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Abstract

Tables have been an ever-existing structure to store data.
There exist now different approaches to store tabular
data physically. PDFs, images, spreadsheets, and CSVs
are leading examples. Being able to parse table struc-
tures and extract content bounded by these structures is
of high importance in many applications. In this paper,
we devise TableParser, a system capable of parsing ta-
bles in both native PDFs and scanned images with high
precision. We have conducted extensive experiments to
show the efficacy of domain adaptation in developing
such a tool. Moreover, we create TableAnnotator and
ExcelAnnotator, which constitute a spreadsheet-based
weak supervision mechanism and a pipeline to enable
table parsing. We share these resources with the re-
search community to facilitate further research in this
interesting direction.

1 Introduction
Automated processing of electronic documents is a common
task in industry and research. However, the lack of struc-
tures in formats such as native PDF files or scanned doc-
uments remains a major obstacle, even for state-of-the-art
OCR systems. In practice, extensive engineering and ad-hoc
code are required to recover the document structures, e.g.,
for headings, tables, or nested figures. Sometimes this is re-
quired even for text, e.g., in case of PDFs built on the basis
of scans, especially, low-quality scans. These structures are
hierarchically organized, which many existing systems often
fail to recognize.

With the advance of machine learning (ML) and deep
learning (DL) techniques, parsing documents can be done
more efficiently than ever. As the first end-to-end system
for parsing renderings into hierarchical document structures,
DocParser (Rausch et al., 2021) was recently introduced. It
presents a robust way to parse complete document structures
from rendered PDFs. Such learning-based systems require
large amounts of labeled training data. This problem is alle-
viated through a novel weak supervision approach that au-
tomatically generates training data from structured LaTeX
source files in readily available scientific articles. DocParser
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demonstrates a significant reduction of the labeling com-
plexity through this weak supervision in their experiments.

As a special document type, tables are one of the most nat-
ural ways to organize structured contents. Tabular data are
ubiquitous and come in different formats, e.g., CSV (plain
and unformatted) and Microsoft Excel (annotated and for-
matted), depending on the file creation. Many data process-
ing tasks require tables to be represented in a structured for-
mat. However, structured information is not always avail-
able in rendered file formats such as PDF. Especially when
PDFs are generated from image scans, such information is
missing. Luckily, the existing matrix-type organization of
spreadsheets can assist to automatically generate document
annotations to PDFs. With spreadsheets as weak supervi-
sion, this paper proposes a pipeline to provide an auto-
mated process of reading tables from PDFs and utilize
them as a weak supervision source for DL systems.

There are three different types of tasks discussed in the lit-
erature about table processing in PDFs, namely, table detec-
tion, table structure parsing/recognition (Zhong, ShafieiBa-
vani, and Jimeno Yepes, 2020).1 Table detection is a popular
task with a large body of literature, table structure parsing
and table recognition were revisited2 after the pioneering
work of Schreiber et al. (2017) using state-of-the-art deep
neural networks. Before DL started to gain success in object
detection, table structure parsing was done by bottom-up ap-
proaches, using heuristics or ML-based methods like Pinto
et al. (2003); Farrukh et al. (2017). See Pivk et al. (2007);
Wang, Phillips, and Haralick (2004) for comprehensive re-
views on ML methods. The purposes of table structure de-

1Table detection is a task to draw the bounding boxes of tables
in documents; table structure recognition/parsing refers to the (ad-
ditional) identification of the structural (row and column layout)
information of tables. We distinguish between bottom-up and top-
down approaches in table structure detection. Bottom-up typically
refers to structure detection by recognizing formatting cues such
as text, lines, and spacing, while top-down entails table cell detec-
tion (see Kieninger and Dengel (1998); Pivk et al. (2007); Zhong,
ShafieiBavani, and Jimeno Yepes (2020)).

