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Summary. We analyze mixed hp-discontinuous Galerkin finite element
methods (DGFEM) for Stokes flow in polygonal domains. In conjunction
with geometrically refined quadrilateral meshes and linearly increasing
approximation orders, we prove that the hp-DGFEM leads to exponential
rates of convergence for piecewise analytic solutions exhibiting singularities
near corners.

Mathematics Subject Classification (2000): 65N30

1 Introduction

Over the last few years, several mixed discontinuous Galerkin finite element
methods (DGFEM) have been proposed for the discretization of incompress-
ible fluid flow problems. We mention here only the piecewise solenoidal
discontinuous Galerkin methods introduced in [5,25], the local discontinu-
ous Galerkin methods of [12,11], and the interior penalty methods studied
in [24,33,18]. Some of the main motivations that led to the above methods
are the following: First of all, the discontinuous nature of the finite element
spaces allows one to easily treat convective terms by suitable upwind fluxes,
similarly to the original discontinuous Galerkin discretizations of (non-lin-
ear) hyperbolic equations (see [13,10,14] and the references therein). Thus,
mixed DG methods provide robust and high-order accurate approximations
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particularly in transport-dominated regimes; see, e.g., [25,11,18] for mixed
DGFEM for the Navier-Stokes and Oseen equations. Moreover, discontinu-
ous Galerkin approaches are extremely flexible in the mesh-design; meshes
with hanging nodes, elements of various types and shapes, and local spaces
of different orders can be easily dealt with. Finally, mixed DG methods are
remarkably flexible in the choice of velocity-pressure combinations, without
extensive stabilization techniques. In the discontinuous Galerkin context, for
example, no extra stabilization is needed to use optimal mixed-order elements
where the approximation degree for the pressure is of one order lower than
that of the velocity; see [24,33] for details.

The recent work [29] presented a unifying framework for the analysis
of mixed hp-DGFEM for pure Stokes flow. For Qk − Qk−1 elements, the
dependence of the discrete inf-sup constant on the polynomial degree k was
shown to be of the order O(1/k), for two- and three-dimensional domains.
In three dimensions, this is exactly the same bound as that of [32] for con-
forming mixed hp-FEM, but with an optimal gap of one order in the finite
element spaces for the velocity and the pressure. The results in [29] then
ensure (slightly suboptimal) error bounds for the p-version of the DGFEM
where convergence is obtained by increasing the polynomial approximation
order on a fixed (quasi-uniform) mesh. However, these bounds give alge-
braic rates of convergence and are restricted to piecewise smooth solutions;
an assumption that is unrealistic in domains with corners, due to the presence
of corner singularities, see, e.g., [15,26,23]. For conforming mixed meth-
ods, similar p-version results can be found in, e.g., [6,32,8,31,7] and the
references cited therein.

In this paper, we extend the hp-approach of [29] to mixed hp-DGFEM for
Stokes flow in polygonal domains where the exact solutions are piecewise
analytic, but exhibit singularities at the corners. To describe the regularity
of the exact solutions, we use a recent result from [23] that measures ana-
lytic regularity in terms of the countably normed, weighted spaces that were
introduced by Babuška and Guo for closely related potential and elasticity
problems; see [20,21,19,2–4,22,30] and the references cited therein. The
reduced regularity near corners imposes several technical difficulties and
requires a careful treatment of the elements and the numerical fluxes at the
vertices of the domain. By the use of new trace theorems for functions in
weighted Sobolev spaces, we first show that the mixed hp-DGFEM is in
fact well-defined. Then, we employ standard hp-version mesh design prin-
ciples to resolve corner singularities: namely, we use meshes that are geo-
metrically refined towards corners and approximation degrees that increase
linearly away from corners. We show that this combination of h- and p-refine-
ment leads to exponential rates of convergence. For hp-DGFEM discretiza-
tions of scalar diffusion problems an analogous result was recently obtained
in [35].
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To prove exponential convergence for our mixed methods, we use several
ingredients from the analysis of conforming mixed hp-FEM for Stokes flow
on geometric meshes; see, e.g., [31,30,28], combined with the techniques
that were developed in [35,34] to treat diffusion and elasticity problems in
polygons. Furthermore, we use the setting of [29] to derive the exponen-
tial convergence result. Exemplarily, we only consider the so-called interior
penalty DGFEM, but point out that our results hold true verbatim for all the
DG methods studied in [29]. We also note that our analysis can be straight-
forwardly extended to mixed formulations of linear elasticity problems with
nearly incompressible materials; see, e.g., [9,16].

The outline of the paper is as follows. In Section 1.1 we begin by introduc-
ing some notational conventions that we use throughout the paper. Section 2
reviews the analytic regularity of the Stokes problem in polygonal domains. In
Section 3, we introduce meshes and establish several properties of functions
on the elements near the corners of the domain. The hp-DGFEM discret-
ization of the Stokes problem is introduced in Section 4. In Section 5, we
derive abstract error estimates for piecewise analytic solutions. Section 6 is
devoted to the main result of this paper; we prove that the hp-DGFEM is
exponentially convergent. We end our presentation with concluding remarks
in Section 7.

