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Abstract

The phenomenon of confounding, where both the treatment and the outcome variable

of interest are affected by certain ’confounding’ variables, is one of the biggest challenges

for valid causal inference. It underpins many fallacies and misconceptions in statistics,

such as Simpson’s paradox or the examples where ’correlation does not imply causation’.

Therefore, confounding adjustment is at the heart of the field of causality. However,

this is often not an easy task to do, even when the causal structure of our data is known.

The dimensionality of the confounding variables can potentially be large, the confounders

can be a mixture of discrete, continuous or categorical variables or they can affect the

variable of interest in a non-parametric way.

There exist many different methods for confounding adjustment in the case when the

confounding variables are known and observed in the data set at hand. However, very

little research has considered the challenging case when the confounding is latent. Even

though the assumption that there are no unobserved confounders is common in the causal

literature, it often does not hold in practice. Such misspecification of the data model

might lead to a decrease in performance of the conventional methods.

In this thesis we introduce novel methodology for confounding adjustment, addressing

both the case when the confounding is unobserved, and the case when the confounding

variables are observed, but their effect on the variables of interest is fairly complex and

thus the conventional methods do not apply.

In Paper A we approach the problem of adjusting for latent confounding. Since this

problem is extremely challenging, we consider the simple case where the data comes from a

(high-dimensional) linear model and the confounding variables linearly affect the observed

variables. We propose Spectral Deconfounding estimator which uses the standard Lasso

after applying a carefully chosen linear transformation to the data. We derive interesting

theoretical results and also empirically verify that it outperforms the conventional methods

which ignore existence of latent confounding.

In Paper B we propose Doubly Debiased Lasso estimator, which can be viewed as the

generalization of the Spectral Deconfounding estimator that has the advantage of having

nicer asymptotic distribution, thus allowing for a construction of asymptotically valid

iii



confidence intervals. The provided theoretical analysis is very elaborate and extends the

theoretical results of Paper A.

Paper C considers an important problem in biostatistics of detecting the perturbations

in the causal network between two conditions, such as, for example, cancer and normal cells.

The proposed methodology is also extended to account for potential latent confounding.

While it is not a direct application of the methods developed in Paper A and Paper B, it

shares the main ideas developed there.

In Paper D we address the case when confounding is observed, but potentially very

complex. We propose a versatile method called Distributional Random Forests that is able

to non-parametrically estimate the multivariate joint conditional distribution. This is done

in a model- and target-free way and can thus be used for many different learning problems

beyond the original problem of confounding adjustment for causal effect estimation.
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Résumé

Le phénomène de ’confounding’ dans lequel la variable de traitement mais aussi la

variable réponse sont toutes les deux afectées par certaines variables tierces (appelées

variables de confounding) est un challenge en inférence. Beaucoup d’idées fausses sont liées

à ce phénomène en statistiques, comme le paradoxe de Simpson ou encore les exemples

illustratifs de l’adage ’une corrélation n’implique pas de causalité’.

L’ajustement pour ces variables de confounding est donc central en causalité. Cependant

ce n’est pas toujours une tâche facile, même dans le cas où la structure causale des données

est connue. La dimensionalité des variables de confounding est potentiellement large, ces

variables peuvent être une mixture de variables discrètes, continues ou encore catégoriques.

Elle peuvent aussi affecter la variable de réponse de manière non-paramètrique.

Il existe plusieurs méthodes d’ajustement quand les variables de confounding sont

observées. Cependant peu de travaux existent sur le cas où les variables de confounding

sont latentes. Même si l’hypothèse de latence des variables de confounding est souvent

écartée dans la litératture, il se trouve qu’elle est souvent fausse dans les cas réels. En

Faire abstraction peut amener une baisse de performance des méthodes conventionelles.

Dans cette thèse, nous introduisons une méthodologie nouvelle pour le problème de

confounding applicable dans le cas où les variables de confounding ne sont pas observées

et aussi dans le cas où les variables de confounding sont observées, mais leur effet sur

les variables d’intérêt est suffisamment complexe pour que les approches classiques ne

marchent pas.

Dans le papier A, nous étudions le problème d’ajustement pour des variables de

confounding latentes. Comme ce problème est difficile, nous considérons le cas simple où

les données proviennent d’un modèle linéaire (à haute dimension) et où les variables de

confounding affectent linéairement les variables observées. Nous proposons un estimateur

nommé Spectral Deconfounding, qui utilise la méthode classique du Lasso après avoir

appliqué une transformation linéaire particulière aux données. Nous dérivons des résultats

théoriques intéressants et nous vérifions de manière empirique que notre estimateur

performe mieux que les méthodes classiques qui ignorent les variables de confounding

latentes.
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Dans le papier B, nous proposons un estimateur appelé Doubly Debiased Lasso qui

peut être vu comme une généralisation de l’estimateur du papier A avec l’avantage en plus

d’avoir de meilleurs propriétés asymptotiques qui permettent notamment de construire

des intervalles de confiance. La théorie développée est élaborée et étend les résultats du

papier A.

Dans le papier C, nous considérons un problème important en biostatistiques: la

détection de perturbations dans un graphe causal entre les états, comme par exemple

cellule cancéreuse ou normale. La méthodologie proposée est aussi étendue pour prendre

en compte des potentielles variables latentes de confounding. Même si ce n’est pas une

application directe des méthodes des papiers A et B, l’idée principale de la méthodologie

est similaire.

Dans le papier D, nous nous intéressons au cas où les variables de confounding sont

observées, mais dans lequel leur effet est potentiellement complexe. Nous proposons une

méthode appelée Distributional Random Forests qui est une estimation non-paramétrique

d’une distribution conditionnelle multivariée. La méthode ne requière pas d’hypothèse

sur le modèle est n’est pas spécifique à une variable réponse particulière, ce qui ouvre un

grand champ d’applications qui va plus loin que le problème de confounding en causalité.
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1 Introduction

Determining the causal relationships between different events, processes or states of

objects is at the centre of scientific endeavour and human intelligence overall. Knowledge

of cause and effect enables us to understand different mechanisms of nature more deeply,

to be able to transfer our knowledge to new and unseen situations and to answer in general

what would happen if certain action was performed, i.e. if we intervened on the observed

system.

Despite being so fundamental, the discipline of causality has not been considered as an

essential part of statistics for a long time. However, understanding only the associations

between random variables through their observational distribution is often not enough, as

we would like to derive useful conclusions from our data and to be able to transfer the

obtained knowledge to other situations. For example, one might observe from the data

that the population of a city and the air pollution tend to be highly (positively) correlated.

However, based only on this data, we can not determine which of the following 3 scenarios

is correct:

• the pollution is directly caused by the people,

• high air pollution at certain places causes people to move there,

• some other variable, such as e.g. the number of factories, causes both the air pollution

to be high and people to settle nearby.

It has been only relatively recently, through work of many great statisticians (Rubin,

2005; Pearl, 2009), that the field of causality has been formalized within the statistical

framework. Since then the field has been rapidly developing and the causal concepts have

proved to be useful in a variety of different fields such as econometrics, finance, machine

learning, biostatistics and many others. However, many challenges still remain to be solved

and this thesis is hopefully a small step in that direction.
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2 CHAPTER 1. INTRODUCTION

Confounding

Suppose we have a treatment variable X P Rp affecting the response variable Y P R
and that we would like to determine the causal effect of X on Y . Any other variable

H P Rq affecting both X and Y is called a confounder. This is illustrated in the following

plot:

X

H

Y

If there are no confounding variables, the causal effect of X on Y can easily be

determined directly from the observed conditional distribution PpY |Xq. However, in

presence of confounding, the observed distribution of X and Y is not a reliable indicator

of the causal relationship between them. This is a common fallacy known under many

names, such as ”correlation does not imply causation”.

Figure 1.1: The average number of shark attacks and the ice cream consumption per calendar month are

very correlated. However, this relationship is not causal but is due to confounding: hot weather is directly

causes higher ice cream consumption and people to swim in the sea more, leading to increased number of

shark attacks.

One funny example of this is given in Figure 1.1. However, sometimes confounding

issues are not that obvious and could potentially be very subtle. For example, assume

that some medication is effective against some lethal disease, but is much more likely to

be prescribed to the most ill patients (maybe due to some serious side-effects). Then we

might observe that mortality is higher in the group of patients who were treated with this

medication. However, it is wrong to deduce from the data that this medication increases

the mortality rate. In this example, the severity of the disease is a confounder as it

simultaneously increases the mortality and the probability of being treated.

Confounding adjustment is necessary for determining the causal effects from the data

and is thus at the heart of the causal inference. Confounding causes many difficulties in
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statistical analysis, such as false positives in model selection. Another problem is bad

transferability of the fitted models to new environments, where the confounding mechanism

changes. Therefore, our models need to take confounding into account and thus to be

more ’causal’ in order to have better robustness properties.

Confounding Adjustment

There exist many different ways to adjust for the confounding effects, depending on

the causal structure and our model for the data generating mechanism. One of the most

commonly used general approaches is based on the back-door adjustment formula (Pearl,

2009)

PpY | dopX“xqq “
ż

PpY |X“x,H“hqdPpH“hq, (1.1)

which relates the observational conditional distribution to the interventional distribution,

i.e. the distribution of the response Y if we had forcibly set the predictors X to attain

value x. The back-door adjustment formula is related to data stratification with respect to

the confounding variable, and aggregating the inferred causal effect over different strata.

However, one does not have a direct access to the observational distribution, but only

to the data drawn from this distribution. Therefore, using the adjustment formulae such as

(1.1) is not that straightforward and can be quite challenging. Many conventional methods

such as regression adjustment, inverse propensity weighting (Rubin, 2005), propensity

score matching or some modern ones such as double machine learning (Chernozhukov

et al., 2018) or causal forests (Athey et al., 2019) assume some special structure, such as

linearity or additivity of the true signal and the confounding effect; that the treatment or

outcome variables are univariate and binary or maybe that the confounding variable is

discrete or very low-dimensional.

Distributional Random Forests

In Paper D of this thesis we introduce a method called Distributional Random Forests

(DRF), which is able to non-parametrically estimate any multivariate conditional distribu-

tion and thus can be used for many different applications in causality, such as confounding

adjustment in an arbitrarily complex model. For example, if we are able to estimate

the conditional distribution PpY |X,Hq well, we can use formula 1.1 and Monte-Carlo

algorithm to estimate the causal effect PpY | dopX“xqq, see Paper D for mode details.

However, DRF is very versatile and can be used for a variety of applications, as

illustrated in the paper. It is based on the standard Random Forest algorithm (Breiman,

2001), but where the splits are performed based on some distributional metric, i.e. we

split such that the difference in the distribution of the response in the left and right child
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node is the largest. Having constructed our forest, we can obtain for any point of interest

x a weighting function wxp¨q which assigns a weight to each training point indicating how

relevant it is for the given test point x. The weighting function can be used in the second

step for computing any target of interest, as illustrated in the following diagram:

PpY |X“xq P̂pY |X“xq

τpPq τpP̂q

1) get wxp¨q with DRF

objective 2) compute from wxp¨q

induced estimator

Unobserved Confounding Adjustment

Almost all confounding adjustment approaches require the confounding variables to be

observed. The case when the confounding is unobserved has not received much attention

in the literature, mostly because this case is so difficult that at first one might think

that it is not possible to address. After all, how could one adjust for something that is

not observed? This is why almost all problems in causal literature are solved under the

assumption that there is no latent confounding.

However, such assumption might not hold in practice. It is very plausible that some

unobserved external variables, such as e.g. demographic factors, laboratory conditions or

batch effects, could affect our data and thus to introduce spurious associations. Therefore,

it is very important to address for potential latent confounding. However, since the data

need not be confounded, our method needs to have a comparable performance to the

conventional methods which ignore existence of confounding. A significant portion of this

thesis considers the problem of attaining robustness against potential hidden confounding.

Since this problem is very difficult, we start with some simpler, linear, models but explain

later how those ideas could be generalized to more complicated models, which we leave for

future research.

Linear Factor Model

We consider first the simplest confounding model, where the confounding variables

linearly affect the observed covariates. We assume that the predictors X P Rp are generated

as follows

X Ð ΨTH ` E, (1.2)

where Ψ P Rqˆp is the loading matrix of coefficients and E P Rp is the random error term.

It is evident that, up to the noise term E, the covariates lie on a q-dimensional

hyperplane in Rp, spanned by the rows of Ψ. This is illustrated in Figure 1.2.
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Figure 1.2: When the confounders affect the covariates linearly, as in (1.2), our data lies approximately

on a low-dimensional hyperplane.

