
ETH Library

Modeling Choice in Co-Design

Student Paper

Author(s):
Furter, Marius

Publication date:
2021-07-20

Permanent link:
https://doi.org/10.3929/ethz-b-000532280

Rights / license:
Creative Commons Attribution 4.0 International

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000532280
http://creativecommons.org/licenses/by/4.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Modeling Choice in Co-Design

Marius Furter

July 20, 2021

Abstract

This report describes a method for modeling free and forced choice
within Co-Design. In a free choice among a set, one has control over
which option is selected, while in a forced choice one does not. Given a
preorder P describing resources or functionalities, a free choice among
a subset of P acts like a meet. Dually, a forced choice acts like a join.
Moreover, the two types of choice distribute over one another. Based
on this, we construct a universal model for choice on a preorder using
the free completely distributive lattice ULP. Feasibility relations are
then extended to these models. Along the way, we illustrate how to
work within ULP and provide results that simplify calculations. The
definitions presented here have been implemented in Haskell.

Acknowledgements and Code Resources

I’d like to sincerely thank Jonathan Lorand who supervised this project and
dedicated many hours to listening to my ideas. I’m also grateful to Gioele
Zardini who gave valuable inputs throughout. Finally, I want to thank
Prof. Alberto Cattaneo for implementing the theory in Haskell. The code
can be found on GitHub: MariusFurter/Choice-in-CoDesign or on the UZH
gitlab. This report can be cited using its DOI: 10.3929/ethz-b-000532280
and is licensed under CC-BY.

1

https://github.com/MariusFurter/Choice-in-CoDesign
https://git.math.uzh.ch/asc/choice-in-codesign
https://git.math.uzh.ch/asc/choice-in-codesign

Contents

1 Introduction 3

2 A Brief Introduction to Co-Design 4
2.1 Resource and Functionality Preorders 4
2.2 Feasibility Relations . 6

3 Choice between Resources 10
3.1 Choice Connectives . 10

3.1.1 Arrows between Choices 11
3.1.2 Equality of Choices . 12

3.2 A Universal Model for Choice 14
3.3 The Upper-Lower Model . 17

4 Feasibility between Choices 24
4.1 Lifting Feasibility to Upper-Lower Models 24
4.2 Feasibility between Upper-Lower Models 26
4.3 Characterizing Lifted Feasibility Relations 27
4.4 Queries on Induced Feasibility 33

5 Future Directions 35
5.1 Choice between Feasibility . 35
5.2 Additional Connectives . 36
5.3 Exploring General Feasibility between Upper-Lower Models . . 37

2

1 Introduction

Living life involves making choices. Before a choice is made, a set of un-
realized options lies dormant. Making a choice involves collapsing this set
to a single outcome. This collapse may occur in several ways. On the one
extreme, we may be in full control of which option is realized: We can freely
choose the desired outcome. On the other extreme, we may be powerless to
steer the collapse: A choice is forced upon us.

Choice is relevant in any discipline that involves a multiplicity of poten-
tial outcomes. In computer science, for example, choice is used to describe
program specifications [MCR07; Mor04]. Here, the choice is between possi-
ble outputs of non-deterministic code. Free choice corresponds to the code
behaving in the programmer’s best interest, while forced choice describes un-
certainty of outcome. These two modes are personified by an angel choosing
on behalf of the programmer in the first case, while a demon chooses in the
latter.

Choice also arises whenever one requires coordination between agents.
Alice might only be able to guarantee a range of outcomes to Bob. This
is weaker than guaranteeing a specific outcome. On the other hand, Alice
may be able to offer Bob a free choice between a set of outcomes. This is
stronger than offering a single outcome. We see that allowing for free and
forced choices expands the space of possible interactions between Alice and
Bob.

In engineering too, choices abound. A team can freely choose a specific
motor from a catalog of options. On the other hand, a team might only be
able to guarantee that their design will fulfill one of several properties: Their
robot will either be able to move fast or carry a lot of weight, but they aren’t
specifying which. Such uncertainty in outcome has ramifications for other
teams working on the project.

Questions of coordination between teams are addressed in the Co-Design
framework [Cen15]. However, the original framework does not include a way
to express free and forced choices. Here we aim to extend the framework in
a way that does.

3

2 A Brief Introduction to Co-Design

We begin by providing a short introduction to the Co-Design framework es-
tablished in [Cen15]. This will also serve to fix the conventions we will be
using throughout.

In Co-Design, we consider resources that can be used to achieve function-
alities. For example, we might consider different types of motors as resources,
and the power output they provide as functionalities. If a resource r can be
used to provide functionality f we say that the pair (r, f) is feasible. Contin-
uing our example, if motor A is capable of outputting 2 kW then we would
mark (A, 2 kW) as feasible.

Certain resources or functionalities may imply others. If motor A can
provide 2 kW, it should also be able to provide 1 kW. We will indicate this
by writing 2 kW → 1 kW. Hence, our sets of resources and functionalities
possess additional structure: They are preorders. Consequently, we want
our notion of feasibility to take this structure into account. This leads to
the concept of feasibility relation. We will make these ideas precise in what
follows.

2.1 Resource and Functionality Preorders

We model resources and functionalities using preordered sets, which will be
formally introduced shortly. We interpret an element a of the preorder as the
guarantee “I can provide a”. We put an arrow a � b whenever being able
to provide a implies being able to provide b. This is best illustrated with an
example.

Example 2.1. (Money as Resources) The set N := {0, 1, 2, . . .} with the order
relation a � b⇔ a ≥ b can be used to describe money (of a single currency,
say dollars) as a resource. The element a represents being able to provide
a dollars, while a � b means that if you can provide a dollars, you can also
provide b dollars. For example, 3 � 1 signifies that if we could pay 3 dollars,
we also possess the purchasing power of 1 dollar. Observe that being able to
transform 3 � 1 presupposes that people are willing to accept 3 dollars in
place of 1 dollar. This hypothesis is system relative. For example, a vending
machine might only accept bills of low denomination. So in this case one
might well not have 50 � 1. �

4

Returning to the general theory, we observe that the preorder axioms
precisely describe how we would like the relation a � b to behave.

Definition 2.2. (Preorder) A preorder P is a set with a binary relation
R ⊆ P× P satisfying reflexivity (r) and transitivity (t):

(r) (a, a) ∈ R for all a ∈ P,

(t) if (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R.

Usually we write the pair (a, b) using an infix symbol. In our case, a � b
means (a, b) is part of the relation R. When defining preorders, we will
usually refrain from mentioning the pairs stemming from reflexivity.

Using our infix notation, the two axioms become

(r) a � a for all a,

(t) a � b and b � c imply a � c.

In other words, for each resource a, being able to provide a implies being
able to provide a. Further, if being able to provide a implies being able to
provide b, and being able to provide b implies being able to provide c, then
being able to provide a should imply being able to provide c.

Everything that has been said here applies equally to functionalities. In
fact, what we view as resources and functionalities is relative to the process
we are considering. When I purchase a candy bar from a vending machine,
the dollar I spend is the resource, and the candy bar the functionality. When
I eat the candy bar to gain energy, the candy bar has become the resource.

Resources and Functionalities

Resources and functionalities are modeled by preorders. An element a
in the preorder expresses the guarantee “I can provide a”. An arrow
a � b means “being able to provide a implies being able to provide b”.

Remark 2.3. There are some fine points here that may be skipped on a first
reading. Observe that our guarantee does not specify who we are providing
a to. The recipient might be another agent or our (future) selves. More-
over, there are other interpretations we could give the elements and arrows

5

in our preorders. Two of them are discussed in the following boxes. Ul-
timately, these just provide a different flavor to the theory. Our preferred
interpretation fits best with thinking about choice.

Functionality Interpretation

Following the logic of Co-Design, a resource is determined by the func-
tionality it can provide. From this perspective, we could alternatively
set a � b whenever a provides at least the same level of functionality
as b does. In this case, in terms of the functionality on offer, being
able to provide a does imply being able to provide b. Conversely, if
being able to provide a implies being able to provide b, then a must
offer at least the same level of functionality as b. This shows that the
two interpretations align.

Transformation Interpretation

We could also interpret a � b as meaning that we can freely and
instantly transform a into b. If a freely transforms into b, then being
able to provide a implies being able to provide b. Conversely, if being
able to provide a implies being able to provide b, then if we have an a
at our disposal, we should be able to provide b. This can be seen as a
free transformation of a into b.

