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Abstract

While users deserve security and privacy when using web services,
these properties are at odds with the financial interests of website own-
ers both in terms of work required to keep websites secure and revenues
generated by exploiting sensitive data resulting in a violation of the
user’s privacy. Countries, therefore, introduced regulations to balance
the inequity. Namely, European Union’s General Data Protection Regu-
lation (GDPR) specifies that any data collection and processing can only
be done with the informed and specific consent of the user, including
sharing of the said data with 3rd parties. Automated and large-scale
detection of violations and security flaws is difficult because of the
non-standardized behavior of website authentication mechanisms.

We developed a web crawler for detecting and submitting mainly reg-
istration web forms. This crawler enables novel privacy and security
research on a larger scale than was previously possible. The completely
automated crawler can navigate the site to find the required form, fill the
form, avoid bot detection mechanisms, submit the form, and validate
the submission success. In 17 days, we crawled over 600,000 domains
intending to create new user accounts. Our automated crawler detected
a sign-up form on 22% of all the reachable websites with a 6.4% regis-
tration success rate. We have also received at least one email from 2.3%
of all crawled pages. This significantly surpasses the prior version of
this project and the best widely-used published tool.
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Chapter 1

Introduction

In recent years much of daily life has moved to the internet, the transition
only spurred by the recent pandemic. Unintentional bad practices, non-
ethical behavior, and malevolent actors pollute the online landscape and
infringe on the privacy and security of all users.

E-commerce websites are known to either intentionally or unintentionally
share their email marketing lists with 3rd parties [7] resulting in the delivery
of unsolicited emails. Similar practices are employed by the ever-popular free
web services, whose financial model relies on ad revenue, where the user’s
private data is the means of payment for the services rendered [17]. European
General Data Protection Regulation (GDPR) [10] has been a big step forward
in providing a legal framework for the protection of the user’s privacy on
the internet. It requires freely given, specific, informed, and unambiguous
consent before any collected data can be processed and narrows the scope
in which the data can be used. The technological means to mandate privacy
is then defined in ePrivacy Directive (ePR) [9], which, for example, forbids
sending unsolicited marketing emails and sharing the user’s email addresses
with 3rd parties unless the user consents to the practices. According to
Kubicek et al. [12], 21.9% of websites contain potential violations of these
rules.

Authentication mechanisms can also contain various vulnerabilities, which
can lead to serious information leaks. Drakonis et al. [6] have audited more
than 25,000 domains and have detected almost 10,000 domains where an
attacker could access the user’s private data or hijack the authenticated
session. Calzavara et al. [1] have shown that even the most popular pages on
the internet are not exempt from such vulnerabilities.

The website registration process itself is potentially susceptible to the leakage
of personally identifiable information too. According to Chatzimpyrros et
al. [2], around 5% of webpages intentionally or unintentionally leak users’
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data to 3rd-party trackers without consent. Starov et al. [19] have shown that
the same holds for contact forms as well.

The study of all the presented topics on a large scale is difficult because of
the lack of tooling required for automatic interaction with authentication
mechanisms. Selenium [4] and Pupeteer [3] provide only low-level access
to web browser automation, while the OpenWPM [8] framework mainly
supports passive web privacy studies.

The goal of this thesis was to improve on the work done by Kast [11],
who developed a crawler for automated website form interaction meant to
facilitate GDPR compliance analysis. The main focus of the crawler remains
to automate the registration of users to websites, which will in the future
facilitate research on the usage of user-provided private data by websites.
Most of the challenges that we dealt with in this thesis come from the fact
that website interaction flows are not standardized, and the developers have
complete freedom to design it however they want to. There are many common
patterns, but in the end, almost every website has a unique implementation,
which the automated crawler has to account for.

The past version of the crawler followed a very rigid scheme. In simplified
terms, the crawler used keyword-matching to detect the registration and login
page, assumed the form with the most password fields is the registration
form, fill in the form, solved the CAPTCHA, and submitted the form. This
works for a lot of websites, there are also many more complex websites where
this simple scheme can fail at. Notably, any website with a shared page for
registration and login, multi-stage forms. . .

We have reworked the crawler’s website navigation module, which now uses
keyword-matching of links to fill a priority queue. The pages in the priority
queue are ordered by how likely they are to contain the desired content.
That, combined with an improved form classification algorithm, makes the
updated crawler much more adaptable and, therefore, more likely to detect a
registration form. It also makes it much easier to change the end goal of the
process (e.g., to detect newsletter subscription forms). We also improved the
form detection, filling, and submission. Lastly, we have improved the overall
reliability of other parts of the crawler and prepared a test suite that covers
most of the cases that can happen during a real-world registration scenario.

Overall we have noticed a significant improvement both in terms of suc-
cessfully detected registration forms and overall registration success rate.
In the evaluation crawl of the Tranco [14] 1M most popular websites, we
successfully detected a registration form on 20% of all successfully loaded
websites and have estimated the submission to be successful on 6.4% of
them. By reviewing the emails received to the automatically generated email
addresses, we observed that 2.3% of all the loaded websites sent us at least
one email, producing a guaranteed lower bound on the overall success rate.
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Chapter 2

Initial crawler state

The base version of EnfBot was first introduced by Kubicek et al. [12]. That
version still delegated parts of the registration process to the user. It was
written in Python and used Selenium to automate a headless Firefox browser.
Later it was significantly improved by Kast [11], making it completely auto-
mated. He also introduced a distributed crawling platform to crawl the most
visited 1M websites collected by Tranco [14]. This resulted in a successful
registration on approximately 40 000, i.e., 4% of the 1M crawled pages. At
the end of my thesis, we aimed to repeat this crawl to compare the versions
between themselves.

The basic operating procedure that was used at the time is represented in the
Fig. 2.1. The main goals of the crawler were, given a website, to register on it
if possible, and to find its privacy policy and terms of use.

The crawler can be divided into two almost independent parts, the navigation,
which is responsible for crawling through the website, and the registration
module, which is in charge of filling and submitting the form. Here we will
analyze the shortcomings of both parts. Navigation was based on matching
the text present in the links to keywords that were manually assigned to
desired categories. It supported 39 languages (most of the official languages
of the European Union), but German and especially English were the most
tested and reliable. The registration module used a similar keyword-based
approach to classify input fields and fill them with appropriate data.

2.1 Limitations

The described crawling flow has several limitations in the navigation and
registration modules. Some were already presented by Kast [11] while others
were noticed during work on this thesis.
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2.1. Limitations
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Figure 2.1: A representation of the crawling flow utilized by the previous version of the crawler.

2.1.1 Navigation

The previous crawler implementation depended on a specific registration
structure depicted in Fig. 2.1, the rigidity of which prevented it from success-
fully navigating through the more complex websites.

The link keyword matching algorithm failed to consider links that matched
multiple page types. Instead of determining the best match, it selected the
first type detected.

This crawling scheme also only attempted to load the first link to a registration
page it encountered. It failed as soon as that link led to a page that did not
contain a registration form, even though the second-best match might be
the correct one. Examples of this are login pages; they share keywords
with registration pages (e.g., account), so one is often mistaken for the other.
Therefore, the crawler should be adaptable and try to find registration pages
on all pages that match at least some of the related keywords. The index
page sometimes contains a registration form, e.g., on members-only portals.

The crawler also had problems with websites where login, registration, and
possibly some other forms are present on the same page. The algorithm used
to determine which form to submit often resulted in false positives, thus
submitting login, newsletter, or contact forms. While this does not affect the
actual success rate, it leads to misleading results.

Many other problems occurred only on a small subset of pages but together
accounted for a significant amount of pages that the previous version of the
crawler was not able to successfully process:

• index landing pages contain a single link/button requiring interaction
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2.1. Limitations

(e.g., Continue to site),

• websites require age confirmation,

• websites contain irrelevant links that lead off the site (e.g., youtube.
com/user/partnersupport) matches the keywords for login page), and

• websites require navigating by more than one step between the index
and registration pages.