1.1 Notation

For a bounded Lipschitz domain D in R
d , d ≥ 1, we denote by Lp(D),

1 ≤ p ≤ ∞, the Lebesgue space of p-integrable functions, endowed with the
norm ‖ · ‖Lp(D). We set L2

0(D) := {q ∈ L2(D) :
∫
D

q dx = 0}. The space of
p-times continuously differentiable functions on D is Cp(D), 0 ≤ p ≤ ∞,
equipped with the usual norm ‖ · ‖Cp(D). The standard Sobolev space of
functions with integer or fractional regularity exponent s > 0 is denoted
by Hs(D). We write ‖ · ‖Hs(D) and | · |Hs(D) for its norm and seminorm,
respectively, and set H 0(D) = L2(D). The trace space of H 1(D) is denoted
by H

1
2 (∂D) and, as usual, we define H 1

0 (D) as the subspace of functions
in H 1(D) with zero trace on ∂D. The dual space of H 1

0 (D) is denoted by
H−1(D). For a function space X(D) we write X(D)d and X(D)d×d to denote
vector and tensor fields whose components belong to X(D), respectively.
Without further specification, these spaces are equipped with the usual prod-
uct norms (which we simply denote by ‖ · ‖X(D)). For vectors v, w ∈ R

d ,
and matrices σ , τ ∈ R

d×d , we use the standard notation (∇v)ij = ∂jvi ,
(∇ · σ)i = ∑d

j=1 ∂jσij , and σ : τ = ∑d
i,j=1 σij τij . Furthermore, we denote

by v ⊗ w the matrix whose ij -th component is vi wj , and use the identity
v · σ · w = ∑d

i,j=1 viσijwj = σ : (v ⊗ w).
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2 The Stokes problem with piecewise analytic data

2.1 The Stokes equations

Let � ⊂ R
2 be a polygonal and bounded domain. The Stokes problem is to

find a velocity field u and a pressure p such that

−�u + ∇p = f in �,

∇ · u = 0 in �,

u = g on ∂�.(1)

Here, the right-hand side f ∈ H−1(�)2 is an exterior body force, and g ∈
H

1
2 (∂�)2 a prescribed Dirichlet datum satisfying the compatibility condition∫

∂�
g · n ds = 0, with n denoting the outward unit normal vector to ∂�.
The mixed variational form of the Stokes equations reads as follows: find

(u, p) ∈ H 1(�)2 × L2
0(�), with u = g on ∂�, such that

{ ∫
�

∇u : ∇v dx − ∫
�

p ∇ · v dx = 〈f, v〉
∫
�

q ∇ · u dx = 0
(2)

for all (v, q) ∈ H 1
0 (�)2 × L2

0(�). Here, 〈·, ·〉 denotes the standard duality
pairing in H−1(�)2 × H 1

0 (�)2. It is well known that, due to the contin-
uous inf-sup condition, the Stokes system has a unique solution (u, p) in
H 1(�)2 × L2

0(�); see, e.g., [9,17] for details.

2.2 Analytic regularity in polygonal domains

For piecewise analytic data, the regularity of the exact solution (u, p) of the
Stokes system was recently described by Guo and Schwab [23] in terms of
the weighted Sobolev spaces that were originally introduced by Babuška and
Guo for closely related elasticity and potential problems; see [20,21,19,2–4,
22,30] and the references cited therein. To define these weighted spaces, let
{Ai}Mi=1 denote the vertices of the domain �. To each vertex Ai we assign a
weight βi ≥ 0 and store these numbers in the M-tuple β = (β1, . . . , βM).
We define β ± j := (β1 ± j, . . . , βM ± j) and use the shorthand notation
C1 > β > C2 to mean C1 > βi > C2 for i = 1, . . . , M . For r∗

i (x) =
min{1, |x − Ai |} we define the weight function �β(x) := ∏M

i=1 r∗
i (x)βi , and

introduce the seminorms

|u|2
H

k,l
β (�)

:=
k∑

|α|≥l

‖�β+|α|−lD
αu‖2

L2(�)
, k ≥ l ≥ 0.
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We denote by H
k,l
β (�) the completion of C∞(�) with respect to the norm

‖u‖2
H

k,l
β (�)

:= ‖u‖2
Hl−1(�)

+ |u|2
H

k,l
β (�)

, l ≥ 1,

‖u‖2
H

k,0
β (�)

:=
k∑

|α|=0

‖�β+|α|Dαu‖2
L2(�)

.

Definition 1 For an M-tuple β = (β1, . . . , βM) and l ≥ 0, the countably

normed space Bl
β(�) consists of all functions u for which u ∈ H

k,l
β (�) for

k ≥ l and

‖�β+k−lD
αu‖L2(�) ≤ Cd(k−l)(k − l)!, |α| = k ≥ l,

for some constants C > 0, d ≥ 1 independent of k.

We remark that B2
β(�) �⊂ H 2(�) and B1

β(�) �⊂ H 1(�). However,

B2
β(�) ⊂ C0(�) and B1

β(�int) ⊂ C0(�int), for all interior domains �int

with �int ⊂ � \ {Ai}Mi=1.
For a noninteger exponent k, the space H

k,l
β (�) is defined by interpola-

tion. Finally, we define H
k− 1

2 ,l− 1
2

β (∂�) and B
l− 1

2
β (∂�) as spaces of traces of

functions in H
k,l
β (�) and Bl

β(�), respectively. The space H
k− 1

2 ,l− 1
2

β (∂�) is
endowed with the norm

‖g‖
H

k− 1
2 ,l− 1

2
β (∂�)

= inf{ ‖u‖
H

k,l
β (�)

: u|∂� = g }.

The following regularity result will be the basis of our analysis; its proof
can be found in [23].

Theorem 1 There exist a weight vector 0 ≤ β
min

< 1 depending on the

opening angles of � at the vertices {Ai}Mi=1 such that for weight vectors β

with β
min

< β < 1 and piecewise analytic data

f ∈ B0
β(�)2, g ∈ B

3
2
β (∂�)2,(3)

the solution (u, p) of the Stokes system satisfies

u ∈ B2
β(�)2, p ∈ B1

β(�).(4)

We point out that, in particular, Theorem 1 implies that

u ∈ H
2,2
β (�)2, p ∈ H

1,1
β (�), ∇u ∈ H

1,1
β (�)2×2,(5)

and

−�u + ∇p = f in H
0,0
β (�)2.(6)

Throughout the paper, the smoothness property in Theorem 1 is assumed to
hold for a weight vector β with β

min
< β < 1.
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3 Meshes and trace operators

In this section, we introduce the trace operators that are needed to define
the interelemental terms in the DGFEM. Furthermore, we prove a series of
technical results that allow us to properly treat the elements at the vertices of
the computational domain. Similar results were used recently in [35,34] to
analyze hp-DGFEM for diffusion and elasticity problems.

