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ABSTRACT

Thanks to their non-volatile and multi-bit properties, memristors have been extensively used as synaptic weight elements in

neuromorphic architectures. However, their use to define and re-program the network connectivity has been overlooked. Here,

we propose, implement and experimentally demonstrate Mosaic, a neuromorphic architecture based on a systolic array of

memristor crossbars. For the first time, we use distributed non-volatile memristors not only for computation, but also for routing

(i.e., to define the network connectivity). Mosaic is particularly well-suited for the implementation of re-configurable small-world

graphical models, with dense local and sparse global connectivity - found extensively in the brain. We mathematically show that,

as the networks scale up, the Mosaic requires less memory than in conventional memristor approaches. We map a spiking

recurrent neural network on the Mosaic to solve an Electrocardiogram (ECG) anomaly detection task. While the performance

is either equivalent or better than software models, the advantage of the Mosaic was clearly seen in respective one and two

orders of magnitude reduction in energy requirements, compared to a micro-controller and address-event representation-based

processor. Mosaic promises to open up a new approach to designing neuromorphic hardware based on graph-theoretic

principles with less memory and energy.

Introduction 1

Graphs are omnipresent data structures which capture interactions (i.e., edges) between multiple units (i.e., nodes). They are 2

the backbone of many computational systems that represent relational information between their interacting entities1. Neural 3

networks are an example of a graph. Graphs can be used to study and represent both biological and artificial neural networks, 4

where neurons correspond to the nodes of a graph and the connections between them (i.e., weights or synapses) correspond to 5

edges. Biological nervous systems, shaped over millions of years of evolution, have developed many computational principles 6

that can be captured using graphical networks. Therefore, building computing architectures based on the same organizational 7

principles is a promising path towards realizing powerful artificially intelligent systems. 8

One such important organizing principle is “small worldness” which is found extensively in empirical studies of structural 9

and functional biological neural networks2, 3 (Fig. 1a). In such a structure, short paths connecting neighboring nodes (neurons) 10

are more common than long-range connections, which are sparse (Fig. 1b). The mix of dense local and sparse distal connectivity 11

gives rise to efficient global coordination and information flow based on local interactions 4. A connectivity matrix of an 12

example small-world graph is plotted in Fig. 1c. It is characterized by the heavy connectivity along the matrix diagonal, with 13

increasingly fewer connections between the further off-diagonal neuron pairs. 14

Crossbars of conductive memory elements have often been proposed as a means of realizing such models on hardware 15

(Fig. 1d)5–11. In these structures, a memory element connects a series of vertically running metal lines (i.e., columns) with 16

orthogonal ones (rows). The conductance state of each memory corresponds to the synaptic weight parameter of a neuron, 17

which is located at the end of each row. Such architectures perform matrix multiplication, the core operation of a neural 18

network, in-memory and in an analog fashion. Relative to a von-Neumann architecture, this dramatically reduces the volume of 19

data movement which in turn largely reduces the energy required to run neural network models12–17. 20

Resistive Random Access Memory (RRAM) devices, otherwise referred to as memristors, have emerged as a promising 21

memory element for such in-memory crossbar architectures18–23. They can be programmed with multiple discrete conductance 22

levels24 corresponding to different synaptic weight values in the connectivity matrix of Fig. 1c. Moreover, RRAMs retain 23

information in a non-volatile fashion, which eliminates the static power consumption related to the storage of neural network 24

weights25. In particular, biologically inspired Spiking Neural Networks (SNNs) are well matched to RRAMs since the devices 25

in the crossbar are read asynchronously and sparsely - thus dynamic power is also reduced. 26
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Figure 1. Small-world graphs in biological and graphical neural networks. (a) Depiction of small-worldness in the brain

with highly clustered neighboring regions highlighted with the same color. (b) An example network model characteristic of a

small-world graph. Five local clusters of nodes connect densely with each other and are interconnected with a sparse set of

hub-like nodes. (c) (adapted from28). The functional connectivity matrix based on data from human functional Magnetic

Resonance Imaging showing the properties of a small-world graph. The rows and columns represent neuron indices. The

diagonal region of the matrix contains the strongest connectivity which represent the connections between the neighboring

neurons. The off-diagonal elements are not connected. (d) Hardware implementation of the connectivity matrix in c. Neurons

and synapses are arranged in a crossbar architecture, where the inputs are in columns and the sum of the products of inputs and

synaptic weights are calculated at the row. The column input could either be recurrent (coming from other neurons) or external

(coming from real-world signals). (e) The Mosaic architecture with small "tiles" distributed in a two-dimensional mesh.