2Some recent works on Cascade R-CNN Fernandes et al.
(2022); Prasad et al. (2020) manage to push the frontier of table
detection. See Rausch et al. (2021) for a general review on table
detection and Zhong, ShafieiBavani, and Jimeno Yepes (2020) for
a general review on table recognition.



tection are either layout detection (Kieninger and Dengel,
1998) or information retrieval (Pivk et al., 2007) from tab-
ular structures, usually with the former as a preprocessing
step for the latter.

The DL-based methods in Schreiber et al. (2017); Qasim,
Mahmood, and Shafait (2019) are among the first to ap-
ply neural networks designed for object detection to table
parsing. Typically, taking pretrained object detection mod-
els e.g., Faster RCNN (Long, Shelhamer, and Darrell, 2015;
Ren et al., 2015) on benchmarking datasets like ImageNet
(Russakovsky et al., 2015), Pascal VOC (Everingham et al.,
2010), and Microsoft COCO (Lin et al., 2015), they fine-
tune the pretrained models with in-domain images for ta-
ble detection and table structure parsing (domain adaption
and transfer learning). In some best performing frameworks
(Raja, Mondal, and Jawahar, 2020; Zheng et al., 2021; Jiang
et al., 2021), they all jointly optimize the structure detection
and entity relations in the structure, as in DocParser.

However, a key problem in training DL-based systems
is the labeling complexity of generating high-quality in-
domain annotations. More generally, an essential limiting
factor is the lack of large amounts of training data. Ef-
forts have been put into generating datasets to enable tasks
with weak supervision. TableBank (Li et al., 2019) is built
upon a data set of Word and LaTeX files and extracts
annotations directly from the sources. They use 4-gram
BLEU score to evaluate the cell content alignments. How-
ever, the table layout structure is not of particular focus
in TableBank. PubTabNet (Zhong, ShafieiBavani, and Ji-
meno Yepes, 2020) enables table detection and table cell
content detection. arXivdocs-target and arXivdocs-weak by
DocParser (Rausch et al., 2021) enables an end-to-end docu-
ment parsing system of the hierarchical document structure.

In this paper, we devise TableParser with inspiration from
DocParser, due to its flexibility in processing both tables and
more general documents. We demonstrate that TableParser
is an effective tool for recognizing table structures and con-
tent. The application of TableParser to a new target do-
main requires newly generated training data. Depending
on the target domain, we specify two TableParsers: Mod-
ernTableParser fine-tuned with native PDFs and Histor-
icalTableParser fine-tuned with scan images. TableParser
works in conjunction with TableAnnotator (Figure 1)
which efficiently assists developers in visualizing the out-
put, as well as help users to generate high-quality human
annotations.3 To generate training instances, we develop Ex-
celAnnotator to interact with spreadsheets and produce an-
notations for weak supervision.

With ExcelAnnotator, we have compiled a spread-
sheet dataset ZHYearbooks-Excel, which is processed via a
Python library on Excel (PyWin324) to leverage the struc-
tured information stored in the spreadsheets. TableParser is

3For a live demo of table annotations using our annotation tool,
refer to the video under https://github.com/DS3Lab/
TableParser/blob/main/demo/2021-06-15%
2002-05-58.gif.

4https://pypi.org/project/pywin32/ (last ac-
cessed: Sep. 30, 2021).

Figure 1: TableAnnotator.

trained with 16’041 Excel-rendered tables using detectron2
(He et al. (2017); Wu et al. (2019)) and fine-tuned with 17
high-quality manual annotations in each domain. We have
conducted extensive experiments of domain adaptation. Fi-
nally, we evaluate different TableParsers in two domains and
make the following observations:

1. In general, domain adaptation works well with fine-tuning
the pretrained model (MWS in Figure 2) with high-quality
in-domain data.

2. On the test set of 20 tables rendered by Excel, with Mod-
ernTableParser we are able to achieve an average preci-
sion score (IoU ≥ 0.5) of 83.53% and 73.28% on table
rows and columns, respectively.

3. We have tested our HistoricalTableParser on scanned ta-
bles in both historical (medium-quality, scan-based) and
modern tables. Overall, HistoricalTableParser works bet-
ter than ModernTableParser on tables stored in image
scans.