Principal Component Analysis (PCA) (Price et al., 2006) tries to find linear com-

binations of the predictors that capture the most variability of the data. If our data

approximately lies on the low-dimensional hyperplane, top several (around q) principal

components will account for a lot of variability. This is very related to the spiked covariance

structure (Paul, 2007), where the first few singular values of the covariance matrix are

much larger than the rest. By inspecting singular values of the data matrix we can also

test whether the data is confounded, i.e. whether it comes from the Linear Factor Model

(1.2). It has been known for a long time in the field of biostatistics that top principal

components contain some information about the confounding effects (Leek and Storey,

2007; Gagnon-Bartsch et al., 2013), see also Figure 1.3.

In Paper A, we develop Spectral Deconfounding estimator for the special case where

the predictors follow the Linear Factor Model (1.2) and the response variable comes from

the linear model

Y “ βTX ` δTH ` ε,

where β P Rp, δ P Rq are coefficient vectors and ε is a random error. It can be viewed as a

standard Lasso estimator applied on the transformed data:

pβ “ arg max
β

1

n
‖FY ´ FXβ‖2

2 ` λ‖β‖1,

where the spectral transformation matrix F P Rnˆn is chosen such that it transforms
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Figure 1.3: Top principal components capture information about confounding. In this example, the first 2

principal components of the gene expression matrices match closely the geographic distribution of the

samples. The plot is borrowed from Novembre et al. (2008).

the singular values of the design matrix X. By default, we propose the trim transform

which caps all singular values at a given threshold (e.g. the median singular values). The

intuition is that the confounding is captured by the first several spiked singular values and

shrinking them helps to reduce the confounding effects. In Paper A, we rigorously show

that under some assumptions, one can get the same error rate as the Lasso for the data

model without confounding. Additionally, we provide simulation results which empirically

verify that in presence of latent confounding, we outperform standard Lasso for coefficient

estimation.

In Paper B, we propose the Doubly Debiased Lasso estimator for the same data model

considered in Paper A. It is analogous generalization of the Spectral Deconfounding

estimator as the Debiased Lasso (Zhang and Zhang, 2014) generalizes the standard Lasso

(Tibshirani, 1996). It has the advantage that its asymptotic distribution is nicely behaved

which enables us to construct asymptotically valid confidence intervals. However, the

performance of the plain Debiased Lasso deteriorates in the presence of latent confounding.

On the other hand, Doubly Debiased Lasso provides additional robustness against hidden

confounding. This is achieved by applying carefully chosen spectral transformations,

analogously as in Paper A, for both the initial estimator and the construction of the

proposed estimator. The main emphasis of the paper is on the rigorous theoretical analysis

of the estimation error and the asymptotic distribution of the estimator and the obtained
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Figure 1.4: When the predictors are affected by a small number of confounding variables, the data lies

approximately on a low-dimensional manifold. In the left plot we have only one confounding variable,

whereas in the right plot there are two. In both cases the confounding variables affect the predictors in a

highly non-linear way, but one can still recover some information about the latent confounders from the

data.

results generalize also the results obtained in Paper A.

Extensions of the Methodology

As we have seen, top several principal components capture a lot of information about

the confounding in the Linear Factor Model (1.2). Therefore, one can compute the

corresponding scores of the principal components and use those variables in the further

analysis as the proxies for the confounding variables.

For example, in Paper C we extend the proposed Differential Causal Effects method

to be more robust against hidden confounding. Given a biological pathway (i.e. the

causal graph) and the gene-expression data from two conditions, the goal is to determine

which part of the network has been dysregulated between the conditions, for example

between cancerous and normal cells. This is done by performing nodewise regression with

interaction terms in order to detect the changes in edge weights. Computing the scores

of principal components and adding them to the regression as the source nodes in the

pathway helps to reduce the confounding bias which can lead to false findings.

Similar idea can be used to generalize our approach to more complicated, nonlinear

models. When a small number of confounding variables affects a large number of the

observed covariates, our data will approximately lie on a low-dimensional manifold, just

as it lies on the low-dimensional hyperplane in the linear case (1.2). This is illustrated in

Figure 1.4.
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This manifold structure can be used to get some information about the latent variables,

which can be used for confounding adjustment. More specifically, one can first apply

some manifold learning (or dimensionality reduction) algorithm from the machine learning

literature in order to obtain confounding proxies, just as one can use the principal

components scores in the linear case. Those confounding proxies can in turn be used in

the downstream analysis in order to adjust for the latent confounding. Exploring this

approach in more detail is left for future research.
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Spectral Deconfounding via Perturbed Sparse Linear

Models

Domagoj Ćevid˚, Peter Bühlmann˚, Nicolai Meinshausen˚

˚Seminar für Statistik, ETH Zürich, 8092 Zürich, Switzerland.

Abstract

Standard high-dimensional regression methods assume that the underlying

coefficient vector is sparse. This might not be true in some cases, in particular

in presence of hidden, confounding variables. Such hidden confounding can be

represented as a high-dimensional linear model where the sparse coefficient vector

is perturbed. For this model, we develop and investigate a class of methods that

are based on running the Lasso on preprocessed data. The preprocessing step

consists of applying certain spectral transformations that change the singular

values of the design matrix. We show that, under some assumptions, one

can achieve the usual Lasso `1-error rate for estimating the underlying sparse

coefficient vector, despite the presence of confounding. Our theory also covers the

Lava estimator (Chernozhukov et al., 2017) for a special model class. The per-

formance of the methodology is illustrated on simulated data and a genomic dataset.

Keywords. confounding, data transformation, Lasso, latent variables,

principal components

1 Introduction

Many datasets nowadays include measurements from many variables. The correspond-

ing models are typically high-dimensional with many more parameters than the sample

size. For statistical estimation and inference, there is a vast literature which assumes

sparsity. For example, see the monographs by Bühlmann and van de Geer (2011), Giraud

(2014) or Hastie et al. (2015).

However, the performance of many high-dimensional regression methods might suffer

in presence of unobserved confounding variables which affect both the predictors and

11
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the response. Confounding is a severe issue when interpreting regression parameters,

often, but not necessarily, in connection with causal inference. A prime example are

genetic studies where unobserved confounding can easily lead to spurious correlations

and partial dependencies (Novembre et al., 2008). Even when one is concerned with only

prediction, the causal parameter leads to predictive robustness against perturbations of

the confounding variables.

Adjusting for unobserved confounding variables is very important in practice and

several deconfounding methods have been suggested for various settings (Gerard and

Stephens, 2017; Leek and Storey, 2007; Gagnon-Bartsch and Speed, 2012; Wang and Blei,

2018; Paul et al., 2008). Often, the methods try to estimate the confounding variables

directly from the data, usually by using some factor analysis technique. There are not

many theoretical results justifying the methods, especially since some of them are quite

complicated and therefore difficult to analyze.

Our focus is on linear models. In absence of confounding variables, when the response

is affected only by a small number of predictors, i.e. the coefficient vector is sparse, one

can efficiently estimate the active set and the corresponding coefficients with the Lasso

and related methods and thus achieve the minimax optimal `1-norm estimation error rate,

see, for example, Bickel et al. (2009) or the monographs by Bühlmann and van de Geer

(2011) or Wainwright (2019). However, these methods are not adequate in presence of

confounding in linear model, since in addition to just a few predictors that indeed affect

the response, we have additional association of the response with many other predictors,

as they contain information about the confounding variables.

Some approaches for relaxing the sparsity assumption are (i) the notion of weak sparsity

(Van de Geer, 2016), where the regression parameter β fulfills the condition that ‖β‖q is

small for some 0 ă q ă 1 or (ii) assuming the structure that the regression parameter can

be represented as a sum of a sparse and a dense vector. The case (i) does not call for a

new method or algorithm: in fact, the Lasso still exhibits optimal convergence rate if ‖β‖q
is sufficiently small (Van de Geer, 2016). On the other hand, case (ii) requires a different

method such as, for example, Lava (Chernozhukov et al., 2017).

Here we investigate how to deal with the confounding by analyzing the second case

where the parameter is a sum of a sparse and a dense part. If many predictors are affected

by the confounding variables, the true underlying regression vector will be changed by

some small, dense perturbation. We propose left multiplying the response Y and the

design matrix X consisting of the values of the predictors by a carefully chosen spectral

transformation matrix F which transforms the singular values of X. The transformed

response and design matrix can then be used as the input for a high-dimensional sparse

regression technique: we consider the Lasso as a prime example. We investigate the
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theoretical properties and empirical performances for the class of spectral transformations.

As a result, we conclude that certain spectral transformations that shrink the large singular

values, such as the Trim transform which we introduce in this paper, perform well over a

range of scenarios, pointing out also some advantages over other techniques and approaches.

1.1 Relation to Other Work and Our Contribution

For adjusting for the effect of unobserved confounding, the most prominent method

in practice is to adjust for the top several principal components of the predictors, see

for example (Novembre et al., 2008). Such PCA adjustment is also a special case of the

FarmSelect estimator (Fan et al., 2020) for the linear model, which considers the problem

of high-dimensional variable selection where the latent variables cause the correlations of

the predictors, but do not directly affect the response. PCA adjustment is a special case

of a spectral transformation. Our presented theory explains when and why this method

works well and proposes an alternative transformation, called Trim transform, which has

an advantage that one does not need to estimate the number of principal components to

adjust for.

The Puffer transform, which maps all singular values to 1, has also been suggested for

improving the variable selection properties of the Lasso for a sparse high-dimensional linear

model (Jia et al., 2015). Our theory gives a more precise result about the Puffer transform

for the estimation problem: the Trim transform is at least as good as Puffer transform

and substantially better when the sample size is close to the number of predictors. In

Shah et al. (2020), the Puffer transform in combination with bootstrap aggregation is used

in order to estimate the covariance matrix in presence of confounding variables, a very

different quantity than the precision matrix or regression coefficients.

Chandrasekaran et al. (2012) address the problem of estimating the precision matrix in

presence of a few hidden confounding variables. Then the observed precision matrix can

be represented as a sum of the initial sparse precision matrix and a low-rank perturbation

due to the confounding variables. Their model is similar to the one we consider, but the

assumptions and the goals differ. We aim to estimate just the regression coefficients instead

of the whole precision matrix and the method we propose is much simpler. Furthermore,

the theoretical conclusions are substantially different: we establish the convergence rates in

terms of the `1-norm estimation error, while they consider support recovery and `8-norm

bounds for the low-dimensional setting, assuming strong conditions. Also Fan et al. (2013)

have considered low rank plus sparse problems from the viewpoint of factor models: their

contribution provides a rich source of references from an area which is vaguely related to

our current work.

The Lava estimator (Chernozhukov et al., 2017) is the most similar to our Trim



14 Paper A

transform. The theory we develop, covering also the Lava, gives a result for the `1-norm

estimation error rate for the sparse coefficient vector. This goes well beyond the theory

given by Chernozhukov et al. (2017) for justifying the original and interesting Lava method.

There, the authors mostly consider the Gaussian sequence model but also provide general

bounds for high-dimensional regression whose (e.g. asymptotic) behavior is not further

analyzed in terms of restricted eigenvalues and the sparse and dense component of the

underlying unknown parameter vector. Our presented theory exploits the specific structure

of a hidden confounding model which provides a different motivation than the one in

Chernozhukov et al. (2017), where no confounding was considered. In addition, our

developments suggest a simple rule for the choice of the `2-norm regularization parameter

for the Lava estimator, leaving only the `1-norm regularization parameter as the single

parameter to be tuned by cross-validation.

Our contribution can be seen as threefold. We describe a class of spectral transforma-

tions and propose a simple spectral transformation called Trim transform, which is perhaps

slightly easier to use than the Lava or the PCA adjustment estimator. Furthermore, for

the linear model where the underlying sparse parameter has been perturbed, we provide

novel theory establishing for a certain class of spectral transformations a fast convergence

rate for the `1-norm estimation error of the true underlying sparse parameter. Finally, and

as our primary goal, we use these results to show how the issue of hidden confounding can

be addressed by using a wisely chosen spectral transformation, such as e.g. Trim transform,

with the Lasso afterwards: we establish under certain assumptions the same convergence

rate as the one of the Lasso for a linear model without confounding and illustrate the

empirical performance of our method on simulated and real genomic data. Our method is

entirely modular and can be used not only in conjunction with the Lasso, but also any

other reasonable high-dimensional linear regression method.

