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S U M M A R Y
The linear Gauss–Markov model for waveform-based moment tensor inversion often relies on
the overdetermined least-squares method. It needs a proper stochastic model of the observ-
ables for accurate and precise estimates of the unknown parameters. Furthermore, estimating
the level and distribution of random errors in the observed waveforms is challenging due
to assessing the minimum-variance unbiased estimator (MVUE). Hence, according to the
considerable effects of random data errors in assessing the uncertainty of the moment ten-
sor components, this paper aims to describe an MVUE of the data covariance matrix and
its application on uncertainty quantification of the moment tensor. The used mathematical
prescription allows us to use the covariance matrix for the three-component noise records
at every station and all possible cross-correlations among the recorded noise wavefield. To
illustrate the proposed method’s performance, we conducted tests with synthetic data using
configuration of the 2018 Mw 6.8 Zakynthos (Ionian Sea, Greece) earthquake. Both uncor-
related and correlated random noise traces were added to the synthetic waveform data in
amounts between 5 and 20 per cent of the maximum amplitude. In order to test the efficiency
of the method, we considered three different structures of covariance matrix: (i) diagonal ma-
trix (contains a variance of individual measurements at seismic stations), (ii) block-diagonal
matrix (considering cross-covariance among three components at each station), and (iii) full
covariance matrix. Test results are presented by comparison of the moment tensor inver-
sion outcomes with known noise levels of generated synthetic data and with synthetic focal
mechanisms, the ability of the estimated full covariance matrix in illustrating the minimum
variance of parameters (namely, minimum posterior uncertainties), unbiased of the parame-
ters, and values of the cross-correlations between the components of each station and also
among stations. Finally, we applied the method to the real waveforms of the Zakynthos
earthquake having inferred focal mechanism of strike/dip/rake angles 13/40/171 (deg) with
33 per cent double couple (DC) and −61 per cent compensated linear vector dipole com-
ponent (CLVD). The focal mechanism solution has strike/dip/rake angles 19/34/177 (deg)
with 69 per cent DC and −23 per cent CLVD when using our estimated full covariance
matrix.

Key words: Statistical methods; Time-series analysis; Waveform inversion; Statistical seis-
mology.

1 I N T RO D U C T I O N

A seismic source model can be formulated in the point-source ap-
proximation, where it is kinematically described by the seismic
moment tensor (M) (Aki & Richard 2002). In terms of force cou-
ples, M represents any source of deformation in an elastic media.
The tensor M of pure shear earthquakes corresponds to a simple
double couple (DC) of forces. The M contains information about

the released seismic moment of the earthquake and simplified fault
geometry (strike, dip and rake angles of nodal planes). Moreover,
M ∈ R

3×3 as a second-order symmetric tensor is an essential tool
for statistical inferences about fault orientation and the principal
components of the local stress tensor if many focal mechanisms are
available.

According to the representation theorem, the observed ground
motions are linearly related to the moment tensor components

C© Crown copyright 2021. This article contains public sector information licensed under the Open Government Licence v3.0 (http:
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through the Green’s functions, which could be fully described based
on crustal structure, locations of point source, station, and frequency
range (e.g. Kikuchi & Kanamori 1986). However, any systematic er-
ror (e.g. clock drift, sizeable azimuthal gap, wrong source location,
inaccurate crustal models) or random error (e.g. instrumental noise,
sensor misalignment) may lead to misleading inference of source
parameters. The tensor M determinations need to be improved, par-
ticularly concerning the assessment of the reliability of the solution
and associated uncertainties (e.g. Tarantola & Valette 1982; Valen-
tine & Trampert 2012). Typically, when dealing with large seismic
events, the modelling error (error of Green’s functions) is of the
primary importance (e.g. Hallo et al. 2017). The random data error
has importance for mid-size or small-size earthquakes (Vackář et al.
2017).

On the one hand, since the wavefield still consists of propagating
seismic waves, one cannot neglect the correlation between recorded
ground-motion components at a single station. On the other hand,
we can assume zero correlations between the noise recordings at dif-
ferent stations. It is a valid assumption for stations that are far away
from each other and for high-frequency seismic noise so that vari-
ous noise sources dominate the recording at different stations. For
stations close to each other, seismic arrays, collocated sensors and
low-frequency noise, it might be useful to consider cross-covariance
between stations, each of them with three components (Vackář et al.
2017).

In this paper, we focus on estimating random data errors (non-
systematics effects) and their effect on uncertainty of M and, con-
sequently, errors of the strike, dip and rake. Over the past two
decades, considerable efforts have been dedicated to estimating
data error. For instance, Vasco (1990) proposed that the data error
value is the maximum between the background noise level (σ ) and
the misfit between pairs of observed (d) and synthetic waveforms
(s), namely σ e = max (σ , |d − s|). The term |d − s| includes both
data error and modelling error. Šı́lený et al. (1992) developed a
method to retrieve source parameters from weak, local and noisy
waveforms.

