
ETH Library

EasyNet: 100 Gbps Network for
HLS

Conference Paper

Author(s):
He, Zhenhao; Korolija, Dario; Alonso, Gustavo

Publication date:
2021

Permanent link:
https://doi.org/10.3929/ethz-b-000487920

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1109/FPL53798.2021.00040

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000487920
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/FPL53798.2021.00040
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


EasyNet: 100 Gbps Network for HLS
Zhenhao He, Dario Korolija, Gustavo Alonso

Systems Group, Department of Computer Science, ETH Zurich, Switzerland
firstname.lastname@inf.ethz.ch

Abstract—The massive deployment of FPGAs in data centers
is opening up new opportunities for accelerating distributed
applications. However, developing a distributed FPGA applica-
tion remains difficult for two reasons. First, commonly available
development frameworks (e.g., Xilinx Vitis) lack explicit support
for networking. Developers are, thus, forced to build their own
infrastructure to handle the data movement between the host,
the FPGA, and the network. Second, distributed applications are
made even more complex by using low level interfaces to access
the network and process packets. Ideally, one needs to combine
high performance with a simple interface for both point-to-point
and collective operations. To overcome these inefficiencies and
enable further research in networking and distributed application
on FPGAs, we first show how to integrate an open-source 100
Gbps TCP/IP stack into a state-of-the-art FPGA development
framework (Xilinx Vitis) without degrading its performance.
Further, we provide a set of MPI-like communication primitives
for both point-to-point and collective operations as a High Level
Synthesis (HLS) library. Our point-to-point primitives saturate a
100 Gbps link and our collective primitives achieve low latency.
With our approach, developers can write hardware kernels in
high level languages with the network abstracted away behind
standard interfaces. To evaluate the ease of use and performance
in a real application, we distribute a K-Means algorithm with
the new stack and achieve a 1.9X and 3.5X throughput increase
with 2 FPGAs and 4 FPGAs respectively.

I. INTRODUCTION

The network plays a fundamental role in data centers.
Accordingly, cloud deployments have started to treat FPGAs as
first-class processing components with direct network access
such as in the Microsoft’s Catapult [1], [2] or Amazon’s
AQUA [3]. As Microsoft’s BrainWave [4], [5] and KV-Direct
[6] projects indicate, support for data center networking is a
key step to go beyond the FPGA as a co-processor.

FPGAs are increasing their programmability by provid-
ing high-level synthesis (HLS) languages to enable software
developers trained in conventional programming languages
such as C++ to also use FPGAs. The most common vendor
development frameworks, Xilinx Vitis [7] and Intel Quar-
tus [8], support HLS and follow a clear trend towards higher
abstractions. For instance, they all now have a far simpler way
to manage data movement between host, FPGA memory, and
application through the use of standard host APIs and hiding
the underlying software-hardware interaction. When these two
trends are put together, one area emerges where there are
glaring gaps in terms of support: networking. While there is
a growing number of research efforts targeting data center
networking protocols for FPGAs [9]–[12], tool support for
data center networking is still lacking. Current development
frameworks do provide basic networking functionality through
low-level link and physical layer protocols [13]–[15]. Such

support is not sufficient in a data center where reliability,
automatic connection, and a large number of connections are
needed. Only recently, support for UDP in Vitis [16] has
become available. Proprietary commercial implementations of
network stacks [17]–[19] exist but they are often not available
to researchers, are limited in their functionality or performance
(only 10 or 40 Gbps), and are not integrated with HLS.
Moreover, the presence of a data center network stack is often
not enough. On the CPU side, almost all distributed application
development relies on high-level APIs such as OpenMP [20] or
MPI [21] for communication and even more complex systems
for distributed coordination, such as ZooKeeper [22]. All
these platforms are widely available and open-source, greatly
facilitating the creation of new distributed applications. For
FPGAs to become competitive, they must provide a similar
infrastructure and be integrated with such systems. Recent
work has tried to provide high-level abstractions for differ-
ent communication patterns [23]–[25]. However, they either
target a proprietary protocol for fixed typologies or provide a
minimal subset of operations, thus lacking both generality and
tool support.