2.2 Feasibility Relations

Given a preorder of resources R and a preorder of functionalities F, a fea-
sibility relation Φ: R −7−→ F between them expresses which functionalities we
can obtain from which resources. We write Φ(r, f) = true to indicate that f
can be obtained from r. In the language of the previous section, being able
to provide r implies being able to provide f .

Example 2.4 (Gorcery Shopping 1). Consider buying groceries. Our resources
R will be money as in Example 2.1. The possible groceries we can buy
are the functionalities F. The feasibility relation Φ : R −7−→ F will describe
what groceries we can purchase given a specific amount of cash. For exam-
ple, a carrot might cost 1$. Hence, Φ(1$, carrot) = true. On the other
hand, Φ(0$, carrot) = false, since we can’t get a carrot without pay-
ing anything. Suppose now that a bag of carrots costs 3$. This means

6

Φ(3$, bag of carrots) = true. Observe that also Φ(3$, carrot) = true

should hold: Either we can pick up a single carrot in the store and pay for
it with 3$, or we could buy the whole bag for 3$ and this would also give us
a single carrot.

This shows that feasibility interacts with the implication arrows we have
for the resources and functionalities. In our example,

3$ � 1$ and Φ(1$, carrot) = true implied Φ(3$, carrot) = true.

Similarly,

bag of carrots � carrot and Φ(3$, bag of carrots) = true

implied that Φ(3$, carrot) = true. �
The interaction we observed between arrows and feasibility justifies the

formal definition of a feasibility relation.

Definition 2.5 (Feasibility Relation). Given preorders R and F, a feasibility
relation Φ : R −7−→ F is a relation Φ ⊆ R× F such that

(i) if r � s in R and (s, f) ∈ Φ, then (r, f) ∈ Φ,

(ii) if f � g in F and (r, f) ∈ Φ, then (r, g) ∈ Φ.

Whenever (r, f) ∈ Φ, we write Φ(r, f) = true and say that Φ(r, f) holds.

In other words, a feasibility relation is a relation from R to F that is down-
ward closed with respect to free transformations in R and upward closed with
respect to free transformations in F. We will often draw internal diagrams
of feasibility relations as in Figure 1. We put an arrow between an r ∈ R

and f ∈ F iff Φ(r, f) = true. The arrows coming from Φ can be thought of
as the transformations that Φ enables. Observe that the closure conditions
in Definition 2.5 mean that the arrows coming from Φ are transitively closed
with respect to the internal arrows in R and F: If there is a path from an
r ∈ R to an f ∈ F following any type of arrow, then we also have a direct
arrow between r and f coming from Φ.

7

Figure 1: Internal diagram of a feasibility relation Φ : R −7−→ F.

Example 2.4 (continued). We can now formally implement our example of
grocery shopping. Recall that our resource preorder R consists of money,
while our functionality preorder F describes groceries we can purchase. Fig-
ure 1 shows part of an internal diagram of a feasibility relation Φ : R −7−→ F.
The blue arrows indicate the feasible pairs. For example,

Φ(3$, bag of carrots) = true.

It is worth contemplating how Φ satisfies the monotonicity conditions pre-
sented in Definition 2.5. �

For any preorders R and F, setting Ψ := R×F yields a feasibility relation.
In particular, every relation R ⊆ R × F is contained within a feasibility
relation. This allows us to compactly write a feasibility relation in terms of
a generating relation.

Definition 2.6 (Feasibility Generated by a Relation). Given a relation R ⊆
R×F, the feasibility relation generated by R is the smallest feasibility relation
containing R. It is given by ⋂

Φ⊇R

Φ,

where Φ runs over all feasibility relations Φ : R −7−→ F.

8

We could have also defined feasibility relations as special types of mono-
tone maps. For this we need to introduce several concepts.

Definition 2.7. Let Bool denote the preorder generated by {false→ true}.
Explicitly, Bool contains the arrows false � false, false � true, and
true→ true.

Definition 2.8 (Opposite Preorder). Given a preorder (P,�), we define its
opposite preorder Pop to be the preorder that is obtained by reversing all the
arrows in P. That is, we set a � b in Pop if and only if b � a in P.

Definition 2.9 (Product of Preorders). Let P and Q be preorders. Their
product P × Q consists of all pairs (p, q) for p ∈ P and q ∈ Q, where we set
(p, q) � (p′, q′) if and only if p � p′ in P and q � q′ in Q.

Definition 2.10 (Monotone Map). Let P and Q be preorders. A function
f : P→ Q is called monotone if it preserves the order in P. That is, whenever
a � b in P, we have f(a) � f(b) in Q.

Lemma 2.11. There is a one-to-one correspondence between feasibility re-
lations Φ : R −7−→ F and monotone maps Rop × F → Bool.

Proof. Given a feasibility relation Φ : R −7−→ F as defined in Definition 2.5, we
obtain a function F : Rop×F → Bool by sending (r, f) 7→ true if and only if
(r, f) ∈ Φ. Conditions (i) and (ii) of Definition 2.5 say that this function is
monotone. Conversely, given a monotone map F : Rop × F → Bool, we can
obtain a relation Φ by setting (r, f) ∈ Φ if and only if F (r, f) = true. The
monotonicity of this function implies that Φ satisfies conditions (i) and (ii).
It is apparent that these processes are inverse to one another.

Feasibility Relations

A feasibility relation Φ : R −7−→ F expresses which functionalities in F

can be obtained from which resources in R. We write Φ(r, f) = true

to indicate that f ∈ F can be obtained from r ∈ R. The relation
Φ needs to satisfy the two monotonicity conditions in Definition 2.5
which can be concisely expressed by saying the Φ is a monotone map
Rop × F → Bool.

9

3 Choice between Resources

We now extend what we’ve seen so far to encompass choice and uncertainty.
What is meant by these terms is best illustrated with an example.

Example 3.1 (Menu Options). A restaurant might offer the following menu
options:

• Coffee or tea (customer choice)

• Asparagus or pumpkin soup (depending on availability)

In the first case, we as customers are given the choice between coffee or tea.
In the second, it is chosen for us which soup we will get, depending on what
the cooks have available. From our perspective as customers, this represents
an uncertainty. In both cases, however, we will end up with exactly one of
the options. �

We refer to the two modes of choice presented in Example 3.1 as free
choice and forced choice, respectively. Alternatively, we could call them
choice and uncertainty, or internal and external choice. Regardless of the
names we choose, the terms are relative to which perspective we are taking.
If we look through the eyes of the restaurant, the customer choice of coffee
or tea is external, while the choice of soup is internal.

3.1 Choice Connectives

Suppose we are given some preorder P of resources or functionalities. Our
goal will be to augment P to include all possible free and forced choices
among subsets A ⊆ P. Let us call this choice-augmented preorder C(P). To
this end, we introduce two connectives to express free and forced choice.

Definition 3.2 (Choice Connectives). Given a set A, we denote

• the free choice among a ∈ A by
d

a∈A a,

• the forced choice among a ∈ A by
⊔

a∈A a.

When A = {a1, . . . , an} is finite, we will also write

a1 u . . .u an :=
l

a∈A

a, a1 t . . .t an :=
⊔
a∈A

a.

10

We would like C(P) to contain all elements of P along with a single element
for each possible choice. Moreover, we would like the preorder structure on
C(P) to fit our established interpretation: An arrow a � b in C(P) should
signify that being able to provide a implies being able to provide b. This
poses the following questions:

(i) When are two choices as represented by the connectives distinct?

(ii) When must we add an arrow a � b if a or b represent choices?

We will answer these questions in what follows, beginning with (ii).

3.1.1 Arrows between Choices

In this section, we describe when we should add arrows in the choice-augmented
preorder C(P). We start by considering free choice.

Suppose that we can provide a free choice among some set A ⊆ C(P).
This means that regardless of which x ∈ A is picked freely, we must be able
to provide that x. In other words, being able to provide a free choice among
A implies being able to provide any x ∈ A. Formally,

l

a∈A

a � x, ∀x ∈ A. (1)

Let A ⊆ C(P) and suppose that there is a fixed t ∈ C(P) such that for
every a ∈ A, being able to provide t implies being able to provide a. Being
able to provide a free choice among A means that whatever a ∈ A is picked
freely, we can provide that a. By assumption, if we can provide t, we can
provide any a ∈ A, and hence also the free choice among A. Formally,

∀a ∈ A : t � a ⇒ t �
l

a∈A

a. (2)

We now turn to forced choice. Being able to provide a forced choice
among B ⊆ C(P) means being able to provide some y ∈ B, without having
to specify which. Therefore, being able to provide some y ∈ B implies being
able to provide a forced choice among B. Formally,

y �
⊔
b∈B

b, ∀y ∈ B. (3)

11

Finally, suppose that for every b ∈ B, being able to provide b implies
being able to provide a fixed t ∈ C(P). Assume we can provide a forced
choice among B. This means that we can provide some b ∈ B. However,
regardless of which b we can provide, our hypothesis says that this implies
we can provide t. Therefore, being able to provide a forced choice among B
implies being able to provide t. Formally,

∀b ∈ B : b � t ⇒
⊔
b∈B

b � t. (4)

We now observe that (1) and (2) mean that u is the meet over a ∈ A,
while (3) and (4) show that t is the join over b ∈ B.

