mzuriCh ETH Library

Volumetric Grasping Network:
Real-time 6 DOF Grasp Detection
in Clutter

Conference Paper

Author(s):
Breyer, Michel; Chung, Jen Jen (); Ott, Lionel; Siegwart, Roland; Nieto, Juan

Publication date:
2020

Permanent link:
https://doi.org/10.3929/ethz-b-000529161

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Proceedings of Machine Learning Research 155

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-7828-0741
https://orcid.org/0000-0003-4808-0831
https://doi.org/10.3929/ethz-b-000529161
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Volumetric Grasping Network: Real-time
6 DOF Grasp Detection in Clutter

Michel Breyer Jen Jen Chung Lionel Ott
ETH Ziirich ETH Ziirich University of Sydney
mbreyer@ethz.ch chungj@ethz.ch lionel.ott@sydney.edu.au
Roland Siegwart Juan Nieto
ETH Ziirich ETH Ziirich
rsiegwart@ethz.ch nietoj@ethz.ch

Abstract: General robot grasping in clutter requires the ability to synthesize
grasps that work for previously unseen objects and that are also robust to physical
interactions, such as collisions with other objects in the scene. In this work, we
design and train a network that predicts 6 DOF grasps from 3D scene information
gathered from an on-board sensor such as a wrist-mounted depth camera. Our pro-
posed Volumetric Grasping Network (VGN) accepts a Truncated Signed Distance
Function (TSDF) representation of the scene and directly outputs the predicted
grasp quality and the associated gripper orientation and opening width for each
voxel in the queried 3D volume. We show that our approach can plan grasps in
only 10 ms and is able to clear 92% of the objects in real-world clutter removal
experiments without the need for explicit collision checking. The real-time capa-
bility opens up the possibility for closed-loop grasp planning, allowing robots to
handle disturbances, recover from errors and provide increased robustness. Code
is available at https://github.com/ethz-asl/vgn.

Keywords: Grasp Synthesis, 3D Convolutional Neural Networks, Simulation

1 Introduction

Traditionally robotic manipulation has mostly considered repetitive tasks performed in tightly con-
trolled spaces. However, recently there has been a lot of interest for deploying robots to domains
that require more flexibility. For example, an assistant robot could alleviate the workload of medical
staff by taking over the time-consuming task of fetching supplies in a hospital. To perform well in
such unstructured environments, the system must be able to compute grasps for the sheer unlim-
ited number of objects it might encounter, and at the same time deal with clutter, occlusions, and
high-dimensional noisy readings from on-board sensors.

Due to these challenges, recent research in grasp synthesis has overwhelmingly favored data-driven
approaches to plan grasps directly from sensor data, outperforming manually designed policies [1, 2,
3]. However, the planning is usually constrained to top-down grasps from single depth images. This
type of approach enables compact representations by constraining the search to grasps perpendicular
to the image plane, assuming therefore a favorable camera placement and restricting the robot to
grasp objects from a single direction. This limits the flexibility of the system, as in some cases it
is easier to approach different objects in the scene from different directions [4, 5]. Several notable
recent works tackle full 6 Degrees of Freedom (DOF) grasp pose detection [4, 6, 7, 8]. However
these methods often reason on single, isolated objects requiring additional collision checks when
placed within the scene, or their rather high computation times (in the order of seconds) make them
unsuitable for closed-loop execution, which is essential for more advanced interaction and reactivity
to dynamic changes.

In this work, we propose a novel approach to real-time 6 DOF grasp synthesis. The input to our
algorithm is a 3D voxel grid, where each cell contains the truncated distance to the nearest surface.