Wéber (2006) developed a probabilistic method to determine
the simultaneously earthquake-source mechanism, hypocentral lo-
cation and source time function (STF) from the inversion of short-
period waveform data of weak local events. The procedure considers
the effects of the random noise in the seismograms, the uncertainty
of the hypocentre determined from arrival times and the inaccu-
rate knowledge of the velocity structure while estimating the error
affecting the derived focal parameters.

Monelli et al. (2009) also highlighted the difference between
random error and systematic error, but given the impossibility to
compute either, opted for an empirical approach where the error was
obtained from the data-synthetics misfit. Yagi & Fukahata (2008,
2011) proposed incorporating a full data covariance matrix dur-
ing inversion for earthquake slip distribution. They computed the
covariance matrix from the misfit between observed and synthetic
waveforms and included it in the inverse problem to iteratively im-
prove the estimate of the model parameters. Also, Monelli et al.
(2009) have pointed that a feasible approach to derive a data co-
variance matrix would be to analyse the portion before the P-wave
arrival of each trace and to assume this portion to be representative
of the seismic noise.

Also, Zahradnı́k & Custódio (2012) presented a method to as-
sess the uncertainty of M based on the standard theory of linear
inverse problems. They computed the uncertainty of the DC part
of M, then mapped it into uncertainties of the strike, dip and rake.
The inputs were the source and station locations, the crustal model,

the frequency band of interest and an estimate of data error. They
reported that it was impossible to accurately and independently
obtain random error (data error) and systematic error (e.g. mod-
elling error). Namely, they used data error as a misfit between
measured and synthetic waveforms (whether the data-synthetics in-
consistencies resulted from the incorrect Green’s function or seis-
mograms). According to Zahradnı́k & Custódio (2012), the noise
term usually produces data error values in the order of 1–10 per cent
of the data amplitude (noisier data are normally left out of the
inversion).

As another kind of application of data error estimation in seismic
source inversions, Duputel et al. (2012) used three different types
of data covariance matrix in uncertainty estimation: (i) diagonal
covariance, (ii) diagonal covariance matrix whose elements corre-
spond to a measured noise level, (iii) including the non-diagonal
terms in the covariance matrix due to the interdependence of obser-
vational errors. The non-diagonal terms, as the resulting covariances
between neighbour data samples, were incorporated by considering
an exponential decay defined by a correlation length chosen as the
shortest period content after filtering.

Minson et al. (2013) used data covariance data in model pre-
diction error of the Bayesian inversion for finite fault earthquake
source models. Sokos & Zahradnı́k (2013) estimated the data error
as the posterior variance factor σ̂ 2 = ∑

(d − s)2/ν, where ν are the
degrees of freedom (or redundancy) and are equal to the number of
independent data minus the number of the inverted parameters.

Mustać & Tkalčić (2016) developed a nonlinear moment ten-
sor inversion method in a probabilistic Bayesian framework that
also accounts for data covariance data. Vackář et al. (2017) used
covariance matrix of the data for centroid moment tensor (CMT)
inversion using the lagged covariance function. However, they have
assumed no correlation between different stations. Duputel et al.
(2014) used the data covariance matrix to incorporate the impact of
uncertainties in fault slip inverse problems. Hallo et al. (2017) have
presented the application of the innovative Bayesian full-waveform
CMT inversion method, which considered the uncertainty of the ve-
locity model. Their approach made reliably assess the uncertainty
of the CMT parameters, including the centroid position. Spudich
et al. (2019) verified variability in synthetic earthquake ground mo-
tions caused by source variability and errors in wave propagation
models.

As seen, due to incomplete knowledge of data error and resolving
it, numerous methods of estimations have been applied in many seis-
mological applications. An adequate statistical model is thus needed
to arrive at a proper description of the estimator’s quality. Under
the assumption of Gaussian data errors, realistic covariance matrix
allows one, first, to obtain the best (minimum variance or namely
minimum uncertainties) linear unbiased estimator of the source
model parameters; second, to determine their realistic uncertain-
ties; and, third, along with the distribution of the data, to correctly
perform hypothesis testing and assess quality control measures such
as reliability.

Hence, considering the effects of random data errors in assessing
the uncertainty of the M components, the goal of this paper is to in-
troduce a minimum-variance unbiased estimator of the covariance
matrix of the data and its application on uncertainty quantifica-
tion of the moment tensor. This assumption allows us to estimate
the covariance matrix of the data for the three-component noise
records at every station and all possible cross-correlations among
the recorded noise wavefield. Then we include the matrix in the M
calculation, obtain the covariance matrix of model parameters and
estimate their posterior probability density function. It is validated
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in synthetic tests and applied on observed waveform data from the
2018 Mw 6.8 Zakynthos earthquake (Greece).