Definition 3.3 (Meets and Joins). Let (P,�) be a preorder and A ⊆ P. A
meet of the set A is an element

∧
a∈A a in P such that

(i)
∧

a∈A a is a lower bound of A, that is
∧

a∈A a � a for all a ∈ A,

(ii)
∧

a∈A a is the greatest lower bound of A, that is if t � a for all a ∈ A,
then t �

∧
a∈A a.

A join of the set A is an element
∨

a∈A a in P such that

(i)
∨

a∈A a is an upper bound of A, that is a �
∨

a∈A a for all a ∈ A,

(ii)
∨

a∈A a is the least upper bound of A, that is if a � t for all a ∈ A,
then

∨
a∈A a � t.

A preorder in which every subset has a meet and a join is called a complete
lattice.

Our discussion shows that our choice-augmented preorder C(P) will have
meets and joins for any subset A ⊆ C(P). Therefore, C(P) will be a complete
lattice.

3.1.2 Equality of Choices

The fact that free and forced choices are meets and joins in C(P) already
implies many equalities between expressions consisting of the connectives u

12

and t. In this section, we will show that in addition to these, we also want
the connectives to distribute over one another.

Suppose we have a series of choices given by au (bt c). This means we
can freely choose between getting a for certain, or between the uncertainty
of getting b, or c. In this scenario, we can always pick a if we want, but
we are uncertain whether we will get b or c if we don’t choose a. Compare
this with the series of choices given by (a u b) t (a u c). Here too we can
always guarantee a, but are uncertain whether we will get b or c, if we don’t
choose a. In terms of which resources we can guarantee, the two formulations
are equivalent from our perspective. Hence, we will assume the following
distributive law

au (bt c) = (au b) t (au c).

Dually, we can compare a t (b u c) with (a t b) u (a t c). In the first
expression we are uncertain whether we will get a, or a free choice between
b and c. This means that if we don’t get a, we can guarantee either b or c.
This is also the case in the second expression. Hence, we will assume the
distributive law

at (bu c) = (at b) u (at c).

More generally, these laws also hold for the infinite case. The statement
of the infinite distributive law is more complicated: For any doubly indexed
family of elements {bj,k : j ∈ J, k ∈ Kj} of C(P) we have

l

j∈J

 ⊔
k∈Kj

bj,k

 =
⊔
f∈F

(
l

j∈J

bj,f(j)

)
, (5)

where F is the set of all choice functions choosing for each index j ∈ J some
index f(j) ∈ Kj.

This law is justified by the following argument. Suppose we are pre-

sented with a choice of the form
d

j∈J

(⊔
k∈Kj

bj,k

)
. Then we can guar-

antee
⊔

k∈Kj
bj,k for any j ∈ J we choose. That is, we can guarantee an

uncertainty between the bj,k for one specific j of our choice. Now consider⊔
f∈F

(d
j∈J bj,f(j)

)
. Here, some f ∈ F is chosen for us. We then get to chose

freely between the bj,f(j) for that fixed f . Hence we still have uncertainty
among a set of bj,k for a j of our choice. Moreover, f picks precisely one

13

k = f(j) among all k ∈ Kj, so the set of bj,k for which there is uncertainty
remains the same in both cases.

We can also formulate the dual distributive law

⊔
j∈J

 l

k∈Kj

bj,k

 =
l

f∈F

(⊔
j∈J

bj,f(j)

)
, (6)

which happens to be equivalent to (5) provided both
d

a∈A and
⊔

a∈A exist
for any subset A ⊆ C(P).

In summary, our discussion shows that in addition to being a complete
lattice, C(P) should also satisfy the infinite distributive laws (5) and (6). A
complete lattice satisfying infinite distributivity is called a completely dis-
tributive lattice.

Choice Connectives

We denote the free choice among a ∈ A by
d

a∈A a, and the forced
choice among a ∈ A by

⊔
a∈A a. The connective u acts like a meet,

while t acts like a join. Moreover, both connectives distribute over
one another, even in the infinite case.

3.2 A Universal Model for Choice

Given a preorder P, we want to construct a choice-augmented preorder C(P)
that includes all possible choices between elements of P. Our discussion in
the previous section showed that C(P) should be a completely distributive
lattice, where a free choice among a set A is given by the meet over A,
and a forced choice over a set B is given by the join over B. Moreover, we
want the new elements in C(P) to only fulfill those relations implied by our
interpretation of these elements as choices. This leads us to consider the free
completely distributive lattice generated by P.

There are several notions of free completely distributive lattice one could
use, depending on what set of maps one is interested in. We will follow
[Mor04], which shows that the upper sets of lower sets of P, denoted ULP,
satisfy a universal property that suits our purposes. We will explain this in
more detail after making the requisite definitions.

We start by defining special subsets of a preorder which are upwards and
downward closed.

14

Definition 3.4 (Upper and Lower Sets). Let P be a preorder. A subset
U ⊆ P is called an upper set, if it is upward closed:

x ∈ U and x � y imply y ∈ U.

A subset L ⊆ P is called a lower set, if it is downward closed:

x ∈ L and y � x imply y ∈ L.

Definition 3.5 (Upper and Lower Closure). Given a subset A ⊆ P of a
preorder, we can form its

• upper closure ↑ A := {p ∈ P : a � p for some a ∈ A},

• lower closure ↓ A := {p ∈ P : p � a for some a ∈ A}.

The upper closure is an upper set, while the lower closure is a lower set.
Moreover, we can consider

• upper sets UP := {U ⊆ P : U an upper set},

• lower sets LP := {L ⊆ P : L an lower set}.

We will be interested in monotone maps f : P→ Q in which the implica-
tion “p � q implies f(p) � f(q)” is actually an equivalence.

Definition 3.6 (Order Embedding). Let P and Q be preorders. A function
f : P→ Q is called an order embedding provided

p � q ⇔ f(p) � f(q).

In this case we write f : P ↪→ Q.

Lemma 3.7. Given a preorder P, its upper sets can be preordered by contain-
ment (UP,⊇) and its lower sets can be ordered by inclusion (LP,⊆). Both of
these structures are completely distributive lattices. Moreover, we have order
embeddings:

iU : P ↪→ (UP,⊇) iL : P ↪→ (LP,⊆)

p 7→ ↑ {p} p 7→ ↓ {p}

15

Proof. We will take for granted that the power set (P(P),⊆), ordered by
inclusion, is a completely distributive lattice with set intersection as meet and
set union as join. This follows from a straightforward check of the definition
for meets and joins (Def. 3.3) and verification of the infinite distributive laws
(5) and (6). We now observe that unions and intersections of upper sets are
again upper sets. The same holds for lower sets. Therefore, the completely
distributive structure on (P(P),⊆) restricts to completely distributive lattices
(UP,⊆) and (LP,⊆). Finally, since (UP,⊆)op = (UP,⊇), and the defining
laws for completely distributive lattices are self-dual, we see that also (UP,⊇)
is completely distributive.

To prove that iU is an order embedding, let p � q in P. Suppose x ∈
↑ {q}. Then q � x, whence p � x by transitivity. Hence, x ∈ ↑ {p}, so
↑ {p} ⊇ ↑ {q}. Conversely, if ↑ {p} ⊇ ↑ {q}, then in particular q ∈ ↑ {p},
since q ∈ ↑ {q}. Hence p � q, as desired. The proof that iL is an order
embedding is analogous.

We now have the tools to understand the free completely distributive
lattice constructed in [Mor04]. Lemma 3.7 shows that given a preorder P,
we can obtain a completely distributive lattice (LP,⊆). Since this is again a
preorder, we can reapply the lemma and consider the completely distributive
lattice (ULP,⊇). In particular, [Mor04] shows that ULP satisfies the following
universal property:

There is an order embedding i : P ↪→ ULP, such that for any
monotone function f : P→M into a completely distributive lat-
tice M , there is a unique complete homomorphism u : ULP→M
(preserving arbitrary meets and joins) satisfying u ◦ i = f .

