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Abstract—We propose novel compression algorithms for time-
varying channel state information (CSI) in wireless communica-
tions. The proposed schemes combine (lossy) vector quantisation
and (lossless) compression. The vector quantisation technique
is based on data-adapted parametrised companders applied on
each component of the normalised vector. Then, the sequences
of quantisation indices are compressed according to estimated
distributions computed with a context-tree approach. The algo-
rithms have low complexity, are linear-time in spatial dimension
and time duration, and can be implemented in an online fashion.
We run numerical experiments to demonstrate the effectiveness
of the proposed algorithms in such scenarios.

I. INTRODUCTION

In wireless communication systems, efficiently representing
the channel state information (CSI) is crucial for storage and
dissemination. Typically, in the downlink transmission from
a base station (BS) with multiple antennas to multiple users,
beamforming techniques rely on precise CSI at the transmitter
side [1]. For the BS to acquire the CSI, however, it usually
requires that each user feeds back the CSI measurements in
a timely and accurate fashion. How to reduce the bandwidth
cost of such feedback traffic, which is highly non-negligible,
is becoming a crucial problem. This is essentially a lossy data
compression problem.

The spatial correlation inherent to the antenna structures
has been exploited to reduce CSI dimension in recent works
using deep learning and compressed sensing techniques (see,
e.g., [2], [3] and the references therein), while the temporal
correlation of CSI measurements is less exploited for feedback.
Indeed, if the sequence of the quantised symbols is stationary,
it can be losslessly compressed up to the entropy rate of the
underlying process. A possible approach for CSI compression
is therefore to apply any universal compression algorithm [4],
[5], such as Lempel-Ziv [6], [7] (known as LZ77 and LZ78),
to the quantisation indices.

Another universal compressor is the context-tree weight-
ing (CTW) algorithm [8], which learns the distribution of
a given sequence in an efficient way. This distribution can
then be used to compress the sequence in combination with
arithmetic coding, achieving the Rissanen lower bound [8].
A modification of CTW yields the context-tree maximis-
ing (CTM) algorithm [9], which can produce the maximum
a posteriori (MAP) probability tree model. Connections with
Bayesian inference have been explored in [4], [10].

However, directly applying these algorithms to compress
quantisation indices in an online fashion presents some diffi-
culties. First, the output bit-stream is of variable length, mak-
ing the feedback difficult to implement. Second, in Lempel-
Ziv methods, the input symbol block is also of variable
length, as it depends on parsing the original sequence. Finally,
arithmetic coding has to be carefully implemented so as to
deal with digital computers finite precision constraints [11].
Trying to avoid such difficulties motivates us to propose new
compression algorithms adapted to applications such as the
communication scenarios considered here.

In this work, we focus on the problem of online lossy
compression of a sequence of CSI vectors and propose a two-
step compression procedure. First, a new vector quantisation
technique, based on a class of parametrised companders, is
applied on the components of the normalised vector. The quan-
tisation is composed of a non-linear transformation, followed
by a uniform quantiser. The companders can be designed
and updated with available empirical data. In particular, we
consider the widely used µ-law compander and a new one, the
β-law compander, inspired by the beta distribution. Then, we
compress the sequence of quantisation indices using a context-
tree-based approach. We propose two solutions: 1) to directly
apply CTW with arithmetic coding, or 2) to apply CTM to
estimate the conditional distribution of the upcoming symbol
at each time instant and use this probability to compress the
symbol. In the latter case, we encode each symbol with a
fixed number of levels to limit the fluctuation of the encoded
bit-flow—a desirable property in communication systems. In
addition, the algorithms have low complexity, are linear-time
in both the spatial dimension and time duration, and can be
implemented in an online fashion.

This paper is organised as follows. In Section II we present
the system model and review basic concepts of vector quan-
tisation and context-tree representation. Our CSI compression
algorithm is described in Section III. The simulation of CSI
acquisition is analysed in Section IV, followed by some con-
clusions. Due to the space limitation, we omit some important
details that can be found in the extended version in [12], where
implementation codes are also available.