4th Conference on Robot Learning (CoRL 2020), Cambridge MA, USA.

https://github.com/ethz-asl/vgn

- f‘ £ '“‘\\]iepthswensor w
oy o H Quality i
y 1x40X40x40
VGN |[— . . —
Orientation ﬁ«‘
4Xx40x40X40 {*‘ ﬁ
TSDF Width
1x40x40x40
1x40X40X40 Detected Grasps

Figure 1: A scan of the 3D scene is converted into the TSDF that is passed into VGN. VGN has
a three-headed output, providing the grasp quality, gripper orientation and gripper width at each
voxel. Non-maxima suppression is then applied using the grasp quality output and invalid grasps
are filtered out given the input TSDF.

TSDFs not only offer an elegant framework to fuse multiple observations into a consistent map while
smoothing out sensor noise, their regular structure also makes them suitable for feature learning via
deep neural networks. We train a Fully Convolutional Network (FCN) to map the input TSDF to
a volume of the same spatial resolution, where each cell contains the predicted quality, orientation,
and width of a grasp executed at the center of the voxel (see Figure 1). The network is trained on a
synthetic dataset of cluttered grasp trials generated using physical simulation. The integrated nature
of our approach allows us to detect grasps for the whole workspace with a single forward pass of the
network. We based our approach on the hypothesis that the inclusion of 3D information of the full
scene allows the neural network to capture collisions between the gripper and its environment, which
is essential in clutter. We validate our hypothesis with a series of simulated experiments. The results
show competitive grasping performance, while only requiring 10 ms on a GPU equipped computer.
We also run 80 grasping trials on a physical setup, demonstrating that the approach transfers to a
real setup without any additional fine-tuning.

In summary, the contribution of this work is a novel grasping network that:

e Enables 6 DOF grasp synthesis in real-time, and
e Uses the full 3D scene information to directly learn collision-free grasp proposals.

2 Related Work

Robotic grasping has been a topic of interest for several decades [1]. Recent contributions in this
field have overwhelmingly favored the use of deep learning approaches for detecting robot grasps
directly from sensor data. This bias is not unwarranted as deep learning methods for robot grasping
have demonstrated superior performance in terms of generalizing to previously unseen objects and
finding successful grasps in cluttered scenes [3, 4].

Grasp synthesis approaches can broadly be split into those that output “top-down” grasps (typically
3 or 4 DOF) and those that can output 6 DOF grasps. Each category is tightly coupled with the scene
representation used as input to the learned network. Top-down grasps either take overhead visual
data [9], depth image data [3, 10, 11], or a combination of both [12, 13] and return viable grasps
in the image frame. In comparison, networks that synthesize 6 DOF grasps take in the full 3D
information of the scene, which typically comes in the form of a point cloud [4, 7, 14] or occupancy
grid [6, 15]. While point clouds are able to identify object surfaces in space, we believe that the
additional distance-to-surface information provided by a TSDF representation [16] can improve
overall grasp detection performance. Distance functions are already commonly used in collision-
free path planning [17], and have been applied to enforce collision-free grasp configurations for a
multi-fingered hand [18]. Furthermore, in line with the conclusions of [5, 8], we also expect grasp
performance to improve when the full scene is considered during grasp synthesis (as opposed to, for
example, only considering a subset of the point cloud [4]) since it allows the system to account for

physical interactions such as collisions with other objects. In our work, we provide the full TSDF to
the network, thereby avoiding the need for separate processing steps to handle scene completion [5]
or explicit collision detection [8].

It is worth noting that several of these grasp synthesis methods primarily act as grasp quality predic-
tors, meaning that they still require some initial process to sample grasps to evaluate. For example,
the Dex-Net 2.0 grasp planner [3] initially computes antipodal grasps from the input depth image,
while Gualtieri et al. [4] uniformly sample several thousand grasp candidates over the object point
cloud and return only those predicted to result in successful grasps. PointNetGPD [14] improves
on this by providing a grasp score that is trained on grasp wrench space analysis and force closure
metrics. Nevertheless, requiring an initial sampling step can be problematic since it forces a trade off
between computational tractability and ensuring adequate sampling coverage over the grasp space.
GraspNet [7] addresses this by training a variational grasp sampler that produces promising grasp
candidates given the input point cloud. The sampled grasps are then iteratively refined using a grasp
pose evaluator, which is a process somewhat similar to the analysis-by-synthesis procedure of [19].