If we augment a preorder P to include choice, we should have a monotone
map c : P → C(P) which maps each element of P to the free (or forced)
choice among the singleton {p}. Therefore, by the universal property above,
there will be a unique map from u : ULP→ C(P), preserving the elements of
P and the choices among them.

To see what this means, consider a free choice over A ⊆ P. This will be
represented by the meet

∧
a∈A c(a) in C(P), and by

∧
a∈A i(a) in ULP. Since

the unique map u preserves meets, and u ◦ i = c, we have

u

(∧
a∈A

i(a)

)
=
∧
a∈A

u(i(a)) =
∧
a∈A

c(a).

16

Hence each free choice represented in C(P) is the image of the corresponding
choice represented in ULP. The same holds for forced choices. This shows
that the part of C(P) we are interested lies in is the image of ULP under the
unique map u. In this sense, ULP serves as a universal model for choice on
P, which we will call the upper-lower model.

Universal Model for Choice

Given a preorder P we can form the upper-lower model ULP, given by
the upper sets (ordered by containment) of the lower sets (ordered by
inclusion) of P. For any other model C(P) of choice on P, the free and
forced choices in C(P) lie in the image of ULP under a unique map.

3.3 The Upper-Lower Model

Apart from being universal, the upper-lower model lends itself to easy in-
terpretation. This section will describe how. In addition, we present rules
which simplify the evaluation of choices.

Given a preorer P, we consider the upper-lower model ULP. By Lemma
3.7 we have an order embedding i : P ↪→ ULP given by p 7→ ↑ ↓ {p}. In
addition, we know that meets and joins in ULP are given by unions and
intersections, respectively. Hence, we implement our connectives u and t
by setting l

a∈A

a :=
⋃
a∈A

a,

⊔
a∈A

a :=
⋂
a∈A

a.

If we are interested in choice between elements of P, we first embed those
elements into ULP and then apply the corresponding operation. That is, if
B ⊆ P, l

p∈B

p :=
⋃
p∈B

i(p),

⊔
p∈B

p :=
⋂
p∈B

i(p).

17

Remark 3.8. Observe that we are overloading the symbols u and t to express
both choice between elements of ULP and P. The two uses only differ by the
embedding i : P ↪→ ULP. It should be clear from context which meaning
applies.

If P is finite, an element of ULP has the form

{{p1,1, . . . , p1,n1}, . . . , {pm,1, . . . , pm,nm}}

where the green brackets indicate an upper set, while the red brackets indi-
cate lower sets. In the general case, an element of ULP has the form

{{pk,j}k∈Kj
}j∈J (7)

where again green indicates an upper set and red indicates lower sets.
We will interpret the element (7) as the choice

l

j∈J

 ⊔
k∈Kj

pj,k

 .

To justify this interpretation, we will need the following

Lemma 3.9. Let (P,�) be a preorder. Then for a collection {pi}i∈I ⊆ P,

↑ {pi}i∈I =
⋃
i∈I

↑ {pi},

↓ {pi}i∈I =
⋃
i∈I

↓ {pi}.

Proof. Suppose x ∈ ↑ {pi}i∈I . Then pi � x for some i ∈ I, whence x ∈
↑ {pi} ⊆

⋃
i∈I ↑ {pi}. Conversely, if x ∈

⋃
i∈I ↑ {pi}, then x ∈ ↑ {pi} for

some i ∈ I. This means pi � x, whence x ∈ ↑ {pi}i∈I . The second statement
follows by applying the first to Pop.

18

Lemma 3.10. Let P be a preorder.

(i) If {Ai}i∈I ⊆ ULP is a collection of elements of the upper-lower model,
then ⋂

i∈I

Ai = {
⋃
i∈I

ai : ai ∈ Ai for each i ∈ I}.

(ii) If {aj}j∈J ⊆ LP is a collection of lower sets, then⋂
j∈J

↑ {aj} = ↑ {
⋃
j∈J

aj}.

(iii) If {pk}k∈K ⊆ P is a collection of elements of P, then⋂
k∈K

↑ {↓ {pk}} = ↑ {↓ {pk}k∈K}.

Proof. To show (i), suppose x ∈
⋂

i∈I Ai. Then x ∈ Ai for each i ∈ I. Writing
x =

⋃
i∈I x shows that x ∈ {

⋃
i∈I ai : ai ∈ Ai for each i ∈ I}. Conversely,

consider x =
⋃

i∈I ai where ai ∈ Ai for all i ∈ I. Recall that the Ai are upper
sets of (LP,⊆). Hence, ai ∈ Ai and ai ⊆

⋃
i∈I ai = x imply x ∈ Ai. This

holds for every i ∈ I, so x ∈
⋂

i∈I Ai.
For (ii), we note that by (i),⋂

i∈I

↑ {aj} = {
⋃
j∈J

bj : bj ∈ ↑ {aj} for each j ∈ J}.

Since bj ∈ ↑ {aj} means bj ⊇ aj, we have⋂
i∈I

↑ {aj} = {
⋃
j∈J

bj : bj ⊇ aj for each j ∈ J}.

Suppose x =
⋃

j∈J bj, where bj ⊇ aj for all j ∈ J . Then
⋃

j∈J bj ⊇
⋃

j∈J aj,
whence x ∈ ↑ {

⋃
j∈J aj}. Conversely, if x ⊇

⋃
j∈J aj, then x ⊇ aj for each

j ∈ J . Therefore, x =
⋃

j∈J x is an element of {
⋃

j∈J bj : bj ⊇ aj for each j ∈
J}. In summary,⋂

i∈I

↑ {aj} = {
⋃
j∈J

bj : bj ⊇ aj for each j ∈ J} = ↑ {
⋃
j∈J

aj}.

19

For (iii), we apply (ii) and Lemma 3.9 to obtain⋂
k∈K

↑ {↓ {pk}} = ↑ {
⋃
k∈K

↓ {pk}} = ↑ {↓ {pk}k∈K}.

Returning to the interpretation, consider the element

{{pj,k}k∈Kj
}j∈J .

Since the red brackets are a lower set and the green brackets upper sets, we
can rewrite

{{pj,k}k∈Kj
}j∈J = ↑ {↓ {pj,k}k∈Kj

}j∈J .
Using Lemmas 3.9 and 3.10 (ii),

{{pj,k}k∈Kj
}j∈J = ↑ {↓ {pj,k}k∈Kj

}j∈J
=
⋃
j∈J

↑ {
⋃

k∈Kj

↓ {pj,k}}

=
⋃
j∈J

⋂
k∈Kj

↑ {↓ {pj,k}}

=
l

j∈J

 ⊔
k∈Kj

pj,k

 .

This equation confirms our interpretation.
Now that we know how to interpret elements of ULP, we show how free

and forced choices are represented in the upper-lower model. Suppose {pj}j∈J
is a collection of elements of P. Each pj embeds into ULP as ↑ {↓ {pj}}. The
free choice among {pj}j∈J is represented by

l

j∈J

pj =
⋃
j∈J

↑ {↓ {pj}} = ↑ {↓ {pj}}j∈J , (8)

where we applied Lemma 3.9.
On the other hand, the forced choice among these is given by⊔

j∈J

pj =
⋂
j∈J

↑ {↓ {pj}} = ↑ {↓ {pj}j∈J}, (9)

where we have used Lemma 3.10 (iii).

Let us see how this works in practice.

20

Example 3.11 (Menu 2). In a restaurant we are allowed to choose between
a vegetarian and a meat option. If we choose the vegetarian option, the
restaurant will provide us a curry dish or a casserole, depending on availabil-
ity. If we choose the meat option we will get chicken or beef, depending on
availability. Using our connectives, we can describe this as

(curryt casserole) u (chickent beef).

We model our options as the discrete preorder

P := {curry, casserole, chicken, beef}.

Using rule (9) described above, we represent this choice in ULP by

curryt casserole = ↑ {↓ {curry, casserole}}
= ↑ {{curry, casserole}}.

A similar calculation shows chickent beef = ↑ {{chicken, beef}}. Hence,

(curryt casserole) u (chickent beef)

= ↑ {{curry, casserole}} ∪ ↑ {{chicken, beef}}
= ↑ {{curry, casserole}, {chicken, beef}}. �

Example 3.12 (Menu 3). A restaurant offers two menus, depending on the
day. As customers, we can freely choose any option on the current menu.
Suppose the menu items in the first menu are {curry, beef} and those on the
second are {casserole, chicken}. In terms of our connectives, this choice
becomes

(curryu beef) t (casseroleu chicken).

Using rule (8), we represent

curryu beef = ↑ {↓ {curry}, ↓ {beef}}
= ↑ {{curry}, {beef}}.