2.1.2 Registration process

Once a form had been identified, the crawler first classified all input fields.
An input field was often matched to the wrong label, which led to misclas-
sifications. There was no way to distinguish between different select boxes,
meaning an input field for the birth date was often filled out wrongly. This
could lead to failed submission in cases where age was validated.

The crawler also had issues detecting certain types of CAPTCHAs and did not
correctly solve them again if the first submission attempt was unsuccessful.
For example, the way reCAPTCHA worked relied heavily on a particular
way of its integration into the website. The crawler was therefore unable
to solve reCAPTCHA properly on websites with a more complex setup or
middleware libraries.

The most problematic part of the form interaction was the registration success
detection. There were several steps in this process, each with its own flaws
that made the results of any crawl unreliable:

1. It analyzed the forms present on the page using the same flawed
algorithm is used to detect the form in the first place. If it detected a
form, it decided that the submission was not successful. Because a login
form was always detected as a registration form, this meant that every
site that redirected you to a login page after successful registration was
marked as unsuccessful. At the same time, any multi-step registration
form that did not have an email field on the second form was detected
as successful.

2. It treated redirects as successful registrations. Not necessarily correct,
e.g., redirect to an error page

3. It checked for success and failure keywords present on the webpage.
The keywords used were extremely generic. Therefore this often led to
a false positive in cases where any of the keywords were present on the
page after submission.

4. In case nothing else was detected, it assumed that the submission was
successful. This proved to be a very optimistic and unreliable behavior.
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Chapter 3

Crawler rework

The core of the improved EnfBot crawler is a page navigation algorithm
instrumented by a page-state automaton, which replaces the previous se-
quential webpage navigation implementation. We model the registration
process as a set of states and a set of operations that can determine the current
state we are in. The crawler can then use this information to determine the
best course of action in order to achieve the three main goals: register on
the web portal, find the terms of service, and find the privacy policy. The
crawling process can be roughly split into two independent parts, finding
the required pages and performing the actual registration.

Fig. 3.1 visualizes the navigational part of the website crawl. It only requires
the URL of the index page to be put into the navigation queue and then
works autonomously until the crawl goals are met, or until it reaches the
maximum number of subpages, it is allowed to crawl.

When the desired type of form is detected we enter the registration phase.
In Fig. 3.2 we represented the steps the crawler takes when registering on
a website with an unknown structure. A separate module is in charge of
every step of the process; starting with input classification, then filling in the
forms, submitting the form, and finally checking the status of the current
submission.

This modularization of the process allowed us to develop and improve each
step in isolation and, in a similar vein, present each of them separately in the
following sections.

3.1 Keyword matching

One of the key parts of the entire crawler is the keyword matching algorithm.
We use it to classify links, forms, input fields, and even to check the submis-
sion success. The algorithm takes a string and a set of categories, each with
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3.1. Keyword matching
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Figure 3.1: A visualization of the way the crawler navigates through a single website.

its own keywords. The task is to select the category whose keywords match
the given string best.

Let’s illustrate the functionality with an example. We would like to know
what kind of data a given input field with an associated label should contain.
For simplicity, let’s assume the only options are email, full name or username
(in practice the number of possible categories for input fields is much larger).

The label text is “Your username” and the considered input field categories
and their corresponding keywords are:

• email: email, e mail, mail

• full name: full name, name

• username: username, userid, user, usr, nickname, login.

We know from the label that the expected output is username input type.
Unfortunately it contains the string name which also matches the type full
name.
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3.1. Keyword matching
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Figure 3.2: A representation of the registration procedure the crawler follows on each detected
form.

Our keywords-matching algorithm assigns a score to each type depending
on how well the type matches the string. Then it compares the scores of all
types and outputs the one with the highest score.

The string is first split into separate words by splitting on all whitespace
characters, special characters, and all case changes. We will call these label
words.

We calculate the matching score for each category separately. First, we
compare the list of label words and the list of keywords pertaining to the
given category and look for matches. For each match, the score for the type
is increased by 1/n where n is the position of the matched keyword in its list.
In our example, this happens in the type username, where the first keyword
in the list is matched completely, meaning the resulting score is 1. Note that
for keyword phrases (like “full name”), all the words in the phrase have to
be matched in order.

If no full word matches are found, we check whether any keyword matches
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3.2. Navigation

just a part of a label word or vice versa. In our example, this happens with
the word “name” for the type full name. In this case, the score is increased
by just 1/(n + 5) making the increase smaller for partial matches. In our
example, this would give the type “full name” the score of only 0.15, thus
classifying the entire input as a username field.

3.2 Navigation

The navigation module’s task is to scan the website for links and other
clickable elements and select the next page to visit in order to achieve the
current goals. The navigation is generic, and the crawling goals can be
adapted easily. E.g., the crawler can be extended to prioritize logging in
and navigating through the pages only available to the authenticated users,
signing up for newsletters forms instead of registration, only looking for the
privacy policy. . . .

3.2.1 Hyperlink classification

Each time a new website is loaded, all the links present on the page are
collected together with any accompanying text. The text from the link’s
label, title, destination address, and accessibility attributes is then matched
to predetermined lists of keywords using the keyword matching algorithm
described in Section 3.1. The following types all have assigned keywords for
each of the supported languages:

• registration,

• login,

• terms and condition, and

• privacy policy.

The result of the keyword matching algorithm is the best matching link type
with its assigned score. In case no matches were found (the majority of
the time), the URL was classified as other. It is important not to discard
non-matched hyperlinks completely because they allow us to enter the site
from a landing page where we would otherwise be stuck.

3.2.2 Navigation queue

The hyperlink classification assigns URLs their corresponding category. These
are put into a priority queue which prioritizes the hyperlinks that match the
goals that we still have to achieve during a particular crawl. Given the goal
of the crawler, the links leading to a registration page are the top priority.
Second are links leading to a login page, as these often contain registration
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3.3. Page classification

forms or at least links towards a registration page. Third are links to the
privacy policy and terms, which are also important for the legal analysis, but
they are only collected after registration. All the other links share the lowest
priority.

Links within a category are ordered according to the keyword matching score
regardless of the time of insertion into the queue. There is also a limit to the
number of visited links allowed in each category. This prevents the crawler
from getting stuck on a particular website where there are a lot of incorrectly
classified links. This happens when the entire portal resides on a subpath
containing one of the keywords (e.g., register.com).

3.3 Page classification

The hyperlink classification only orders the navigation queue, which de-
termines the next crawled page, but it does not decide about actions to
be performed on a particular page. The text in the link contains too little
information and thus can be inaccurate. Therefore the whole content of
a loaded page needs to be considered in order to decide which action to
perform next. This includes determining the general type of the page and
detecting specific page components (e.g., forms) of interest. In the following
sections, we discuss the possible design options, our decisions between them,
and finally, the limitations and proposed future additions for this module to
be feature complete.

3.3.1 Full page classification

The initial idea was to develop a machine learning model to classify each
loaded page. The model would distinguish between registration pages, login
pages, privacy policy, and pages containing the terms and conditions. With
this model, we could still use the existing keyword-based navigation, and in
addition, the model would confirm that the loaded page matches the type
detected in the link.

We collected a dataset of around 1000 webpages in English using the results
of the first crawl [11]. During the manual labeling process, it became evident
that all the login and registration pages can usually be quite easily distin-
guished from all the others by the presence of login and registration forms,
respectively. This means that the classification task can be separated into
two sequential tasks, first distinguishing between form and non-form pages
and then subclassifying each group. Since registration is the primary focus
of this crawler, the biggest emphasis was put on the form group, which we
will cover here. The subclassification of the second group containing privacy
policy, terms of use, and all the pages that use similar keywords (e.g., articles
about privacy) remains as future work.

10
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3.3. Page classification

During the labeling procedure, we also observed that many pages were hard
to classify into any of the chosen groups since they contained multiple forms
of different types. For example, a webpage can contain a login form on the
left, a sign-up on the right, and a newsletter subscription form in the footer.
Initially, we classified these pages into a special “MULTIPLE” category, but
that only helps for the crawler navigation, leaving the decision about which
form to fill and submit unsolved. It was concluded that the initial idea of
page classification for this task is cumbersome and that each form found on
the page needs to be classified separately.