3.1 Meshes

Throughout, we assume that the domain � can be subdivided into shape-
regular affine meshes Th = {K} consisting of parallelograms K . For each
K ∈ Th, we denote by nK the outward unit normal vector to the boundary ∂K ,
and by hK the elemental diameter. Furthermore, we assign to each element
K ∈ Th an approximation order kK ≥ 1. The local quantities hK and kK are
stored in the vectors h = {hK}K∈Th

and k = {kK}K∈Th
, respectively. We set

h = maxK∈Th
hK and |k| = maxK∈Th

kK .
An interior edge of Th is the (non-empty) one-dimensional interior of

∂K+ ∩ ∂K−, where K+ and K− are two adjacent elements of Th. Similarly,
a boundary edge ofTh is the (non-empty) one-dimensional interior of ∂K∩∂�

which consists of entire edges of ∂K . We denote by EI the union of all interior
edges of Th, by ED the union of all boundary edges, and set E = EI ∪ ED.
Generally, we allow for irregular meshes, i.e., meshes with hanging nodes
(see [30, Sect. 4.4.1]), but suppose that the intersection between neighboring
elements is either a common vertex or a common edge of one of the two
elements. We also assume the local mesh sizes and approximation degrees to
be of bounded variation: that is, there is a constant κ > 0 such that

κhK ≤ hK ′ ≤ κ−1hK, κkK ≤ kK ′ ≤ κ−1kK,(7)

whenever K and K ′ share a common edge.

3.2 Averages and jumps

Next, we define average and jump operators. To this end, let K+ and K− be
two adjacent elements of Th; let x be an arbitrary point of the interior edge
e = ∂K+ ∩∂K− ⊂ EI . Let q, v, and τ be scalar-, vector-, and matrix-valued
functions, respectively, that are smooth inside each element K±, and let us
denote by (q±, v±, τ±) the traces of (q, v, τ ) on e taken from within the
interior of K±. Then, we define the following averages at x ∈ e

{{q}} = (q+ + q−)/2, {{v}} = (v+ + v−)/2, {{τ }} = (τ+ + τ−)/2.
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Similarly, the jumps at x ∈ e are given by

[[[[[[q]]]]]] = q+ nK+ + q− nK−, [[[[[[v]]]]]] = v+ · nK+ + v− · nK−,

[[v]] = v+ ⊗ nK+ + v− ⊗ nK−, [[[[[[τ]]]]]] = τ+nK+ + τ−nK− .

On boundary edges e ⊂ ED, we set {{q}} = q, {{v}} = v, {{τ }} = τ , as well as
[[[[[[q]]]]]] = qn, [[v]] = v · n, [[v]] = v ⊗ n, and [[[[[[τ]]]]]] = τn.

3.3 Elements near vertices

To account for the singular behavior of solutions near the vertices {Ai}Mi=1 of
the domain, we define the sets

Kvert = { K ∈ Th : K ∩ Ai �= ∅ for some 1 ≤ i ≤ M },
Kint = { K ∈ Th : K ∩ Ai = ∅ for all 1 ≤ i ≤ M }.

Let K ∈ Kvert. We always assume that the partitions Th are fine enough so that
exactly one vertex belongs to element K . We denote this vertex by AK and
the corresponding weight exponent by βK ∈ [0, 1). The spaces H

k,�
βK

(K) are
defined as in Section 2, but equipped with the weight function �βK

(x) = rβK ,
with r denoting the distance to the corner AK . We have the following auxiliary
results.

Lemma 1 Let K ∈ Kvert. Then:

1. We have H
0,0
βK

(K) ⊂ L1(K) and

‖ϕ‖L1(K) ≤ Ch
1−βK

K ‖ϕ‖
H

0,0
βK

(K)
, ∀ϕ ∈ H

0,0
βK

(K).

2. Let ϕ ∈ H
0,0
βK

(K) and v ∈ L∞(K). Then the integral
∫
K

ϕv dx is well-

defined and | ∫
K

ϕv dx| ≤ Ch
1−βK

K ‖v‖L∞(K)‖ϕ‖
H

0,0
βK

(K)
.

3. Let ϕ ∈ H
1,1
βK

(K). Then the trace ϕ|∂K belongs to L1(∂K) and satisfies

‖ϕ‖L1(∂K) ≤ C
(‖ϕ‖L2(K) + h

1−βK

K |ϕ|
H

1,1
βK

(K)

)
.

All the constants C > 0 are independent of h and of k.

Proof. For ϕ ∈ H
0,0
βK

(K), we have
∫

K

|ϕ| dx ≤ ‖r−βK ‖L2(K)‖rβK ϕ‖L2(K) = ‖r−βK ‖L2(K)‖ϕ‖
H

0,0
βK

(K)
.

Since ‖r−βK ‖L2(K) ≤ Ch
1−βK

K , the first assertion follows. The second asser-
tion follows then straightforwardly from Hölder’s inequality. To prove the
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third assertion, let ϕ ∈ H
1,1
βK

(K). From the standard trace theorem and a
scaling argument, we have

‖ϕ‖L1(∂K) ≤ C
(
h−1

K ‖ϕ‖L1(K) + ‖∇ϕ‖L1(K)

)
.

First, we note that h−1
K ‖ϕ‖L1(K) ≤ C‖ϕ‖L2(K). Next, since ∇ϕ ∈ H

0,0
βK

(K)2,

we have ‖∇ϕ‖L1(K) ≤ Ch
1−βK

K |ϕ|
H

1,1
βK

(K)
, which is a consequence of the first

assertion and the definition of the seminorm | · |
H

1,1
βK

(K)
. This completes the

proof. ��
Lemma 2 Let K ∈ Kvert, τ ∈ H

1,1
βK

(K)2×2 and v ∈ C1(K)2. Then the
following integration by parts formula holds

∫

K

∇ · τ · v dx = −
∫

K

τ : ∇v dx +
∫

∂K

τ : (v ⊗ nK) ds,

where the term on the left and the boundary term are understood as L1 ×L∞

pairings.