Similarly, casserole u chicken = ↑ {{casserole}, {chicken}}. Hence,
using Lemma 3.10 (ii),

(curryu beef) t (casseroleu chicken)

= ↑ {{curry}, {beef}} ∩ ↑ {{casserole}, {chicken}}
= ↑ {{curry, casserole}, {curry, chicken},

{beef, casserole}, {beef, chicken}}. �

21

As seen in the examples, it is easiest to represent upper and lower sets
by upper and lower closures. The following calculation rules describe how to
write choices among elements represented in this fashion.

Calculation Rules for Upper and Lower Closures

Let P be a preorder and let {Aj}j∈J and {Ak}k∈K be indexed families
of subsets of P. Then the following rules hold for finite choices in ULP:

(i) ↑ {↓ Aj}j∈J u ↑ {↓ Ak}k∈K = ↑ {↓ Ai}i∈J∪K

(ii) ↑ {↓ Aj}j∈J t ↑ {↓ Ak}k∈K = ↑ {↓ (Aj ∪ Ak)}j,k∈J×K

More generally, if {Aj,k}j∈J,k∈Kj
is a double indexed family of subsets

of P, then the following rules apply for infinite choice in ULP:

(iii)
d

j∈J ↑ {↓ Aj,k}k∈Kj
= ↑ {↓ Ai}i∈⋃Kj

(iv)
⊔

j∈J ↑ {↓ Aj,k}k∈Kj
= ↑ {↓

⋃
j∈J Aj,f(j)}f∈F

where F denotes the set of choice functions f : J →
∐

j∈J Kj

with f(j) ∈ Kj for all j ∈ J .

Proof. Note that (i) and (ii) are special cases of (iii) and (iv). Regarding (ii),
this follows because choice functions {j, k} → J ∪K correspond to elements
of the cartesian product J ×K.

For (iii) we observe that by Lemma 3.9,

l

j∈J

↑ {↓ Aj,k}k∈Kj
=
⋃
j∈J

↑ {↓ Aj,k}k∈Kj
(Definition)

= ↑
⋃
j∈J

{↓ Aj,k}k∈Kj
(Lemma 3.9)

= ↑ {↓ Ai}i∈⋃Kj

22

For (iv) we apply Lemma 3.9, the infinite distributive law (6), and Lemma 3.10,⊔
j∈J

↑ {↓ Aj,k}k∈Kj
=
⋂
j∈J

↑ {↓ Aj,k}k∈Kj
(Definition)

=
⋂
j∈J

⋃
k∈Kj

↑ {↓ Aj,k} (Lemma 3.9)

=
⋃
f∈F

⋂
j∈J

↑ {↓ Aj,f(j)} (Distributivity)

=
⋃
f∈F

↑ {
⋃
j∈J

↓ Aj,f(j)} (Lemma 3.10)

= ↑ {
⋃
j∈J

↓ Aj,f(j)}f∈F (Lemma 3.9)

= ↑ {↓
⋃
j∈J

Aj,f(j)}f∈F (Lemma 3.9)

Working in the Upper-Lower Model

Given a preorder P we have an order embedding i : P ↪→ ULP into its
upper-lower model given by p 7→ ↑ {↓ {p}}. Free and forced choices
are implemented in ULP as

l

a∈A

a :=
⋃
a∈A

a,

⊔
a∈A

a :=
⋂
a∈A

a.

A general element of ULP has the form {{pk,j}k∈Kj
}j∈J and is inter-

preted as
d

j∈J
⊔

k∈Kj
pj,k. Choices in ULP can be calculated using the

rules presented in Lemmas 3.9, 3.10, and the box above.

23

4 Feasibility between Choices

Given preorders of resources R and functionalities F, we can model free and
forced choices by considering their upper-lower models ULR and ULF. In
this section, we will lift feasibility relations Φ : R −7−→ F to the upper-lower
models. This yields a new feasibility relation ULΦ : ULR −7−→ ULF, which
extends Φ to choice. Moreover, we will see that such lifted feasibility relations
ULΦ enjoy special properties that distinguish them from arbitrary feasibility
relations between the upper-lower models. Finally, we will consider what
functionalities we can obtain from a given choice of resources, and conversely,
what resources are required to enable a given choice of functionalities.

4.1 Lifting Feasibility to Upper-Lower Models

Let Φ : R −7−→ F be a feasibility relation between preorders R and F. Lift this
to LΦ : LR −7−→ LF by setting

LΦ(A,B) = true ⇐⇒ ∀a ∈ A ∃b ∈ B : Φ(a, b) = true.

This is a feasibility relation since ‘for all’ is preserved by taking subsets and
‘there exists’ by taking supersets.

Moving up a level, let Ψ : LR −7−→ LF be a feasibility relation. Lift this to
UΨ : ULR −7−→ ULF by setting

UΨ(A,B) = true ⇐⇒ ∀b ∈ B ∃a ∈ A : Ψ(a, b) = true.

This is again a feasibility relation because the choice of quantifiers is com-
patible with ordering the upper sets by containment.

Putting both lifts together yields the desired definition.

Definition 4.1 (Lifting Feasibility). Given a feasibility relation Φ : R −7−→ F,
we can lift it to a feasibility relation ULΦ : ULR −7−→ ULF by setting

ULΦ(A,B) = true ⇐⇒ ∀b ∈ B ∃a ∈ A : ∀r ∈ a ∃f ∈ b : Φ(r, f) = true.

Remark 4.2. The quantifiers in the above definitions are fixed by the ordering
we place on upper sets and lower sets. This ordering is in turn determined
by the fact that the upper sets represent free choices and the lower sets
forced choices. For example, if A ⊆ B we want an arrow

d
b∈B b �

d
a∈A a,

representing a weakening of free choice. This shows the upper sets have to
be ordered by containment.

24

Example 4.3 (Grocery Shopping 2). Suppose we are grocery shopping. We
model our money and groceries by

R := {2$ � 1$} F := {carrot, eggplant}

Let Φ : R −7−→ F be the feasibility relation describing whether we can buy a
given item with a given amount of money. Assume that Φ is generated by
the following assignments:

Φ(1$, carrot) = true,

Φ(2$, eggplant) = true.

By (8) and (9) we represent the following choices in ULF:

i(carrot) u i(eggplant) = {{carrot}, {eggplant}, {carrot, eggplant}}

i(carrot) t i(eggplant) = {{carrot, eggplant}}.

The elements 1$ and 2$ are represented in ULR by

i(1$) = ↑ {↓ {1$}} = ↑ {{1$, 2$}} = {A : A ⊇ {1$, 2$}} = {{1$, 2$}},

i(2$) = ↑ {↓ {2$}} = ↑ {{2$}} = {A : A ⊇ {2$}} = {{1$, 2$}, {2$}}.

We can now ask whether ULΦ(i(1$), i(carrot) t i(eggplant))
?
= true.

By Definition 4.1 this is the case iff for every b ∈ {{carrot, eggplant}} there
is a ∈ i(1$) = {{1$, 2$}} such that for all r ∈ a there is f ∈ b with Φ(r, f)
holds. Since the source and target sets are singletons, this condition is simply
asking whether for all r ∈ {1$, 2$} there is f ∈ {carrot, eggplant} such that
Φ(r, f). This is indeed the case since Φ(1$, carrot) and Φ(2$, carrot) both
hold. Therefore, indeed ULΦ(i(1$), i(carrot) t i(eggplant)) = true. This
is saying that for 1$ the store will be willing to sell you either a carrot or
an eggplant, provided they get to decide which you will receive.

On the other hand, ULΦ(i(1$), i(carrot) u i(eggplant)) = false, since
for b = {egglant}, the only a ∈ i(1$) = {{1$, 2$}} is {1$, 2$}, and we know
Φ(1$, eggplant) = false. This is saying that for 1$ the store will not sell
you the option of choosing between a carrot or an eggplant, since they
would loose money if you chose the eggplant. �

25

Lifting Feasibility to the Upper-Lower Model

Given a feasibility relation Φ : R −7−→ F we can lift it to a feasibility
relation between the upper-lower models ULΦ : ULR −7−→ ULF by setting

ULΦ(A,B) = true⇔ ∀b ∈ B ∃a ∈ A : ∀r ∈ a ∃f ∈ b : Φ(r, f) = true.

This assignment extends Φ and captures feasibility between choices.

4.2 Feasibility between Upper-Lower Models

Consider an arbitrary feasibility relation Ψ : ULR −7−→ ULF. Since both upper-
lower models are again preorders, we can interpret Ψ as we would any other
feasibility relation: Ψ(A,B) = true means that being able to provide A
implies being able to provide B. What is special in the case of upper-lower
models is that their elements may be interpreted as choices among subsets
of the underlying preorder.