3.3.2 ML-based form classification

By focusing the classification on forms we eased the labeling process because
forms, unlike webpages must have a singular purpose. All the pages from
the first dataset collection were crawled again and checked for the existence
of forms. We then collected the screenshots and source code, which we
labeled manually. We developed a generic annotation interface to simplify
the labeling process, see (Appendix A.1). The form was pre-classified by a
simple heuristic that takes into account the number of specific types of input
fields and the existence of certain common keywords. The final annotation
was then decided by the author. The dataset contained 426 forms, of which
there were 12 contact forms, 32 login forms, 139 newsletter sign-up forms,
163 registration forms, and 80 others. Since it collected all the forms found
on a webpage (not just the first), it should be representative of the forms the
crawler is going to encounter.

The most obvious features that can be used to classify a form are the types
of input fields present in it. The existing input field classification algorithm
only worked on forms loaded in the web browser. Loading each form in
the browser just to extract features from it would add a big overhead to the
model and make it much less portable. To create a proof-of-concept model,
we just used the HTML type attribute to classify the fields into categories
email, password, text, and select. The number of elements of each type
was used as a feature, as was the total number of all non-hidden inputs.
Additionally, we trained a bag-of-words model on all the text present in the
forms and the URLs from the dataset and selected the 100 most common
ones to use as predictors.

Using all these features, we trained an XGBoost model, which reached an
accuracy of around 71%. This was expected because of the limited set of
features used and the limited amount of data it was able to train on. To im-
prove the accuracy, we needed to remove the input classification algorithm’s
dependency on Selenium in order to be able to use it for the purposes of
feature extraction.
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3.3. Page classification

Feature importance analysis also showed that due to the wide variety in the
detected keywords, the bag-of-words model did not have enough training
data. Collecting a bigger and more nuanced dataset would require a big
web crawl, especially if we wanted separate models for all the supported
languages, so further research into this area was postponed.

3.3.3 Traditional form classification

Instead of training a model on an insufficient amount of data, we developed
a more detailed deterministic algorithm for form classification. It primarily
depends on the number of important input fields and falls back to keyword
matching in cases where that is not enough to classify the form with the
required accuracy.

A simplified scheme is visualized in Fig. 3.3. The main branching point
is the number of password fields. Almost every form with more than one
password field is a registration form, the exception being password change
forms which we do not expect to encounter because we are not logged in at
the time of the registration. Forms with a single password field are a bit more
divisive because they can also be used for login. In this case, we assume that
login forms usually do not contain many personal fields (e.g., name, country,
phone number, birth date . . . ). Even forms without any password fields
can be used for registration (multi-step, generated password . . . ), although
they are more often used for newsletter subscription or contact. We assume
that personal fields are not common in newsletter sign-up forms either. The
decision between contact and registration form is a bit harder. For it to be
considered a registration form, we require the submit button to contain a
keyword linked specifically to registration (e.g., sign-up, register . . . ) which
is rare in contact forms.

Using the traditional algorithm on the same test set we used for the evaluation
of the ML model, we observed accuracy of 82%, which is significantly higher
than the 71% achieved by the ML model. In Fig. 3.4 you can observe the
confusion matrix of both developed models. The test dataset is too small to
draw any serious conclusions, but you can observe some trends. The ML
model tends to disregard login forms almost completely, while the traditional
model often mistakes actual registration forms for login forms. We also
noticed that there is higher false negatives are more common regarding
registration forms than false positives. Manual review has shown that the
misclassified login forms are in large part the ones with just an email and a
password field, where keyword-matching is not enough to distinguish them
apart.
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Figure 3.3: Traditional form classification scheme
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Figure 3.4: Comparison of ML and traditional classifiers.

3.3.4 Limitations and future work

The deterministic algorithm still has problems differentiating between certain
groups of forms, namely:

• newsletter sign-up forms, contact forms, and multi-step registration
forms

• login forms and registration forms with only an email and password
field

The type and number of typed input fields alone are insufficient to distinguish
between the forms in Fig. 3.5. To distinguish these forms, we would need
to use more sophisticated NLP procedures or new features such as in-page
location. Simply using more training data would possibly improve the model
as well. Nevertheless, the deterministic form classification is not the main
limitation of the system, as we discuss in Chapter 6, so we did not explore
the ML classification of forms further.

The form classification differentiates only between registration, login, and
all other pages. We still need a model that differentiates between a page
with the terms of use and privacy policy from other pages. These pages
are usually monotonous and long as they contain the entire legal document.
Hence we can use features such as text length, number of images, and links,
together with text vectorization, fed to NLP models. We can use the data
from the final crawl, but we would still have to label or weakly supervise the
classification model, similarly to the one studied by Mekala and Shang [16].
This is also left for future work.
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3.4. Filling the forms

(a) sign-up form

(b) login form

Figure 3.5: An example of forms with the same input fields but different meanings on the same
site.

3.4 Filling the forms

Once a registration or newsletter subscription form is detected, we must
fill out all its input fields. The main objective is successful submission; the
accuracy of the data submitted is just a secondary concern. Each run of the
crawler uses a provided persona to fill in all the personal fields, while the
email address and the username are generated for each execution separately
to allow the creation of multiple accounts on the same page. We leave any
field that is not matched to a known category empty in the first submission
attempt. If the submission attempt is not successful, we resort to filling in
all the fields randomly, i.e., with a random string in case of text boxes and
a random option in case of select menus and radio groups. The randomly
generated strings are made sure to adhere to any known restrictions like max
length, min length, and regex pattern.

3.4.1 Input field classification

Before filling in an input field, we first need to determine the type of data
each input field is supposed to contain. Additionally, we also need to detect
any special formatting requirements for certain input types (e.g., dates, phone
numbers).

There are three main sources from which we can infer the type.

1. HTML autocomplete attribute.

2. HTML type attribute.

3. Strings: label, placeholder, value.
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3.5. CAPTCHA solving

The most reliable way to classify fields is the autocomplete attribute given
to any input field. It is a part of HTML5 standard specification1 and its main
goal is to help the browsers and password managers automatically fill the
forms in the name of the user. Its value directly determines the type of input
field. For example, the value “username” would tell us that the forms expect
this input to contain a username. Unfortunately, only a small proportion of
webpages – 18% by the estimation from our evaluatory crawl - actually add
the attribute to the input fields and forms.

If the autocomplete attribute is not present, we use the HTML type attribute
to narrow the range of possible input types (e.g., a checkbox cannot contain
an email address) and then perform the same keyword matching algorithm
already described in Section 3.1 to classify each field. The keyword matching
is performed on the placeholder, value, class names, and the label, which all
often contain keywords related to the type of the input field.

3.4.2 Inserting values

Most input fields the crawler encounters are just text boxes. In this case, we
insert the value by simulating the keypresses using Selenium instead of just
directly filling in the value using JavaScript. This is done to make sure that
all the event listeners on input fields are triggered. Without this, some forms
might not be submittable since the input value verification was not activated
yet.

Select boxes and radio groups are handled similarly. In both cases, we extract
the label and value assigned to a particular option and use our keyword
matching algorithm to compare it to the value we would like to fill in. The
option with the best score is then selected using Selenium’s built-in functions.

3.5 CAPTCHA solving

Many websites have measures in place which prevent bots from registering
in order to prevent malicious actors from creating new accounts. Without
it, they would be susceptible to spambots, DDoS, and other attacks. For
our crawler to work, we require a way of circumventing these protections.
Commonly, a website presents us with a challenge that is easy for a human
to solve but hard for a bot to solve automatically. Systems that provide such
functionality called CAPTCHA (for Completely Automated Public Turing
Test To Tell Computers and Humans Apart) have been in use since 1997. The
term was coined later by von Ahn [20].