The paper is structured as follows. First, we describe the for-
mulation of the moment tensor inversion. Second, we construct a
maximum likelihood (ML) method for estimating the covariance
matrix. Third, numerical examples are presented to evaluate the
(co)variance estimation method on synthetic and real data sets. The
last section draws several conclusions.

2 F O R M U L AT I O N O F T H E M O M E N T
T E N S O R I N V E R S I O N

We start from the particular consistent linear Gauss–Markov model:
let us assume a point seismic source model for a fixed earthquake
origin time and location (embedded in a given 1-D velocity model),
which generates ground motion in terms of (Zahradnı́k & Custódio
2012)

di (t) =
X∑

j=1

Gi j (t)m j + ei (t), (1)

where d(t) ∈ R
N×1 is the vector of displacement waveforms, G(t) ∈

R
N×X is the matrix of Green’s functions (based on crustal structure,

source location and station location, which is called design matrix
of rank(G) = X, whereX is the number of independent components
of tensor M (depending on whether using full moment tensorX = 6
or using its deviatoric part X = 5), and m ∈ R

X×1 is the vector of
unknown parameters that fully determine M. Further, e(t) ∈ R

N×1

is the vector of measurement errors which is generally assumed to be
random with zero mean E{e} = 0, where E{.} denotes expectation
operator, and cov{d} = cov{e} is the symmetric positive-definite co-
variance matrix, where cov{.} denotes dispersion matrix or covari-
ance matrix. Furthermore, we have assumed that the source–time
function of the M is known. In terms of a special Gauss–Markov
model, for a given observed values (d), a linear estimator θ̂ has
minimum-variance unbiased estimator (MVUE) properties if it has
a lower variance than any other unbiased estimator for all possible
values of the parameter (Grafarend & Awange 2012):

(i) Unbiasedness. The estimator θ̂ is said to be an unbiased es-
timator of θ if and only if the expectation of the estimation error
is zero, E{θ̂} = θ. An estimator which is not unbiased is said to be
biased, and the difference E{ε̂} = E{θ̂} − θ is called the bias of the
estimator. Therefore, the bias size is a measure of closeness of θ̂ to
θ. The mean error E{ε̂} is a measure of closeness that makes use of
the first moment of the distribution of θ̂.

(ii) Minimum variance (best). A second measure of closeness
of the estimator to θ is the mean squared error (MSE), MSE =
E{(θ̂ − θ)T(θ̂ − θ)}, which is defined as arg minθ(MSE). If we com-
pare different estimators by looking at their respective MSEs, we
would prefer one with a small or the smallest MSE. It is a measure
of closeness that also makes use of the second moment of the dis-
tribution of θ̂, namely cov{θ̂}. The best estimator, in the absence of
biases, therefore is of minimum variance.

(iii) Maximum likelihood. The goal of ML estimation is to find
the values of the model parameters m that maximize the likelihood
function over the parameter space, that is θ̂ = arg max

θ

LM (θ, d),

where LM is called the likelihood function. If we were to compare
different estimators by looking at their respective values for the
above probability, we would prefer one with a large or the most
considerable probability.

3 M A X I M U M L I K E L I H O O D M E T H O D
F O R E S T I M AT I N G T H E C OVA R I A N C E
M AT R I X

The symmetric positive-definite matrix cov{d} is assumed to con-
sist of p

′
estimable variance components (associated with positive

values) and p − p
′

estimable covariance components (associated
with positive or negative values) as follows:

cov{d} =
p′∑

i=1

σ 2
i Ti +

p∑
i=p′+1

σi Ti , (2)

where Ti is the given cofactor matrices as positive (semi-)definite
matrices for {σ i| i ∈ {1, . . . , p

′}} and given symmetrical matrices
for {σ i| i ∈ {p

′ + 1, . . . , p}}. The matrices {Ti| i ∈ {1, . . . ,
p}} should be linearly independent and symmetric. For instance, if
σ 2

i corresponds to the variances of ith station, then Ti is the zero
matrix, except for the ith block-diagonal elements being equals to
unities:

Ti =

⎡⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 · · · 0
...

. . .
...

...
0 · · · I · · · 0
...

...
. . .

...
0 · · · 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦. (3)

In the same manner, if σ k corresponds to the covariances between
ith station and jth station, then Tk would be

Tk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · 0 · · · I · · · 0
...

...
. . .

...
...

0 · · · I · · · 0 · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

The above listed cofactor matrices are linearly independent and
therefore the variance components {σ i| i ∈ {1, . . . , p

′}} and co-
variance components {σ k| k ∈ {p

′ + 1, . . . , p}} are simultaneously
estimable.