Notation: Vectors (vvv) are denoted by bold italic lower-case
letters. Random variables (X) are in non-italic upper-case.
L2 vector norms are denoted by ‖vvv‖. Logarithms are to the
base 2. We denote [n] := {1, . . . , n}.
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II. PROBLEM FORMULATION AND PRELIMINARIES

A. Main Problem

We consider a network composed of a transmitter (e.g., base
station) and Nr receivers (e.g., mobile users). Assume that the
CSI between the transmitter and receiver k at time t can be
described by a complex vector hhhk[t] ∈ CNt×1, for k ∈ [Nr].
For different purposes (e.g., feedback, storage), each receiver
is required to represent its state sequence using as few bits
as possible, for a given distortion constraint. This is known
as the lossy source coding problem [5]. In most practical
scenarios, the norm of the vectors hhhk[t] is less important than
the direction. Therefore, our goal here is to compress the
normalised vector hhhk[t]/‖hhhk[t]‖.
B. Vector Quantisation

A vector quantiser [13] of dimension p and size M , is
a mapping q : Rp → C, with C := {yyy0, yyy1, . . . , yyyM−1} ⊂
Rp, that associates each vector xxx ∈ Rp to a codeword
x̂xx := q(xxx) = yyyk, for some k ∈ {0, 1, . . . ,M − 1}. For a
sequence of vector symbols xxxn1 := xxx1xxx2 · · ·xxxn, we can apply
vector-by-vector quantisation, generating a sequence of quan-
tised vectors x̂xxn1 := x̂xx1x̂xx2 · · · x̂xxn and a sequence of quantisation
indices kn1 := k1k2 · · · kn, where x̂xxi = yyyki , for each i ∈ [n].

Two important parameters to assess the performance of
a vector quantiser are the quantisation rate and the mean
distortion. The quantisation rate, defined as R := (logM)/p,
is an indicator of the cost to describe the vector, while the mean
distortion measures the error induced by the quantisation. We
use, as distortion measure between xxx and x̂xx, the mean squared
chordal distance (MSCD), defined as

MSCD(xxx, x̂xx) := 1− E

[
|〈xxx, x̂xx〉|2
‖xxx‖2‖x̂xx‖2

]
. (1)

C. Variable-Order Markov Chain and Context Tree

Let xji := xixi+1 · · ·xj be a scalar sequence over an
alphabet A := {0, 1, . . . ,m − 1}, generated by a source with
probability distribution P . We denote l(xji ) := j − i + 1 the
length of sequence xji . A variable-order Markov chain with
order or memory D (also called bounded memory tree source)
is a random process for which P (xi|xi−1−∞) = P (xi|xi−1i−D).
Our interest in Markov chains comes from the fact that any
stationary ergodic source can be approximated by a Markov
chain with sufficiently large order [4], [5].

The statistical behaviour of a variable-order Markov chain is
described by a context set S (also known as suffix set or model),
which is defined as a subset of

⋃D
i=0Ai that is proper (i.e., no

element in S is a proper suffix of any other) and complete (i.e.,
each xn−∞ has a suffix in S, which is unique by properness).
The context function c : AD → S maps each length-D context
xi−1i−D to a suffix c(xi−1−∞) = c(xi−1i−D) = xi−1i−j , j ≤ D.
Furthermore, each suffix s ∈ S is associated with a parameter
θθθs := (θs(0), θs(1), . . . , θs(m − 1)), where θs(j) := P (j|s).
The parameter vector Θ := {θθθs : s ∈ S} groups all parameters
in the context set S. Therefore, the Markov chain is completely
characterised by the couple (S,Θ). We use CD to denote the

class of all context sets of order up to D. Finally, we define
LD(S) := |{s ∈ S : l(s) = D}| the number of contexts with
length D.