1https://html.spec.whatwg.org/multipage/form-control-infrastructure.html-#

attr-fe-autocomplete
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3.5. CAPTCHA solving

(a) image captcha (b) reCAPTCHA checkbox (c) reCAPTCHA image

Figure 3.6: Different types of CAPTCHA systems you are likely to encounter on a webpage.

We implement detection and processing of multiple CAPTCHA systems but
use an external service 2Captcha2 to solve them. In most cases, that means we
collect all the information required to solve the challenge and send it to their
API, where it is solved using a combination of machine learning and human
labor. The results are then passed to us and used when submitting the form.

3.5.1 Classical CAPTCHA

Typical CAPTCHA implementation is a variation of a distorted image from
which the user is supposed to read characters, a riddle to be solved, or
an audio recording to be typed out. An example of such CAPTCHA is
represented by Fig. 3.6a.

Currently, our crawler only supports image recognition, but in the future
other forms could be added in a very similar fashion. The detection of
the image and answer field works in the same way as the classification of
form input fields. We decide if a certain input field is part of a CAPTCHA
by checking for certain keywords, the existence of nearby images, and the
existence of IFrames often used by external CAPTCHA providers. After that,
the image to be recognized and a screenshot of the surrounding area, which
might contain additional instruction, is sent to the external service. If the
service solves it successfully, the response is filled into the provided input
field, and the form is ready for submission.

3.5.2 reCAPTCHA and hCAPTCHA

The second category of CAPTCHA systems our crawler supports are those
provided by reCAPTCHA and hCAPTCHA. As hCAPTCHA is a drop-in

2https://2captcha.com/
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replacement for reCAPTCHA for those, who would like to migrate away from
using the Googles service due to privacy-related or other concerns, we will
just refer to reCAPTCHA in the following section but note that everything
stated holds true for hCAPTCHA too.

These systems first try to determine if a user is a human without requiring a
challenge to be solved. Usually this means just showing a checkbox needing
to be checked, or in the case of reCAPTCHAv3, not even that. While the
inner functionality of these systems is not known to the public, it has been
researched by Sivakorn et al. [18]. They concluded that the widget analyzes
the browser environment, tracks the user using cookies, and also analyses
the user’s interaction with the site in order to determine if the user is human.
If the analysis is not able to confirm the user to be human, a challenge is still
presented and expected to be solved. In Fig. 3.6 you can see both modes of
operation.

An automated solution of reCAPTCHA differs from manual interaction as
it does not involve ticking the checkbox or choosing any images. We first
extract the parameters that were used to render the reCAPTCHA widget and
then send them to the CAPTCHA solving service, where they render the
widget on their own and just send us the response required to submit the
form.

We capture the parameters and later provide the website with the answer
to the CAPTCHA by replacing the official reCAPTCHA JavaScript with
our own NOOP implementation. To the website, the JavaScript API is
indistinguishable from the original implementation, while in reality, it does
not render any CAPTCHA challenges but just forwards the parameters to
the solver. For a more detailed explanation of this system, see Appendix A.2.

3.5.3 Limitations

Not all sorts of CAPTCHA systems are supported yet. Our external provider
supports solving more types that we are currently detecting, f.e., text CAPTCHA,
GeeTest, CapyPuzzle... From the data collected by BuiltWith3 we can con-
clude that supporting these would yield only negligible improvements, but
this is still an avenue we could pursue for the sake of completeness.

3.6 Submission validation

After submitting the form, it is important to check if the registration was
successful or not. This module is essential, especially in the analysis of the
crawler’s performance. Errors that arise from the submission validation can
relay a wrong impression of how the rest of the crawler is performing. There

3https://trends.builtwith.com/widgets/captcha
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are many ways a website can respond after the submit button is pressed. We
identified the most common success and failure scenarios and developed a
validation pipeline to distinguish between them.

Success scenarios

• We are redirected to a success page.

• We are redirected to a login page.

• A success message is rendered on the same page.

• We are taken to the next step in the registration process.

Failure scenarios

• The same form is shown with some error messages.

• We are redirected to an error page.

• No redirect, no form displayed, just an error message in its place.

3.6.1 Form detection

First, we rerun the same form detection algorithm we used to detect and
classify registration forms to see if the page still contains some forms after
submission (see Section 3.3.3). Each form is compared to the form we just
submitted for approximate equality. We are interested in knowing if we
were presented with the same form again, but we allow for some differences.
Every time a page is loaded, we append a UUID to each input field and form.
By comparing the UUID of the old and new forms, we can reliably decide
whether the form has been reloaded. Additionally, webpages often add or
remove particular elements from the form after a failed submission, e.g., a
CAPTCHA field, error fields, or do not ask you about fields that were OK
in the first submission. Therefore, we penalize each difference of inputs by
1 point. The same penalty of 1 point is assigned for any difference in the
“action” and “name” attributes of the form. In the end, we decide whether
two forms are equal based on the aggregated penalty and number of input
fields. For forms with fewer than three visible inputs, the penalty must be
0 for forms to be considered equal. For forms with three to five inputs, the
penalty must be lower than 2. Furthermore, for forms with more than five
inputs, the penalty must be lower than 3.

As we have already mentioned in Section 3.4, in case the same form has been
presented again, the crawler will attempt to submit it again. This time we
will also fill any field that was unable to be classified and was therefore not
filled in during the first attempt, using random data. When that has already
been done, we will assume that the registration has failed.
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If we detect a registration form that is not equal to the submitted one, we
assume that we are working with a multi-stage registration process and
continue by filling in and submitting the next form.

The final possible scenario is that no registration forms were detected. In this,
we continue with our submission validation pipeline.

3.6.2 Keyword detection

The second step in the detection pipeline again focuses on a set of keywords
that can represent a successful or unsuccessful registration. Some of these
keywords are extremely general (i.e., success, failure,...), so they tend to
produce quite a lot of false positives. To combat this, we run the same
keyword matching algorithm before and after submission. The keywords
encountered in the first one are not taken into account when checking for the
results since they were already present on the page even before submitting.

3.6.3 Redirect detection

Next, we check if we were redirected to a new URL during our registration
procedure. This still does not necessarily mean that the registration was
successful because we could also be presented with an error page. In our
experience, this is rarely the case; a failure usually keeps at least the form or
an error message on the same site. As of now, we have not figured out a way
to be more precise, but this might require further examination.

3.6.4 Email validation

The last part of the submission pipeline is email verification. This is done
independently of the results of the previous detection methods. We wait
for up to two minutes to see if our newly generated email address has
received any emails. If an email arrives, we conclude that the submission
must have been successful. Secondly, we check the email for any link that
could be classified as activation and visit it, hopefully activating the account
and completing the registration process. While we have noticed websites
that require user interaction to activate the account after clicking the link
successfully, we currently do not support that interaction.

3.6.5 Future work

If none of our detection methods succeed, the submission status is marked as
unknown. The results of the final evaluation show that quite a large amount
of pages fall into this category, meaning the success detection module is still
far from optimal.
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By intercepting the HTTP requests used for form submission, we could
intercept the HTTP status code of the response and use it to verify the
submission status. While a successful HTTP response does not in any way
indicate a successful registration (many failed attempts are just served with
status 200 OK and an error message), an error status should be a good
indicator of failure. This is especially true for any AJAX-based forms where
the HTTP status is more commonly taken into account.

The keyword detection algorithm could be improved a lot using a variety
of NLP techniques. We have already looked into training a BERT [5] model
to distinguish between successful and unsuccessful responses. The dataset
required for this was collected later, during the evaluatory crawl we will
discuss in Chapter 6. There is also the problem of the amount of irrelevant
text always present on the page. An interesting approach would be to devise
a way of ranking all the text content by the amount of attention a human
observer would direct to it. This would allow us to prioritize the detection on
the text that is most likely to tell us the result of our submission and ignore
things like the footer and the header of the page.