4. Interestingly, we find that ModernTableParser built on top
of DocParser (Rausch et al., 2021) is very robust in adapt-
ing to new domains, such as scanned historical tables.
We are willing to open source the ZHYearbook-

Excel dataset, TableAnnotator, TableParser system, and its
pipeline to the research communities.5 Moreover, we wel-
come future contributions to the project to further increase
the usability of TableParser in various domains.

To summarize, our key contributions in this paper are:
1. We present TableParser which is a robust tool for pars-

ing modern and historical tables stored in native PDFs or
image scans.

2. We conduct experiments to show the efficacy of domain
adaptation in TableParser.

3. We contribute a new pipeline (using ExcelAnnotator as
the main component) to automatically generate weakly la-
beled data for DL-based table parsing.

5The source code, data, and/or other artifacts for the com-
plete TableParser pipeline have been made available at https:
//github.com/DS3Lab/TableParser.

https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://pypi.org/project/pywin32/
https://github.com/DS3Lab/TableParser
https://github.com/DS3Lab/TableParser
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Figure 2: System design of TableParser: Weak supervision, ExcelAnnotator, ModernTableParser and HistoricalTableParser.
MWS : the pretrained model with the dataset ZHYearbooks-Excel-WS. M1: for ModernTableParser, fine-tuned on Excel-
rendered images; M2: for HistoricalTableParser, fine-tuned on scan images.

4. We contribute TableAnnotator as a graphical interface to
assist table structure understanding and manual labeling.

5. We open-source the spreadsheet weak supervision dataset
and the pipeline of TableParser to encourage further re-
search in this direction.

2 TableParser System
2.1 Problem Description
Following the hierarchical document parsing in DocParser,
our objective is to generate a hierarchical structure for a table
which consists of the entities (table, tabular, table caption,
table row, table column, table footnote) and their relations
in the document tree.

Our ultimate goal of table structure parsing is (1) to estab-
lish row/column relationships between the table cells, and
(2) post-process the established structure and cell content
(e.g., with PDFMiner6 or OCR engines) to enable a CSV
export function. In this paper, we emphasize (1) and are still
in development to enable (2). Our work will enable a user to
parse a table stored in a PDF format and obtain (i) the loca-
tion of a certain cell (specified by its row range and column
range) and (ii) the cell content mapped to the cell location.

2.2 System Components
We introduce the main system components in TableParser,
incl. TableAnnotator, ExcelAnnotator, ModernTableParser,
and HistoricalTableParser.

TableAnnotator. In Figure 1 we show TableAnnotator,
which is mainly composed of two parts: image panel (left)
and document tree (right). In the code repository7, there is a
manual describing its functionalities in details. In a nutshell,
annotators can draw bounding boxes on the left panel and
create their entities and relationships on the right. In Figure

6https://pypi.org/project/pdfminer/ (last ac-
cessed: Nov. 11, 2021).

7TableAnnotator repo: https://anonymous.4open.
science/r/doc_annotation-SDU-AAAI22.

1, the highlighted bounding box (the red thick contour on the
left) corresponds to the table cell on the second row and sec-
ond column, indexed by 1-1, 1-1 (the blue highlight on the
right). Note that TableAnnotator is versatile and can be used
to annotate not only tables, but also generic documents. The
output of the tree is in JSON format, like the code snippet
shown in Listing 1.

Listing 1: TableParser JSON format.

1 [{"id": 28,
2 "category": "table_cell",
3 "properties": "1-1,1-1",
4 "row_range": [1,1],
5 "col_range": [1,1],
6 "parent": 9},

7 {"id": 29,
8 "category": "box",
9 "page": 0,

10 "bbox": [365,332,299,27],
11 "parent": 28}]

ModernTableParser. We train ModernTableParser using
the data generated by weak supervision signals from Excel
sheets and fine-tuned by high-quality manual annotations in
this domain. In Figure 2, we show the system design follow-
ing the underlying components of DocParser.8 We denote
the model that produces ModernTableParser as M1.

