 5.

Thus, as apparent from Lemma 6, and as discussed in
the introduction, for coded-index based codebooks, the type
of decoders, and the analysis in this paper, the effect of
sequencing errors is much less profound compared to erasures.

The random coding analysis is based on the following
lemma, which bounds the probability that an erroneous code-
word will be decoded, conditioned on a given number of
channel erasures and undetected errors.

Lemma 7. Let C be drawn from the coded-index based ran-
dom coding ensemble. Let XLM (0) = xLM (0) be arbitrary,
and let X̂LM be the output of the decoder conditioned on
the input xLM (0). Then, for θe, θu ∈ 1

M [M + 1] such that
θe + θu ≤ 1 and any j ∈ [|C|]\{0} it holds that

− 1

M
logP

[
ρ(X̂LM , XLM (j)) ≤ ρ(X̂LM , xLM (0))

∣∣∣∣∣ |Me|= θeM, |Mu|= θuM

]

≥ (Rbβ − 1)(1− θe − θu) logM −Θ(1). (23)

Proof outline: The proof is based on an argument
which counts the relative number of competing codewords
x̃LM in the coded-index based ensemble which have distance
ρ(X̂LM , x̃LM ) smaller than ρ(X̂LM , xLM (0)), followed by
an analysis of its asymptotic behavior with M .

The proof of Theorem 3 then follows from Lemma 7, by
conditioning over θe, θu, taking a clipped union bound over the
probability that one of the deMLRe− 1 competing codewords
causes an error, averaging over θe, θu via Lemma 6, and
analyzing the asymptotic behavior of the resulting expressions
for the different regimes of αM = N/M .
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