In our work, we take inspiration from the 2D grasp map of [11, 20, 21] and train our grasp network
to directly output a grasp (orientation and gripper width) and associated grasp quality prediction for
each voxel in the entire volumetric representation of the scene. The network output can then be
directly queried for the highest scoring grasp or set of grasps using non-local maxima suppression.
This avoids having to sample candidate grasps at run-time or iterate over grasp proposals to find
viable grasps, both of which can be computationally expensive.

3 Problem Formulation

We consider the problem of planning parallel-jaw grasps for unknown rigid objects in clutter. The
goal is to find gripper configurations that allow the robot to successfully grasp and remove the objects
from the workspace. Instead of sampling and evaluating individual candidates, we want to evaluate
a large number of discretized grasp positions in parallel.

The visual input is represented as a TSDF, an N3 voxel grid V where each cell V; contains the
truncated signed distance to the nearest surface. The edges of the volume correspond to the bound-
aries of the grasping workspace of size [. We define a grasp g by the position t and orientation r
of the gripper with respect to the robot’s base coordinate system, as well as the opening width w
of the gripper. In addition, each pose is associated with a scalar quantity ¢ € [0, 1] capturing the
probability of grasp success. Given the voxel size v and the rigid transformation T’ry between the
base and the TSDF volume frames, we can describe a grasp g by

EZTRv(t)/’U,f':TRv(I‘)ﬂI]:w/v, (1)

where t corresponds to the index of the voxel at which the grasp is defined and the width 0 is
expressed in terms of voxel size units. Our goal is to find amap f : V — Q,R, W, where Q, R,
and W contain the quality ¢, orientation ¥, and opening width 1 of a grasp at each voxel t. While
regressing to a single orientation cannot capture the full distribution of grasps at a given voxel,
we think that a point estimate is enough to predict a good grasp while reducing the complexity of
the approach. The output is a dense grasp map that can be further filtered based on task-specific
constraints for a final grasp selection, as explained in more detail in Section 4.3.

4 Volumetric Grasping Network

In this section, we describe the Volumetric Grasping Network (VGN), a deep neural network ap-
proximation of the dense grasp map f defined in the previous section.

4.1 Architecture

Our network follows a FCN architecture. First, a perception module consisting of 3 strided convo-
lutional layers with 16, 32 and 64 filters, respectively, maps the input volume V to a feature map of
dimension 64 x 53. The second part of the network consists of 3 convolutional layers interleaved
with 2 x bilinear upsampling, followed by three separate heads for predicting grasp quality, rotation,

1.0
\ Opening width
\ ’J —> JE
205
'y @)
y &/
. Finger depth I 0.0
\ fheer cep 0 50 100
(@ (b) © (d) Angleldeg]

Figure 2: Examples of “pile” and “packed” scenes (a) and (b) respectively. Subfigure (c) shows
the definition of the grasp frame origin with respect to the gripper geometry and (d) shows the
distribution of angles between the gravity vector and the z axis of grasps from the training set.

and opening width. The grasp quality head outputs a volume of size 1 x N3, where every entry §;
represents the predicted probability of success of a grasp executed at the center of the voxel. The
rotation head regresses to a quaternion representation of the orientation of the associated grasp can-
didates. We chose quaternions over alternative representations, such as Euler angles, as they were
found to perform better in learning forward kinematics [22]. A normalization layer at the end of the
rotation branch ensures unit quaternions. Finally, the width head predicts the opening width of the
gripper at each voxel.