Furthermore, the vector of variance and covariance components
σ ∈ R

p×1 can be described by

σ := [σ 2
1 , σ 2

2 , . . . , σ 2
p′ , σp′+1, σp′+2, . . . , σp]T. (5)

Under the assumption of Gauss–Laplace normal distribution of
the observation vector, namely d ∼ N(Gm, cov{d}), the probability
density function of the observations p(d|m, G) is given by the
likelihood function:

LM (m,σ|d) := p(d|m,σ) = (2π )−0.5N |cov{d}|−0.5

× exp
(−0.5(d − E{d})Tcov{d}−1(d − E{d})) , (6)

where determinant of a matrix is denoted by | |. Maximizing
LM (m,σ|d) with respect to unknown parameters of m and σ yields
to equations that have to be solved to yield ML estimators of m and
of σ.

One drawback with covariance component estimation via the
usual ML approach is that it takes no account of the loss in de-
grees of freedom needed to estimate the unknown parameter m,
and is generally biased. To overcome this situation, the restricted
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Figure 1. Flowchart showing the implementation of data covariance matrix estimation.

ML (REML) estimator has been suggested (Koch 1986, 1999). The
REML method uses the linear transformation that maps the observ-
able vector d ∈ R

N×1 to new observable vector d̃ := Pd in which
d̃ ∈ R

N×1 and P ∈ R
N×N . The transformation matrix is given by

P := [BT cov{d}−1G]
T

subject to B G = 0, where B ∈ R
(N−X)×N

with rank(B) = N − X. Consequently, REML considers the likeli-
hood function of the distribution of d̃ associated with{

E{d̃} := PE{d}
cov{d̃} = Pcov{d}PT

. (7)
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Figure 2. Location map of the 2018 Zakynthos earthquake and used strong-
motion stations: LCHA, ZARA and MTHA belong to the National Observa-
tory of Athens (NOA) strong-motion network, whereas LTHK, FSK, PDO
and GUR are operated by the University of Patras and the Charles University
which were already used by Sokos et al. (2020).

Accordingly, the likelihood function LM (m,σ|d̃) can be described
by

LM (m,σ|d̃) := (2π )−0.5N |Pcov{d}PT|−0.5

× exp
(−0.5(d̃ − E{d̃})T(Pcov{d}PT)−1(d̃ − E{d̃})) ,

(8)

where Pcov{d}PT is the positive-definite matrix. By using eqs (7)
and (8), the likelihood function LM (m,σ|d̃) can be derived as the
product of two likelihood functions of L1(σ|d) and L2(m,σ|d) in
which the former depends only on σ, whereas the latter contains
both σ and m. Hence, this likelihood function will be used to
estimate the unknown variance and covariance components σ.

For a given cov{d}, m̂ := arg maxm L2(m,σ|d) leads to estimate
m̂ through solving the normal equations:

GTcov{d}−1Gm̂ = GTcov{d}−1d. (9)

These are the well-known normal equations of the ML estimate
(MLE). That means that in the case of normally distributed obser-
vations, the solution of the MLE is identical to the solution of the
least-squares method, which is applied to the unknown parameters
m̂ of the Gauss–Markov model. Furthermore, the maximization of
the first likelihood function σ̂ := arg maxσ lnL1(σ|d) is equivalent
to maximization of

lnL1(σ|d) := −0.5(N − X) ln(2π ) − 0.5 ln |Bcov{d}BT|
− 0.5(Bd)T(Bcov{d}BT)−1(Bd), (10)

which yields nonlinear equation for the MLEs of the (co)variance
components as

f (σ) := v − q = 0, (11)

in which⎧⎪⎪⎨⎪⎪⎩
qi := dTU

∂cov{d}
∂σi

Ud,

vi := tr

(
U

∂cov{d}
∂σi

)
,

(12)

where

U := BT(Bcov{d}BT)−1B

= cov{d}−1(I − G(GTcov{d}−1G)−1GTcov{d}−1), (13)

subject to UG = 0 and U ∈ R
N×N . The Newton–Raphson method

of solving a nonlinear equation of the type eq. (11) leads

S(σ − σ0) = q − v, (14)

where

si j = tr

(
U

∂cov{d}
∂σ j

U
∂cov{d}

∂σi

)
. (15)

However, matrix S and vectors q and v have to be evaluated at
approximation values σ0. Furthermore, using the Taylor series and
restricting it to the linear terms,

cov{d}σ0 = cov{d}σe +
p∑

i=1

∂cov{d}σ
∂σi

∣∣∣∣∣
σ=σe

(σ0
i − σe

i ), (16)

around the point of expansion σ = σe, we get the system of equa-
tions for the estimates of (co)variance components:

Sσ̂ = q. (17)

Such estimator is therefore unbiased, of minimum variance and
restrictedly of ML (Koch 1986). Consequently, the associated
(co)variance matrix of vector σ̂ would be

cov{σ̂} = 2S−1. (18)

Xu et al. (2007) discussed the estimability analysis of variance and
covariance components and proved that they were not estimable
for a fully unknown variance–covariance matrix. They have high-
lighted that only up to ν(ν + 1)/2 linear independent functionals of
the variance and covariance components in cov{d} can be uniquely
determined from the measurements, where ν is the number of re-
dundant measurements.