Weak Supervision with ExcelAnnotator. Now we
present the crucial steps in generating weak supervision (the
model MWS in Figure 2) for TableParser. These steps are
mainly conducted by ExcelAnnotator in Figure 2 (left). Take
a worksheet-like Figure 3 (a) from our ZHYearbook-Excel-
WS dataset (cf. Section 3), where we see caption, tabu-
lar, and footnote areas. We subsequently use DeExcelerator
(Eberius et al., 2013) to extract relations from the spread-
sheets. We utilize DeExcelerator to categorize the content,
such that we can differentiate among table captions, table
footnotes and tabular data and create a correct auxiliary file

8The model structure of DocParser is sketched in Figure
11 of the DocParser paper (Rausch et al., 2021), see https:
//arxiv.org/pdf/1911.01702.pdf. The model structure
(Mask RCNN) can also be found here.

https://pypi.org/project/pdfminer/
https://anonymous.4open.science/r/doc_annotation-SDU-AAAI22
https://anonymous.4open.science/r/doc_annotation-SDU-AAAI22
https://arxiv.org/pdf/1911.01702.pdf
https://arxiv.org/pdf/1911.01702.pdf
https://github.com/DS3Lab/TableParser/blob/main/figures/mask-rcnn.drawio.pdf


(a) Example worksheet
from ZHYearbook-Excel-WS. (b) Annotations with DeExcelerator. (c) Representing bounding

boxes in Excel.

(d) Visualization of
bounding boxes with
TableAnnotator.

Figure 3: A working example in ExcelAnnotator.

Figure 4: Google Vision OCR API output (left) of image
(right): bad quality of OCR.

Figure 5: Google Vision OCR API output (left) of image
(right): good quality of OCR.

to each PDF containing the structural information of the rep-
resented table(s). Illustrated in Figure 3 (b), in this case we
annotate the table caption and footnote as ‘meta’, and mark
the range of content with ‘content’ and ‘empty’. We use Py-
Win32 in Python to interact with Excel, so that intermediate
representations like Figure 3 (c) can be created to retrieve
entity locations in the PDF rendering. Concretely, we mark
neighboring cells with distinct colors, remove all borders,
and set the font color to white. To summarize, ExcelAnnota-
tor detects spreadsheet metadata and cell types, as well as
retrieves entity locations via intermediate representations.

Finally, we are able to load the annotations into TableAn-
notator to inspect the quality of weak supervision (Figure 3
(d)).

HistoricalTableParser. We use the OCR engine from
Google Vision API to recognize the text bounding boxes.
Then we convert bounding boxes into the input format
TableParser requires. Now we are able to manually adjust
the bounding boxes in TableAnnotator to produce high-
quality annotations. Note that the quality of OCR highly de-
pends on the table layout (Figures 4 vs. 5), we often need
to adjust the locations of bounding boxes and redraw the
bounding boxes of individual cells.

In Figure 2 (lower right), we show the system design by
adding an OCR component and a fine-tuning component
for domain adaptation. We denote the model that produces
HistoricalTableParser as M2. Take Figure 6 (a) as input,
TableParser can produce a parsed layout-like Figure 6 (b)
which can be combined with the OCR bounding boxes in the
subsequent steps and export as a CSV file (Figure 6 (c)).9

For domain adaptation, we assume that an out-of-domain
model performs worse than an in-domain model in one do-
main. Namely, we would expect ModernTableParser to work
better on Excel-rendered PDFs or tables created similarly;
on the contrary, we would expect HistoricalTableParser to
perform better on older table scans.

3 Datasets
We have compiled various datasets to train, fine-tune, test,
and evaluate TableParser.

ZHYearbooks-Excel. We create three datasets from this
source: ZHYearbooks-Excel-WS, ZHYearbooks-Excel-FT,
and ZHYearbooks-Excel-Test, with 16’041, 17, and 20 ta-
bles in each set. On average, it takes 3 minutes 30 seconds
for an annotator to produce high-quality annotations of a
table. The manual annotations are done with automatically
generated bounding boxes and document tree as aid.