To address these issues, we propose EasyNet, a system
aiming to reduce the programming effort for distributed FPGA
applications. As a first step, we integrate a 100 Gbps open-
source TCP/IP stack [10], [26] into Vitis [7], to enable HLS
network programming. This integration faces two major chal-
lenges: (1) The integration should be seamlessly compatible
with the original design flow of the Vitis application, meaning
that the instantiation of the network stack has to be hidden
from the application developer; (2) The performance of the
100 Gbps network stack should not be affected although
Vitis is optimized for bulk data transfer with aligned memory
address [7], while network communication often doesn’t have
this memory access pattern. Besides, to raise the level of
abstraction further, we develop a rich set of MPI-like commu-
nication primitives for point-to-point and collective operations.
The primitives hide the interaction and control management
within the network layer and they can be easily invoked from
an HLS C library. We show that our primitives running on
FPGA clusters can easily saturate a 100 Gbps network and
achieve lower latency than software MPI running on a CPU
cluster. To evaluate EasyNet, we present a case study based
on distributing K-Means on an FPGA cluster. Compared to a
single node implementation, we show a negligible overhead
from communication and achieve 1.9X and 3.5X by using 2
and 4 FPGAs, respectively. EasyNet is open-source 1.

1https://github.com/fpgasystems/Vitis with 100Gbps TCP-IP



II. BACKGROUND

A. FPGA Development Framework

Vitis [7] is one of the state-of-the-art FPGA development
frameworks. In Vitis, the FPGA is divided into two regions.
The static region (shell), which contains common infrastruc-
ture, such as the DMA engine. The dynamic region contains
the customized logic for user-defined kernels. Vitis abstracts
data movement by automatically adding the necessary inter-
connects for these kernel interfaces to communicate with the
rest of the platform. Combined with HLS, Vitis is a huge
boost in productivity compared to older platforms such as
Vivado [27] or SDAccel [28]. However, Vitis imposes con-
straints on kernel interfaces, and interconnects to the network
are not supported, limiting its use in distributed applications.
Thus, current development of distributed applications requires
to build a customized infrastructure to handle data movement
between host, FPGA memory and network using low level
interfaces, which lacks support of HLS and portability.

B. Distributed Communication Primitives

Point-to-point and collective communication operations,
such as broadcast and reduce, are essential in distributed
applications. Distributed application development in software
relies on platforms that provide such primitives behind stan-
dard interfaces such that developers handle communication
only through high-level interfaces. MPI [21] is an example of
such a platform providing both point-to-point and collective
primitives, automatically maps the communication to the best
network protocol, and, in some cases, even changes the algo-
rithm used depending on the system size and workload. This is
important as, for instance, reduce can be implemented either as
a client-server for medium-size systems and messages, through
a broadcast tree [29] for larger systems, or with a tile-based
algorithm [30] to handle large message sizes.

III. RELATED WORK

In the past, FPGAs were typically connected through point-
to-point serial links with fixed topologies and with light-
weight or proprietary protocols [1], [31]–[34]. Many of these
implementations build on top of low-level networking IP cores
provided by Xilinx and Intel, such as the Ethernet Media
Access Controller (MAC) [13], [14], [35].

The situation has changed since FPGAs are deployed in
the data center, where they are directly connected with data
center infrastructures (e.g., high bandwidth links and network
switches) [1], [36]. Therefore, there is now a trend to build
infrastructure for high-performance FPGA-based NICs [37]–
[39] and to develop complete network stacks on FPGAs for
protocols commonly used in data centers, such as UDP [16],
TCP [9], [10], [12], [17], [26], [40] or RDMA [6], [11].
As pointed out above, networking itself is not enough. Ac-
cordingly, there is also a growing interest in implementing
higher-level abstractions for communication. For instance,
IBM’s CloudFPGA [41], [42] proposes to convert software
executable MPI code to hardware synthesizable code that runs
over hardware UDP stack. Eskandari et al. [23] proposed a

system integrated with SDAccel [28], an older generation of
the framework, that maps HLS kernels to different FPGAs
by incorporating an open-source 10 Gbps TCP/IP stack [10]
and providing MPI-like point-to-point primitives. There are
also efforts aiming at providing MPI-like communication
abstractions targeting physical/link layer protocols and fixed
topologies [24], [25], [43]. Recently VNx [16] has become
available, which extends Vitis with UDP, allowing the devel-
oper to interact with the UDP kernel using HLS streaming
interfaces. Our goal in this paper is to seamlessly integrate
TCP/IP in Vitis, a reliable protocol far more complex than
UDP, and provide a rich set of communication primitives
containing both point-to-point and collective operations.

