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A B S T R A C T

This doctoral thesis devises analytical and data-driven methods for the analysis of nonlinear vibrations
in mechanical systems, potentially with a large number of degrees of freedom. Modern challenges in
engineering require deeper understanding of nonlinear oscillations in mechanical systems, as well as
extracting data-driven models for their predictions.

In the first part of this thesis, the focus is set on analytical models, with forced-damped nonlinear
mechanical systems viewed as small perturbations from their energy-preserving counterpart. Indeed,
weakly damped mechanical systems under small periodic forcing tend to showcase periodic response
in a close vicinity of some periodic orbits of their conservative limit. Specifically, amplitude frequency
plots for the conservative limit have frequently been observed, both numerically and experimentally,
to serve as backbone curves for the near-resonance peaks of the forced response. A systematic
mathematical analysis is then derived, allowing to predict which members of conservative periodic
orbit families will survive in the forced-damped response. Moreover, the method is not limited to
predicting existence, but can also forecast stability type of vibrations in the forced response. Not only
does this method provide a rigorous analytical tool, but it also finds precise mathematical conditions
under which approximate numerical and experimental approaches, such as energy balance and force
appropriation, are justified.

The second part of this thesis looks at oscillatory dynamics from a data-driven perspective. The
objective is to determine reduced-order models from trajectory data of dynamical systems. Based
on the theory of spectral submanifolds, a method is developed for simultaneous dimensionality
reduction and identification of the dynamics in normal form. In contrast with other data-driven
modeling techniques, the normal form of the dynamics offers valuable insights and is capable of
predictions when small perturbations, such as external forcing, are added to systems. Moreover,
there are, in principle, no restrictions of dimensionality or constraints on the states observed in the
trajectory data. The algorithm based on this approach automatically detects the appropriate normal
form for a given set of trajectories, thereby providing an intelligent, unsupervised learning strategy
for dynamical systems. The accuracy and the validity of the method is demonstrated on different
examples, featuring data from numerical simulations and physical experiments.
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S O M M A R I O

Lo scopo della presente tesi di dottorato è quello di sviluppare metodi sia analitici che basati su
dati per lo studio di vibrazioni non lineari in sistemi meccanici, potenzialmente caratterizzati da un
elevato numero di gradi di libertà. In tale ambito, le sfide ingegneristiche dell’epoca contempora-
nea necessitano, come fondamento, sia di una profonda comprensione fenomenologica, sia della
possibilità di estrarre, da misure di oscillazioni, modelli predittivi in modo diretto.

La prima parte di questo lavoro è focalizzata sui modelli analitici. Specificatamente, si esaminano
sistemi meccanici, aventi smorzamento e forzanti esterne, i quali vengono considerati come pertur-
bazioni della loro controparte ideale, ove l’energia si conserva. Infatti, suddetti sistemi hanno la
tendenza a mostrare risposte periodiche nel tempo, molto vicine a quelle del limite conservativo,
almeno per smorzamenti deboli e forzanti piccole. In particolare, da osservazioni sia numeriche che
sperimentali, si riscontra come i diagrammi ampiezza-frequenza caratteristici del sistema conservati-
vo, tendano a strutturare le risposte in frequenza per i sistemi perturbati nelle regioni di risonanza.
La giustificazione di queste considerazioni è presentata dallo sviluppo di uno studio matematico
rigoroso, il quale mira a predire quali delle traiettorie del sistema conservativo sopravvivano all’av-
vento di forzanti esterne e di dissipazioni dovute allo smorzamento. Il metodo implementato inoltre,
riesce anche a stimare la stabilità delle vibrazioni presenti nella risposta forzata. Le implicazioni di
tale teoria stabiliscono quindi, le condizioni matematiche precise per cui metodi approssimati, sia
numerici che sperimentali, si possano rivelare esatti.

La seconda parte di questa tesi esamina la dinamica delle oscillazioni da una prospettiva basata
interamente sui dati. L’obiettivo dello studio consiste nel determinare modelli ridotti, a partire
dalle misure sperimentali di un sistema meccanico. Viene perciò sviluppato un metodo, basato
sulla teoria delle varietà differenziabili spettrali (spectral submanifolds), il quale, simultaneamente,
riduce le dimensioni e identifica la forma normale della dinamica. In confronto con altre tecniche
di modellazione fondate sui dati, la forma normale non solo permette una profonda comprensione
della dinamica, ma risulta anche molto proficua per l’indagine del sistema considerato qualora
fossero presenti perturbazioni, exempli gratia dovute a forzanti esterne. Inoltre, in principio, il numero
di gradi di libertà e la tipologia di misure eseguite non sono in alcun modo vincolati o limitati.
Per tali motivazioni, l’algoritmo risultante da tale teoria stima automaticamente la forma normale,
la cui dinamica descrive i dati. Conseguentemente, il codice delinea una strategia adattiva per
l’apprendimento intelligente dei sistemi dinamici. In ultima istanza, l’accuratezza e la validità del
metodo descritto vengono dimostrate con l’ausilio di molto esempi, i cui dati derivano da simulazioni
numeriche o da esperimenti di laboratorio.
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1
P R E FA C E

Oscillations are ubiquitous. From the essence of subatomic particles to gravitational waves in the
universe, from the terrific sound of an engine to the precise beating of a clock, from the dramatic
motions during an earthquake to the gentle swinging of a cradle. Human life is strongly connected
to oscillations, being these either beneficial or detrimental. Oscillations can appear in time as
steady states, such as periodic, quasi-periodic and chaotic signals, and as decaying or growing
vibrations, cf. Fig. 1.1. Scientists and engineers historically seek to understand oscillations for
making predictions, to take advantage of them in applications, or to control them to avoid potentially
critical consequences.

Engineering systems keep pushing the limit to reach new frontiers in the technological develop-
ment. Unavoidably, this innovation requires more accurate models, faster computations and deeper
understanding of data. For example, sustainability constraints in airplane fuel consumption or
economical ones in reusable launch systems can be satisfied by removing weight, hereby making
the structure more prone to large-amplitude oscillations. Here, linear-only models would fail in
their predictions. In general, performance improvements in mechanical systems, either on the
structural side or on the control one, can be achieved via accurate identification of their nonlinear
characteristics. Nowadays, the abundance of data is changing world’s perspective, and extracting
nonlinear equations of motion directly from data is becoming more and more important, especially in
areas where analytical models struggle in giving satisfactory results (e.g., assembled structures, fluid
dynamics, epidemiology). However, due to their complexity, nonlinear models entail a consistent
change in the mindset with respect to that adopted for their linear counterpart, both in numerical
simulations and in analyses of data.

From pioneering studies in nonlinear oscillations by Poincaré [1], Van der Pol [2] and Duffing
[3] through the milestone contributions of Guckenheimer and Holmes [4] and of Nayfeh and
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Figure 1.1: Vibrations in pictures. Plots (a,b,c) show the time evolution of periodic (a), quasi-periodic (b) and
chaotic (c) signals. Picture (d) visualizes the oscillation patterns of a plate using sand (Matemateca
IME-USP / Rodrigo Tetsuo Argenton). Picture (e) catches the writer and photographer Howard
Clifford running off the Tacoma Narrows Bridge during collapse in 1941 due to massive oscillations
(Wikimedia Commons / UW Digital Collections). Picture (f) shows swirling clouds arranging in a
vortex street over Alexander Selkirk island in the southern Pacific ocean (USGS National Center for
EROS / NASA Landsat Project Science Office).
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Mook [5], current challenges in this field typically deal with high-dimensional systems and, more
frequently, call for a data-driven attitude. For mechanical systems in this context, there is demand
for understanding their dynamics, building reduced-order models for computational speed ups and
identifying nonlinear features from data. Implications for advances in these fields range from design
to testing or operational phases of mechanical devices. For example, deeper understanding unlocks
innovation for designs and controls, allows for diminutions of computational time and targets
experiments for testing. Another example is the quantitative determination of dissipative effects that,
due their complexity, can only be addressed through the investigation of system measurements [6].

1.1 background

1.1.1 Analytical models

Modeling in the context of mechanical engineering relies on three principal ingredients, namely
kinematics, constitutive relations and first principles [7, 8]. Blending these together generates the
equations of motion, which typically appears in the form of differential equations that can be
integrated in time from a prescribed initial state, after having applied eventual boundary conditions.
These models can be either made up by lumped elements or by continuous media. In the latter case,
the modeling phase is followed by a discretization in finite elements [8, 9], which allows numerical
simulations.

Hence, analytical models for mechanical systems generally take the form of nonlinear ordinary
differential equations [10, 11], potentially featuring a very high number of degrees of freedom.
Closed-form solutions are seldom available and computer simulations, despite the constant rise in
computational capabilities, remain still unfeasible for some applications (e.g., design, control) and
for several classes of systems. An example is the case of system characterized by weak damping,
strong nonlinearity and high dimensionality [12].

To cope with the curse of dimensionality, researchers tackle the development of reduced-order
models. The key idea is to manipulate the equations of motion to compress the dynamics into a low
number of meaningful directions, so that the resulting surrogate model preserves the accuracy of the
full-order one, while being evaluated at insignificant computational cost. Available approaches range
from techniques based on linear projections [8,9,13,14], to rigorous exact model reduction supported
by invariant manifolds (e.g., Lyapunov subcenter manifolds [15, 16], nonlinear normal modes [17],
spectral submanifolds [18–20]). Nevertheless, the validity of the reduced-order models in replacing
full-order ones ultimately depends on the motion amplitudes and on the characteristics of external
forcing [21, 22].

A primary objective in the study of oscillations in mechanical systems is the computation of the
forced-frequency response curve [5, 23], examples of which are shown in Fig. 1.2(a). This curve
represents the system response at different frequencies under periodic forcing, which is among the
most common types of excitations in engineering applications. In particular, the near resonance zones,
where forcing frequency is almost aligned with one of the system natural frequencies, are of critical
interest because of possible dynamic amplification effects. Indeed, the system response in these zones
can be dramatically large even with tiny external forcing. Hence, the forced-frequency response curve
is of paramount importance, both for the design and the operational phase of a mechanical apparatus.
Having said that, the forced-frequency response curve for nonlinear systems only shows periodic
trajectories of the system, whereas for linear system, due to the superposition principle [8], depicts all
information about system motions. Indeed, trajectories in the presence of nonlinearities can converge
to other attractors (either quasi-periodic or chaotic), which are not reported in the forced-frequency
response curve. Therefore, these diagrams require attentive interpretation for nonlinear dynamical
systems.
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Figure 1.2: Plot (a) illustrates forced-frequency response curves for classic model of Duffing oscillator, in the
linear case and in presence of softening and hardening nonlinearity. The collection of pictures
in (b) shows the experimental setup for a test structure, later discussed in chapter 10.3 of this
thesis. Measurements are taken using accelerometers and high-speed cameras for digital image
correlation.

The derivation of the forced response curve from numerical models can be performed using direct
time integration or numerical continuation techniques, either via shooting methods [24], harmonic
balance [25] or collocation [26]. Approximate solutions, whose validity may be limited in time or in
motion amplitude, can be extrapolated from these models, although this is often attainable only for
low-degree-of-freedom systems (e.g., multiple scales [5], averaging [27], the first-order normal form
technique [28] or the second-order normal form technique [29]). Both numerical integration and
continuation methods scale dramatically with dimensionality, and the performances of the former
are also extremely affected by the amount of damping.

1.1.2 Experimental techniques

Over the last two decades, there have been significant investments in developing nonlinear system
identification methods in experimental modal analysis [30, 31]. This identification problem is
currently tackled using a toolbox approach, where different techniques are employed depending on
the structural system under investigation, the identification goals and the type of excitation used.

Typical excitations trigger either decaying oscillations (also called ringdown signals or responses)
or forced steady-states. While a shaker is typically used to achieve the latter, decaying oscillations are
initiated via imposed initial conditions, through hammer impacts or with the aid of a shaker, which is
then turned off or relased from the structure [32,33]. As a consequence of technological developments,
the possible measurements of the system is constantly growing. From the classic point measurements
of accelerometers and strain gauges, nowadays non-contact 2D or 3D field measurements are
becoming increasingly popular, either performed using laser scanner vibrometer (displacement,
velocity) [34] or digital cameras in the context of digital image correlation (displacement, strain)
[35–37], cf. Fig. 1.2(b).

Experimental techniques that are well-consolidated in the field of nonlinear mechanical vibrations
typically deal with single-mode oscillations. Indeed, when additional modes are present, it is common
practice to filter the signal or to look at it as a linear combination of multiple modes [38]. While
insightful, these practices may miss potential coupling among modes. When applied to decaying

11



single-mode oscillations, these techniques seek to reconstruct the curves representing amplitude-
dependent properties of frequency and damping [31]. The zero crossing method, the Hilbert method,
the short-time Fourier transform, and the wavelet-based identification methods [30,39–41] are popular
non-parametric identification methods. As shown by recent advances, these amplitude-dependent
properties play a key role in shaping the forced-damped frequency response in near-resonance zones,
at least for small forcing [23, 42, 43]. Alternatively, forced-frequency response curves can be directly
extracted using a shaker with force appropriation [44] and experimental continuation [45]. Each
method may be suitable depending on the specific system to analyze, the available measurements,
the possible excitations and the scope of the identification.

1.1.3 Data-driven models

Advances in machine learning and in data science are stimulating a consistent growth in this
field, justified by the shortfall of empirical models or of those based on first principles, at least in
some classes of problems [46, 47]. From the parameter identification in classic models in nonlinear
vibrations [48] (e.g., the Duffing oscillator and its coupled versions) or finite element updating
techniques [49], new advances push towards models that accurately reconstruct the data exploiting
machine learning techniques. Regression estimates in different forms (ridge [50], LASSO [51],
SINDy [52]), neural networks [53] (fully connected, convolutional, recurrent) are increasingly used
by practitioners for devising either equations of motion [54] or constitutive relations [55].

Dimensionality reduction is frequently unavoidable in the data-driven context too. From the
canonical principal component analysis [56] to modern manifold learning methods [57], dimen-
sionality reduction is often the first step for identifying data-driven models in high-dimensional
datasets. Dynamic mode decomposition [58], which became popular in the last decade within the
fluid dynamics community [59], manages to recognize a low-number of patterns in the dynamics
that are used for building a reduced-order data-driven model.

Not being based on first principles, these models may generate unphysical results [60,61]. Therefore,
research is also focusing on hybrid models [62,63], for which a high-confidence first-principles-based
term is augmented with an additional black-box component that, capitalizing on data, models effects
that are difficult to grasp by analytical inference [64]. Alternatively, research advances towards
physics-informed machine learning methods, fitting their algorithms with first principles [60, 61].

Despite their success in some areas, data-driven models are currently suffering from three draw-
backs. First, the results are very sensitive to the model hyperparameters (e.g., the architecture for
neural networks), so that, fine tuning of this models is a challenge and typically requires extensive pe-
riods of time [46]. Second, the majority of these models is difficult to interpret. Third, extrapolations
to datapoints outside the training range are notoriously unreliable.

1.2 summary of the results and thesis organization

This thesis consists of two main parts, with Part i dealing with analytical models, and with Part ii

discussing data-driven models. Despite an intrinsic difference, the overall aim remains capturing the
complexity of oscillations occurring in nonlinear dynamical systems, providing both predictive and
quantitative tools for engineers and scientists. The methods developed for pursuing this goal are
built on exact mathematical results, which guarantee universal applicability and reliability, without
compromising the performances. Indeed, we undertake a geometric approach [4] to dive into
nonlinear oscillations, so that, by understanding the phase-space geometry of nonlinear oscillations,
we construct a framework that is, at the same time, capable of gaining insights beyond providing
quantitative tools.
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Part i regards the analysis of forced-damped mechanical systems as perturbations from their
conservative limit, motivated by the fact that mechanical systems are often characterized by weak
damping and small forcing. Here, we develop an exact mathematical theory that establishes an
important connection between ideal energy-preserving dynamics and that of real-life systems that
are unavoidably affected by non-conservative forces. For the case of periodic orbits, similar results
were available in literature, but only restricted to weakly nonlinear and/or low-degrees-of-freedom
systems. With our approach, we generalize these results to potentially high-dimensional models,
without any limitation on the amplitudes or on the type of nonlinearities affecting the system.
This analytical connection can be exploited to predict existence and stability of forced-damped
frequency responses in near-resonance regions, which is of fundamental importance in engineering
applications. This prediction is only based on the knowledge of the conservative limit and on
the type of non-conservative forces acting on the system. Hence, we do not require any direct
simulation of the forced-damped system. Our approach expedites the study of parameter variations
in non-conservative forces. This finding is particularly valuable for damping, which is often affected
by consistent uncertainty. Moreover, our method is also useful to predict potentially critical isolated
responses, whose existence is challenging to assess via direct numerical simulations. Another
important implication of our analytical method is the justification of experimental methods that track
backbone curves of forced frequency responses. The outcomes of this research were published in the
peer-reviewed journal articles:

1. M. Cenedese and G. Haller. How do conservative backbone curves perturb into forced re-
sponses? A Melnikov function analysis. Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, 476:20190494, 2020. doi: 10.1098/rspa.2019.0494.

2. M. Cenedese and G. Haller. Stability of forced–damped response in mechanical systems from a
Melnikov analysis. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(8):083103, 2020.
doi: 10.1063/5.0012480.

Part i of this thesis is based on these two publications. Here, after a detailed introductory chapter,
we discuss some relevant background on conservative families of periodic orbits in chapter 3, while
chapters 4 and 5 present our method for predictions of existence and stability for perturbed periodic
orbits, respectively. These chapters contain the mathematical proofs of our results and discuss several
examples dealing with mechanical oscillators. In particular, we show how isolated responses can
arise due to nonlinear damping, and we analyze the stability of periodic motions in a gyroscopic
system.

Part ii deals with a method developed for learning nonlinear dynamics from trajectory data, where
this latter is either coming from numerical simulations or from physical experiments. The objective
of this work is the discovery of explicit, nonlinear, reduced-order models for potentially high-
dimensional dynamical systems. We focus on transient data in the neighborhood of an equilibrium
point and, by capitalizing on spectral submanifold theory, we develop a methodology for data-driven
model reduction and for the identification of the dynamics. Our models, based on the concept
of normal forms, provide analytical insights and can make predictions outside the range of the
training data. This is an advantage with respect to several machine learning techniques, which
indeed perform poorly when extrapolating datapoints outside the training data. We illustrate the
power of this method on examples from different areas of mechanics, from structural vibrations to
fluid dynamics. The examples also feature different types of measurements, ranging from scalar
quantities (e.g., the velocity of a material point) to partial-state or full-state measurements. In the
context of mechanical systems, we show how our model, built on transient data decaying towards
the equilibrium, is able to predict the forced-frequency response in near-resonant zones with high
accuracy. Developments of this work were presented at international conferences, and took advantage
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of a research collaboration project focusing on nonlinear system identification, communicated in the
papers:

3. W. Chen, D. Jana, A. Singh, M. Jin, M. Cenedese, G. Kosova, M. R. W. Brake, C. W. Schwing-
shackl, S. Nagarajaiah, K. J. Moore & J. Noël. Measurement and identification of the nonlinear
dynamics of a jointed structure using full-field data; Part I – Measurement of nonlinear dynam-
ics, Mechanical Systems and Signal Processing 166:108401, 2022. doi: 10.1016/j.ymssp.2021.108401.

4. M. Jin, G. Kosova, M. Cenedese, W. Chen, A. Singh, D. Jana, M. R. W. Brake, C. W. Schwing-
shackl, S. Nagarajaiah, K. J. Moore & J. Noël. Measurement and identification of the nonlinear
dynamics of a jointed structure using full-field data; Part II - Nonlinear system identification,
Mechanical Systems and Signal Processing 166:108402, 2022. doi: 10.1016/j.ymssp.2021.108402.

The data-driven reduced-order modeling technique described in the second part of this thesis
has been implemented in the MATLAB®-based computational package SSMLearn (available at
github.com/mattiacenedese/SSMLearn), and this research has been reported in the articles:

5. M. Cenedese, J. Axås, B. Bäuerlein, K. Avila and G. Haller, Data-driven modeling and prediction
of non-linearizable dynamics via spectral submanifolds. Nature Communications, accepted for
publication, 2022. Preprint available on arXiv:2201.04976.

6. M. Cenedese, J. Axås, H. Yang, M. Eriten and G. Haller. Data-driven nonlinear model reduction
to spectral submanifolds in mechanical systems. Under revision at Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022. Preprint available on
arXiv:2110.01929.

After the introduction of Part ii, in chapter 8 we present some background on spectral submanifolds
and their embeddings in observable spaces. Our data-driven method is discussed in detail in chapter
9, while the case studies of application are discussed in chapter 10. Concluding remarks for the
two parts are given in sections 6, 11, while chapter 12 concludes this thesis and discusses future
outlooks.
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Part I

F O R C E D - D A M P E D M E C H A N I C A L S Y S T E M S A S P E RT U R B AT I O N S
F R O M T H E I R C O N S E RVAT I V E L I M I T



2
I N T R O D U C T I O N

Conservative families of periodic orbits, broadly known as nonlinear normal modes (NNMs) in the
field of structural engineering, often appear to shape the behavior of mechanical systems even in the
presence of additional damping and time-periodic forcing. Not only has this influence been noted
for low-amplitude vibrations of a small number of coupled oscillators, but it also appears to hold for
large amplitude motion in arbitrary degrees of freedom. Various descriptions of this phenomenon are
available in the literature, ranging from the original introduction of NNMs by Rosenberg [65] to the
more recent reviews lead by Vakakis [66–68], Avramov and Mikhlin [69,70] and Kerschen [17]. These
studies suggest that forced-damped frequency responses might bifurcate from conservative NNMs.
To summarize features of such bifurcations, Fig. 2.1 qualitatively represents possible nonlinear
phenomena in the frequency response. Dark and light red curves show steady-state solutions for a
periodically forced-damped mechanical system for low and high forcing amplitudes, respectively.
Blue curves correspond to amplitude-frequency relations of periodic orbit families of the underlying
conservative system, which we refer to as conservative backbone curves. Grey curves depict backbone
curves of the forced-damped response, defined as the frequency locations of amplitude maxima
under variation of the forcing amplitude [5]. Solid and dashed lines distinguish stable and unstable
responses respectively. The first and fifth resonances in Fig. 2.1 show the classic hardening and
softening resonance trends respectively, characterized with their hysteretic behavior in the stability.
As most frequently observed behaviors, these two phenomena have been broadly studied: see,
e.g. [5, 17, 71, 72] for analytical and numerical treatments and [73, 74] for experimental results. In
these settings, as the response amplitude increases, the backbone curves of the conservative limit
and those of the forced-damped system have been noted to pull apart [75]. Th

The backbone curves of the second peak from the left in Fig. 2.1 feature a non-monotonic trend in
frequency, i.e., softening for lower amplitudes and hardening for higher ones. This type of behavior
is relevant for shallow-arch systems [76], MEMS devices [77] and structural elements [78], while
a simple mechanical example is available at [79, 80]. The third peak of Fig. 2.1 shows an isolated
response curve (isola) that may occur due to the influence of nonlinear damping [81] or symmetry
breaking mechanisms [82]. In the former case, the isola can join with the main branch when the
forcing amplitude exceeds a certain threshold [83], as indicated by the light-red curve, and can have
multiple types of stability. Subharmonic responses, displayed along the second blue line from the
right, also show up as isolated branches, as they cannot originate from the linear limit [5]. Finally, as
highlighted in [84] with the analysis of a simple model of nonlinear beam, not all NNMs contribute
to shaping the forced-response, as illustrated by the second-last backbone curve in Fig. 2.1. Instead,
the rightmost backbone curve shows split in multiple branches, and this could trigger also change in
stability for periodic solutions [85, 86]. Branching could potentially trigger isolated responses of the
frequency response, as well as complex dynamical behavior near the bifurcation point [82, 87].

Analytic relations between conservative families of periodic orbits and frequency responses are
only available for specific, low-dimensional oscillators from perturbation expansions that assume
the conservative periodic limit to have small amplitudes. These expansions may arise from the
method of multiple scales [5], averaging [27], the first-order normal form technique [28] or the
second-order normal form technique [29]. Based on this latter method, Hill et al. [88] developed
an energy-transfer formulation for locating maxima of the frequency response along conservative
backbone curves. However, the authors a priori postulate a relation between conservative oscillations
and frequency responses, and also discuss potential limitations arising from this assumption in [88].
Vakakis and Blanchard in [89] show the exact steady states of a strongly nonlinear periodically forced
and damped Duffing oscillator. They also clarify how these forced-damped periodic motions are
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Figure 2.1: Illustration of frequency response phenomena in mechanical systems. The dark and light red
curves identify the frequency response for low and high forcing amplitudes, respectively, while blues
curves depict conservative backbone curves and grey curves represent forced-damped backbone
curves. Solid and dashed lines distinguish stable and unstable responses respectively.

related the conservative backbone curve, but they restrict the discussion to specific types of periodic
forcing.

Relying on exact mathematical results, spectral submanifold (SSM) theory [18, 23] has been
developed for the local analysis of damped, nonlinear oscillators. This approach is insensitive to
the number of degrees of freedom thanks to the automated procedure developed in [90] and can be
hence used for exact nonlinear model reduction. SSMs, however, do not exist in the limit of zero
forcing and damping, in which case they are replaced by Lyapunov subcenter manifolds (LSMs) [91].
The relationship between the dynamics on damped, unforced SSMs and LSMs is now established in
a small enough neighborhood of the unforced equilibrium point [23, 83].

Even though diverse numerical options are available to explore forced responses, analytical tools
applicable to arbitrary degrees of freedom and motion amplitudes are still particularly valuable.
Not only can such tools help with the analysis of several perturbation types by relying only on the
knowledge of conservative orbits, but they can also overcome limitations of numerical routines. For
a thorough review of these limitations, we refer the reader to [21]. For example, direct numerical
integration needs long computational time for high degrees of freedom systems with small damping
and it is limited to stable periodic orbits. Despite being very accurate, numerical continuation (shoot-
ing methods [24], harmonic balance [25] or collocation [26]) suffers from the curse of dimensionality.
Furthermore, it can efficiently compute the main branch of the forced response for frequencies away
from resonance, but fails to find isolated branches when their existence and location is not a priori
known. For the assessment of stability, common approaches rely either on Floquet’s theory [4, 92]
in the time domain, or on Hill’s method in the framework of harmonic balance [93, 94], which may
suffer of issues due to computational complexity and convergence problems.

In a parallel development, SSMs, backbone curves, main and isolated branches can now be
computed efficiently for general, forced-damped, multi-degree-of-freedom mechanical systems up
to any required order of accuracy [83]. This approach also yields analytic approximations for
backbone curves and isolas, as long as these stay within the domain of convergence of Taylor
expansions constructed for the forced-damped SSMs [83]. Based on the relationship of SSMs with
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their conservative limit [16, 23, 95], known as Lyapunov subcenter manifold [15, 91], the stability of
forced-damped response can be analytically and numerically determined for small amplitudes [23,83].

Beyond these numerical approaches, experimental methods would also be aided by a rigorous
mathematical relation between conservative backbone curves and forced-damped responses. One
of such methods has been developed by Peeters et al. [44, 73], who propose an extension of the
phase-lag quadrature criterion, well-known for linear systems, to nonlinear systems in order to
isolate conservative NNMs experimentally. Their method assumes that the nonlinear periodic motion
is synchronous [65], the damping is linear (or at least odd in the velocity) and the excitation is
multi-harmonic and distributed. The idea is to subject the system to forcing that exactly balances
damping along a periodic orbit of the conservative limit. Peeters et al. find that such a balance holds
approximately when each harmonic of the conservative periodic orbit has a phase lag of 90◦ relative
to the corresponding forcing one. Force appropriation [32, 96] and control-based continuation [45]
exploit the phase-lag quadrature criterion for systematic tracking of backbone curve.

Another related experimental method in need of a mathematical justification is resonance decay [44],
which uses a force appropriation routine to isolate a periodic orbit, then turns off the forcing
and assumes the response to converge to the equilibrium position along a two-dimensional SSM,
sometimes called a damped-NNM [97]. This technique is expected to provide an approximation
of conservative backbone curves, but it remains partially unjustified for two reasons. On the
analytical side, it assumes a yet unproven purely, parasitic effect of damping on the response. On
the experimental side, decoupling the shaker from the system remains a challenge that affects the
accuracy of the results.

Despite available experimental and numerical observations, it is unclear if and when conservative
NNMs perturb into forced-damped periodic responses. This is because periodic orbits in conservative
systems are never structurally stable under generic perturbations, which tend to destroy them [4].
Indeed, any conservative periodic orbit has at least two Floquet multipliers equal to +1 due to the
conservation of energy [85], rendering the orbit structurally unstable. Classic analytic approaches
[98–100] to generic, non-autonomous perturbations of normally hyperbolic periodic orbits are
therefore inapplicable in this setting. Conservative NNMs exist in families that are only guaranteed
to persist under small, smooth conservative perturbations [85, 101].

In its simplest form, the study of dissipative perturbations on a conservative family of periodic
orbits dates back to Poincaré [1], developed further by Arnold [102]. An important contribution was
made by Melnikov [103], who focused on dissipative perturbations of planar Hamiltonian systems.
His approach reduces the persistence problem of periodic orbits to the analysis of the zeros of
the subharmonic Melnikov function [4, 104, 105]. As extensions of Melnikov’s approach, studies on
two-degree-of-freedom Hamiltonian systems are available: [106,107] consider the fate of periodic orbit
families in an integrable system subject to Hamiltonian perturbations, while [108] analyzes two fully
decoupled oscillators under generic dissipative perturbations. Subharmonic Melnikov-type analysis
for non-smooth systems is also available; see [109] for examples of planar oscillators and [110,111] for
a system with two degrees of freedom. All these results, therefore, require low-dimensionality and
integrability before perturbation, neither of which is the case for the conservative limits of nonlinear
structural vibrations problems arising in practice.

As an alternative to these analytic methods, Chicone [112–114] established a perturbation method
for manifolds of isochronous periodic orbits without any restriction on their Floquet multipliers
or assumptions on integrability/coupling before perturbation. This elegant approach exploits the
Lyapunov-Schmidt reduction to obtain a generic multi-dimensional bifurcation function for the
persistence of single orbits. Furthermore, this method has also been extended for non-smooth (but
Lipschitz) dynamical systems [115]. However, these results are not directly applicable to the typical
setting of nonlinear structural vibrations. Moreover, an exact resonance condition is required in
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Chicone’s method, even though perturbed periodic orbits are often observed when the forcing
frequency clocks in near-resonance with the frequency of a periodic orbit of the conservative limit.

In this thesis, we develop an exact analytical criterion for the perturbation of conservative NNMs
into forced-damped periodic responses, thereby predicting the variety of behaviors depicted in
Fig. 2.1, including their stability type. We assume that the conservative limit of the system has
a one-parameter family of periodic orbits, satisfying generic nondegeneracy conditions. We then
study the persistence or bifurcation of these periodic orbits under small damping and time-periodic
forcing. Utilizing ideas from Rhouma and Chicone [114], we reduce this perturbation problem to
the study of the zeros of a Melnikov-type function, generalizing therefore the original Melnikov
method to multi-degree-of-freedom systems. Our approach relies on the smallness of dissipative
and forcing terms which is generally satisfied in structural dynamics, but we will not assume that
the unperturbed periodic orbit has small amplitude. This distinguishes our approach from various
classic perturbation expansions that assume closeness from the unforced equilibrium. Our analysis
also differs from classic Melnikov-type approaches in that it does not require the conservative limit
of the system to be integrable. Indeed, for our unperturbed conservative limit, we only require the
existence of a generic family of periodic orbits that may only be known from numerical continuation.
For the analytical assessment of stability, we recover powerful formulas when the system is written
in Hamiltonian form.