ZHYearbooks-OCR. We create the dataset ZHYearbook-
OCR-Test, with 20 tables. On average, it takes 2 minutes and

9c.f. The performance of LayoutParser is quite poor on the tab-
ular data in Figure 6 (d) using the best model from its model zoo
(PubLayNet/faster rcnn R 50 FPN 3x). Input and annotated fig-
ures of original size can be found under https://github.
com/DS3Lab/TableParser/tree/main/figures.

https://github.com/DS3Lab/TableParser/tree/main/figures
https://github.com/DS3Lab/TableParser/tree/main/figures


(a) An input into
HistoricalTableParser.

(b) Table structure
parsing by TableParser.

(c) Merging the layout by TableParser
and the OCR bounding boxes.

(d) Run LayoutParser
(Shen et al., 2021)
on tables.

Figure 6: A working example in HistoricalTableParser.

45 seconds to annotate a table with the similar annotation
aids mentioned above.

EUYearbooks-OCR. We create two datasets from this
source: EUYearbook-OCR-FT and EUYearbook-OCR-Test,
with 17 and 10 tables, respectively. Note that these datasets
contain various languages like Hungarian and German, with
various formats depending on the language. On average, it
takes 8 minutes and 15 seconds to annotate a table with the
similar annotation aids mentioned above.

Miscellaneous historical yearbooks. We ran Mod-
ernTableParser and HistoricalTableParser on Chinese and
Korean historical yearbooks and inspect their outputs quali-
tatively (see Section 5.2).

Human labeling efforts. We observe a large variance in
labeling intensity across the datasets. The EUYearbooks-
OCR datasets require more corrections per table compared
to the datasets of modern tables. Moreover, they also require
more iterations of human annotations with heuristics as aid.

4 Computational Setup
4.1 Mask R-CNN
In line with DocParser, we use the same model but with an
updated backend implementation. Namely, we utilize Detec-
tron2 to apply an updated version of Mask R-CNN (He et
al., 2016). For technical details of Mask R-CNN, we refer to
DocParser (Rausch et al., 2021).

Training Procedure: Weak Supervision + Fine-Tuning.
All neural models are initialized with weights trained on
the MS COCO dataset. We first pretrain on the weak su-
pervision data ZHYearbook-Excel-WS for 540k iterations,
then fine-tune on our target datasets ZHYearbook-Excel-FT
and EUYearbook-OCR-FT for M1 and M2, respectively. We
then fine-tune each model across three phrases for a total
of 30k iterations. This is split into 22k, 4k, 4k iterations,
respectively. The performance is measured every 500 itera-
tions via the IoU with a threshold of 0.5. We train all models
in a multi-GPU setting, using 8 GPUs with a vRAM of 12
GB. Each GPU was fed with one image per training itera-
tion. Accordingly, the batch size per training iteration is set
to 8. Furthermore, we use stochastic gradient descent with a
learning rate of 0.005 and learning momentum of 0.9.

Parameter Settings. During training, we sampled ran-
domly 100 entities from the ground truth per document im-

age (i.e., up to 100 entities, as some document images might
have less). In Mask R-CNN, the maximum number of entity
predictions per image is set to 100. During prediction, we
only keep entities with a confidence score of 0.5 or higher.

5 Results and Discussion
Here, we evaluate the performance of TableParser in two do-
mains quantitatively and qualitatively.

5.1 Quantitative assessment
Metric. We first introduce the evaluation metric for the ob-
ject detection/classification tasks. The metric we report is
Average Precision (AP), which corresponds to an Intersec-
tion over Union rate of IoU=.50:.05:.95.10 IoU ranges from
0 to 1 and specifies the amount of overlap between the pre-
dicted and ground truth bounding box. It is a common metric
used when calculating AP.