The method described in Section 4.1 starts with a feasibility relation
Φ : R −7−→ F and lifts it to a feasibility relation ULΦ : ULR −7−→ ULF. This lifting
extends feasibility to choices in “the best way possible”, given the feasibility
among the underlying preorders. The sense in which lifted feasibility relations
are optimal is explored further in Sections 4.3 and 5.3.

Example 4.4 (Double Order). Suppose a restaurant offers soup for 5$ and
salad for 5$. We model our money by setting R := (N,≥) as in Example
2.1, and model the menu options F by the discrete preorder {soup, salad}.
We let Φ be the feasibility relation generated by the assignments

Φ(5$, soup) = true,

Φ(5$, salad) = true.

Applying the lifting definition 4.1 shows that

ULΦ(5$, soupu salad) = true.

We interpret this as saying that being able to providing 5$ implies being able
to provide a free choice between soup or salad. The lifted relation is optimal
in the following sense: If the restaurant can separately provide either soup

or salad given 5$, then it can provide the free choice between the options
for the same price. �

26

On the other hand, one can directly describe a feasibility relation that
already includes the desired relations among choices. This amounts to speci-
fying a feasibility relation Ψ : ULR −7−→ ULF. However, that such a Ψ will not
in general be the lift of some feasibility relation Φ : R −7−→ F. The conditions
for when this is the case are described in Section 4.3.

Example 4.4 (continued). We will now directly specify a feasibility relation
Ψ : ULR −7−→ ULF for R and F defined above. We let Ψ be the feasibility
relation generated by the assignments

Ψ(5$, soup) = true,

Ψ(5$, salad) = true,

Ψ(6$, soupu salad) = true.

The resulting feasibility relation is similar to Φ from earlier, except that
the restaurant is now charging a 1$ fee for the free choice between soup and
salad. Indeed, since neither soup � soupusalad nor salad � soupusalad

in ULF, we must have

Ψ(5$, soupu salad) = false.

This shows that Ψ is not a lift. At the same time it illustrates that our
general feasibility relation Ψ is sub-optimal in the sense that the restaurant
is charging extra for giving us a choice, although it need not do so based on
the underlying feasible pairs. �

Feasibility between Upper-Lower Models

A feasibility relation Ψ : ULR −7−→ ULF, whether lifted as in Section 4.1
or defined directly, may be interpreted as any other feasibility relation:
Ψ(A,B) = true means that being able to provide A implies being able
to provide B. Since we are working within upper-lower models, A and
B are interpreted as choices between subsets of R or F, respectively.

4.3 Characterizing Lifted Feasibility Relations

The lifted feasibility relations described in Section 4.1 enjoy special prop-
erties as compared to an arbitrary feasibility relation between upper-lower
models. These properties can be used to characterize whether such a feasi-
bility relation is lifted or not.

27

Theorem 4.5. A feasibility relation Ψ : ULR −7−→ ULF has the form ULΨ̃ for
Ψ̃ : R −7−→ F if and only if the following three conditions are fulfilled:

(i) If Ψ(A,B) = true, then

∀b ∈ B ∃a ∈ A : ∀r ∈ a ∃f ∈ b : Ψ(↑ {↓ {r}}, ↑ {↓ {f}}) = true.

(ii) For any collection {Xi}i∈I ⊆ ULF,

Ψ(A,Xi) = true ∀i ∈ I ⇔ Ψ(A,
⋃
i∈I

Xi) = true.

(iii) For any collection {Xi}i∈I ⊆ ULR,

Ψ(Xi, B) = true ∀i ∈ I ⇔ Ψ(
⋂
i∈I

Xi, B) = true.

In that case, Ψ̃ is obtained by setting Ψ̃(r, f) = Ψ(↑ {↓ {r}}, ↑ {↓ {f}}).

We will attempt to explain what these conditions mean before giving the
lengthy proof of this theorem. Firstly, if a feasibility relation Ψ : ULR −7−→ ULF
is lifted, then its pre-lifted form Ψ̃ is given by simply restricting Ψ to the
embeddings of R and F into their upper-lower models.

Condition (i) expresses the fact that feasibility between each pair (A,B)
in the upper-lower models is obtained via the lifting definition from Ψ̃. Con-
ditions (ii) and (iii) express a certain optimality of a lifted Ψ with respect to
forced choice in the source and free choice in the target. Condition (ii) says
that if being able to provide A is sufficient to guarantee Xi for all i, then
providing A should also be sufficient to guarantee a free choice among the
Xi. This seems tautological when thinking about feasibility between choices
as stemming from feasibility between elements. However, a general feasibil-
ity relation ULR −7−→ ULF need not fulfil this condition and can be seen as
expressing a type of sub-optimality that can occur in reality. More on this in
Section 5.3. Similar remarks apply to condition (iii), which says that if Xi is
sufficient to obtain B for all i, then the forced choice among the Xi should
be sufficient to obtain B.

28

Proof of Theorem 4.5. First, we show that given a feasibility relation Φ :
R −7−→ F, the induced feasibility relation ULΦ : ULR −7−→ ULF satisfies (i)-(iii).

(i) Suppose Ψ(r, f) = true. Let x ∈ ↓ {r}. Then by monotonicity of
Ψ, we have Ψ(x, f) = true. Therefore, for all x = r ∈ ↓ {r}, there exists
y := f ∈ ↓ {f} such that Ψ(x, y). Hence, LΨ(↓ {r}, ↓ {f}) = true (see
Section 4.1).

Next, assume LΨ(↓ {r}, ↓ {f}) = true and let y ∈ ↑ {↓ {f}}. Then by
monotonicity of LΨ, we have LΨ(↓ {r}, y). Therefore, for all y ∈ ↑ {↓ {f}},
there exists x := ↓ {r} ∈ ↑ {↓ {r}} such that LΨ(x, y). Hence by the defini-
tion in Section 4.1, ULΨ(↑ {↓ {r}}, ↑ {↓ {f}}) = true, as desired.

(ii) Let {Xi}i∈I ⊆ ULF. Since
⋃

i∈I Xi ⊇ Xi, we have that Ψ(A,
⋃

i∈I Xi) =
true implies Ψ(A,Xi) = true for all i ∈ I by monotonicity. Conversely,
suppose Ψ(A,Xi) = true for all i ∈ I. Then for each i ∈ I we have by
definition

∀xi ∈ Xi ∃a ∈ A : ∀r ∈ a ∃f ∈ xi : Ψ(r, f).

This implies that

∀x ∈
⋃
i∈I

Xi ∃a ∈ A : ∀r ∈ a ∃f ∈ x : Ψ(r, f).

Therefore, Ψ(A,
⋃

i∈I Xi) = true.

(iii) Let {Xi}i∈I ⊆ ULR. Since Xi ⊇
⋂

i∈I Xi, by monotonicity Ψ(
⋂

i∈I Xi, B) =
true implies Ψ(Xi, B) = true for all i ∈ I. Conversely, suppose Ψ(Xi, B) =
true for all i ∈ I. Then, for each i ∈ I, we have by definition

∀b ∈ B ∃xi,b ∈ Xi : ∀r ∈ xi,b ∃f ∈ b : Ψ(r, f).

By Lemma 3.10, ⋂
i∈I

Xi = {
⋃
i∈I

yi : yi ∈ Xi for each i ∈ I}.

In particular,
⋃

i∈I xi,b ∈
⋂

i∈I Xi. Now suppose b ∈ B and consider
⋃

i∈I xi,b.
If r ∈

⋃
i∈I xi,b, then r ∈ xi,b for some i. Hence there is f ∈ b such that

Ψ(r, f). This shows that

∀b ∈ B ∃a =
⋃
i∈I

xi,b ∈
⋂
i∈I

Xi : ∀r ∈ a ∃f ∈ b : Ψ(r, f).

29

Therefore, Ψ(
⋂

i∈I Xi, B) = true.

Next, assume we have a feasibility relation Ψ : ULR −7−→ ULF satisfying
(i)-(iii). We show that Ψ = ULΨ̃, where Ψ̃(r, f) = Ψ(↑ {↓ {r}}, ↑ {↓ {f}}).

Suppose that Ψ(A,B) = true. By (i) we know that

∀b ∈ B ∃a ∈ A : ∀r ∈ a ∃f ∈ b : Ψ(↑ {↓ {r}}, ↑ {↓ {f}}).