When our Melnikov-type method is applied to mechanical systems, it provides a rigorous justifica-
tion for the classic energy principle, a broadly used but heuristic necessary condition for the existence
of periodic response in forced-damped nonlinear oscillations [44, 82, 88]. Our analysis shows that
under further conditions, the energy principle becomes a rigorous sufficient condition for nonlinear
periodic response and extends to arbitrary number of degrees of freedom, multi-harmonic forcing,
large-amplitude periodic orbits and higher-order external resonances.

In addition to giving a mathematical formulation for general dynamical systems, we also consider
the classic setting of nonlinear structural vibrations. In that context, our results reveal how the
near-resonance part of the main and isolated branches of the periodic response diagram are born
out of the conservative backbone curve, including a general analytical condition for the hysteretic
behavior. We also discuss how our results justify the phase-lag quadrature criterion under more
general conditions than prior studies assumed. Finally, we illustrate the power of our analytic
predictions on examples in a six-degree-of-freedom mechanical system, subharmonic resonances in
a gyroscopic system and isolated responses generated by parametric forcing in a system of three
coupled nonlinear oscillators.
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3
M E C H A N I C A L S Y S T E M S A N D P E R I O D I C S O L U T I O N S

3.1 setup

We consider a mechanical system with n degrees of freedom and denote its generalized coordinates
by q ∈ Rn, n ≥ 1. We assume that this system is a small perturbation of a conservative limit described
by the Lagrangian

L(q, q̇) = K(q, q̇)−V(q), K(q, q̇) =
1
2
〈 q̇ , M(q)q̇〉+ 〈 q̇ , G1(q)〉+ G0(q), (3.1)

where, M(q) is the positive definite, symmetric mass matrix, K(q, q̇) is the kinetic energy and V(q)
the potential. The kinetic terms G1(q) and G0(q) may appear in conservative rotating mechanical
systems after one factors out the cyclic coordinates whose corresponding angular momenta are
conserved. The total energy or first integral associated to the Lagrangian in (3.1) is defined as its
Legendre transform [116, 117]

H(q, q̇) = 〈 ∂q̇L(q, q̇) , q̇〉 − L(q, q̇) =
1
2
〈 q̇ , M(q)q̇〉 − G0(q) + V(q), (3.2)

while the equations of motion for system (3.1) take the form

M(q)q̈ + G(q, q̇) + DV(q) = εQ(q, q̇, t; δ, ε), (3.3)

where G(q, q̇) = Dt(M(q))q̇ + DG1(q)q̇ − ∂qK(q, q̇), ε ≥ 0 is the perturbation parameter and
εQ(q, q̇, t; δ, ε) = εQ(q, q̇, t + δ; δ, ε) denotes a small, generic perturbation of time-period δ. We
use the notation D and ∂ for total and partial differentiation with respect to the variable in subscript
(for D, to all of them if the subscript is absent). System in Eq. (3.3) is then a weakly non-conservative
mechanical system.

Introducing the notation x = (q, q̇) ∈ R2n the equivalent first-order form reads

ẋ = f (x) + εg(x, t; δ, ε), (3.4)

where we assume that f ∈ Cr with r ≥ 2, while g is Cr−1 in t and Cr with respect to the other
arguments. These vector fields are defined as

f (x) =
(

q̇
−M−1(q)(DV(q) + G(q, q̇))

)
, g(x, t; δ, ε) =

(
0

M−1(q)Q(q, q̇, t; δ, ε)

)
. (3.5)

We assume any further parameter dependence in our upcoming derivations to be of class Cr and
that the model (3.4) is valid in a subset U ⊆ R2n of the phase space. Trajectories of (3.4) that
start from ξ ∈ R2n at t = 0 will be denoted with x(t; ξ , δ, ε) = (q(t; ξ , δ, ε), q̇(t; ξ , δ, ε)). We will
also use the shorthand notation x0(t; ξ) = (q0(t; ξ , ), q̇0(t; ξ , )) = x(t; ξ, δ, 0) for trajectories of the
unperturbed (conservative) limit of system (3.4). We recall that, for ε = 0, energy is conserved, i.e.,
H(x0(t; ξ)) = H(ξ) holds as long as x0(t; ξ) ∈ U . The equation of (first) variations for system (3.4)
about the solution x(t; ξ , δ, ε) reads

Ẋ =
(

D f (x(t; ξ, δ, ε)) + ε∂xg(x(t; ξ , δ, ε), t; δ, ε)
)
X, X(0) = I2n×2n, (3.6)

whose solutions for ε = 0 will be denoted as X0(t; ξ) = X(t; ξ , δ, 0). When related to a periodic orbit
with initial condition z at t = 0 and period τ, i.e., x(0; z, δ, ε) = x(lτ; z, δ, ε) for any integer l, the
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Figure 3.1: Plot (a) illustrates the periodic orbit Z , its associate family P and its energy level H in the phase
space. Table (b) and plot (c) show different types of m-normal periodic orbits and the associated
geometry of the backbone curve, i.e., the relation between the energy h of the periodic response
the period τ of the response. With respect to table (b), Z in plot (a) belongs to case (i) or (ii), as P
intersects transversally with H.

matrix solution of (3.6) at t = τ, i.e. X(τ; ξ , δ, ε), is called the monodromy matrix or linearized time-τ
map [11]. We recall that the eigenvalues of the monodromy matrix, or Floquet multipliers [4, 10, 11],
determine the stability of a periodic orbit. In particular, the orbit is asymptotically stable if all of its
Floquet multipliers lay inside the unit circle in the complex plane, while it is unstable if there exist a
multiplier outside the unit circle.

3.2 conservative periodic orbits

For the ε = 0 limit of system (3.4), we assume that there exists a periodic orbit Z ⊂ U of minimal
period τ > 0 and we use the shorthand notation Π(p) the monodromy matrix based at any point
p ∈ Z . For conservative systems Π(p) is nonsingular and it has at least two eigenvalues equal to
+1 [85, 118]. We consider m ∈ N+ multiples of the period, so that Z is regarded as a period-m
motion, and let µa,m denote the algebraic multiplicity of the +1 eigenvalue of Πm(p) and µg,m denote
its geometric multiplicity. Note that these two multiplicities are invariant under translations along
the orbit, while they may change for different values of m.

We will need the following definition from [118].

Definition 3.1. A conservative periodic orbit Z is m-normal if one of the following holds:

(a) µg,m = 1 ;

(b) µg,m = 2 and f (p) /∈ range(Πm(p)− I) .

This normality is a nondegeneracy condition under which a one-parameter family, P , of m-normal
periodic solutions of the vector field f emanates from Z (see Theorem 4 of [118] or Theorem 7

of [119]), as shown in Figure 3.1(a). We denote with λ ∈ R the parameter identifying each individual
orbit in the family P . The orbits within the family can be either be unstable or neutrally stable.

Figure 3.1(b,c) describes the types of m-normal periodic orbits covered by Definition 3.1, with their
associated backbone-curve geometry, as given in Theorem 5 of [118]. The backbone curve can be
parametrized as (τ(λ), h(λ)), with τ denoting the orbit period and h the value of the first integral.
The value of the parameter λ is given by a scalar mapping λ = L(ξ , τ) depending on the initial
condition ξ ∈ Rn and the period τ ∈ R+. We also require L to be invariant under translations of
ξ along the orbit. For an m-normal periodic orbit belonging to case (a) in Definition 3.1, one can
simply choose L(ξ , τ) = τ. Instead, when µa,m = 2 (see (i) and (ii) in Fig. 3.1), the orbit family can
be locally parametrized with the value of the first integral h, i.e., L(ξ , τ) = H(ξ). Other possible
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parametrizations include the value of a coordinate determined by a Poincaré section, the L2 norm of
the trajectory or the maximum value of a coordinate along the trajectory. For continuation through
cusp points of backbone curves, i.e., (iv) in Fig. 3.1, L may be chosen to provide a pre-defined relation
between energy and period (see [118]). Note that if a periodic orbit is not m-normal, then two or
more families of periodic orbits may bifurcate from this periodic orbit. Moreover, a periodic orbit
can be 1-normal and not m-normal for some m > 1, as in the case of subharmonic branching [85, 86].
This type of phenomena can also induce changes in the stability of different branches.
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4
T H E M E L N I K O V M E T H O D

4.1 formulation

4.1.1 Perturbation of a single orbit

Our starting point in the analysis of the fate of perturbed periodic orbits is the displacement map

∆l : Rn+2 → Rn, ∆l(ξ , δ, ε) = x(lδ; ξ , δ, ε)− ξ , ∆l ∈ Cr, (4.1)

whose zeros correspond to lδ-periodic orbits for system (3.4) for l ∈ N+. We aim to smoothly
continue normal periodic orbits in the family P that exists at ε = 0. We consider an m-normal
periodic orbit Z ⊂ P and assume that l and m are relatively prime integers, i.e., 1 is their only
common divisor. We then look for zeros of (4.1) that can be expressed as

ξ = x0(s; p) + O(ε), p ∈ Z , δ = τm/l + O(ε), (4.2)

under the additional constraint
L(ξ, lδ) = L(p, mτ). (4.3)

Equation (4.3) represents a resonance condition as it relates, either explicitly or implicitly, the periods
of the perturbation with that of the periodic orbit Z . With the notation L(p, mτ) = λ, the zero
problem to be solved reads

∆l,L : Rn+2 → Rn+1, ∆l,L(ξ , δ, ε) =

{
∆l(ξ , δ, ε)

L(ξ , lδ)− λ
, ∆l,L(ξ , δ, ε) = 0. (4.4)

Defining the smooth, L-independent, mτ-periodic function Mm:l : R→ R as

Mm:l(s) =
∫ mτ

0

〈
DH(x0(t + s; p)) , g(x0(t + s; p), t; τm/l, 0)

〉
dt, (4.5)

and using the notation DMm:l(s) = M′m:l(s) we obtain the following main result.

Theorem 4.1. If the Melnikov function Mm:l(s) has a simple zero at s0 ∈ R, i.e.,

Mm:l(s0) = 0, M′m:l(s0) 6= 0, (4.6)

then the m-normal periodic orbit Z of the ε = 0 limit smoothly persists in system (3.4) for small ε > 0.
Moreover, in this case, there exists at least another topologically transverse zero in the interval (s0, s0 + mτ).
If Mm:l(s) remains bounded away from zero, then Z does not smoothly persists for small ε > 0.

We prove Theorem 4.1 in section 4.4. The proof reduces the (2n + 1)-dimensional persistence
problem to the analysis of the zeros of the scalar function (4.5). This function formally agrees with the
one derived originally by Melnikov for a planar oscillator, but the proof for n > 1 is more involved
compared to the simple geometric treatment in [4] for single-degree-of-freedom systems.

When the Melnikov function has a simple or transverse zero, the perturbed orbit emanating from
the m-normal periodic orbit Z and its period are O(ε)-close to Z and to τm, respectively. Since
topologically transverse zeros of functions are generically simple, we expect from Theorem 4.1 that
an even number of perturbed periodic orbits bifurcates from the m-normal periodic orbit at the ε = 0
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Figure 4.1: Bifurcations in case the Melnikov function (4.5) has two simple zeros. Regular points of the back-
bone curve generate perturbed solutions either in the isochronous (a) or isoenergetic (b) directions.
In contrast, in case (c), perturbed solutions are guaranteed to exist in the isoenergetic direction for
a fold point in τ. Blue lines identify conservative backbone curves while red lines mark perturbed
periodic orbits. Solid and dashed lines identify different local branches of solutions.

limit, as indeed typically observed in literature. Moreover, since the Melnikov function (4.5) does not
depend on the parametrization function L used in Eq. (4.3), Theorem 4.1 and its consequences hold
for any possible parametrizing direction used for the unperturbed periodic orbit family.

Theorem 4.1 can be interpreted directly in terms of the backbone curve of P and the frequency
response of system (3.4). Suppose that the backbone curve of P shows only regular points near
the m-normal periodic orbit Z so that we can select L(p, mτ) = mτ = λ. In this case, Eq. (4.3)
imposes the exact resonance condition lδ = mτ. For a pair of simple zeros of Mm:l , Theorem 4.1
guarantees that the point in the backbone curve corresponding to Z bifurcates in two frequency
responses along the isochronous direction, as depicted in Fig. 4.1(a). If, instead, Z corresponds
to a fold point in τ, then Theorem 4.1 does not hold for this choice of L, but we can still use the
energy h as parametrization variable. In that case, our perturbation method constrains the perturbed
initial condition ξ to lie in the same energy level as that of Z . At the same time, the time period δ

for the perturbed orbit is O(ε)-close to τm/l, i.e., a near-resonance condition is satisfied. For two
simple zeros of Mm:l , Z can be smoothly continued in two frequency responses along the isoenergetic
direction, as shown in Fig. 4.1(b) and 4.1(c).

4.1.2 Perturbation of a family and parameter continuation

Here we consider an additional parameter κ ∈ R in Eq. (4.4), where κ is either a feature of the vector
fields in system (3.4) or the family parameter λ. The Melnikov function Mm:l in (4.5) clearly inherits
this smooth parameter dependence.

Next we investigate the fate of the m-normal periodic orbit Z in the family P for which the
Melnikov function features a quadratic zero at (s0, κ0) defined as:

Mm:l(s0, κ0) = ∂s Mm:l(s0, κ0) = 0, ∂2
ss Mm:l(s0, κ0) 6= 0. (4.7)

The following theorem describes what generic bifurcations may arise in this setting.

Theorem 4.2. Assume that Mm:l(s, κ) has a quadratic zero at (s0, κ0), as defined in Eq. (4.7). If ∂κ Mm:l(s0, κ0) 6=
0, then κsn = κ0 + O(ε) is a bifurcation value at which a saddle-node bifurcation of periodic orbits occurs. If
∂κ Mm:l(s0, κ0) = 0 and det(D2Mm:l(s0, κ0)) > 0 (resp. < 0), then isola births (resp. simple bifurcations)
arise for small ε > 0.
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(a)

Saddle-node bifurcation Isola birth

(b) (c)

Simple bifurcation

(d) (e) (f)

Single solution Closed isola

Node singularity Isola detachmentBottleneck
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h
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h
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τ

τ
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τ

τ0

τ0 τ0

τ0 τ0

τ0

∂τ Mm:l(s0, τ0) < 0

∂τ Mm:l(s0, τ0) = 0, det(D2Mm:l(s0, τ0)) < 0

∂τ Mm:l(s0, τ0) = 0, det(D2Mm:l(s0, τ0)) > 0

Figure 4.2: Illustration of the bifurcation phenomena described in Theorem 4.1 along a τ-parametrized con-
servative backbone curve close to a quadratic zero of the Melnikov function. Blue lines identify
conservative backbone curves while red lines mark perturbed periodic orbits. Solid and dashed
lines identify different local branches of solutions.

We prove Theorem 4.2 in section 4.4. Note that the bifurcations described in the last sentence of
Theorem 4.2 are singular ones. Under these, the local, qualitative behavior of the solutions of Eq.
(4.4) may change for different small ε > 0 as we describe below in an example. On the other hand,
periodic orbits arising from either simple zeros or quadratic and κ-nondegenerate zeros persist for
small ε > 0. We refer the reader to [120–122] for detailed analyzes of such singular bifurcations.

Figure 4.2 illustrates the bifurcations described in Theorem 4.2 when the family P can be locally
parametrized with the period, which is also the selected continuation parameter, κ = τ. This means
sweeping along orbits of the family, indicated with a blue line, and analyzing when these orbits give
rise to perturbed ones in the frequency response, denoted in red.

Plot (a) shows a saddle-node bifurcation in τ, also known as limit or fold bifurcation. For this
type of quadratic zero, the conservative orbit at τ0 and the period τ0 itself are O(ε)-close to a locally
unique saddle-node periodic orbit in τ of the frequency response. This unique orbit originates as
two solutions branches of Eq. (4.4) join together. After this point, conservative orbits of P do not
smoothly persist, at least locally.

The singular case of isola birth, illustrated in Fig. 4.2(b) and Fig. 4.2(c), has three possible
bifurcation outcomes, depending on the value of the parameters. It is typically observed that either
no solution persists from the ones in P (not show in Fig. 4.2) or a closed branch of solutions appears,
i.e., an isola as shown in Fig. 4.2(c). Instead, the single solution case of Fig. 4.2(b) may occur, but it is
non-generic.

Similarly, simple bifurcations may manifest themselves in three scenarios. The bottleneck, in Fig.
4.2(d), and the isola detachment, in (f), are generic, while the node singularity of Fig. 4.2(e) is an extreme
case.
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Remark 4.1. The results we have presented in Theorems 4.1-4.2 apply to general, non-autonomous
perturbations of conservative systems with a normal family of periodic orbits, not just to mechanical
systems. Moreover, the perturbation may be also of type g(x, ẋ, t; δ, ε).

4.1.3 Significance of the Melnikov function

The underlying physics of the full system in Eq. (3.3) implies that any periodic solution with minimal
period lδ must necessarily experience zero energy balance in one oscillation cycle. Defining the
energy function

Eb(ξ , ε)[0,lδ] = ε
∫ lδ

0

〈
q̇(t; ξ , δ, ε) , Q(q(t; ξ , δ, ε), q̇(t; ξ , δ, ε), t; δ, ε)

〉
dt, (4.8)

we deduce that, along such a periodic orbit, we must have

Eb(ξ , ε)[0,lδ] = 0, (4.9)

given that the work done by the non-conservative forces must vanish over one cycle of that orbit.
Equation (4.9) is commonly called the energy principle in literature [82, 88, 96].

By imposing ξ = (q0(s; p), q̇0(s; p)) + O(ε) and lδ = mτ + O(ε) in the energy balance equation,
one can easily verify that the Melnikov function of Eq. (4.5) is the leading-order term of the Taylor
expansion of Eq. (4.9), i.e.,

Eb(ξ , ε)[0,lδ] = εMm:l(s) + O(ε2), (4.10)

where
Mm:l(s) =

∫ mτ

0

〈
q̇0(t + s; p) , Q(q0(t + s; p), q̇0(t + s; p), t; τm/l, 0)

〉
dt, (4.11)

in which we have used Eq. (3.5) and the relation

DH(x) = DH(q, q̇) =
(

DV(q)− DG0(q) +
1
2

∂q
(
〈 q̇ , M(q)q̇〉

)
, M(q)q̇

)
. (4.12)

Therefore, the Melnikov function equals the work done by non-conservative forces along the pe-
riodic orbit Z of the conservative limit. Before exploring the implications of this peculiar form
of the Melnikov function in specific cases, it is useful to recall the definitions of subharmonic and
superharmonic resonances [5] in terms of l and m. These integers define the relation between the
minimal period of the orbit and that of the perturbation. A subharmonic resonance occurs when the
forcing frequency is a multiple of the orbit frequency, i.e., l 6= 1 and m = 1. The converse holds for a
superharmonic resonance, for which we have l = 1 and m 6= 1. The attribute ultrasubharmonic [4]
indicates higher-order resonances, when both m and l are different from 1.

4.2 monoharmonic forcing with arbitrary dissipation

Due to their importance in the structural vibrations context, we now consider perturbations Q in Eq.
(3.3) whose leading-order term in ε is of the form

Q(q, q̇, t; δ, e, 0) = e fe cos(Ωt)− C(q, q̇), Ω = 2π/δ, (4.13)

where e ∈ R is a forcing amplitude parameter, fe ∈ RN is a constant vector of unit norm and C(q, q̇)
is a smooth, dissipative vector field. The actual forcing amplitude and the dissipative vector field are
both rescaled by the value of the perturbation parameter ε.

First, we discuss the possible bifurcations that single orbits can experience in such systems when
perturbed into forced-damped frequency responses, then we discuss the fate of periodic orbit families.
Finally, we also illustrate the implications of the Melnikov method for the phase-lag quadrature
criterion used in experimental vibration analysis.
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4.2.1 Bifurcations from single orbits

We consider bifurcations from the conservative orbit Z with p ∈ Z and seek to perform continuation
with the parameter e. In this case, the Melnikov function takes the form

Mm:l(s, e) = e
∫ mτ

0
〈q̇0(t + s; p), fe〉 cos

(
2lπ
mτ

t
)

dt+

−
∫ mτ

0
〈q̇0(t + s; p), C(q0(t + s; p), q̇0(t + s; p))〉dt

= wm:l(s, e)−mR,

(4.14)

where we have introduced the resistance

R =
∫ τ

0
〈q̇0(t; p), C(q0(t; p), q̇0(t; p))〉dt, (4.15)

measuring the dissipated energy along one period τ of Z . This function is independent of s since C
does not explicitly depend on time and the factor m arises in (4.14) because (4.15) is τ-periodic. In
contrast,

wm:l(s, e) = e
∫ mτ

0
〈q̇0(t + s; p), fe〉 cos

(
2lπ
mτ

t
)

dt (4.16)

is the work done by the force along m periods of the conservative solution.
To simplify Eq. (4.14) further, we express the conservative periodic solution Z using the Fourier

series

q0(t; p) =
a0

2
+

∞

∑
k=1

ak cos (kωt) + bk sin (kωt) , ω =
2π

τ
, (4.17)

where ak, bk ∈ RN are the Fourier coefficients of the displacement coordinates. By inserting this
expansion in Eq. (4.14), we obtain for wm:l(s, e) the expression

wm:l(s, e) =

{
0 if m 6= 1

W1:l(e) cos (lωs− αl,e) if m = 1
, (4.18)

where

W1:l(e) = eAl,e, Al,e = lπ
√
〈al , fe〉2 + 〈bl , fe〉2, αl,e = arctan

( 〈al , fe〉
〈bl , fe〉

)
. (4.19)

We provide the details of these derivations in section 4.4. The quantity W1:l(e) measures the maximum
work done by the forcing along one cycle of the conservative periodic orbit. This work depends
linearly on the forcing amplitude parameter e. Equation (4.18) implies that superharmonics or
ultrasubharmonics cannot occur for the considered perturbation, which is consistent with literature
observations. As a consequence, we have the following proposition characterizing primary and
subharmonic resonances, where the relation between the forcing frequency Ω and the conservative
orbit frequency ω reads Ω = lω + O(ε).

Proposition 4.3. The Melnikov function for the perturbation in Eq. (4.13) takes the specific form

M1:l(s, e) = W1:l(e) cos (lωs− αl,e)− R. (4.20)

Assuming M1:l(s, e0) 6≡ 0 for some e0 6= 0, the following bifurcations of the conservative periodic orbit Z are
possible for small ε > 0:
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(i) if |W1:l(e0)| < |R|, the conservative solution Z does not smoothly persist;

(ii) if |W1:l(e0)| > |R|, two periodic orbits bifurcate from Z ;

(iii) if |W1:l(e0)| = |R| > 0, there exist a forcing amplitude parameter esn = e0 + O(ε) for which a unique
periodic orbit emanates from Z .

Proof. Since M1:l(s, e0) remains bounded away from zero for |W1:l(e0)| < |R|, statement (i) follows
from Theorem 4.1. When |W1:l(e0)| > |R|, M1:l(s, e0) features 2l simple zeros for s ∈ [0, τ) for which
Theorem 4.1 applies again. Considering that the forcing signal passes l times the zero phase in [0, τ),
l of these zeros correspond to a single perturbed orbit so that two periodic solutions bifurcate from Z ,
proving statement (ii). Finally, we will argue that statement (iii) is a direct consequence of Theorem
4.2. First, note that the Melnikov function (4.20) features l quadratic zeros in s as defined in Eq. (4.7),
corresponding to the l maxima or minima of cos (lωs− αl,e) for s ∈ [0, τ), depending on the signs of
W1:l(e) and R. Considering a location sqz among these quadratic zeros, we obtain

|∂e M1:l(sqz, e0)| = |DW1:l(e0)| = Al,e > 0 (4.21)

by the assumption |W1:l(e0)| = |R| > 0. Thus, these quadratic zeros are nondegenerate in κ and,
since l of them correspond again to a single orbit, we conclude that a saddle-node bifurcation occurs
from Theorem 4.2. More precisely, there exists a value esn = e0 + O(ε) for which a periodic orbit
O(ε)-close to Z corresponds to a fold point for continuations in e.
Due to the specific form of the function in Eq. (4.20), no further degeneracies in s are possible (e.g.
cubic zeros) for M1:l(s, e) so that the cases (i-iii) are the only possible bifurcations.

From Proposition 4.3, we can derive necessary conditions for the persistence of a periodic orbit
under forcing and damping. Either for case (ii) and (iii), W1:l(e) must be nonzero, i.e., e 6= 0 and
Al,e > 0. The latter quantity is zero if the l-th harmonic is not present in Eq. (4.17) or if fe is
orthogonal to both its Fourier vectors. In the non-generic case of M1:l(s, e0) ≡ 0, the Melnikov
function does not give any information on the persistence problem.

4.2.2 Bifurcations from normal families

We now investigate possible bifurcations that a conservative, 1-normal family P of periodic orbits
may exhibit when perturbed with Eq. (4.13) into frequency responses at fixed e. Specifically, we
study phenomena that occur with respect to the forcing frequency Ω and an amplitude measure a of
interest.

We assume that either ω or a can be locally used as the family parameter λ for P and we denote B
the conservative backbone curve in the plane (lω, a). We then introduce the following definition.

Definition 4.1. A ridge Rl is the curve in the plane (e, λ) identifying the forcing amplitudes and the orbits
of P at which quadratic zeros of M1:l in s occur.

The significance of ridges for frequency responses is clarified by the following proposition.

Proposition 4.4. Assume that eR(λ0) > 0 and Al,e(λ0) > 0 hold for the periodic orbit Z identified by λ0.
Then, the explicit local definition of Rl becomes e = Γl(λ), where

Γl(λ) = R(λ)/Al,e(λ). (4.22)

If DΓl(λ0) > 0 (resp. < 0), then the forced-damped response for e0 = Γl(λ0) shows a maximal (resp. minimal)
response with respect to λ O(ε)-close to B at Z . If DΓl(λ0) = 0 and D2Γl(λ0) > 0 (resp. < 0), then
the forced-damped response for e0 = Γl(λ0) includes an isola birth (resp. simple bifurcation) in λ which is
O(ε)-close to B at Z .
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Proof. We rewrite the Melnikov function as

M1:l(s, e, λ) = Al,e(λ)
(

e cos
(
lω(λ)s− αl,e(λ)

)
− Γl(λ)

)
, (4.23)

which features l quadratic zeros in s for e = Γl(λ). When DΓl(λ0) 6= 0, Theorem 4.2 identifies a
saddle-node bifurcation because

∂λ M1:l
(
sqz(λ0), Γl(λ0), λ0

)
= −Al,e(λ0)DΓl(λ0) 6= 0, (4.24)

at any of the l locations sqz(λ0) of quadratic zeros of M1:l in s. As already discussed in Proposition
4.3, there exists a unique periodic orbit O(ε)-close to Z , corresponding to a fold for continuations in
λ. If DΓl(λ0) > 0, we can choose a small positive ε defining a λ1 = λ0 − ε for which

W1:l(e0, λ1) = e0Al,e(λ1) = Γl(λ0)Al,e(λ1) > Γl(λ1)Al,e(λ1) = R(λ1), (4.25)

so that, according to Proposition 4.3, two periodic orbits bifurcate at e0 = Γl(λ0) from the orbit of P
described by λ1. For λ2 = λ0 + ε, we can similarly conclude that no orbit persists smoothly. Thus,
the periodic orbit at the fold in λ represents a maximal response. An analogous reasoning holds for
the minimal response case arising for DΓl(λ0) < 0.

The last statement of Proposition 4.4 holds again, based on Theorem 4.2, since we have that
∂λ M1:l

(
sqz(λ0), Γl(λ0), λ0

)
= 0 from Eq. (4.24) and

det
(
∂2

s,λ M1:l
(
sqz(λ0), Γl(λ0), λ0

))
= e
(

Al,e(λ0)ω(λ0)
)2D2Γl(λ0) 6= 0. (4.26)

Ridges, as introduced in Definition 4.1, are effective tools for the analysis of forced-damped
responses in the vicinity of backbone curves as they can track fold bifurcations and generations of
isolated responses. These phenomena are the most generic bifurcations for the perturbation type in
Eq. (4.13). Ridge points may be used to detect further singular bifurcation behaviors under additional
degeneracy conditions on λ [121].

4.2.3 The phase-lag quadrature criterion

We now discuss the relevance of the phase of the Melnikov function and the next proposition
illustrates an important result in this regard.

Proposition 4.5. Consider a perturbed periodic orbit qqz(t; ξ , δ, ε) corresponding to a quadratic zero of
the Melnikov function (4.20) related to the conservative limit Z . Then, the l-th harmonic of the function
〈qqz(t; ξ , δ, ε), fe〉 has a phase lag (resp. lead) of 90◦ + O(ε) with respect to the forcing signal if eR > 0 (resp.
eR < 0).

Proof. To determine the phase lag, we consider, without loss of generality, the phase condition for Z
〈al , fe〉 > 0, 〈bl , fe〉 = 0, (4.27)

under which the l-th term in the Fourier series of the function 〈q0(t; p), fe〉 is equal to 〈al , fe〉 cos(lωt),
having the same phase of the forcing. In that case, the Melnikov function becomes

M1:l(s, e) = W1:l(e) cos (lωs + 3π/2)− R = −W1:l(e) sin (lωs)− R. (4.28)

Eq. (4.28) shows that the l quadratic zeros of the Melnikov function occur for |W1:l(e)| = |R| and
lωsqz = −sign(eR)π/2 + 2kπ with k = 0, 1, ... l − 1. Thus, we obtain

〈qqz(t; ξ , δ, ε), fe〉 = 〈q0(t + sqz; p), fe〉+ O(ε), (4.29)

whose l-th harmonic is equal to 〈al , fe〉 cos(lωt− sign(eR)π/2) + O(ε), independent of k.
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We recall that the validity of the criterion relies the relative smallness of the forcing and
damping terms as well as the existence of a well-defined, underlying family of conservative
periodic orbits.

5. Examples
In this section, we study a conservative multi-degree of freedom system subject to non-
conservative perturbations in the form of Eq. 4.1. First we consider the frequency responses
with monoharmonic forcing and linear damping. Then, we introduce nonlinear damping to
investigate the presence of isolated branches of the frequency response. In both cases, we show
how the Melnikov analysis can predict frequency response phenomena analysing the case of 1 : 1

resonance with the periodic orbit families of the conservative limit.
For computing conservative periodic orbits and frequency responses, we use the continuation

package COCO [29] based on MATLAB. Specifically, we exploit its periodic orbit toolbox that
constructs a continuation problem under the collocation method where solutions to the governing
ODE are approximated by piecewise polynomial functions and continuation is performed using
a refined pseudo-arclength algorithm.

The system under analysis is composed by six unitary masses connected by nonlinear elements
and it is represented in Fig. some. Forcing is considered on the first degree of freedom only. The
seven nonlinear elements exert a force depending on the elongation �l and its speed �̇l, modelled
as

Fi(�l, �̇l, ") = Fi,el(�l) + "Fi,nc(�̇l) = ki,1�l + ki,3�l3 + ki,5�l5+

+"(↵ki,1�̇l + �ki,3�̇l
3

+ �ki,5�̇l
5
)

(5.1)

for i = 1, 2, ... 7. The coefficients ki,1, ki,3 and ki,5 have been randomly selected and they are
reported in Table 1, while the values of ↵, �, � and " will vary from case by case below. The
equations of motion read
8
>>>>>>>>><
>>>>>>>>>:

q̈1 + F1(q1, q̇1, ") + F2(q1 � q2, q̇1 � q̇2, ") = "e cos(!et) ,

...

q̈i + Fi(qi � qi�1, q̇i � q̇i�1, ") + Fi+1(qi � qi+1, q̇i � q̇i+1, ") = 0 , for i = 2, 3, ... 5 ,

...

q̈6 + F6(q6 � q5, q̇6 � q̇5, ") + F7(q6, q̇6, ") = 0 .