2 The Models

In this section we consider a linear model with additional confounding. We also

introduce a perturbed linear model and show how it relates to the confounding model.

Our theoretical results apply to the perturbed linear model as well and it is useful for

better understanding of the confounding model.

2.1 Confounding Model

Consider a standard (high-dimensional) linear model with n observations and p pre-

dictors X1, . . . , Xp linearly affecting the response Y . Suppose further that q additional
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unobserved confounding variables linearly affect the response as well. The confounding

variables are correlated with the predictors, introducing additional spurious correlations

between the response and the predictors.

The model for n i.i.d. observations is given by:

Y “ Xβ `Hδ ` ν (1)

whereX P Rnˆp is the matrix of predictors andH P Rnˆq represents the hidden confounding

variables, which exhibit correlation with X, i.e., CovpH,Xq ‰ 0 (with a slight abuse of

notation, we write CovpH, Xq as the covariance of any row of H and X). We assume

that X and H have i.i.d. rows that are jointly Gaussian and that ν P Rn is a vector of

sub-Gaussian errors with mean zero and standard deviation σν , independent of X and

H. The vectors β P Rp and δ P Rq are fixed coefficients; we additionally assume that β

is sparse with exactly s non-zero components. Since the model does not change under

the transformation H Ð HCovpHq´1{2, δ Ð CovpHq1{2δ, we can assume without loss of

generality that CovpHq “ Iq, i.e. the confounding variables are uncorrelated.

Note that by L2 projection, X can also be written as

X “ HΓ` E, (2)

where we choose Γ P Rqˆp such that CovpH,Eq “ 0:

Γ “ CovpHq´1CovpH,Xq “ CovpH,Xq.

The matrix Γ P Rqˆp describes the linear effect of confounding variables on X. The

random term E P Rnˆp can be seen as the unconfounded design matrix; without confound-

ing, i.e. when H “ 0, it equals X. The columns of E are allowed to be correlated and we

denote its covariance matrix by ΣE; if the components of E are (weakly) uncorrelated,

X is generated from an (approximate) factor model (Anderson, 1958; Chamberlain and

Rothschild, 1982). Here the hidden variables do not encode a factor structure for X alone,

but also in addition generate confounding effects.

A main example of the above model is a structural equation model (SEM)

X Ð HΓ` E,

Y Ð Xβ `Hδ ` η

and thus β is the direct causal effect of X on Y . In a standard SEM with no further

hidden variables, the components of E would be assumed independent.

We will show in Section 4 that one can recover the coefficient β if the confounding is

dense in a certain sense, e.g. when the rows or columns of Γ “ CovpH,Xq are realizations

of independent and identically distributed random variables with mean zero.
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2.2 Perturbed Linear Model

The confounding model (1) is related to the perturbed linear model

Y “ Xpβ ` bq ` ε, (3)

where the sparse coefficient vector β has been perturbed by the perturbation vector b P Rp

and ε P Rn is the vector of sub-Gaussian errors independent of X with standard deviation

σ. Here we assume that the rows of X are i.i.d. sub-Gaussian vectors with mean zero and

covariance matrix Σ “ CovpXq.

The relationship between models arises by rewriting (1) as

Y “ Xpβ ` bq ` pHδ ´Xbq ` ν,

where b satisfies that CovpX,Hδ ´Xbq “ 0, i.e., Xb is the L2-projection of Hδ onto X.

This gives us the formula

b “ CovpXq´1CovpX,Hqδ

“
`

CovpX,HqCovpHq´1CovpH,Xq ` CovpEq
˘´1

CovpX,Hqδ (4)

The error is given by ε “ pHδ ´Xbq ` ν, which by construction of b is uncorrelated

with X and thus independent of X, because the rows of X and H are assumed to be

jointly Gaussian in the confounding model. We require such independence (induced by

joint Gaussianity) in the proof of Theorem 2, although ε being uncorrelated with X might

be sufficient. The variance of the error is given by

σ2
“ VarpHδ ´Xb` νq ď ‖δ‖2

2 ` σ
2
ν .

One can think of Hδ ´Xb as the part of the confounding that can not be explained

by X and which just increases the variance of the additive error. Xb is the part of the

confounding effect Hδ that is correlated with X and, as is well known, the bias b due to

the confounding makes the estimation of β more difficult.

In conclusion, the confounding model (1) can be thought of as a special case of the

perturbed linear model (3), but with additional relationship between the design matrix X,

the perturbation vector b, given by (4), and the additive error ε.

The perturbed linear model is in general unidentifiable since we can only infer β ` b

from the data generating distribution. This makes the estimation of β impossible, unless b

has a certain structure; we will be able to asymptotically retrieve the sparse coefficient

vector β, by assuming, for example, that b converges to 0 in some norm. In Section 4,

we investigate under which conditions we are able to infer the sparse part β and how

efficiently in terms of statistical accuracy.
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It could be interesting to estimate the coefficient vector β ` b rather than just β,

but it is impossible to do in general in the high-dimensional case; even if we knew β

exactly, estimating b would mean estimating p coefficients from n ă p data points, which

is impossible without additional assumptions about the structure of b.

2.3 Relationship with the Factor Model Literature

Even though the confounding variables are hidden, we are able to infer some of their

properties if they affect many of the observed predictors X. This is the essence of factor

analysis, where a lot of interesting work has been done. If the latent factors H linearly

affect the covariates, as it is the case in the confounding model (1), they can be estimated

well (up to a rotation) from the principal components of the design matrix X “ HΓ` E

(Chamberlain and Rothschild, 1982; Bai, 2003), especially if one additionally imposes

certain assumptions on the factor loadings Γ (Bing et al., 2017).

There are several related models considered in the literature. In certain cases (Paul

et al., 2008; Bing et al., 2019) we assume that only the latent factors affect the response

and the observed covariates are only used to obtain information about the latent factors:

Y “ Hδ ` ν, X “ HΓ` E.

In Bai and Ng (2006) one has an additional contribution of some other known low-

dimensional covariates W :

Y “ Wβ `Hδ ` ν, X “ HΓ` E.

Another line of work assumes that the latent factors do not directly affect the response:

Y “ Xβ ` ν, X “ HΓ` E,

but that they only cause the predictors to be correlated (Huang and Jojic, 2011; Fan et al.,

2020). Such correlation makes the analysis much more difficult, especially for the problem

of variable selection, and one can use the factor analysis to address this issue.

In this paper we allow the latent confounders to affect both the predictors and the

response and focus on the estimation of the sparse coefficient vector β, which has a causal

interpretation as it describes the direct effect of the predictors on the response. The key

difficulty is to handle the bias b in the observational data caused by the latent confounders.

The assumption of dense confounding, expressed in detail in Section 4, is related to

the spiked covariance assumptions common in the factor analysis literature (Paul et al.,

2008; Bai, 2003). It is used to make conclusions about the structure of the coefficient

perturbation b rather than about the factor identifiability. We avoid estimating the factor

variables directly, but instead we adjust for them implicitly, by transforming the singular

values of X.
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3 Methodology

In the following, we propose and motivate some methods based on a class of spectral

transformations.

3.1 Spectral Transformations

Let X “ UDV T be the singular value decomposition of X, where U P Rnˆr, D P

Rrˆr, V P Rpˆr, where r “ minpn, pq is the rank of X. We write d1 ě d2 ě . . . ě dr for

the diagonal elements of D. We use the truncated form of SVD, which uses only non-zero

singular values.

The idea is to first transform our data by applying some specific linear transformation

F : Rn Ñ Rn and then perform the Lasso algorithm:

X Ñ rX :“ FX

Y Ñ rY :“ FY

pβ “ arg min
β

"

1

n
}rY ´ rXβ}22 ` λ}β}1

*

. (5)

We restrict our attention to the class of spectral transformations, which transform the

singular values of X, while keeping its singular vectors intact. Let rD be an arbitrary rˆ r

diagonal matrix with diagonal elements rd1, . . . , rdr. Our spectral transformation matrix is

given by

F “ U

»

—

—

—

—

–

rd1{d1 0 . . . 0

0 rd2{d2 . . . 0
...

...
. . .

...

0 0 . . . rdr{dr

fi

ffi

ffi

ffi

ffi

fl

UT (6)

and then we have

rX “ FX “ U rDV T

In this paper we explore the question of what is a good choice of F for the estimation

of β. In general, the Lasso performs best when the predictors are uncorrelated and when

the errors are independent. Therefore, a good choice of F needs to find a good balance

between a well behaved error term rε “ Fε, well behaved design matrix rX and well behaved

perturbation term rXb.

One such transformation is the Trim transform which limits all singular values to

be at most some constant τ :
rdi “ minpdi, τq. (7)
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We show in Section 4 that it can, under some assumptions, achieve the same `1-norm error

rate for the estimation of the unknown sparse coefficient vector β as the Lasso in the case

of no confounding. We also show that the median singular value is a good choice of τ :

τ “ dtr{2u

3.2 Existing Methods and Motivation

We discuss some existing methods which are related to the spectral transformation

method described above and provide further explanations and relationships between them.

We also present intuitive explanation why our suggested method should work well against

dense confounding.

3.2.1 Examples of Spectral Transformations

Several existing methods consist of first transforming the data with a certain matrix

F (some of which fall into class of spectral transformations (6)), and then using some

regression method, such as the Lasso.

Lava One such example is the Lava estimator (Chernozhukov et al., 2017), designed for

the linear model where the coefficient vector can be written as a sum of a dense and a

sparse vector. It is originally given by (with a slight change of notation)

ppβ, pbq “ arg min
β,b

"

1

n
}Y ´Xpβ ` bq}22 ` λ2}b}

2
2 ` λ1}β}1

*

,

which can be seen as a combination of Lasso and Ridge regression. It is shown in

Chernozhukov et al. (2017) that the solution of this optimization problem is given by

F “ pIp ´XpX
TX ` nλ2Ipq

´1XT
q
1{2,

pβ “ arg min
β

"

1

n
}rY ´ rXβ}22 ` λ1}β}1

*

,

pb “ pXTX ` nλ2Ipq
´1XT

pY ´X pβq.

From here, one can see that the estimator of the sparse part is just a Lasso estimator

applied to the transformed data, where

rdi “

d

nλ2d2
i

nλ2 ` d2
i

.

This transformation is visualized in Figure 3.
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Puffer transform Another example is the Puffer transform introduced in Jia et al.

(2015), which uses the Lasso after mapping all non-zero singular values di to a constant rdi “

1. The algorithm is analyzed as a preconditioning method for the variable selection problem

without any coefficient perturbation. This transformation decreases the correlations

between the columns of the design matrix, but it can inflate the errors, especially when p

is close to n. It can also be thought of as a special case of the Lava transformation in the

case when λ2 Ñ 0, since then
rdi?
nλ2

Ñ 1 (the denominator here is just a scaling factor).

The transformation is displayed in Figure 3.

PCA adjustment Another example of a spectral transformation is given by PCA-

based methods for adjusting for hidden confounders (Novembre and Stephens, 2008;

Fan et al., 2020; Bai, 2003). In the confounding model (1), the effect of confounding

variables will approximately lie in the span of the first few principal components of X

(see Figure 1). One adjusts for a first few principal components from the columns of the

design matrix X before further analysis in hope of removing the effect of the confounding

variables (Paul et al., 2008; Huang and Jojic, 2011). This procedure is in fact analogous to

applying a spectral transformation, where the matrix rD is obtained from D by mapping

the first several singular values to 0. See also Figure 3 for an illustration. The slight

difficulty with this approach is knowing exactly the number of principal components to

remove. Asymptotically, this can be done with high probability (Bai, 2003) under certain

assumptions on the separation of the singular values. However, for finite samples or if

there is a slight model misspecification, it might not be that easy to estimate q, see e.g.

our real data genomic dataset in Figure 10.

3.2.2 Some Intuition

Since our method (5) is invariant under transformation F Ñ cF , for arbitrary constant

c P R, we can assume without loss of generality that the singular values of F are at most

1, i.e. the transformation F shrinks all vectors, with different shrinkage in directions of its

singular vectors. Ideally, we would like to shrink in a way such that the perturbation term

rXb becomes much smaller compared to the signal rXβ.

Trim transform has the highest shrinkage along directions of the singular vectors

corresponding to large singular values. The more b is aligned with the first few singular

vectors of X (those corresponding to large singular values), the larger ‖Xb‖2 will be.