4.2 Synthetic Training

The full network is trained end-to-end on ground-truth grasps obtained by simulated trial using the
the following loss function,

L(9i, i) = Lq(Qi, ai) + @i (Lr(T5,T5) + Loy (W5, 05)) (2)

where ¢; € {0, 1} denotes the ground truth grasp label of a target grasp g;. £, is the binary cross-
entropy loss between predicted and ground-truth labels ¢ and ¢, and £,, is the mean-squared error
between predicted and target widths w and w, respectively. We use the inner product to compute the
distance between the predicted and target quaternions, Lqyq¢ = 1 — |I - ¥|. This loss formulation
is derived from the angle formed by the two quaternions [23]. However, it does not handle the
symmetry of a parallel-jaw gripper. A configuration rotated by 180° around the gripper’s wrist axis
corresponds effectively to the same grasp, but leads to inconsistent loss signals as the network gets
penalized for regressing to one of the two alternative 3D rotations. To avoid this problem, we extend
the loss function to consider both correct rotations as ground truth options,

ET (f‘7 f‘) = min (‘Cquat (f'7 f')a Equat (f'; f'71')) . (3)

Since it is impractical to collect target values for every voxel of the network output, we only com-
pute the loss and gradients through the voxels at which ground-truth data are available. In order to
generate a diverse set of labeled grasps spanning different amounts of clutter and the whole configu-
ration space of the gripper, we created virtual scenes for simulated grasping trials using two different
strategies, “pile” and “packed”. In the first scenario, objects are dropped into a box placed on a flat
surface. Removing the container leaves a cluttered pile of objects. In the second scenario, a subset of
taller objects are iteratively placed upright at random locations in the workspace, rejecting positions
that end up in collision with already placed objects. The first scenario favors top-down grasps while
the second scenario encourages side-grasps. In both cases, in each new scene we spawn m objects,
where m ~ Pois(4) + 1, though the placing procedure of “packed” scenes is interrupted after a
given maximum number of attempts. An example for each scenario is shown in Figure 2.

After the virtual scene has been created, we reconstruct a point cloud by fusing n ~ (1, 6) synthetic
depth images. The viewpoints of the virtual camera pointing towards the center of the workspace
with length [are sampled using spherical coordinates r ~ U(1.61,2.41), 6 ~ U(0,%), and ¢ ~
U(0,27). Next, we sample a point and associated normal from the reconstructed cloud. Applying

a random offset along the normal yields the position of the sample grasp candidate. In order to
obtain a ground truth grasp label, we test 6 different grasp orientations about the normal vector by
spawning the gripper at the given pose, then attempting to close the jaws and retrieve the object.
Configurations that lead to a collision with the environment are labeled as negative. In case of a
positive outcome, we store the orientation and gripper width in addition to the position and label. In
order to reuse storage and computation, we sample and evaluate 120 points from each cloud.

Using the described procedure, we generate a balanced dataset of approximately 2 million grasps by
discarding superfluous negative samples. Figure 2(d) shows the distribution of the angle between the
gravity vector and the z axis of the grasp over the training set. We can see that both top-down (~0°)
and side grasps (~90°) are well represented. Finally we train the FCN with the Adam optimizer
and a learning rate of 3 x 10~ for 10 epochs with batch sizes of 32. Samples are augmented with
random rotations of multiples of 90° about the gravity vector and random offsets along the z axis.

4.3 Grasp Detection

Given the output volumes of a trained VGN, we perform several steps in order to compute a list of
promising grasp candidates for a given scene. First, the grasp quality tensor is smoothed with a 3D
Gaussian kernel which favors grasps in regions of high grasp quality [10]. Next, we mask out vox-
els whose distance to the nearest surface is smaller than the finger depth as defined in Figure 2(c).
This step is required since we do not include such configurations in the training data as they cannot
possibly lead to successful grasps. A threshold on the grasp quality masks out voxels with low pre-
dicted scores and we apply non-maxima suppression. We construct a list of grasp candidates from
the remaining voxel indices by looking up the values for orientation and width from the respective
tensors. These grasp candidates are then transformed back into Cartesian coordinates using the in-
verse of Equation 1. Further filters could be applied depending on task-specific needs, e.g. enforcing
some constraints on the approach vector. An overview of the whole pipeline is shown in Figure 1.