(5.2)
We now focus on the study of the conservative system, i.e., "= 0. Here, the nonlinear elements
are springs with convex potentials and the origin is an equilibrium whose eigenfrequencies !i are
reported in Table 1. Since no resonance holds among the latter, the system features six families of
periodic orbits emanating from the origin by the Lyapunov subcenter manifold theorem [25].
Using numerical continuation starting from small-amplitude linearised periodic motions, we
compute the conservative backbone curve for each mode a shown in Figure 4a. We plot these
curves using the normalised frequency !̄ = !/!1 and the L2 norm ||x||L2,[0,T ] of the conservative
periodic orbits. In the selected frequency-amplitude range, all the families show a pure hardening

Table 1. Elastic coefficients ki,j of the nonlinear elements and natural frequencies !i of the linearised system.

i 1 2 3 4 5 6 7
ki,1 N/m 2.971 1.231 1.844 1.015 1.226 1.971 2.728
ki,3 N/m3 0.036 0.849 0.934 0.679 0.758 0.743 0.392
ki,5 N/m5 0.547 0.958 0.965 0.158 0.971 0.957 0.485
!i rad/s 0.628 1.130 1.686 1.996 2.360 2.492 �

q1 q2 q3 q4 q5 q6

m6m5m4m3m2m11 2 3 4 5 6 7

εe cos(Ωt)

i
ki,1
ki,3
ki,5
ωi

Figure 4.3: Illustration of the mechanical system in (4.31) and table containing elastic coefficients ki,j of the con-
stitutive law in (4.30) for the nonlinear elements and natural frequencies ωi of the system linearized
at the origin.

In numerical or experimental continuation, one can track the relation between the forcing amplitude
parameter e and either the amplitude a or the forcing frequency Ω under the phase criterion of
Proposition 4.5. The resulting curve of points is an O(ε)-approximation of the ridge curve Rl whose
interpretation is available in Proposition 4.4.

Proposition 4.5 relaxes some restrictions of the phase-lag quadrature criterion derived in [44].
Indeed, Eq. (4.17) allows for arbitrary periodic motion, not just synchronous ones along which
all displacement coordinates reach their maxima at the same time. Moreover, our criterion is not
limited to velocity-dependent, odd damping, but it admits arbitrary, smooth dissipations. For this
general case, we proved that the phase-lag must be measured in co-location, i.e., when the output
(displacement response) is observed at the same location where the input (force) excites the system.

4.3 examples

In this section, we study a conservative multi-degree of freedom system subject to non-conservative
perturbations in the form of Eq. (4.13). First, we consider frequency responses with monoharmonic
forcing and linear damping. Then, we introduce nonlinear damping to investigate the presence
of isolas. In both cases, we show how the Melnikov analysis can predict forced-damped response
bifurcations under a 1 : 1 resonance between the forcing and periodic orbits of the conservative limit.

We analyze a system composed of six masses mi with i = 1, 2, ... 6 that are connected by seven
nonlinear massless elements, as shown in Fig. 4.3. All masses are assumed unitary and the external
forcing acts on the first degree of freedom only. The seven nonlinear elements exert a force depending
on the elongation ∆l and its speed ∆̇l, modelled as

Fi(∆l, ∆̇l, ε) = Fi,el(∆l) + εFi,nc(∆̇l) = ki,1∆l + ki,3∆l3 + ki,5∆l5+

+ε(αki,1∆̇l + βki,3∆̇l3
+ γki,5∆̇l5

)
(4.30)

for i = 1, 2, ... 7. The coefficients ki,1, ki,3 and ki,5 are reported in the table in Fig. 4.3, while the
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values of α, β, γ and ε will vary from case by case below. The equations of motion read

q̈1 + F1(q1, q̇1, ε) + F2(q1 − q2, q̇1 − q̇2, ε) = εe cos(Ωt),
...

q̈i + Fi(qi − qi−1, q̇i − q̇i−1, ε) + Fi+1(qi − qi+1, q̇i − q̇i+1, ε) = 0, for i = 2, 3, ... 5,
...

q̈6 + F6(q6 − q5, q̇6 − q̇5, ε) + F7(q6, q̇6, ε) = 0.

(4.31)

To compute conservative periodic orbits and frequency responses for system (4.31), we use the
MATLAB®-based numerical continuation package coco [26]. We specifically exploit its periodic
orbit toolbox that solves the continuation problem via collocation. In this method, solutions to the
governing ordinary differential equations are approximated by piecewise polynomial functions and
continuation is performed using a refined pseudo-arclength algorithm.

First, we focus on the study of the conservative limit (ε = 0), in which the nonlinear elements
are springs with convex potentials and the origin is an equilibrium whose eigenfrequencies ωi
are reported in the table of Fig. 4.3. Since no resonance arises among these frequencies, the
system features six families of periodic orbits emanating from the origin by the Lyapunov subcenter
manifold theorem [91]. Using numerical continuation starting from small-amplitude linearized
periodic motions, we compute the conservative backbone curve for each mode, shown in Figure
4.4(a). We plot these curves using the normalized frequency ω = ω/ω1 and the L2 norm ||x||L2 ,[0,τ]
of the conservative periodic orbits. We consider the latter norm as the amplitude measure A. With
the exception of the first periodic orbit family, the monodromy matrix of the periodic orbits has
two Floquet multipliers equal to +1, whose geometric multiplicity is 1 in the selected frequency-
amplitude range. Therefore, these five orbit families are 1-normal, precisely belonging to case (a) of
Definition 3.1, and showing a hardening trend (Da, Dω > 0). The first family also shows normality
with hardening behavior up to the magenta point, where branching phenomena takes place and a
further family originates from the continuation of the first linearized mode. As 1-normality does not
hold in the vicinity of the branch point, depicted in magenta in Fig. 4.4(a), we restrict our analysis of
the first family to amplitudes below the branch point amplitude.

4.3.1 Resonant external forcing with linear damping

In this first example, we take the damping to be linear with α = 0.04 and β = γ = 0 in Eq. (4.30). We
focus on the orbits surviving from primary resonance conditions, where m = l = 1, and we perform
the analysis of M1:1 for each mode of the system as described in section 4.2.

Figure 4.4(b) shows the work done by non-conservative contributions along the first modal family
of conservative orbits parametrized with the non dimensional frequency ω. The black solid line is the
resistance R(ω), while colored lines represent W1:1(e, ω) for three forcing amplitudes. According to
Proposition 4.3, we find that two orbits bifurcate from the conservative one when the lines illustrating
W1:1(e, ω) lay in the grey zone of this plot, i.e., when W1:1(e, ω) > R(ω). No orbit bifurcates in the
white area and unique solutions appear at intersection points between colored lines and the black
one. We also note that A1,e is never zero, except when ω = 1. Similar trends and considerations
hold for the other modes, except for the last one. For that mode, the active work contribution of
the forcing is very small compared to the dissipative terms: the forcing is nearly orthogonal to the
mode shape. Thus, no orbits arise from the conservative limit for the forcing amplitude ranges under
investigation.

Figure 4.5(d) shows the curves Γ1(ω) for the first five modes of the system using different colors;
all of them show a strictly increasing monotonic trend. Thus, according to Proposition 4.4, ridge
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Figure 4.4: (a) Conservative backbone curves of the unperturbed system and (b) Melnikov analysis for the
first mode of the system with linear damping α = 0.04: the black solid line is the resistance R(ω);
colored lines show the amplitude of the active work W1:1(e, ω) for different forcing amplitude values.
The amplitude A denotes the L2 norm ||x||L2 ,[0,τ] of periodic motions, while ω is the frequency
normalized by the first linearized frequency of system (4.31).

orbits are O(ε) approximations for maximal responses in ω and a, since all the conservative backbone
curves can be parametrized with both quantities. By selecting a forcing value in Fig. 4.5(d), we can
predict the frequencies and the amplitudes of the maximal responses in the forced-damped setting.
Moreover, since the damping is linear and proportional, ridges are defined as

e =
R(ω)

A1,e(ω)
= α

1
A1,e(ω)

∫ τ(ω)

0
〈q̇0(t; p(ω)), DV(0)q̇0(t; p(ω))〉dt, (4.32)

where DV(0) is the stiffness matrix of system (4.31), and we expressed initial conditions p, periods τ

and coefficients A1,e as functions of the non-dimensional frequency ω. From Eq. (4.32), we obtain
that the location of maximal frequency responses close to backbone curves is determined by the ratio
between the forcing amplitude parameter e and the damping term α, with O(ε) accuracy.

These theoretical findings are confirmed by the direct numerical computation of frequency re-
sponses presented in Fig. 4.5. To obtain them, we continue in frequency an initial guess acquired
through numerical integration for a forcing frequency away from resonance with any of the linearized
natural frequencies. The existence of this orbit is guaranteed by the asymptotic stability of the origin
when ε > 0 and e = 0. Plot (a) in Fig. 4.5 shows two frequency sweeps for e = 1 and for ε = 0.05
(grey line), 0.1 (black line), while this plot is zoomed in (b) around the first and fifth peaks. The sixth
mode shows some tiny responses with the rightmost peaks in these two frequency sweeps, more
evident for the case ε = 0.05 where the physical damping is lower. Figures 4.5(a) and 4.5(b,c) are
completed with our analytic predictions in green for the maxima, with a zoom around resonance
peaks of the first and the fifth families. By imposing the forcing parameter in the ridges of Fig. 4.5(d),
we obtain the frequencies of each mode around which maximal response occur that are validated
when carried over with green dotted lines in Fig. 4.5(a). Moreover, Fig. 4.5(e) shows the frequency
response surface keeping e = 1 and varying the damping value1 for two orders of magnitude. Green
curves show analytic predictions for the maxima that closely approximate the peaks of this surface.

1 For purposes of better illustration, we decided to sweep with the damping parameter α instead of the forcing amplitude
one.
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Figure 4.5: Plots (a,b,c) show frequency responses with α = 0.04 and e = 1 for ε = 0.05, grey line, and ε = 0.1,
black line. With respect to (a), plot (b) zooms near the first and plot (c) near the fifth one. The
five relevant conservative periodic orbit families are highlighted with colored lines. Plot (d) shows
the ridges R1 for each mode in different colors and the black line represents the forcing amplitude
parameter of the frequency response in (a), so that, carrying over this intersection frequencies with
green dotted lines, we obtain an analytic approximation for turning points. These approximations
are described by green circles in (a,b,c). Plot (e) shows the frequency response surface with e = 1
and ε = 0.1, varying the proportional damping term α completed with conservative families in grey
surfaces and analytic predictions for maxima in green.

4.3.2 Resonant external forcing with nonlinear damping

We now repeat the analysis of the previous section including also the nonlinear damping characteristic
of the connecting elements. In order to break the monotonic trend of the resistance in the linear
damping case, cf. Fig. 4.4(b), we select α = 0.2481, β = −1.085 and γ = 0.8314. We also restrict our
attention solely to the first mode of the system.

The Melnikov analysis is reported in Figure 4.6(a), which outlines a behavior change for increasing
forcing amplitudes. Indeed, an isola birth occurs at e ≈ 0.4 as was also displayed in Fig. 4.2. The
branch persists up to connecting with the main branch for e ≈ 1 through a simple bifurcation.

These predictions are confirmed by the numerical simulations shown in Figures 4.6(b) and 4.6(c).
The former illustrates several frequency responses for different physical forcing amplitudes, with
ε = 0.1. The green line is the ridge R1, also plotted in Fig. 4.6(c), and the two singular bifurcations
show up at its folds, as explained in Proposition 4.4. From a computational perspective, main
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Figure 4.6: Plot (a) shows the Melnikov analysis for α = 0.2481, β = −1.085 and γ = 0.8314 regarding the
first mode. Plot (b) shows frequency responses varying the forcing amplitude parameter and fixing
ε = 0.1 with the ridge curve R1. The latter is compared in plot (c) with the relation between the
e and ω obtained through the numerical continuation of saddle-nodes orbits occurring close to the
maximal point of the frequency response.

branches of the frequency response are computed with the same strategy of the previous section.
For isolated branches, we obtain initial guesses from a numerical continuation in e of saddle-node
periodic orbits2 that started near the maximal response of the frequency sweep at e = 1.3. We also
plot the relation between frequency and forcing amplitude in this latter numerical continuation with
the black line of Fig. 4.6(c). This curve is O(ε)-close to the ridge (in green), which was obtained
solely from the knowledge of the conservative limit. We remark that a 18-core workstation with 2.3
GHz processors required 18 minutes and 15 seconds to compute the black curve, while the green
curve took 1 minute and 45 seconds to compute.

2 This functionality is directly available in the periodic orbit toolbox of coco [26] through the constructor ode SN2SN.
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4.4 proof of mathematical results

4.4.1 A preparatory theorem

We first need some technical results to set the stage for the proofs of the theorems stated in section 4.1.
For a one-parameter family P of periodic orbits emanating from a m-normal periodic orbit Z , the
smooth map T : R→ R+ describes the minimal period T(λ) of each orbit. Introducing a Poincaré
section S passing through the point of z ∈ P , we can find a smooth curve ϑS : R → V ∪ P t S
parametrizing initial conditions under λ where V ⊂ Rn is a open neighborhood of z. For more detail
on these mappings, we refer the reader to [10]. We denote the tangent space of the 2-dimensional
manifold P at the point z by TzP , to which f (z) belongs due to invariance. We consider vectors as
column ones and we use the superscript > to denote transposition. We refer to the column and row
spaces of a matrix A with the notations col(A) and row(A), respectively.

Next, we discuss a useful result on the properties of the monodromy matrices for normal periodic
orbits. Specifically, we restate Proposition 2.1 of [114] for the setting of m-normal period orbits.

Proposition 4.6. Consider an m-normal periodic orbit Z of period mτ in the periodic orbit family P . The
smooth invertible matrix families K, R : Z → Rn×n, defined as

K(z) = [Kr(z) v(z) f (z)], v(z) ∈ TzP : 〈v(z), f (z)〉 = 0, 〈v(z), v(z)〉 = 1,

col(Kr(z)) = T ⊥z P , R(z) =

 Rr(z)
− f>(z)
DH(z)

 , row(Rr(z)) = span⊥{ f (z) , DH(z)},
(4.33)

satisfy the identity

R(z)(Πm(z)− I)K(z) =

Ar(z) 0 0
w>(z) mτv 0

0 0 0

 , w>(z) = − f>(z)(Πm(z)− I)Kr(z), (4.34)

where Ar(z) ∈ R(n−2)×(n−2) is always invertible and the value τv ∈ R describes the shear effect within P
being zero if Z is a normal periodic orbit of case (b) and nonzero for case (a) of Definition 3.1.

Proof. For proving this factorization result, we need to characterize kernel and range of the mon-
odromy operator for Z based at z. First, by [119], we have that

f (z) ∈ ker(Πm(z)− I), DH(z) ∈ range⊥(Πm(z)− I). (4.35)

Without loss of generality, we introduce a Poincaré section S orthogonal to f (z) and the value λz

identifies Z leading to z = ϑS (λz), τ = T(λz). Consider the identity

x0(mT(λ); ϑS (λ)) = ϑS (λ), (4.36)

whose differentiation in λ and evaluation at λ = λz yields

(Πm(z)− I)DϑS (λz) = −mDT(λz) f (z). (4.37)

We then have v(z) = DϑS (λz)/||DϑS (λz)|| leading to a parametrization-independent relation and to
the definition of τv in the form

(Πm(z)− I)v(z) = −mτv f (z), τv =
DT(λz)

||Dϑ(λz)||
. (4.38)
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If the orbit Z belongs to the case (a) of Definition 3.1, τv cannot be zero, otherwise the kernel of
Πm(z)− I is two dimensional. Instead, for case (b), τv must be zero, otherwise there exists a nonzero
vector v(z) whose image is parallel to f (z). In both cases, the column space of Kr(z) always lays in
the complement of the kernel of Πm(z)− I by construction, so it maps through Πm(z)− I a n− 2
dimensional linear subspace Vz such that f (z), DH(z) /∈ Vz. Since the row space of the matrix
Rr(z) does not contain the latter vectors, the matrix Ar(z) = Rr(z)(Πm(z)− I)Kr(z) is invertible
∀z ∈ Z .

We can now state and prove the following reduction theorem.

Theorem 4.7. Perturbed solutions of Eq. (4.4) in the form of Eq. (4.2) are (locally) in one-to-one correspondence
with the zeros of the bifurcation function

Bm:l
L (s, ε) = Mm:l(s) + O(ε), (4.39)

where the leading-order term, defined in Eq. (4.5), is independent from the choice of the mapping L used in the
last equation of system (4.4).

Proof. With the shorthand notation z = x0(s; p), we consider the following change of coordinates

ζ̂ ∈ Rn−1, σ̂ ∈ R,
(

ξ

δ

)
= ϕ̂(ζ̂ , σ̂, s) =


z + K(z)

(
ζ̂

0

)
= z + KT Z (z)ζ̂

(τm + σ̂)/l

, (4.40)

where K(z) is the matrix defined in Proposition 4.6. By construction, Dϕ̂(0, σ̂, s) is invertible
for any s , σ̂ ∈ R. Then, we rescale ζ̂ = εζ, σ̂ = εσ and, by calling η = (ζ , σ, s), we denote
ϕ(η, ε) = ϕ̂(εζ, εσ, s). Note that ϕ(·, ε) is a family of diffeomorphisms for ε nonzero small enough.
Note also that col(KT Z (z)) = T ⊥z Z .

By imposing this coordinate change and Taylor expanding in ε Eq. (4.4), we obtain ∆l,L(ϕ(η, ε), ε) =

ε∆1(η, ε). The latter mapping is of Cr−1 class and reads

∆1(η, ε) =

{
∂ξ∆(z, mτ/l, 0)KT Z (z)ζ + ∂δ∆(z, mτ/l, 0)σ + ∂ε∆(z, mτ/l, 0)

∂ξ L(z, mτ)KT Z (z)ζ + ∂δL(z, mτ)σ
+ O(ε), (4.41)

in which
∂ξ∆(z, mτ/l, 0) = xξ(mτ; z, mτ/l, 0)− I = Πm(z)− I
∂δ∆(z, mτ/l, 0) = f (z) + xδ(mτ; z, mτ/l, 0) = f (z)
∂ε∆(z, mτ/l, 0) = xε(mτ; z, mτ/l, 0) = χ(z)

, (4.42)

where we have denoted by xκ(mτ; z, mτl, 0) the solution of the first variational problem in the
parameter κ at time mτ. The solution of the first variation in the period is zero since the period
dependence of the vector field only appears at O(ε). Exploiting Proposition 4.6, we project ∆1 using
the invertible matrix R?(z) defined as

R?(z) =


Rr(z) 0
− f>(z) 0

0 1
DH(z) 0

 , (4.43)
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in order to obtain

∆′1(η, ε) = R?(z)∆1(η, ε) =

(
∆r(ζ , σ, s, ε)

∆c(ζ , σ, s, ε)

)
=


A(z)

(
ζ

σ

)
+ b(z)

〈DH(z), χ(z)〉
+ O(ε),

A(z) =

 Ar(z) 0 0
w>(z) mτv −1

∂ξ L(z, mτ)Kr(z) 〈∂ξ L(z, mτ), v(z)〉 l∂δL(z, mτ)

 ,

b(z) =

 Rr(z)χ(z)
−〈 f (z), χ(z)〉

0

 .

(4.44)

We now aim to show that A(z) is an invertible matrix for any s. Due to its block matrix structure, its
determinant reads

det
(

A(z)
)
= det

(
Ar(z)

)(
〈∂ξ L(z, mτ), v(z)〉+ mlτv∂τ L(z, mτ)

)
, (4.45)

where the first factor is nonzero due to Proposition 4.6. For the second factor, we use the identity

L(x0(t; ϑS (λ)), mT(λ)) = λ, (4.46)

whose differentiation in λ, evaluation λ = λz and division by ||DϑS (λz)|| yields

〈∂ξ L(z, mτ), v(z)〉+ mlτv∂T L(z, mτ) = 1/||DϑS (λz)||, (4.47)

proving that A(z) is then invertible. Hence, we can solve for ζ and σ in the leading order term of ∆r

for any s, so that the implicit function theorem (∆′1 ∈ Cr−1 with r ≥ 2) guarantees that we can locally
express ζ = ζr(s, ε) and σ = σr(s, ε) such that ∆r(ζr(s, ε), σr(s, ε), s, ε) = 0. Thus, we have shown that
the perturbed solutions of ∆l,L(ξ , δ, ε) = 0 have a one-to-one correspondence with the zeros of the
bifurcation function Bm:l

L (s, ε) defined as

Bm:l
L : R×R→ R, Bm:l

L (s, ε) = ∆c(ζr(s, ε), σr(s, ε), s, ε) = Mm:l(s) + O(ε), (4.48)

where Mm:l(s) = 〈DH(z), χ(z)〉. Moreover, this function does not depend on the mapping L used as
a constraint in Eq. (4.4).

We now aim to simplify the Melnikov-type function Mm:l(s) to the form in Eq. (4.5). Denoting
with X0(t; x0(s; p)) the solution of the first variational problem for the vector field f (x), we write
explicitly the solution of the first variational problem in ε (see [11]) leading to

Mm:l(s) = 〈DH(x0(s; p)) , xε(mτ; x0(s; p), mτ/l, 0)〉

=
〈

DH(x0(s; p)) , X0(mτ; x0(s; p))·

·
∫ mτ

0
X−1

0 (t; x0(s; p)) g(x0(t; x0(s; p)), t; mτ/l, 0)dt
〉
,

(4.49)

and we recall that the dynamics on an energy surface H(x) = H(p) (that acts as a codim. 1 invariant
manifold), is characterized by (see Proposition 3.2 in [123] for a proof)

DH(x0(t + s; p)) = DH(x0(s; p))X−1
0 (t + s; p), DH(p)X0(mτ; p) = DH(p). (4.50)
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Equation (4.50) leads to

Mm:l(s) =
〈

DH(x0(s; p)) ,
∫ mτ

0
X−1

0 (t + s; p) g(x0(t + s; p), t; mτ/l, 0)dt
〉

=
∫ mτ

0

〈
DH(x0(s; p)) , X−1

0 (t + s; p) g(x0(t + s; p), t; mτ/l, 0)
〉
dt

=
∫ mτ

0

〈
DH(x0(t + s; p)) , g(x0(t + s; p), t; mτ/l, 0)

〉
dt,

(4.51)

and this function is clearly smooth and mτ-periodic.

4.4.2 Proof of theorem 4.1

Proof. Thanks to Theorem 4.7, we are able to reduce the persistence problem of Eq. (4.4) to the study
of Bm:l

L (s, ε). The zeros of this function mark the existence of periodic orbits for ε small enough which
smoothly connect to Z at ε = 0. Note that, if the Mm:l(s) ≡ 0, then no conclusions for persistence
can be drawn solely from Mm:l(s). Indeed, we need to analyze the O(ε) term in Bm:l

L .
If the Melnikov function remains bounded away from zero, then we conclude the last statement

thanks to the fact that no zeros of the bifurcation function exists for ε small enough.
We now analyze the case of simple zeros. Assuming that the conditions in Eq. (4.6) hold for s0,

the implicit function theorem guarantees that we can express s = s(ε) from the bifurcation function
Bm:l

L (s, ε). According to the proof of Theorem 4.7, we can define

ζ(ε) = ζr(s(ε), ε), σ(ε) = σr(s(ε), ε), η(ε) = (ζ(ε), σ(ε), s(ε)), (4.52)

such that ∆l,L(ϕ(η(ε), ε), ε) = 0 for a sufficiently small neighborhood C0 ⊂ R. Hence, we can express
the initial conditions and the periods{

ξ(ε) = x0(s(ε); p) + εKT Z
(
x0(s(ε); p)

)
ζ(ε) = x0(s0; p) + O(ε)

lδ(ε) = mτ + εσ(ε) = mτ + O(ε)
(4.53)

of periodic orbits solving system (3.4) and satisfying L(ξ(ε), lδ(ε)) = λ for small enough ε > 0.
Finally, the second statement of Theorem 4.1 is a direct consequence of the intermediate value

theorem. Namely, the existence of a simple zero for the Melnikov function implies that Mm:l(s) is
not constant and there exist points s1 = s0 − ε and s2 = s0 + ε such that Mm:l(s1)Mm:l(s2) < 0 for
ε > 0 small enough. Due to periodicity, we also have Mm:l(s2)Mm:l(s1 + mτ) < 0. Thus, there exists
at least another ŝ0 ∈ (s2, s1 + mτ) such that Mm:l(ŝ0) = 0 due to Bolzano’s theorem and it must be a
zero at which the function changes sign, i.e., a topologically transverse zero.

Remark 4.2. Theorem 4.1 guarantees smooth persistence only. There may be degenerate cases
where there exist periodic orbits of system (3.4) that are still O(ε)-close to Z , but they can only be
continuously connected to the latter or not connected at all. The Melnikov function in (4.5) cannot
prove existence of such orbits.

Remark 4.3. To analyze the type of zeros of the Melnikov function, it is convenient to have closed
formulae for its derivatives. The first derivative can be computed as

DMm:l(s) = M′m:l(s) = −
∫ mτ

0

〈
DH(x0(t + s; p)) , ∂tg(x0(t + s; p), t; τm/l, 0)

〉
dt, (4.54)
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given that

M′m:l(s) =
∫ mτ

0
∂s
〈

DH , g
〉
dt =

∫ mτ

0
Dt
〈

DH , g
〉
dt−

∫ mτ

0

〈
DH , ∂tg

〉
dt

= −
∫ mτ

0

〈
DH , ∂tg

〉
dt,

(4.55)

which is again a smooth periodic function. Thus, a transverse zero s0 of Mm:l(s) must satisfy:∫ mτ

0

〈
DH(x0(t + s0; p)) , g(x0(t + s0; p), t; τm/l, 0)

〉
dt = 0,

∫ mτ

0

〈
DH(x0(t + s0; p)) , ∂tg(x0(t + s0; p), t; τm/l, 0)

〉
dt 6= 0.

(4.56)

Assuming enough smoothness, the second derivative of Mm:l(s) is likewise

D2
ss Mm:l(s) =

∫ mτ

0

〈
DH(x0(t + s; p)) , ∂2

ttg(x0(t + s; p), t; τm/l, 0)
〉
dt (4.57)

A similar formula follows for high-order derivatives.

Remark 4.4. Note that if the orbit family can be parametrized with the period, one can directly insert
the exact resonance condition into the displacement map. In this case, the method developed in [114]
applies in a straightforward way in what the authors call a non-degenerate case. Compared with the
discussion in that reference, we simplified the final Melnikov function.

4.4.3 Proof of theorem 4.2

Once the reduction to a scalar bifurcation function has been performed as in Theorem 4.7, the
statements in Theorem 4.2 follow from results of the bifurcation analysis outlined in [121]. Specifically,
one can look at Theorem 2.1 and Table 2.3 in Chapter IV to recognize the bifurcation problem. In
that reference, the singular bifurcation isola birth is called isola centre.

We further remark that a saddle-node bifurcation persists in the perturbed setting. Indeed, defining

Bsn(s, κ, ε) =

{
Bm:l

L (s, κ, ε)

∂sBm:l
L (s, κ, ε)

, (4.58)

we find that

Bsn(s0, κ0, 0) = 0, det
(
∂s,κBsn(s0, κ0, 0)

)
= −∂2

ss Mm:l(s0, κ0)∂κ Mm:l(s0, κ0) 6= 0. (4.59)

Therefore, the implicit function theorem applies, guaranteeing that a locally unique orbit persists at
ssn = s0 + O(ε), κsn = κ0 + O(ε).

4.4.4 Melnikov function with monoharmonic, space-independent forcing

We show the derivations that lead to Eq. (4.18). By substituting the Fourier series of Eq. (4.17) into
(4.18), we find that

wm:l(s, e) = −e
∞

∑
k=1

∫ mτ

0
kω〈ak, fe〉 sin (kω(t + s)) cos

(
l
m

ωt
)

dt+

+e
∞

∑
k=1

∫ mτ

0
kω〈bk, fe〉 cos (kω(t + s)) cos

(
l
m

ωt
)

dt.

(4.60)
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Expanding using trigonometric addition formulae, we obtain

wm:l(s, e) = −e
∞

∑
k=1

kω〈ak, fe〉 cos (kωs)
∫ mτ

0
sin (kωt) cos

(
l
m

ωt
)

dt+

−e
∞

∑
k=1

kω〈ak, fe〉 sin (kωs)
∫ mτ

0
cos (kωt) cos

(
l
m

ωt
)

dt+

+e
∞

∑
k=1

kω〈bk, fe〉 cos (kωs)
∫ mτ

0
cos (kωt) cos

(
l
m

ωt
)

dt+

−e
∞

∑
k=1

kω〈bk, fe〉 sin (kωs)
∫ mτ

0
sin (kωt) cos

(
l
m

ωt
)

dt

. (4.61)

We recall the following trigonometric integral identities with k 6= j :∫ τ

0
sin (kωt) cos (jωt) =

∫ τ

0
sin (kωt) sin (jωt) =

∫ τ

0
cos (kωt) cos (jωt) = 0,

∫ τ

0
sin (kωt) cos (kωt) = 0,

∫ τ

0
sin2 (kωt) =

∫ τ

0
cos2 (kωt) =

τ

2
.

(4.62)

Thus, the integrals in the first and last summations in Eq. (4.61) are always zero. We first discuss the
case m 6= 1. We call mτ = τo so that Eq. (4.61) becomes

wm:l(s, e) = −e
∞

∑
k=1

kω〈ak, fe〉 sin (kωs)
∫ τo

0
cos

(
2kmπ

τo
t
)

cos
(

2lπ
τo

t
)

dt+

+e
∞

∑
k=1

kω〈bk, fe〉 cos (kωs)
∫ τo

0
cos

(
2kmπ

τo
t
)

cos
(

2lπ
τo

t
)

dt.

(4.63)

Therefore, to obtain nonzero integrals in Eq. (4.63), we need that km = l according to Eq. (4.62).
However, since we choose l and m to be positive integers and relatively prime, that condition will
never hold. We then conclude that wm:l(s, e) ≡ 0 for m 6= 1.

For m = 1, only the terms for k = l can be nonzero in Eq. (4.63), resulting in

wm:l(s) = −lπ〈al , fe〉 sin (lωs) + lπ〈bl , fe〉 cos (lωs) . (4.64)

Thus, we recover Eq. (4.18) with the proper definitions of Al,e and αl,e.
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5
S TA B I L I T Y O F F O R C E D - D A M P E D M O T I O N S

With respect to the previous chapter, here we adopt the Hamiltonian formalism, which allows us to
derive closed-form expressions for the assessment of stability, without compromising the generality
of our results.