Figure 1d shows an example of a Recurrent Spiking Neural Network (RSNN), realized by an RRAM crossbar that contains27

both synapses receiving spike signals from external inputs, and from recurrent connections of the neurons in the network.28

However, scaling this to large SNNs requires a very large crossbar of memristors. Problems such as current sneak-paths,29

parasitic resistance and capacitance of the metal lines, as well as excessively large read currents limit their maximum size30

in practice26, 27. Moreover, a single large crossbar would result in a wasteful utilization of the off-diagonal devices in the31

implementation of bio-inspired graphs with small-world properties (Fig. 1(c)).32

To implement artificial spiking small-world graphs more efficiently, we propose and experimentally demonstrate a new33

re-configurable neuromorphic computing architecture called the “Mosaic” (Fig. 1(e)). The Mosaic is a two-dimensional systolic34

matrix of distributed “tiles”, each based on a small crossbar of RRAM, that can serve either as analog spiking or spike routing35

elements. Effectively, the Mosaic dices up one large crossbar into numerous smaller tiles with different functions (Fig. 1(e)).36

Importantly, the Mosaic uses RRAM not only to store synaptic weights and carry out neural processing, but also to define the37

routing patterns linking up neighboring tiles.38

The Mosaic lends itself to the implementation of small-world networks more efficiently, resulting in a better utilization of the39
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Figure 2. (a) The neuromorphic memory Mosaic. Green squares correspond to neuron tiles and blue squares to routing tiles.

The bridges drawn between tiles correspond to the North, South, East, and West signal buses carrying the Vin and Vout voltage

pulses. (b) An example graph resulting from the random programming of devices in each of the tiles in the Mosaic pictured in

part (a). The green circles correspond to neurons which exist in the neuron tiles and the blue edges are defined by the resulting

paths that are formed between neuron tiles through the routing tiles. (c) Plot showing the required bits of memory for different

number of total neurons in a network model depending on the size of the neuron tile. The number of bits of memory is referred

to as resistive memory devices programmed in a binary fashion. The horizontal dashed line indicates the number of required

memory bits using a fully-connected RRAM crossbar array for different network sizes. The cross (X) illustrates the cross-over

point beyond which Mosaic approach becomes favorable.

allocated memory resources. Moreover, it introduces a novel routing approach different from the conventional Address-Event 40

Representation (AER) scheme in SNN hardware29, 30 without the need for storing each neuron’s connectivity information in 41

local memories that draw static power and can consume a large chip area (Supplementary Note 1). 42

In this Article, we first present the Mosaic architecture and mathematically quantify its memory footprint savings while 43

implementing small-world neural networks compared to a single large memristor crossbar. We then report electrical circuit 44

measurements from tiles that we designed and fabricated in 130 nm CMOS technology co-integrated with Hafnium dioxide- 45

based RRAM devices. Calibrated on these measurements, we apply a simulation of the Mosaic to run a RSNN applied to 46

the detection of arrhythmic heart beats from Electrocardiography (ECG) recordings. We compare our approach to equivalent 47

implementations using a microprocessor and an AER-based neuromorphic processor. Per heartbeat we find that Mosaic achieves 48

reductions in the total signal routing energy of two and one order of magnitudes respectively. 49

Results 50

The Mosaic architecture is illustrated in Fig. 2a as an array of tiles which are distributed in a two-dimensional systolic fashion. 51

Each of the tiles consist of a small memrsitor crossbar which can receive and transmit spikes to and from their neighboring tiles 52

to the North (N), South (S), East (E) and West (W) directions (Supplementary Fig. S1). The green squares represent “neuron 53

tiles” and correspond to small crossbars (Fig. 1e) that store the synaptic weights of several Leaky Integrate and Fire (LIF) 54

neurons. These neurons are implemented using analog circuits and are located at the termination of each row, emitting voltage 55

spikes at their outputs31. These spikes are communicated between neuron tiles through a mesh of blue squares which represent 56

“routing tiles”. Routing tiles encompass small crossbars that determine the connectivity patterns between neuron tiles. The state 57

of each device in the crossbar determines the output direction (i.e., N,S,E,W ) towards which its input spike propagates, i.e. 58

steering it towards its intended target neuron elsewhere in the Mosaic. Together, the two tiles give rise to a continuous mosaic 59

of neuromorphic computation and memory for realizing spiking small-world neural networks. 60

An example small-world neural network topology, obtained by randomly programming memristors in a computer model of 61

the Mosaic (see Methods) is shown in Fig. 2b. The resulting graph exhibits an intriguing set of connection patterns that reflect 62

those found in many of the small-world graphical motifs observed in animal nervous systems. For example, central ‘hub-like’ 63

neurons with connections to numerous nodes, reciprocal connections between pairs of nodes reminiscent of winner-take-all 64

mechanisms, and a number of heavily connected local neural clusters3. If desired, these graph properties could be adapted 65

on-the-fly by the re-programming the RRAM states in the two tile types (Supplementary Fig. S2). For example, a set of 66

desired small-world graph properties can be achieved by randomly programming the RRAM devices into their High-Conductive 67

State (HCS) with a certain probability (Supplementary Fig. S3). Random programming can for example be achieved elegantly 68
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Figure 3. The neuron column circuit with example waveforms. (a) Input (red, left) voltage pulses (spikes), Vin, draw a

current iin proportional to the conductance state, Gi, of the 1T1R structures. This current is buffered (green, centre), ibu f f , into

a synapse circuit implementing a low pass filter, and in turn injects it into a neuron circuit. The neuron circuit integrates this

current into a membrane voltage (blue, right), Vmem which causes the neuron to fire at the output after exceeding a threshold Vth.