5 Experiments

We perform a series of simulated and real robot experiments to evaluate our grasp detection pipeline.
The goals of the experiments are to (a) investigate the grasping performance of the approach, (b)
verify real-time grasp detection rates, and (c) determine whether the network can be transferred to a
physical system without additional fine-tuning.

5.1 Experimental Setup

The experimental setup consists of a 7 DOF Panda
arm from Franka Emika with a stock parallel-jaw
gripper. Grasps are planned in a 30 x 30 x 30 cm?
workspace located in front of the robot. For percep-
tion, we mounted an Intel RealSense D435 depth
sensor to the wrist of the hand as shown in Fig-
ure 1. The transformation between the gripper and
camera is calibrated using the procedure from Fur-
rer et al. [24] and the 640 x 480 depth images are
integrated into a TSDF with a resolution of N = 40
using the implementation from Open3D [25]. ROS
is used to handle all communication with the robot
and the sensor. We collected a set of 12 test objects
(shown in Figure 3) from classes similar to related Figure 3: The 12 test objects used in our
works [4, 11]. We did not consider any transparent, robot grasping experiments.

or reflective objects due to the limitations of the depth sensor.

We also built a simulated environment in PyBullet [26] mimicking the real setup which allows us to
generate large data sets of grasp trials, and to perform more extensive evaluations. Synthetic depth
images are generated using the bundled software renderer. We assembled a set of 343 object meshes
from different sources [27, 28, 29, 30] and split them into 303 training and 40 testing objects. All
meshes were inspected for water tightness, simplified, and scaled such that at least one side fits

Table 1: Success rates (%) and % cleared for simulated picking experiments on the two scenarios
with object counts m = {5, 10} averaged over 200/100 rounds respectively.

Method 5 objects 10 objects
Blocks Pile Packed Blocks Pile
GPD 88.6/394 599/26.1 73.7/72.8 87.7/248 63.1/17.0

VGN (e =0.95) 89.5/859 654/41.6 91.5/79.0 853/66.7 59.4/25.1
VGN (e =0.90) 87.6/90.1 623/464 87.6/804 825/77.6 59.3/34.6
VGN (e =0.80) 85.8/89.5 59.8/51.1 84.0/799 784/69.0 52.8/30.1

within the gripper. The whole pipeline is implemented in Python. Network training and simulated
experiments were performed on a computer equipped with an Intel Core i7-8700K and a GeForce
GTX 1080 Ti graphics card, while all computations on the robotic platform were performed on a
CPU-only machine with an Intel Core 17-8550U.

5.2 Simulated Experiments

In order to evaluate the grasping performance of VGN, we simulate a set of clutter removal bench-
mark scenarios. Each round, a new scene is generated with m € {5,10} objects following the
same “pile” or “packed” procedures used to generate the training dataset (see Section 4.2). We test
the performance using piles of simple geometric primitives (blocks), as well as piles and packed
scenes with the 40 previously unseen test objects. The input data is generated by fusing images ren-
dered from six viewpoints equally distributed along a circle placed 50 cm above the workspace. We
feed the reconstructed point cloud into VGN and randomly select a grasp that has a predicted grasp
quality higher than some threshold e € {0.80,0.90,0.95}. The random selection is used to avoid
repeatedly executing a bad grasp in case of a false positive, however this could also be resolved with
some additional bookkeeping. Varying e allows us to limit candidates to those with high predicted
scores at the risk of a lower recall. Once a grasp is selected, we spawn the gripper at a pre-grasp
pose, then linearly move along the approach vector until either the grasp pose is reached or a contact
is detected. Next, we close the jaws of the gripper with constant force. The grasp is recorded as a
success if the gripper can retreat without the object slipping out of the hand. One round of a clutter
removal experiment consists of running the previous steps until (a) no objects remain, (b) the grasp
planner fails to find a grasp hypothesis, or (c) two consecutive failed grasp attempts have occurred.