Since the Lagrangian L of Eq. (3.1) is a convex function of q̇, the conservative system can be written
in Hamiltonian form [116, 117]. Introducing the generalized momenta

p = ∂q̇L = M(q)q̇ + G1(q), (5.1)

we can express the velocities as q̇ = F(q, p) = M−1(q)(p− G1(q)) and the total energy as

H(q, p) = 〈 p , F(q, p)〉 − L(q, F(q, p)) =
1
2
〈 p− G1(q) , M−1(q)(p− G1(q))〉 − G0(q) + V(q), (5.2)

which agrees with (3.2). Introducing the notation x = (q, p) ∈ R2n, we obtain the equations of motion
in the form

ẋ = JDH(x) + εg(x, t; δ, ε), J =
[

0n×n In×n

−In×n 0n×n

]
, (5.3)

where we assume that H ∈ Cr+1 with r ≥ 3, while g is Cr−1 in t and Cr in the other arguments. The
vector fields in (5.3) are defined as

DH(x) =
(

∂qH
∂pH

)
=

(−∂qL(q, F(q, p))
F(q, p)

)
, g(x, t; δ, ε) =

(
0

Q(q, F(q, p), t; δ, ε)

)
. (5.4)

We assume that any further parameter dependence in our upcoming derivations is of class Cr and
that the model (5.3) is again valid in a subset U ⊆ R2n of the phase space. With respect to chapter
4, we need to assume an additional degree of smoothness for the vector field because we have to
compute higher order expansions for the stability assessment. Trajectories of (5.3) that start from
ξ ∈ R2n at t = 0 will be denoted with x(t; ξ , δ, ε) = (q(t; ξ, δ, ε), p(t; ξ , δ, ε)). We will also use the
shorthand notation x0(t; ξ) = (q0(t; ξ), p0(t; ξ)) = x(t; ξ , δ, 0) for trajectories of the unperturbed
(conservative) limit of system (5.3). The equation of (first) variations for system (5.3) about the
solution x(t; ξ , δ, ε) reads

Ẋ =
(

JD2H(x(t; ξ, δ, ε)) + ε∂xg(x(t; ξ, δ, ε), t; δ, ε)
)
X, X(0) = I2n×2n, (5.5)

whose solutions for ε = 0 will be denoted as X0(t; ξ) = X(t; ξ , δ, 0). As long as x0(t; ξ) ∈ U , we recall
that H(x0(t; ξ)) = H(ξ) and that X0(t; ξ) is a symplectic matrix [124]. We also note that the Melnikov
function (4.5,4.11) is not affected by the change of coordinates with respect to those of chapter 4.

5.1 stability from the melnikov method

In this section, we state our main mathematical results on the stability of solutions arising as
perturbations from the conservative limit. We now make the following assumption:

(A.1) The periodic orbit Z ⊂ U of system (5.3) for ε = 0 is m-normal and, after a possible phase shift,
its Melnikov function Mm:l(s) defined in Eq. (4.5) has a simple zero at 0.
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By chapter 4, assumption (A.1) implies the existence of an lδ-periodic orbit, denoted Zε, satisfying
system (5.3) for small ε > 0, with lδ = mτ + O(ε) and with initial condition O(ε)-close to z. We
denote by Π = X0(mτ; z) = Xm

0 (τ; z) the monodromy matrix of Z based at the point z ∈ Z evaluated
along m cycles of the periodic orbit Z . Our first results is the following simple consequence of our
assumptions.

Proposition 5.1. If there exists an eigenvalue µ of Π such that |µ| > 1, then Zε is unstable for ε small
enough.

Proof. The maximum distance between the Floquet multipliers of the orbit Zε and those of its
conservative limit Z can be bounded with a suitable power of the parameter ε (see, for example,
Theorem 1.3 in Chapter IV of [125]). Hence, if there exists a multiplier µ of the conservative limit
such that |µ| > 1, then, for ε sufficiently small, Zε has a multiplier with the same property by the
smooth dependence of the flow map on the parameter ε.

If the assumption of Proposition 5.1 is not satisfied, then perturbations of Z may result in orbits
with different stability types. Henceforth we assume the following condition to be satisfied:

(A.2) The eigenvalues of the monodromy matrix Π lie on the unit circle in the complex plane.

In the literature on Hamiltonian systems, an orbit satisfying (A.2) is called spectrally stable [126].
From a practical viewpoint, such orbits are of great interest as small perturbations of them may
create asymptotically stable (and hence observable) periodic responses. We also need the next
nondegeneracy assumption:

(A.3) The algebraic and geometric multiplicities of the eigenvalue +1 of Π are 2 and 1, respectively.

This guarantees that the family P of chapter 3 can be locally parametrized either with the values
of the first integral H or with the period of the orbits [119]. In the former case, there exists a scalar
mapping T : R→ R+ that locally describes the minimal period of the orbits in P near Z as function
of H. Moreover, τ = T(h) and DT(h) = T′(h) 6= 0 hold, where h = H(z) is the energy level of Z .

To state further stability results, we need some definitions. Let V be a 2v-dimensional invariant
subspace for Π and let RV ∈ R2n×2v be a matrix whose columns form a basis of V . We then have the
following identity

ΠRV = RVBV (5.6)

for a unique BV ∈ R2v×2v.

Definition 5.1. We call V a strongly invariant subspace for Π if det(BV ) = 1 and all the eigenvalues of BV
are not repeated in the spectrum of Π.

Strongly invariant subspaces persist under small perturbations of Π, as shown in [125, 127], and
we exploit this property in our technical proofs. The even dimensionality of any V in real form is a
consequence of the fact that the eigenvalues of any symplectic matrix either appear in pairs (µ, 1/µ)

or in quartets (µ, 1/µ, µ̄, 1/µ̄) [128]. For the matrix RV , we call the left inverse

SV =
(

R>V JRV
)−1

R>V J (5.7)

the symplectic left inverse of RV . As we later prove in the section 5.3, SV is well-defined.
Finally, we will use the notation

CV = − 1
mτv

∫ mτ

0
trace

(
SVX−1

0 (t; z)∂xg(x0(t; z), t; mτ/l, 0)X0(t; z)RV
)

dt (5.8)
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for the (local) volume contraction of the vector field g along the orbit Z related to the strongly
invariant subspace V .

The quantity CV , that serves as a nonlinear damping rate for the orbit Zε, will turn out to have
a key role in some of our upcoming conditions for the stability of Zε. We also remark that CV
is invariant under changes of basis for V . Indeed, we can define R̃V = RVRc for some invertible
Rc ∈ R2v×2v and obtain S̃V = R−1

c SV , so that the invariance of the trace guarantees the one of CV . In
particular, if V = R2n, we have

CR2n = − 1
mτn

∫ mτ

0
trace (∂xg(x0(t; z), t; mτ/l, 0)) dt. (5.9)

5.1.1 Conditions for instability

Due to assumption (A.3), the tangent space TzP , abbreviated as T from here onwards, is the two-
dimensional strongly invariant subspace for Π related to its eigenvalues equal to +1. Due to the
non-trivial Jordan block corresponding to these eigenvalues, the assessment of stability requires
careful consideration. For a single-degree-of-freedom system (n = 1), the tangent space is the only
strongly invariant subspace for Π. For higher-dimensional systems (n > 1), instabilities may develop
also in the normal space NzP of the family P at the point z, indicated with the shorthand notation
N . The normal space is the 2(n− 1)-dimensional strongly invariant subspace for Π related to its
eigenvalues different from +1. The following theorem covers some generic cases of instability.

Theorem 5.2. [Sufficient conditions for instability]. Zε is unstable for ε > 0 small enough, if one of the
following conditions is satisfied.

(i) Instabilities in T : when T′(h)M′m:l(0) < 0 or when both T′(h)M′m:l(0) > 0 and CT < 0.

(ii) Further instabilities (n > 1): when CV < 0 in a strongly invariant subspace V for Π.

We prove this theorem in the section 5.3. In statement (ii), V can be simply chosen as R2n so its
volume contraction can be directly computed with Eq. (5.9). To identify instability in the normal
space, one can then analyze any V ⊆ N .

Remark 5.1. Theorem 5.2 provides analytic expressions that allow to assess instability of the per-
turbed orbit, at least for generic cases, solely depending on the conservative limit, its first variation
and the perturbative vector field. From a geometric viewpoint, we can thus detect instabilities when-
ever the volume of a strongly invariant subspaces shows expansion under action of the perturbed
flow.

Remark 5.2. If the existence of a perturbed periodic orbit arising from Z is unknown, one may still
use Proposition 5.1 or statement (ii) of Theorem 5.2 to conclude the instability of any perturbed orbit
originating from Z .

5.1.2 Conditions for asymptotic stability

While instability can be detected from a single condition, asymptotic stability from the linearization
requires, by definition, more conditions. The next theorem provides such a set of conditions.

Theorem 5.3. [Sufficient conditions for stability]. Assume that, other than two eigenvalues equal to +1,
the remaining eigenvalues of Π are n− 1 distinct complex conjugated pairs. For k = 1, ..., n− 1, denote by
Nk ⊂ N the strongly invariant subspace for Π related to the kth pair of eigenvalues. Then, Zε is asymptotically
stable for ε > 0 small enough if each of the following conditions holds
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Figure 5.1: Summary of our stability results in terms of the perturbation (in red) of the Floquet multipliers of the
conservative limit (in blue). Grey shaded areas show possible perturbation zones. Plot (a) refers
to Proposition 5.1 where the conservative limit has a real pair (µ, 1/µ) of Floquet multipliers. In
contrast, plot (b) refers to the tangent space and illustrates the conditions (i) of Theorems 5.2 and
of 5.3 (here with red dots). In the former case, two different white-faced markers are used for the
two possible instabilities. For the normal space, plot (c) shows the conditions (ii) of Theorems 5.2
(with red rings) and of 5.3 (with red dots).

(i) T′(h)M′m:l(0) > 0 and CT > 0,

(ii) CNk > 0 for all k = 1, ..., n− 1.

We prove this theorem in the section 5.3. The conditions (i) in Theorems 5.2 and 5.3 apply for
systems with one degree of freedom. These conditions are consistent with the ones derived in [4,104],
up to sign changes due to the shift s present in the Melnikov function. For n = 1, the divergence of
the perturbation, cf. Eq. (5.9), is sufficient to determine the volume contraction since CR2 ≡ CT .

Simple zeros of the Melnikov function typically appear in pairs moving in opposite directions, cf.
Fig. 6.1b. Thus, assuming a pair of simple zeros and positive volume contractions in Theorem 5.3,
two periodic orbits bifurcate from Z for ε > 0 small enough. One of them is unstable and the other
asymptotically stable. This analytical conclusion matches with the results of several experimental and
numerical studies present in the literature. Figure 5.1 summarizes our results on stability showing
the perturbation (in red) of the Floquet multipliers of the conservative limit (in light blue).

Remark 5.3. If CNk = 0, then Zε generically undergoes a Neimark-Sacker or torus bifurcation
[85, 129, 130]. High-order nondegeneracy conditions have to be satisfied, but this bifurcation implies
that a resonant torus appears near Zε. As they might be attractors for system (5.3), their identification
is relevant for the frequency response, as discussed in [131–133].

Remark 5.4. Theorem 5.3 does not discuss in detail cases in which Π admits either −1 as an
eigenvalue or a repeated complex conjugated pairs. These configurations indicate that Z may be
an orbit at which a period doubling or a Krein bifurcation, respectively, occurs [85]. One may still
provide analytic expressions to evaluate the stability of Zε, but we leave the discussion of these
non-generic cases to dedicated examples.

5.1.3 Determining contraction measures

Especially for system with a large number of degrees of freedom, the volume contraction (or nonlinear
damping rate) formula for CV when V ⊂ R2n may be difficult to evaluate due to the presence of
X0, its inverse and the required subspace identification. Regarding the perturbative vector field
as defined in Eq. (5.5), the following proposition illustrates the simple case of uniform volume
contraction.
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Proposition 5.4. Let V be a strongly invariant subspace for Π. If ∂qQ(q, F(q, p), t; mτ/l, 0) is a symmetric
matrix-valued function and ∂pQ(q, F(q, p), t; mτ/l, 0) = −αI, then CV = α.

We prove this statement in the section 5.3. In the Hamiltonian literature, the assumptions of
Proposition 5.4 hold for conformally symplectic flows [134, 135] under appropriate forcing.

For example, the condition of uniform contraction is satisfied in mechanical systems with G1 ≡ 0
when the leading-order perturbation terms are pure forcing and Rayleigh-type dissipation propor-
tional to the mass matrix, i.e. Q(q, q̇, t; γ, 0) = f ext(t; γ)− αM(q)q̇. However, such uniform volume
contraction is an overly simplified damping model for practical applications and hence may only be
relevant for numerical experiments.

5.2 examples

5.2.1 Subharmonic response in a gyroscopic system

The equations of motion of the two-degree-of-freedom system in Fig. 5.2 read

mbq̈ + 2Gq̇−mbΩ2q + DV(q) = Q̂(q, q̇, t),

G = mb

[
0 −Ω
Ω 0

]
, V(q) =

1
2

4

∑
j=1

k j
(
lj(x, y)− l0

)2,

l1,3(x, y) =
√
(l0 ± x)2 + y2, l2,4(x, y) =

√
x2 + (l0 ± y)2,

(5.10)

where q = (x, y)> are the generalized coordinates with respect to a reference frame rotating with
constant angular velocity Ω. We assume that the Lagrangian component Q̂ contains all the small,
non-conservative forces acting on the system as follows:

Q̂(q, q̇, t) = ε
(
Qd,α(q, q̇) + Qd,β(q, q̇) + Q f (t)

)
, (5.11)

• uniform dissipation linearly depending on the absolute velocities of the mass mb

εQd,α(q, q̇) = −εαmb(q̇ + m−1
b Gq); (5.12)

• stiffness-proportional dissipation for the spring-damper elements, i.e. cj = εβk j for j = 1, ... 4
and

εQd,β(q, q̇) = −εβC(q)q̇,

C(q) =
4

∑
j=1

k j

[ (
∂xlj(x, y)

)2
∂xlj(x, y)∂ylj(x, y)

∂xlj(x, y)∂ylj(x, y)
(
∂ylj(x, y)

)2

]
;

(5.13)

• mono-harmonic forcing of frequency lΩ

εQ f (t) = εe
(
+ cos(lΩt)
− sin(lΩt)

)
, l ∈N. (5.14)

This simple model with strong geometric nonlinearities finds application in the fields of rotordy-
namics [136] or gyroscopic MEMS [137]. Here, sinusoidal forces whose frequencies clock at multiple
of the rotating angular frequencies either appear due to diverse effects [138, 139] (e.g. asymmetries,
nonrotating loads or multi-physical couplings) or are purposefully inserted in the system. From a
physical standpoint [6], the dissipation controlled by the coefficient α models, for example, radiation
damping, while β governs material or structural damping.
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Figure 5.2: Plot (a) shows the conservative backbone curve in terms of frequency and value of the first integral
for the family of periodic solutions for the dynamical system (5.16), while plot (b) the real part of the
two couple of Floquet multiplier of the family. The blue dot in plot (a) corresponds to the periodic
orbit illustrated in plot (c) in terms of the coordinates (x, y) and the value of the first integral. This
plot also shows the stable (solid lines) and unstable (dashed lines) periodic orbits bifurcating from
the conservative limit at ε = 0.01. The green lines indicate the orbit for α = 0.76376 and β = 0, while
orange ones for α = 0 and β = 0.32. With consistent colors, plots (d) and (e) show the evaluation of
the absolute value of the Floquet multipliers whose analytic predictions are depicted in blue. In plot
(d), solid lines refers to the tangent space T , while dashed-dotted ones to the normal space N .

Introducing the transformation p = mbq̇ + Gq, the Hamiltonian for the conservative limit takes the
form

H(q, p) =
1

2mb
〈p, p〉 − 1

mb
〈p, Gq〉+ V(q). (5.15)

Under the assumption mb = 1, the equivalent, first-order equations for the two-degree-of-freedom
system in Fig. 5.2 are

q̇ = −Gq + p,

ṗ = −DV(q)− Gp + ε
(
Q f (t)− αp− βC(q)(p− Gq)

)
.

(5.16)

For our analysis, we further assume that Ω = 0.942, l0 = 1, k1 = 1, k2 = 4.08 , k3 = 1.37 , k4 = 2.51
and e = 1. We begin with the study of the conservative limit (ε = 0), in which the origin is an
equilibrium with the non-resonant linearized frequencies (0.92513, 3.1431). Hence, according to the
Lyapunov subcenter theorem [91], two families of periodic orbits (nonlinear normal modes) emanate
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from the origin; we focus our attention on the one related to the slowest linearized frequency. By
performing numerical continuation, we obtain the periodic orbit family of Fig. 5.2a (backbone curve)
described in terms of the oscillation frequency ω = 2π/τ and the value of the first integral h. We
also plot the real part of the Floquet multipliers along the family in Fig. 5.2b. We stop continuation
at the cyan point in Fig. 5.2a where a period doubling bifurcation occurs.

The backbone curve in Fig. 5.2a crosses two times the vertical line marking the rotating angular
velocity Ω. We concentrate on the high-energy crossing point (depicted with a blue dot), where the
family shows a softening trend, i.e., T′ > 0 holds at this location. The corresponding periodic orbit is
1-normal and satisfies assumptions (A.2) and (A.3) of section 5.1.Moreover, this trajectory features a
non-negligible third harmonic so that 1 : 3 resonances with external forcing may occur, depending
on the damping strength. Therefore, we fix l = 3 and we study forced-damped periodic orbits that
may survive from this high-energy crossing point for the two damping mechanisms we have in our
model.

For α = 0.76376 and β = 0, the Melnikov function (4.5) evaluated for this periodic orbit reads

M1:3(s) = 1.4402 cos(3Ωs)− 1.1553. (5.17)

This function has six simple zeros, but, as shown in section 4.2, they correspond to two perturbed
orbits that occur as the amplitude of the work done by the forcing is greater than the dissipated
energy, when evaluated at the conservative limit. Specifically, the zeros featuring a negative M′1:3(s)
are related to an unstable orbit according to Theorem 5.2, while the others have a positive Melnikov-
function derivative so that, due to Proposition 5.4 and to Theorem 5.3, they signal an asymptotically
stable periodic orbit. Along with the conservative limit in blue, we plot these perturbed orbits using
greens lines in Fig. 5.2c (solid for the asymptotically stable and dashed for the unstable) that have
been obtained by setting ε = 0.01 in a direct numerical simulation with the periodic orbit toolbox of
coco [26]. Qualitatively speaking, these periodic orbits are very similar to that of the conservative
limit, but the average value of the first integral along them is higher (asymptotically stable orbit) or
lower (unstable one).

By setting the damping values α = 0 and β = 0.32, one retrieves the same Melnikov function
as in Eq. (5.17). In particular, the dissipated energy is equal to the case α = 0.76376 and β = 0.
Thus, again, a stable and an unstable periodic orbit bifurcates from the conservative limit since the
volume contractions are both positive. Again, direct numerical simulations with ε = 0.01 verify our
predictions: we plot the asymptotically stable and unstable periodic orbits in Fig. 5.2c with orange
solid and orange dashed lines, respectively.

The nonlinear damping rates (or volume contractions) CV can be used to estimate the Floquet
multipliers of perturbed solutions. As shown in the proofs reported in the section 5.3, the absolute
value of a complex conjugated pair of eigenvalues arising from the perturbation of a strongly
invariant subspace V reads

|µ| =
√

1− ετCV + o(ε) = 1− ε
τ

2
CV + o(ε). (5.18)

We illustrate these predictions for the asymptotically stable orbits of Fig. 5.2c. The blue lines in Fig.
5.2d show these estimates for T (solid line) and N (dashed-dotted line) that are in good agreement
with the multipliers computed within the perturbed system for the case α = 0 and β = 0.32, plotted
in orange. Figure 5.2e represents the analogous curves for the case α = 0.76376 and β = 0. Here,
CT = CN = α and the blue line depicts predictions from the conservative limit, while the green
one shows results from simulations in the forced-damped setting. We remark that, even though
the dissipated energy is the same, stiffness-related damping provides higher volume contraction
values with respect to the case of uniform damping. As expected, for high values of ε, our first-order
computations may not be sufficient to adequately estimate the modulus of the perturbed multipliers.
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For the low-energy crossing point between the backbone curve and the Ω vertical line, the Melnikov
function is always negative. Therefore, no perturbed solution arises from this conservative limit for
sufficiently small ε.

5.2.2 Isolated response due to parametric forcing

In this section, we study the parametrically-forced, three-degree-of-freedom system of nonlinear
oscillators shown in Fig. 5.3. Parametric forcing [5] finds notable applications in the field of
MEMS [137, 140]. By assuming a linear damping proportional to the mass matrix and unit masses,
the equations of motion in Hamiltonian form read

q̇ = p,

ṗ1 = −k(q1 − q2)− k/3q1 − aq2
1 − bq3

1 − εαp1,

ṗ2 = −k(q2 − q1)− k(q2 − q3)− εαp2,

ṗ3 = −k(q3 − q2) + ε(q3 f ext(t); Ω)− αp3),

f ext(t); Ω) =
4
π

3

∑
j=1

1
2j− 1

sin
(
(2j− 1)Ωt

)
, (5.19)

where q, p ∈ R3, k = 1, a = −1/2, b = 1 and α, ε > 0. The nonlinear behavior in this example arises
from the material nonlinearity of the left-most spring in Fig. 5.3. We expect the appearance of isolas
in the frequency response, at least for small ε. Indeed, as the forcing amplitude is controlled by q3,
it is necessary to exceed a threshold on the motion amplitude for the work done by the forcing to
overcome energy dissipation by the damping.

For the conservative limit of the system, the origin is the unique fixed point1 and no resonances
occur among its linearized frequencies (0.30394, 1.0854, 1.7501). Thus, three families of periodic
orbits emanate from the origin [91], and they can be parametrized with the value of the first integral
h. We focus on detecting perturbed solutions arising from the lowest-frequency family. We denote
by ω(h) the frequency of the periodic orbits in this family normalized by the linear limit at h = 0,
i.e. ω(h) = T(0)/T(h). When performing numerical continuation, the first family is 1-normal and
satisfies assumptions (A.2) and (A.3) of section 5.1 for 1 < ω(h) < 1.165, which is our frequency range
of interest. The backbone curve for this family is illustrated in Fig. 5.3a in terms of the normalized
frequency and the maximum amplitude of the coordinate q3 along periodic orbits, denoted by
max |q3|. This backbone curve displays a hardening trend, i.e., ω′(h) > 0, T′(h) < 0. Figures 5.3b
and 5.3c respectively show the trend of real and imaginary parts of the Floquet multipliers of the
family.

We select a perturbation in Eq. (5.19) to satisfy the assumptions of Proposition 5.4, so that the
volume contractions CV are always positive. Moreover, the forcing corresponds to the sixth harmonic
approximation of a square wave with unit amplitude and period 2π/Ω. We now examine via our
Melnikov approach perturbed periodic orbits when the forcing period is in 1 : 1 resonance with the
period of the orbits of the first family, thus we set Ω = 2π/T(h). Sweeping through the family, we
evaluate the Melnikov function on every orbit and hence construct a scalar function M1:1(θ, h, α),
using the phase θ = 2πs/T(h) instead of the shift s.

Figure 5.3d shows the zero level set of M1:1(θ, h, 0.121), in green, and of M1:1(θ, h, 0.141), in orange,
plotted in the plane (θ, ω). Solid lines indicate zeros in θ with ∂θ M1:1 < 0, while dashed ones
indicate zeros with ∂θ M1:1 > 0. According to Theorem 5.2, the latter zeros predict unstable perturbed
periodic orbits, while the former predict asymptotically stable ones Theorem 5.3. However, there
are conservative orbits of the family that either feature a pair of Floquet multipliers related to the

1 The origin is the only point at which the potential is stationary. This condition is expressed by the following equations:

q3 = q2, q2 = q1, q1(q2
1 − q1/2 + 1/3) = 0.
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Figure 5.3: Plot (a) shows the backbone curve in terms of the normalized frequency ω and the amplitude
of the first family of periodic solutions for the conservative limit of system (5.19). The trend of
Floquet multipliers of the family is shown in plot (b) in terms of their real part, while plot (c) regards
the imaginary one. Plot (d) illustrates the level set of the Melnikov function for two values of the
damping in the plane (ω, , θ), where the latter is the orbit phase. Here, dashed lines predict unstable
perturbed orbits, while solid ones indicate asymptotically stable ones. The latter feature faded
regions at which the predictions of Theorem 5.3 could turn out to be weak. The dots instead denote
saddle-node bifurcations. Plot (e) shows the numerical simulations of the frequency response for
the perturbed system at ε = 0.0025. The horizontal axis displays the normalized frequency and the
vertical one the distance from the conservative backbone curve.

normal space equal to −1, or have two coincident complex conjugated pairs of Floquet multipliers
(cf. Figs. 5.3b,c). At these resonances, Theorem 5.3 is not applicable and hence the prediction of
asymptotic stability could fail in the vicinity of these orbits, shown with faded solid lines in Fig. 5.3d.
Moreover, the dots in Fig. 5.3d depict quadratic zeros with respect to θ of M1:1 at which saddle-node
bifurcations occur.

From lower to higher frequencies for α = 0.121, the Melnikov has two quadratic zeros when
Ω ≈ 1.01. Afterwards, they evolve as four simple zeros, then the internal pair collapses in a quadratic
zero and the remaining zeros persist until Ω(h) ≈ 1.158. For this value of α, the multi-harmonic,
parametric forcing of Eq. (5.19) generates an inverse cup-shaped isolated response curve. In contrast,
two disjoint isolas exist when damping is increased at α = 0.141. These predictions are confirmed
via direct numerical simulations of the perturbed system in Fig. 5.3e for ε = 0.0025, plotted with
corresponding colors. Here we depict the frequency response by showing the distance, in terms
of the amplitude max |q3|, to the conservative (isochronous) limit. When interpreting these results,
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one has to recall from section 4, that the Melnikov function is the leading-order approximation
of the bifurcation function governing the persistence problem. Hence, the level sets in Fig. 5.3b
are approximate ones and, in particular, the symmetric appearance of zeros will be, generically,
destroyed in the full bifurcation function.

5.3 proofs of mathematical results

In this section, we adopt the assumptions of section 5.1 and derive an approximation for the
Floquet multipliers of the non-autonomous periodic orbit Zε, to be used for the stability assessment
[4, 10, 11]. This orbit solves system (5.3) with δ(ε) = mτ/l + ετ̃ + o(ε) and has initial condition
ξ(ε) = z + εz̃ + o(ε).

We aim at analyzing the evolution of the Floquet multipliers of Zε from those of its conservative
limit Z . Since we rely on the linearized flow and look at the O(ε)-perturbation as in the next lemma,
our stability assessment is valid in a small neighborhood of z and for ε small enough.

Lemma 5.5. The monodromy matrix P(ε) = X(lδ(ε); ξ(ε), T(ε), ε) of Zε is approximated at order O(ε2) by
the following expansion

P(ε) = Π + εΠ
(

Ψm:l
H + Ψm:l

g

)
+ O(ε2), (5.20)

where

Ψm:l
H =

∫ mτ

0
X−1

0 (t; z)JD3H(x0(t; z), x1(t; z, z̃))X0(t; z)dt,

x1(t; z, z̃) = X0(t; z)z̃ + X0(t; z)
∫ t

0
X−1

0 (s; z)g(x0(s; z), s; mτ/l, 0)ds,

Ψm:l
g =

∫ mτ

0
X−1

0 (t; z)∂xg(x0(t; z), t; mτ/l, 0)X0(t; z)dt.

(5.21)

Proof. The smoothness assumption for the vector fields involved are sufficient to approximate the
solutions of systems (5.3) and (5.5) at O(ε2). The periodic orbit Zε is approximated by x0(t, z) +
εx1(t; z, z̃), where x1(t; z, z̃) solves the initial value problem

ẋ1 = JD2H(x0(t; z))x1 + g(x0(t; z), t; mτ/l, 0), x1(0) = x1(mτ) = z̃. (5.22)

By substituting x = x0 + εx1, X = X0 + εX1 and δ = mτ/l + O(ε) in system (5.5) and expanding the
equation, one obtains at O(ε) the following initial value problem

Ẋ1 = JD2H(x0(t; z))X1 +
(

JD3H(x0(t; z), x1(t; z, z̃)) + ∂xg(x0(t; z), t; mτ/l, 0)
)

X0(t; z),
X1(0) = 0,

(5.23)

whose analytical solution, expressed by Lagrange’s formula [10], at time mτ is the O(ε)-term in Eq.
(5.20).

5.3.1 Some results in linear algebra

We now introduce some factorization results exploiting the properties of the symplectic group,
denoted Sp(2n, R). The next lemma characterizes the relation between strongly invariant subspaces
related to Π, as defined in section 5.1.
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Lemma 5.6. Let Π ∈ Sp(2n, R) and assume that Π has two distinct strongly invariant subspaces V andW
of dimensions 2v and 2w, respectively. Let these subspaces be represented by RV ∈ R2n×2v and RW ∈ R2n×2w,
respectively, so that, for a unique BV ∈ R2v×2v and BW ∈ R2w×2w, the following identities hold:

ΠRV = RVBV , ΠRW = RWBW . (5.24)

Then:

(i) R>V JRW = 0 and R>W JRV = 0,

(ii) R>V JRV and R>W JRW are invertible.

Proof. We first prove statement (i). Recalling the standard symplectic identity Π> JΠ = J, we find

R>V JRW = (ΠRVB−1
V )>ΠRWB−1

W = B−>V Rv>Π> JΠRWB−1
W = B−>V Rv> JRWB−1

W . (5.25)

By denoting A = R>V JRW and considering the leftmost and the rightmost sides of Eq. (5.25), we
obtain a homogeneous Sylvester equation

B>V A = AB−1
W . (5.26)

The eigenvalues of B>V are equal to those of BV . Since Π is symplectic and by Definition 5.1, B−1
W and

BW have identical eigenvalues as well. By assumption, the eigenvalues of BV and BW are distinct.
Hence, B>V and B−1

W have no common eigenvalue, which implies that Eq. (5.26) has the unique
solution A = R>V JRW = 0 (see Chapter VIII in [141]). Transposing A and using the identity J> = −J,
one also gets that R>W JRV = 0.

We now prove statement (ii). Since V andW correspond to the direct sums of spectral subspaces
(sometimes called root spaces) of distinct eigenvalues of Π, we have that, by construction, V ∩W = ∅
(see Theorem 2.1.2 in [142] for a proof). By letting Y = V ⊕W , we then define the linear map
AV := R>V J and we analyze its restriction to Y , i.e. AV |Y : Y → R2v. Since the kernel of this map is
W , then its image must have dimension dim(Y)−dim(W) = 2v by the rank-nullity theorem. Hence,
AVRV = R>V JRV is invertible. An analogous reasoning holds for the linear map AW := R>W J.

The next result follows as a consequence of Lemma 5.6.

Lemma 5.7. Let Π ∈ Sp(2n, R) and assume Π has two distinct strongly invariant subspaces V andW be
such that V ⊕W = R2n. Denote by 2v the dimension of V and let these subspaces be spanned by a linear
combination of the columns in RV ∈ R2n×2v and RW ∈ R2n×2(n−v), respectively. Define the symplectic left
inverse matrices for RV and RW respectively as

SV = (R>V JRV )−1R>V J, SW = (R>W JRW )−1R>W J. (5.27)

Then, the following factorization holds

R−1 =

[
SV
SW

]
, R =

[
RV RW

]
, R−1ΠR =

[
BV 0
0 BW

]
, (5.28)

where the eigenvalues of BV ∈ R2v×2v are distinct from those of BW ∈ R2(n−v)×2(n−v).