A wide range of use cases can benefit from EasyNet.
For instance, Zhang et al. [44] propose to use a pipelined
ring-based FPGA cluster to accelerate convolutional neural
networks. Owaida et al. [45] partition inference over decision
tree ensembles on an FPGA cluster. In both cases, these
efforts target a pre-defined cluster topology with point-to-point
serial links for lack of better infrastructure. More recent work
has explored DNN inference using FPGA clusters [46]–[48],
offloading an SDN stack to an FPGA-based smart NIC [49],
managing the scatter and gather problem in parallel data pro-
cessing with FPGAs [50], or implemented key-value stores [6],
[51]. Through EasyNet, such applications will become easier
to develop by providing access from HLS to a 100 Gbs TCP/IP
stack that is usable through a set of MPI-like interfaces without
loss of performance or flexibility.

IV. DESIGN OVERVIEW

EasyNet comprises two parts. First, it incorporates a 100
Gbps TCP/IP stack into a state-of-the-art FPGA development
framework: Vitis (Section V). The seamless integration of the
network stack into Vitis is challenging because Vitis limits how
user kernels interface and interact with the rest of the platform.
For instance, network pin assignment is not supported by Vitis.
Further, memory access in Vitis is highly optimized for bulk
data transfer while packet buffering in a network stack could
have irregular memory access since packets with varying sizes
don’t come in order. Regardless of these challenges, the goal is
for EasyNet to meet the following three constraints regarding
the network stack. C1: The network infrastructure should be
generic to a variety of applications rather than optimized for
a concrete one. C2: The network infrastructure should be
abstracted away from the application developer and usable
from HLS. C3: The integration into Vitis should not reduce
the performance of the network stack.

Second, EasyNet provides various communication primi-
tives that hide the network layer and can be easily instantiated
in an HLS design (Section VI). The goal is for such EasyNet
primitives to satisfy the following constraints. C4: Each com-
munication primitive should keep a low resource footprint
while achieving high throughput or maintain low latency.
C5: The primitives should be encapsulated in an HLS library
callable as a function.



Fig. 1: Overall infrastructure architecture.

V. NETWORK INFRASTRUCTURE

A. Overall Infrastructure Architecture

The design of EasyNet aims to provide network func-
tionality as a common infrastructure to different applications
(C1). Therefore, we adopt a modular design principle, where
different functionalities are separated into different kernels.
The overall design is divided into three kernels (Figure 1).
CMAC Kernel. The CMAC kernel contains an IP block
for the 100G Ethernet Subsystem, which needs to be config-
ured for each board. A separate CMAC kernel increases the
portability among different FPGA boards. This kernel bridges
the whole infrastructure to the GT pins, which are the I/O
pins towards the QSFP network interfaces. It also exposes
two 512-bit AXI4-Stream interfaces to the network kernel for
transmitting (Tx) and receiving (Rx) network packets.
Network Kernel. The network kernel contains IP blocks
of an open-source 100 Gbps TCP/IP stack [52] supporting
thousands of TCP/IP connections, window scaling and out-
of-order packet processing. It is clocked at 250 MHz to
saturate the network bandwidth. The kernel contains two
512-bit memory-mapped streaming interfaces to two memory
banks, which serve as temporary buffers for re-transmission
of Tx data and buffering of Rx data respectively.
User Kernel. The user kernel contains streaming interfaces to
the network kernel and other interfaces that can be customized
for each application. The user kernel can be written in various
languages: RTL, C/C++, and OpenCL. The interconnects to
the memory and the network are hidden from the user.