Darkonakis et al. [6] have also proposed that loading the index page again
and checking for the presence of any of our personal information can be a
good indicator of a successful registration attempt.
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Chapter 4

CI/CD pipeline

The previous implementation of the crawler relied only on large-scale crawls
for analyzing how well it performs. The approach had multiple problems. It
was limited by the website selection, and for different samples, the success
rate could differ significantly. Fixing website samples did not help, as with
time, the websites would change, and even a tiny change could have an
absolute impact on results. Additionally, recrawling a fixed set of sites every
time also proved problematic because it would create a new account with
our credentials on each site every time. During the work done on this thesis,
the pipeline would be run more than 150 times.

Additionally, code improvements to handle a new subset of special cases
increase the crawler’s complexity. Over time it became hard to follow which
parts of the code still function correctly and which parts were broken by
the improvements of other modules. A big crawler test run does not help
here because an improvement for one class of webpages and regression for
another can nullify themselves.

We addressed this by extending the project with a suite of unit and regression
tests. All of these are automated using Gitlab CI/CD and test the functionality
of the crawler without any interaction with external websites.

4.1 Functional testing application

Some parts of the code like keyword matching and classification module are
easily unit-testable, just by providing the crawler with fixed examples. For
other functionality, a strictly unit testing approach would require a lot of
mocking. Instead, we have developed a simple flask web application that has
been extended to provide many different registration scenarios. This way, we
are in control of both the crawler and the website it is attempting to crawl
and can perform reproducible tests for most of the functionality.
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4.1. Functional testing application

The test cases contain login forms, registration forms, navigation, CAPTCHA
solving, multi-stage forms, email verification, and other minor features.
Altogether this covers 77% of all the code intending to cover at least 90% of it,
leaving untested only the parts that strongly integrate with external services.
In the continued development of the project, we suggest at least adding tests
for all the newly introduced functionality.
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Chapter 5

Deployment

For the final evaluation, we planned a repeat of the original experiment of
crawling the top 1M websites by Tranco [14] to enable the comparison against
the results of the crawler’s past versions. The crawl time for a single site
averages about 1.5 minutes so that the overall computational time can be
measured in years, therefore requiring a high degree of parallelization to be
feasible.

5.1 Distributed crawling

We have used an improved version of the distributed crawling architecture
introduced by Kast [11]. The crawl was performed on the same hardware
configuration that was used in March 2021, a single server with an 80 core
Intel(R) Xeon(R) E7-8870 CPU and 512 GB of RAM. Instead of using the
Proxmox hypervisor, we decided to use a bare-metal installation of Ubuntu
Server 20.04. Through experimentation, we observed that the hardware was
capable of running 50 Docker containers running the crawler in parallel.

5.2 Credentials

We used the same set of fictional credentials for all the websites in this crawl,
except for the email address, which was generated for each website separately.
The fictional person was chosen to reside in Germany on an existing street
and city but a nonexistent street number. We did this to make our credentials
look as realistic as possible without causing harm to any individual.

We used the API provided by Vonage 1 to acquire a phone number (currently
Belgian due to legal restrictions in Germany). Currently, we have only done

1https://www.vonage.com/
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5.3. Proxy vs. VPN

a manual review of the received messages, but the API can in the future be
used to implement automatic phone number validation.

5.3 Proxy vs. VPN

Since Switzerland is not a part of the European Union and therefore not
bound by the GDPR, we required our traffic to originate from an IP inside
the EU. Germany was chosen for this, the same as in the March crawl, as
the legal research for which EnfBots are used focuses on German privacy
regulations.

Usage of VPN is problematic since the IP address you receive from it is
shared and well known, meaning many websites block it completely or just
do not allow registrations from it (e.g., Linode). To avoid being blocked, we
explored many different providers of rotating proxies, which could allow our
60 parallel crawlers to share a pool of IP addresses that were reserved just
for our usage. Unfortunately, the market fragmentation meant the choice of
a provider became complicated.

The requirements for our proxy server were as follows:

• support for geolocation in Germany

• support at least 16 concurrent requests

• > 100 million requests per month (average of 130 per website)

• high bandwidth allowance (average usage 3MB per crawled domain)

• > 10 concurrent IP addresses

• preferably residential IP addresses

The approximate cost of such a package ranged from 100€ per month for
data center IPs to up to 6000€ per month for residential IPs due to high
bandwidth requirements. In the end, we decided that for this crawl, due to
the high price and additional configuration complexity, proxy services were
not yet required. To further lower the percentage of blocked websites, either
a suitable commercial proxy service provider needs to be employed, or the
crawl could be performed with the aid of an EU research institution lending
their IP address pool for the experiment. So we fell back to using a VPN,
first attempting to use ProtonVPN2, but ran into problems due to the VPN
client’s lack of support for headless machines. ExpressVPN3 proved to be a
solid alternative able to provide needed functionality, including geolocation
in Germany.

2https://protonvpn.com/
3https://www.expressvpn.com/
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Chapter 6

Results

The crawl took place between the 23rd of December 2021 and the 9th of
January 2022. 611, 351 randomly chosen pages from the list were processed
during the interval. Comparatively, the crawl from March 2021 by Kast [11]
covered the entire Tranco top 1M list. Note that despite a different generation
time of the Tranco lists, the results should be comparable since it is the goal
of Tranco to provide crawl lists for reproducible research. Since the crawler
is still in active development, the primary motivation for the run was not to
gather data for legal analysis but rather to test the performance of the crawler
and collect the data required for future development. We can reconstruct
large datasets for form classification, page classification, and submission
validation from the obtained data. The results of the crawl also serve as a
good indication of which modules of the crawler require the most attention.

6.1 Running time

The average running time per successfully loaded domain was 1.5 minutes,
leading to a maximum of up to 50,000 domains crawled per day on our
setup. This is comparable to the crawling speed reported by Kast, even
though the updated version of the crawler can potentially visit more pages
of a single website. In Fig. 6.1, you can observe the daily progression of the
crawler. The observed slowdown between the 3rd and 6th of January was
caused by increases in the email verification timeout and a reduced number
of containers caused by a failed redeployment. The most representative data
points are dated from the 7th and 8th of January, when the crawler processed
45, 507 and 46, 386 sites, respectively.
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Figure 6.1: Crawl progress by day for its entire duration.

6.2 Load success rate

Loading the index page at the beginning of the crawl is not always successful.
Fig. 6.2 presents the distribution of different scenarios that can occur. Out of
the 611, 351 attempted sites, the load of the index page was successful only
on 415, 066 (70, 3%) domains. The most common problems were timeouts
and TCP connection errors. We suspect two causes of timeouts: the website
might be down at the moment (overburdened or broken), or we might be
getting blocked by a bot detection system. On the other hand, we were able
to determine that 87% of the TCP errors were caused by missing DNS records,
while the rest were caused by bad server configuration. HTTP errors were
less common; a manual analysis concluded that the biggest culprits were bad
configuration and again various bot detection systems (e.g., Cloudflare).

Estimating how often we get blocked by anti-bot systems is hard because the
results are often indistinguishable from a broken website configuration. We
are not the direct target of these systems because we crawl each site slowly
on a single thread and do not interact with it for more than a few minutes.
Most protection systems are focused on preventing large-scale parallel crawls,
spam, or DDoS attacks on a single page, which is far from our mode of
operation, so we do not expect to be blocked based on our behavior.

In the study done by Le Pochat et al. [13] in April of 2019, they have observed
that 85% of the websites could be successfully loaded. While the share of
HTTP and TCP errors we encountered are within the margin of error (4%
and 10%, respectively), we have detected a significant increase in the number
of timeouts. It is possible that Le Pochat et al. used a longer timeout than
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OK
70.3%

Timeout17.1%

HTTP error

4.7%

TCP error

7.9%

Figure 6.2: Observed index page load status.

40s, which we assumed to be enough for any working webpage to load.
Another reason for the disparity can be our usage of a public VPN provider
with known IP addresses, which many websites block by default. A recrawl
of the timed-out domain from a private IP using cURL (no browser) has
detected a timeout on only 11.5% of the pages that timed out in the main
crawl of our study. This supports the hypothesis that the VPN is causing
the timeouts since a non-IP-based bot detection system would block both
the Selenium browser and a cURL without a spoofed User-Agent. We have
already discussed solutions to this problem in Section 5.3.