Therefore, shrinking those large singular values ensures that ‖ rXb‖ stays small regardless

of the direction b is pointing to. It is especially the case in the confounding model that b

approximately lies in the span of the first few singular vectors (see Figure 1).

As can be seen from definition of b, Xb is the part of the confounding effect Hδ which
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Figure 1: Size of the projection of b onto Vi for different i, for a random dataset drawn from the confounding

model with q “ 10 confounding variables, as described in Section 5.1.1. We see that the projections of b

onto the first 10 singular values are substantially larger than the rest.

is correlated with X. Therefore, ‖Xb‖2 can be just as large as ‖Hδ‖2 “ Op
?
n‖δ‖2q.

However, after applying the Trim transform we have that

‖ rXb‖2 ď λmaxp rXq}b}2 “ O

˜

?
pˆ

d

‖δ‖2
2

p

¸

“ Op‖δ‖2q,

which is substantially smaller than before. λmaxp rXq is the largest singular value of rX,

which will be shown in Lemma 4.2 to be of order
?
p for the Trim transform and we have

‖b‖2 “ O
`
a

‖δ‖2
2{p

˘

under certain model assumptions by Lemma 4.1.

On the other hand, the signal Xβ lies in the span of a sparse set of predictors.

Therefore, the signal rXβ will be approximately of the same size as the signal Xβ before

transformation, unless β is aligned with the large singular vectors, which are shrunk the

most. This is very unlikely if they are sufficiently random. This is illustrated in Figure 2.

Therefore, by shrinking large singular values, ‖Xb‖2 will decrease much more compared to

‖Xβ‖2.

4 Theoretical Results

In this section we analyse the behaviour of the `1-estimation error for the sparse

coefficient β for an arbitrary spectral transformation F . We derive results for the perturbed

linear model (3) and relate them to the confounding model (1) by using the relationship

between them. The proofs of the results can be found in the appendix of Ćevid et al.

(2020a).

We show that if our spectral transformation fulfils certain criteria, and the confounding
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Figure 2: Visualisation of the relationship between the perturbation b, signal β and singular vectors of X.

In the confounding model b will be much more aligned with the singular vectors corresponding to large

singular values than β.

is dense in the sense that every confounding variable affects many predictors, we achieve

in the high-dimensional case the same `1-error rate as the Lasso in the case when we

have no confounding, despite the presence of the coefficient perturbation caused by

the confounding variables. Furthermore, in Section 4.4, we discuss specific choices of

spectral transformations and verify that the Trim transform (7), as well as Lava and PCA

adjustment, can be used in order to achieve this error rate.

We assume first for simplicity that we are in the high-dimensional case, where p ě n.

However, the theory developed in this section also holds for the case n ą p with small

adjustments. We discuss the case n ą p in more details in Section 4.6.

4.1 Notation

For a matrix M we write

φM :“ inf
}α}1ď5}αS}1

?
αTMα

1?
s
}αS}1

,

where S is the support set of β, s is the size of S and αS is a vector consisting only of the

components of α which are in S.

Let us also write rΣ :“ 1
n
rXT

rX, and pΣ :“ 1
n
XTX. We denote the k-th largest diagonal

element of the transformed singular values rD by rdpkq. We denote the the largest, the

smallest and i-th (non-zero) singular value of any rectangular matrix A by λmaxpAq,

λminpAq and λipAq respectively. The condition number is defined as condpAq “ λmaxpAq
λminpAq

.

Finally, we use the notation A “ ΩpBq if B
A
“ Op1q, i.e. if A has asymptotically at least

the same rate as B and A — B if A and B have asymptotically the same rate. A “ OppBq
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means that there exists a constant c ą 0 such that PpA ą cBq Ñ 0 and Ωp is defined

analogously.

4.2 Main Result for the Confounding Model

We present here the main result for the confounding model (1), which we derive below

by considering the relationship with the corresponding perturbed linear model, as described

in Section 2.

Theorem 1. Consider the model in (1) with maxi Σii “ Op1q and condpΣEq “ Op1q and

suppose that λminpΣq is bounded away from zero. Assume that the model satisfies

(A1) λminpΓq “ λminpCovpX,Hqq “ Ωp
?
pq.

Assume additionally that a spectral transformation F in (5) with λmaxpF q “ 1 satisfies

(A2) λmaxp rXq “ Opp
?
pq

(A3) φ2
rΣ
“ ΩppλminpΣqq.

Then for the penalty level λ — σ
b

log p
n

, despite the confounding variables, the `1-estimation

error has the following rate:

}pβ ´ β}1 “ Op

˜

σs

λminpΣq

c

log p

n

¸

.

The assumption (A1) means that the confounding is dense in the sense that each

confounding variable is correlated with many predictors: The condition λminpΓq “ Ωpp
?
pq

is satisfied, for example, if q
p
Ñ 0 and Γ is drawn at random with either rows or columns

of Γ being independent, identically distributed sub-Gaussian random vectors, as shown in

Lemma 4.1.

We also show in Section 4.4 that certain choices of the spectral transformation, such as

the Trim transform (7) with τ “ dttnu, where t P p0, 1q is an arbitrary constant, or the PCA

adjustment, which maps first several singular values to zero, satisfy with high probability

the conditions (A2) and (A3) in the high-dimensional setting under certain conditions.

4.3 `1-estimation Error of β in the Perturbed Linear Model

In this section we derive an upper bound for the `1-estimation error of β in the

perturbed linear model and show that we can achieve the usual Lasso error rate in the

high-dimensional case, provided the perturbation b is sufficiently small. Then the main
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theorem for the confounding model, Theorem 1, follows from Corollary 4.1 by using the

relationship between the models described in Section 2.

The following result describes the effect of an arbitrary linear transformation F on the

`1-estimation error of the Lasso:

Theorem 2. Assume the model in (3) with maxi Σii “ Op1q. Let F P Rnˆn be an arbitrary

linear transformation and A ą 0 an arbitrary fixed constant. Then for the method described

in p5q with transformation F and penalty level λ “ Aσ
b

log p
n
λmaxpF q

2, with probability at

least 1´ 2p1´A2{p32 maxi Σiiq ´ pe´n{136, we have

}pβ ´ β}1 ď C1
sλ

φ2
rΣ

` C2
} rXb}22
nλ

,

where C1, C2 are constants depending only on A.

Remark. One can get a better bound

}pβ ´ β}1 ď C1
sλ

φ2
rΣ

` C2

?
s

φ
rΣ

‖ rXb‖2
?
n

by taking larger penalty λ than the one above, but then λ depends on the unknown quantity

‖ rXb‖2. For that reason we will use the bound above with standard penalty level λ, since it

does not matter when ‖ rXb‖2 is small, which holds in our case, as shown later.

The first term is the standard bound for the `1-error of the Lasso, with only difference

that the compatibility constant is for the matrix rΣ “
rXT

rX
n

rather than the matrix pΣ “ XTX
n

.

The second term shows the dependence of the error on the term rXb. It is also worth

noting that the penalty λ has standard form up to the scaling correction factor λmaxpF q
2,

which equals 1 for the Trim transform and the PCA adjustment.

In order to control the error caused by the coefficient perturbation b, we need to make

‖ rXb‖2 small by shrinking the singular values enough, e.g. by ensuring that rdp1q, the largest

singular value after transformation, is small. On the other hand, we must not shrink the

singular values too much, since we need φ
rΣ to stay large. If we have that φ2

rΣ
is bounded

away from 0 with high probability, as it is the case with φ2
pΣ

(see Bühlmann and van de Geer

(2011)), and that ‖ rXb‖2 is sufficiently small, we get from Theorem 2 that our estimator

achieves the usual Lasso error rate:

Corollary 4.1. Consider the model in (3) with maxi Σii “ Op1q and suppose that λminpΣq

is bounded away from zero. For the coefficient perturbation b as in (4), assume that

(A1’) }b}22 “ O
´

sσ2 log p
p

¯

.

Assume additionally that the spectral transformation F in (5) with λmaxpF q “ 1 satisfies
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(A2) λmaxp rXq “ Opp
?
pq

(A3) φ2
rΣ
“ ΩppλminpΣqq.

Then for the penalty level λ — σ
b

log p
n

, despite the coefficient perturbation, the `1-

estimation error has the following rate:

}pβ ´ β}1 “ Op

˜

σs

λminpΣq

c

log p

n

¸

.

We show in the following section that in the perturbed linear model that arises from

the confounding model (1), the induced coefficient perturbation b, given in (4), satisfies

the condition (A1’), provided that the dense confounding assumption (A1) is satisfied.

We also show that certain spectral transformations, such as the Trim transform (7) with

τ “ dttnu, where t P p0, 1q is an arbitrary constant, or the PCA adjustment satisfy the

conditions (A2) and (A3) under certain conditions.

Remark (Fixed design). The results of Theorem 2 and Corollary 4.1 can be easily extended

to the perturbed linear model with fixed design. One can even relax the assumption (A1’)

to a weaker condition

‖V T b‖2
2 “ O

ˆ

sσ2 log p

p

˙

.

It is worth noting that if the perturbation vector b has uniformly random direction, which is

not the case with the confounding model (1), this becomes much weaker than the condition

(A1’) above and we only require ‖b‖2
2 “ O

´

sσ2 log p
n

¯

.

4.4 Validity of the Assumptions

In this section we will justify the assumptions in Theorem 1 and Corollary 4.1 for

certain spectral transformations F , with an emphasis on the Trim transform (7) and

the PCA adjustment. We also discuss later the performance of other choices of spectral

transformations.

Assumptions (A1) and (A1’)

The assumption (A1’) for the perturbed linear model says that the coefficient per-

turbation must not be too large. It can also be viewed as the condition which makes

the perturbed linear model identifiable, since in general it is impossible to distinguish

the true coefficient vector β from the perturbed coefficient vector β ` b, unless b has

some additional structure. The rate Op
a

sσ2 log p{pq may seem too strict, but this is

the rate with respect to the `2-norm, so if the perturbation vector is dense, this becomes

approximately }b}1 “ Op
a

sσ2 log pq.
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The following lemma shows that if the confounding is dense in the confounding model

(the assumption (A1) holds), then the induced coefficient perturbation in the underlying

perturbed linear model is small (the assumption (A1’) holds). It is important to note that

certain dense confounding assumption is necessary. The term Xb can be thought of as the

part of the confounding Hδ that can be explained by X and if, as an extreme example,

the confounder Hi is correlated with only the predictor Xj , only the j-th component of X

will be useful for describing the effect of Hi on Y and thus bj will be very large and we

will not be able to estimate βj.

Lemma 4.1. Assume that the confounding model (1) satisfies λminpΓq “ λminpCovpH,Xqq “

Ω
`?

p
˘

and condpΣEq “ Op1q. Then we have:

}b}22 “ }CovpXq´1CovpX,Hqδ}22 ď condpΣEq ¨
‖δ‖2

2

λminpΓq2
“ O

ˆ

‖δ‖2
2

p

˙

“ O
ˆ

σ2

p

˙

The condition λminpΓq “ Ωpp
?
pq is satisfied, for example, if q

p
Ñ 0 and Γ is drawn at

random with either its rows or columns being independent, identically distributed sub-

Gaussian random variables with expectation 0 and covariance matrix ΣΓ, with λminpΣΓq

bounded away from zero.

From this we see that it is important that the effect of the latent variables is spread

out over many predictors. If this is not true, λminpΓq will be too small and thus ‖b‖2 will

be too large.

Assumption (A2)

We investigate quickly the behaviour of singular values of X in order to see whether

the assumption (A2) holds for the transformed matrix rX. This assumption says that

after the transformation, the largest singular value is not too large.

In the confounding model we have Σ “ ΓTΓ` ΣE, i.e. the covariance matrix of X has

additional low-rank component ΓTΓ, which causes the top several singular values of Σ to

be very large. Since the rows of X are drawn from a distribution with covariance matrix

Σ, the first few singular values of X will be large as well (Donoho et al., 2013). However,

the following lemma shows that the bulk of the singular values will never be too large, i.e.

they will be of order
?
p. The assumption (A2) requires the transformed singular values

to be of this order.

Lemma 4.2. Assume that X P Rnˆp is a random matrix whose rows are i.i.d. sub-

Gaussian vectors with covariance matrix Σ. Let d1, . . . , dr ě 0 be its singular values.

Assume also that TrpΣq — p and that
a

log p{nÑ 0. We have:

1

n

r
ÿ

i“1

d2
i “ TrpΣqp1` opp1qq.
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Furthermore, when p ą n, dttnu “ Opp
?
pq for any t P p0, 1q.