B. User-Network Streaming Interfaces

Interacting with the network kernel involves manipulating
several streaming interfaces. Figure 2 shows the interfaces
on the Tx path. The user kernel can open active connections
through the openConReq interface providing the destination’s
IP address and port. Through the openConRsp, the user kernel
will be notified whether the connection has been established
and receive the session ID of the new connection. Data
transmission through an established connection requires a
control handshake before the transmission of the payload. The
user kernel has to first provide the session ID and the length of
the data to the txDataReq interface and then the TCP module
will return a response on the txDataRsp indicating potential
errors and the remaining buffer space for that connection. If the
txDataRsp doesn’t return any error, the user kernel can send
the payload to the txData interface. Therefore, to saturate the

Fig. 2: Streaming interfaces between user and network kernel.

network rate, the control handshake of the next packet needs to
be overlapped with the data transmission of the current packet,
imposing more difficulties on the application developer.

C. Integration into Vitis

Network Instantiation Automation. To satisfy C2, the major
challenge is to make the connection from the CMAC kernel
to the network pins without the involvement of the application
developer. With Vitis, each kernel is synthesized to a Xilinx
object and the interconnects for each kernel interface are auto-
mated according to a configuration file. However, connecting
a kernel interface to the network pins is not allowed. Thus, we
have to explicitly guide the back-end routing and placement
tool [27] to make the routing connection from the CMAC
kernel to the GT pins 2. To avoid user intervention, we add an
extra step in the Vitis synthesis and compilation workflow by
providing a post-synthesis TCL file that automatically makes
the routing connection from the CMAC kernel to the GT pins.
Maintaining Performance. To keep the performance of the
original 100 Gbps implementation (C3), the major hurdle is
the interaction between the network kernel and the memory
banks. In a TCP/IP stack, the payloads are temporarily stored
in a memory bank for re-transmission or buffering purposes.
This requires a memory bandwidth of at least 100 Gbps if the
goal is to saturate the 100 Gbps network link. However, Vitis
is optimized for 64-byte aligned, sequential memory access.
Unaligned memory access significantly decreases the memory
bandwidth because it will trigger several aligned memory
accesses. For each TCP/IP connection, an initial memory
address is assigned and upcoming packets are stored with
an offset from the initial memory address. First, the initial
memory address is determined by the initial sequence number
of the connection, which is a random number, making it most
likely not aligned to 64 bytes. Second, in a default TCP/IP
setting, the maximum segmentation size (MSS) is 1460 bytes,
which is not multiple of 64 bytes, and network devices tend to
pack small messages to match MSS to maximize network uti-
lization. This leads to a throughput drop due to the unaligned
access even if packets arrive in order and sequentially access
the memory. To overcome these two inefficiencies, we first
use a relative initial sequence number that results in a 64-byte
aligned initial memory address and then tune the MSS of the
hardware TCP/IP stack to 1408 bytes, which is the maximum
multiple of 64 bytes lower than the default.

2We choose Vitis shell XDMA 201920.3 since only the latest shell exposes
the GT pins to the dynamic region



With these changes and adaptations, EasyNet encapsulates
the 100 Gbs stack behind a relatively simple interface that is
usable from HLS and without the developer having to deal
with the details of the network.

VI. COMMUNICATION PRIMITIVES

The interaction with the TCP/IP stack is still complex due
to low-level streaming interfaces and control handshakes, as
previously explained in subsection V-B. To provide an even
higher level of abstraction, EasyNet also includes various
communication primitives that can be called as a function from
an HLS C library (C5). These primitives have an MPI-like
interface and semantics with the underlying implementation
being optimized to minimize resource utilization (C4).

A. Connection Establishment

The open connection primitive takes a list of destination
IP and port pairs as input arguments and issues a large
amount of open connection request to the TCP/IP stack in
a pipelined fashion. At the same time, it processes open
connection status from the TCP/IP stack. This is useful in
distributed applications to quickly connect to several nodes.
Once a connection is established, the function writes the
session ID, used to distinguish among different connections,
into the session table. A boolean value of true is returned
once all the connections are established. Similarly, the listen
port primitive open ports according to a list of port numbers
provided by the caller and returns true once all ports are
successfully opened.