Performance is measured using the following three metrics averaged over 200/100 rounds with 5/10
objects, respectively:

o Success rate: the ratio of successful grasp executions,
o Percent cleared: the percentage of objects removed during each round,

o Planning time: the time between receiving a voxel grid and returning a list of grasps.

For comparison, we also report results from repeating the same experiments with Grasp Pose De-
tection (GPD) [4], an algorithm for synthesising 6 DOF grasps in clutter that only relies on a point
cloud reconstruction of the scene. Since GPD is stochastic by nature, we evaluate the highest ranked
grasp with a positive score, meaning that the algorithm expects the grasp to be successful.

Table 1 shows success rates and percent cleared for the different experimental scenarios. In the ex-
periments with 5 blocks, VGN achieves high success rates while clearing significantly more objects
compared to GPD, especially in the packed scenes. We observe that decreasing e results in lower
grasp success rates, which shows that the network captured a meaningful estimate of grasp quality.
The higher grasp success rates achieved with e = 0.95 come at the cost of removing fewer objects
from the scene, which is an expected trade-off. In general, we found that using a threshold of 0.9
leads to a good balance between success rate and percentage of cleared objects.

We also explored the performance in even denser scenes by running the same experiments with
an object count of 10. Note that we only evaluate the “pile” scenario since it is unlikely for our
“packed” scene generation procedure to place 10 objects in the workspace. We observe that both
methods suffer from the increased complexity of the generated scenes. While the grasp success rates

@/ B Q &

Figure 4: Examples of real world grasps detected by VGN (a)-(b). (c) shows a typical failure case
for our model where the fingers slip off the cylinder-shaped object due to a small contact surface.
The system is also capable of side-grasps (d) and picking the thin rim of bowls (e).

of GPD are impacted less, the algorithm seems more conservative removing only a fraction of the
objects. We found the failure cases of VGN to be similar to the ones with smaller object numbers,
consisting of a mix of small errors in position and orientation leading to objects slipping out of the
hand, and occasional collisions between the gripper and its environment.

Where our method really shines is computation times. Inference of VGN on a GPU-equipped work-
station is really fast, requiring only 10 ms, while GPD on average required 1.2s to plan grasps on
the same computer.

5.3 Real Robot Experiments

To validate that our model transfers to a real system with noisy sensing and imperfect calibration
and control, we performed 10 rounds of table clearing experiments with a similar protocol to the
simulation experiments. Each round, we randomly select 6 from the 12 test objects, place them in
a box, shake the box to remove bias, then pour the contents of the box on a table in front of the
robot. Each trial, the robot constructs the input to the grasp planner by continuously integrating the
stream of incoming depth images along a pre-defined scan trajectory. For the grasp selection, we
follow the approach of Gualtieri et al. [4] and execute the highest grasp candidate to avoid collisions
between the robot arm and other objects in the scene. Grasps are recorded as a success if the robot
successfully moves the object to a target bin located next to the workspace. We repeat the pipeline
until either all objects are removed or two consecutive failed grasp attempts occur. We use the same
trained network as in the simulated experiments with a grasp quality threshold € of 0.9.

Out of the 68 total grasp attempts, 55 were successful resulting in a success rate and percent cleared
of 80% and 92%, respectively. Figure 4 shows some examples of successful and failed grasps. We
observed that almost all failures (9/13) occurred while attempting a grasp on either the lint roller
or hand gel. The reason for these failures was lack of friction when the fingers were not placed
deep enough on these cylindrical objects as seen in Figure 4(c). The root of this problem lies within
the data generation procedure. Since the contact and friction models of the physics simulator used
do not reflect the real world perfectly, configurations like the ones just described often result in a
success in simulation, explaining the confident prediction of VGN. The remaining failures were one
collision with an object and three additional unstable grasps that resulted in the object slipping out of
the hand. Two objects were pushed out of the workspace during grasp execution and therefore could
not be moved to the target container. Since the on-board computer of the robotic platform does not
have a GPU, we ran inference on the CPU only, taking on average 1.25s, significantly longer than
using a dedicated graphics card.