For the Trim transform the largest singular value after transformation rdp1q equals the

trimming threshold τ and the above lemma shows that τ “ dttnu for t P p0, 1q, e.g. the

median singular value when t “ 0.5, is a good choice and the assumption (A2) holds.

If we further assume that ΣE has bounded singular values, thus ensuring the gap

between the q-th and pq ` 1q-st eigenvalues of Σ, we get that all but the first q singular

values of X will not be too large, thus justifying the assumption (A2) for the PCA

adjustment, since there we have λmaxp rXq “ rdp1q “ rdq`1 “ dq`1.

Lemma 4.3. Assume that p ą n and that X has i.i.d. sub-Gaussian rows with covariance

matrix Σ “ ΓTΓ`ΣE, where Γ P Rqˆp and λmaxpΣEq “ Op1q, then we have dq`1 “ Opp
?
pq.

This lemma also shows that in this case the trimming threshold τ for the Trim transform

can be chosen to be τ “ dq`1, but τ “ dttnu might be a better choice as the number of

confounders q is unknown.

Assumption (A3)

This assumption says that the compatibility constant φ
pΣ does not substantially decrease

after applying our transformation F . We want to show that by shrinking the singular

values we have not shrunk our signal Xβ too much. Intuitively, this means that the active

set XS is not too aligned with the directions along which we substantially shrink, which

corresponds to the first several singular vectors in the case of Trim transform and PCA

adjustment.

It is difficult to bound φ
rΣ for an arbitrary spectral transformation F , since the

distribution of the singular vectors V of the design matrix X is complicated. However, one

can directly exploit the results from the factor analysis literature (Bai, 2003) for the PCA

adjustment, from which it follows that in a certain asymptotic regime the transformed

design matrix rX is close to the unconfounded design matrix E. Using this result, one can

directly obtain the compatibility condition (A3) for the PCA adjustment by using the

standard argument (Bühlmann and van de Geer, 2011).

Lemma 4.4. Let X be generated from the confounding model (1) and let F be a spectral

transformation shrinking the first q singular values of X to 0. If q is fixed, 1
p

řp
i,j“1 |pΣEqij|

upper bounded and s logppnq
minpn,pq

Ñ 0, we have that, with probability converging to 1, the

compatibility condition holds for the transformed design matrix rX “ FX:

φ2
1
n

rXT
rX

p
Ñ φ2

1
n
ETE

“ Ωp pλminpΣEqq .
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In the Appendix A.1 of Ćevid et al. (2020a) the analysis of the compatibility constant

φ
rΣ is also provided for arbitrary spectral transformation under the somewhat restrictive

assumption that the singular vectors V have uniformly distributed direction.

Since the ratio of the transformed singular values for the Trim transform and PCA

adjustment is bounded from below by τ
dq`1

, the compatibility constant φTrim for the Trim

transform can be bounded from below by the compatibility constant φPCA for the PCA

adjustment:

φTrim ě
τ

dq`1
φPCA “

dttnu

dq`1
φPCA

and thus the compatibility condition holds for the Trim transform as well if dq`1 and

τ “ dttnu are of comparable sizes, i.e.
dttnu

dq`1
“ Ωpp1q. By Lemma 4.3, we have dq`1 “ Opp

?
pq

and by the following lemma it holds that for quite a wide range of settings we also have that

d2
ttnu

“ ΩppλminpΣqpq. Therefore, Lemma 4.4 can be used for showing the compatibility

condition for the Trim transform as well.

Lemma 4.5. Assume that X is a random design matrix with i.i.d. rows with covariance

matrix Σ and suppose p ą n. Assume that any of the following conditions is satisfied:

i) the rows of X have a sub-Gaussian distribution and p
n
Ñ 8

ii) the rows of X have a Np0,Σq distribution and lim inf p
n
ą 1

iii) the rows of X have Np0,Σq distribution and lim sup k
n
ă 1

Then we have

d2
k “ ΩppλminpΣqpq.

4.5 Performance of Various Spectral Transformations

The result of Theorem 1 can be applied to any spectral transformation that satisfies

the assumptions (A2) and (A3). We discuss here which spectral transformations satisfy

them and what are their possible advantages and disadvantages for the performance of

the corresponding estimator pβ. The illustration of the spectral transformations discussed

below is given in Figure 3.

PCA adjustment As shown above, under certain assumptions we get that the spectral

transformation which maps first q singular values to 0 will satisfy assumptions (A2)

and (A3). Even though it might seem that one disadvantage of this method is that the

number of confounding variables q needs to be estimated from the data, one can show

that asymptotically it can be done accurately with high probability (Bai, 2003). PCA

adjustment leaves most of the singular values intact, so the increase in the estimator

variance will not be large.
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Figure 3: Singular values of rX after applying spectral transformations corresponding to different methods

to 40ˆ 60 matrix X with i.i.d. standard normal entries.

Lasso The simplest option is to take rdi “ di, i.e. the usual Lasso algorithm without any

transformation. Standard Lasso theory shows that the assumption (A3) is satisfied (see

Bühlmann and van de Geer (2011)). However, (A2) requires that the largest singular

value of X is of order Op?pq, which typically does not hold in presence of confounding

variables.

Trim transform As shown above, we have that the Trim transform satisfies assumptions

(A2) and (A3) if we take the trimming threshold to be τ “ dttnu for some t P p0, 1q,

e.g. the median singular value. Compared to the PCA adjustment, it has an advantage

that one does not need to estimate the number of confounding variables from the data.

Moreover, it does not shrink first several singular values to 0, but only to the necessary

level. This more gradual shrinkage might lead to better performance especially if the

signal Xβ is more aligned with the first few singular vectors.

Lava The mapping di Ñ
?
nλ2di{

a

nλ2 ` d2
i used in the Lava algorithm (Chernozhukov

et al., 2017) satisfies the conditions (A2) and (A3) as well, since the transformed singular

values rdi are quite close to the ones for the Trim transform rdi “ minpdi, τq, for an

appropriate choice of τ :

1

2
minpdi,

a

nλ2q ď

?
nλ2di

a

nλ2 ` d2
i

ď minpdi,
a

nλ2q.



30 Paper A

This also reveals how to choose the penalty λ2 in Lava: λ2 “
1
n
d2

tminpn,pq{2u
and λ1 can

be chosen by cross-validation. This transformation has the property that it is smoother

than the Trim transform. We note that with this comment and Corollary 4.1, we have

established the standard Lasso `1-error rate for Lava for estimating the sparse parameter

β in a high-dimensional regression model; such result is not given in Chernozhukov et al.

(2017).

Puffer transformation For the Puffer transform (Jia et al., 2015), where we map all

singular values to a constant dn (because of homogeneity it does not matter to which

constant we map it, but we have assumed w.l.o.g. that rdi ď di, so we need to map

them to dn), the assumption (A2) is easily satisfied. However, for (A3) we need to have

d2
n “ Ωp pλminpΣq pq. From Vershynin (2012), we have that this holds only if lim inf p

n
ą 1,

i.e. the Puffer transform will not work well if n and p are close.

Step function The justification of the assumptions (A2) and (A3) for Trim transform

apply as well for the step function rdi “ τ1pdi ą τq with the same threshold τ . However,

unnecessarily shrinking singular values might cause worse performance than for the Trim

transform.

4.6 Low-dimensional Case: n ą p

The statement of Theorem 2 still holds in the low-dimensional case n ą p. However,
1
n
‖ rXb‖2

2 will now be of larger order than λ. We have that λmaxp rXq “ Opp
?
nq, compared

to
?
p before (see Lemma 4.2), which under the assumption (A1’) gives us that 1

n
‖ rXb‖2

2 “

Op‖b‖2
2q “ Op sσ2 log p

p
q. Therefore, the second term in the bound of Theorem 2 will be too

large in comparison with the first term.

Fortunately, from the remark below Theorem 2, we see that by taking larger λ, we can

decrease the rate of the second term. If the perturbation term 1
n
‖ rXb‖2 gets larger than

the standard penalty rate, as it is the case when n ą p, it is better to penalize more. One

gets in this case:

‖pβ ´ β‖1 “ Op

˜

sσ

λminpΣq

c

log p

n
`

?
s‖b‖2

a

λminpΣq

¸

which by Lemma 4.1 in the confounding model, under the dense confounding assumption

(A1), becomes:

‖pβ ´ β‖1 “ Op

˜

sσ

λminpΣq

c

log p

n
`

?
sσ

a

λminpΣq
?
p

¸

.
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One can not expect the same error rate as in the high-dimensional setting, since this

would imply that, for fixed p, the error converges to 0 as nÑ 8 which can not happen

because the error is not only due to the randomness of the sample data, but also due to

the coefficient perturbation b. The perturbation b only depends on how the confounding

variables affect the predictors and not on the number of data points and thus one can

not expect consistency for a fixed p. However, we see that the estimator is consistent

when n, pÑ 8. The more predictors we have, the more is the effect of the confounding

variables spread out.

This is also illustrated in Figure 4, where we can see that even though the error

decreases as we increase the number of data points, it still seems to have a nonzero limit.

However, the error is small, especially in comparison with the standard Lasso, and there is

a benefit in using our method.

Figure 4: Dependence of the estimation error }pβ ´ β}1 on the sample size n for different spectral

transformations and data generated from the confounding model, including the case p ă n, as described

in Section 5.1.1.

5 Empirical Results

We present here some empirical results for simulated and real data.

5.1 Simulations

We demonstrate the performance of various spectral transformations for estimating the

coefficient vector β with a subsequent use of the Lasso: Trim transform, Lava, Puffer and
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PCA adjustment. We investigate the cases when the perturbation b arises from hidden

confounding and when it is randomly sampled.

5.1.1 Setting

We generate the data from the confounding model (1). We take ΣE “ σ2
EIp, where

σE “ 2 and β “ p1, 1, 1, 1, 1, 0, . . . , 0q, so s “ 5. For a fixed number q of hidden confounders,

we sample the coefficients Γij and δi independently as standard normal random variables.

By default, we take q “ 6. Unless stated otherwise, we use the noise level σ “ 1 as the

standard deviation of ε. Finally, the sample size is set to be n “ 200 and the dimensionality

of the predictors is p “ 600 as the default value. All results are based on N “ 212 “ 4096

independent simulations.

It is also interesting to consider the perturbed linear model (3). We do not generate

data from this model directly, but we will modify the underlying perturbation term b

which is implicit in the confounding model by formula (4). This way we can compare the

results obtained for the confounding model and the perturbed linear model directly with

each other. We replace b by Qb where Q is a random rotation matrix so that the new

perturbation has the same size, but with uniformly random direction. We note that the

resulting distribution is the same as of the perturbed linear model (3), where rows of X

are drawn from Np0,Σq, where Σ “ ΓTΓ ` Ip, and b is drawn uniformly from a ball of

radius ‖pΓTΓ` Ipq
´1ΓT δ‖2.

5.1.2 Choosing λ

In practice we encounter the problem of choosing the penalty level λ for the Lasso

after applying a spectral transformation. The results of Theorem 1 and Corollary 4.1 give

us that one can use the standard theoretical penalty rate λ — σ
b

log p
n

to get the desired

error rate of our estimator. In practice one often resorts to using cross-validation (CV) for

choosing the penalty parameter rather than using the theoretical value, especially since σ

is unknown.

However, one needs to be careful in presence of confounding variables; in this case

the coefficient vector β ` b describes the data better than β, which we are trying to

recover. Therefore, cross-validation tends to choose a smaller value of λ than the optimal

for recovering β. This is illustrated in the Figure 5, where we see that, for example, the

Puffer transform is significantly affected by this choice of λ. For recovering β in practice,

it might be better to increase slightly the value of λ chosen by cross-validation (Janzing

and Schölkopf, 2018). But on the other hand, smaller λ gives us a larger set of variables,

which might be beneficial for variable screening.
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Figure 5: Dependence of the estimation error }pβ ´ β}1 on the number of predictors p for different spectral

transformations and data generated from the confounding model (1), as described in Section 5.1.1. In the

left plot, the penalty is chosen by cross-validation, whereas in the right plot we use the oracle value for

which the estimation error is minimal.

In all simulations, unless stated otherwise, the penalty level is chosen by cross-validation.

This choice does not seem to worsen the performance of the Trim transform or Lava a

lot, as one can see in Figure 5 and Figure 9, and it is of great practical importance since

the oracle value of λ, i.e. the one for which ‖pβλ ´ β‖1 is smallest, can not be directly

determined from the data.