1 bool openConnection(int numCon, uint32 t*IP, int *port ,
ssStruct &session, opnConStruct&opnCon);

2 bool listenPort ( int numCon, int*port , ssStruct &session,
lstnPortStruct &lstnPort ) ;

B. Point-to-point Primitives

The send and receive primitives are point-to-point oper-
ations that involve one connection between two processes.
These primitives send/receive data with connection specified
via session ID and support operating with either a data stream
or a memory pointer. They support variable data widths while
to saturate network rate requires a data width of 512 bits. One
important feature is that these primitives can be used with
other data processing functions in a data flow region, such
that the network communication and the computation can be
pipelined and overlapped for higher efficiency.

1 void send(type*data , uint64 t byte , ssStruct session ,
TcpTxStruct&TcpTx);

2 void recv(type*data , uint64 t byte , ssStruct session ,
TcpRxStruct&TcpRx);

C. Collective Primitives

Implementing collective primitives requires manipulation of
several connections on each node at the same time and time-
sharing of the TCP/IP stack. EasyNet implements several col-
lective primitives: scatter, broadcast, gather, reduce and all-
reduce. Due to space limitations, we will focus on broadcast,

reduce, and all-reduce. In EasyNet, we focus on optimizing
latency for medium size messages. Therefore, we adopt an
all-to-one (client-to-server) implementation for reduce and a
one-to-all (server-to-client) implementation for broadcast. Our
implementation can be used as a basic building block for other
collective algorithms, such as a tree-based algorithm [30].

To set up connections for collective operations, the server
node actively establishes all the connections to the clients
using the open connection primitive. Once all connections are
established, both the server and the client nodes can perform
duplex data transmission.

1) Broadcast: One way to broadcast data is to use the send
primitive multiple times over the target data in sequence to
each client node. However, this will starve the later connec-
tions until sending through the previous connection completes.
To avoid this, we provide a simple yet effective broadcast
primitive by interleaving the sending of small amounts of data
to each client. A list of session IDs and the total number of
bytes to be sent are provided when invoking the broadcast
primitive. Internally, the primitive repeatedly reads a small
portion of the data and stores it in a small yet fast on-chip
temporary buffer. It iterates over the temporary buffer and
sends data to different connections in a round-robin fashion.
The primitive then reads the next data chunk once the previous
chunk of data is sent to all connections. On the client-side, the
application simply uses the receive primitive.

1 void broadcast ( type*data , uint64 t byte , ssStructs
sessionID , TcpTxStruct&TcpTx);

2) Reduce: In our implementation, all the client nodes send
data to one server node for reduction. Figure 3 shows the
architecture of the reduce primitive on the server node. It
mainly contains two parts: (1) A gather module that collects
data chunks from several connections in a round-robin manner.
(2) A reducer that performs parallel reduction at line rate.

One challenge of gathering data is to preserve connection
order for receiving and storing data. We deploy a finite state
machine (FSM) that processes packet notifications from the
TCP/IP stack and keeps track of the available data buffered
in the TCP/IP stack for each connection. Then the FSM
issues read request of a fixed chunk of data (1 KB) to the
TCP/IP stack for each connection in a round-robin fashion.
In this way, we preserve the order of the received data at the
application level in the granularity of the chunk size. If the
connection in turn doesn’t have enough data for a read, the
FSM will wait until new data for that connection arrives and
we rely on the TCP/IP stack to perform flow control of the
unbalanced sending rate between connections. The gathered
data is multiplexed to temporary FIFOs (4KB) according
to port number. The total number of FIFOs (MAX SS in
the listing) is a trade-off between the maximum amount of
connections and the total resource utilization.

The reducer operates on data stored in the FIFOs in a round-
robin fashion. It is equipped with arithmetic units that can
perform parallel reduction at network line rate on specified
data granularity (WIDTH in the listing). However, if the FIFO



Fig. 3: Hardware architecture of reduce primitive

Fig. 4: Block diagram of running all-reduce on three nodes

is empty due to unbalanced connections, the reducer waits
until the data arrives. Once the reduced has iterated over all
the FIFOs once, it stores the result back in the data storage.