In the following section, we will only be analyzing the websites where the
index page has been successfully loaded, reducing the size of the dataset to
415, 066 sites.

6.3 Registration status detection

The results of the crawls show that a registration form has been detected
on 21.3% of all successfully loaded websites. To detect a registration form,
the navigation module needs to find the subpage where the form exists and
the classification module needs to classify it correctly. It is hard to estimate
how many websites allow registration accurately. A manual analysis of 100
random English sites from the Tranco list has shown 28 sites contain any
sort of registration form, of which 17 were also successfully detected by our
crawler. On six sites, the detection failed due to the lack of support for forms
in a popup dialog, three registration forms were missed due to incorrect
language detection, and on the last three sites, the detection failed for more
complex reasons. The sample size of this experiment is too small to draw
any serious conclusions.
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Figure 6.3: Form detection success in across popularity categories.

We can also compare the detection rate to the previous version of the crawler
by Kast [11] which managed to detect a registration form on 11% of all
websites. This is a big improvement, especially since we also evaluate the
form more strictly and discard many forms which the previous version would
try to register on.

The detection mechanism still yields some false positives. A manual analysis
of 100 random, successfully detected forms has shown that 84 have contained
a registration form, while the rest have been misclassified. Of those sixteen
misclassified forms, eight were contact forms, three were newsletter forms,
and five were login forms. This shows another limitation of the crawler.
Even though some of the misclassified websites do contain a registration
form that the crawler would prioritize over the selected one (mostly the case
with login forms), the crawler currently stops at the first “registration” form
detected, making misclassification a big problem. While an improved form
classification algorithm could solve this problem completely, it might also
be advantageous to register on more than the first detected form, at least in
situations when the prediction certainty is low.

We have observed a falling trend in the number of detected forms as we go
further down the Tranco list, confirming our assumption that less popular
pages are also less likely to offer member registration as you can see in
Fig. 6.3. Contrary to the observations by Drakonakis et al. [6], who found
twice as many registration forms in the lower end of the popularity ranking
as they did on the most popular ones, the falloff we detected was not as
severe.
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Figure 6.4: Results of the registration status detection pipeline.

Table 6.1: Comparison of the reliability of registration status indicators determined by manual
review.

True success True failure Misclassifed form
Success: keywords 28 0 2
Success: redirects 19 7 4
Failure: keywords 4 25 1
Failure: same form 2 25 3
Unknown 6 21 3

6.4 Registration status

The previous analysis leaves us with 88, 464 pages on which a registra-
tion form was detected. Our submission success detection algorithm from
Section 3.6 classified the attempts at registration on these pages into five
categories, two representing success (determined by the keywords in the
response message or by redirect), two representing failure (determined by
the keywords in the response message or by detecting the same form), and
the remaining unknown results.

We have detected a successful submission in 30.2% of forms, a failed one
in 39%, while the remaining 30.7% submissions resulted in an unknown
state. We have manually reviewed 30 submission attempts for each category.
We present the findings of this analysis in Table 6.1. Note that for the
misclassified forms, the detection mechanisms fail in undetermined ways so
that the results might be biased due to misclassifications.

In 38% of cases, we are presented with the same form after submitting. There
are multiple reasons this can happen.
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6.4. Registration status

• The form was not filled out correctly. This can be caused by a bad
input format in some fields, invalid age selection, etc. It also happens
for websites that require a credit card to register because we do not
provide one at the moment. Note that not registering for paid services
is the desired behavior. In the future, we can add a way to detect which
field caused the error (it is usually indicated by the page) and resubmit
the form each time we think we managed to fix an error.

• Solving the CAPTCHA failed.

• The form was misclassified. E.g., if we try to register on a login form,
we will always be presented with the same form since our credentials
do not match.

• Rarely, the same form is shown even though registration was successful.

According to manual review, the detection of the same form almost always
means a failed submission, with just two out of 30 analyzed websites not
removing the form from the site after a successful registration.

Failure detection through keyword analysis is the least likely scenario at
just 0.7%, since an error is almost always accompanied by the form itself.
Success keywords are detected more commonly, as was the case in 6.4% of all
attempts. While this mechanism does not seem to produce false positives, we
have noticed during the manual review that four pages displayed a success
message, which remained undetected by the current implementation. This
means that this part of the detection pipeline could definitely be improved.

Most of the successful registrations (23.8%) were actually detected by the
simple redirect rule. The manual analysis does not completely support
this indicator; almost a third of all redirects did not imply success. These
sites mostly redirected us to external bot prevention services as CloudFlare1,
where the user has to solve a CAPTCHA in order to be allowed back to
the website. The crawler does not currently support this flow. Adding the
support would both improve the chances for successful registration and make
redirect detection a more reliable way to indicate successful registration.

In 30.7% of the registration attempts, we have detected neither successful
nor unsuccessful registration. We have already discussed different solutions
to this problem in Section 3.6.5. Using the results of manual review, we
can estimate that approximately 30% of all the undeterminate submissions
were actually successful, which can also allow us to estimate the cumulative
success rate of our crawler of just 32% of all detected forms.

Due to differences in the form detection, we cannot compare these results
directly to the previous crawler version’s results, but we can compare the

1https://www.cloudflare.com/
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6.5. Received emails

Table 6.2: The number of received emails compared to the detected status of registration

.
Email received No email

Success 9505 (36%) 17,188 (64%)
Failure 1676 (5%) 32,872 (95%)
Unknown 2910 (11%) 24,313 (89%)

overall success rate. In March 2021, the crawler registered successfully on 4%
of all the crawled websites. Meanwhile, the current version was successful on
an estimated 4.5% of all the pages (including the ones where the loading the
index page failed). While this might not look like a significant improvement,
we should note that the success detection techniques employed in Kast’s
work were even more unreliable, e.g., most of the submission attempts in the
unknown category would actually be considered a success.

6.5 Received emails

Despite the fact that websites sometimes store your email address even if
you do not actually submit the form [2], receiving an email to our generated
email address is usually a good indicator of successful registration. We have
received emails from 14,091 unique pages (3.4% of all successfully loaded
and 2.3% of all attempted); of these, 8840 were recognized to contain an
email verification link, which we used to confirm the newly created account.
Another 3305 emails arrived after the email verification timeout had passed,
so a verification attempt has not been performed. This indicates that the set
timeout might be too low.

Not all websites send emails after a successful account creation, but this
sets a stable lower bound on the success rate of our registration module. In
comparison, the crawl by Kast [11] resulted in services sending an email in
only 0.7% of all websites crawled. This result looks very promising.

In Table 6.2 we present a comparison of the number of received emails
depending on the results of the submission validation oracle. It shows that
the submission pipeline does a decent job of detecting failures because of
the low amount of emails received in the category. According to Kubicek et
al. [12] approximately 80% of the 701 web services involved in their studies
sent an email. Considering this, we can assume that our success detection
is too optimistic because we only received an email on 35% of websites we
deemed successful. However, this can be partially limited by the short time of
our study, as there are services that start sending, typically manually, emails
only after a longer time.
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Figure 6.5: The proportion of different languages on the Tranco 1M list.

6.6 Received SMS messages

We also monitored the phone number we used in registration. Between the
23rd of December and the 9th of January, we have received 86 SMS messages.
Because the crawler used the same phone number for all the websites, we
cannot definitely know how many different websites these belong to (many
messages are completely unidentifiable). We have successfully submitted
our phone number to 31,797 websites, of which 6987 we deemed successful,
which are both orders of magnitude higher. One reason for the disparity is the
fact that many portals do not send any messages even though the registration
requires a phone number. These services can keep phone numbers only as
recovery/contact options. On the other hand, we have noticed that the phone
number is often filled out wrong because of complications with number
formatting and country codes, e.g., a phone number sometimes spans over
multiple input fields, which we currently do not support.