Hence, using eq. (9), the minimum variance unbiased estimate of
least-squares solution for the unknown parameter m̂ is given by

m̂ = (GTcov{d}−1G)−1GTcov{d}−1d, (19)

where cov{d} ∈ R
N×N is the estimated covariance matrix of obser-

vations. Furthermore, the uncertainty of the unknown parameters
can be obtained by

cov{m̂} = (GTcov{d}−1G)−1 subject to cov{m̂} ∈ R
X×X (20)

and the misfit (or residual) vector in observation space is given by

ê = (d − Gm̂)Tcov{d}−1(d − Gm̂). (21)

For the most simple case of the inverse problem with constant-
diagonal data covariance matrix and unknown scale factor (or vari-
ance factor) σ 0, we have cov{d} = σ 2

0 I, where I ∈ R
N×N is the

identity matrix. Furthermore,

m̂ = (GTG)−1GTd, (22)

where

cov{m̂} = σ̂ 2
0 (GTG)−1, (23)
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102 K. Moghtased-Azar, H. Zeynal-Kheiri and M. Hallo

Table 1. Deviatoric moment tensor solutions reported for Zakynthos, Ionian Sea, earthquake 2018. The earthquake was recorded by various agencies (e.g.
USGS, NOA, GCMT) and by Sokos et al. (2020).

Nodal Plane 1 Nodal Plane 2

Agency Strike (deg) Dip (deg) Rake (deg)
DC (per

cent)
CLVD

(per cent) Strike (deg) Dip (deg) Rake (deg)

USGS 109 82 52 76 −24 9 39 167
NOA 108 85 41 39 −61 14 49 174
GCMT 114 83 63 64 −36 11 28 165
Sokos et al. (2020) 113 80 50 43 −57 12 41 165

in which the least-squares estimate of the unknown variance factor
of the unit weight is given as

σ̂ 2
0 = ê

ν
, (24)

where ν is the number of redundant measurements. The redundant
measurements depend on number of stations, the number of in-
dependent samples per component (frequency range) and rank of
design matrix (G). Moreover, in detail, the value of variance factor
is obtained using redundant measurements ν, namely ν = nf − np

+ rd, where nf is the number of independent observation equations
(number of stations × number of components per each station ×
number of independent samples per component), np is the number
of inverted parameters and rd is the rank deficiency of matrix G.
However, the drawback of the simplified approach in estimating
covariance matrix cov{d} = σ̂ 2

0 I is that it could not give any in-
formation about the cross-covariance elements. A flowchart of the
implementation of data covariance matrix estimation is illustrated
in Fig. 1.

4 T E S T S O N S Y N T H E T I C DATA

To illustrate the inversion method’s performance, we conducted tests
with the 2018 Mw 6.8 Zakynthos earthquake (e.g. Cirella et al. 2020;
Sokos et al. 2020; Fig. 2). The Zakynthos earthquake of 2018 was
recorded by broad-band and strong-motion networks and provided
an opportunity to investigate the activated fault structure. Devia-
toric moment tensor solutions were reported for this earthquake by
local and global agencies [e.g. the United States Geological Sur-
vey (USGS), https://earthquake.usgs.gov; National Observatory of
Athens (NOA), http://www.gein.noa.gr; Global Centroid Moment
Tensor (GCMT), https://www.globalcmt.org] and investigated in
detail by Sokos et al. (2020). Moment tensor solutions indicate
mixed source mechanism of a strike-slip to thrust type, and they
have significant non-DC component (see Table 1). The significant
non-DC contribution is represented by a large and negative com-
pensated linear vector dipole component (CLVD) that is attributed,
in this case, to a complex faulting (Sokos et al. 2020). Indeed, the
region is under subhorizontal southwest–northeast compression, en-
abling mixed thrust faulting and strike-slip faulting.

4.1 Experiments with Gaussian white noise

Synthetic data for the inversion test were computed by the dis-
crete wavenumber method (Bouchon 1981), assuming a Dirac delta
function as the source time function and pure shear mechanism with
strike/dip/rake (deg) angles 13/40/171. Full seismic moment tensor
is parametrized by six elementary moment tensors (M1... M6). Full
M is then composed of their linear combination described by six
coefficients. The waveforms were filtered by Butterworth bandpass

filter with corner frequencies 0.02–0.1 Hz. In analogy to Hingee
et al. (2011), the uncorrelated pseudo-random white noise traces
were added to the synthetic data in amounts between 5 and 20 per
cent, scaled by the maximum absolute value of amplitude. More
specifically, to create noisy waveforms, time-series were perturbed
by Gaussian random values between −1 and 1. In particular, we
added white noise of 20 per cent maximum amplitudes associated
with individual components of LTHK station, 15 per cent for LCHA
and ZARA stations, 5 per cent for components of MTHA, FSK,
GUR and PDO stations. In Fig. 3, we show the experiments with
white noise, where the synthetic waveform data with 100 per cent
DC were inverted into the focal mechanism of 82 per cent DC and
strike/dip/rake angles 14/38/174 (deg) with variance factor 4.3 ×
10−6(m2). The associated Kagan’s angle histogram, DC compo-
nents, and waveforms with noise and synthetic waveforms without
noise are also illustrated. Histogram of Kagan’s angle calculated
with each solution compares to best-fit solution (Kagan 1991).