Since the context set S is proper, its elements can
be represented as leaf nodes of a tree TD, called con-
text tree, i.e., S ⊆ TD. For a given sequence xn1 ,
each leaf node s ∈ S is associated with a counter
aaas := aaas(x

n
1 ) := (as(0), as(1), . . . , as(m− 1)), where as(j)

stores the number of times that symbol j ∈ A follows context s
in xn1 . The counter of each inner node of the tree is recursively
defined as the sum of the counters of its children nodes, i.e.,
aaas :=

∑
j∈A aaajs, ∀ s ∈ TD \S. In particular, we use the empty

string λ to denote the root of the tree.
With the above definitions and the Markov property for a

D-th order Markov chain, if both S and Θ are known, the
probability of a sequence can be written as [10]

P (xn1 |x0D−1,S,Θ) =
∏

s∈S

∏

j∈A
θs(j)

as(j). (2)

If only the model S is known, but not its parameters Θ, the
marginal distribution of a sequence xn1 , given its past x01−D
and model S, is

P (xn1 |x01−D,S) =

∫
P (xn1 |x01−D,S,Θ)π(Θ|S) dΘ, (3)

assuming the distribution of the parameters, π(Θ|S), is known.
While this distribution is unknown in general, using the so-
called Jeffrey’s prior is asymptotically optimal in the minimax
sense [4]. This choice corresponds to setting π(Θ|S) to be
the Dirichlet distribution with parameters

(
1
2 , · · · , 12

)
. In this

case, the distribution (3) can be simplified to the so-called
Krichevsky–Trofimov (KT) distribution, which can be easily
computed as

P (xn1 |x01−D,S) =
∏

s∈S
Pe(aaas), (4)

where

Pe(aaas) =

∏m−1
j=0

(
1
2

) (
3
2

)
· · ·
(
as(j)− 1

2

)
(
m
2

) (
m
2 + 1

)
· · ·
(
m
2 +Ms − 1

) , s ∈ TD, (5)

with Ms :=
∑m−1
j=0 as(j).

Finally, if the model S is also unknown, then we shall
marginalise over S with a given prior distribution πD on all
models S of maximal depth D. Fixing γ ∈ ]0, 1[ and

πD(S) := (1− γ)
|S|−1
m−1 γ|S|−LD(S), (6)

we obtain a mixture of different distributions (4), correspond-
ing to the coding distribution of CTW [4], [10]:

Qn(xn1 |x01−D) :=
∑

S∈CD
πD(S)

∏

s∈S
Pe(aaas). (7)

Not only is this coding distribution universal for the class
of stationary ergodic sources (i.e., it asymptotically achieves
optimal coding rate irrespective of the source distribution), but
also it can be recursively computed so that the complexity is
linear in n [8].
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The CTM algorithm [9] comes from a modification of the
CTW algorithm and can be used to compute the maximum
a posteriori model S for a given sequence xn1−D.

Definition 1. For γ ∈ ]0, 1[, the maximised probability P sm of
each node s ∈ TD with length d = l(s) is

P sm :=

{
max{γPe(aaas), (1− γ)

∏m−1
j=0 P jsm }, 0 ≤ d < D,

Pe(aaas), d = D,
(8)

and the maximising tree Ssm is obtained by pruning the
descendants of the nodes s where the maximum is achieved
by the first term.

Lemma 1 (See [10]). The maximised coding distribution Pλm
of the root node λ ∈ TD satisfies

Pλm = max
S∈CD

πD(S)
∏

s∈S
Pe(aaas). (9)

We find then that the maximising tree Sλm, which is asso-
ciated to the maximised probability Pλm, corresponds to the
maximum a posteriori model:

Sλm = arg max
S∈CD

P (S|x) = arg max
S∈CD

πD(S)
∏

s∈S
Pe(aaas). (10)

III. PROPOSED SCHEME

A. Quantisation

The vector quantisation that we propose consists in vector
normalisation, decomposition into real components, and indi-
vidual scalar quantisation based on parametric companders.