5.1.3 Results

Here we present the results of the simulations for both the confounding model and the

perturbed linear model. A fundamental difference between them is that the coefficient

perturbation arising from the confounding model is pointing towards the singular vectors

of X corresponding to the large singular values (see Figure 1). This makes ‖Xb‖2 larger

for a fixed ‖b‖2, and in this case the estimation error will be larger. On the other hand, in

this case we can improve our accuracy more compared to the plain Lasso by shrinking

large singular values, as will be shown below.

Noise versus perturbation In the left plot in Figure 6 we can see how the estimation

error changes depending on the size of the noise σ in the confounding model. When σ is

small, the perturbation b has the biggest effect on the error. On the other hand, if σ is

large, then the influence of the perturbation b becomes less pronounced.

We can see that the standard Lasso is affected a lot by the coefficient perturbation,

whereas the Puffer transform and the PCA adjustment are affected more by the additive

noise than the Lava and the Trim transform, since the slopes of the corresponding curves
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Figure 6: Dependence of the estimation error }pβ ´ β}1 on the size of the noise for different spectral

transformations for confounding model (left) and the perturbed linear model (right), as described in

Section 5.1.1.

are steeper. The higher variance of the Puffer transform is most evident in Figure 4 and

Figure 5; when n, p are close to each other, some of the singular values of X become quite

small and thus mapping them to a constant can inflate the error ε in the corresponding

directions by a lot. We can observe that the oracle PCA adjustment, which removes

exactly the q largest singular values of X, works well, especially when σ is small. For larger

σ, we see that Trim transform and Lava work slightly better since they do not remove

that much of the signal.

In the right plot of Figure 6, we have randomized the direction of b while keeping

everything else constant, as described in Section 5.1.1. This then corresponds to a model

with random perturbation b, but no specific further structure in terms of confounding. We

can see a substantial improvement of the standard Lasso: in hindsight this shows that

the Lasso is very sensitive to confounding variables but much less so to perturbation of

sparsity. Also, it is worth noting that the PCA adjustment method is now consistently

worse than the Trim transform or Lava, since the projection of b onto the span of the first

q singular vectors is not that large anymore.

We can see more clearly the bias-variance tradeoff for different spectral transformations

in Figure 7, where we have taken the rotated coefficient perturbation b, as in the right

plot of Figure 6 and then artificially scaled it by a chosen constant. For a very small b, we

see that Puffer and PCA adjustment have somewhat worse performance. As b increases,

Trim transform and Lava reduce the bias caused by b much better than the Lasso. We can

also see that the PCA adjustment does not reduce the bias as much, but its performance

would be significantly better if b was not rotated, but aligned with the top several principal

components as in the confounding model, see Figure 6.
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Figure 7: Dependence of the estimation error on the size of the perturbation vector b for different spectral

transformation for the perturbed linear model, as described in Section 5.1.1.

Number of confounding variables In Figure 8 we can see how the estimation error

depends on the number q of confounding variables. As above, we see that the Lasso is

severely affected by the presence of confounding variables. The Puffer transform performs

reasonably well since n and p are different enough and the Trim transform and Lava

exhibit similar and good performance in all cases.

PCA adjustment works well for the confounding model if we correctly guess the number

of confounding variables. In the left plot in Figure 8 we can clearly see how the estimation

error is affected by the misspecification of the number of the principal components we

remove. The oracle PCA method, which removes exactly q principal components, performs

reasonably well, particularly for smaller values of q. However, if we overestimate or

especially if we underestimate the number of confounding variables, the estimation error

will become significantly worse compared to the Trim transform or Lava.

Method robustness We are interested in whether there are any disadvantages in using

the spectral transformations if we wrongly think that there is some hidden confounding or

that the sparse coefficient has been perturbed.

In Figure 9 we display the estimation error for the confounding model as in Figure

8, but where the coefficient bias b has been set to 0, i.e. this is a standard sparse linear

model with X being generated from the spiked covariance model.

There is no indication for relevant differences between the performances of the Trim

transform, Lava and the Lasso. The Lasso performs slightly better for larger values of q

and slightly worse for smaller q. It is worth noting that on this plot the estimation error

starts to decrease as q increases, which is due to a scaling issue. This happens because



36 Paper A

Figure 8: Dependence of the estimation error }pβ´β}1 on the number of confounding variables for different

spectral transformation for confounding model (left) and the perturbed linear model (right) as described

in Section 5.1.1.

the variance of X increases as q increases, since Σ “ ΓTΓ` ΣE, thus effectively increasing

the signal to noise ratio. PCA adjustment seems to be affected most by the choice of λ,

especially for larger q since its shrinkage is larger in this case, see Figure 9. With the

oracle choice of the penalty level, its performance is very similar to the performance of the

Lasso.

Our empirical results support theoretical evidence, which showed that it is safe to use

wisely chosen spectral transformations such as the Trim transform or the Lava. If there are

any confounding variables present, there is a large improvement over the standard Lasso.

On the other hand, if there are no confounding variables, the Trim transform or Lava will

have about the same performance as the Lasso. Therefore, our method can be thought of

as an easy to use modification of the Lasso which is robust to hidden confounding.

5.2 Application to a Genomic Dataset

In this section we demonstrate the robustness of our method against hidden confounders

on a real genomic dataset where we have certain knowledge about the confounding variables.

We inspect various spectral transformations in combination with the Lasso and evaluate

the differences between the estimates for the original data set and the one where the

confounding variables have been adjusted for.

5.2.1 Gene Expression Dataset

We have obtained data from the GTEx Portal (http://gtexportal.org). The GTEx

project provides large-scale data with an aim to help the scientific community to study

gene expression, gene regulation and their relationship to genetic variation. It provides

http://gtexportal.org
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Figure 9: Size of the estimation error }pβ ´ β}1 for a sparse linear model where Σ “ ΓTΓ` Ip, i.e. the

confounding model with the induced perturbation b set to b “ 0. The penalty level λ is either chosen by

cross-validation (left) or taken to be the oracle value, which minimizes the `1-error (right).

gene expression data from 11,688 samples collected postmortem from 53 different tissues

of 714 human donors.

Gene expression is a process in the cell in which the information stored in a certain

gene is used for the synthesis of gene products such as proteins. In the GTEx Project it

was quantified by the amount of the mRNA in the cell which was created from this gene.

Gene expression differs among different people and among different cells within the human

body. The type of the cells is determined by the gene expression within them; even though

the DNA in all cell nuclei is the same, cells in different tissues behave and look differently

and perform significantly different tasks. Gene expression is also affected by the genetic

variation and determining the expression quantitative trait loci (eQTL), which are parts

of genome which explain the variation in the gene expression, is a very important problem

which will help to understand the relationship between genetic variation and different

phenotypes.

5.2.2 Setting

We use the fully processed, filtered and normalized gene expression matrix for the

skeletal muscle tissue. We consider the gene expression of p “ 141713 protein-coding genes

measured from n “ 491 samples. For our purpose, an important aspect of this dataset is

that there are also q “ 65 different covariates provided, which are proxies for the hidden

confounding variables. They include genotyping principal components and PEER factors.

We can thus obtain the deconfounded data by regressing out these given covariates.

The left panel of Figure 10 displays the singular values of the initial data matrix.

We see that the first several singular values are substantially larger than the rest which
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suggests a possible existence of hidden confounders. In the right part of Figure 10 we can

see the singular values of the deconfounded data matrix where we have regressed out all of

the q “ 65 covariates which are provided as confounding proxies.

Figure 10: Singular values of the gene expression data matrix for skeletal muscle tissue before (left) and

after (right) regressing out the provided q “ 65 confounding covariates.

We are going to explore now the robustness of the Lasso, Trim transform, and Lava

against hidden confounders by comparing the estimates based on the original and the

deconfounded data. For a fixed value of k, we regress out first k given confounder proxies

from the original gene expression data matrix X in order to get the matrix Xpkq and we

randomly choose one column to represent the response Y . We are thus trying to explain

the expression of one gene by the expressions of other genes.

For every s “ 1, . . . , 20, we apply the given method on X and Xpkq with the regulariza-

tion λ chosen as the largest value such that the support size of pβ equals a prespecified value

s. This leads to estimates pβs and pβ
pkq
s . We measure the dissimilarity of the corresponding

supports by Jpsupp pβs, supp pβ
pkq
s q, where J is the Jaccard distance:

JpA,Bq “
A4B
A ∪B

.

5.2.3 Results

In the top left image in Figure 11, we can see the difference of the estimates for the

original and the deconfounded data, where 5 randomly chosen confounding variables have

been removed and the response Y is the expression of a randomly chosen gene. We can

see that the Jaccard distance for the Lasso is closer to 1, indicating that the estimated

support sets are very different and almost disjoint; The Trim transform and Lava are much

more robust to the hidden confounders and we see that the Jaccard distance between the

estimates based on confounded and deconfounded data is much smaller.
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Figure 11: Jaccard distance of the supports of the estimates based on the original and deconfounded

data for one randomly chosen response (top left). Jaccard distance, averaged over 500 randomly chosen

responses, of the supports of estimates based on the original data and data with 5 (top right), 15 (bottom

left) and 65 (bottom right) confounder proxies removed.

In order to make sure that the choice of response Y did not affect the results, we have

repeated this experiment for 500 randomly chosen genes and averaged the obtained results.

The results are also displayed in Figure 11. We can see that, as we increase the number

k of confounding variables which we regress out, the Jaccard distance for all methods is

increasing. This is to be expected since Xpkq and X are becoming more different as we

increase k. However, we can infer that the Trim transform and Lava are consistently better

than the Lasso, exhibiting also in this real dataset the robustness against confounding

variables.

6 Discussion

We propose to add robustness against hidden confounding variables by employing a

wisely chosen spectral transformation before using the Lasso or other high-dimensional

sparse regression techniques. There is essentially nothing to lose but much to be gained

which is in line with the typical argument of robustness (Huber, 2011) We can also take
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directly the viewpoint of deconfounding before performing further analysis: this is the

more common thinking in many applications where hidden confounding is expected to

happen, a prime example being genetics (Novembre and Stephens, 2008).

The confounding issue in the context of linear models can be represented and analyzed

as a regression problem with coefficient β ` b; the coefficient β is the true underlying

parameter in absence of confounding variables, while the perturbation b is due to the

confounding. We develop theory for a linear model with regression parameters β ` b

where β is sparse and the perturbation b sufficiently small, a condition satisfied when the

confounding is sufficiently ’dense’ in the sense that each confounding variable affects many

predictors. We show that certain spectral transformations, such as the Trim transform or

the PCA adjustment, in conjunction with using the Lasso afterwards, achieve the same

`1-convergence rate of the }pβ ´ β}1 as the Lasso for the linear model without confounding;

see Section 4 and Theorem 1. Such a theoretical result is entirely new and covers also the

Lava method (Chernozhukov et al., 2017). As a consequence, the theoretical result also

establishes spectral deconfounding as an excellent method for removing the effect of dense

hidden confounders in high-dimensional settings.

Another advantage of our approach is its simplicity: it consists of just one simple

pre-transformation step before using the Lasso. It requires the computation of the SVD of

the design matrix which has computational complexity of Opminpn2p, np2qq and can be

done in a few lines of code.

The topic of deconfounding has not received too much attention, despite its practical

importance (Greenland et al., 1999; Brookhart et al., 2010). Here we have shown that

it is possible and easy to protect against hidden dense confounding in the case of linear

regression. Similar ideas might be powerful as well for more complicated models.
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Abstract

Inferring causal relationships or related associations from observational data

can be invalidated by the existence of hidden confounding. We focus on

a high-dimensional linear regression setting, where the measured covariates

are affected by hidden confounding and propose the Doubly Debiased Lasso

estimator for individual components of the regression coefficient vector. Our

advocated method simultaneously corrects both the bias due to estimation of

high-dimensional parameters as well as the bias caused by the hidden confounding.

We establish its asymptotic normality and also prove that it is efficient in

the Gauss-Markov sense. The validity of our methodology relies on a dense

confounding assumption, i.e. that every confounding variable affects many

covariates. The finite sample performance is illustrated with an extensive

simulation study and a genomic application.