We also remark that one can obtain from Eq. (5.28) the further identities

SVΠ = BVSV , SWΠ = BWSW . (5.29)

We will also need the next result.
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Lemma 5.8. Let A ∈ R2n×2n and let V be a strongly invariant subspace for Π. Let the columns of
RV ∈ R2n×2v be a basis for V and let SV be the symplectic left inverse of RV . Then

trace(SVARV ) =
1
2

trace
(

SV (A− JA> J)RV
)

. (5.30)

In particular, if A = J Â where Â is symmetric, then trace(SVARV ) = 0.

Proof. Recall that J> J = I and that, for arbitrary matrices A1 and A2, trace(A1A2) = trace(A2A1) as
well as trace(A1) = trace(A>1 ). Equation (5.30) holds because

trace(SVARV ) = trace
(
(R>V JRV )−1R>V JARV

)
= trace

(
((R>V JRV )−1R>V JARV )>

)
= trace

(
R>V A> J>RV (R>V JRV )−>

)
= trace

(
R>V A> J>RV ((R>V JRV )>)−1

)
= trace

(
R>V A> J>RV (R>V J>RV )−1

)
= trace

(
(R>V J>RV )−1R>V A> J>RV

)
= trace

(
(R>V JRV )−1R>V A> JRV

)
= trace

(
(R>V JRV )−1R>V J J>A> JRV

)
= trace(SV J>A> JRV ) = −trace(SV JA> JRV ).

(5.31)

The last statement can be found by direct substitution of A = J Â in Eq. (5.30).

5.3.2 Perturbation of the Floquet multipliers

We now apply the results in section 5.3.2 to the initial perturbation expansion and we use the
following definition from [127].

Definition 5.2. Let v, w be arbitrary integers, Bv ∈ Rv×v and Bw ∈ Rw×w. The separation of Bv and Bw

with respect to an arbitrary norm || · || is defined as

sep(Bv, Bw) := min
Y∈Rw×v :||Y||=1

||YBv − BwY||. (5.32)

We remark that sep(Bv, Bw) 6= 0 if and only if the eigenvalues of Bv are different from those of Bw.
We can then state the next fundamental result.

Theorem 5.9. Consider the perturbation expansion of Lemma 5.5 and the setting of Lemma 5.7. If ε <<

sep(BV , BW ), then the eigenvalues of P(ε) coincide with the eigenvalues of the matrices

BV
(

I + εSV (Ψm:l
H + Ψm:l

g )RV
)
+ O(ε2), BW

(
I + εSW (Ψm:l

H + Ψm:l
g )RW

)
+ O(ε2). (5.33)

Proof. We use the shorthand notation Ψ = Ψm:l
H + Ψm:l

g . We then define the matrix

A(ε) = R−1P(ε)R = R−1ΠR + εR−1ΠΨR +O(ε2) =

[
BV (I + εΨV ) BV εΨVW

εBWΨWV BW (I + εΨW )

]
+O(ε2), (5.34)

where, exploiting the identities in Eq. (5.29), we used the notation

ΨV = SVΨRV , ΨVW = SVΨRW , ΨWV = SWΨRV , ΨW = SWΨRW . (5.35)

Note that, by similarity, A(ε) has the same spectrum as P(ε). Since the eigenvalues of BV are different
from those of BW , Corollary 2.4 in [127] guarantees, for ε small enough, the existence of a strongly
invariant subspace for A(ε) whose coordinates can be described by the asymptotic expansion

V(ε) =

[
I

ε (sep(BV , BW ))−1 WV(ε)

]
, (5.36)
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which is justified if ε << sep(BV , BW ) and for a unique WV : R→ R2(n−v)×2v. This result holds as a
consequence of the implicit function theorem. By similarity, the strongly invariant subspace V for
P(0) = Π persist as Vε for P(ε) and Vε is described by the columns of the product RV(ε). Then, the
invariance relation A(ε)V(ε) = V(ε)BV(ε) holds for a unique BV : R→ R2v×2v whose eigenvalues
are the ones related to Vε. By using this invariance relation, one obtains[

BV (I + εΨV )
εBWΨWV

]
+ O(ε2) =

[
BV(ε)

ε (sep(BV , BW ))−1 WV(ε)BV(ε)

]
. (5.37)

An analogous discussion also applies toW , so the claim is proved.

This result always holds asymptotically, but we have highlighted the fact that ε should stay below
a critical threshold which guarantees that the eigenvalues related to Vε and toWε remain separated.
The references [125, 127] establish non-asymptotic bounds for this kind of perturbations.

Next, we show an important consequence of Lemma 5.8.

Lemma 5.10. Let V be a strongly invariant subspace for Π, let the columns of RV ∈ R2n×2v span V and let
SV be the symplectic left inverse of RV . Then, we have

det
(

BV
(

I + εSV (Ψm:l
H + Ψm:l

g )RV
)
+ O(ε2)

)
= 1− εmτvCV + O(ε2) (5.38)

where the value CV is defined in Eq. (5.8).

Proof. We recall that det(BV ) = 1 by definition and the identity Dεdet(A(ε)) = trace (A∗(ε)Dε A(ε)),
also called Jacobi formula, which holds for some smooth matrix family A(ε) with A∗(ε) being the
adjugated matrix of A(ε). Since the determinant of a product of square matrices is equal to the
product of their determinants, one obtains the Taylor expansion

det
(

BV
(

I + εSV (Ψm:l
H + Ψm:l

g )RV
)
+ O(ε2)

)
= det

(
I + εSV (Ψm:l

H + Ψm:l
g )RV + O(ε2)

)
= 1 + εtrace

(
SV (Ψm:l

H + Ψm:l
g )RV

)
+ O(ε2).

(5.39)

By linearity, the O(ε)-term above can be split in trace
(
SVΨm:l

H RV
)
+ trace

(
SVΨm:l

g RV
)

and we now

prove that the first of these traces vanishes. Indeed, the third derivative in Ψm:l
H can be expressed as

JD3H(x0(t; z), x1(t; z, z̃)) =
n

∑
k=1

∂

∂xk

(
JD2H(x)

)∣∣∣
x=x0(t;z)

xk,1(t; z, z̃) =
n

∑
k=1

JAk(t)xk,1(t; z, z̃), (5.40)

where the scalars xk,1(t; z, z̃) identify the components of the curve x1(t; z, z̃) and the matrix families
Ak(t) are symmetric. Recalling the identity X−1

0 (t; z) = JX>0 (t; z)J> [124], we can therefore write

Ψm:l
H =

∫ mτ

0

n

∑
k=1

X−1
0 (t; z)JAk(t)X0(t; z)xk,1(t; z, z̃)dt

= J
∫ mτ

0

n

∑
k=1

X>0 (t; z)Ak(t)X0(t; z)xk,1(t; z, z̃)dt = J Â,
(5.41)

where Â is still symmetric. Thus, by Lemma 5.8, trace
(
SVΨm:l

H RV
)
= 0 and, by linearity,

trace
(

SVΨm:l
g RV

)
= trace

(
SV
∫ mτ

0
X−1

0 (t; z)∂xg(x0(t; z), t; mτ/l, 0)X0(t; z)dt RV

)
= −mτvCV .

(5.42)
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5.3.3 Proof of the main theorems

Proof of Theorem 5.2. We will use the shorthand notation Ψ = Ψm:l
H + Ψm:l

g . Let us start with statement
(ii). For ε sufficiently small, Theorem 5.9 guarantees that, to unfold the evolution of some Floquet
multipliers, it is sufficient to study the 2v eigenvalues µk(ε) of BV (I + εSVΨRV ) + O(ε2) related to
some unperturbed, strongly invariant subspace V . According to Lemma 5.10 and due to the fact that
the determinant is equal to the product of the eigenvalues, we have

2v

∏
k=1

µk(ε) = det
(

BV (I + εSVΨRV ) + O(ε2)
)
= 1− εmτvCV + O(ε2). (5.43)

Thus, for ε > 0 small enough and CV < 0, there exist at least one index k̃ for which |µk̃(ε)| > 1, that
implies instability.

We then prove statement (i), for which the discussion is more involved. As a basis for the tangent
space T , we choose the vector field JDH(z) and a vector b(z) ∈ T orthogonal to JDH(z) and
normalized such that 〈b(z), DH(z)〉 = 1. From Proposition 4.6, the following identities hold

Πm(z)JDH(z) = JDH(z), Πm(z)b(z) = b(z)−mT′(h)JDH(z), (5.44)

where h = H(z). Denoting RT = [JDH(z) b(z)] and a = mT′(h), from Eq. (5.44) the symplectic left
inverse of RT and their relative block BT read

ST =
[

Jb(z) DH(z)
]>

, BT =

[
1 −a
0 1

]
. (5.45)

According to Theorem 5.9, to evaluate the perturbation of these coincident Floquet multipliers of the
conservative limit, we need to study the eigenvalues (µ1(ε), µ2(ε)) of the perturbed block

BT (I + εST ΨRT ) + O(ε2) =

[
1 + ε(a11 − aa21) −a + ε(a12 − aa22)

εa21 1 + εa22

]
+ O(ε2), (5.46)

where we denoted ajk the components of the matrix SVΨRV . These eigenvalues are expressed as

λ1,2 = 1 + ε
a11 + a22 − aa21

2
±
√

ε
√−aa21 + o(ε). (5.47)

The value aa21 = mT′(h)a21 acts as discriminant and we later prove that a21 = M′m:l(0). Thus,
if T′(h)M′m:l(0) < 0 and ε > 0, then there exists a real eigenvalue greater than 1, which implies
instability as in statement (i) of the Theorem for small ε > 0. Conversely, the two eigenvalues are
complex conjugated for small ε > 0 whose squared modulus, using Lemma 5.10, reads

µ1(ε)µ2(ε) = |µ1(ε)|2 = det
(

BT (I + εST ΨRT ) + O(ε2)
)
= 1− εmτCT + O(ε2). (5.48)

If CT < 0, the two eigenvalues evolve as a complex conjugated couple outside the unit circle in the
complex plane for small ε > 0, proving then statement (i).

We now show that a21 = 〈DH(z), ΨJDH(z)〉 = DMm:l(0) = M′m:l(0). We first recall the following
identities (see [11] or section 4.4.1 for a proof):

X0(t; z)JDH(z) = JDH(x0(t; z)), DH(z)X−1
0 (t; z) = DH(x0(t; z)). (5.49)

We also recall the fact that the gradient of the first integral solves the adjoint variational equation of
the conservative limit (see Proposition 3.2 in [123] for a proof), i.e.,

Dt
(

DH(x0(t; z))
)
= −DH(x0(t; z))JD2H(x0(t; z)). (5.50)
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Exploiting Eq. (5.49), one obtains

〈DH(z), ΨJDH(z)〉 =
∫ mτ

0

〈
DH(x0(t; z)),

(
JD3H(x0(t; z), x1(t; z, z̃))+

+∂xg(x0(t; z), t; mτ/l, 0)
)

JDH(x0(t; z)
〉

dt
(5.51)

and by taking the time derivative of the ODE in Eq. (5.22), one has the identity(
JD3H(x0(t; z), x1(t; z, z̃)) + ∂xg(x0(t; z), t; mτ/l, 0)

)
JDH(x0(t; z)) =

ẍ1(t; z, z̃)− JD2H(x0(t; z))ẋ1(t; z, z̃)− ∂tg(x0(t; z), t; mτ/l, 0).
(5.52)

Substituting the latter result in Eq. (5.51), one can use integration by parts to obtain

〈DH(z), ΨJDH(z)〉 =−
∫ mτ

0

〈
Dt
(

DH(x0(t; z))
)
, ẋ1(t; z, z̃)

〉
dt+

−
∫ mτ

0

〈
DH(x0(t; z)), JD2H(x0(t; z0))ẋ1(t; z, z̃)

〉
dt+

−
∫ mτ

0

〈
DH(x0(t; z)), ∂tg(x0(t; z), t; mτ/l, 0)

〉
dt,

(5.53)

where we also used the fact that 〈DH(x0(t; z)), ẋ1(t; z, z̃)〉 is mτ-periodic. Moreover, the first two
integrals cancel out due to Eq. (5.50) and one finds

a21 = 〈DH(z), ΨJDH(z)〉 = −
∫ mτ

0

〈
DH(x0(t; z)), ∂tg(x0(t; z), t; mτ/l, 0)

〉
dt = M′m:l(0), (5.54)

according to the definition of remark 4.3.

Proof of Theorem 5.3. We prove asymptotic stability by showing that under the conditions of the
theorem all the Floquet multipliers lay within the unit circle in the complex plane for ε > 0
sufficiently small.

Condition (i) may be derived directly from the proof of Theorem 5.2. Indeed, in this case the two
eigenvalues equal to +1 evolve as a complex pair with modulus less than 1, cf. Eq. (5.48).

By assumption, the complex conjugated complex pairs related to the normal space are distinct for
ε = 0, so we can iteratively apply Theorem 5.9 considering V as each of the 2-dimensional strongly
invariant subspaces Nk for k = 1, ..., n− 1. Moreover, these eigenvalue pairs persist as complex ones
since P(ε) is real, so it is sufficient to evaluate their squared modulus to evaluate whether they move
inside or outside the unit circle of the complex plane. As done in the proof of Theorem 5.2, this can be
estimated as 1− εmτCNk at first order. Hence, all the eigenvalues of the normal space have modulus
lower than 1 if all the n− 1 volume contractions related to the subspaces Nk are positive.

We remark that, for the estimates of the last theorem to be valid, the value of ε must be much
smaller than the minimal separation between the pairs of eigenvalues of Π. In particular, in the
vicinity of bifurcation or crossing points, these approximations may turn out to be weak.

Remark 5.5. If the unperturbed system is not in Hamiltonian form, then one can still prove that the
quantity T′(h)M′m:l(0) governs the stability in the tangential directions. However, the formulas for
the volume contractions are more complicated in this case. The Hamiltonian form provides drastic
simplifications so that these contractions only depend on the pullback of the linear vector field ∂xg
under X0. Moreover, all the results we have proved in these sections, also apply to more general
perturbations of Hamiltonian systems rather than the specific form we assumed in chapter 2 2.

55



5.3.4 Proof of Proposition 5.4

Proof. With the shorthand notation

∂qQ = ∂qQ(q0(t; z), F(q0(t; z), p0(t; z)), t; mτ/l, 0),
∂pQ = ∂pQ(q0(t; z), F(q0(t; z), p0(t; z)), t; mτ/l, 0),

(5.55)

we split

∂xg(x0(t, z), t; mτ/l, 0) =
[

0 0
∂qQ ∂pQ

]
= JAq(t) + Ap(t),

Aq(t) =
[−∂qQ 0

0 0

]
, Ap(t) =

[
0 0
0 ∂pQ

]
,

(5.56)

so that, using Eq. (5.30), we have

CV = − 1
2mτv

∫ mτ

0
trace

(
SVX−1

0 (t; z)
(

JAq(t)− JA>q (t)
)

X0(t; z)RV
)

dt

− 1
2mτv

∫ mτ

0
trace

(
SVX−1

0 (t; z)
(

Ap(t)− JA>p (t)J
)

X0(t; z)RV
)

dt.

(5.57)

For Aq(t) = A>q (t), the first of the integrals above vanishes. By using the fact that

Ap(t)− JA>p (t)J =
[

∂pQ> 0
0 ∂pQ

]
, (5.58)

and by substituting ∂pQ = −αI, we obtain CV = α as claimed. This result agrees with the symmetry
property of the Lyapunov spectra of conformal Hamiltonian systems [143].
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6
C O N C L U S I O N

In this first part of the thesis, we have discussed an analytic criterion that relates conservative
backbone curves to forced-damped frequency responses in multi-degree-of-freedom mechanical
system with small external forcing and damping. Our procedure uses a perturbation approach
starting from the conservative limit to evaluate the persistence or bifurcation of periodic orbits in
the forced-damped setting. We have shown that this problem can be reduced to the analysis of
the zeros of a Melnikov-type function. In a general setting, we proved that, if a simple zero of the
Melnikov function exists, generically two periodic orbits bifurcate the conservative limit. We also
characterized quadratic zeros and eventual singular bifurcations that may arise. Our results assume
the forcing to be periodic and small, but otherwise allow for arbitrary types of damping and forcing.
In addition, our analysis yields analytic criteria for the creation of subharmonics, superharmonics
and ultrasubharmonics arising from small forcing and damping.

The Melnikov function serves also to determine the stability of forced-damped oscillations of non-
linear, multi-degree-of-freedom mechanical systems. In addition to it, the frequency variation within
the limiting conservative periodic orbits and the nonlinear damping rates (or volume contractions)
play a role in the assessment of stability. These damping rates provide estimates for the Floquet
multipliers of the forced-damped response, thereby predicting stability of perturbed trajectories from
their conservative limit.

When applied specifically to mechanical systems, the Melnikov function turns out to be the
leading-order term in the equation expressing energy balance over one oscillation period. In this
context, we have worked out the Melnikov function in detail for the typical case of purely sinusoidal
forcing combined with an arbitrary dissipation. Our method shows that either two, one or no orbits
can arise from an orbit of the conservative limit. Typically, the two orbits have opposite stability type.
Moreover, ridge curves allow to identify forcing amplitudes and orbits of conservative backbone
curves that are close to bifurcations phenomena of the frequency response. Thus, saddle-node
bifurcations of frequency continuations, maximal responses and isolas can be efficiently predicted
directly from the analysis of the conservative limit of the system. Our analysis also justifies the
phase-lag quadrature criterion of [44] in a general setting, without the assumptions of synchronous
motion and linear damping.

We have confirmed these theoretical findings by numerical simulations. Specifically, we have
considered a nonlinear mechanical system with six degrees of freedom, and implemented our
Melnikov analysis on the six families of periodic orbits emanating from an equilibrium. We have
verified our results both for linear and nonlinear damping. In the latter case, we successfully
predicted the generation of isolated branches in the frequency response. Our six-degree-of-freedom
example illustrates that the analytic tools developed here do not require the conservative limit
of the mechanical system to be integrable. Indeed, one can apply the present Melnikov function
approach directly to periodic orbit families obtained from numerical continuation in the conservative
limit of the system. Two additional examples complete the validation for our analytical predictions
on stability in the panorama of mechanical systems. In the first, we have studied subharmonic
resonances with external forcing in a gyroscopic two-degree-of-freedom system considering two
damping mechanisms. Even though these latter dissipate the same amount of energy along the
conservative limit, their stability indicators (and potentially their basins of attraction) are different. In
the second example, we have considered the case of parametric forcing on a three-degree-of-freedom
oscillator with mass-proportional damping. By considering multi-harmonic excitation, we have
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Figure 6.1: Review of the Melnikov method for generic bifurcation from the conservative limit. Plot (a) sketches
one period of a Melnikov function (black line) with 2 simples zeros, corresponding to two perturbed
orbits (red dots) from the conservative limit (blue dot) in plot (b), displayed in the (Ω, h) plane,
where Ω is the forcing frequency and h is the energy of the initial condition of the periodic orbit. Plot
(b) also illustrates the conservative backbone curve of P in blue and forced-frequency responses
with red shaded lines. The stable branch is represented with a solid line, while the unstable one
with a dashed line. Using corresponding colors, plot (c) shows the eigenvalues configurations for
the conservative setting and the forced-damped cases. Assuming positive nonlinear damping, the
Floquet multipliers different from +1 perturb inside the unit circle (for either bifurcating orbit). The
difference in stability occurs only in the gray shaded area, which is related to the two multipliers
equal to +1, whose motions are controlled by the Melnikov function as stated by our results.

successfully described the generation and the stability of periodic trajectories that lie on exotic isolas
of the frequency response.

When the mechanical system has only one degree of freedom, the conditions we derived coincide
with prior analyses of [4, 104]. The results we have presented, which closely follow our work in
the original references [42, 43], are also consistent with numerical and experimental observations
reported in available studies [5,17,27,32,44,45,66–75,83,84], in that they are able to explain hysteresis
of frequency responses in mechanical systems as well as other stability or bifurcation phenomena.
These predictions are synthetically illustrated in Fig. 6.1 for the typical bifurcation scenario that
generates forced-damped periodic orbits from the conservative limit in near resonance regions.
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7
I N T R O D U C T I O N

In an increasingly data-based perspective, constructing dynamical models from data, either from
numerical or physical experiments, is becoming of crucial importance to scientists and engineers.
Often, these models are nonlinear and high-dimensional, so that data-driven models should also
tackle a dimensionality reduction problem. Hence, the attention focuses on building data-driven
reduced-order models, which can be evaluated at insignificant computational cost without compro-
mising precision in the results. In the engineering context, these models are particularly appealing
for design, testing or control purposes.

The most common approaches to data-driven reduced-order models are the Proper Orthogonal
Decomposition (POD) coupled with Galerkin projections [8, 9, 13, 144] and the Dynamic Mode
Decomposition (DMD) [58, 59]. The former approach requires the knowledge of the governing
equations of motion and, once a relevant number of modes is identified from data, it projects
these equations onto these modes to construct a reduced-order model. DMD and its improved
versions [145–149], being connected with Koopman operator theory [150,151], assume linear dynamics
for the observable data and find a low-rank approximation for its dynamics. DMD has the ability
to find relevant modes and patterns in the dynamics, and, in contrast to Galerkin projections, is
a purely data-driven approach that does not require the knowledge of the governing equations
of motion. DMD has been used for control purposes as well [152]. However, the justification of
DMD critically relies on theorems having very delicate assumptions [150, 151], making the method
crucially dependent on the types of available observables [58, 153, 154]. Moreover, DMD is unable to
approximate truly nonlinear dynamics that involve multiple disjoined steady states, such that fixed
points and limit cycles [155]. The overall drawback of classic Galerkin-POD models and of standard
DMD is that the only possible refinement of the model is to include additional dimensions. Hence,
for complex dynamical systems, the number of dimensions tends to be large, nevertheless allowing
for computational speed-ups in simulations, but making the reduced dynamics still complex.

Other methods treat the dimensionality reduction and the dynamical modeling as separated
problems. Indeed, the data is first processed via dimensionality reduction algorithms, which
range from POD or Principal Component Analysis (PCA) [56, 156], its kernelized version [157],
manifold learning techniques [57, 158, 159] or autoencoders [53]. Afterwards, the dynamics is
identified on the obtained reduced-coordinates using classic regression techniques (least-squares [50],
LASSO [51], SINDy [52], sparse structural dynamics with hysteric/inelastic behavior [160]), Bayesian
learning techniques [161] or neural networks in different architectures (fully connected, convolutional,
recurrent) [53, 54, 162]. Some of these techniques return complex, black-box models (even non-
physical sometimes), but some others offer sparse models (LASSO, SINDy, Bayesian learning),
which allow easy interpretation or analysis of the dynamical behavior [52]. However, the resulting
dynamics is intrinsically connected with the representation offered by the dimensionality reduction
algorithms. Indeed, the advocated simplicity of sparse models is critically determined by the reduced
representation. For example, even a simple linear coordinate change dramatically destroys the
sparsity of a model. These methods feature a high number of hyperparameters, and hence good
performances requires extensive tuning. Moreover, the eventual lack of predictive capabilities often
makes these models unattractive for practical use. Indeed, the insertion of parameter variations,
disturbances or external forcing into these models is heuristic at best and hence offers questionable
conclusions. Also here, the dimension of the reduced model is either a user input or is treated as a
hyperparameter, which is heuristically increased until the model shows reasonable performance.
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The approach that we are going to undertake in constructing data-driven models aims to address
most of the issues of available methods, by leveraging two main concepts of dynamical systems
theory: invariant manifolds and normal forms. These two powerful theoretical notions are used
together to unfold the complexity of the dynamics via the concept of spectral submanifolds.

Invariant manifolds are characterized by the property that trajectories starting on the manifold
remain on the manifold throughout the course of their dynamical evolution. In some cases, their
presence has dramatic consequences on the nearby dynamics, and they also provide an exact
framework for model order reduction [19, 163]. The first invariant manifolds to be studied were the
stable, unstable and center manifolds of fixed points or periodic orbits [4], typically used to shape the
phase space and to study bifurcation phenomena [130]. In context of conservative or Hamiltonian
dynamics, Lyapunov subcenter manifolds [15, 91] or KAM tori [116] are typically used to study these
systems and can have a precious role when dissipative perturbations are added to the conservative
dynamics. Normally hyperbolic invariant manifolds [164–166] help in identifying potential attractors
of the phase space and to unfold the dynamics on them. Thanks to the developments of geometric
singular perturbation theory [167], the concept of slow manifold became popular. A slow manifold
governs the asymptotic behavior of the dynamics, which is often a primary objective in applications.
Invariant manifolds justify the manifold assumption of machine learning dimensionality reduction [168]
in the context of dynamics.

Recently, the concept of spectral submanifold (SSM) has been introduced [18], based on the
theoretical developments in [169–172]. Originally conceived for forced-damped, nonlinear, multi-
degree-of-freedom mechanical systems, spectral submanifolds theory provides a rigorous analytical
framework for studying system motions around an attractor. When related to fixed points, SSMs
are briefly the smoothest nonlinear continuations of eigenspaces of the linearized system. The
local phase space is indeed organized in a hierarchy of invariant manifolds, which creates an
opportunity for exact model reduction [19]. In particular, the SSM is a slow manifold that attracts
nearby trajectories, and the SSM dimension depends on the spectral properties of the linearized
system [18, 173]. Moreover, spectral submanifolds are robust features of the dynamics, surviving also
in presence of non-autonomous perturbations of the system [18].

Not only does SSM theory offer a systematic basis for model reduction, but it also allows a
simplification of the reduced dynamics via normal forms [4,172,174]. Normal forms bring dynamical
systems to their simplest possible form, representing them with models featuring the lowest number
of parameters. In other words, normal forms justify sparse, simple models describing dynamical
phenomena. However, these models are only available in special coordinates, as highlighted by
analytical computations dating back to Poincaré [1]. In the context of structural vibrations, spectral
submanifolds and their normal forms are used for analytical, exact model reduction and computations
of forced-responses [20,22,23,83,90,173], while [74] offers an approach for the identification of reduced-
order models for 2-dim. SSMs from trajectories of scalar observables. Another concept closely linked
to SSMs is that of invariant foliations [175], which provides a rigorous nonlinear extension of classic
linear modal analysis.

In this thesis, we develop a methodology for data-driven reduced-order modeling based on SSMs.
Focusing on oscillatory dynamics near a fixed point, we discuss spectral submanifolds and their
embedding in observable spaces. Our approach is valid for any (generic) observed state of the system,
as we do not require either full or specific system measurements. We first construct a dimensionality-
reduction approach for the embedded data, which is based on a nonlinear enhancement of PCA.
Then, we seek the normal form dynamics from the resulting reduced-coordinates using the available
data. Our approach automatically detects the appropriate normal form, making the algorithm
an intelligent, unsupervised learning strategy for dynamical systems. In contrast to other sparse
modeling techniques, we do not assume sparsity a priori in the coefficients describing the dynamics,
but we create a setting in which sparsity is guaranteed. In this way, we are able to generate explicit,
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Figure 7.1: Data-driven reduced-order models via SSMLearn.

interpretable dynamical models that are independent of the reduced coordinates that represent
the manifold. The normal form then allows an easy extraction of analytical insights from the
dynamics and is also able to predict the impact of perturbations, including the addition of external
time-dependent forces. Our approach can tackle either continuous-time dynamical systems or
discrete-time evolution rules, making our model reduction strategy applicable to dynamics near
stationary points and periodic orbits.

The normal forms that we employ can also help classic signal processing techniques in the
framework of nonlinear system identification [31, 176]. In this context, several methods, e.g. Hilbert
transform and its variants [39], are based on scalar, single-mode signals. When dealing with multi-
modal oscillations, popular techniques either use filtering or exploit empirical mode decomposition
[38], both of which ignore potential modal coupling. On the other hand, normal forms for oscillators
can potentially detect modal interactions arising from resonances.

The theoretical and computational developments of this chapter have been implemented in the
MATLAB® package SSMLearn (available at github.com/mattiacenedese/SSMLearn), synthetically
illustrated in Fig. 7.1. Other than trajectory data, the only user inputs that we require are the
maximal polynomial order for the approximation of nonlinearities and the dimension of the SSM.
The algorithm then automatically embeds the data, performs dimensionality reduction and identifies
the normal form that describes the dynamics on the SSM. For targeted experiments, the manifold
dimension is known a priori. These experiments require some minimal prior knowledge on the system
linearization at the equilibrium (e.g. eigenvalues, linear modes), that help in initializing properly the
trajectories used for model identification. For estimating linear properties, well-consolidated tools
are available in the literature [177, 178]. In case of general data, time-frequency signal processing
techniques from nonlinear system identification (e.g. spectrograms, wavelet transforms [40]) help in
estimating the dimension of the SSM that best approximates the data. Our method is complementary
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to these signal processing techniques, allowing the construction of reduced-order models based on
preliminary diagnostics obtained from such techniques.

We validate our approach on examples coming from different application domains, ranging from
structural vibrations to fluid dynamics, using synthetic data or physical experiments. These examples
also concern different dynamical behaviors (stable or unstable), different kinds of nonlinearities
characterizing the system and different types of observables.
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8
S P E C T R A L S U B M A N I F O L D S

8.1 continuous-time dynamical systems

We look at finite-dimensional dynamical systems

ẋ = f (x), x ∈ Rn, (8.1)

where the vector field f is of class Cr where r can be a positive integer for finite differentiability,
r = ∞ for infinite differentiability and r = a when f is an analytic function. We assume that the
origin for system (8.1), after a possible translation, is a hyperbolic fixed point, i.e., f (0) = 0 and
Re(λj) 6= 0 for each λj ∈ L = spectrum(D f (0)) for j = 1, 2, .., n. We denote with Ls and Lu the
stable and unstable splitting of the spectrum L, while Es and Eu are the related eigenspaces. We also
use the notation Φt(x) for the time-t flow map of f (x).

The local structure of the phase space near the fixed point is shaped by the stable and unstable
manifolds [10,11]. These are unique Cr invariant manifolds tangent to Es and Eu at the origin, having
the same dimensions of Es and Eu, respectively. Moreover, the stable and unstable manifolds possess
a further internal hierarchy of submanifolds, as pointed out by the theoretical results in [169–171].
We define these submanifolds as follows.

Definition 8.1. (Spectral submanifold). Let Em be an m-dimensional spectral subspace either of the stable
subspace Es or of the unstable one Eu. A spectral submanifold is the smoothest invariant manifoldWm of all
invariant manifolds that are tangent to Em at the origin and have the same dimension as Em.

By denoting Lm the spectrum related to Em, we then define the spectral quotient as

σ(Em) =



max

(
Int

[
minλj∈(Ls−Lm) Re(λj)

maxλj∈Lm Re(λj)

]
, 1

)
if Lm ⊂ Ls,

max

(
Int

[
maxλj∈(Lu−Lm) Re(λj)

minλj∈Lm Re(λj)

]
, 1

)
if Lm ⊂ Lu,

(8.2)

which is the integer part of the ratio between the fastest decay/growth rate outside Lm and the
slowest decay/growth rate inside Lm. The next theorem characterizes spectral submanifolds.

Theorem 8.1. (Existence, uniqueness and robustness of SSMs for flows). If

(i) σ(Em) < r,

(ii) With the notation {λ1, λ2, ..., λm} = Lm, the outer non-resonance conditions

m

∑
j=1

σjλj 6= λ, ∀ σj ∈N : 2 ≤
m

∑
j=1

σj ≤ σ(Em),

hold for any λ /∈ Lm,

then there exists an m-dimensional, class Cr spectral submanifold Wm tangent to the spectral subspace Em

at the origin which is unique among all Cσ(Em)+1 invariant manifolds with the same property. The spectral
submanifoldWm persists under small Cr perturbations of the vector field f .
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Figure 8.1: Examples of SSMs. Plot (a) shows a stable 2-dim. SSM in blue, while the red surface in (b) is the
unstable manifold that connects the fixed point to a limit cycle. Plots (a,b) contains attracting SSM,
as shown by the trajectories with dashed black lines that converges to the SSMs on the solid cyan
lines. Plot (c) shows stable SSMs (fast and slow) for the Poincaré map of the limit cycle, depicted
in green.