1) Vector Normalisation: In this step, the input vector
xxx = [x(1) · · · x(Nt)] is normalised by the component with
the largest absolute value, i.e., x̄xx := xxx/x(i∗) where i∗ :=
arg maxi |x(i)|. Note that x̄(i∗) = 1, while the other nor-
malised components are complex in general, with absolute
value in [0, 1]. The i∗-th component can skip the following
steps and be directly assigned a special quantisation index
indicating it as the strongest component.

2) Decomposition: Before quantisation, each complex com-
ponent should be decomposed into real values. We consider
the polar decomposition into amplitude and phase, since these
components are usually less correlated in wireless applications,
thus providing a less ‘redundant’ representation.

3) Quantisation with Parametric Companders: The ampli-
tude and phase are quantised separately with different scalar
quantisers of Mabs and Mang quantisation levels, respectively.

If the input is uniformly distributed, then a uniform quantiser
is optimal. In general, however, uniform quantisation can be
far from optimal in the rate-distortion sense [5]. Let X be
a random variable representing the input, following some
distribution P over the support interval [0, 1]. The idea of
using a compander is to apply a non-linear and non-decreasing
mapping g : [0, 1] → [0, 1] to the signal (compression)
before quantising it, so that the signal is more ‘uniform’ in
the image space. To recover the signal, the inverse mapping
g−1 : [0, 1] → [0, 1] is used (expansion). It is practical to
use parametric companders, i.e., (differentiable) maps g that

TABLE I
TWO COMPANDER FUNCTIONS.

Compander Parameters pdf g′(x)

µ-law µ > 0
µ

(1 + µx) ln(1 + µ)

β-law α > 0, β > 0
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1

can be described by a few number of parameters. One of the
widely used such companders is the µ-law compander, which
is parametrised by a value µ > 0. Note that, as compared
to the Lloyd quantiser [5], compander-based quantisers have
much lower complexity of quantisation and representation.

In this work, we propose a data-driven design of a com-
pander parametrised by some θ (which can contain multiple
scalar parameters). Assume that we have a set of training
data x1, . . . , xn. Our design is a two-step procedure: 1) uni-
formisation of the data, and 2) adjustment of the compander
parameter.

We assume that the training data are formed by independent
samples from some distribution P . If we knew the cumulative
distribution function (cdf) FP of P , we could apply the
mapping FP so that FP (x1), . . . , FP (xn) are samples from
a uniform distribution. If, however, we are restricted to a class
of companders {gθ, θ ∈ Q} for some set Q, then we have
to approximate FP with gθ. Since a compander as defined
above is non-decreasing from 0 to 1, it is equivalent to a cdf.
Thus, a sensible criterion for the approximation is through the
Kullback-Leibler divergence:

θ∗ = arg min
θ∈Q

D(P ‖ gθ) = arg max
θ∈Q

EP [log(g′θ(X))]. (11)

Remarkably, this is equivalent to maximising the differen-
tial entropy of gθ(X). Since the uniform distribution max-
imises differential entropy among all bounded support distri-
butions [5], the criterion (11) returns indeed the best ‘uni-
formiser’. Note that, since gθ is a cdf, g′θ is the corresponding
probability density function (pdf).

The true distribution of the data is, nevertheless, unknown
in most practical scenarios. But we can adapt the probabilistic
criterion (11) into a data-driven one by replacing the expecta-
tion with the sample mean:

arg max
θ∈Q

1

n

n∑

i=1

log (g′θ(xi)) . (12)

In this paper, we consider the µ-law compander and another
one that we call β-law compander, as shown in Table I. The
β-law compander is equivalent to the beta cdf, parametrised by
α > 0 and β > 0. An attractive feature of the β-law compander
is that its pdf is log-concave in (α, β) [14, Theorem 6], so that
the maximisation (12) can be easily solved.

The first step (uniformising the input) is not enough in the
sense of rate-distortion. We also need to adjust the parameter
to balance the distortion generated in different intervals, which
is the role of the second step. While the exact solution is hard
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to find, we provide a heuristic, yet efficient, way to make the
adjustment.