Proof. We start by noting that all the integrals above are well-defined due to
Lemma 1 and the fact that ∇ · τ ∈ H

0,0
βK

(K)2. Furthermore, since C∞(K) is

dense in H
1,1
βK

(K), there exists a sequence {τn} ⊂ C∞(K)2×2 with τn → τ

in H
1,1
βK

(K)2×2. Clearly,
∫

K

∇ · τn · v dx = −
∫

K

τn : ∇v dx +
∫

∂K

τn : (v ⊗ nK) ds.

The trace estimate from Lemma 1 yields

∣
∣
∣

∫

∂K

(τ − τn) : (v ⊗ nK) ds

∣
∣
∣ ≤ C‖v‖L∞(∂K)‖τ − τn‖H

1,1
βK

(K)
.

Furthermore, again with Lemma 1,

∣
∣
∣

∫

K

∇ · (τ − τn) · v dx
∣
∣
∣ ≤ ‖v‖L∞(K)‖∇ · (τ − τn)‖L1(K)

≤ Ch
1−βK

K ‖v‖L∞(K)‖τ − τn‖H
1,1
βK

(K)
,

and
∣
∣
∣

∫

K

(τ − τn) : ∇v dx
∣
∣
∣ ≤ ‖∇v‖L2(K)‖τ − τn‖L2(K)

≤ ‖∇v‖L2(K)‖τ − τn‖H
1,1
βK

(K)
.

Passing to the limit finishes the proof. ��
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Lemma 3 Let the exact solution (u, p) of the Stokes system satisfy (4). For
an interior edge e ⊂ EI , we have that [[[[[[∇u − pI]]]]]] = 0 on e.

Proof. We first note that ∇u−pI belongs to C0(�int) for all interior domains
�int with �int ⊂ �\{Ai}Mi=1. Hence, if e∩{Ai}Mi=1 = ∅, we immediately have
that[[[[[[∇u−pI]]]]]] = 0 on e. Let us next consider the case where e∩{Ai}Mi=1 = Aj

for a vertex Aj . We may assume that the edge is parameterized by e = ϕ(t),
t ∈ [0, 1], with ϕ(0) = Aj . Then,

∫ 1

ε

|[[[[[[∇u − pI]]]]]]| |ϕ′(t)| dt = 0,

for all ε > 0. Thanks to (5), we have ∇u − pI ∈ H
1,1
β (�)2×2. Thus, [[[[[[∇u −

pI]]]]]] ∈ L1(e)2, according to Lemma 1. We conclude with the dominated
convergence theorem that

∫ 1

0
|[[[[[[∇u − pI]]]]]]| |ϕ′(t)| dt = 0,

and thus [[[[[[∇u − pI ]]]]]] = 0 on e. ��

4 Discontinuous Galerkin discretization

In this section, we introduce discontinuous Galerkin methods for the Stokes
problem and review their well-posedness, using the recent results in [29].

4.1 Mixed DGFEM

Given a mesh Th and a degree vector k = {kK}, kK ≥ 1, we approximate the
Stokes problem by finite element functions (uh, ph) ∈ Vh × Qh where

Vh = { v ∈ L2(�)2 : v|K ∈ QkK (K)2, K ∈ Th },
Qh = { q ∈ L2

0(�) : q|K ∈ QkK−1(K), K ∈ Th }.
Here, Qk(K) denotes the space of polynomials of degree at most k ≥ 0 in
each variable on K . For further reference, we also define the space

Q̃h = { q ∈ L2(�) : q|K ∈ QkK−1(K), K ∈ Th }.
We consider the mixed method: find (uh, ph) ∈ Vh × Qh such that

{
Ah(uh, v) + Bh(v, ph) = Fh(v)

−Bh(uh, q) = Gh(q)
(8)
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for all (v, q) ∈ Vh × Qh. The forms Ah and Bh are discontinuous Galer-
kin forms that discretize the Laplacian and the incompressibility constraint,
respectively, with corresponding right-hand sides Fh and Gh. These forms
are given by

Ah(u, v) =
∫

�

∇hu : ∇hv dx −
∫

E

({{∇hv}} : [[u]] + {{∇hu}} : [[v]]
)
ds

+
∫

E
c[[u]] : [[v]] ds,

Bh(v, q) = −
∫

�

q ∇h · v dx +
∫

E
{{q}}[[v]] ds,

Fh(v) =
∫

�

f · v dx −
∫

ED
(g ⊗ n) : ∇hv ds +

∫

ED
cg · v ds,

Gh(q) = −
∫

ED
q g · n ds.

Here, ∇h and ∇h· denote the discrete gradient and divergence operator, taken
elementwise. The function c ∈ L∞(E) is the so-called discontinuity stabil-
ization function that is chosen as follows. Define the functions h ∈ L∞(E)

and k ∈ L∞(E) by

h(x) :=
{

min{hK, hK ′ }, x ∈ e = ∂K ∩ ∂K ′ ⊂ EI,

hK, x ∈ e = ∂K ∩ ∂� ⊂ ED,

k(x) :=
{

max{kK, kK ′ }, x ∈ e = ∂K ∩ ∂K ′ ⊂ EI,

kK, x ∈ e = ∂K ∩ ∂� ⊂ ED.

Then we set

c = γ h−1k2,

with a parameter γ > 0 that is independent of h and k.

Remark 1 It can be seen from (5) and the trace properties in Lemma 1 that
the forms Ah and Bh are well-defined when inserting the exact solution (u, p)

satisfying (4). Similarly, Fh and Gh are well-defined due to (3) and Lemma 1.