In order to test the efficiency of the inversion method, we have
considered three different types of covariance matrix: diagonal ma-
trix, block-diagonal matrix and full matrix. (I) Diagonal matrix that
contains variance (dispersion) of an individual component as

cov{d} =

⎡⎢⎢⎢⎣
cov{d1} 0 · · · 0

0 cov{d2} · · · 0

0
...

. . .
...

0 0 0 cov{dK }

⎤⎥⎥⎥⎦
subject to cov{d} ∈ R

N×N , (25)

where K is the number of stations, cov{di } =
diag([σ 2

Ei
I, σ 2

Ni
I, σ 2

Zi
I]) and (σ 2

Ei
, σ 2

Ni
, σ 2

Zi
) are the variances

of the individual components of ith station. (II) Block-diagonal
matrix considering cross-covariance among all three components
at each station, which constructed same as eq. (25), whereas

cov{di } =
⎡⎣ σ 2

Ei
I σEi Ni I σEi Zi I

σNi Ei I σ 2
Ni

I σNi Zi I
σZi Ei I σZi Ni I σ 2

Zi
I

⎤⎦. (26)

(III) Full covariance matrix:

cov{d} =

⎡⎢⎢⎢⎣
cov{d1} cov{d1, d2} · · · cov{d1, dK }

cov{d2, d1} cov{d2} · · · cov{d2, dK }
...

...
. . .

...
cov{dK , d1} cov{dK , d2} · · · cov{dK }

⎤⎥⎥⎥⎦,

(27)

where cov{di , d j } are the (co)variance components between the ith
station and the jth station.

Left-hand panels of Fig. 4 show inversion test with diagonal
covariance matrix. Histogram of the Kagan’s angles illustrated im-
proving resolvability of a DC source after estimating the variance
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Random data errors on the MT inversion 103

Figure 3. Experiments with Gaussian white noise: (a) original focal mechanism [with strike/dip/rake angles 13/40/171(deg)] used to generate synthetic data
with 100 per cent DC, (b) focal mechanism from the MT inversion (without covariance matrix) for synthetic data contaminated with white noise with
strike/dip/rake angles 14/38/174(deg) and 82 per cent DC, (c) histogram of DC component, (d) Kagan’s angles and (e) waveforms with noise (red) and
synthetic waveforms without noise (black). The histograms are built from 1000 random samples of the posterior PDF to visualize the estimated parameter
uncertainty. Peak simulated displacements (cm) are shown over the horizontal axis with blue numbers.

matrix. According to Fig. 4(a), the maximum variance could be
seen by the LTHK, LCHA and ZARA station’s components, which
have largest displacement values. The middle panels of Fig. 4 show
the estimated focal mechanism of strike/dip/rake angles associated
with the block-diagonal data covariance matrix. Again, the strongest
features of cross-covariance among all three pairs of components
could be seen in LTHK, LCHA and ZARA stations (Fig. 4b). The
right-hand panels of Fig. 4 presents the inversion test with the full

covariance matrix. It shows the lower absolute values of covari-
ance (with positive and negative signs) between the components of
LTHK and LCHA, and ZARA stations (compare Figs 4b and c).
This is caused by the presence of interstation cross-covariance (co-
variance between each pair of stations) and intercomponent cross-
covariance (covariance between north, east and vertical compo-
nents of individual stations), which introduce an additional inter-
station dependency. Further, according to Hallo & Gallovič (2016),
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Figure 4. White noise synthetic data tests for diagonal covariance matrix (a), block-diagonal covariance matrix (b), full covariance matrix (c), and the associated
DC component (d)–(f), the related Kagan’s angles (g)–(i) and maximum likelihood solutions (see the text). The histograms are built from 1000 random samples
of the posterior PDF to visualize the estimated parameter uncertainty. The elements of main diagonals associated with different types of matrices, namely
diagonal, block-diagonal and full covariance matrices, are different because, in the estimation of each kind of covariance matrices, the cofactor matrices and
number of unknowns are different.

negative covariance means that signals are anticorrelated. By com-
paring the results of this test with the target (input) focal mechanism,
it can be concluded that our full covariance matrix has a reliable
performance.