We sketch the proof of this theorem, adapted from Theorem 3 of [18], in section 8.3, where the
case of SSMs for maps is discussed. Some examples of SSMs are shown in Fig. 8.1. The stable and
unstable manifolds are special cases of Theorem 8.1, arising when Lm = Ls or Lm = Lu, respectively,
for which assumptions (i-ii) automatically hold. For all other SSMs, it is sufficient to check the linear
combinations in (ii) for every λ ∈ Ls −Lm if Lm ⊂ Ls or for λ ∈ Lu −Lm if Lm ⊂ Lu. We remark
that assumptions (i-ii) are generically satisfied.

Among all types of SSMs, attracting SSMs (see plots (a,b) in Fig. 8.1) are of particular interest, that
are characterized by the next definition.

Definition 8.2. (Attracting spectral submanifolds). For an asymptotically stable equilibrium (Lu = ∅),
the unique m-dim. local attracting spectral submanifold for system (8.1) is the SSM tangent to the eigenspace
Lm containing the eigenvalues with the m-largest real parts in the spectrum of D f (0). If the equilibrium is
unstable, then the local attracting spectral submanifold for system (8.1) is its unstable manifold.

Attracting spectral submanifolds capture the leading, asymptotic dynamics of system (8.1), as
stated in this result.

Proposition 8.2. LetWm be the m-dim. attracting spectral submanifold for system (8.1) and x̂ ∈ Rn be a
point such that x̂ is inside a sufficiently small neighborhood of the origin. ThenWm is an attracting, normally
hyperbolic invariant manifold and x̂ belongs to its stable fiber through the point x ∈ Wm for which there exists
real positive constants Cs and λs such that

‖Φt(x̂)−Φt(x)‖ < Cse−λst. (8.3)

Proof. For the proof that the unstable manifold is normally hyperbolic and attracting, see [179],
while [18] shows this result for slow, stable SSMs. Regarding the attraction rate, x̂ lies on the local,
n-dim. stable manifold ofWm, at least for sufficiently small neighborhood of the origin. This stable
manifold is foliated by (n−m)-dim. submanifolds called stable fibers [165, 166, 179], for which the
estimate of Eq. (8.3) holds. The existence of this foliation is also discussed in [175].

8.2 embedology

We now consider to have a collection of observed trajectories of the dynamical system

x[k + 1] = F (x[k]) , x ∈ Rn, k ∈N, (8.4)
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that lie on a certain m-dimensional SSMWm attached to the origin and related to the spectrum L′m.
The map F can be a discrete evolutionary rule or the flow map Φts of system (8.1), where ts > 0 is
the sampling time, i.e., the rate at which trajectory data is known. In this latter case, x[k] = x(kts)

and we have that L′m = exp(tsLm).
The observable space, denoted Rp, has a dimension p ≥ 1 which is typically much lower than

that of the full state space, i.e., p � n. These observables are connected to the system state via a
measurement function y = Γ(x). It is therefore necessary to ask whetherWm also shows up in the
observable space. Whitney, with its celebrated result in [180], proved that, for p > 2m, the set of
maps Γ : Wm → Rp forming an embedding for Wm is open and dense in the set of C1 maps from
Wm to Rp.

Therefore, the invariant manifoldWm is guaranteed to survive in the observable space Rp without
the loss of any differential information, when looking at p generic observables with p ≥ 2m + 1. In
other words, Γ(Wm) is a manifold in Rp constituting a diffeomorphic copy of Wm. One may also
try with a number of observables p ≤ 2m and be still able to obtain good results, but this cannot be
guaranteed in general.

There are two typical cases for the measurement mapping Γ. The simplest one refers to an
observable space y ∈ Rp made of independent and simultaneous measurements of the underlying
dynamical system. Here, the map Γ has a clear physical meaning. However, a number of at least
2m + 1 independent observables may not be available in some practical experiments. Therefore,
we consider the case of a scalar measurement s ∈ R satisfying s = g(x) for some generic smooth
map g : Rn → R and the coordinates of observable space are those of the delay coordinates vector
constructed as

y = Γ(x) =
(

g(x), g
(

F(x)
)
, g
(

F2(x)
)
, ... , g

(
Fp−1(x)

))>
. (8.5)

This type of embedding mixes dynamics and geometry so that Takens in [181] had to require some
technical assumptions on periodic orbits contained in the manifold to conclude that a generic map Γ
constructed as in Eq. (8.5) is actually an embedding [182]. Although methods are available for the
optimal selection of p (and of ts in case of a flow), standard cross-validation routines show good
performances [176].

Remark 8.1. The statements of Whitney and Takens, however, do not say how likely a given map Γ
constitutes an embedding [176]. Indeed, their statements guarantee that there exists an embedding
in an arbitrary small neighborhood of this given map Φ in the space of C1 maps. For practical uses,
one would like to be sure that a given map is an embedding, i.e. with probability one. These results
are available in [183] for the two particular cases discussed above, still with p > 2m. For the case
of simultaneous independent measurements, the authors proved that almost all maps are indeed
embeddings ofWm in Rp. In the delay embedding case, the same result holds for almost all scalar
mappings g and, in case of a flow, for almost all sampling times ts > 0 if, for the system restricted to
the manifoldWm, there is a finite number of equilibria, there are no periodic orbits with period ts or
2ts and there are only a finite number of periodic orbits with period lts, l > 2.

8.2.1 Preserving information between phase space and observable space

The theoretical results on manifold embedding guarantee that there is no loss on differential
information when passing from the full phase space to the observable space, for suitable number of
observables p ≥ 2m + 1. Figure 8.2 provides an illustration of this concept and we shall explore this
connection further in the view of constructing reduced-order models from data.

66



>>>:

which is the integer part of the ratio betweem the fastest decay/growth rate outside Lm and the
slowest decay/growth rate inside Lm. The next theorem characterizes spectral submanifolds.

Theorem 2.1. (Existence and uniqueness of SSMs for flows). If

(i) �(Em) < r,

(ii) With the notation {�1, �2, ..., �m} = Lm, the outer non-resonance conditions

mX

j=1

�j�j 6= �, 8 �j 2 N : 2 
mX

j=1

�j  �(Em),

Unstable  
SSM

Stable  
SSM

Rn Rp

F

FΓ

Γ

Wm

Vm

Figure 8.2: Illustration of an embedding Γ of an invariant manifold Wm from the phase space as an invariant
manifold Vm in the observable space.

An embedding Γ of the manifoldWm is a diffeomorphism onto its image, denoted Vm = Γ(Wm),
hence invertible on Vm. We then call Γ−1(Vm) the preimage of Γ of the set Vm ⊂ Rp, defined as
Γ−1(Vm) = {x ∈ Rn : Γ(x) = Vm}. The functional relationship

y[k + 1] = FΓ (y[k]) , y = Γ(x) ∈ Rp, (8.6)

between successive observables is conjugated to the dynamical system (8.4) restricted to the manifold
Wm via the formula

FΓ = Γ ◦ F ◦ Γ−1 : Vm → Vm. (8.7)

Let us assume that, without loss of generality, Γ(0) = 0. Hence, we have that FΓ(0) = 0 and the
conjugacy (8.7) implies that L′m ⊂ spectrum(DFΓ(0)) [74].

Remark 8.2. We briefly discuss the case of simultaneous, independent measurements where Γ is
a linear map represented by a matrix G ∈ Rp×n. The observed coordinates y = Gx are a good
embedding for the m-dimensional manifold Wm with probability one if p ≥ 2m + 1 [183]. A final
word of caution is worth adding for the case in which the rows of G are orthonormal vectors, as
in the case of projections arising from proper orthogonal decompositions. One may be tempted
to think that Γ−1 can be expressed as G> and hence that the conjugacy relation in Eq. (8.7) is a
Galerkin projection of the dynamical evolution law in Eq. (8.4). However, this is true only for special,
non-generic cases, such as when Wm is linear or when curvilinear features of Wm appear only in
directions spanned by the rows of G. Even if Γ is linear, the preimage Γ−1(Vm) is generically a
nonlinear map [19].

8.3 discrete-time dynamical systems

We now consider the case of finite-dimensional discrete dynamical systems, i.e.,

x[k + 1] = F(x[k]), x ∈ Rn, F ∈ Cr, (8.8)

where we assume that the origin for system (8.1), after an eventual translation, is a hyperbolic fixed
point, i.e., F(0) = 0 and |µj| 6= 1 for each µj ∈ L′ = spectrum(DF(0)) for j = 1, 2, .., n. We also
assume that DF(0) is nonsingular. We denote with L′s and L′u the stable and unstable splitting of the
spectrum L′, while E ′s and E ′u are the related eigenspaces.

The local structure of the phase space near the fixed point is shaped by the stable and unstable
manifolds that are characterized by properties similar to those of the flow case. Specifically, Definition
8.1 carries over to the present map setting. We then consider an m-dimensional subspace E ′m either of
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the stable subspace E ′s or of the unstable one E ′u and we denote L′m the spectrum related to E ′m. We
further define the spectral quotient for the map case as

σ(E ′m) =



max

(
Int

[
minµj∈(L′s−L′m) log |µj|

maxµj∈L′m log |µj|

]
, 1

)
if L′m ⊂ L′s,

max

(
Int

[
maxµj∈(L′u−L′m) log |µj|

minµj∈L′m log |µj|

]
, 1

)
if L′m ⊂ L′u.

(8.9)

The next theorem describes spectral submanifolds for maps.

Theorem 8.3. (Existence, uniqueness and robustness of SSMs for maps). If

(i) σ(E ′m) < r,

(ii) With the notation {µ1, µ2, ..., µm} = L′m, the outer non-resonance conditions

m

∏
j=1

µ
σj
j 6= µ, ∀ σj ∈N : 2 ≤

m

∑
j=0

σj ≤ σ(E ′m), (8.10)

hold for any µ /∈ L′m,

then there exists a m-dimensional, class Cr, spectral submanifold W ′m tangent to the spectral subspace E ′m
at the origin which is unique among all Cσ(E ′m)+1 invariant manifolds with the same property. The spectral
submanifoldW ′m persists under small Cr perturbations of the vector field f .

Proof. This a restatement for our context of Theorem 3 of [18], which is Theorem 1.1 in [169] that
deals with general mappings in Banach spaces. While we indicate the map F with the same notation,
the authors of [169] adopts X1 = E ′m, L′m = spectrum(A1) and σ(E ′m) = L. Assume that L′m ⊂ L′s. By
construction, the map F, the space E ′m and the spectrum L′m satisfy the assumptions (0-3) of Theorem
1.1 in [169], while the assumptions (i,ii) of this theorem are reformulations of assumptions (5,4) of
the referenced theorem, respectively. If L′m ⊂ L′s, then Theorem 1.1 in [169] holds when considering
the inverse map F−1(x). The statement on robustness follows from the results in [170].

The proof for Theorem 8.1 follows directly from Theorem 8.3 when considering the flow map of
f , as also discussed in Remark 6 of [169]. Further theoretical results on SSMs and their analytical
computations are available in literature [18, 90, 171].

Lastly, the discussion of section 8.1 after Theorem 8.1 regarding slow SSMs carries over for discrete-
time dynamical systems, with the appropriate, minor modifications. Examples of SSMs for maps are
shown in Fig. 8.1(c), where the underlying discrete-time dynamical system is the Poincaré map near
a limit cycle.
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9
D ATA - D R I V E N R E D U C E D O R D E R M O D E L S B A S E D O N S S M S

Model reduction to an invariant manifold requires the construction of three ingredients: a coordinate
chart, the reduced dynamics and a parametrization. The coordinate chart transforms embedding
coordinates into reduced coordinates, whose dynamics is governed by the reduced dynamics. The
parametrization lifts the reduced coordinates to embedding ones.

We assume here that the m-dimensional SSM, Wm, is embedded via a Cr measurement map Γ
in the observable space Rp as Vm and that the origin in Rp is the equilibrium to which the SSM is
attached. We aim to describe this manifold with its simplest representation, i.e., as a graph of a
function. Therefore, we consider matrices V0 ∈ Rp×m and U0 ∈ Rp×(p−m), whose columns form an
orthonormal basis for the tangent space T0Vm of Vm at the origin and for the complement of T0Vm in
Rp, respectively. Hence, the matrix [V0 U0] ∈ Rp×p is nonsingular and its inverse is[

V>0
U>0

]
=
[
V0 U0

]−1
, V>0 ∈ Rm×p, U>0 ∈ R(p−m)×p,

V>0 V0 = I, U>0 U0 = I,
V>0 U0 = 0.

We select the coordinate chart for the manifold Vm as the linear projection η = V>0 y onto the tangent
space T0Vm at the origin, with η ∈ Rm denoting the vector of reduced coordinates for Vm. The next
result characterizes the parametrization and the reduced dynamics for Vm, which are also presented
in Fig. 9.1.

Theorem 9.1. Parametrization and dynamics for embedded SSMs. For a sufficiently small neighborhood
B ⊂ Rm of the origin, there exists a parametrization of the form

y = V(η) = V0η + U0h(η), (9.1)

where h : B → Rp−m is a class Cr map such that h(0) = 0, Dh(0) = 0, which is unique up to the choice of
the pair (V0, U0). Moreover, the dynamics on the manifold is described by the class Cr map R : B → B

η[k + 1] = R (η[k]) , R(0) = 0, spectrum(DR(0)) = L′m. (9.2)

Proof. The parametrization in Eq. (9.1) refers to the Monge coordinates [184,185] or patches [186,187],
whose existence is shown in these references. The uniqueness holds due the fact that Vm is the
Cr manifold defined as the embedding of the unique, class-Cr SSM Wm. The reduced dynamics
remains valid in the neighborhood B ⊂ Rm, and, with the definition V?(y) = V>0 y, the following
semi-conjugacy holds

R = V? ◦ Γ ◦ F ◦ Γ−1 ◦V : B → B, (9.3)

for which we have that the eigenvalues of R coincides with those of DF(0) related to the SSM.

The graph-style parametrization described in Theorem 9.1 may break down due to a fold in Vm,
but it is always guaranteed to exist in a sufficiently small neighborhood of the equilibrium. We shall
discuss the case of a folding Vm later.

We now address the problem of identifying the reduced-order models from sampled trajectories in
the observable space. Specifically, we assume to have a dataset of L trajectories, each consisting of Lj

points for j = 1, 2, ... L. We assume that all points y(j)[k], k = 1, 2, ... Lj lie on the embedded SSM Vm

and the trajectories are uniformly sampled in time at ts > 0 rate. We also assume that Vm does not
present any fold in the neighborhood of the origin covered by this dataset. In section 9 we discuss
how this procedure is also valid for trajectories that are not on the SSM.
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Figure 9.1: Illustration of an embedding Γ of an invariant manifold Wm from the phase space as an invariant
manifold Vm in the observable space. Also sketched are the parametrization V and the reduced
dynamics R presented in Theorem 9.1, including the tangent space T0Vm at the origin, which is
spanned by the column space of the matrix V0.

9.1 parametrization and reduced coordinates

The identification of the parametrization is performed by minimizing the static, squared reconstruc-
tion error of the map in Eq. (9.1), which reads

Cpara(V) =
L

∑
j=1

Lj

∑
k=1

∥∥∥y(j)[k]−V
(

V?
(

y(j)[k]
))∥∥∥2

. (9.4)

We seek h(η) as a multivariate polynomial of order MV in η. Polynomials are justified by Taylor
expansions in our local setting. More precisely, h(η) = Hϕ(η; 2:MV) where the map ϕ(η; 2:M) is set
of all the m2:M monomials in the coordinates of η from order 2 to order M, whose cardinality is

m2:M =
M

∑
l=2

ml , ml =
(l + m− 1)!
l!(m− 1)!

.

For example, for m = 2, η = (η1, η2) and M = 3, we have

ϕ(η; 2:3) =
(
η2

1 , η1η2, η2
2 , η3

1 , η2
1η2, η1η2

2 , η3
2
)>

, m2:M = 7.

To comply with Theorem 9.1, the coefficient matrix H ∈ Rp×m2:MV must be such that V>0 H = 0.
Inserting the maps V(η) = V0η + Hϕ(η; 2, MV) and V?(y) = V>0 y into the cost function (9.4), we
formulate the minimization problem that identifies the optimal pair (V∗0 , H∗)

(V∗0 , H∗) = argmin
V0 ,H

L

∑
j=1

Lj

∑
k=1

∥∥∥y(j)[k]−V0V>0 y(j)[k]− Hϕ
(

V>0 y(j)[k]; 2:MV

)∥∥∥2
,

subject to V>0 V0 = I, V>0 H = 0.

(9.5)

Regularizing terms, such as error weighting and a penalty function for the coefficients in H, may
be also included in the cost function. The two constraints serve to fix the parametrization style for
the manifold, i.e., to guarantee that it can be expressed as a graph of a function. Although there are
infinite possible representations in this form, the minimization process extract the one that minimizes
the reconstruction error for the assumed representation of h.
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In general, problem (9.5) is a potentially non-convex optimization problem with nonlinear con-
straints that can be solved numerically with suitable optimization algorithms (see, for example, [188]).
If the manifold Vm is assumed to be linear (M = 1 and H = 0), then problem (9.5) is the classic
m-dim. PCA [56, 156], which can be solved in closed form via singular value decomposition of the
data organized in matrix form. There can be cases in which a representation for tangent space at
the origin is known a priori, so that minimization (9.5) can focus on the nonlinear coefficients in
H. In that case, the problem becomes a least-squares regression with linear equality constraints
(i.e., V>0 H = 0), for which exists a closed form solution [189]. The initial condition for the general
optimization problem may be sought from these two analytically solvable sub-problems. Indeed, the
initial guess for V0 can be set as the PCA of the dataset, and, given this estimate, we can compute the
initial condition for H in closed form, which typically ensures a fast convergence of the minimization
process.

Remark 9.1. If the manifold Vm is very complex, one can leverage on manifold learning techniques
coming from machine learning, such as locally linear embedding [158] or Hessian eigenmaps [159].
These algorithms can find usually good representation coordinates for the manifold, but obtaining
the manifold parametrization is not trivial to achieve [57]. The manifold we are looking at are also not
that complex in their geometry to require these approaches, at least with respect to the tangent space
at the equilibrium. Indeed, canonical PCA augmented with some polynomial nonlinearities offers
efficient and accurate performance for local trajectories near an equilibrium, and it simultaneously
provides the coordinate chart and the parametrization for the manifold.

9.2 reduced dynamics and its normal form

Once the parametrization is identified, the reduced coordinates η = V>0 y can be used to identify the
reduced dynamics. This problem may be formulated again as a minimization based on the 1-step
prediction error

Cmap(R) =
L

∑
j=1

Lj−1

∑
k=1

∥∥∥η(j)[k + 1]− R
(

η(j)[k]
)∥∥∥2

. (9.6)

If the sampling time ts is sufficiently small, one can numerically approximate the time derivative
η̇ via finite difference schemes. In that case, instead of 9.6, one can target the identification of the
autonomous vector field fR(η) that induces the reduced flow map on the embedded SSM Vm. Here,
the cost function becomes

C f low( fR) =
L

∑
j=1

Lj−1

∑
k=1

∥∥∥η̇(j)[k]− fR

(
η(j)[k]

)∥∥∥2
. (9.7)

Although other representations may be selected, we focus on polynomial ones, in which either R or
fR can be represented by Θϕ(η; 1:MR), where Θ ∈ Rm×m1:MR . The resulting model is then linear in
the parameters and classic regression techniques [50] (e.g., least-squares regression, ridge regression,
LASSO) could be used to identify the dynamics from the cost functions (or their weighted/regularized
versions) in Eqs. (9.6,9.7).

However, the resulting maps would be typically black-box models, being difficult to understand
without additional manipulations. The assumption of sparsity for techniques like LASSO [51] or
SINDy [52] is also heavily dependent on the reduced coordinates η. Indeed, model-based analytical
SSM computations [18, 172] indicate that, for a graph-style parametrization, Θ is a fully populated
matrix in general. For having an interpretable model with the minimal number of significant
coefficients in its dynamics, we propose using normal forms for the reduced dynamics [4, 172, 174].
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Normal forms permit to cluster dynamical systems into topologically similar families, i.e., exhibiting
the same dynamical behavior, which can be described by the minimal number of coefficients.

The normal form for a vector field or a mapping is its simplest possible polynomial form near a
fixed point. In the following, we describe the vector field case, while the map case is reported in
section 9.5.2. Normal forms are achieved by a smooth coordinate change T that links the normalized
and the non-normalized flow maps as

Φt
N = T−1 ◦Φt

R ◦ T, N = T−1 ◦ R ◦ T. (9.8)

Here we denoted Φt
R is the time-t flow map of fR, while Φt

N is that of the normal form vector field
fN .

Using Eq. (9.8), we aim to find the simplest vector field fN describing the dynamics. Near a
hyperbolic fixed point, the Hartman-Grobman theorem [10] states that there exists a homeomorphism
T that transforms the nonlinear system locally into its linearization. Siegel [190, 191] and Sternberg
[192] strengthened this result showing that T is a diffeomorphism if the linearized eigenvalues at the
origin satisfy certain non-resonance conditions. However, the domain of validity of the coordinate
change for the system linearization is typically very small, as local nonlinear dynamical behavior
(e.g. limit cycles, quasi-periodic motions, variations of time-scales) cannot be captured by a linear
dynamical system.

The key idea of our normal form approach is to find a nonlinear, conjugated dynamical system of
fR that overcomes the limitations of the linearization approach. This method reveals to be particularly
convenient for oscillatory dynamics in weakly dissipative systems, whose SSMs possess strongly
meaningful normal forms [23, 90] as we shall now discuss.

We focus our attention on underdamped oscillatory normal forms, hence m must be even and the
spectrum in Lm is made up by m/2 complex numbers and their conjugates. We further assume that
D fR(0) is a diagonalizable matrix, i.e., we have that D fR(0)B = BΛ, where Λ is a diagonal matrix
whose entries are the elements of Lm. Let us call the modal coordinates ζ = B−1η.

We seek to identify the triple (T−1, fN , T): the map ζ = T(z) is a nonlinear coordinate transforma-
tion mapping the normal form coordinates z to the modal coordinates with inverse z = T−1(ζ), while
the normal form dynamics is given by ż = fN(z). These maps can be expressed with a polynomial
representation as

T−1(ζ) = ζ + HT−1 ϕ(ζ; 2:M), fN(z) = Λz + HN ϕ(z; 2:M), T(z) = z + HT ϕ(z; 2:M), (9.9)

where the matrices HT−1 , HN , HT ∈ Cm×m2:M . Note that the normal form order M may be different
from that of the reduced coordinates dynamics MR. We introduce the matrix of non-negative integers
S(m)

2:M ∈Nm×m2:M corresponding to the exponents for the m-variate polynomial map ϕ(· ; 2:M). In the
case of Eq. (9.1), this matrix reads

S(2)
2:3 =

[
2 1 0 3 2 1 0
0 1 2 0 1 2 3

]
. (9.10)

Then, we construct the matrix ∆Λ,2:M ∈ Cm×m2:M of linear combinations of the eigenvalues in Λ as

(∆Λ,2:M)j,l = (Λ)j,j −
m

∑
k=1

(Λ)k,k

(
S(m)

2:M

)
k,l

, j = 1, 2, ... m, l = 1, 2, ... m2:M, (9.11)

which is needed for the next, fundamental result.

Theorem 9.2. In the setting of Sternberg linearization theorem, i.e., for HN = 0, the following estimates hold∣∣∣(HT)j,l

∣∣∣ ∝
1∣∣∣(∆Λ,2:M)j,l

∣∣∣ ,
∣∣∣(HT−1)j,l

∣∣∣ ∝
1∣∣∣(∆Λ,2:M)j,l

∣∣∣ , j = 1, 2, ... m, l = 1, 2, ... m2:M. (9.12)
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This theorem, whose proof is reported in section 9.5.1, motivates the following definition.

Definition 9.1. The normal form structure for the matrices HT−1 , HN , HT with tolerance δ is the set of row
and column indexes defined as

Jδ :=
{
(j, l) :

∣∣∣(∆Λ,2:M)j,l

∣∣∣ < δ, j = 1, 2, ... m, l = 1, 2, ... m2:M

}
. (9.13)

The terms within Jδ are called near-resonant, as they generate small denominators in the setting of
Sternberg’s linearization. Indeed, the change of coordinates here results to be ill-conditioned, hence
limiting the validity of the conjugate system. To overcome this limitation, we set the coefficients of
HT−1 , HT to be zero at the locations Jδ, while the corresponding entry in HN is nonzero and such that
guarantees the solution of the conjugacy (9.8), as shown in section 9.5.1. The number of resonant
terms is typically much smaller than the total number of terms, so that HN is a sparse matrix and
the dynamics is only described by a small yet meaningful number of coefficients. For instance, in a
single-oscillator, cubic-order case (m = 2, MR = 3) with eigenvalue λ = ε + iω, we have

Λ =

[
λ 0
0 λ̄

]
, ∆Λ,2:3 =

[ −λ −λ̄ λ− 2λ̄ −2λ −2ε −2λ̄ λ− 3λ̄

λ̄− 2λ −λ −λ̄ λ̄− 3λ −2λ −2ε −2λ̄

]
(9.14)

so that, in case of small real part |ε|/|ω| � 1, resonant terms appear at the locations J =

{(1, 5), (2, 6)}, and, with the notations ζ = (ζ1, ζ̄1)
> and z = (z1, z̄1)

>, the matrices HT−1 , HN

take the form

HT−1 =

[
h20 h11 h02 h30 0 h12 h03

h̄02 h̄11 h̄20 h̄03 h̄12 0 h̄30

]
, HN =

[
0 0 0 0 α 0 0
0 0 0 0 0 ᾱ 0

]
, (9.15)

while the location of the nonzero entries for HT is the same of that of HT−1 . Other peculiar normal
form for oscillators are synthetically collected in Table 9.1. Here, for the complex normal form, the
dynamics of conjugated coordinates is omitted.

For the data-driven extraction of the normal form for fR, we construct an initial estimate for D fR(0)
from available data, as the Jacobian determines the structure of the normal form. An estimate for fR

can be obtained using classic, fast regression techniques from Eq. (9.6). The identification for the pair
(T−1, fN) takes the form of a minimization over the squared conjugacy error

C
(

T−1, fN

)
=

Lj−1

∑
k=1

∥∥∥∥ d
dt

(
T−1

(
ζ(j)[k]

))
− fN

(
T−1

(
ζ(j)[k]

))∥∥∥∥2

, (9.16)

while the map T is determined via least-squares regression once normal form coordinates are known.
By inserting the maps in Eq. (9.9) into the cost function (9.16), we formulate the minimization
problem that identifies the optimal pair (H∗T−1 , H∗N)

c(j)(k) =
d
dt

(
ζ(j)[k] + HT−1 ϕ

(
ζ(j)[k]; 2:M

))
−Λ

(
ζ(j)[k] + HT−1 ϕ

(
ζ(j)[k]; 2:M

))
+

−HN ϕ
(

ζ(j)[k] + HT−1 ϕ
(

ζ(j)[k]; 2:M
))

(H∗T−1 , H∗N) = argmin
HT−1 ,HN

L

∑
j=1

Lj−1

∑
k=1

(
c̄(j)[k]

)>
c(j)[k],

subject to (HN)(l,s) = 0 ∀(l, s) ∈ Jc
δ , (HT−1)(l,s) = 0 ∀(l, s) ∈ Jδ,

(9.17)

where Jc
δ is complementary set of Jδ such that Jδ ∪ Jc

δ is set of the row and columns indexes for a
matrix of dimension m×m2:M. From an implementation viewpoint, this problem can be recast as an
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unconstrained minimization, which is nevertheless potentially non-convex. A good initial condition
for iterative solvers is to set all the coefficients to 0. This initial guess supposes linear dynamics
and the minimization should correct it with the best set of nonlinear coefficients in the normal
form structure. The identification of normal form structure is clearly dependent on the tolerance
δ of Definition 9.1. Although it may depend on the specific problem, a good candidate for weakly
damped systems is δ = 10 minλ∈Lm |Re(λ)| [22] (see also the discussion in section 9.5.1.3).

Remark 9.2. An alternative method to extract the normal form relies on estimating either fR or R
and then uses this evolutionary rule in the analytic normal form computations reported in section
9.5 (see also [4, 174]). However, this strategy is not fully capitalizing on data. Analytic normal form
computations have a certain domain of validity and it could be that this domain validity is smaller
than the range of data. Moreover, this domain of validity may be influenced by the scaling used for
the modal coordinates. Instead, by extracting the normal form directly from data, we are directly
assuming that the range of data is within the domain of the normal form, for which the algorithm
finds the best representation.

9.3 analytics and predictions from normal forms

The normal form, by reducing the complexity of dynamics, offers unrivaled opportunities for learning
the dynamical behavior and making predictions for small perturbations of the system.

From Table 9.1 below, one can note that the normal form for oscillators decouple the amplitude
dynamics from the phase dynamics. This enables us to distinguish different modal contributions, and
also allows a slow-fast decomposition and the analysis of the uncoupled oscillator limit. Moreover,
the instantaneous dampings and frequencies for each mode j can be defined as

cj = −
ρ̇j

ρj
, ωj = θ̇j, (9.18)

from their normal form. The zero-amplitude limit for these quantities converges to the linearized
damping and frequency of mode j. Indeed, cj and ωj are the nonlinear continuations of these linear
quantities, and they characterize how dissipation (or activation for an unstable equilibrium) and
frequency change with respect to the amplitudes (and phases for internally resonant systems). For a
single oscillator, then c(ρ) and ω(ρ) are the backbones of transient oscillations [23, 44, 74].

The normal form amplitude does not, however, have any direct physical meaning. A first option is
to exhibit these curves with respect to time for a given trajectory. For further physical insights, we
can express any amplitude of interest via the SSM parametrization V. For the single oscillator case,
for the scalar quantity of interest G : Rp → R defined on the observable space Rp, the amplitude of
the oscillations can be defined as [90]

a(ρ) = max
θ∈[0,2π)

|G (V(T(ρ, θ))| . (9.19)

Typically, G(y) is simply a projection on an observable coordinate, but it can also be some other
system property (e.g. kinetic energy, cf. section 10.3). Then, the damped backbone curves can be
expressed as the parametric curves {c(ρ), a(ρ)} and {ω(ρ), a(ρ)}, as we will see in our example
section 10. An analogous expression holds for any other quantity of physical interest in the observable
space.

SSMs are robust features of the dynamics, hence they survive under small autonomous pertur-
bations and even under some non-autonomous perturbations [18]. The latter include time-periodic
perturbations, which will be our focus here. For mechanical systems, such perturbations repre-
sent small external periodic forcing. In that case, the autonomous SSM will serve as the leading
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Table 9.1: Some oscillatory normal forms for weakly damped systems Re(Lm) � 0 with different dimensions
m, orders M and resonances present in Lm, which are indicated as 1 : l for two coupled oscillators
(while nonres. is the non-resonant case). We denote zj = ρje

iθj and z̄j for the complex conjugated.
Case Complex normal form Polar normal form

m = 2
M = 2S− 1
S > 1

ż1 = λz1 + ∑S
l=1 α2l |z|2l

1 z1 ρ̇1 =
(

Re(λ) + ∑S
l=1 Re (α2l) ρ2l

1

)
ρ1

θ̇1 = Im(λ) + ∑S
l=1 Im (α2l) ρ2l

1

m = 4
M = 3
nonres.