Remark 2 The form Ah corresponds to the so-called symmetric interior
penalty discretization of the Laplace operator; see [1] and [29] where the
presentation and analysis of several different DG methods were unified for
diffusion problems and the Stokes system, respectively. We emphasize that
all the results presented in this paper hold true verbatim for all the mixed
discontinuous Galerkin methods investigated in [29].
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4.2 Well-posedness and basic error estimates

Well-posedness of the discrete system (8) was established in [29], together
with basic error estimates for the approximate solutions. To discuss this, we
introduce the space

V(h) := Vh + H 1(�)2,(9)

endowed with the broken norm

‖v‖2
h = ‖∇hv‖2

L2(�)
+

∫

E
h−1k2|[[v]]|2 ds, v ∈ V(h).

We first note that the forms Ah and Bh are continuous on Vh and Qh, that
is

|Ah(v, w)| ≤ C‖v‖h‖w‖h, v, w ∈ Vh

|Bh(v, q)| ≤ C‖v‖h‖q‖L2(�), v ∈ Vh, q ∈ Qh,

with continuity constants C > 0 independent of h and k. Furthermore, there
exists a parameter γmin > 0 independent of h and k such that for any γ ≥ γmin

there exists a coercivity constant C > 0 independent of h and k with

Ah(v, v) ≥ C‖v‖2
h, v ∈ Vh.

Throughout, we assume that γ ≥ γmin. Finally, for kK ≥ 2, the following
discrete inf-sup condition for the finite element spaces Vh and Qh holds true:

inf
0 �=q∈Qh

sup
0 �=v∈Vh

Bh(v, q)

‖v‖h‖q‖L2(�)

≥ C|k|−1 > 0,

with a constant C > 0 that is independent of h and k.
The above properties of the forms Ah and Bh, combined with well-known

continuity properties for Fh and Gh, show the well-posedness of the problem
(8). The following abstract error bounds were obtained in [29, Sect. 3 and 4]:
let (u, p) be the exact solution of the Stokes system and (uh, ph) the discon-
tinuous Galerkin approximation (8). Then we have

‖u − uh‖h ≤ C|k|
[

inf
w∈Vh

‖u − w‖h + inf
q∈Qh

‖p − q‖L2(�)

+ sup
v∈Vh

|Rh(u, p; v)|
‖v‖h

]
,(10)

as well as

‖p − ph‖L2(�) ≤ C|k|2
[

inf
q∈Qh

‖p − q‖L2(�) + inf
w∈Vh

‖u − w‖h

+ sup
v∈Vh

|Rh(u, p; v)|
‖v‖h

]
,(11)
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where the constants C > 0 are independent of h and k. In the above esti-
mates (10) and (11), the term Rh(u, p; v) is a residual term that stems from
the nonconformity of the method and is defined and investigated next.

To define the term Rh(u, p; v), we introduce the auxiliary space

�h := { τ ∈ L2(�)2×2 : τ ∈ QkK (K)2×2, K ∈ Th }.
Moreover, we introduce the lifting operators L : V(h) → �h and M :
V(h) → Qh given by

∫

�

L(v) : τ dx =
∫

E
[[v]] : {{τ }} ds, ∀τ ∈ �h,

∫

�

M(v)q dx =
∫

E
[[v]]{{q}} ds, ∀q ∈ Qh.

The residual can be expressed as follows; see [29] for details.

Lemma 4 Let f ∈ B0
β(�)2. For test functions v ∈ Vh, we have

Rh(u, p; v) =
∫

�

[∇u − pI ] : ∇hv dx −
∫

�

∇u : L(v) dx

+
∫

�

pM(v) dx −
∫

�

f · v dx.

Remark 3 We point out that the regularity assumption (4) is not needed to
obtain the abstract error estimates (10) and (11) and the expression for the
residual in Lemma 4. The reason for this is that Ah and Bh can be extended in
a non-consistent way to continuous forms on V(h)×V(h) and V(h)×L2(�),
respectively, with V(h) defined in (9); see [29] for details. The only assump-
tion that is needed in Lemma 4 is that f ∈ B0

β(�)2 so as to make the integral
∫
�

f ·v dx well-defined for a test function v ∈ Vh. We will invoke the regular-
ity assumption (4) in the next section in order to show that Rh is convergent.

Remark 4 For DG discretizations on triangular meshes, the explicit depen-
dence of the discrete inf-sup condition on the approximation orders k seems
not be known and remains to be investigated. A similar remark applies to
non-affinely mapped quadrilaterals. This is the reason why we only consider
meshes consisting of parallelograms, resulting in some restrictions on the
types of polygons that can be subdivided accordingly.

5 Error analysis

In this section, we present an error analysis valid for piecewise analytic solu-
tions. Special care is required for the elements K ∈ Kvert near the vertices.
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5.1 The residual

For piecewise smooth solutions, the residual expression in Lemma 4 has
been shown to be optimally convergent in [29]. For solutions satisfying the
regularity assumption (4) a more careful investigation is needed.

Lemma 5 Assume (3) and (4). Let P : L2(�)2×2 → �h and P : L2
0(�) →

Qh denote the L2-projections onto �h and Qh, respectively. Then we have

Rh(u, p; v) =
∫

E
{{∇u − P(∇u)}} : [[v]] ds −

∫

E
{{p − P(p)}}[[v]] ds

for all v ∈ Vh.

Proof. We first note that, by definition of the lifting operators,
∫

�

∇u : L(v) dx =
∫

�

P (∇u) : L(v) dx =
∫

E
{{P(∇u)}} : [[v]] ds

and ∫

�

pM(v) dx =
∫

�

P (p)M(v) dx =
∫

E
{{P(p)}}[[v]] ds.