Insets of (left) scanning electron and (right) transmission electron microscopy images respectively show cross-sections of the

1T1R stack and the hafnium-dioxide layer sandwiched between top and bottom memristor electrodes. (b) Five cumulative

distributions resulting from the application of a single SET programming pulse on each device in an array of 4096 RRAM

devices over a range of SET programming currents, ISET . (c) From an initial resting membrane voltage of 0.05V, the membrane

voltage waveform recorded by an oscilloscope is plotted in time due to the arrival of a single input pulse. The conductance of

the device being read is swept from 10µS to 125µS and the resulting waveforms are measured for each conductance value.

by simply modulating the RRAM SET voltage25.69

For Mosaic-based small-world graphs, we estimate the required number of memory devices (synaptic weight and routing70

weight) as a function of the total number of neurons in a network, through a mathematical derivation (see Methods). Fig. 2c71

plots the memory footprint as a function of the number of neurons in each tiles for different network sizes. Horizontal dashed72

lines show the number of memory elements using one large crossbar for each network size. The cross-over points, at which the73

Mosaic memory footprint becomes favorable, are denoted with a cross. While for smaller network sizes (here 128 neurons) no74

memory reduction is observed compared to a single large array, the memory saving becomes increasingly important as network75

is scaled. For example, given a network of 1024 neurons and 4 neurons per neuron tile, the Mosaic requires almost one order of76

magnitude fewer memory devices than a single crossbar.77

Neuron tile circuits: small worlds78

Each neuron tile in the Mosaic is composed of multiple “neuron columns”; a circuit that models a LIF neuron and its synapses.79

A neuron column circuit is shown in Fig. 3a. It has N parallel one-transistor-one-resistor (1T1R) RRAM structures at its input.80

The synaptic weights of each neuron are stored in the conductance level of the RRAM devices in one column.81
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The functionality of the neuron column is summarized in the three insets of Fig. 3a. Three input pulses of Vin < 0 >,< 82

1 >,< N > are applied in sequence to the gate of the three 1T1R structures. This results in three current pulses, ibu f f (green), 83

proportional to the device conductance state. The currents are then injected to a circuit that models biological synaptic dynamics 84

(see Supplementary S7a). This in turn injects an exponentially decaying current into a circuit modelling a biological neuron32. 85

The injected current integrates as a voltage, Vmem, on the neuron’s membrane capacitor (Supplementary Fig S7b). After the 86

neuron circuit has integrated three input spikes, Vmem exceeds its firing threshold (Vth) and the circuit emits an output voltage 87

spike. 88

We fabricated the neuron column of Fig. 3a in a 130 nm CMOS technology integrated with RRAM devices33. In the 89

fabricated circuit, the memristor corresponding to G0 was programmed using a sweep of SET currents - resulting in a range of 90

conductance values (Fig. 3b). After programming each device, we applied an input pulse to Vin < 0 > and measured the signal 91

Vmem which is plotted in Fig. 3c. This experimental result illustrates that the increase in RRAM conductance increases the peak 92

voltage value resulting from a single input pulse, and thus serves well as a programmable synaptic weight element. A layout of 93

this column circuit can be found in Supplementary Fig. S4. 94

To realize a network using such circuits, these neuron columns are agglomerated into a ‘tile’. This is done through stacking 95

consecutive columns side-by-side and connecting their gates row-wise to common input lines (i.e., a crossbar architecture). A 96

simple neuron tile, composed of only two neuron columns receiving two inputs, is shown in Fig. 4a. The top two rows of the 97

crossbar represent the neurons’ synaptic weights corresponding to external inputs, while the bottom two represent those of the 98

recurrent connections between neurons within the tile. Following a systolic organization34, each input or output spike can enter 99

from, and exit towards, the neighboring N,S,E,W tiles (Supplementary Fig. S1). 100

We mapped a simple network topology onto a fabricated neuron tile circuit depicted in Fig. 4a. Two devices highlighted 101

in bold black were programmed to be in their HCS while the gray shaded ones were programmed in their Low-Conductive 102