If we assume that the distortion generated in the interval i
is proportional to the squared length ∆2

i of the interval, then
the average distortion is proportional to

∑M−1
i=0 Ni∆

2
i where

Ni is the number of samples inside interval i. Starting with
the solution given by step 1, all Ni’s are comparable (since
it is roughly uniform), and the largest interval contributes the
most to the average distortion. Similarly, the smallest interval
contributes the least. The idea is therefore to reduce the largest
interval until

NS∆2
S ≥ NL∆2

L, (13)

where ‘S’ and ‘L’ stand for the ‘smallest’ and ‘largest’ inter-
vals, respectively.

Although the presented compander design is based on
training data, we can also start with a uniform compander
and update it regularly when more data are available. A great
advantage of the parametric compander design is the negligible
communication overhead of the (few) quantisation parameters.

Remark 1. It is well known that, followed by entropic en-
coding, a uniform quantiser is asymptotically optimal in the
high-rate regime. We emphasise, however, that here we do not
operate in the high-rate regime unlike many other applica-
tions. More importantly, a large alphabet size would make
the following context-tree-based compression highly inefficient.
Hence, a carefully designed quantiser is crucial for the overall
performance.

After the quantisation is done, one has to compress the
sequence of quantisation indices. One way to do that is to
directly apply CTW with arithmetic coding to this sequence. In
the following subsections, we describe an alternative solution
that limits the fluctuation of the output bit-stream.

B. Tree Estimation

Given a scalar sequence kn1 , we use the CTM algorithm (cf.
Section II-C) to find the maximum a posteriori tree model
Ŝ that describes that sequence. This algorithm consists in
building the same tree TD as in CTW algorithm, followed
by a pruning procedure as described in Definition 1. Both the
computational and storage complexity of CTM algorithm are
known to be O(nmD), i.e., linear with sequence length n,
alphabet size m and maximum tree depth D, cf. [10].

When training data are available, we can apply the CTM
algorithm on the training data to estimate the MAP model Ŝ ,
and use it to estimate symbol probabilities and encode the
incoming sequence. This, however, is not necessary: we could
initialise the full tree TD with empty counters, keep updating
the counters with incoming data, and regularly prune a copy
of this tree to have an updated estimate of the MAP model Ŝ .

C. Coding Distribution and Encoding

Once a tree model Ŝ is estimated, we can encode a sequence
kn1 according to the probabilities issued from that model.
Note that, given a model Ŝ and past symbols k01−D, the
estimated probability of a sequence kn1 can be computed via

the KT estimator, using (4) and (5). In particular, denoting
s := c(ki−1i−D), we can compute the probabilities P̂ (·) = P (·|Ŝ)
that the next symbol is ki = j, for all j ∈ A, as

P̂ (j|ki−1i−D) =
P̂ (kii−D)

P̂ (ki−1i−D)
=

∏
s′∈Ŝ Pe(aaas′(k

i
1))

∏
s′∈Ŝ Pe(aaas′(k

i−1
1 ))

=
Pe(aaas(k

i
1))

Pe(aaas(k
i−1
1 ))

=
as(j) + 1

2
m
2 +

∑
j′∈A as(j

′)
. (14)

With P̂ , one may apply arithmetic coding to encode ki. But the
encoded bits would have a variable length depending on both
P̂ and ki. Reducing the fluctuation of the coded bit length
is important for practical communication systems. Here, we
propose an encoding scheme with three possible codeword
lengths, as described below.

Fix two integers q1, q2 ≤ logm such that m1 := 2q1 ,
m2 := 2q2 , and m1 + m2 ≤ m. If ki is among the m1 most
probable symbols according to P̂ (tie could be broken with
a fixed rule), then the encoded bit string ci is 0 followed by
q1 bits indicating the position of ki in the list of the m1 most
probable symbols. Otherwise, if ki is among the next m2 most
probable symbols, the encoded bit string ci is 10 followed by
q2 bits indicating the position of ki in the second list. Finally,
if ki is not among the m1 + m2 most probable symbols, the
encoded bit string ci is 11 followed by q2 bits corresponding
to the index k̃i from a lower resolution quantiser with size m3.
Hence, in our scheme, we also need to keep a lower resolution
quantiser to apply on least probable symbols. It follows that
the codeword length is either 1 + q1, 2 + q2 or 2 + dlogm3e.