This implies, by definition, that ULΨ̃(A,B) = true.
Conversely, suppose ULΨ̃(A,B) = true. Then we know that

∀b ∈ B ∃a ∈ A : ∀r ∈ a ∃f ∈ b : Ψ(↑ {↓ {r}}, ↑ {↓ {f}}).

Let b ∈ B. Because b is a lower set, we have ↓ {f} ⊆ b for any f ∈ b.
This implies that ↑ {↓ {f}} ⊇ ↑ {b}. Since f was arbitrary, we have by
monotonicity,

∀b ∈ B ∃a ∈ A : ∀r ∈ a : Ψ(↑ {↓ {r}}, ↑ {b}).

By property (iii), Ψ(↑ {↓ {r}}, ↑ {b}) for all r ∈ a implies Ψ(
⋂

r∈a ↑ {↓ {r}}, ↑ {b}).
Hence, we have

∀b ∈ B ∃a ∈ A : Ψ(
⋂
r∈a

↑ {↓ {r}}, ↑ {b}).

Using Lemma 3.10 (iii), and the fact that a is a lower set, we note that⋂
r∈a

↑ {↓ {r}} = ↑ {
⋃
r∈a

↓ {r}} = ↑ {a}.

Hence, ∀b ∈ B ∃a ∈ A : Ψ(↑ {a}, ↑ {b}). Since A is an upper set, A ⊇ ↑ {a}
for any a ∈ A, whence by monotonicity, ∀b ∈ B : Ψ(A, ↑ {b}). Applying
property (ii) finally yields Ψ(A,

⋃
b∈B ↑ {b}) = Ψ(A,B) = true. We have

thus shown that Ψ(A,B) = true if and only if ULΨ̃(A,B) = true, so the
two feasibility relations coincide.

30

The previous theorem begs the question whether lifted feasibility fulfills
similar relations concerning unions in the source and intersections in the
target. This is addressed in the following

Proposition 4.6. Suppose Ψ : ULR −7−→ ULF is induced as in Theorem 4.5.
Then the following equivalences hold:

(i) Ψ(
⋃

i∈I Xi, ↑ {z})⇔ Ψ(Xi, ↑ {z}) for some i ∈ I.

(ii) Ψ(↑ {↓ {s}},
⋂

i∈I Xi)⇔ Ψ(↑ {↓ {s}}, Xi) for some i ∈ I.

Proof. Note that for both (i) and (ii) the right-hand sides imply the left by
monotonicity.

(i) Suppose Ψ(
⋃

i∈I Xi, ↑ {z}) holds. Then we know that

∀b ∈ ↑ {z} ∃a ∈
⋃
i∈I

Xi : ∀r ∈ a ∃f ∈ b : Ψ̃(r, f).

In particular, for z ∈ ↑ {z} we have an a ∈
⋃

i∈I Xi : ∀r ∈ a ∃f ∈ z : Ψ̃(r, f).

This a will lie in some Xi, so we have an a ∈ Xi : ∀r ∈ a ∃f ∈ z : Ψ̃(r, f).
It remains to show that this choice of a also works for any b ∈ ↑ {z}. Let
b ∈ ↑ {z}. Then z ⊆ b. Hence, for the a ∈ Xi we have that for all r ∈ a
there is f ∈ z ⊆ b such that Ψ̃(r, f). This shows that for some Xi,

∀b ∈ ↑ {z} ∃a ∈ Xi : ∀r ∈ a ∃f ∈ b : Ψ̃(r, f),

meaning that Ψ(Xi, ↑ {z}) for some i ∈ I.

(ii) Suppose Ψ(↑ {↓ {s}},
⋂

i∈I Xi) = true. Recall from Lemma 3.10 that⋂
i∈I Xi = {

⋃
i∈I xi : xi ∈ Xi}. Hence,

∀b ∈ {
⋃
i∈I

xi : xi ∈ Xi} ∃a ∈ ↑ {↓ {s}} : ∀r ∈ a ∃f ∈ b : Ψ̃(r, f).

Fix some
⋃

i∈I xi. Then there is a ⊇ ↓ {s} such that for all r ∈ a there

is f ∈
⋃

i∈I xi satisfying Ψ̃(r, f). The same holds if we restrict a to ↓ {s}.
Hence,

∀b ∈ {
⋃
i∈I

xi : xi ∈ Xi} ∀r ∈ ↓ {s} ∃f ∈ b : Ψ̃(r, f). (10)

31

Now suppose for the sake of contradiction that Ψ(↑ {↓ {s}}, Xi) = false

for all i. That is, for all i ∈ I,

∃bi ∈ Xi ∀a ∈ ↑ {↓ {s}} : ∃r ∈ a ∀f ∈ bi : Ψ̃(r, f) = false.

In particular, setting a := ↓ {s}, we have that for each bi,

∃r ∈ ↓ {s} ∀f ∈ bi : Ψ̃(r, f) = false.

By monotonicity, this means in particular that ∀f ∈ bi : Ψ̃(s, f) = false,
from which it follows that Ψ̃(s, f) = false for all f ∈

⋃
i∈I bi. Therefore⋃

i∈I bi ∈ {
⋃

i∈I xi : xi ∈ Xi} is an element of the intersection for which
there exists r ∈ ↓ {s}, (namely s) such that for all f ∈

⋃
i∈I bi we have

Ψ̃(s, f) = false. This contradicts statement (10).

Characterizing Lifted Feasibility Relations

Feasibility Relations Ψ : ULR −7−→ ULF that have been lifted from Ψ̃ :
R −7−→ F can be characterized via the three conditions presented in
Theorem 4.5. In particular, such Ψ satisfy

Ψ(A,Xi) = true ∀i ∈ I ⇔ Ψ(A,
⋃
i∈I

Xi) = true,

Ψ(Xi, B) = true ∀i ∈ I ⇔ Ψ(
⋂
i∈I

Xi, B) = true.

Proposition 4.6 proves that, in addition, lifted Ψ satisfy

Ψ(
⋃
i∈I

Xi, ↑ {z})⇔ Ψ(Xi, ↑ {z}) for some i ∈ I,

Ψ(↑ {↓ {s}},
⋂
i∈I

Xi)⇔ Ψ(↑ {↓ {s}}, Xi) for some i ∈ I.

32

4.4 Queries on Induced Feasibility

Often we are interested in what functionalities we can obtain given a fixed
resource, or what resources enable us to obtain a fixed functionality. This
process is called querying and is formalized in the following. Moreover, we
derive formulas for the query of a choice.

Fix a feasibility relation Ψ : ULR −7−→ ULF. We define the following sets
called queries.

Definition 4.7 (Querying Resources). For a fixed A ∈ ULR define

fΨ(A) := {f ∈ F : Ψ(A, i(f))}.

The result is an upper set in F which describes all functionalities which can
be obtained from the choice of resources A.

Definition 4.8 (Querying Functionalities). For a fixed B ∈ ULF define

rΨ(B) := {r ∈ R : Ψ(i(r), B)}.

The result is a lower set in R which describes all resources which enable the
choice of functionalities B. We will omit the subscript when the feasibility
relation is clear from context.

Example 4.9. Let R := (N,≥) and F := {carrot, eggplant}, as in Example
4.3. Consider the feasibility relation Ψ : ULR −7−→ ULF generated by

Ψ(1$, carrot) = true,

Ψ(2$, eggplant) = true.

Then fΨ(1$) = {carrot} and fΨ(2$) = {carrot, eggplant}. �

Proposition 4.10. Consider a lifted feasibility relation ULΦ : ULR −7−→ ULF.
For subsets A ⊆ ULR and B ⊆ ULF we have the following:

(i) f(
d

a∈A a) = f(
⋃

a∈A a) =
⋃

a∈A f(a)

(ii) f(
⊔

a∈A a) = f(
⋂

a∈A a) =
⋂

a∈A f(a)

(iii) r(
d

b∈B b) = r(
⋃

b∈B b) =
⋂

b∈B r(b)

(iv) r(
⊔

b∈B b) = r(
⋂

b∈B b) =
⋃

b∈B r(b)

33

Proof. We prove each in turn, denoting ULΦ =: Ψ.

(i) This follows from Proposition 4.6 (i): We have Ψ(
⋃

a∈A a, i(f)) if and
only if Ψ(a, i(f)) for some a ∈ A. Hence, f ∈ f(A) if and only if
f ∈

⋃
a∈A f(a).

(ii) By monotonicity and Theorem 4.5 (iii) we know Ψ(
⋂

a∈A a, i(f)) if and
only if Ψ(a, i(f)) for all a ∈ A. Hence, f ∈ f(

⋂
a∈A a) if and only if

f ∈ f(a) for all a ∈ A. Therefore, f(
⋂

a∈A a) =
⋂

a∈A f(a).