Keywords. Causal Inference; Structural Equation Model; Dense Confounding;

Linear Model; Spectral Deconfounding

1 Introduction

Observational studies are often used to infer causal relationship in fields such as

genetics, medicine, economics or finance. A major concern for confirmatory conclusions is

the existence of hidden confounding (Guertin et al., 2016; Manghnani et al., 2018). In

this case, standard statistical methods can be severely biased, particularly for large-scale

observational studies, where many measured covariates are possibly confounded.
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To better address this problem, let us consider first the following linear Structural

Equation Model (SEM) with a response Yi, high-dimensional measured covariates Xi,¨ P Rp

and hidden confounders Hi,¨ P Rq:

Yi Ð βᵀXi,¨ ` φ
ᵀHi,¨ ` ei, and Xi,¨ Ð ΨᵀHi,¨ ` Ei,¨ for 1 ď i ď n, (1)

where the random error ei P R is independent of Xi,¨ P Rp, Hi,¨ P Rq and Ei,¨ P Rp and the

components of Ei,¨ P Rp are uncorrelated with the components of Hi,¨ P Rq. The focus

on a SEM as in (1) is not necessary and we relax this restriction in model (2) below.

Such kind of models are used for e.g. biological studies to explore the effects of measured

genetic variants on the disease risk factor, and the hidden confounders can be geographic

information (Novembre et al., 2008), data sources in mental analysis (Price et al., 2006) or

general population stratification in GWAS (McCarthy et al., 2008).

Our aim is to perform statistical inference for individual components βj, 1 ď j ď p,

of the coefficient vector, where p can be large, in terms of obtaining confidence intervals

or statistical tests. This inference problem is challenging due to high dimensionality of

the model and the existence of hidden confounders. As a side remark, we mention that

our proposed methodology can also be used for certain measurement error models, an

important general topic in statistics and economics (Carroll et al., 2006; Wooldridge, 2010).

1.1 Our Results and Contributions

We focus on a dense confounding model, where the hidden confounders Hi,¨ in (1) are

associated with many measured covariates Xi,¨. Such dense confounding model seems

reasonable in quite many practical applications, e.g. for addressing the problem of batch

effects in biological studies (Haghverdi et al., 2018; Johnson et al., 2007; Leek et al., 2010).

We propose a two-step estimator for the regression coefficient βj for 1 ď j ď p in

the high-dimensional dense confounding setting, where a large number of covariates has

possibly been affected by hidden confounding. In the first step, we construct a penalized

spectral deconfounding estimator pβinit as in (Ćevid et al., 2018), where the standard

squared error loss is replaced by a squared error loss after applying a certain spectral

transformation to the design matrix X and the response Y . In the second step, for the

regression coefficient of interest βj, we estimate the high-dimensional nuisance parameters

β´j “ tβl; l ‰ ju by pβinit´j and construct an approximately unbiased estimator pβj.

The main idea of the second step is to correct the bias from two sources, one from

estimating the high-dimensional nuisance vector β´j by pβinit´j and the other arising from

hidden confounding. In the standard high-dimensional regression setting with no hidden

confounding, debiasing, desparsifying or Neyman’s Orthogonalization were proposed

for inference for βj (Zhang and Zhang, 2014; van de Geer et al., 2014; Javanmard and
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Montanari, 2014; Belloni et al., 2014; Chernozhukov et al., 2015; Farrell, 2015; Chernozhukov

et al., 2018). However, these methods, or some of its direct extensions, do not account for

the bias arising from hidden confounding. In order to address this issue, we introduce a

Doubly Debiased Lasso estimator which corrects both biases simultaneously. Specifically,

we construct a spectral transformation Ppjq P Rnˆn, which is applied to the nuisance design

matrix X´j when the parameter of interest is βj. This spectral transformation is crucial

to simultaneously correcting the two sources of bias.

We establish the asymptotic normality of the proposed Doubly Debiased Lasso estimator

in Theorem 1. An efficiency result is also provided in Theorem 2 of Section 4.2.1, showing

that the Doubly Debiased Lasso estimator retains the same Gauss-Markov efficiency bound

as in standard high-dimensional linear regression with no hidden confounding (van de

Geer et al., 2014; Jankova and van de Geer, 2018). Our result is in sharp contrast to

Instrumental Variables (IV) based methods, see Section 1.2, whose inflated variance is

often of concern, especially with a limited amount of data (Wooldridge, 2010; Boef et al.,

2014). This remarkable efficiency result is possible by assuming denseness of confounding.

Various intermediary results of independent interest are also derived in the supplementary

material of Guo et al. (2020). Finally, the performance of the proposed estimator is

illustrated on simulated and real genomic data in Section 5.

To summarize, our main contribution is two-fold:

1. We propose a novel Doubly Debiased Lasso estimator for individual coefficients βj

and estimation of the corresponding standard error in a high-dimensional linear SEM

with hidden confounding.

2. We show that the proposed estimator is asymptotically Gaussian and efficient in

the Gauss-Markov sense. This implies the construction of asymptotically optimal

confidence intervals for individual coefficients βj.

1.2 Related Work

In econometrics, hidden confounding and measurement errors are unified under the

framework of endogenous variables. Inference for treatment effects or corresponding

regression parameters in presence of hidden confounders or measurement errors has been

extensively studied in the literature with Instrumental Variables (IV) regression. The

construction of IVs typically requires a lot of domain knowledge, and obtained IVs are

often suspected of violating the main underlying assumptions (Han, 2008; Wooldridge,

2010; Kang et al., 2016; Burgess et al., 2017; Guo et al., 2018; Windmeijer et al., 2019). In

high dimensions, the construction of IVs is even more challenging, since for identification

of the causal effect, one has to construct as many IVs as the number of confounded
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covariates, which is the so-called “rank condition” (Wooldridge, 2010). Some recent work

on the high-dimensional hidden confounding problem relying on the construction of IVs

includes (Gautier and Rose, 2011; Fan and Liao, 2014; Lin et al., 2015; Belloni et al., 2017;

Zhu, 2018; Neykov et al., 2018; Gold et al., 2020). Another approach builds on directly

estimating and adjusting with respect to latent factors (Wang and Blei, 2019).

A major distinction of the current work from the contributions above is that we consider

a confounding model with a denseness assumption (Chandrasekaran et al., 2012; Ćevid

et al., 2018; Shah et al., 2020). (Ćevid et al., 2018) consider point estimation of β in the

high-dimensional hidden confounding model (1), whereas (Shah et al., 2020) deal with

point estimation of the precision and covariance matrix of high-dimensional covariates,

which are possibly confounded. The current paper is different in that it considers the

challenging problem of confidence interval construction, which requires novel ideas for

both methodology and theory.

The dense confounding model is also connected to the high-dimensional factor models

(Fan et al., 2008; Lam et al., 2011; Lam and Yao, 2012; Fan et al., 2016; Wang et al.,

2017b). The main difference is that the factor model literature focuses on accurately

extracting the factors, while our method is essentially filtering them out in order to provide

consistent estimators of regression coefficients, under much weaker requirements than for

the identification of factors.

Another line of research (Gagnon-Bartsch and Speed, 2012; Sun et al., 2012; Wang

et al., 2017a) studies the latent confounder adjustment models but focuses on a different

setting where many outcome variables can be possibly associated with a small number of

observed covariates and several hidden confounders.

Notation. We use Xj P Rn and X´j P Rnˆpp´1q to denote the j´th column of the

matrix X and the sub-matrix of X excluding the j´th column, respectively; Xi,¨ P Rp

is used to denote the i´th row of the matrix X (as a column vector); Xi,j and Xi,´j

denote respectively the pi, jq entry of the matrix X and the sub-row of Xi,¨ excluding the

j-th entry. Let rps “ t1, 2, . . . , pu. For a subset J Ď rps and a vector x P Rp, xJ is the

sub-vector of x with indices in J and x´J is the sub-vector with indices in J c. For a set

S, |S| denotes the cardinality of S. For a vector x P Rp, the `q norm of x is defined as

}x}q “ p
řp
l“1 |xl|

qq
1
q for q ě 0 with }x}0 “ |t1 ď l ď p : xl ‰ 0u| and }x}8 “ max1ďlďp |xl|.

We use ei to denote the i-th standard basis vector in Rp and Ip to denote the identity

matrix of size pˆ p. We use c and C to denote generic positive constants that may vary

from place to place. For a sub-Gaussian random variable X, we use }X}ψ2 to denote its

sub-Gaussian norm; see definitions 5.7 and 5.22 in (Vershynin, 2012). For a sequence

of random variables Xn indexed by n, we use Xn
p
Ñ X and Xn

d
Ñ X to represent that

Xn converges to X in probability and in distribution, respectively. For a sequence of
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random variables Xn and numbers an, we define Xn “ oppanq if Xn{an converges to zero

in probability. For two positive sequences an and bn, an À bn means that DC ą 0 such that

an ď Cbn for all n; an — bn if an À bn and bn À an, and an ! bn if lim supnÑ8 an{bn “ 0.

For a matrix M , we use }M}F , }M}2 and }M}8 to denote its Frobenius norm, spectral

norm and element-wise maximum norm, respectively. We use λjpMq to denote the j-th

largest singular value of some matrix M , that is, λ1pMq ě λ2pMq ě . . . ě λqpMq ě 0. For

a symmetric matrix A, we use λmaxpAq and λminpAq to denote its maximum and minimum

eigenvalues, respectively.

2 Hidden Confounding Model

We consider the Hidden Confounding Model for i.i.d. data tXi,¨, Yiu1ďiďn and unob-

served i.i.d. confounders tHi,¨u1ďiďn, given by:

Yi “ βᵀXi,¨ ` φ
ᵀHi,¨ ` ei and Xi,¨ “ ΨᵀHi,¨ ` Ei,¨, (2)

where Yi P R and Xi,¨ P Rp respectively denote the response and the measured covariates

and Hi,¨ P Rq represents the hidden confounders. We assume that the random error ei P R
is independent of Xi,¨ P Rp, Hi,¨ P Rq and Ei,¨ P Rp and the components of Ei,¨ P Rp are

uncorrelated with the components of Hi,¨ P Rq.

The coefficient matrices Ψ P Rqˆp and φ P Rqˆ1 encode the linear effect of the hidden

confounders Hi,¨ on the measured covariates Xi,¨ and the response Yi. We consider the

high-dimensional setting where p might be much larger than n. Throughout the paper it

is assumed that the regression vector β P Rp is sparse, with a small number k of nonzero

components, and that the number q of confounding variables is a small positive integer.

However, both k and q are allowed to grow with n and p. We write ΣE or ΣX for the

covariance matrices of Ei,¨ or Xi,¨, respectively. Without loss of generality, it is assumed

that EXi,¨ “ 0, EHi,¨ “ 0, CovpHi,¨q “ Iq and hence ΣX “ ΨᵀΨ` ΣE.

The probability model (2) is more general than the Structural Equation Model in (1).

It only describes the observational distribution of the latent variable Hi,¨ and the observed

data pXi,¨, Yiq, which possibly may be generated from the hidden confounding SEM (1).

Our goal is to construct confidence intervals for the components of β, which in the

model (1) describes the causal effect of X on the response Y . The problem is challenging

due to the presence of unobserved confounding. In fact, the regression parameter β can

not even be identified without additional assumptions. Our main condition addressing

this issue is a denseness assumption that the rows Ψj,¨ P Rp are dense in a certain sense

(see Condition (A2) in Section 4), i.e., many covariates of Xi,¨ P Rp are simultaneously

affected by hidden confounders Hi,¨ P Rq.
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2.1 Representation as a Linear Model

The Hidden Confounding Model (2) can be represented as a linear model for the

observed data tXi,¨, Yiu1ďiďn:

Yi “ pβ ` bq
ᵀXi,¨ ` εi and Xi,¨ “ ΨᵀHi,¨ ` Ei,¨, (3)

by writing

εi “ ei ` φ
ᵀHi,¨ ´ b

ᵀXi,¨ and b “ Σ´1
X Ψᵀφ.

As in (2) we assume that Ei,¨ is uncorrelated with Hi,¨ and, by construction of b, εi is

uncorrelated with Xi,¨. With σ2
e denoting the variance of ei, the variance of the error εi

equals σ2
ε “ σ2

e `φ
ᵀ
`

Iq ´ΨΣ´1
X Ψᵀ

˘

φ. In model (3), the response is generated from a linear

model where the sparse coefficient vector β has been perturbed by some perturbation

vector b P Rp. This representation reveals how the parameter of interest β is not in general

identifiable from observational data, where one can not easily differentiate it from the

perturbed coefficient vector β ` b, where the perturbation vector b is induced by hidden

confounding. However, as shown in the supplement of Guo et al. (2020), b is dense and

}b}2 is small for large p under the assumption of dense confounding, which enables us to

identify β asymptotically. It is important to note that the term bᵀXi,¨ induced by hidden

confounders Hi,¨ is not necessarily small and hence cannot be simply ignored in model (3),

but requires novel methodological approach.