Furthermore, integrating by parts the expression in Lemma 4 over each ele-
ment K ∈ Th gives

Rh(u, p; v) =
∫

�

[−�u + ∇p − f] · v dx

+
∑

K∈Th

∫

∂K

(∇u − pI) : (v ⊗ nK) ds

−
∫

E
{{P(∇u)}} : [[v]] ds +

∫

E
{{P(p)}}[[v]] ds.

Note that all the integrals are well-defined in view of Lemma 1, Lemma 2,
(5) and (6). Elementary manipulations then show that

∑

K∈Th

∫

∂K

(∇u − pI) : (v ⊗ nK) ds =
∫

EI
[[[[[[∇u − pI]]]]]] · {{v}} ds

+
∫

E
{{∇u − pI }} : [[v]] ds.

Application of Lemma 3 yields

∑

K∈Th

∫

∂K

(∇u − pI) : (v ⊗ nK) ds =
∫

E
{{∇u}} : [[v]] ds −

∫

E
{{p}}[[[[[[v]]]]]] ds.

Combining the above results and observing that −�u+∇p = f in H
0,0
β (�)2,

from (6), yields the assertion. ��



352 D. Schötzau, T.P. Wihler

We have the following estimate of Rh.

Lemma 6 Assume (3) and (4). For v ∈ Vh, we have

|Rh(u, p; v)| ≤C‖v‖h

[‖u − w‖h + ‖p − q‖L2(�)

]

+
∣
∣
∣

∫

E
{{∇u − ∇w}} : [[v]] ds −

∫

E
{{p − q}}[[v]] ds

∣
∣
∣

for any (w, q) ∈ Vh × Qh.

Proof. Let (w, q) ∈ Vh × Qh be arbitrary. From the result in Lemma 5 and
since the L2-projections reproduce polynomials in �h and Qh, respectively,
we obtain

Rh(u, p; v) =
∫

E
{{∇u − ∇hw − P(∇u − ∇hw)}} : [[v]] ds

−
∫

E
{{p − q − P(p − q)}}[[v]] ds.

The term T with the L2-projections can be bounded by

|T | =
∣
∣
∣

∫

E
{{P(∇u − ∇hw)}} : [[v]] ds −

∫

E
{{P(p − q)}}[[v]] ds

∣
∣
∣

≤ C‖v‖h

∑

K∈Th

[hK

k2
K

‖P(∇u − ∇hw)‖2
L2(∂K)

+hK

k2
K

‖P(p − q)‖2
L2(∂K)

]1/2

≤ C‖v‖h

[‖P(∇u − ∇hw)‖L2(�) + ‖P(p − q)‖L2(�)

]

≤ C‖v‖h

[‖u − w‖h + ‖p − q‖L2(�)

]
.

Here, we used the Cauchy-Schwarz inequality, the definition of h and k, the
fact that |[[v]]|2 ≤ |[[v]]|2, the discrete trace inequality

‖ϕ‖2
L2(∂K)

≤ Ck2
Kh−1

K ‖ϕ‖2
L2(K)

,

valid for polynomials ϕ ∈ QkK (K), and the stability of the L2-projections.
The triangle inequality completes the proof. ��

5.2 Error estimates

In this section, we combine the bounds (10) and (11) with the ones in Lemma 6
to obtain the following result.
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Theorem 2 Assume (3), let the exact solution (u, p) of the Stokes system
satisfy (4), and let (uh, ph) be the discontinuous Galerkin approximation (8)
with kK ≥ 2, for all K ∈ Th. Then, for any (w, q̃) ∈ Vh × Q̃h, we have the
error bound

‖u − uh‖h + ‖p − ph‖L2(�) ≤ C |k|3 [
E1 + E2 + E3

]
,

where

E2
1 =

∑

K∈Th

[ |u − w|2
H 1(K)

+ h−2
K ‖u − w‖2

L2(K)
+ ‖p − q̃‖2

L2(K)

]
,

E2
2 =

∑

K∈Kint

h2
K

[ |u − w|2
H 2(K)

+ |p − q̃|2
H 1(K)

]
,

E2
3 =

∑

K∈Kvert

h
2(1−βK)

K

[ |u − w|2
H

2,2
βK

(K)
+ |p − q̃|2

H
1,1
βK

(K)

]
.

The constant C > 0 is independent of h and k.

Proof. Let w ∈ Vh, q̃ ∈ Q̃h be arbitrary. Set q := q̃ − 1
|�|

∫
�

q̃ dx ∈ Qh.
Then, the bounds from (10), (11) and Lemma 6 yield

‖u − uh‖h + ‖p − ph‖L2(�)

≤ C|k|2
[
‖u − w‖h + ‖p − q‖L2(�) + sup

v∈Vh

|Eh(u − w, p − q; v)|
‖v‖h

]
,(12)

with Eh given by

Eh(u − w, p − q; v) =
∫

E
{{∇u − ∇hw}} : [[v]] ds −

∫

E
{{p − q}}[[v]] ds.

In the following, we estimate the right-hand side of (12) in terms of the error
contributions {Ei}3

i=1.
First, using the shape-regularity of the mesh, property (7), and the trace

inequality

‖ϕ‖2
L2(∂K)

≤ C
[
h−1

K ‖ϕ‖2
L2(K)

+ hK |ϕ|2
H 1(K)

]
, ∀ϕ ∈ H 1(K),

valid with a constant C > 0 independent of h and k, yields

‖u − w‖2
h =

∑

K∈Th

|u − w|2
H 1(K)

+
∫

E
h−1k2|[[u − w]]|2 ds

≤
∑

K∈Th

|u − w|2
H 1(K)

+ C
∑

K∈Th

h−1
K k2

K‖u − w‖2
L2(∂K)

≤ C|k|2
∑

K∈Th

[
h−2

K ‖u − w‖2
L2(K)

+ |u − w|2
H 1(K)

]

≤ C|k|2E2
1 .(13)
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Next, since
∫
�

p dx = ∫
�

q dx = 0, we have

‖p − q‖L2(�) = ‖p − q̃ − |�|−1
∫

�

(p − q̃) dx‖L2(�)

≤ ‖p − q̃‖L2(�) + |�|−1/2

∫

�

|p − q̃| dx

≤ 2‖p − q̃‖L2(�)

≤ 2E1.(14)

Moreover,

|Eh(u − w, p − q; v)|
≤

∑

e⊂E

∫

e

[|{{∇u − ∇hw}} : [[v]]| + |{{p − q}}[[v]]| ] ds

≤
∑

e⊂E

∫

e

[|{{∇u − ∇hw}}| + |{{p − q}}| ]|[[v]]| ds

≤
∑

e⊂E
‖[[v]]‖L∞(e)

∫

e

[|{{∇u − ∇hw}}| + |{{p − q}}| ] ds.