State (LCS). We then applied a train of input voltage spikes to Vin < 0 >. The experimental measurements are plotted in Fig. 4b 103

whereby the membrane potential of neuron 0 is observed to periodically increase upon the arrival of each pulse. After the 6th
104

input pulse, Vmem exceeds the threshold Vth, and the circuit generates an output spike. Because of the recurrent connection 105

between the two neurons defined in the neuron tile, the membrane of neuron 1 integrates an excitatory post-synaptic potential 106

at the same instant (shown in orange). Neuron 0 then enters a refractory period, during which it does not integrate incoming 107

spikes. 108

Routing tile circuits: connecting small-worlds 109

A routing tile circuit is shown in Fig. 4c. It acts as a flexible means of configuring how spikes emitted from neuron tiles 110

propagate locally between small-worlds. The functional principles of the routing tile circuits are similar to the neuron tiles. The 111

only difference is the replacement of the biological synapse and neuron circuit models (shown in blue in Fig. 3a) with a simple 112

current comparator circuit. On the arrival of a spike on the column, it compares the device read current (ibu f f in Fig. 3a) to a 113

reference. If it is greater than this reference, it generates an output spike. Otherwise the output remains at zero. Therefore, the 114

state of the device serves to either pass or block input spikes: in Fig. 4c, each device determines whether input spikes arriving 115

from different input ports (N,S,W,E) are propagated, or not, to each output port. 116

Using a fabricated routing tile circuit, we demonstrate its functionality experimentally. Two devices (colored in green and 117

red in Fig. 4c) were programmed in respective HCS and LCS. The other devices were left in the pristine state. This has the 118

effect of allowing incoming pulses from N to propagate out to E, while blocking pulses coming from S direction. A pair of 119

pulses were applied to N and S input ports of the fabricated circuit, plotted respectively in solid and dashed blue lines in Fig. 4d. 120

While the E output port remains at zero due to the incoming pulses from the S input port, it switches to a high voltage as a 121

result of incoming pulses from the N input port. This output pulse propagates on-wards to the next tile. Note that in Fig. 4d the 122

output spike does not appear as rectangular due to the large capacitive load of the probe station (see Methods). To allow for 123

greater configurability, more channels per direction can be used in the routing tiles (see Supplementary Fig. S5). 124

Application to ECG anomaly detection 125

RSNNs35–37 are networks of recurrently connected spiking neurons, whose internal dynamics are a function of the history of 126

their input. They have been demonstrated to be able to process temporally changing sensory information as a result of their 127

internal dynamics 38–40. 128

Here, we apply a small-world RSNN implemented on the Mosaic to the detection of arrhythmic heartbeats from ECG 129

signals41 (see Methods). First, we encode the continuous ECG time-series into trains of spikes using a delta-modulation 130

technique, which describes the relative changes in signal magnitude42, 43. These spikes are then fed as input into the Mosaic 131

small-world RSNN. As outputs, we designated two sub-populations of neurons within two pairs of the Mosaic’s neuron tiles. 132

Elevated spiking activity in either sub-population denotes a normal heart beat (black), or an anomalous one (red) (Fig. 5a). 133

We train the RSNN in an ex-situ fashion11, using Backpropagation Through Time (BPTT)44 with surrogate gradient 134

approximations of the derivative of a LIF neuron activation function45 (see Methods). We then transferred the resulting 135
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Figure 4. Experimental measurements of the fabricated tile circuits. (a) A depiction of a neuron tile containing two

neuron columns. (left) Two stacked neuron columns realize a neuron tile circuit. Four of the devices (top of the array) define

the synaptic connections from inputs Vin < 0 > and Vin < 1 > to the two neurons and an additional four devices (bottom of the

array) define the recurrent connections between neurons. Devices are colored in black or gray to indicate respectively whether

they were in HCS or LCS during our experimental results plotted in part b. Colored voltage labels and input voltage pulses are

also in reference to plots in part b. (top right) A simple two-neuron network resulting from the tile circuit on the left. Circles

are representing neurons and directed arrows indicate the synaptic connections between them. Arrows in bold correspond to the

devices in the HCS in the tile shown on the left. (bottom right) The input and output voltage pulses can come from or be

propagated to the neighboring tiles to the North (N), South (S), East (E) and West (W). (b) Voltage traces measured from a

fabricated implementation of the neuron tile circuit in part a. Due to an input pulse train (gray pulses) at Vin < 0 > the

membrane of the zeroth neuron column in the tile integrates an increasing amount of voltage (purple trace) until, after six

pulses, the neuron fires (light blue trace). As a result of the feedback connection to the other neuron column, neuron 1 also

exhibits an increase in its membrane voltage. (c) Circuit schematic of a routing tile. Two devices colored green and red denote

respectively the devices programmed in the HCS and LCS in the experiment of part (b). Rectangular pulse waveforms depicted

on the left-hand side indicate where the input voltage pulses were applied during this experiment. (d) Experimental results from

a fabricated version of the routing tile shown in part (c). Continuous and dashed blue traces show the waveforms applied to the

N and S inputs while the orange trace shows the response of the output towards the E port. The E output port follows the N

input resulting from the device programmed into the HCS in part (a).