We ran our grasping algorithm on 3 additional scenes consisting each of 4 packed, standing objects,
including two bowls. There we showcase the flexibility of our system as the robot successfully
performs a side-grasp on the lint roller and also manages to compute grasps on the thin edges of the
bowls. In these three rounds, all objects were removed at first try except a box that was knocked
over by the arm while moving a grasped object to the target container.

6 Conclusion

In this work, we presented our Volumetric Grasping Network, an end-to-end grasp synthesis ap-
proach that generates 6 DOF grasp proposals with a single forward pass of a Fully Convolutional
Neural Network. We showed that we can train such a network on synthetic grasping trials to per-
form well in highly cluttered scenes without explicit collision checking. We also highlighted the
efficiency of the approach when paired with a modern Graphics Processing Unit. We demonstrated
that the model transfers directly to a real robotic setup without any additional adjustments thanks
to the TSDF-based approach. Nevertheless, during the real robot experiments, we identified some
limitations of training only on simulated data. It would be interesting to investigate whether intro-
ducing an adversarial test to the physics simulation similar to [31] would allow us to overcome this
issue. Also, while the presented approach can be easily scaled to different gripper geometries, this
needs to be verified with further experiments. Finally, in a next step we would like to build on top
of the real-time capabilities by closing the visual feedback loop, either to react to dynamic changes
or to re-plan the grasp execution online instead of relying on a fixed scan trajectory.

Acknowledgments

This work was funded in part by ABB Corporate Research, the Amazon Research Awards program,
and the Luxembourg National Research Fund (FNR) 12571953.

References

[1] J. Bohg, A. Morales, T. Asfour, and D. Kragic. Data-driven grasp synthesis-a survey. IEEE
Transactions on Robotics, 30(2):289-309, Apr. 2014.

[2] L. Lenz, H. Lee, and A. Saxena. Deep learning for detecting robotic grasps. The International
Journal of Robotics Research, Mar. 2015.

[3] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. Aparicio, and K. Goldberg. Dex-
net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp
metrics. In Robotics: Science and Systems XIII, volume 13, July 2017.

[4] M. Gualtieri, A. ten Pas, K. Saenko, and R. Platt. High precision grasp pose detection in dense
clutter. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 598-605, Oct. 2016.

[5] J. Lundell, F. Verdoja, and V. Kyrki. Beyond top-grasps through scene completion. In 2020
IEEE International Conference on Robotics and Automation (ICRA), pages 545-551, 2020.

[6] C. Choi, W. Schwarting, J. DelPreto, and D. Rus. Learning object grasping for soft robot
hands. IEEE Robotics and Automation Letters, 3(3):2370-2377, July 2018.

[7] A.Mousavian, C. Eppner, and D. Fox. 6-dof graspnet: Variational grasp generation for object
manipulation. In Proceedings of the IEEE International Conference on Computer Vision, pages
2901-2910, 2019.

[8] A. Murali, A. Mousavian, C. Eppner, C. Paxton, and D. Fox. 6-DOF grasping for target-
driven object manipulation in clutter. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 6232-6238, 2020.

[9] L. Pinto and A. Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and
700 robot hours. In 2016 IEEE International Conference on Robotics and Automation (ICRA),
pages 3406-3413, May 2016.

[10] E. Johns, S. Leutenegger, and A. J. Davison. Deep learning a grasp function for grasping
under gripper pose uncertainty. In 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 4461-4468, Oct. 2016.

[11] D. Morrison, J. Leitner, and P. Corke. Closing the loop for robotic grasping: A real-time,
generative grasp synthesis approach. In Robotics: Science and Systems XIV, volume 14, June
2018.