Note that [[v]] is a polynomial on each edge e ⊂ E . Applying a standard
inverse inequality for polynomials (see, e.g., [27]) and using property (7)
yields

‖[[v]]‖L∞(e) = ‖|[[v]]|2‖1/2

L∞(e)

≤ C
k|e√
h|e

‖|[[v]]|2‖1/2

L1(e)
≤ C

k|e√
h|e

‖[[v]]‖L2(e).

Therefore, using the shape-regularity of the mesh it follows that

|Eh(u − w, p − q; v)|
≤ C

∑

e⊂E

∥
∥
∥

k√
h

[[v]]
∥
∥
∥

L2(e)

∫

e

[|{{∇u − ∇hw}}| + |{{p − q}}| ] ds

≤ C
[ ∫

E
h−1k2|[[v]]|2 ds

]1/2

·
[ ∑

K∈Th

‖∇u − ∇hw‖2
L1(∂K)

+ ‖p − q‖2
L1(∂K)

]1/2

≤ C ‖v‖h

[ ∑

K∈Th

‖∇u − ∇hw‖2
L1(∂K)

+ ‖p − q‖2
L1(∂K)

]1/2

.
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In addition, the third assertion in Lemma 1 implies that

|Eh(u − w, p − q; v)|
‖v‖h

≤ C
[ ∑

K∈Th

[|u − w|2
H 1(K)

+ ‖p − q‖2
L2(K)

]

+
∑

K∈Kint

h2
K

[|u − w|2
H 2(K)

+ |p − q|2
H 1(K)

]

+
∑

K∈Kvert

h
2−2βK

K

[|u − w|2
H

2,2
βK

(K)
+ |p − q|2

H
1,1
βK

(K)

]]1/2

.

Finally, applying (14) and using the fact ∇(q − q̃) ≡ 0 results in

|Eh(u − w, p − q; v)|
‖v‖h

≤ C
[
E2

1 +
∑

K∈Kint

h2
K

[|u − w|2
H 2(K)

+ |p − q̃|2
H 1(K)

]

+
∑

K∈Kvert

h
2−2βK

K

[|u − w|2
H

2,2
βK

(K)
+ |p − q̃|2

H
1,1
βK

(K)

]]1/2

≤ C(E1 + E2 + E3),(15)

for all v ∈ Vh. Combining the bounds (13)–(15) with (12) completes the
proof. ��
Remark 5 The factor |k|3 in the error bound of Theorem 2 is growing alge-
braically with the approximation orders. This is due to the decrease of the
discrete inf-sup condition as |k|−1 and the definition of c. Thus, the result in
Theorem 2 leads to slightly suboptimal convergence rates in the pure p-ver-
sion of the DGFEM; see also [29]. In the hp-version of the DGFEM, however,
the error contributions E1, E2, and E3 converge at exponential rates in the
number of degrees of freedom, thereby absorbing the algebraic growth in |k|.

6 Exponential rates of convergence

The aim of this section is to show that the error estimates in Theorem 2 are
exponentially convergent on geometric meshes.

6.1 Geometric meshes

In order to resolve singular solution behavior near corners we introduce
meshes that are geometrically refined towards the vertices of �. First, we
define the basic geometric meshes on Q̂ = (0, 1)2.
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Definition 2 Fix n ∈ N0 and σ ∈ (0, 1). On Q̂, the geometric mesh �n,σ

with n + 1 layers and grading factor σ is created recursively as follows: If
n = 0, �0,σ = {Q̂}. Given �n,σ for n ≥ 0, �n+1,σ is generated by subdi-
viding the square K with 0 ∈ K into four smaller rectangles by dividing its
sides in a σ : (1 − σ) ratio.

An example of a basic geometric mesh is shown in Fig. 1. We denote the
elements in the basic geometric mesh by {Kij } as indicated there. We say that
the elements K1j , K2j and K3j constitute layer j for j ≥ 2 while K11 is the
element at the origin.

Definition 3 A geometric mesh Tn,σ in the polygon � ⊂ R
2 is obtained by

mapping the basic geometric meshes �n,σ from Q̂ affinely to a vicinity of
each convex corner of �. At reentrant corners three suitably scaled copies
of �n,σ are used (as shown in Fig. 2). The remainder of � is subdivided with
a fixed affine and quasi-uniform partition.

In Fig. 2 this local geometric refinement is illustrated. For ease of expo-
sition, we consider only mesh patches that are identically refined with the
same parameters σ and n, although different grading factors and numbers of
layers may be used for the partition of each corner patch.

Definition 4 A polynomial degree distribution k on a geometric mesh Tn,σ

is called linear with slope µ > 0 if the elemental polynomial degrees are lay-
erwise constant in the geometric patches and given by kj := max(2, �µj�)
in layer j , j = 1, . . . , n + 1. In the interior of the domain the elemental
polynomial degree is set constant to max(2, �µ(n + 1)�).