floating-point precision weights to the low-precision conductance states of memristors in an experimental crossbar using a136

closed-loop iterative programming algorithm24 (see Methods).137

An example of the resulting spike trains produced in the Mosaic, due to an ECG time-series of the arrhythmic heartbeat138

plotted in Fig. 5a, is shown in Fig. 5b. The activity of the neurons in each predictive sub-population are bounded within red and139

black horizontal dashed lines. The neurons in the red sub-population fire more frequently than those in the black sub-population,140

here correctly identifying the heartbeat as arrhythmic.141

The accuracy over the test set for 100 iterations of training, transfer and test is plotted in Fig. 5c using a boxplot. The median142

detection accuracy was 96.9%. This corresponds to a low drop in average accuracy compared to the original high-precision143
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Figure 5. Results in applying the Mosaic to arrhythmia detection of two-channel ECG recordings. (a) A depiction of

the ECG classification use case, addressed with the Mosaic architecture. Two-channel ECG waveforms are delta-modulated

into four channels - describing upward and downward changes in their magnitude. These four channels correspond to four

input neurons (green circles) that propagate events to all of the routing tiles across the Mosaic systolic array. Two groups of two

neuron tiles (colored in black and red) are designated as the output neuron populations. Their total spikes counts are used as a

means of classifying presented input waveforms. (b) An example raster plot, showing the activity of all of the neurons within

the Mosaic, due to presentation of one input time series. Green points indicate the spike times of each neuron. Red and black

dashed horizontal lines respectively indicate the anomalous and normal population activity used as the output neurons. (c) A

comparison of the accuracy in this task. Boxplots show the accuracy distribution of a software based recurrent neural network

(left, red), a software based spiking neural network (centre, orange) and the experimental Mosaic model with multi-level

resistive memory devices acting as the synapses (right, green). (d) A comparison in terms of energy requirements between the

Mosaic and two alternative event routing approaches. Green bar plots show the average total energy required to routing all

spikes during presentation of single heartbeat. Orange bars show the energy required for a single routing operation (ROP).

software model (97.0%). Thus it illustrates that not only the imposed small-world structure of the Mosaic does not have 144

a negative effect on the accuracy, but that the model is also robust to a severe degradation in the precision of the weights. 145

Although, due to the variability in the transfer process, the gap between software and experimental models can sometimes as 146

high as 1%. For further comparison, a non-spiking artificial Recurrent Neural Networks (RNN) was also applied to the same 147

task, obtaining a median accuracy of 96.1%. This lower software accuracy compared with the experimental Mosaic’s model, 148

further confirms the Mosaic’s computational power. This result is consistent with other observations whereby RSNNs have 149

outperformed non-spiking equivalents46. 150

Using estimates obtained from SPICE simulations of our fabricated test circuits and statistics from the Mosaic experiments 151

(see Methods), the average energy per routing operation is estimated to be 60 pJ. Given the average number of spikes per 152

heartbeat and the average number of routing tiles traversed between source and destination, the total energy required to process, 153

and make a prediction regarding one heartbeat using the Mosaic is 150 nJ. 154

To gain a perspective on the energy efficiency of Mosaic relative to other hardware approaches, we compare this figure 155
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to the energy required for running the same neural network model on a conventional microprocessor, and on an AER-based156

Complementary Metal-Oxide-Semiconductor (CMOS) neuromorphic processor30. While the energy required for a single157

routing operation on a microprocessor, assumed to be equivalent to one Static Random Access Memory (SRAM) access, is158

only 8 pJ, the total energy required per heartbeat is much greater - 116µJ. This difference is in large part due to asynchronous159

nature of memory access in the Mosaic approach relative to a microprocessor - where all variables are required to be updated160

on each timestep of a numerical simulation. In an AER-based neuromorphic processor, 7.7 nJ is required to generate and route161

an event between a source and a destination30 (see Methods). Over the course of a full heartbeat, the total required energy is162

therefore be 4.8µJ.163

Based on these estimations, the Mosaic achieves a reduction of two and one orders of magnitude in total routing energy164

per heartbeat, relative to a microprocessor and an AER-based neuromorphic processor, respectively. This can be attributed165

to the combination of Mosaic’s low-energy routing memory access, along with its ability to access memory elements in an166

asynchronous and event-based fashion (Supplementary Note 1).167

Conclusion168

We have proposed the Mosaic, a novel neuromorphic computing architecture based on a systolic array of small memristor169

crossbars. The Mosaic is particularly well suited for the implementation of small-world graphical models, commonly found in170

biological nervous systems. Crucially, the Mosaic uses distributed non-volatile resistive memory devices in an analog fashion,171

not only for computation, but also to route spikes.172

We showed mathematically that, particularly as network size increases, the Mosaic offers a means of implementing small-173

world graphical models with less memory, and therefore energy, than previous approaches based on single large memristor174

crossbars.175

The two fundamental circuit blocks of the Mosaic, the neuron tile and the routing tile, were designed, fabricated and176

experimentally demonstrated using a hybrid technology co-integrating 130 nm CMOS technology with resistive memory177

devices. Based on the measurements of these circuits, a mixed hardware-software simulation of the Mosaic was developed and178

the task of detecting arrhythmic heartbeats from ECG signals was addressed. The Mosaic was able to achieve an accuracy close179

to that of an equivalent high-precision software model.180

Most importantly, relative to microprocessor-based and AER-based implementations of the same model, the Mosaic was181

observed to permit respective two and one order of magnitude reductions in the total energy to process each heartbeat and182

provide a prediction. Note that our evaluation is based on our design in 130 nm technology which imposes a minimum spike183

pulse width which dominates the Mosaic’s energy requirements (see Methods). It is expected that moving to more advanced184

technologies would permit to substantially reduce the spike pulse-width and that the Mosaic would achieve even greater energy185

reductions relative to these two approaches.186

Graph-based computing is currently receiving attention as a promising means of leveraging the capabilities of SNNs47. The187