Performances in various domains. As we discussed in
Section 2, we have developed ModernTableParser to parse
tables with input images rendered by Excel (M1). Then, to
work with historical tables in scans, we adapt the pretrained
TableParser by fine-tuning it on scanned documents (M2).
Now, we present the performances of M1 and M2 in two
different domains in the following aspects:

1. (P1) the performances on fine-tuning sets on M1 and M2
in Table 1;

2. (P2) the performances on fine-tuning sets as test sets on
M1 and M2 in Table 1;11

3. (P3) the performances on three test sets from two domains
on M1 and M2 in Table 2.
(P1) & (P2). We want to study the impact of fine-tuning of

a pretrained model (using a large body of tables generated by
weak supervision signals). The instances used to fine-tune
must be high-quality in-domain data. Concretely, we cre-
ate in-domain annotations for modern tables (rendered by
Excel) and historical tables (from scans) with high human

10We refer readers to https://cocodataset.org/
#detection-eval for more details on the evaluation metrics
(last accessed: Nov. 1, 2021).

11This means we evaluate the performance of M1 on the fine-
tuned set for M2 (as a test set for M1) and vice versa.

https://cocodataset.org/##detection-eval
https://cocodataset.org/##detection-eval


Table 1: Fine-tuning results of M1 and M2. M1: for ModernTableParser, fine-tuned on Excel-rendered images; M2: for Histor-
icalTableParser, fine-tuned on scan images; FT: fine-tune.

ZHYearbook-Excel-FT EUYearbook-OCR-FT

Category # instances Average Precision Category # instances Average Precision
M1 (FT) M2 (Test) M1 (Test) M2 (FT)

(1) (2) (3) (4) (5) (6) (7) (8)

table 17 90.973 38.034 table 17 67.467 93.011
tabular 17 100.000 57.897 tabular 17 76.423 100.000

table column 134 96.730 15.253 table column 260 24.930 81.376
table row 548 79.228 39.485 table row 1180 19.256 60.899

Table 2: Test results of M1 and M2 on various data sets.
ZHYearbook-Excel-Test ZHYearbook-OCR-Test EUYearbook-OCR-Test

Category # instances Average Precision Category # instances Average Precision Category # instances Average Precision
M1 M2 M1 M2 M1 M2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

table 20 85.407 32.821 table 10 56.942 53.356 table 10 57.151 81.907
tabular 21 80.193 43.801 tabular 10 64.175 52.563 tabular 10 85.956 91.429

table column 176 73.277 14.927 table column 74 43.094 21.997 table column 136 36.616 40.509
table row 513 83.528 48.912 table row 226 50.055 36.619 table row 665 25.645 40.229

efforts assisted by automatic preprocessing: ZHYearbook-
Excel-FT and EUYearbook-OCR-FT, each with 17 tables.
Note that the latter has much denser rows and columns than
the former (see the tables in Figures 3 (a) vs. 6 (a) for an
illustration). It is apparent from Table 1 that the AP perfor-
mance of models on the fine-tuning sets is highly optimized
(columns (3) and (8) in Table 1), and it should be better
than using those datasets as test sets. This means, if we run
M1 (fine-tuned by modern tables) on EUYearbook-OCR-FT
(column 7), its performance is worse than fine-tuning; and if
we run M2 (fine-tuned by historical tables) on ZHYearbook-
Excel-FT (column 4), it performs worse than fine-tuning. In-
terestingly, if we compare the performance of M2 on modern
tables (column (4)) with the performance of M1 on histor-
ical tables (column (7)), we clearly see that the latter has a
better performance in all other categories than the class of
table row. This can be explained by the fact that the model
trained on modern tables is robust in annotating historical
tables, at least on the column level. We see this in Figures
9 and 10, where ModernTableParser clearly performs bet-
ter. However, the algorithm has problems in delineating
narrow and less clearly separated rows. This could be due
to the setting of the maximum number of entities being 100
when predicting per table (Section 4.1).

(P3). In Table 2, we show the performances of three test
sets from two domains (Excel-rendered PDFs and histori-
cal scans), namely, ZHYearbook-Excel-Test, ZHYearbook-
OCR-Test, and EUYearbook-OCR-Test. We see that M2
which is fine-tuned by historical scans performs worse
than M1 on both ZHYearbook-Excel-Test and ZHYearbook-
OCR-Test. Vice versa, M1 that is fine-tuned by Excel-
rendered PDFs performs worse than M2 on EUYearbook-
OCR-Test. This suggests that domain adaptation by fine-
tuning the pretrained TableParser with in-domain high-
quality data works well.