4.2 Experiments with coloured (correlated) noise

We simulated waveform for the same focal mechanism as in the
previous example and added coloured noise of the same spectral
content to all stations with their associated ratios, as described in
Section 4.1 (20 per cent of maximum amplitudes associated with
individual components of LTHK station, 15 per cent for components
of LCHA and ZARA stations, 5 per cent for components of MTHA
and FSK, and PDO stations). In this synthetic test, we study whether

the covariance matrix of the data is detectable by MLE’s method
and investigate its effect on the resolvability of the M inversion.
The coloured noise characterized by power-law models, where the
spectral amplitude is assumed to vary as F(f)∝f−κ , where f is the
frequency and κ is the power-law index. For instance, the white noise
is defined when κ = 0 and time-dependent noise can be represented
by random walk that is called red noise (κ = 2). In synthetic data
test with colored noise, we used κ = 2 to generate correlated noise.

Correspondingly, Fig. 5 shows inversion test without covariance
matrix using synthetic data perturbed by the colored noise. In this
test we inverted synthetic waveform data with 100 per cent DC
to the focal mechanism of 84 per cent DC and strike/dip/rake an-
gles 8/36/170 (deg) with variance factor 1.45 × 10−5 (m2). The
associated Kagan’s angles, DC components histogram, and wave-
forms with noise and synthetic waveforms without noise are also
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Random data errors on the MT inversion 105

Figure 5. Experiments with coloured noise: (a) original focal mechanism [with strike/dip/rake angles 13/40/171(deg)] used to generate synthetic data with 100
per cent DC, (b) focal mechanism from the MT inversion (without covariance matrix) for synthetic data contaminated with coloured noise with strike/dip/rake
angles 8/36/170(deg) with 84 per cent DC, (c) DC component, (d) Kagan’s angles, (e) DC mechanism nodal planes and (d) waveforms with noise (red) and
synthetic waveforms without noise (black). Peak simulated displacements (cm) are shown over the horizontal axis with blue numbers.

illustrated. Fig. 6 shows inversion tests using three different types
of covariance matrices: diagonal covariance matrix, block-diagonal
covariance matrix, full covariance matrix, and the resultant focal
mechanisms.

The proposed method’s performance could be compared us-
ing two different metrics: (i) unbiasedness of the MLE estima-
tor, namely E{m̂} − m and (ii) minimum variance of the estimator
MLE, namely the minimum uncertainty of the resultant parame-
ters. The former one could be obtained using the comparing of

simulated strike/dip/rake angles [13/40/171 (deg) and 100 per cent
DC] with the best of inverted solutions by the diagonal, block-
diagonal and full covariance matrices, which are illustrated by
Fig. 6. The second one is the uncertainty of parameters which
could be described by Kagan’s angle. According to Fig. 6, the
small values of Kagan’s angles histogram show that all accept-
able solutions (1000 samples) are less scattered comparing to the
solution without covariance matrix in Fig. 5(d). It means that a re-
liable estimate of the uncertainty of the MT parameters is revealed
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106 K. Moghtased-Azar, H. Zeynal-Kheiri and M. Hallo

Figure 6. Coloured noise synthetic data tests for diagonal covariance matrix (a), block-diagonal covariance matrix (b), full covariance matrix (c), and the
associated DC component (d)–(f), the related Kagan’s angles (g)–(i) and maximum likelihood solutions (see the text).

when employing the diagonal, block-diagonal and full covariance
matrices.

5 R E A L DATA I N V E R S I O N

To evaluate the performance of the proposed approach, we applied
it to real waveform data of 2018 Mw 6.8 Zakynthos earthquake. The
waveforms were filtered by Butterworth bandpass filter between
0.02 and 0.1 Hz and then downsampled to 1.25 Hz sampling rate.
We perform MT inversion test using the velocity model proposed
by Haslinger et al. (1999) for our study area. Fig. 7 shows results
of the inversion without covariance matrix with variance factor
2 × 10−5 (m2) (constant-diagonal matrix) using fixed hypocen-
ter location (latitude/longitude 37.27◦ /20.43◦) with depth 12 km
and origin time of 22:54:47.5 UTC (in which we fixed the depth
and origin time at values obtained in the location procedure). Our
resultant solution has nodal plane of strike/dip/rake (deg) angles
13/40/171 with 33 per cent DC and −61 per cent CLVD with

variance reduction (VR) of 0.53 [Variance reduction is defined as
VR = 1 − �(d − s)2/�d2, where d and s are the observed and
synthetic waveforms (Sokos & Zahradnı́k 2013)]. The solution is
in agreement with other agencies, for example, NOA (see Table 1),
reporting 39 per cent DC and −60 per cent CLVD. We implemented
the proposed covariance matrix estimation for the real waveforms
according to the former categorized diagonal covariance matrix,
block-diagonal covariance matrix, and full covariance matrix (as
shows by Fig. 1). Fig. 8 shows the results of these inversion tests.
The estimated focal mechanism of 67 per cent DC and -31 per cent
CLVD associated with the estimated diagonal covariance matrix is
a strike/dip/rake (deg) angles 12/32/163 with VR value of 0.55.
In Fig. 7, the diagonal terms equal 2 × 10−5(m2) for all stations
and all three components. However, the estimated diagonal terms
in Fig. 8(a) are in the range of 1.41 × 10−6 (associated with Z
components of MTHA station) up to 1.35 × 10−4 (associated with
N components of LTHK station). Hence, that causes the difference
in DC and CLVD histograms of the results. The estimated focal
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Random data errors on the MT inversion 107