6.7 Per language results

We observed over 74% of the most popular pages primarily in English, and
another 3% allow switching to English. In the Fig. 6.5, you can observe the
distribution of the languages after the crawler tried selecting a supported
language. Because of the heavy prevalence of English, we focused most
of our development on that language. The other languages are technically
supported yet not optimized.

In this section, we will analyze how our detection and registration success
rate depends on the detected language to evaluate the performance of less
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6.8. CAPTCHA systems
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Figure 6.6: Comparison of registration outcomes over different languages.

common languages. We will group all the languages below 1% popularity
into a single group for conciseness. In Fig. 6.6, we can see that our intuition
that English would perform best was not necessarily correct. For example,
more forms get detected on Russian websites, with significantly more errors
and also more successes as a consequence. A similar pattern can be noticed
to a lesser extend for other languages too. This could be partially due
to the underlying complexity distribution over different languages. The
most complex websites almost always support English, while websites in
other languages are often more local and simpler, matching more common
registration form patterns. Additionally, this could also be caused by a more
unreliable detection of failed submissions, which is also in part language
dependent.

6.8 CAPTCHA systems

ReCAPTCHA is by far the most popular defense websites use to protect form
submissions from bots. In Table 6.3, we compare the market share estimation
of supported CAPTCHA providers between our results (Enfbots 2), the results
of the previous crawl (Enfbot 1), and the estimation by BuiltWith2. Note that
neither of these perfectly represents the true status. Our crawler severely
underestimates the presence of CAPTCHA systems because it only looks for
them on webpages with a registration form. The BuiltWith estimations are
also inconsistent. E.g., it reports the market share of reCAPTCHA in general
at 22%, while the individual shares of its different versions only add up to
only 12%. In the table we present the individual shares.

2https://trends.builtwith.com/widgets/captcha
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6.8. CAPTCHA systems

Table 6.3: The popularity of supported CAPTCHA mechanism as reported by different sources.

BuiltWith Enfbot 1 Enfbot 2 Success rate
reCAPTCHAv2 8.86% 1.16% 4.01% 33.10%
reCAPTCHAv3 2.69% 0.48% 0.96% 25.60%
hCAPTCHA 0.24% 0.01% 0.01% 39.02%
Image CAPTCHA - - 0.23% 23.50%

Table 6.3 shows that submitting the forms with hCAPTCHA has the same
success rate of about 40% as forms without bot mitigation mechanisms. The
most popular reCAPTCHAv2 reduces the success rate to 33%. Meanwhile,
reCAPTCHAv3 seems to drop the success rate to only about 25%. This
version assigns each user a score that corresponds to the probability of being
a human. It is up to the developer’s discretion to decide which threshold to
use. The external solving service we use is limited in this aspect, as it can
reliably produce responses with a score of only 0.3. Anything more that is a
fortunate coincidence, so websites that demand higher scores result in bot
detection.

The image CAPTCHA drops the success rate even further for two reasons.
First, our detection of the CAPTCHA image and the corresponding input
field is unreliable since there is no standardization involved here. Each
website that uses a custom image CAPTCHA also has a custom layout that
is hard to detect. Second, we noticed the wrong solution from the image
CAPTCHA solving service, where completely valid images get incorrectly
recognized.
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Chapter 7

Related work

7.1 Automating registration or login

Large-scale analysis of security and privacy of user data in authenticated sec-
tions requires automating either the registration or login procedure. Drakonis
et al. [6] have independently developed a registration crawler based on Se-
lenium as a part of their investigation into cookie hijacking vulnerabilities.
The core principles used are comparable to our crawler; namely, they also
use keyword-based navigation, form classification, and input classification.
Their crawler interacted only with registration forms and login forms, while
ours is also able to detect newsletter and contact forms, which makes our
implementation easier to generalize for other tasks. For comparison, they
detected a signup form on 168,594 out of 1,585,964 (10.6%) pages from Alexa
rankings. Of these, they reported a 13.7% success rate of automated regis-
tration. This brings their success rate to 1.38%. The crawlers comparison
depends on the requirements for claiming a successful registration. Unlike
Drakonis et al., we do not require a successful login using the registered
credentials to confirm successful registration. Hence the reported success rate
of 4.5% in Section 6.4 would be lower with the requirements from Drakonis
et al. However, considering only the proportion of the website that sent us an
email, we can estimate that our tool performs better at 2.3%, which would be
even lower in Drakonis et al. This can be partially accredited to our support
for CAPTCHA solving, multi-stage registration forms, and more advanced
input classification methods.

Similarly, Chatzimpyrros et al. [2] developed a registration automation
crawler designed to study the leaks of personally identifiable information in
registration forms. The nature of their research allowed them to assume that
any form containing two input fields and a submit button is a registration
form. They were not concerned with a successful registration since they
merely wanted to submit as much personal data as possible and detect any
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7.2. Other generic crawling frameworks

potential leaks. This makes the comparison of their reported success rate of
26% with our 4.5% irrelevant, as they assumed all login and contact forms to
be registration forms, and they never checked whether the submission was
successful.

7.2 Other generic crawling frameworks

There already exist generic policy and privacy research tools, namely Open-
WPM by Englehardt and Narayanan [8] and webXray by Libert [15]. They
both facilitate the study of 3rd-party tracking and fingerprinting by allowing
researchers to capture the user data the website submits to the server. While
the goal of those projects is different from ours, the solutions they have
devised can be adapted and used to extend the functionality of our crawler.
We have already integrated some techniques of bot detection evasion used
in OpenWPM (e.g., using Xvfb instead of the headless browser). WebXray
has introduced a corporate ownership tracking mechanism that can be used
to determine the legal entity representing both the website itself and any
3rd-party tracking tools used on the page.

37



Chapter 8

Discussion

8.1 Future considerations

We have presented many limitations with accompanying ideas on how to
alleviate them in past chapters. Here we shall only summarize the most
important high-level ideas.

We conclude from the results that the most significant improvement can be
made in the module responsible for filling and submitting the form. More
than half of all sign-up attempts fail in that step. While some failures are
unavoidable (e.g., credit card requirements), many are technically feasible.
Improving the error detection would help increase the success rate and
make the results more sound since we would know which fields break the
submission most often.

Once the datasets we have collected in this work are labeled, we can develop
classification models for forms, page content, input fields, and submission
status detection. Misclassification of those parts of a website usually com-
pletely stunts the sign-up attempt, so any improvement here can improve
overall performance substantially.

In the rest of this section, we propose alternative and independent crawling
goals that can be implemented easily because of the modular codebase.

8.1.1 Login

The ability to login into a portal could be added to the crawler similarly to
what has been done by Drakonis et al. [6]). This would not require significant
changes, as the navigation and form classification modules are already able to
detect login forms. The feature could not only be used to verify registration,
but it could additionally allow for mass-scale analysis of security and privacy
of login mechanisms deployed on the internet.
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8.2. Conclusion

8.1.2 SSO sign up

Zhou and Evans [21] have developed an automatic Single Sign On (SSO)
registration tool SSOScan. An implementation of a similar module would
allow our crawler to sign up using the most common SSO identity providers
(e.g., Google and Facebook). This could be either the primary sign-up
mechanism or just a fallback when email registration fails, depending on
research needs. This feature would enable us to study how the choice of the
mechanism affects email marketing and private data leakage on websites that
support both SSO and email-based sign-up.

8.1.3 Modal registration dialogs

Many websites have their registration form hidden in a modal dialog that can
be accessed by clicking a button in a navigation bar. The crawler currently
only navigates using hyperlinks and only detects visible forms, therefore
completely ignoring modal forms. In the manual analysis of 100 websites, we
detected this scenario on six pages, indicating that it is common. Supporting
this feature could, therefore, significantly improve the overall form detection
reliability.

8.1.4 Automatic translation

Despite what the results from Section 6.7 show, we believe that there is a
considerate disparity between the performance of the crawler on English sites
and those in less common languages. The keyword-matching methods are
very effective in the English language due to the lack of noun conjugation, but
they often fail in other more complex languages. Using a translation service
like Google Translate, we could first translate the string we are classifying
into English and then use the English keywords to determine the correct
category. This approach has already been proven by Drakonis et al. [6]. There
are other benefits of machine translation.