���

���

���

���

�

�

� �

�

��� ���

���

��� ���

���

Fig. 1. The geometric mesh �n,σ with n = 3 and σ = 0.5. The elements are numbered
as indicated.
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A4

A
2

A
1

A
3

A
6

A
5

Fig. 2. Local geometric refinement near vertices {Ai} of �. At the reentrant corner A4

three suitably scaled copies of �n,σ are used. In all corners, n = 3 and σ = 0.5.

6.2 Exponential convergence

Our main result establishes exponential convergence of the mixed
hp-DGFEM.

Theorem 3 Assume (3) and that the exact solution (u, p) of the Stokes sys-
tem satisfies (4) with β

min
< β < 1. Let (uh, ph) ∈ Vh × Qh be the

DGFEM approximation (8) on geometric meshes Tn,σ . Then there exists
µ0 = µ0(σ, β) > 0 such that for linear degree vectors k with slope µ ≥ µ0

there holds the error estimate

‖u − uh‖h + ‖p − ph‖L2(�) ≤ C exp(−bN 1/3)

with constants C, b > 0 independent of N = dim(Vh) ≈ dim(Qh).

Remark 6 If the polynomial degree is chosen to be constant throughout the
mesh, i.e., kK = k for all K ∈ Th, exponential convergence is still obtained
by choosing k proportionally to the number n of layers. This is due to the fact
that the interpolant constructed for the proof of Theorem 3 still can be used
for k = max(2, �µ(n + 1)�).
Proof. We proceed in two steps.

Step 1: We consider first the case where � = Q̂ and Tn,σ = �n,σ is the
basic geometric mesh from Definition 2. From [28, Proposition 27] and [20]
or [30, Lemma 4.25], there exist q̃11 ∈ Q0(K11) and w11 ∈ Q1(K11)

2 such
that
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‖p − q̃11‖2
L2(K11)

+ h
2−2βK11
K11

|p − q̃11|2
H

1,1
βK11

(K11)

≤ Cσ 2n(1−βK11 )|p|2
H

1,1
βK11

(K11)

and

h−2
K11

‖u − w11‖2
L2(K11)

+ |u − w11|2H 1(K11)

+ h
2−2βK11
K11

|u − w11|2
H

2,2
βK11

(K11)
≤ Cσ 2n(1−βK11 )|u|2

H
2,2
βK11

(K11)
.

Moreover, forKij ∈Kint there are q̃ij ∈QkKij
−1

(Kij ) and wij ∈QkKij (Kij )
2

such that

‖p − q̃ij‖2
L2(Kij )

+ h2
Kij

|p − q̃ij |2H 1(Kij )

≤ Cσ 2(n+2−j)(1−βK11 )
�(kKij

− sij + 1)

�(kKij
+ sij − 1)

(ρ

2

)2sij ‖p‖2

H
sij +3,1

βK11
(Kij )

and

h−2
Kij

‖u − wij‖2
L2(Kij )

+ |u − wij |2H 1(Kij )
+ h2

Kij
|u − wij |2H 2(Kij )

≤ Cσ 2(n+2−j)(1−βK11 )
�(kKij

− sij + 1)

�(kKij
+ sij − 1)

(ρ

2

)2sij ‖u‖2

H
sij +3,2

βK11
(Kij )

for any 1 ≤ i ≤ 3, 2 ≤ j ≤ n + 1 and sij ∈ [1, kKij
]. Here, ρ =

max(1, σ−1(1 − σ)). This was proved, e.g., in [28, Sect. 5.2] in all details.
Referring to Theorem 2 implies that

‖u − uh‖2
h + ‖p − ph‖2

L2(�)
≤ C|k|3σ 2n(1−βK11 )

[
�

2,1
K11

(u, p)

+
3∑

i=1

n+1∑

j=2

σ 2(2−j)(1−βK11 )
�(kKij

− sij + 1)

�(kKij
+ sij − 1)

(ρ

2

)2sij
�

sij +3,sij +3
Kij

(u, p)
]
,

(16)

where

�
m,l
K (u, p) := ‖u‖2

H
m,2
βK11

(K)
+ ‖p‖2

H
l,1
βK11

(K)
.

In [3,19] or [30, Sect. 4.5.3] it was shown that there exist sij , 1 ≤ i ≤ 3, 2 ≤
j ≤ n+1 and µ0 > 0 such that, for linear polynomial degree distributions as
in Definition 4 with slope µ ≥ µ0, the right-hand side of (16) is exponentially
small with respect to N . More precisely, there holds:

‖u − uh‖h + ‖p − ph‖L2(Q̂) ≤ CN 3/4 exp(−bN 1/3) ≤ C̃ exp(−b̃N 1/3).
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Here, we have also used the (pessimistic) bound |k|2 ≤ N and have absorbed
the algebraically growing term N 3/4 with the second term that decays expo-
nentially fast with respect to N .

Step 2: Let now Tn,σ be a geometric mesh on the polygon �, as in Def-
inition 4. We recall that Tn,σ is obtained by mapping affinely up to three
geometric mesh patches �n,σ to a neighborhood of each corner. On each of
these patches, we can construct an interpolant (w, q) as in Step 1, remarking
that a generalization of the result there to affinely mapped meshes can be
established straightforwardly; see, e.g., [20,19,30] and the references cited
therein.

This completes the proof. ��

7 Conclusions

In this paper, we have presented the first proof of exponential convergence for
mixed hp-DGFEM for Stokes flow with piecewise analytic data on geometric
meshes with linearly increasing approximation orders. The proof relies on a
combination of new trace theorems for functions in weighted Sobolev spaces
and standard hp-approximation techniques. We point out that the exponential
convergence result proved in this work can be straightforwardly extended to
mixed formulations of linear elasticity problems with nearly incompressible
materials. The numerical validation of the hp-scheme proposed in this paper
is the subject of ongoing work and will be presented elsewhere.
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3. Babuška, I., Guo, B.Q.: Regularity of the solution of elliptic problems with piecewise
analytic data, I. SIAM J. Math. Anal. 19, 172–203 (1988)
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