Figure 7. Inversion of the real data using constant-diagonal covariance matrix: (a) simulated waveforms (red) and observed waveforms (black) with variance
reduction of 0.53. Peak displacements (cm) are shown over the horizontal axis with blue numbers, (b) DC mechanism nodal planes, (c) Kagan’s angles, (d)-(f)
histogram of DC, CLVD and ISO components. The maximum likelihood solution (in red) has strike/dip/rake (deg) angles 13/40/171, 33 per cent DC and
-61 per cent CLVD with variance factor 2 × 10−5 (m2). The histograms are built from 1000 random samples of the posterior PDF to visualize the estimated
parameter uncertainty.

mechanism of 92 per cent DC and −3 per cent CLVD asso-
ciated with the estimated block-diagonal covariance matrix is
strike/dip/rake (deg) angles 16/32/167 with VR of 0.53. Accord-
ingly, the estimated focal mechanism of 69 per cent DC and
−23 per cent CLVD associated with the estimated full covariance
matrix is a strike/dip/rake (deg) angles 19/34/177 with VR value
of 0.47. Here, the ensemble of the solutions is obtained by random
sampling the posterior PDF.

6 C O N C LU S I O N A N D D I S C U S S I O N

Using the MLE as a standard method for the minimum-variance
unbiased estimation of the data covariance matrix, we estimated
three different covariance matrix structures for synthetic and real
data sets of the event, 2018 Mw 6.8 Zakynthos (Ionian Sea, Greece)
earthquake. The outcomes of the synthetic analysis confirmed those
properties of the MLE estimator in the estimation of the unknown
parameters (and their uncertainties) in terms of accuracy and pre-
cision, respectively. Later, the method is applied for the real data
sets of the event with a focal mechanism of strike/dip/rake (deg)
angles 13/40/171 of the 33 per cent DC and −61 per cent CLVD. In
the case of inversion using the estimated full covariance matrix, we
obtained a solution having strike/dip/rake (deg) angles 19/34/177
with 69 per cent DC and −23 per cent CLVD. Accordingly, the
results of the real data inversion with the diagonal, block-diagonal

and full covariance matrices suggest that the significant negative
CLVD component is a reliable feature of the 6.8 Zakynthos earth-
quake (that is in accord with Sokos et al. 2020). The is due to the
estimated full covariance matrix captured the effects of propagated
random data errors in the inversion process. It should be noted that
our covariance matrices do not include intersample correlations
(interrelation of the data temporal samples). This is a difference
compared to other published approaches (e.g. Duputel et al. 2012;
Mustać & Tkalčić 2016; Vackář et al. 2017). Hence, we prefer
our approach because the drawbacks of their procedures are that,
mathematically, they are biased and has no property of minimum
variance. In consistent, according to Koch (1986), our estimator is
unbiased and has a minimum variance. In each real application, it
would be good to perform a specific synthetic test (resembling the
real situation) and, based on that case-specific synthetic test, decide
which kind of covariance matrix (diagonal, block-diagonal or full)
should be used in that particular application.

A C K N OW L E D G E M E N T S

The data for the focal mechanism solutions provided by vari-
ous agencies: NOA (http://www.ge in.noa.gr), USGS (https://eart
hquake.usgs.gov) and GCMT (https://www.globalcmt.org). Wave-
form data were sourced from the corresponding Observatories
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Figure 8. Real data inversion tests for diagonal (left column), block-diagonal (middle column) and full covariance matrix (right column). Ensemble displayed
in terms of nodal planes of all the solutions in row (b). Histograms in rows (c), (d) and (e) show DC, CLVD and ISO components and row (f) related Kagan’s
angle. Last row is the maximum likelihood solutions (see the text) corresponding to the use of different type of the data covariance matrix.
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and Research Facilities for European Seismology (ORFEUS) Eu-
ropean Integrated Data Archive (EIDA) node (http://www.orfe
us-eu.org/eida) operated by the National Observatory of Athens
(http://eida.gein. noa.gr).

DATA AVA I L A B I L I T Y

For easier implementation in other researchers’ codes, we release
open source codes for computing all the types of the proposed
covariance matrices for the 2018 Mw 6.8 Zakynthos (Ionian Sea,
Greece) earthquake. The codes can be downloaded from https://gi
thub.com/HKheiri/Covariance-matrix.git.
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