Additionally, if we compare the ∆AP |(M1 −M2)| un-
der each test set (e.g., the differences of columns (3) and
(4), of (7) and (8), of (11) and (12)), the ∆AP on *-OCR-

Test in all categories is smaller than ZHYearbook-Excel-
Test, with M1 already achieving medium-high performance
on the test set. Although M1 is not fine-tuned by in-domain
historical images, ModernTableParser is still able to parse
historical scans with moderate performance. This suggests
that TableParser trained on modern table structures can be
used to parse the layout of tabular historical scans. Because
the cost is often too high in generating a large amount of
training data of historical scans (see Section 3 for the dis-
cussion of labeling efforts), our approach shows a promising
direction in first developing TableParser that works well for
modern tables, and then adapting TableParser to the histori-
cal domain by fine-tuning on only a few manually annotated
historical scans of good quality.

5.2 Qualitative Assessment
In Figures 7, 8, 9, and 10, we show the qualitative out-
puts of ModernTableParser and HistoricalTableParser on
various types of inputs.12 The quality of structure parsing
varies across inputs, but overall, the quality is high. Even
if we simply use ModernTableParser to parse old scans,
it achieves a moderate performance, sometimes better than
HistoricalTableParser (see Figures 9 and 10). This substan-
tiates our claim that knowing the table structure (caption,
tabular, row, column, multi-cell, etc.) is of foremost im-
portance for parsing tables. We see that the performance
of LayoutParser is quite poor on the tabular data in Fig-
ure 6 (d) using the best model from its model zoo (Pub-
LayNet/faster rcnn R 50 FPN 3x).

6 Related Work
Table Annotation. TableLab (Wang, Burdick, and Li,
2021) provides an active learning based annotation GUI for
users to jointly optimize the model performance under the
hood. LayoutParser (Shen et al., 2021) has also promoted

12Input and annotated figures of original size can be found under
https://github.com/DS3Lab/TableParser/tree/
main/figures.

https://github.com/DS3Lab/TableParser/tree/main/figures
https://github.com/DS3Lab/TableParser/tree/main/figures


Figure 7: A Hungarian table parsed by ModernTableParser
(left) and HistoricalTableParser (right).

Figure 8: A German table parsed by ModernTableParser
(left) and HistoricalTableParser (right).

an interactive document annotation tool13, but the tool is not
optimized for table annotations.

Table Structure Parsing. As pioneering works in ta-
ble structure parsing, Kieninger and Dengel (1998) and
Schreiber et al. (2017) have both included a review of works
in table structure recognition prior to DL. Prior methods typ-
ically required high human efforts in creating the feature
extraction. After Schreiber et al. (2017), researchers have
started to revisit table structure parsing with DL methods,
which turned out highly promising compared to the rule-
based (e.g., Kieninger and Dengel (1998); Pivk et al. (2007))
and ML-based methods (e.g., Pinto et al. (2003); Wang,
Phillips, and Haralick (2004); Farrukh et al. (2017)).

The success of DL has marked the revisiting of ta-
ble structure parsing by Schreiber et al. (2017), which in-
spired follow-up research (Chi et al., 2019; Rausch et al.,
2021; Prasad et al., 2020; Zhong, ShafieiBavani, and Ji-

13See https://github.com/Layout-Parser/
annotation-service (last accessed: Nov. 1, 2021).

Figure 9: A Korean table parsed by ModernTableParser (left)
and HistoricalTableParser (right).