ż1 = λ1z1 + α1,1z2
1z̄1 + α1,2z2z̄2z1

ż2 = λ2z2 + α2,2z2
2z̄2 + α2,1z1z̄1z2

ρ̇1 = Re(λ1)ρ1 + Re(α1,1)ρ
3
1 + Re(α1,2)ρ

2
2ρ1

ρ̇2 = Re(λ2)ρ2 + Re(α2,2)ρ3
2 + Re(α2,1)ρ

1
2ρ2

θ̇1 = Im(λ1) + Im(α1,1)ρ
2
1 + Im(α1,2)ρ

2
2

θ̇2 = Im(λ2) + Im(α2,2)ρ2
2 + Im(α2,1)ρ

2
1

m = 4
M = 3
1 : 1 res.

ż1 = λ1z1 + α1,1z2
1z̄1 + α1,2z2z̄2z1 + β1,1z2

1z̄2 + β1,2z1z̄1z2 + β1,3z̄1z2
2 + β1,4z2

2z̄2

ż2 = λ2z2 + α2,2z2
2z̄2 + α2,1z1z̄1z2 + β2,1z2

1z̄1 + β2,2z2
1z̄2 + β2,3z̄1z2

2 + β2,4z1z2z̄2

ψ = θ2 − θ1 See ‡ on the next page for the polar normal form

m = 4
M = 3
1 : 2 res.

ż1 = λ1z1 + α1,1z2
1z̄1 + α1,2z2z̄2z1

+β1z̄1z2

ż2 = λ2z2 + α2,2z2
2z̄2 + α2,1z1z̄1z2

+β2z2
1

ψ = θ2 − 2θ1

ρ̇1 = Re(λ1)ρ1 + Re(α1,1)ρ
3
1 + Re(α1,2)ρ

2
2ρ1

+ρ1ρ2Re
(

β1eiψ)
ρ̇2 = Re(λ2)ρ2 + Re(α2,2)ρ3

2 + Re(α2,1)ρ
1
2ρ2

+ρ2
1Re

(
β2e−iψ)

ρ1θ̇1 = Im(λ1)ρ1 + Im(α1,1)ρ
3
1

+Im(α1,2)ρ
2
2ρ1 + ρ1ρ2Im

(
β1eiψ)

ρ2θ̇2 = Im(λ2)ρ2 + Im(α2,2)ρ3
2

+Im(α2,1)ρ
2
1ρ2 + ρ2

1Im
(

β2e−iψ)

m = 4
M = 3
1 : 3 res.

ż1 = λ1z1 + α1,1z2
1z̄1 + α1,2z2z̄2z1

+β1z̄2
1z2

ż2 = λ2z2 + α2,2z2
2z̄2 + α2,1z1z̄1z2

+β2z3
1

ψ = θ2 − 3θ1

ρ̇1 = Re(λ1)ρ1 + Re(α1,1)ρ
3
1 + Re(α1,2)ρ

2
2ρ1

+ρ2
1ρ2Re

(
β1eiψ)

ρ̇2 = Re(λ2)ρ2 + Re(α2,2)ρ3
2 + Re(α2,1)ρ

1
2ρ2

+ρ3
1Re

(
β2e−iψ)

ρ1θ̇1 = Im(λ1)ρ1 + Im(α1,1)ρ
3
1

+Im(α1,2)ρ
2
2ρ1 + ρ2

1ρ2Im
(

β1eiψ)
ρ2θ̇2 = Im(λ2)ρ2 + Im(α2,2)ρ3

2
+Im(α2,1)ρ

2
1ρ2 + ρ3

1Im
(

β2e−iψ)

m = 2s
M = 3
nonres.

żj = λjzj + ∑s
l=1 αj,l |zl |2zj

for j = 1, 2, ... s

ρ̇j =
(
Re(λj) + ∑s

l=1 Re(αj,l)ρ
2
l

)
ρj

θ̇j = Im(λj) + ∑s
l=1 Im(αj,l)ρ

2
l

75



order approximation for the non-autonomous SSM that governs reduced, time-periodic dynam-
ics [18, 22, 23, 83].

Let us focus on the single-oscillator case and consider

ẋ = f (x) + εg(x, Ωt), f (0) = 0, x ∈ Rn, Ω ∈ R+, 0 ≤ ε� 1, (9.20)

where we assume that, for ε = 0, the system has a 2-dim. SSM related to the eigenvalues (λ, λ̄)

with frequency ω0, which resonates with the forcing frequency, i.e. Ω ≈ ω0 for primary resonances.
An SSM also exists for the perturbed system. If W0(z) and fR,0(z) denote the parametrization and
reduced dynamics for the autonomous SSM, then their non-autonomous counterparts read

Wε(z) = W0(z) + εW1(z) + O(ε2), fR,ε(z) = fR,0(z) + ε fR,1(z) + O(ε2). (9.21)

For sinusoidal external forcing g(x, t) = Fext cos(Ωt), the reduced dynamics in complex coordinates
z = (z1, z̄1) takes the form [193]

ż1 = (−c(ρ) + iω(ρ)) z1 + Fext
R eiΩt + O(ερ), (9.22)

where |z1| = ρ and Fext
R = v?Fext/2, in which v? is the left eigenvector of D f (0) related to the

eigenvalue λ [23]. Note that the eigenvector v can be chosen such that Fext
r is purely imaginary, as

shown in Appendix A(c) of [23].
Among the O(ε)-corrections in (9.21), the one related to the reduced dynamics is clearly more

important. Hence, by neglecting the parametrization correction but imposing external forcing as in
(9.22), we can use the model trained on transient data to make predictions for the forced response.
Namely, for a given value of forcing, we can study periodic orbits of the system and their stability
type varying the forcing frequency. Note that this is valid regardless of the specific observable we
use for model training. As expressed in (9.22), this approximation for the forced dynamics is valid
for forcing and amplitude values that are not too large.

The forced responses described by Eq. (9.22) can be computed in closed form. By neglecting O(ερ)

terms and assuming the forcing parameter to be purely imaginary Fext
R = i f ext

R , we rewrite Eq. (9.22)
considering the phase shift ψ = θ −Ωt

ρ̇ = −c(ρ)ρ + f ext
R sin(ψ),

ρψ̇ = ρ (ω(ρ)−Ω) + f ext
R cos(ψ),

(9.23)

whose fixed points correspond to periodic responses of Eq. (9.22), which must satisfy

c(ρ)ρ = f ext
R sin(ψ),

ρ (Ω−ω(ρ)) = f ext
R cos(ψ).

(9.24)

Summing the squares of the two equations and solving for Ω lead to the analytic formula

Ω = ω(ρ)±

√√√√(
f ext
R
)2

ρ2 −
(
c(ρ)

)2, (9.25)

which parametrizes forced responses with ρ for a certain value of external forcing f ext
R . Physical

amplitudes can be derived using Eq. (9.19). The stability of these solutions can be obtained from the
eigenvalues of the jacobian of (9.23) [23].

‡:

ρ̇1 = Re(λ1)ρ1 + Re(α1,1)ρ
3
1 + Re(α1,2)ρ

2
2ρ1 + ρ2

1ρ2Re
(

β1,1e−iψ + β1,2eiψ
)
+ ρ1ρ2

2Re
(

β1,3ei2ψ
)
+ ρ3

2Re
(

β1,4eiψ
)

ρ̇2 = Re(λ2)ρ2 + Re(α2,2)ρ
3
2 + Re(α2,1)ρ

1
2ρ2 + ρ2

2ρ1Re
(

β2,3eiψ + β2,4e−iψ
)
+ ρ2ρ2

1Re
(

β2,2e−i2ψ
)
+ ρ3

1Re
(

β2,1e−iψ
)

ρ1 θ̇1 = Im(λ1)ρ1 + Im(α1,1)ρ
3
1 + Im(α1,2)ρ

2
2ρ1 + ρ2

1ρ2Im
(

β1,1e−iψ + β1,2eiψ
)
+ ρ1ρ2

2Im
(

β1,3ei2ψ
)
+ ρ3

2Im
(

β1,4eiψ
)

ρ2 θ̇2 = Im(λ2)ρ2 + Im(α2,2)ρ
3
2 + Im(α2,1)ρ

2
1ρ2 + ρ2

2ρ1Im
(

β2,3eiψ + β2,4e−iψ
)
+ ρ2ρ2

1Im
(

β2,2e−i2ψ
)
+ ρ3

1Im
(

β2,1e−iψ
)
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9.4 real-life data and algorithm

In practice, the collection of data belonging to a specific invariant manifold is hard to accomplish.
For some dynamical systems, prior knowledge helps in finding good initial conditions for trajectories
whose dynamics is at least close that of the SSM. If a reduced-order model is sought from numerical
simulations data, then eigenvalues and eigenvectors of the linearized system at the equilibrium can
be used to judiciously initialize trajectories, see sections 10.1, 10.2. For this purpose, we only require
the knowledge of the spectrum related to the SSM of interest. For physical experiments, the data
collection highly depends on the nature of the system under analysis. In the context of mechanical
systems, the resonance decay method [32, 44, 73], by means of a shaker, is able to focus the energy on
a specific 2-dim. SSM. More precisely, this method consists of isolating a resonant periodic motion of
the SSM and, afterwards, releasing the shaker from the structure to activate transients towards the
equilibrium, which lay very close to the SSM of interest. Alternatively, targeted initial conditions
or hammer impacts may help in isolating specific systems motions. Regarding instabilities in fluid
dynamics, data collection methods typical in modal analysis can be followed (see, for example, the
recent review [178] and references therein).

If targeted experiments are not available, we can still tackle the identification of the leading
attracting SSM of the system under analysis. Indeed, according to Proposition 8.2, a generic initial
condition within the basin of attraction rapidly converges to this manifold. While the constant Cs

mainly depends on the initial condition x̂, the other constant λs is such that −λs < Re(λ) for all
λ ∈ Lm. So either one proceeds in cutting the acquired signal, or in weighting the losses in the cost
functions Eqs. (9.4,9.6,9.7). By calling c(j)[k] the error for trajectory j at instant k and assuming a
sampling time ts, we can set

C =
L

∑
j=1

Lj−1

∑
k=1

∥∥∥c(j)[k]
∥∥∥2

(1 + C(j)
s eλskts)2

. (9.26)

The hyperparameters C(j)
s , λs can be established via cross validation. For the determination of the

dimension, time-frequency analysis reveals to be a useful tool. For oscillatory SSMs, m can be set as
twice the number of leading frequencies in each trajectories. Filtering, although it might be useful
for signal cleaning, is not recommended for isolating the frequency components of interest, since it
ignores potential modal coupling.

For an unbiased identification of parametrization and reduced dynamics, the dataset should
properly span the manifold. Furthermore, good practice suggests to divide this dataset into training,
testing and validation [50].

We have implemented the method described in this thesis in the MATLAB® package SSMLearn,
as reported in Algorithm 1 and visualized in Fig. 7.1. If the number of observed states is not
sufficient for manifold embedding, the data is automatically augmented with delays to reach the
minimum embedding dimension p : p > 2m. Optionally, the embedding dimension can be further
increased by the user, and this over-embedding helps in unfolding manifolds that present possible
folds in the range of data. Moreover, the polynomial order can be increased to improve the accuracy,
without compromising generalization. Since polynomials are used to represent nonlinearities,
note also that data scaling may improve the performances. When dealing with noisy dataset,
dimensionality reduction naturally de-noises data [50], provided that the polynomial order selected
for the parametrization is not excessively large. Alternatively, filtering may be adopted.

We remark that 1 is a method for purely data-driven reduced-order modeling. Indeed, we do
not require the knowledge of the generating vector field f , but only of some of its trajectories. As
we discuss in chapter 10 prior knowledge of the model, which is particularly valuable for dataset
from numerical simulations, can be optionally set as input in the algorithm, eventually improving its
performance.
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Algorithm 1: Data-driven reduced-order models via SSMLearn

Input parameters: SSM dimension m, polynomial orders MV and MR for the
parametrization and the reduced dynamics, selection among
discrete-time or continuous-time approximation for the dynamics

Output: Normal form reduced dynamics, manifold parametrization and coordinate chart
Input data: Observed training trajectories

1 Embed data in the prescribed observable space
2 Identify manifold graph-style parametrization and coordinate chart
3 Estimate the linearized eigenvalues for the selection of the appropriate normal form
4 Identify the normal form of the reduced dynamics

9.5 normal forms and their computations

In this section, we work out the normal forms in the notation of this chapter and we also discuss the
data-driven identification of normal forms for maps.

9.5.1 The case of flows

In this section, we use the notation ϕ(η; k) for to indicate the set of m-variate polynomial of order k.
Therefore, the Taylor expansions for the coordinate change of section 9.2 and its inverse read

T(z) = z +
M

∑
k=2

Hk
T−1 ϕ(z; k) + o(M), T−1(ζ) = ζ +

M

∑
k=2

Hk
T ϕ(ζ; k) + o(M). (9.27)

We set the vector field in modal coordinates f̂R(ζ) = B−1 fR(Bζ) and we expand f̂R and fN with
Taylor expansions, resulting in

f̂R(ζ) = Λζ +
MR

∑
k=2

Hk
R ϕ(ζ; k) + o(MR), fN(z) = Λz +

M

∑
k=2

Hk
N ϕ(z; k) + o(M). (9.28)

9.5.1.1 Proof of Theorem 9.2

Proof. By substituting the coordinate change in the dynamics ζ̇ = f̂R(ζ), one obtains

DT(z) fN(z) = f̂R(T(z)), (9.29)
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and, by using the expansions of Eqs. (9.27,9.28), we have that

DT(z) fN(z) =

(
I +

M

∑
k=2

Hk
TDϕ(z; k)

)(
Λz +

M

∑
j=2

H j
N ϕ(z; j)

)

= Λz +
M

∑
k=2

(
Hk

N ϕ(z; k) + Hk
TDϕ(z; k)Λz + Bk

1 ϕ(z; k)
)
+ o(M)

f̂R(T(z)) = Λz +
M

∑
k=2

ΛHk
T ϕ(z; k) +

MR

∑
k=2

Hk
R ϕ

(
z +

M

∑
j=2

H j
T ϕ(z; j); k

)

= Λz +
M

∑
k=2

(
ΛHk

T ϕ(z; k) + Bk
2 ϕ(z; k)

)
+

min(M,MR)

∑
k=2

Hk
R ϕ(z; k) + o(M),

(9.30)

where the matrices B1
k , B2

k are obtained via algebraic manipulations from the definitions

M

∑
k=2

Bk
1 ϕ(z; k) + o(M) =

(
M

∑
l=2

Hl
TDϕ(z; l)

)(
M

∑
j=2

H j
N ϕ(z; j)

)
,

M

∑
k=2

Bk
2 ϕ(z; k) + o(M) =

MR

∑
j=2

H j
R ϕ

(
z +

M

∑
l=2

Hl
T ϕ(z; l); j

)
−

min(M,MR)

∑
k=2

Hk
R ϕ(z; k).

(9.31)

It also holds that, given the matrix of non-negative integers S(m)
k ∈ Nm×mk corresponding to the

exponents for the m-variate polynomial map ϕ(· ; k),

Dϕ(z; k)Λz = Λk ϕ(z; k),
(

Λk
)

j,s
=


m

∑
l=1

(Λ)l,l

(
S(m)

k

)
l,j

if j = s,

0 otherwise,
(9.32)

for j, s = 1, 2, ... mk. By substituting Eqs. (9.30,9.32) in Eq. (9.29), one obtains a set of cohomological
equations that is solved stepwise with increasing polynomial order. The linear terms cancel out,
while, at order 1 < k ≤ M, we obtain the Sylvester matrix equation [141]

ΛHk
T − Hk

TΛk = Hk
N − 1k≤MR Hk

R + Bk
1 − Bk

2, (9.33)

where 1k≤MR is the indicator function returning 0 if k > MR or 1 otherwise. Note that the matrices
Bk

1, Bk
2 just depends from the coefficients of H j

T, H j
N , H j

R with 1 < j < k, as highlighted by Eq. (9.31).
If the coefficients of f̂R are known, then the unknowns in Eq. (9.33) are the 2mmk coefficients of
the matrices Hk

T , Hk
n, for the solutions of which we only have mmk equations. We can solve this

underdetermination by prescribing half of the unknowns and solve for the remaining ones. Stenberg
linearization imposes that Hk

N = 0 so that, due to the diagonal form of Λ and Λk, we have

(
Hk

T

)
j,l
=

(
Bk

1 − Bk
2 − 1k≤MR Hk

R

)
j,l

(Λ)j,j −
(

Λk
)

l,l

, (9.34)

which proves Theorem 9.2 for the coefficients HT. For those of HT−1 , an analogue reasoning holds.
Indeed, one starts from the normal form dynamics ż = fN(z) and imposes the coordinate change
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z = T−1(ζ). Hence, with appropriate definitions for the terms B̂k
1, B̂k

2, the resulting cohomological
equation at step k takes the form

ΛHk
T−1 − Hk

T−1 Λk = 1k≤MR Hk
R − Hk

N + B̂k
1 − B̂k

2, (9.35)

and the solution for Stenberg linearization is

(
Hk

T−1

)
j,l
=

(
B̂k

1 − B̂k
2 + 1k≤MR Hk

R

)
j,l

(Λ)j,j −
(

Λk
)

l,l

. (9.36)

9.5.1.2 The regularizing normal form

The normal form strategy presented in section 9.2 finds its justification in the derivations of section
9.5.1.1. Indeed, the model structure shaped in Definition 9.1 is based on a solution of the cohomo-
logical equations which is different from that of Stenberg linearization. In this normal form case,
we do not impose that HN = 0, but rather we check the denominators in Eqs. (9.34,9.36). If these
denominators are smaller than a certain tolerance δ, we leverage on HN to regularize the solution of
these cohomological equations and to identify meaningful terms for the dynamics. Indeed, for the
cohomological equations Eq. (9.33) we use the solution style

(∆Λ,k)j,l = (Λ)j,j −
(

Λk
)

l,l
, Bk = Bk

1 − Bk
2 − 1k≤MR Hk

R,


(

Hk
T

)
j,l
= 0,

(
Hk

N

)
j,l
= −

(
Bk
)

j,l
, if

∣∣∣(∆Λ,k)j,l

∣∣∣ < δ,

(
Hk

T

)
j,l
=

(
Bk
)

j,l

(∆Λ,k)j,l
,
(

Hk
N

)
j,l
= 0, otherwise,

(9.37)

and an analogous result follows from Eq. (9.35). Hence for our data-driven extraction of the normal
form, we impose a model for the triple (T−1, fN , T) such that it satisfies

(
Hk

T

)
j,l
= 0,

(
Hk

T−1

)
j,l
= 0, if

∣∣∣(∆Λ,k)j,l

∣∣∣ < δ,(
Hk

N

)
j,l
= 0, otherwise.

(9.38)

9.5.1.3 Troubleshooting the numerical normal form tolerance

Analytical SSMs computations [20, 22, 74, 83, 90] sets the normal form tolerance based on the real part
of the slowest eigenvalue appearing in the spectrum related to the SSM, as discussed in section 9.2.
Selecting the best value for this tolerance depends on the polynomial order of the normal form and
the specificity of the problem. A good choice is to set δ = 10 minλ∈Lm |Re(λ)|.

In order to avoid issues related to tolerance selection, one can seek the normal form structure
as the manifold of interest would be a center manifold, eventually with internal resonances. This
is particularly relevant for very-weakly damped systems. Indeed, we can impose a normal form
structure for a given Λ̂ with δ = 0. For non resonant eigenvalues, then we can set Λ̂ = iIm(Λ)

and compute J0 in Definition 9.1 using ∆Λ̂,k instead of ∆Λ,k. For resonant cases, one can enforce
resonances, e.g., for 1 : l resonances in 2 coupled oscillators, we can set Λ̂ to be the diagonal matrix
with entries (i, li) and impose zero tolerance in the normal form structure identification.

We remark that, using the center-manifold-style approach of this section, we are only enforcing
the matrices HN , HT−1 and HT to have zeros in prescribed locations, we do not affect the spectrum of
Lm appearing in the reduced-order model.
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9.5.2 The case of maps

The introduction on normal forms discussed in section 9.2 also applied to maps. In particular, the
conjugacy (9.8) holds for the normal form map N and the reduced dynamics R, which replaces the
flow maps in Eq. (9.8).

As in the flow case, we focus our attention on oscillatory normal forms, hence m must be even
and the spectrum in L′m is made up by m/2 complex numbers and their conjugate ones. We further
assume that DR(0) is a diagonalizable matrix, i.e., it holds that DR(0)B = BΛ′, where Λ′ is a diagonal
matrix whose entries are the elements of L′m. Let us call the modal coordinates ζ = B−1η. Then, we
need to identify the triple (T−1, fN , T): the map ζ = T(z) is a nonlinear coordinate transformation
mapping the normal form coordinates z to the modal coordinates with inverse z = T−1(ζ), while the
normal form dynamics is expressed by z[j + 1] = N(z[j]).

9.5.2.1 Computations

In this section, we prove that an analogous version of Theorem 9.2 holds for the case of mappings. To
do so, we adopt the notation in Eq. (9.27), while for the dynamics we set R̂ = B−1R(Bζ) and expand
as

R̂(ζ) = Λ′ζ +
MR

∑
k=2

Hk
R ϕ(ζ; k) + o(MR), N(z) = Λ′z +

M

∑
k=2

Hk
N ϕ(z; k) + o(M). (9.39)

Given the matrix of non-negative integers S(m)
k ∈ Nm×mk corresponding to the exponents for the

m-variate polynomial map ϕ(· ; k), we define

(
∆′Λ′ ,k

)
j,l = (Λ′)j,j −

m

∏
k=1

(Λ′)

(
S(m)

k

)
k,l

k,k , j = 1, 2, ... m, l = 1, 2, ... mk. (9.40)

Theorem 9.3. In the setting of Sternberg linearization theorem, i.e., for HN = 0, the following estimates hold∣∣∣(HT)j,l

∣∣∣ ∝
1∣∣∣(∆′Λ′ ,k)j,l

∣∣∣ ,
∣∣∣(HT−1)j,l

∣∣∣ ∝
1∣∣∣(∆′Λ′ ,k)j,l

∣∣∣ , j = 1, 2, ... m, l = 1, 2, ... mk,
k = 2, ... M.

(9.41)

Proof. By substituting the coordinate change in the dynamics ζ[l + 1] = R̂(ζ[l]), one obtains

T(N(z)) = R̂(T(z)), (9.42)

and, by using the expansions of Eqs. (9.27,9.39), we have that

T(N(z)) = Λ′z +
M

∑
k=2

(
Hk

N ϕ(z; k) + Hk
T ϕ

(
Λ′z +

M

∑
j=2

H j
N ϕ(z; j); k

))

= Λ′z +
M

∑
k=2

(
Hk

N ϕ(z; k) + Hk
T ϕ(Λ′z; k) + Bk

1 ϕ(z; k)
)
+ o(M)

R̂(T(z)) = Λ′z +
M

∑
k=2

Λ′Hk
T ϕ(z; k) +

MR

∑
k=2

Hk
R ϕ

(
z +

M

∑
j=2

H j
T ϕ(z; j); k

)

= Λ′z +
M

∑
k=2

(
Λ′Hk

T ϕ(z; k) + Bk
2 ϕ(z; k)

)
+

min(M,MR)

∑
k=2

Hk
R ϕ(z; k) + o(M),

(9.43)
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where the matrices B1
k , B2

k are obtained via algebraic manipulations from the definitions

M

∑
k=2

Bk
1 ϕ(z; k) + o(M) =

M

∑
j=2

H j
T ϕ

(
Λ′z +

M

∑
l=2

Hl
N ϕ(z; l); j

)
−

M

∑
k=2

Hk
T ϕ(Λ′z; k),

M

∑
k=2

Bk
2 ϕ(z; k) + o(M) =

MR

∑
j=2

H j
R ϕ

(
z +

M

∑
l=2

Hl
T ϕ(z; l); j

)
−

min(M,MR)

∑
k=2

Hk
R ϕ(z; k).

(9.44)

It also holds that

ϕ(Λ′z; k) = Λ′k ϕ(z; k),
(

Λ′k
)

j,s
=


m

∑
l=1

(Λ′)

(
S(m)

k

)
l,j

l,l if j = s,

0 otherwise,

(9.45)

for j, s = 1, 2, ... mk. By substituting Eqs. (9.43,9.45) in Eq. (9.42), one obtains a set of cohomological
equations that is solved stepwise with increasing polynomial order. From here onwards, the
discussion is the same of that of the proof of Theorem 9.2, where we only need to replace Λ and Λk

with the equivalent matrix Λ′ and Λ′k of the current setting.

9.5.2.2 Data-driven identification

The discussion following from Theorem 9.2 in section 9.2 applies verbatim also here. In particular, the
regularizing normal form of Definition 9.1 and Eq. (9.38) carries over to the map setting by solely
replacing the matrices ∆Λ,k, ∆Λ,2:M with their finite time counterparts ∆′Λ′ ,k, ∆′Λ′ ,2:M, where the latter
reads (

∆′Λ,2:M
)

j,l = (Λ′)j,j −
m

∏
k=1

(Λ′)

(
S(m)

2:M

)
k,l

k,k , j = 1, 2, ... m, l = 1, 2, ... m2:M. (9.46)

By setting T−1, T as in Eq. (9.9) and N(z) = Λ′z + HN ϕ(z; 2:M), the only other modification is for
the loss in the cost function of problem (9.17), which now takes the form

c(j)[k] = ζ(j)[k + 1] + HT−1 ϕ
(

ζ(j)[k + 1]; 2:M
)
−Λ′

(
ζ(j)[k] + HT−1 ϕ

(
ζ(j)[k]; 2:M

))
+

−HN ϕ
(

ζ(j)[k] + HT−1 ϕ
(

ζ(j)[k]; 2:M
))

.
(9.47)

The tolerances for the normal form structure identification are set in an equivalent manner to the
case of flows, just considering their finite time counterparts.
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10
C A S E S T U D I E S

We now discuss several examples that validate the SSM-based, data-driven model reduction method
we propose. The first two examples deal with datasets obtained from numerical simulations, while
rest from physical experiments. We remark that, especially for numerical examples, we do not use
model knowledge to initialize the trajectories exactly onto the specific SSM, but we emulate realistic
experimental procedures that yield trajectories rapidly converging to SSMs.

To express trajectory reconstruction errors, we use the relative root-mean-squared error rRMSE,
which, for a dataset {xj}M

j=1 ∈ Rn and its reconstruction {x̂j}M
j=1, is defined as

rRMSE =
1

M‖x‖
M

∑
j=1
‖xj − x̂j‖. (10.1)

Here x is a relevant normalization vector, which is usually considered as the datapoint xj with the
maximum norm in the dataset.

When validating the reduced dynamics for a given testing trajectory, we integrate or iterate the
reduced-order model from the same initial condition and compare the results.

10.1 a clamped-clamped von karman beam

We consider a finite element discretization of a von Kármán beam with clamped-clamped boundary
conditions [173], shown in Fig. 10.1(a). In contrast to the classic Euler-Bernoulli beam [194], the
von Kármán model captures moderate deformations by including a nonlinear, quadratic term in the
kinematics. No body forces are present in our case and the straight equilibrium configuration is
asymptotically stable. We aim to learn from trajectory data the slowest 2-dim. SSM of the system. To
do so, we initialize trajectories from beam deflections arising from static loading at the midpoint, cf.
Fig. 10.1(a). Due to the high spectral gap among the first (lowest damped) mode and rest as well as
to the prescribed initial conditions, the trajectories converge quickly to the slowest 2-dim. SSM of the
beam.

The beam has length 1 [m], thickness 1 [mm], Young’s modulus 70 [GPa], density 2700 [kg/m3],
Poisson’s ratio 0.3 and material damping modulus equal to 20 [MPa·s]. The discretization is
performed using elements with cubic shape functions for the transverse deflection and linear shape
functions for the axial displacement. We use 16 elements, as in Fig. 10.1(a), which shows convergence
in static and dynamic simulations in the range of interest over uniform grid refinements. The finite
element model has 45 degrees of freedom in total, including transverse displacement, axial ones
and rotations. The slowest eigenvalue is −0.1545 + i32.885, whose spectral gap (ratio between the
real parts) with the second slowest one is 7.6. Hence, the decay along higher modes is more than
seven times faster with respect to that of the slowest mode. The two trajectories in Fig. 10.1(b) are
initialized on the static deflections arising from downwards loading at the midpoint of magnitude 2
(training set) and 1.75 (testing test) [N], and integrated for 30 [s]. From both trajectories, we excluded
the first second, in which we note the convergence towards the SSM and we set the sampling time to
be 2.5 [ms].

We identify reduced-order models considering two different observables. The first observable
set is the full phase space of the beam (”PS case”), while the second is the delay-embedding
space for the (scalar) displacement at the midpoint u (”DE case”). The embedding space has the
minimum dimensions (4 delays) according to Takens theorem, so that the embedding coordinates
are y[k] = (u[k], u[k + 1], u[k + 2], u[k + 3], u[k + 4]). The parametrization for the PS case is set to
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Figure 10.1: The picture in (a) illustrates the clamped-clamped von Kármán beam in its deformed configuration
from point loading in the middle. This type of initial conditions are considered for the trajectories in
plot (b), which are used for testing and training the reduced-order model. Plot (c) and (d) show the
embedded SSMs in the phase space and in the delay-embedding space of the midpoint displace-
ment, respectively. Plot (c) illustrates the SSM parametrizations for the axial displacements of the
left (purple) and right (light blue) adjacent nodes to the middle one. Plots (e-h) show the models
prediction on the testing dataset.

be O(4) with V deduced from the model. Indeed, if v is the complex eigenvector of the slowest
2-dim. eigenspace, the orthonormal representation in V0 can be deduced from the Gram-Schmidt
orthogonalization process as

V0 = [v1 v2] , v1 =
Re(v)
‖Re(v)‖ , v′2 =

(
I − v1v>1

)
Im(v), v2 =

v′2
‖v′2‖

. (10.2)
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For the DE case, the parametrization is assumed to be linear only, so that our parametrization and
coordinate charts are given by the PCA of the embedded training trajectory. The SSM representations
and the testing trajectory are shown in Fig. 10.1(c,d) with respect to the parametrizing coordinates
(η1, η2). Fig. 10.1(c) shows the two SSM representations for the axial displacements w of the two
nodes adjacent to the midpoint.

The reduced dynamics is set to be O(7) for the PS and DE cases. For the PS case, the SSM-reduced
normal form is

ρ̇ = −0.1545ρ + 0.075534ρ3 − 1.6778ρ5 + 5.1602ρ7 = −c(ρ)ρ,
θ̇ = +32.8854 + 30.7741ρ2 − 32.6344ρ4 + 29.2335ρ6 = ω(ρ),

(10.3)

where the amplitude-dependent functions c and ω represent the instantaneous damping and fre-
quency, respectively. For the observables made up by the full coordinates in the phase space, we can
prescribe the linear part D fr(0) of the reduced dynamics in the coordinates η = (η1, η2). By denoting
λ the eigenvalue of the slowest 2-dim. eigenspace and its complex conjugated λ̄, the eigenvectors of
the linearization at the origin of the dynamics in our reduced coordinates are the columns of the
matrix B (cf. section 9.2), which can be expressed as

B = V>0 [v v̄] , D fr(0) = B
[

λ 0
0 λ̄

]
B−1 (10.4)

Both reduced order models capture well the dynamics of the testing trajectories, as seen in Fig.
10.1(e-h), with less than 2 % relative root-mean-squared error. The normalization considered here is
the maximum norm datapoint of the signals. Furthermore, the reduced dynamics characteristics in
the PS case show convergence as we increase the order of accuracy, see Fig. 10.2(a), and there is also
very good agreement between the dynamics reconstructed from different observables. We choose
O(7) as this order features the lowest testing error.