Mosaic is thus a timely dedicated hardware architecture optimized for a specific type of graph that is abundant in nature.188

Methods189

Design, fabrication of mosaic circuits190

Neuron and routing column circuits191

Both neuron and routing column share a common circuit in Fig. 3a which reads the conductances of the RRAM devices.192

The RRAM bottom electrode has a constant DC voltage Vbot applied to it and the common top electrode is pinned to the193

voltage Vx by a rail-to-rail operational amplifier (OPAMP) circuit. The OPAMP output is connected in negative feedback to194

its non-inverting input (due to the 90 degrees phase-shift between the gate and drain of transistor M1 in Fig. 3a) and has the195

constant DC bias voltage Vtop applied to its inverting input. As a result, the output of the OPAMP will modulate the gate voltage196

of transistor M1 such that the current it sources onto the node Vx will maintain its voltage as close as possible to the DC bias197

Vtop. Whenever an input pulse Vin < n > arrives, a current iin equal to (Vx −Vbot)Gn will flow out of the bottom electrode. The198

negative feedback of the OPAMP will then act to ensure that Vx =Vtop, by sourcing an equal current from transistor M1. By199

connecting the OPAMP output to the gate of transistor M2, a current equal to iin, will therefore also be buffered, as ibu f f , into200

the branch composed of transistors M2 and M3 in series. In the routing tile, this current is compared against a reference current,201

and if higher, a pulse is generated and transferred onwards. The current comparator circuit is composed of two current mirrors202

and an inverter (see Supplementary Fig. S6). In the neuron column, this current is injected into a CMOS differential-pair203

integrator synapse circuit model32 which generates an exponentially decaying waveform from the onset of the pulse with an204

amplitude proportional to the injected current. Finally, this exponential current is injected onto the membrane capacitor of a205

CMOS leaky-integrate and fire neuron circuit model48 where it integrates as a voltage (see Supplementary Fig. S7). Upon206

exceeding a voltage threshold (the switching voltage of an inverter) a pulse is emitted at the output of the circuit. This pulse in207
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turn feeds back and shunts the capacitor to ground such that it is discharged. Further circuits were required in order to program 208

the device conductance states. Notably, multiplexers were integrated on each end of the column in order to be able to apply 209

voltages to the top and bottom electrodes the RRAM devices. 210

Fabrication/integration 211

The circuits described in Section have been taped-out in 130 nm technology at CEA-Leti, in a 200 mm production line. The 212

Front End of the Line, below metal layer 4, has been realized by ST-Microelectronics, while from the fifth metal layer upwards, 213

including the deposition of the composites for RRAM devices, the process has been completed by CEA-Leti. RRAM devices 214

are composed of a 5 nm thick H f O2 layer sandwiched by two 5 nm thick TiN electrodes, forming an TiN/H f O2/Ti/TiN 215

stack. Each device is accessed by a transistor giving rise to the 1T1R unit cell. The size of the access transistor is 650nm wide. 216

1T1R cells are integrated with CMOS-based circuits by stacking the RRAM cells on the higher metal layers. In the cases of the 217

neuron and routing tiles, 1T1R cells are organized in a small - either 2x2 or 2x4 - matrix in which the bottom electrodes are 218

shared between devices in the same column and the gates shared with devices in the same row. In this way, the devices can be 219

accessed in a parallel manner. The circuits integrated into the wafer, were accessed by a probe card which connected to the 220

pads of the dimension of [50x90]µm2. 221

Mosaic circuit measurement setups 222

The tests involved analyzing and recording the dynamical behavior of analog CMOS circuits as well as programming and 223

reading RRAM devices. Both phases required dedicated instrumentation, all simultaneously connected to the probe card. For 224

programming and reading the RRAM devices, Source Measure Units (SMU)s from a Keithley 4200 SCS machine were used. 225

To maximize stability and precision of the programming operation, SET and RESET are performed in a quasi-static manner. 226

This means that a slow rising and falling voltage input is applied to either the Top (SET) or Bottom (RESET) electrode, while 227

the gate is kept at a fixed value. To the Vtop(t), Vbot(t) voltages, we applied a triangular pulse with rising and falling times of 228

1 sec and peak Vgate. For a SET operation, the bottom of the 1T1R structure is conventionally left at ground level, while in the 229