1 template<int MAX SS, int WIDTH>
2 void reduce sum(type*data, uint64 t byte , ssStruct

session , TcpRxStruct&TcpRx);

3) All-Reduce: For the all-reduce implementation, we
adopt a classical approach where an all-to-one reduce is
followed by a one-to-all broadcast. In this setting, we could
use previous primitives to build the all-reduce function. On
the server node, the all-reduce implementation can be realized
with a reduce and a broadcast primitive, while on the client-
side, the operation can be realized with a send primitive
followed by a receive primitive, as shown in Figure 4.

1 template<int MAX SS, int WIDTH>
2 void all reduce sum(type*data , uint64 t byte , ssStruct

session , TcpRxStruct&TcpRx, TcpTxStruct&TcpTx);

VII. EVALUATION

A. Experimental Setup

We run the experiments on a cluster containing two nodes.
Each nodes has a CPU with 4 Intel Xeon Gold 6234 proces-
sors and 376 GB of memory, and 2 U280 FPGAs. All the
CPUs and FPGAs are connected through a 100 Gbps Cisco
Nexus 9336C-FX2 network switch. As a comparison, we also
run equivalent primitives with OpenMPI 3.1.4 on a cluster
containing Intel Xeon E5–2609 2.40 GHz processors with 128
GB RAM and a Mellanox QDR HCA 100 Gbs NIC. OpenMPI
uses TCP/IP as the underlying communication protocol. We
run each experiment 5 times and report the average.

B. Micro Benchmarks

1) Latency: We measure the latency to establish a varying
number of connections between two FPGAs using the open
connection primitive, as shown in Figure 5a. We compare with
the latency between an FPGA client and a CPU server, where
the server processes are mapped to different cores. The latency

(a) Connection establishment latency (b) Point-to-point throughput
Fig. 5: Latency and throughput measurement.

(a) Broadcast (b) All-reduce
Fig. 6: Broadcast and all-reduce primitive comparison between
EasyNet and MPI running with various data size

between two FPGAs is more than one order of magnitude
lower in all cases, showing the advantage of a hardware
network stack and the efficiency of the primitives. Besides,
the round trip time(RTT) measured as a ping-pong benchmark
of 64-byte data between two FPGAs is 4.3 us while the RTT
between two CPUs is 56 us.

2) Throughput: We compare the throughput between 2
FPGAs and between an FPGA and a CPU using the send and
receive primitives. In the latter case, we implement a receiver
application on the CPU using TCP sockets, which is mapped
to a single core since point-to-point operations involve single
connection. As shown in Figure 5b, the throughput between 2
FPGAs approaches 100 Gbps with a small data size(1 MB),
showing that both our primitives work at network rate. In
contrast, with a CPU receiver, it can only achieve half of
the bandwidth and it takes a larger amount of data to reach
peak performance due to the packet processing overhead in
the software network stack. To saturate line rate on the CPU,
it requires opening more connections and larger payload size.

3) Collective Operations: We benchmark the broadcast and
all-reduce primitives using 4 FPGAs and we compare them
to the corresponding communication primitives in MPI, as
shown in Figure 6. The evaluation is done with 32-bit fixed-
point data and with SUM as the reduce operation. We observe
that EasyNet achieves lower latency than its MPI counterparts
running on CPUs. Further, when the data size is small, the
latency is dominated by the network time. As we increase the
data size, we see an almost linear increase for both primitives
although the increase is more marked on the CPU case.

C. Application: K-Means

K-Means is a popular machine learning algorithm and
is a common use case for hardware acceleration [53]–[62].
We examine the ease of use of EasyNet by distributing
the computation of K-Means across multiple FPGAs. The



algorithm mainly contains two steps in each iteration: sample
assignment and center update. First, each sample is assigned to
its closest center by calculating the squared Euclidean distance.
For each cluster, a sum vector is used to accumulate the
sample assigned to it and an assignment counter is used to
count the number of assignments. Second, new centers of each
cluster are calculated as the mean of the samples assigned by
performing a division of the sum vector over the assignment
counter.