Figure 10.2(c,d) shows the performances of DMD [58] in reconstructing the midpoint displacement
signal for different hyperparameters [58]. The number of delays refers to dimension of the delay
embedding space, while the rank is the number of DMD modes retained for the reduced-order
model. We note that, in this case of nonlinear decaying vibrations, DMD fails in capturing phase and
amplitude evolutions.

As discussed in section 9.3, our nonlinear data-driven reduced-order models can be used to predict
periodic forced responses. For a given value of forcing in Eq. (9.22), we use the expression in (9.25) to
compute forced responses. We validate our results with the analytical forced response [22] computed
via SSMTool [193], which analytically computes the non-autonomous SSM for the beam model we
used to generate the datasets. These analytical frequency sweeps are shown in Fig. 10.2(e,f) with
blue lines for the forcing applied on the beam midpoint with 0.15, 0.35 and 0.6 [mN] and an O(7)
analytical model. To compare data-driven predictions with their analytical counterpart, we need to
calibrate the forcing value feeding the data-driven normal form dynamics, which is a common fact
in control and testing practices [177]. Here, we perform this calibration assuming to know that the
maximal amplitude response for the full-order model forcing amplitude ‖F̂ext‖ occurs at frequency
Ω̂. Maximal amplitude responses occur when ψ = π/2 [23]. Hence if we know the frequency Ω̂ at
which this response takes place, then we can get ρ̂ solving ω(ρ) = Ω̂, so that f ext

R = c(ρ̂)ρ̂. Since the
normal form forcing is a pure projection in our approximation, then ‖Fext‖ and f ext

R are proportional,
and their ratio is obtained from this calibration process. The forced responses from the data-driven
model shown in Fig. 10.2(e,f) have been calibrated on the sweep at 0.15 [mN] and they matches
closely the analytical predictions of SSMTool and those obtained with numerical integration.
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which is the integer part of the ratio betweem the fastest decay/growth rate outside Lm and the
slowest decay/growth rate inside Lm. The next theorem characterizes spectral submanifolds.

Theorem 2.1. (Existence and uniqueness of SSMs for flows). If

(i) �(Em) < r,

(ii) With the notation {�1, �2, ..., �m} = Lm, the outer non-resonance conditions

mX

j=1

�j�j 6= �, 8 �j 2 N : 2 
mX

j=1

�j  �(Em),

Observing the full phase space Delay embedding on the midpoint displacement
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Figure 10.2: The backbone curves in plot (a,b) show minimal model sensitivity for the phase space (PS)
reduced-order model. The backbones of the delay embedding reduced-order model (DE) are
also in good accordance. Plots (c,d) show predictions using DMD for several ranks and delays.
Plots (e,f) validate the reduced-order models using forced frequency responses that are compared
with the analytical counterpart of SSMLearn, SSMTool [193], and with numerical integration.

10.2 vortex shedding in the wake of a cylinder

In this section, we investigate the classic, fluid dynamics problem of vortex shedding behind a
cylinder [195, 196]. We look at the velocity and pressure fields over a planar, open fluid domain
with a hole of diameter d, representing the cylinder section as shown in Fig. 10.3(a). The boundary
conditions are no-slip on the circular inner boundary, standard outflow on the outer boundary at
the right side and fixed horizontal velocity (uin, 0) on the three remaining sides [197]. The Reynolds
number for this problem is defined as Re = uind/ν, where ν is the kinematic viscosity of the fluid.
The planar approximation for the flow is valid up to Reynolds number Re < 188, over which
three-dimensional instabilities occur [197, 198].

For low Reynolds numbers, the flow features a stable steady solution, which loses stability at
Re ≈ 48 via Hopf bifurcation [4]. After this critical value, the steady solution is unstable and
there exists a stable limit cycle, which corresponds to the observed regime of vortex shedding in
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the wake [195]. Studies [196, 197, 199] report that a 2-dim. unstable manifold in the phase space
of the Navier-Stokes equations connects the steady solution to the limit cycle for 48 < Re < 188.
Several approaches have been used to construct reduced-order models based on the unstable
manifold reduction [147], the classic analytic center manifold reduction [200] or Principal Orthogonal
Decomposition (POD) coupled with Galerkin projections [199], machine-learning based techniques
exploiting sparse identification [196, 201] and neural networks [54, 202].

Here we look at the performances of SSMLearn in learning the unstable manifold and its dynamics
from trajectory data. In contrast with available approaches that often restrict the observables to
peculiar directions of flow only (e.g., POD modes) [54,196,199], our observables space coincides with
the full phase space of the discretized Navier-Stokes equations used to numerically simulate the
problem.

Horizontal velocity field    in         on the domain (-5,15) x (-5,5)

Steady solution Limit cycle snapshot

Unstable subspace, 
first mode

Limit cycle PODs, 
first mode 

(c) (d)

(f)(e)

(a)
40

2010

10

(b)

u [m/s]

x
y

Figure 10.3: Plots (a,b) illustrate dimensions, mesh and boundary conditions for the CFD simulations. Plots
(c,d) show snapshots of horizontal velocity fields of the unstable steady solution and of the stable
limit cycle, respectively. Plots (e,f) illustrate the horizontal velocity fields for the first mode of the
unstable subspace of the steady solution and for the first mode of the POD analysis of the limit
cycle, respectively.
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Figure 10.4: Plot (a) shows the projection of the 9 simulations on the first 2 POD modes of the limit cycle
(η1, η2). Plot (b,c) illustrate the time evolution of the projection on the first POD mode of the limit
cycle η1 and of that on the first unstable mode of the steady solution ξ1. The red lines depict the
signals envelope evolution. Plot (d,e,f) compare the predictions of the data-driven model to the
testing trajectory in terms of normal form amplitude (d) and projections on the first 2 POD modes
of the limit cycle (e,f). Plot (g) shows the time evolutions of the normal form vector field.

The dimensions of the domain in [m] are shown in 10.3(a) and the other system parameters are
d = 1 [m], ν = 0.01 [m2/s] and uin = 0.7 [m/s], resulting in Re = 70. We simulate the flow using the
Python-based computational platform FEniCS [203]. The mesh, made up by triangular elements of
the Lagrange family, is visualized in 10.3(b) and the resulting discretized model with phase space
x = (u, v, p) has dimension n = 76876, where u is the horizontal velocity component, v is the vertical
ones and p is the pressure. The governing ordinary differential equation ẋ = f (x) is integrated
using a modified version of Chorin’s method [204] with a time stepping of 0.02 [s]. We compute the
steady solution xsteady, cf. 10.3(c), and we perform a linear stability analysis [205] via Krylov-Arnoldi
iterations [206], where the first mode of the 2-dim. unstable subspace is illustrated in 10.3(e). We
also characterize the limit cycle, shown with a horizontal velocity snapshot in 10.3(d), and perform
the POD [13] using the snapshot method [178]. We compute these POD modes from a dataset of
points lying on the limit cycle, hence we do not require manipulation of the Navier-Stokes equations.
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Organizing these l datapoints in a matrix X = [x1 x2, ... xj, ..., xl ] ∈ Rn×l , one first computes the
time averaged flow xmean, which can be estimated as

xmean =
l

∑
j=1

xj, (10.5)

then the POD modes are computed from the singular value decomposition [141] of the matrix
X− xmean, i.e., X− xmean = UXSXV>X . The POD modes are the orthonormal columns of the matrix
UX, which are ranked according to the singular values collected in the corresponding diagonal
entries of S. The leading POD modes are those characterized by the largest singular values, the first
of which is depicted in 10.3(f). For the vortex shedding, the two leading POD modes capture most
the energy content of the flow on the limit cycle [199].

We then run 9 trajectories with time length 200 [s] whose initial conditions are small perturbations
from the steady solution along its unstable directions, namely

x(0) = aw(u)
1 cos(ψ) + aw(u)

2 sin(ψ), (10.6)

where w(u)
1 , w(u)

2 is a real representation for the unstable subspace, a = 0.2 and ψ attains 9 uniformly
spaced values in the interval [0, 2π).

We now inspect these trajectories by projecting them onto principal directions. We call (ξ1, ξ2)

the coordinates obtained as projections onto the unstable subspace of the steady solution (being
the tangent space of the unstable manifold at the origin), while (η1, η2) are those obtained as as
projections onto the 2 leading POD modes of the limit cycle. The simulated trajectories are shown in
Fig 10.4(a-c) in terms of these coordinates and their time evolution. Note that this trajectories are
centered around the unstable steady solution, here corresponding to the origin. In particular, plots
(b,c) show the time evolution of η1 and ξ1, highlighting in red the envelope evolution. It can be noted
that the envelope of the projection to the unstable subspace ξ1 displays a fold in its time evolution,
which implies trajectory crossing in the space (ξ1, ξ2). Hence, (ξ1, ξ2) cannot be used for the manifold
parametrization, as seen in Fig. 10.5(b). On the other hand, the coordinates (η1, η2) obtained as
projections onto the 2 leading POD modes of the limit cycle are good candidates for parametrizing
the manifold, as their reduced phase space does not show trajectory crossing. Therefore, we consider
the 2 leading PODs as columns for V0 and the resulting projections (η1, η2) as reduced coordinates.
We first proceed with the identification of the dynamics, considering 8 training trajectories and one
for testing.

To capture the nonlinear dynamics with acceptable accuracy, we need to push the normal form
dynamics up to polynomial order 9, resulting in

ρ̇ = 0.05852ρ− 0.14984ρ3 + 0.21878ρ5 − 0.18226ρ7 + 0.054358ρ9 = c(ρ)ρ,
θ̇ = 0.55514 + 0.055636ρ2 + 0.27973ρ4 − 0.45144ρ6 + 0.23452ρ8 = ω(ρ).

(10.7)

Lower-order approximations are less accurate, including the classic cubic normal form [199]. Indeed,
the latter results in a 9.57 % root-mean-squared error normalized with respect to the limit cycle
amplitude, while (10.7) improves this error to 2.52 %. We clearly see the accuracy of (10.7) in Fig.
10.4(d-f), while plot (g) of this figure shows the time evolution of the vector field in (10.7). Both
quantities c(ρ) and ω(ρ) start from their linearized limit and settle to the limit cycle ones, being this
latter zero for the amplitude dynamics.

Not only does this model show strong nonlinearities in the dynamics in (10.7), but also it does
so for the phase space geometry of the unstable manifold. Indeed, to push the parametrization
accuracy to less than 1 % in terms of root-mean-squared error, one needs polynomial order 18 for the
parametrization model, see Fig. 10.5(a). The overall data-driven reduced-order model has an accuracy
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Figure 10.5: Plot (a) shows the error on the testing set for parametrization models of different order. Plot
(b) depicts the unstable manifold and some training trajectories in terms of the projections with
respect to the unstable subspace of the steady solution and that with respect to the shift mode.
Plots (c,e,g) illustrate the data-driven reduced order model performances in predicting the time
evolutions of velocities and pressures at the probe point (15, 1). The same quantities are shown in
plots (d,f,h,i), where lines are different training trajectories, while surfaces represent the unstable
manifold.

of 2.78 % on the testing trajectory. Figure 10.5(c-i) shows the model performances on reconstructing
the evolution and the unstable manifold representation for the velocities and the pressure of the
wake probe point at (15, 1), where the aforementioned strong nonlinearity can be visually noted. In
contrast, plot (b) in Fig. 10.5 shows the fold of the unstable manifold in the space of the projections
onto the unstable subspace and the shift mode [199], which quantifies the change from the steady
solution to the mean flow on the limit cycle and it is defined as

V ′shi f t =
(

I −V0V>0
)
(xmean − xsteady), Vshi f t = V ′shi f t/‖V ′shi f t‖, ηshi f t = V>shi f tx. (10.8)

Remark 10.1. It appears that SSMLearn is fitting the classic Stuart-Landau model for nonlinear
oscillations near the onset of instability [199]. This model, originally proposed by Landau [207] to
explain transition to turbulence, was linked to hydrodynamics [208–210] and to center-manifold
reduction [211]. Far from bifurcations, this model can only be theoretically justified via SSM theory,
and also it may be necessary to increase to order of approximation for an accurate model, as we
show with our computations. Moreover, the Stuart-Landau model breaks up in case of resonances,
while our approach can handle resonances by increasing the dimension of the SSM.

10.3 resonance decay in the brake-reuß beam

The Brake-Reuß beam is a benchmark system in the study of the dynamics of jointed structures
[36, 37, 212]. In this context, the construction of predictive reduced-order models is still a challenge,
either from full-order finite element models or from data. The Brake-Reuß beam consists of two
beams assembled with a lap joint, as shown in Fig. 10.6(a). The dataset for this example consists
of measurements of a resonance decay test [44]. After a resonant periodic orbit is found in phase
quadrature with the shaker forcing, see Fig. 10.6(c), the shaker is released from the structure, which
settles down to its equilibrium. Therefore, provided that the forcing is not too large, the transient
will follow closely the SSM that resonates with the forcing frequency.

The available data comprises a single resonance decay test on the slowest structural mode and
the observables are the measurement from an accelerometer mounted in the correspondence of the
shaker and the displacement field of the bottom side of the beam measured using digital image
correlation. The latter dataset, consisting of 206 points over the 72 [cm] of beam length, has a limited
time range due to limitations in camera memory. The first instances of the measured displacement
field are depicted in Fig. 10.6(b).

Our goal in this example is to construct a nonlinear reduced-order model using displacement data
and validate it using acceleration one. The time signals have been truncated after shaker release to
eliminate the influence of disturbances from non-perfect detachment. Nevertheless, high frequency
contributions decay rapidly and the transient settles along the slowest SSM. To diversify the data, we
augment the displacement with 4 delayed measurements, so that the observable phase space has
dimensionality 1030. The SSM is well-described by a plane in this space, but the reduced-dynamics
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reveals itself to be highly nonlinear. For adequate accuracy, the normal form indeed needs terms up
to O(11) to unfold the dynamics, and it reads

ρ̇ = −0.82551ρ− 16.0435ρ3 + 166.2684ρ5 − 1421.2731ρ7 + 5314.2153ρ9 − 7138.3531ρ11,
θ̇ = +504.3949− 46.1553ρ2 + 350.3187ρ4 + 412.8726ρ6 − 8468.2447ρ8 + 16975.2863ρ10.

(10.9)

The model can be used to approximate the beam kinetic energy as

K =
1
2

M
N

N

∑
j=1

u̇2
j (t), (10.10)

where N = 206 is the number of DIC measurement locations and M = 1.796 [kg] is the total beam
mass. As discussed in [37], the kinetic energy amplitude is a good proxy for the instantaneous decay
properties, i.e., the instantaneous damping ratio and frequency, shown in Fig. 10.6(d,e), respectively.
The instantaneous damping ratio is defined from the normal form dynamics as ξ(ρ) = −c(ρ)/ω(ρ),
expressed in percentage. The damping is subject to consistent variation, while the frequency here
shows an interesting softening-hardening trend. Figure 10.6(f) highlights changes in the mode shape
for increasing kinetic energy, which, in contrast, does not show significant nonlinear behavior. Here
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Figure 10.6: The picture in (a) illustrates the testing setup for the Brake-Reuß beam, while plots (b) and (c)
show the measured displacement and accelerations data respectively. Plots (c-i) depict the results
obtained by constructing a reduced-order model on displacements data. The backbone curves in
(d,e) shows the instantaneous characteristics of the beam with respect to its kinetic energy, while
(f) verifies changes in the modal shape.
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Figure 10.7: Plots (a,b) validate the predictions of accelerations from the model trained on displacement data.
Plots (c,d) compares the instantaneous properties of the data-driven model with respect to those
measured with the Peak Fitting and Finding method [41] on the acceleration signal.

the deflection ratio is defined as the amplitude of the displacement of every location divided by
the amplitude displacement of the left beam tip. The areas close to nodal points, whose deflections
approach zero, appear as vertical blue/black areas in Fig. 10.6(f).

Our displacement-based model is validated on the data measured by the accelerometer located at
77 [mm] from the left end of the beam, as shown in Fig. 10.6(a). Indeed, this signal is reconstructed
from the model by interpolating in the grid to obtain the accelerometer location and differentiating
in time. The relative root-mean-squared error amounts to 1.3% and the model also denoises the
signal, cf. Fig. 10.7(a,b). A further validation in Fig. 10.7(c,d) compares the instantaneous decay
characteristics obtained using the data-driven model with those extracted using the signal processing
technique Peak Finding and Fitting [41]. There is close agreement among these curves, especially in
the strongly nonlinear oscillation regime.

10.4 impacts on an internally resonant tester structure

Our final example is the resonant tester shown in Fig. 10.8(a). It consists of two beam-like parts,
where the external beam is C-shaped and clamped to the ground on one side, while the internal
beam is jointed to the external one via bolts. These latter should be principal source of system
nonlinearities. Additionally, there is a linear spring located on the external beam tip. The system
possesses an internal 1 : 2 resonance between its slowest modes, whose frequencies indeed estimated
at 122.39 [Hz] and 243.44 [Hz]. We consider transverse vibrations occurring along the out of plane
direction and the available observable is the velocity of the inner beam tip, measured via laser scanner
vibrometry.

The dataset consists of 12 different trajectories generated by hammer impacts from 3 different
locations (4 trajectories per location), cf. Fig. 10.8(d). We label these trajectories as (j, l) where j refers
to the location and l to the test number. Time-frequency analyses of the velocity signals, some of
which are reported in Fig. 10.8(b,c), show that only the two slowest frequencies are present in the
signal, so that the time responses can be well-approximated by the slowest 4D SSM of the system.
The impact locations, the hammer tip and the forcing amounts were selected to achieve a sufficient

The design and the experiments on this system were carried out by Haocheng Yang and Melih Eriten from Eriten Research
Group of UW-Madison, USA.
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Figure 10.8: The picture in (a) sketches the system configuration. Plots (b,c) show the power spectral density
computed via short-time Fourier transform (spectrogram) for two trajectories. These latter are also
shown in plots (d,e), while (f) illustrates the time series of the hammer force.

trajectory diversity in the dataset without exciting further structural modes. The velocity time
histories are shown in Fig. 10.8(d,e), whereas Fig. 10.8(f) the hammer force signals. For constructing a
reduced order model, we truncate the velocity signals starting from some instances after the hammer
impact, which is the 0 time reported in 10.8(c,d). We use 10 trajectories for training and leave 2
trajectories for testing.

The four-dimensional SSM is embedded in a 94 dimensional delay-embedding space. This amount
of delays helps in unfolding dynamics complexity given this scalar measurement. Indeed, for the
minimal embedding dimensions (being 9 for a four-dimensional manifold), even an arbitrary reduced
dynamics in the style of Eq. (9.7) optimally identified via ridge regression fails in reconstructing
trajectories. Hence, we augment the embedding space so that, for the sampling time 0.1953 [ms],
each embedding vector captures approximately two cycles of the slowest oscillation. The result of our
identification remains robust if one considers more embedding dimensions. A linear approximation
to the embedded SSM has a good accuracy and generates the reduced-coordinates in Fig. 10.9(a).
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Figure 10.9: Plot (a) depicts 3 of the 4 reduced coordinates parametrizing the SSM, while plots (b,c) illustrate
the data-driven reduced-order model performances in reconstructing a testing trajectory.

The automated normal form algorithm, after estimating linearized eigenvalues, identifies a resonance
among them. Defining ψ = θ2 − θ1, we obtain the normal form dynamics at O(4) as

ρ̇1 = −0.4129ρ1 − 13.1749ρ3
1 + 1.9348ρ1ρ2

2 + Re((0.31585− 0.20596i)ρ2ρ1eiψ)+

+Re((31.2389− 1.51249i)ρ3
1ρ2e−iψ) + Re((−28.0245 + 2.82748i)ρ3

1ρ2
2eiψ)+

+Re((13.4184− 0.718767i)ρ3
2ρ1eiψ) = −c1(ρ1, ρ2, ψ)ρ1,

ρ̇2 = −2.945ρ2 − 21.2472ρ2
1ρ2 − 15.8484ρ3

2 + Re((0.47843− 2.0623i)ρ2
1e−iψ)+

+Re((5.4655 + 3.9956i)ρ4
1e−iψ) + Re((5.60777 + 13.9982i)ρ2

1ρ2
2e−iψ)+

+Re((20.8319− 29.8619i)ρ2
1ρ2

2eiψ) = −c2(ρ1, ρ2, ψ)ρ2,

(10.11)

for the amplitudes, while for the phases

ρ1θ̇1 = +768.9692ρ1 − 43.3409ρ3
1 − 3.7108ρ2

2ρ1 + Im((0.31585− 0.20596i)ρ2ρ1eiψ)+

+Im((31.2389− 1.51249i)ρ3
1ρ2e−iψ) + Im((−28.0245 + 2.82748i)ρ3

1ρ2eiψ)+

+Im((13.4184− 0.718767i)ρ1ρ3
2eiψ) = ω1(ρ1, ρ2, ψ)ρ1,

ρ2θ̇2 = +1529.5972ρ2 − 25.3906ρ2
1ρ2 − 32.2919ρ3

2 + Im((0.47843− 2.0623i)ρ2
1ρ2e−iψ)+

+Im((5.4655 + 3.9956i)ρ4
1ρ2e−iψ)Im((5.60777 + 13.9982i)ρ2

1ρ2
2e−iψ)+

+Im((20.8319− 29.8619i)ρ2
1ρ2

2eiψ) = ω2(ρ1, ρ2, ψ)ρ2.

(10.12)

In comparison with the 1 : 2 internally resonant case reported in Table 9.1, Eqs. (10.11,10.12) feature
additional resonant terms at quartic order, which improves model performance with respect to the
cubic approximation. The data-driven model reconstructs both testing trajectories with less than
2 % relative root-mean-squared error, cf. Fig. 10.9(b,c). As anticipated in section 9.3, the normal
form dynamics allows to perform slow-fast mode decomposition. The decay of the slow mode
amplitude ρ1 and that of the fast one ρ2 are shown in Fig. 10.10(a). Due to modal interactions,
these decays are not monotonically decreasing. From this plot, we notice a great diversity of decays
depending on the impact location, and location 3 the one characterized by the highest amplitudes
variability. Figure 10.10(b) shows the energy repartition among the modes for the third impact
location. This repartition is defined as the instantaneous ratio between the amplitude of a mode and
the amplitudes sum. Clearly, the slow mode tends to accumulate the energy over time, while the
fast mode dissipates it quickly. However, the trends are not monotonic, showing simultaneous and
opposite changes in growth/decay rates, which implies that the faster mode is absorbing energy
from the slow one. This behavior can also be inferred by the instantaneous properties illustrated
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Figure 10.10: The picture in (a) shows the amplitudes decays for the slow ρ1 and fast ρ2 modes, for all available
trajectories in the dataset. Plot (b) illustrates the energy repartitions along the decays arising from
impact on the third impact location. Plots (c-f) show the trend of instantaneous characteristics of
the normal form dynamics on the first two seconds of decays related to the third impact location.

in 10.10(c-f). The uncoupled limit of the oscillators suggests that the modes are characterized by
frequency softening and by damping intensification when oscillation amplitudes increase. This is
consistent with typical observations of jointed structures [212]. In particular, the fast mode is strongly
coupled to the slow one and its damping shows consistent variations, becoming also negative for
some times [213]. However, the damping terms of the dynamics that are not related to resonance,
i.e., the first three terms of the last equation in (10.11), do not generate consistent energy transfer.
Indeed, after 1 [s] in almost all trajectories, the second mode disappears from the signal, as seen in
Fig. 10.8(b,c).
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11
C O N C L U S I O N

In this part of the thesis, we have derived a thorough framework for constructing explicit reduced-
order model for high-dimensional dynamical systems from data. By merging exact theories from
dynamical systems with simple yet effective machine learning principles, our method is able to build
accurate, robust and predictive nonlinear models. The results and the applications discussed in this
part of the thesis closely follow our work in the original references [33, 47].

Our approach tackles local dynamics near an equilibrium, which is a common working condition
for several real-life systems, and digests any generic observed quantity. However, the domain of
validity of our approach is larger with respect to that of Sternberg’s classic linearization result [192],
since our dynamical model is able to capture nonlinear phenomena. In this context, SSMs and their
embedding guarantee dimensionality reduction. Most importantly, SSMs dictate the local geometry
of the phase space and consequently allows for a deeper understanding of system motions, even in
case of multi-frequency forcing applied to the system. While targeted experiments aspire to discover
specific SSMs of a given system, an attracting SSM can be always devised and it allows to identify
the leading order system dynamics. Additionally, SSMs appear around any dynamical equilibrium
of hyperbolic type, and this fact guarantees a general applicability of our approach.

After embedding of data in a suitable observable space, a nonlinear model reduction based on
PCA is performed, and the resulting reduced coordinates, which can be of arbitrary dimension in
principle, are used to identify the normal form of the dynamics. In contrast with black-box or a priori
sparse models, the normal form dynamics naturally clusters the trajectory data in the proper family,
recognizing peculiar physical features of the dynamics and respecting topological conjugacy. The
resulting simple and rigorous dynamical models are used to derive analytics, such as instantaneous
damping and frequency, and to make predictions when perturbations are added to the system.

We have validated our method for different classes of systems, either dealing with numerical or
physical experiments. In every case we have analyzed, we do not make the unrealistic assumption
of having exact prior knowledge of system spectral submanifolds, but we rather deal with actual
practical cases in which targeted experiments generate the necessary data to unfold the relevant
dynamics via SSM theory. We have tested our method in examples coming from structural vibrations
and fluid dynamics, concerning stable or unstable behaviors, with observables being scalar quantities
or big data related to multiple system locations. In these examples, we have shown how our approach
can give precious system insights, from the analysis of dynamical time-scales, to the assessment of
modal interactions and predictions when periodic forcing acts on the dynamics. Specifically, we
have dealt with a finite element model of a von Kármán beam where, after data-driven modeling
based on transient data, we have used this model to accurately predict the frequency response.
Then, the vortex shedding case study shows how our approach can deal with strongly nonlinear
high-dimensional data coupled with some basic system knowledge. The experimental example
on the Brake-Reuß beam illustrates that SSMLearn can attack diverse measurements, and that the
model-derived amplitude properties are in good accordance with those obtained by signal processing
algorithms. The last case study on an internally resonant tester has exemplified how complicated
dynamics is unfolded by the normal form.
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12
D I S C U S S I O N A N D O U T L O O K

This thesis began with looking at mechanical oscillations from a classic perspective, and it has
ended with the discussion of a contemporary data-driven approach. The contrast between these
two viewpoints is only superficial. Indeed, engineering problems in the current age require both
approaches, which should therefore not be regarded as opposite and disconnected, but rather as
complementary. Indeed, understanding data or identifying significant models is challenging without
phenomenological knowledge, while analytical models should find correspondence in real-life
measurements.

The first part of the thesis has focused on the prediction of forced-frequency responses from the
conservative limit of mechanical systems. We developed an exact mathematical analysis whose
findings agree with numerical and experimental observations. Our Melnikov method proves to be
particularly beneficial for parametric studies and numerical simulations. Moreover, the implications
of our results should motivate new experimental techniques for the extraction of forced-frequency
responses and their backbone curves.

This Melnikov method is currently limited to well-defined conservative one-parameter families
of periodic orbits subject to small damping and periodic external forcing. Although this setting
is sufficiently generic, certain applications may further require the analysis of degenerate cases or
resonance interactions (e.g. branching phenomena), examples of which could be encountered in
mechanical systems with symmetries [116, 117, 119]. The persistence problem in these cases would
require the analysis of a more general, multi-dimensional bifurcation function. Hence, we do not
expect the energy principle alone to be completely predictive as it is in the setting discussed here.
Relevant techniques for tackling these problems can be found in [114]. Other refinements of the
Melnikov method discussed in this thesis could treat the case of superharmonic and ultrasubharmonic
resonances for canonical monoharmonic, space-independent forcing. Indeed, the Melnikov function,
from an engineering perspective, tells us that these motions require high forcing and low damping
to be present, which is in accordance with asymptotic expansions from the linearized limit [5, 27].
However, more accurate predictive tools based on rigorous Melnikov analyses could be beneficial
also for these nonlinear resonances. Further developments arising from the present discussion could
address the investigation of perturbation approaches for mechanical systems in which the forcing
can be large or non-smooth.

In the second part of this thesis, we discussed a method for the extraction of explicit data-driven
models in high-dimensional dynamical systems. Based on spectral submanifold theory, this method
delivers a systematic way of extracting dynamical models near fixed points. After data embedding,
rigorous model-order reduction is applied to the data, squeezing its dimensionality to the bare mini-
mum. Then, the reduced coordinates set the framework to identify a normal form, which provides
an insightful dynamical model for oscillatory dynamics. Our method is publicly shared with the
open-source computational package SSMLearn (available at github.com/mattiacenedese/SSMLearn).
Despite the diversity in measurements, dynamical behaviors, and nonlinearities in our examples, this
package produced accurate data-driven reduced-order models. This method constitutes a first step
towards the unsupervised, intelligent learning of rigorous nonlinear dynamical models from data.

Additional progress in this line of research is expected to include further testing and predictions
for experimental data from various applications. When predicting forced responses, challenges
may arise due to calibration, since often the forcing amplitude in experimental setting is subject
to variability. Moreover, further exploration is necessary for demanding applications in which the
normal form still has moderate dimensionality.
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The natural step forward for this research is to deal with more complex attractors and their
dynamics in their vicinity. Indeed, beyond modeling the dynamics near fixed points, one should
seek reduced-order models for the local dynamics near limit cycles, quasi-periodic motions or even
chaotic attractors. Spectral submanifolds, also called whiskers in the case of quasi-periodic attracting
invariant tori [214], guarantee the necessary theoretical framework for studying more complicated
dynamical regimes. These data-driven models will be relevant both for structural vibrations in the
presence of non-trivial time-dependent forcing and for turbulence in fluid dynamics [13]. In the
latter case, the slow dynamics approaching a turbulent attractor could offer both a fundamental
understanding of the dynamics and a new opportunity for flow control.

I would like to close my thesis with a well-known citation attributed to Einstein [215].

Everything should be made as simple as possible,
but no simpler.

Albert Einstein (1933).

I believe that, with this work, we have tried to approach Einstein’s vision. The methods we have
proposed are always backed by mathematical rigor, which unavoidably implies complications, but
the aspiration is that of providing scientists and engineers with techniques that are ”as simple as
possible”. This simplicity helps to unfold the fascinating dynamics of nonlinear oscillations and
explore new opportunities in technological development.
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[24] M. Peeters, R. Viguié, G. Sérandour, G. Kerschen, and J.-C. Golinval. Nonlinear normal modes,
part II: toward a practical computation using numerical continuation techniques. Mechan-
ical Systems and Signal Processing, 23(1):195–216, 2009. Special Issue: Non-linear Structural
Dynamics.

[25] A. Grolet and F. Thouverez. On a new harmonic selection technique for harmonic balance
method. Mechanical Systems and Signal Processing, 30:43–60, 2012.

[26] H. Dankowicz and F. Schilder. Recipes for Continuation. Society for Industrial and Applied
Mathematics, 2013.

[27] J.A. Sanders, F. Verhulst, and J. Murdock. Averaging Methods in Nonlinear Dynamical Systems,
volume 59 of Applied Mathematical Sciences. Springer-Verlag New York, 2nd edition, 2007.
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