RESET case the Vtop is equal to 0 V and a positive voltage is applied to Vbot . Typical values for the SET operation are Vgate 230

in [0.9−1.3]V , while the Vtop peak voltage is normally at 2.0V . Such values allow to modulate the RRAM resistance in an 231

interval of [5−30]kΩ corresponding to the Low-Resistive State (LRS) of the device. For the RESET operation, the gate voltage 232

is instead in the [2.75,3.25]V range, while the bottom electrode is reaching a peak at 3.0V . The High-Resistive State (HRS) is 233

less controllable than the LRS due to the inherent stochasticity related to the rupture of the conductive filament, thus the HRS 234

level is spread out in a wider [80−1000]kΩ interval. The reading operation is performed by limiting the Vtop voltage to 0.3V , 235

a value that avoids read disturbances, while opening the gate voltage at 4.5V . 236

Inputs and outputs are analog dynamical signals. In the case of the input, we have alternated two HP 8110 pulse generators 237

with a Tektronix AFG3011 waveform generator. As a general rule, input pulses had a pulse width of 1µ s and rise/fall time of 238

50ns. This type of pulse is assumed as the stereotypical spiking event of a Spiking Neural Network. Concerning the outputs, a 239

1GHz Teledyne LeCroy oscilloscope was utilized to record the output signals. 240

Mosaic RSNN hardware-software simulation 241

The definition, training and test of the neural network was performed in a series of steps. First a recursive computer model 242

of the Mosaic was used to generate a skeleton connectivity matrix that describes, for given Mosaic dimensions and device 243

states, what neurons are connected to one another in a corresponding neural network. This model simulates the propagation of 244

events, generated at the output of neuron tiles, through the mesh of routing tiles. The model propagates spikes from all neurons 245

through all possible paths defined by the binary conductance states of the devices of the routing tiles. For each of the neuron 246

columns that received this spike at their inputs, a flag was set in the appropriate index of a connectivity matrix describing the 247

connectivity between all neurons. 248

The Mosaic model used in this Article was composed of routing tiles of 16× 16 devices in a Mosaic of 11× 11 tiles. 249

Devices in the routing tiles were programmed to be in the HCS with a probability of 0.07. Neuron tiles were realized in a 250

20× 4 array - this allows four signals from each of the four neighbouring tiles to be received independently, as well as four 251

neurons to connect recurrently amongst themselves within a tile. 252

The resulting skeleton connectivity matrix was then exported to a PyTorch model of an RSNN model to be trained on the 253

MIT-BIH heart arrhythmia dataset41. Specifically, all of the heartbeats of one patient (labelled as 201 in the dataset) were delta 254

modulated into four spike train channels. These spike trains then served as an effective spiking input layer of the model. 255

Data points were presented to the model in mini-batches of sixteen. Two populations of neurons in two neuron tiles were 256

used to denote whether the presented ECG signals corresponded to a healthy or an arrhythmic heartbeat. The softmax of the 257

total number of spikes generated by the neurons in each population was used to obtain a classification probability. The negative 258

log-likelihood was then minimized using the categorical cross-entropy with the labels of the signals. The derivative of the 259
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Heaviside step function, that is used to rectify the membrane voltage of the LIF neurons into a zero or a one, was approximated260

using the function 1/abs(V mem−Vth)2 - inline with surrogate gradient training methods45.261

After training, the synaptic weights were transferred into a an array of 16 kb resistive memory devices co-integrated onto a262

130 nm CMOS technology. The synaptic weight of each synapse was defined by the subtraction of two conductance states of263

two devices. The process of transferring the high-precision software weights to the conductance states of the devices in the array264

was achieved using an iterative closed-loop multilevel programming algorithm. It is based on adapting the SET programming265

compliance current to obtain a conductance within a target range24 and programming a device until its conductance falls within266

a pre-defined margin of tolerated error. Such an approach allows each device to be programmed with ten non-overlapping267

conductance levels.268

The delta modulated test data was processed by a mixed hardware-software Moasic model. Whenever a pre-synaptic neuron269

emitted a spike in this model, the corresponding pair of devices (storing the synaptic weight connecting it to the post-synaptic270

neuron) are read in the RRAM array. This read value is then used to update the state of the post-synaptic neuron inline with271

the LIF neuron model implemented by the circuits. The data was classified based on which population of output neuron tiles272

produced the largest total count of spikes during the presentation of an input ECG time-series.273

Preparation of the ECG dataset274

The ECG dataset was downloaded from the MIT-BIH arrhythmia repository41. The database is composed of continuous275