1 static ap uint<32> center [DIM MAX] [CNTR MAX];
//On−chip memory for center

2 static ap uint<64> sum n cnt [DIM MAX *
CNTR MAX + CNTR MAX]; // On−chip memory for
sum and assignment counters

3 openConnection( numCon, IP, port , &session, opnCon);
4 static ap uint<32> byte = (DIM MAX * CNTR MAX +

CNTR MAX) * 8; //Set all−reduce data amount
5 read sample n assign dataflow(sample, center , sum n cnt,

numSample, numCluster, numDim); //Data flow region
to read sample and assign sample to cluster

6 all reduce sum<MAX SS, WIDTH>(sum n cnt, byte,
session, TcpRx, TcpTx); //Perform all−reduce

7 upd center(sum n cnt, center , numCluster, numDim);
//Update center according to aggregated sum and count

8 write back result ( center , numCluster, numDim, result) ;

Listing 1: Code snippet of EasyNet-KM server node.

1) Single Node Baseline: We employ an existing highly-
pipelined FPGA K-Means implementation: Flex-KM [63].
For the sample assignment, the design contains 16 parallel
pipelines, each containing a systolic array of 16 distance
processors that can process one dimension of a sample per
cycle. For the center update, it contains a collector that
aggregates partial sum vectors and assignment counters from
each pipeline and a divider for division. For a comparison
of the programming effort between HDL and HLS, we re-
implement the original Flex-KM HDL design with Vitis HLS.

2) Distributed Implementation: Distributing K-Means with
EasyNet (EasyNet-KM) is simple. Each compute node com-
pletes the sample assignment step on its local partition of sam-
ples, producing a partial result of sum vectors and assignment
counters. An extra aggregation step is needed to aggregate all
partial sum vectors and assignment counters from all nodes.
Listing 1 shows the code snippet of the server node of the
EasyNet-KM. Notice that only two extra functions are required
(line 3 to open connections and line 6 to perform all-reduce
over the network) compared to a single node implementation.

3) Experiments: We use the Forest data set [64] (581014
samples, 54 dimensions) with the number of clusters set to
7. The data set is partitioned equally across different nodes.
Figure 7a and figure 7b show the runtime per iteration and
the aggregated throughput of our EasyNet-KM implementation
running with 1, 2 and 4 nodes. First, we observe that the
network communication time is negligible compared to the
computation time, proving the advantages of the low latency
all-reduce primitive. Additionally, the single node throughput
of our EasyNet-KM design is on a par with Flex-KM and we
could only achieve a sub-linear increase of overall throughput

(a) Runtime per iteration (b) Overall throughput
Fig. 7: Runtime per iteration and overall throughput of
EasyNet-KM with Forest data set
due to the serial part of the computation, such as collecting
partial results from each pipeline and center update.

Table I shows lines of code for the Flex-KM in HDL and
the EasyNet-KM in HLS. The advantage of programming with
Vitis HLS over HDL is obvious and by adding few lines
of code, we easily turned a single node application into a
distributed version.

TABLE I: Lines of code.
Flex-KM(HDL) EasyNet-KM(HLS)

Total Computation Network Total
4463 396 48 444

D. Resource Consumption
Table II shows the resource consumption of the design. The

CMAC and the network kernel occupy only less than 10%
LUT and BRAM. The communication primitives consume a
minimal amount of resources. The K-Means kernel has low
DSP usage since the Flex-KM was designed to run on an old
platform (HARP2 [65]) and we follow the same configuration
for an apple-to-apple comparison of the programming effort.
The single-node performance of EasyNet-KM could be further
optimized with more resources but we decided to focus instead
on evaluating the ease of use of EasyNet.

TABLE II: Resource consumption
Resources LUT BRAM DSPs
CMAC 15,717 (1.21%) 18 (2.24%) 0 (0%)
Network 114,699 (8.80%) 417 (7.09%) 0 (0%)
Send 2,326 (0.22%) 4 (0.29%) 0 (0%)
All-reduce 8,312 (0.81%) 83 (6.22%) 9 (0.10%)
K-Means 166,821 (14.03%) 486 (28.44%) 329 (3.65%)

VIII. CONCLUSION

Aiming to provide tool support and facilitate the devel-
opment of distributed applications with FPGAs, EasyNet
integrates a 100 Gbps network stack into a state-of-the-art
FPGA development framework and provides a rich set of high-
performance communication primitives using HLS. We show
that with EasyNet, an application can be easily partitioned
across an FPGA cluster by changing a few lines of code and
achieving a performance boost with minimal communication
overhead.
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