• It requires training just a single ML model for any of the classification
tasks, removing the need to develop NLP models in language we do
not speak.

• It solves a commonly observed problem where a website is only par-
tially localized in English. Forms and privacy policies often remain only
in the native language. Using the translation module, we could translate
only the missing parts and still rely on English keyword matching.

8.2 Conclusion

Automated interaction with authentication forms is a challenging problem
due to the sheer variety of website implementations. There are no strict rules
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8.2. Conclusion

for web development, just the best practices. The crawler we developed as
the central part of this thesis can already distinguish many of these scenarios
and react accordingly.

The modular approach we devised allows the crawler to be highly flexible
in terms of its goals. By applying minor modifications, it can be used to
create new accounts, sign up to newsletters, submit contact forms, or log
into a website without knowing its structure beforehand. With the use of
the crawler, many tedious manual studies of internet privacy and security
could be automated and therefore conducted on a much larger scale than
was possible previously.

Priority queue-based navigation proved to be an efficient method of quickly
identifying the registration pages without resorting to BFS scan while remain-
ing adaptable on sites where keyword-matching is ineffective. The traditional
form classification algorithm we refined has a satisfactory accuracy but can
also be later used as a baseline for machine learning models. The novel ap-
proach to reCAPTCHA integration also proved to be highly reliable, having
encountered no pages where the detection itself is the problem. While the
accuracy of the form autofill module and submission detection oracle still
leaves much room for improvement, their current versions already perform
well on simpler forms.

By crawling more than half of the Tranco list of 1M most popular websites,
we achieved a significant improvement upon the previous version with a 20%
detection and an estimated 6.4% success rate when creating new accounts. By
analyzing the results, we have accurately determined the weak points of the
current implementation and identified many new potential avenues for future
development. The dataset collected can be used to develop machine learning
models to provide a more accurate classification of forms, input fields, and
pages themselves, which will, in turn, improve the overall reliability of the
entire framework.
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Appendix A

Appendix

A.1 Form annotation interface

The most time-consuming part of any dataset preparation is the manual
labeling process. In our case, that was required to train the form classification
models, so we developed a simple graphical interface to facilitate the process.
As displayed in Fig. A.1, it presents the user with a screenshot of the form
in question, a screenshot of the entire website, and the HTML code of the
form itself to give the annotator the best chance of correctly determining the
type of form. Because some websites contain multiple forms close by, the
form we are annotating is always surrounded by a red box. The exact URL
where we collected the form is also displayed and clickable to allow the user
to visit the page if some context is missing (e.g., sometimes the screenshots
are misaligned).

The user then has to select one of the 6 form categories and any additional
tags that fit the form (e.g., multi-stage, modal). Any form can also be skipped
if it cannot be classified (e.g., completely hidden forms) or if it is malformed
in any way (e.g., form in a form). All the interaction can also be done using
keyboard bindings to speed up the process significantly.

A.2 reCAPTCHA solver

The central part of our reCAPTCHA detection and the solving process is
our implementation of the reCAPTCHA Javascript API. We replace the real
version when a website attempts to load it.

To understand how it works, we must first know how reCAPTCHA can be
integrated into a website.

First, you need to register with the reCAPTCHA service and receive a site
key that will be used to add the reCAPTCHA to your website and a secret
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A.2. reCAPTCHA solver

Figure A.1: Screenshot of the graphical interface for form annotation.

key that can be used to verify the reCAPTCHA response.

Next, you import the reCAPTCHA JavaScript on the website containing the
form you would like to protect directly from Google’s CDN. An important
detail here is that you cannot host the reCAPTCHA implementation yourself
because it contains constantly changing URLs that are used to interact with
the backend service.

When the script is set up, the easiest way to include a reCAPTCHA field
into your form is to add a container div inside the form with the class “g-
recaptcha” and a data-sitekey attribute containing the site key. When the
page and the reCAPTCHA JavaScript are loaded, a reCAPTCHA checkbox
will be rendered inside an iframe inside the div. A hidden textarea with
the name “g-recaptcha-response” is added to your form. We show an example
of this integration in Listing 1.

When the CAPTCHA is solved, the “g-recaptcha-response” textarea will
be filled with a unique solution token that can be verified on your backend
server using the secret key you received in the first step.

The widget can also be rendered programmatically using the global grecaptcha
object provided by the reCAPTCHA library. On page load, you call the
grecaptcha.render method with all the parameters and a container where
the widget should be rendered. This will create the same ”g-recaptcha-
response” textarea and the iframe. You can also retrieve the solution token
by calling the grecaptcha.getResponse after the CAPTCHA has been solved
if the form submission is made using AJAX.

As can be seen from the way reCAPTCHA is integrated, the only thing we
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A.2. reCAPTCHA solver

<form action="?" method="POST">

<div class="g-recaptcha" data-sitekey="your_site_key"></div>

<input type="submit" value="Submit">

</form>

<form action="?" method="POST">

<div class="g-recaptcha" data-sitekey="your_site_key">

<iframe title="reCAPTCHA"

src="https://www.google.com/recaptcha/api2/anchor?b={nonce}">

</iframe>

<textarea id="g-recaptcha-response" name="g-recaptcha-response">

</textarea>

</div>

<input type="submit" value="Submit">

</form>

Listing 1: simplified reCAPTCHA widget integration

need for our submission to be successful is a valid response token.

This will be obtained from our external CAPTCHA solving service; we only
need to provide them with the parameters used to render the CAPTCHA,
the User-Agent we are using, and the domain this CAPTCHA is present on.

The backend server can also verify that the response token was issued for
the same IP used to submit the form. In our case, these differ (CAPTCHA
is solved externally and used by us). We could alleviate this problem by
providing the solving service with the same proxy server that we are using to
get a token that matches our IP. The EnfBot crawler supports this functionality,
but since the final crawl was using a VPN instead of a proxy service, it has
not been used in it. Luckily, most websites do not actually check if the token
was issued for the same IP that performed the submission, so this is not a
severe problem.

A.2.1 reCAPTCHA stub

The only part keeping us from solving this type of CAPTCHAs is the col-
lection of initialization parameters. If the website is using the simple re-
CAPTCHA class name-based initialization, this is easy; we can scan the DOM
for the existence of an element with a “g-recaptcha” class name and extract
the parameters from it. But if the reCAPTCHA widget has been rendered by
interacting with the JavaScript API, this becomes more problematic.

Initially, we processed all the JavaScript files loaded on the page using regex,
but this proved unreliable. The regex scanned for all instances of “sitekey”
assignment, but as you can see in Appendix A.2.1 this can quickly fail.
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A.2. reCAPTCHA solver

// works:

grecaptcha.render('html_element', {

'sitekey' : 'your_site_key'
});

// Does not work, the site key is

// extracted as string "mykey" instead of its value

mykey = "yoursitekey"

grecaptcha.render('html_element', {

'sitekey' : mykey

});

Listing 2: Example for site key detection

Instead, we implemented a stub for the entire reCAPTCHA library that cap-
tures any request made to the known URLs which contain the reCAPTCHA
scripts and substitutes the responses with its own implementation of the
reCAPTCHA API. Our stub provides the webpages the same “grecaptcha”
global object as the authentic version, but instead of rendering the CAPTCHA
widget, it just stores the configuration parameters that our crawler can later
access. The stub also creates the hidden “g-recaptcha-response” textarea and
provides the getResponse method so the webpage we are crawling cannot
notice the difference between them.

Now we are ready to construct the entire workflow of the CAPTCHA solving
modules:

1. stub is loaded

2. stub scans for the “g-recaptcha” configuration elements and stores the
parameters

3. potentially the website calls the grecaptcha.render function on the
stub who stores the call parameters

4. we render the output textarea on the page

5. the crawler gets the parameters from the stub and submits them to the
solving service to receive the response

6. the crawler gives the response back to the stub, which fills the textarea
and potentially answers a getResponse call
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