[12] I. Lenz, H. Lee, and A. Saxena. Deep learning for detecting robotic grasps. In Robotics:
Science and Systems IX, volume 09, June 2013.

[13] S. Kumra and C. Kanan. Robotic grasp detection using deep convolutional neural networks.
In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
769-776, Sept. 2017.

[14] H. Liang, X. Ma, S. Li, M. Gorner, S. Tang, B. Fang, F. Sun, and J. Zhang. PointNetGPD:
Detecting grasp configurations from point sets. In 2019 International Conference on Robotics
and Automation (ICRA), pages 3629-3635, May 2019.

[15] Q. Lu and T. Hermans. Modeling grasp type improves learning-based grasp planning. IEEE
Robotics and Automation Letters, 4(2):784-791, Apr. 2019.

[16] B. Curless and M. Levoy. A volumetric method for building complex models from range
images. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques, pages 303-312, 1996.

[17] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto. Voxblox: Incremental 3d eu-
clidean signed distance fields for on-board mav planning. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1366—1373, Sept. 2017.

[18] M. Van der Merwe, Q. Lu, B. Sundaralingam, M. Matak, and T. Hermans. Learning continuous
3d reconstructions for geometrically aware grasping. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 11516-11522, May 2020.

[19] X. Yan, J. Hsu, M. Khansari, Y. Bai, A. Pathak, A. Gupta, J. Davidson, and H. Lee. Learn-
ing 6-dof grasping interaction via deep geometry-aware 3d representations. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 3766-3773, May 2018.

[20] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser. Learning synergies
between pushing and grasping with self-supervised deep reinforcement learning. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 4238—
4245, Oct. 2018.

[21] V. Satish, J. Mahler, and K. Goldberg. On-policy dataset synthesis for learning robot grasping
policies using fully convolutional deep networks. IEEE Robotics and Automation Letters, 4
(2):1357-1364, Apr. 2019.

[22] R. M. Grassmann and J. Burgner-Kahrs. On the merits of joint space and orientation repre-
sentations in learning the forward kinematics in se(3). In Robotics: Science and Systems XV,
volume 15, June 2019.

[23] J. J. Kuftner. Effective sampling and distance metrics for 3d rigid body path planning. In IEEE
International Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004,
volume 4, pages 3993-3998 Vol.4, Apr. 2004.

[24] F. Furrer, M. Fehr, T. Novkovic, H. Sommer, 1. Gilitschenski, and R. Siegwart. Evaluation
of combined time-offset estimation and hand-eye calibration on robotic datasets. In Field and
Service Robotics, pages 145-159. Springer, 2018.

[25] Q.-Y. Zhou, J. Park, and V. Koltun. Open3d: A modern library for 3d data processing.
arXiv:1801.09847 [cs], Jan. 2018.

[26] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning, 2020.

[27] A.Kasper, Z. Xue, and R. Dillmann. The kit object models database: An object model database
for object recognition, localization and manipulation in service robotics. The International
Journal of Robotics Research, 31(8):927-934, July 2012.

[28] A. Singh, J. Sha, K. S. Narayan, T. Achim, and P. Abbeel. Bigbird: A large-scale 3d database of
object instances. In 2014 IEEE International Conference on Robotics and Automation (ICRA),
pages 509-516, May 2014.

[29] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar. The ycb object and
model set: Towards common benchmarks for manipulation research. In 2015 International
Conference on Advanced Robotics (ICAR), pages 510-517, July 2015.

[30] D. Kappler, J. Bohg, and S. Schaal. Leveraging big data for grasp planning. In 2015 IEEE
International Conference on Robotics and Automation (ICRA), pages 4304-4311, May 2015.

[31] L. Pinto, J. Davidson, and A. Gupta. Supervision via competition: Robot adversaries for
learning tasks. In 2017 IEEE International Conference on Robotics and Automation (ICRA),
pages 1601-1608. IEEE, 2017.

10