30-minute recordings measured from multiple subjects. The QRS complex of each heartbeat has been annotated as either276

healthy or exhibiting one of many possible heart arrhythmias by a team of cardiologists. We selected one patient exhibiting277

approximately half healthy and half arrhythmic heartbeats. Each heartbeat was isolated from the others in a 700 ms time-series278

centered on the labelled QRS complex. Each of the two 700 ms channel signals were then converted to spikes using a delta279

modulation scheme49. This consists of recording the initial value of the time-series and, going forward in time, recording280

the time-stamp when this signal changes by a pre-determined positive or negative amount. The value of the signal at this281

time-stamp is then recorded and used in the next comparison forward in time. This process is then repeated. For each of the282

two channels this results in four respective event streams - denoting upwards and downwards changes in the signals. During283

the simulation of the neural network, these four event streams corresponded to the four input neurons to the spiking recurrent284

neural network implemented by the mosaic.285

Calculation of memory footprint286

We calculate the Mosaic architecture’s Memory Footprint (MF) in comparison to a large crossbar array, in building small world287

graphical models.288

To evaluate the MF for one large crossbar array, the total number of devices required to implement any possible connections289

between neurons can be counted - allowing for any Spiking Recurrent Neural Networks (SRNN) to be mapped onto the system.290

Setting N to be the number of neurons in the system, the total possible number of connections in the graph is MFre f = N2.291

For the Mosaic architecture, the number of RRAM cells (i.e., the MF) is equal to the number of devices in all the neuron292

tiles and routing tiles: MFmosaic = MFNeuronTiles +MFRoutingTiles.293

Considering each neuron tile with k neurons, each neuron tile contributes to 4× k2 devices (where the factor of 4 accounts294

for the four possible directions to which each tile can connect). Evenly dividing the N total number of neurons in each neuron295

tile gives rise to T = ceil(N/k) required neuron tiles. This brings the total number of devices attributed to the neuron tile to296

T ×4× k2.297

The number of routing tiles which connects all the neuron tiles depends on the geometry of the Mosaic systolic array. Here,298

we assume neuron tiles assembled in a square, each with a routing tile on each side. We consider R to be the number of routing299

tiles with 4k2 devices in each. This brings the total number of devices related to routing tiles up to MFRoutingTiles = R× (4k)2.300

The problem can then be re-written as a function of the geometry. Considering Fig.2a, let i be an integer and (2i+1)2

the total number of tiles. The number of neuron tiles can be written as T = (i+1)2, as we consider the case where neuron

tiles form the outer ring of tiles. As a consequence, the number of routing tiles is R = (2i+ 1)2
− (i+ 1)2. Substituting

such values in the previous evaluations of MFNeuronTiles +MFRoutingTiles and remembering that k < N ×T , we can impose that

MFMosaic = MFNeuronTiles +MFRoutingTiles < MFMFre f
. This results in the following expression:

MFMosaic = MFNeuronTiles +MFRoutingTiles < MFre f erence (1)

(i+1)24× k2 +[(2i+1)2
− (i+1)2]((4k)2)< (k(i+1)2)2 (2)

This expression can then be evaluated for i, given a network size, giving rise to the relationships as plotted in Fig.2c in the301

main text.302
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Calculation of routing energy 303

In state-of-the-art event-based neuromorphic chips, the information is communicated through the AER scheme29. Whenever a 304

spiking neuron in a chip (or module) generates a spike, its “address” (or any given ID) is written on a high speed digital bus and 305

sent to the receiving neuron(s) in one (or more) receiver module(s). In our Mosaic structure, we have distributed the routing 306

information in a two-dimensional matrix along with the computing units. 307

To compare the routing energy and latency of Mosaic with the AER systems, we have calculated the energy per spike 308

routing in the best and worst case scenarios in both systems. 309

For AER-based systems, we are using the energy and latency numbers reported in Dynap-SE, as one of the most recent and 310

optimized AER routing schemes30. It is a multi-core neuromorphic comprising four cores; each core includes 256 neurons. It has 311

a hierarchical asynchronous routing, combining a source-based routing mesh architecture with a destination-based hierarchical 312

tree routing method. SRAM cells store the routing structure in the tree and the Content Addressable Memory (CAM) cells 313

store the tag of the source address to which each neuron is connected. 314

Therefore, once a spike is generated, the least energy consumption happens in a scenario where the events should be routed 315

locally, and thus 256 10-bit CAM cells are accessed. In the worst case, events have to travel from the first-level router to the 316

higher levels and thus the energy of reading SRAM cells are added. Therefore, the energy of routing one spike in Dynap-SE 317

can be calculated by the following equation: 318

Etotal = ESpike +EPulse +EEn +EBC +RT.ERT (3)

Where ESpike is the energy to generate one spike, EPulse is the energy of the pulse extender circuit, Een is the energy to 319

encode one spike and append destination, EBC is the energy to broadcast the event to the same core, RT is 1 if the spike has to 320

be routed to other cores, otherwise zero, and ERT is the energy to route the events to other cores. If RT = 0, total energy to 321

route the event to the core sums up to 7.68 nJ. In case of the event routing to other cores, multiples of 360 pJ should be added to 322

the energy consumption (energy required for reading SRAM at each hierarchical router level. 323

For the case of the microprocessor, the equivalent of routing an event would be to load into the arithmetic logic unit memory 324

from an SRAM containing the synaptic weights and perform addition and multiplication operations to update neuron states and 325

outputs before writing this back into SRAM. We assume that this is dominated by the SRAM access, and so take figures from 326

the literature that give SRAM access energy figures50. 327
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