D. More Implementation Details

Some more implementation details are omitted and can be
found in the long version in [12].

First, the bit allocation between the amplitude and phase
quantisations can be optimised to minimise the overall distor-
tion on the complex symbol. We can show that a rule of thumb
is to use two more bits on the phase than on the amplitude.

Then, for practical uses, we have multiple trees, each one
corresponding to a quantised sequence (amplitude or phase)
of a given user and antenna. While each tree provides the
marginal distribution of the given sequence, all the marginal
distributions can be jointly used to encode the parallel streams
together, in order to improve the coding rate.

IV. SIMULATION RESULTS AND CONCLUSIONS

We use the MATLAB LTE Toolbox to simulate an LTE
MIMO downlink channel, with Nt = Nr = 4. We consider
both the low mobility (EPA5, Doppler 5 Hz) and high mo-
bility (EVA70, Doppler 70 Hz) scenarios, with either low or
high correlation between antennas at the base station. In our
implementations, we use D = 2, γ = 0.5 and q1 = 0.

We consider three quantisation schemes: the µ-law compan-
der, the β-law compander, and the cube-split quantiser [15].
Interestingly, the cube-split quantiser can be regarded as a
complex compander adapted to the distribution of normalised
complex Gaussian vectors. For each quantisation scheme, we
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Fig. 1. Simulation results.

consider three scenarios: no compression, compression with
ideal CTW using arithmetic coding [8], and compression with
the two-level resolution CTM scheme. The ideal CTW case is
simply evaluated with 1

n

(⌈
− logQn(xn1 |x01−D)

⌉
+ 1
)
.

In all cases, we assess the MSCD versus the average number
of CSI bits per antenna, and, for low antenna correlation,
we also assess the downlink communication sum rate with
zero-forcing beamforming, evaluated approximately using the
formula provided in [1, Eq. (20)], at 30 dB. The results
are obtained with the best quantisation parameters (sizes of
different codebooks) over those that we have tried.

Fig. 1a compares the performance of the different quantis-
ers, with no compression, for low mobility scenario (EPA5).
For low antenna correlation, the cube-split and the proposed
quantisers achieve almost the same results. On the other hand,
when antenna correlation is high, both proposed quantisers
have similar performances and are noticeably better than the
cube-split (which assumes uniformity of the distribution by
design).

In Fig. 1b, we fix the β-law compander and study the
performance of different compression methods, under high
antenna correlation. The compression gains are significant and
can reduce the CSI bits by up to half in the lower rate
regime. For EPA5, in the higher rate regime, the two-level
CTM scheme can reduce the feedback bits in 4.5 bits and
is 1.5 bits away from the CTW performance, approximately.
For EVA70, the gains are smaller, due to the lower time
correlation. Nevertheless, in the higher rate regime, the two-
level CTM can save more than 2 bits, and CTW, more than
4 bits. Furthermore, for EVA70 in the extreme low rate regime,
the the two-level CTM outperforms CTW, thanks to the low-
resolution quantiser.

Finally, Fig. 1c presents the communication rates for dif-
ferent compression schemes, using the β-law compander. The
results are normalised by the rate achieved when perfect (i.e.,
noiseless) CSI knowledge is available. For both EPA5 and
EVA70, we see that the communication rate converges much
faster to the analog CSI rate (i.e., with no quantisation) when
some of the proposed compression schemes are employed.

More importantly, the proposed schemes have low complex-
ity, can be implemented in an online fashion, and are modular.
In particular, the context-tree-based compression scheme can
be applied on any other quantisers, including those recently de-
signed with neural networks, e.g., [3]. Similarly, the proposed
quantiser can be combined with any other lossless compression
schemes.
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