(iii) By monotonicity and Theorem 4.5 (ii) we know Ψ(i(r),
⋃

b∈B b) if and
only if Ψ(i(r), b) for all b ∈ B. Hence, r ∈ r(

⋃
b∈B b) if and only if

r ∈ r(b) for all b ∈ B. Therefore, r(
⋃

b∈B b) =
⋂

b∈B r(b).

(iv) This follows from Proposition 4.6 (ii): We have Ψ(i(r),
⋂

b∈B b) if and
only if Ψ(i(r), b) for some b ∈ B. Hence, r ∈ r(B) if and only if
r ∈

⋃
b∈B r(b).

Queries on Induced Feasibility

Given a feasibility relation Ψ : ULR −7−→ ULF and fixed A ∈ ULR, we
can ask which functionalities in F are obtainable from A. Analogously,
given B ∈ ULF, we can ask which resources in R enable us to get
B. This process is called querying. When Ψ is lifted, the query of
a choice among a set X decomposes into a union or intersection over
the corresponding queries of elements x ∈ X, as shown in Proposition
4.10.

34

5 Future Directions

In this section, we will sketch some avenues for future exploration.

5.1 Choice between Feasibility

We have described how to model free and forced choices between resources
and functionalities. However, Co-Design also deals with feasibility relations.
Hence, we can ask how we would model free and forced choices between these.
For example, there may be two rival grocery stores Φ and Ψ for which we
may describe corresponding feasibility relations Φ,Ψ : R −7−→ F. A free choice
ΦuΨ would mean that we have access to the store of our choice. Intuitively,
we should have Φ u Φ := Φ ∪Ψ.

Here are some thoughts on how to proceed. First, we observe that the
set of feasibility relations Φ : R −7−→ F, denoted Feas(R,F), is itself a preorder
where Φ � Ψ iff Φ ⊇ Ψ. Therefore, we can consider ULFeas(R,F) as we
would for any other preorder. This already allows us to think about free and
forced choice among feasibility relations.

A next step might be to decompose a given feasibility relation into a
choice. We typically assume we can choose freely which feasible pair we use
to realize some transformation: If both Φ(5$, soup) and Φ(5$, salad), we
assume that if we provide 5$ we can choose whether we use it to purchase
soup or salad. Therefore, it may be reasonable to interpret a feasibility re-
lation Φ as

d
(r,f)∈Φ(r, f). This poses the problem that the individual feasible

pairs are not in general feasibility relations. However, we note that since a
feasibility relation correspond to upper sets of Rop×F, we can instead write
Φ =

d
(r,f)∈Φ ↑ {(r, f)}.

By the decomposition strategy described above, it is sufficient to consider
ULPrinc(Rop × F), where Princ(Rop × F) is the set of principal upper sets
↑ {(r, f)} of Rop × F. In this picture,

Φ u Ψ =
l

(r,f)∈Φ

↑ {(r, f)}u
l

(r′,f ′)∈Ψ

↑ {(r′, f ′)} =
l

(r,f)∈Φ∪Ψ

↑ {(r, f)},

which corresponds to the intuition above. On the other hand,

Φ t Ψ =
l

(r,f)∈Φ

↑ {(r, f)}t
l

(r′,f ′)∈Ψ

↑ {(r′, f ′)} =
l

(p,q)∈Φ×Ψ

↑ {p}t ↑ {q},

where we have abbreviated (r, f) =: p and (r′, f ′) =: q for legibility.

35

The above shows that a free choice between decomposed feasibility rela-
tions can again be interpreted as a decomposed feasibility relation. However,
in order to represent the forced choice Φ t Ψ as a free choice over princi-
pal upper sets, one would have to define ↑ {p} t ↑ {q} in a way that makes
it principal. The obvious choice of taking the intersection does not fulfill
this criterion for arbitrary preorders. One option is to just continue work-
ing within ULPrinc(Rop × F), where such forced choices can be represented.
Alternatively, one could attempt to “flatten” the forced choice Φ t Ψ into a
new feasibility relation between upper-lower models ULR −7−→ ULF by trans-
ferring the forced choice to elements of R and F, respectively. For example,
if Φ(r, f) = true and Ψ(r, g) = true, then a flattened forced choice should
fulfill Φ t Ψ(r, f t g) = true, but not in general Φ t Ψ(r, f) = true or
Φ t Ψ(r, g) = true. Intuitively, not being able to choose whether you pur-
chase soup or salad using 5$ is the same as being able to purchase the forced
choice soupt salad using 5$.

In summary, it seems that thinking about choice between feasibility re-
lations will amount to a special case of choice on a preorder. In particular,
feasibility relations can be decomposed into principal upper sets of Rop × F

allowing us to use ULPrinc(Rop × F) to model choices between them. More-
over, moving to upper-lower models on the source and target of feasibility
relations could allow for certain flattening operations, where an element of
ULPrinc(Rop × F) could be converted to an element of Feas(ULR,ULF).

5.2 Additional Connectives

Sometimes the preorder P may have additional structure. In these cases, we
can ask whether this structure can be lifted to its upper-lower model ULP.

An example of an operation that would be of interest is the addition
operator +, where a + b means that we are able to independently provide a
and b. This operation is commutative and has a unit 0, representing being
able to provide ‘nothing’. Moreover, being able to provide a implies being
able to provide ‘nothing’ for any a, so a � 0 for all a ∈ P. Next, we would
want a+b � a for all a ∈ P, since being able to provide a and b independently
in particular implies being able to provide a. Finally, a � a′ and b � b′ imply
a + a′ � b + b′ by applying transformations in parallel.

36

We illustrate how one would lift an operation like +. First we determine
how the operator should interact with free and forced choices. In our case,
we would want l

a∈A

a +
l

b∈B

b =
l

(a,b)∈A×B

a + b,

⊔
a∈A

a +
⊔
b∈B

b =
⊔

(a,b)∈A×B

a + b.

For U, V ∈ ULP, this suggests setting

U+V := ↑ {u+v : u ∈ U, v ∈ V } := ↑ {↓ {x+y : x ∈ u, y ∈ v} : u ∈ U, v ∈ V }.

It then remains to verify which properties of + transfer to the upper-lower
level.

5.3 Exploring General Feasibility between Upper-Lower
Models

We have seen that lifted feasibility relations are optimal in a sense explored
in Section 4.3 and Example 4.4. One would expect that in the real world this
optimality would often be violated. A free choice might be more expensive
than the maximum cost of the individual options, or a forced choice cheaper
than the minimum cost of the options. For example, booking a flight on
standby is cheaper than a ticket for any given travel date. These consider-
ations show that we should investigate general feasibility relations between
upper-lower models ULR −7−→ ULF, as illustrated in Section 4.2.

One way to obtain such general feasibility relations is to explore alter-
native forms of lifting a feasibility relation Φ : R −7−→ F to the upper-lower
models. For example, if R represents money, we could introduce a surcharge
of 1$ whenever a free choice occurs in between elements of F. The magnitude
of this surcharge will reflect how much overhead is involved in allowing for a
choice.

Finally, one could think about introducing a measure for how far a general
feasibility relation is from being a lift. This would allow for a quantification
of the surplus cost charged for choice. This could be achieved formally by
assigning weights to the arrows in the upper-lower models.

37

References

[Cen15] Andrea Censi. “A Mathematical Theory of Co-Design”. In: (2015).
arXiv: 1512.08055. url: http://arxiv.org/abs/1512.08055.

[MCR07] C. E. Martin, S. A. Curtis, and I. Rewitzky. “Modelling angelic
and demonic nondeterminism with multirelations”. In: Science of
Computer Programming 65.2 (2007), pp. 140–158. issn: 01676423.
doi: 10.1016/j.scico.2006.01.007.

[Mor04] Joseph M. Morris. “Augmenting types with unbounded demonic
and angelic nondeterminacy”. In: Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) 3125 (2004), pp. 274–288.
issn: 16113349. doi: 10.1007/978-3-540-27764-4_15. url:
https://link.springer.com/chapter/10.1007/978-3-540-

27764-4_15.

38

https://arxiv.org/abs/1512.08055
http://arxiv.org/abs/1512.08055
https://doi.org/10.1016/j.scico.2006.01.007
https://doi.org/10.1007/978-3-540-27764-4_15
https://link.springer.com/chapter/10.1007/978-3-540-27764-4_15
https://link.springer.com/chapter/10.1007/978-3-540-27764-4_15