Figure 10: A Chinese table parsed by ModernTableParser
(left) and HistoricalTableParser (right).

meno Yepes, 2020; Li et al., 2021; Xue et al., 2021; Long
et al., 2021; Jiang et al., 2021; Nazir et al., 2021; Zheng
et al., 2021; Luo et al., 2021; Raja, Mondal, and Jawahar,
2020). To highlight a few, Zhong, ShafieiBavani, and Ji-
meno Yepes (2020) proposed EDD (encoder-dual-decoder)
to covert table images into HTML code, and they eval-
uate table recognition (parsing both table structures and
cell contents) using a newly devised metric, TEDS (Tree-
Edit-Distance-based Similarity). Xue et al. (2021) proposed
TGRNet as an effective end-to-end trainable table graph
construction network, which encodes a table by combining
the cell location detection and cell relation prediction. Li et
al. (2021) used bi-LSTM on table cell detection by encoding
rows/columns in neural networks before the softmax layer.
Researchers also started discussing effectively parsing tables
in the wild (Long et al., 2021), which is relevant to the per-
turbation tests we want to conduct for historical tables. Tab-
CellNet by Jiang et al. (2021) adopts a Hybrid Task Cas-
cade network, interweaving object detection and instance
segmentation tasks to progressively improve model perfor-
mance. We see from the previous works, the most effective
methods (Raja, Mondal, and Jawahar, 2020; Zheng et al.,
2021; Jiang et al., 2021) always jointly optimize the cell lo-

https://github.com/Layout-Parser/annotation-service
https://github.com/Layout-Parser/annotation-service


cations and cell relationships. In our work, we consider these
two aspects by learning the row and column alignments in
a hierarchical structure, where we know the relationship of
entities in the table (row, column, cell, caption, footnote).

7 Discussion and Conclusion
7.1 Efficiency
PyWin32 uses the component object model (COM), which
only supports single-thread processing and only runs under
Windows. But with 20 VMs, we managed to process a large
amount of files. This is a one-time development cost. On av-
erage – on the fastest machine used (with 16 GB memory, 6
cores, each of 4.8GHz max (2.9 base)) – it took 15.25 sec-
onds to process one document (a worksheet in this case). To
fine-tune a pretrained TableParser with 17 images, it takes
3-4 hours to fine-tune the model with 30k iterations.

7.2 Future Work
Based on our findings, we will further improve the parsing
performance on table row/column/cell. Besides, we plan to
enable a CSV-export functionality in TableParser, which al-
lows users to export a CSV file that attends to both bounding
boxes generated by the OCR’ed and the hierarchical table
structure. We will also benchmark this functionality against
human efforts. Another practical functionality we add to fa-
cilitate users’ assessment of table parsing quality, is that
we enable TableParser to compute row and column sums
when exporting to the CSV format. Because tables some-
times come with row/column sums in the rendered format,
this functionality can help users to assess their manual ef-
forts in post-editing the CSV output. We also plan to conduct
perturbation tests of table structures and quantify the robust-
ness of our models in those scenarios. These exercises will
be highly valuable because, as we see in Figure 7, we often
encounter scan images of tables where the rectangle struc-
tures cannot be maintained (the upper right corner). This
brings us to another interesting research direction: how to
efficiently annotate the non-rectangle elements in a table,
e.g., Long et al. (2021) have provided the benchmarking
dataset and method for parsing tables in the wild. Finally,
we would like to benchmark TableParser using the popu-
lar benchmarking datasets such as ICDAR-2013, ICDAR-
2019, TableBank, and PubTabNet. Note that since we de-
velop TableParser on top of the DocParser (Rausch et al.,
2021), where the reported F1 score has shown superior per-
formance of our method on ICDAR-2013.

7.3 Conclusion
We present in this work our DL-based pipeline to parse table
structures and its components: TableAnnotator, TableParser
(Modern and Historical), and ExcelAnnotator. We also
demonstrate that pre-training TableParser on weakly anno-
tated data allows highly accurate parsing of structured data
in real-world table-form data documents. Fine-tuning the
pretrained TableParser in various domains has shown large
improvements in detection accuracy. We have observed that
the state-of-the-art for table extraction is shifting towards
DL-based approaches. However, devising suitable tools to

facilitate training of such DL approaches for the research
community is still lacking. Hence, we provide a pipeline and
open-source code and data to invite the active contribution
of the community.
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