Connection to measurement errors We briefly relate certain measurement error

models to the Hidden Confounding Model (2). Consider a linear model for the outcome Yi

and covariates X0
i¨ P Rp, where we only observe Xi,¨ P Rp with measurement error Wi,¨ P Rp:

Yi “ βᵀX0
i¨ ` ei and Xi,¨ “ X0

i,¨ `Wi,¨ for 1 ď i ď n. (4)

Here, ei is a random error independent of X0
i,¨ and Wi,¨, and Wi,¨ is the measurement error

independent of X0
i . We can then express a linear dependence of Yi on the observed Xi,¨,

Yi “ βᵀXi,¨ ` pei ´ β
ᵀWi,¨q and Xi,¨ “ Wi,¨ `X

0
i,¨

We further assume the following structure of the measurement error:

Wi,¨ “ ΨᵀHi,¨,

i.e. there exist certain latent variables Hi,¨ P Rq that contribute independently and

linearly to the measurement error, a conceivable assumption in some practical applications.

Combining this with the equation above we get

Yi “ βᵀXi,¨ ` pei ´ φ
ᵀHi,¨q and Xi,¨ “ ΨᵀHi,¨ `X

0
i¨, (5)

where φ “ Ψβ P Rq. Therefore, the model (5) can be seen as a special case of the model

(2), by identifying X0
i¨ in (5) with Ei,¨ in (2).
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3 Doubly Debiased Lasso Estimator

In this section, for a fixed index j P t1, . . . , pu, we propose an inference method for the

regression coefficient βj of the Hidden Confounding Model (2). The validity of the method

is demonstrated by considering the equivalent model (3).

3.1 Double Debiasing

We denote by pβinit an initial estimator of β. We will use the spectral deconfounding

estimator proposed in (Ćevid et al., 2018), described in detail in Section 3.4. We start

from the following decomposition:

Y ´X´j pβ
init
´j “ Xj pβj ` bjq `X´jpβ´j ´ pβinit´j q `X´jb´j ` ε for j P t1, . . . , pu. (6)

The above decomposition reveals two sources of bias: the bias X´jpβ´j ´ pβinit´j q due to

the error of the initial estimator pβinit and the bias X´jb´j induced by the perturbation

vector b in the model (3), arising by marginalizing out the hidden confounding in (2). Note

that the bias bj is negligible in the dense confounding setting, see the supplement of Guo

et al. (2020). The first bias, due to penalization, appears in the standard high-dimensional

linear regression as well, and can be corrected with the debiasing methods proposed in

(Zhang and Zhang, 2014; van de Geer et al., 2014; Javanmard and Montanari, 2014)

when assuming no hidden confounding. However, in presence of hidden confounders,

methodological innovation is required for correcting both bias terms and conducting the

resulting statistical inference. We propose a novel Doubly Debiased Lasso estimator for

correcting both sources of bias simultaneously.

Denote by Ppjq P Rnˆn a symmetric spectral transformation matrix, which shrinks the

singular values of the sub-design X´j P Rnˆpp´1q. The detailed construction, together with

some examples, is given in Section 3.3. We shall point out that the construction of the

transformation matrix Ppjq depends on which coefficient βj is our target and hence refer to

Ppjq as the nuisance spectral transformation with respect to the coefficient βj . Multiplying

both sides of the decomposition (6) with the transformation Ppjq gives:

PpjqpY ´X´j pβinit´j q “ PpjqXj pβj ` bjq ` PpjqX´jpβ´j ´ pβinit´j q ` PpjqX´jb´j ` Ppjqε. (7)

The quantity of interest βj appears on the RHS of the equation (7) next to the vector

PpjqXj, whereas the additional bias lies in the span of the columns of PpjqX´j. For this

reason, we construct a projection direction vector PpjqZj P Rn as the transformed residuals

of regressing Xj on X´j:

Zj “ Xj ´X´jpγ, (8)
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where the coefficients pγ are estimated with the Lasso for the transformed covariates using

Ppjq:

pγ “ arg min
γPRp´1

#

1

2n
}PpjqXj ´ PpjqX´jγ}22 ` λj

ÿ

l‰j

}PpjqX¨,l}2
?
n

|γl|

+

, (9)

with λj “ Aσj
a

log p{n for some positive constant A ą
?

2 (for σj, see Section 4.1).

Finally, motivated by the equation (7), we propose the following estimator for βj:

pβj “
pPpjqZjqᵀPpjqpY ´X´j pβinit´j q

pPpjqZjqᵀPpjqXj

. (10)

We refer to this estimator as the Doubly Debiased Lasso estimator as it simultaneously

corrects the bias induced by pβinit and the confounding bias X´jb´j by using the spectral

transformation Ppjq.
In the following, we briefly explain why the proposed estimator estimates βj well. We

start with the following error decomposition of pβj, derived from (7)

pβj ´ βj “
pPpjqZjqᵀPpjqε
pPpjqZjqᵀPpjqXj
l jh n

Variance

`
pPpjqZjqᵀPpjqX´jpβ´j ´ pβinit´j q

pPpjqZjqᵀPpjqXj

`
pPpjqZjqᵀPpjqX´jb´j
pPpjqZjqᵀPpjqXj

` bj
l jh n

Remaining Bias

.

(11)

In the above equation, the bias after correction consists of two components: the remaining

bias due to the estimation error of pβinit´j and the remaining confounding bias due to X´jb´j

and bj . These two components can be shown to be negligible in comparison to the variance

component under certain model assumptions, see Theorem 1 and its proof for details.

Intuitively, the construction of the spectral transformation matrix Ppjq is essential for

reducing the bias due to the hidden confounding. The term
pPpjqZjqᵀPpjqX´jb´j
pPpjqZjqᵀPpjqXj

in equation

(11) is of a small order because Ppjq shrinks the leading singular values of X´j and hence

PpjqX´jb´j is significantly smaller than X´jb´j . The induced bias X´jb´j is not negligible

since b´j points in the direction of leading right singular vectors of X´j, thus leading to

} 1?
n
X´jb´j}2 being of constant order. By applying a spectral transformation to shrink the

leading singular values, one can show that } 1?
n
PpjqX´jb´j}2 “ Opp1{

a

mintn, puq.

Furthermore, the other remaining bias term
pPpjqZjqᵀPpjqX´jpβ´j´pβinit´j q

pPpjqZjqᵀPpjqXj
in (11) is small

since the initial estimator pβinit is close to β in `1 norm and PpjqZj and PpjqX´j are nearly

orthogonal due to the construction of pγ in (9). This bias correction idea is analogous to

the Debiased Lasso estimator introduced in (Zhang and Zhang, 2014) for the standard

high-dimensional linear regression:

pβDBj “
pZDB

j qᵀpY ´X´j pβ
init
´j q

pZDB
j qᵀXj

, (12)
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where ZDB
j is constructed similarly as in (8) and (9), but where Ppjq is the identity matrix.

Therefore, the main difference between the estimator in (12) and our proposed estimator

(10) is that for its construction we additionally apply the nuisance spectral transformation

Ppjq.
We emphasize that the additional spectral transformation Ppjq is necessary even

for just correcting the bias of pβinit´j in presence of confounding (i.e., it is also needed

for the first besides the second bias term in (11)). To see this, we define the best

linear projection of X1,j to all other variables X1,´j P Rp´1 with the coefficient vector

γ “ rEpXi,´jX
ᵀ
i,´jqs

´1EpXi,´jXi,jq P Rp´1 (which is then estimated by the Lasso in the

standard construction of ZDB
j ). We notice that γ need not be sparse due to the fact

that all covariates are affected by a common set of hidden confounders yielding spurious

associations. Hence, the standard construction of ZDB
j in (12) is not favorable in the

current setting. In contrast, the proposed method with Ppjq works for two reasons: first,

the application of Ppjq in (9) leads to a consistent estimator of the sparse component of γ,

denoted as γE (see the expression of γE given in the supplementary material of Guo et al.

(2020)); second, the application of Ppjq leads to a small prediction error PpjqX´jppγ ´ γEq.
We illustrate in Section 5 how the application of Ppjq corrects the bias due to pβinit´j and

observe a better empirical coverage after applying Ppjq in comparison to the standard

debiased Lasso in (12); see Figure 7.

3.2 Confidence Interval Construction

In Section 4, we establish the asymptotic normal limiting distribution of the proposed

estimator pβj under certain regularity conditions. Its standard deviation can be estimated

by

c

pσ2
e ¨Z

ᵀ
j pPpjqq4Zj

rZᵀ
j pPpjqq2Xjs2

with pσe denoting a consistent estimator of σe. The detailed construction

of pσe is described in Section 3.5. Therefore, a confidence interval (CI) with asymptotic

coverage 1´ α can be obtained as

CIpβjq “

˜

pβj ´ z1´α
2

d

pσ2
e ¨ Z

ᵀ
j pPpjqq4Zj

rZᵀ
j pPpjqq2Xjs

2
, pβj ` z1´α

2

d

pσ2
e ¨ Z

ᵀ
j pPpjqq4Zj

rZᵀ
j pPpjqq2Xjs

2

¸

, (13)

where z1´α
2

is the 1´ α
2

quantile of a standard normal random variable.

3.3 Construction of Spectral Transformations

Construction of the spectral transformation Ppjq P Rnˆn is an essential step for the

Doubly Debiased Lasso estimator (10). The transformation Ppjq P Rnˆn is a symmetric

matrix shrinking the leading singular values of the design matrix X´j P Rnˆpp´1q. Denote

by m “ mintn, p´1u and the SVD of the matrix X´j by X´j “ UpX´jqΛpX´jqrV pX´jqs
ᵀ,
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where UpX´jq P Rnˆm and V pX´jq P Rpp´1qˆm have orthonormal columns and ΛpX´jq P

Rmˆm is a diagonal matrix of singular values which are sorted in a decreasing order

Λ1,1pX´jq ě Λ2,2pX´jq ě . . . ě Λm,mpX´jq ě 0. We then define the spectral transformation

Ppjq for X´j as Ppjq “ UpX´jqSpX´jqrUpX´jqs
ᵀ, where SpX´jq P Rmˆm is a diagonal

shrinkage matrix with 0 ď Sl,lpX´jq ď 1 for 1 ď l ď m. The SVD for the complete design

matrix X is defined analogously. We highlight the dependence of the SVD decomposition

on X´j, but for simplicity it will be omitted when there is no confusion. Note that

PpjqX´j “ U pSΛqV ᵀ, so the spectral transformation shrinks the singular values tΛl,lu1ďlďm

to tSl,lΛl,lu1ďlďm, where Λl,l “ Λl,lpX´jq.

Trim transform For the rest of this paper, the spectral transformation that is used is

the Trim transform (Ćevid et al., 2018). It limits any singular value to be at most some

threshold τ . This means that the shrinkage matrix S is given as: for 1 ď l ď m,

Sl,l “

$

&

%

τ{Λl,l if Λl,l ą τ

1 otherwise
.

A good default choice for the threshold τ is the median singular value Λtm{2u,tm{2u, so

only the top half of the singular values is shrunk to the bulk value Λtm{2u,tm{2u and the

bottom half is left intact. More generally, one can use any percentile ρj P p0, 1q to shrink

the top p100ρjq% singular values to the corresponding ρj-quantile Λtρjmu,tρjmu. We define

the ρj-Trim transform Ppjq as

Ppjq “ UpX´jqSpX´jqrUpX´jqs
ᵀ with Sl,lpX´jq “

$

&

%

Λtρjmu,tρjmupX´jq

Λl,lpX´jq
if l ď tρjmu

1 otherwise
(14)

In Section 4 we investigate the dependence of the asymptotic efficiency of the resulting

Doubly Debiased Lasso pβj on the percentile choice ρj “ ρjpnq. There is a certain trade-off

in choosing ρj: a smaller value of ρj leads to a more efficient estimator, but one needs to

be careful to keep ρjm sufficiently large compared to the number of hidden confounders q,

in order to ensure reduction of the confounding bias. In the supplementary material of

Guo et al. (2020), the general conditions that the used spectral transformations need to

satisfy in order to ensure good performance of the resulting estimator are described.

3.4 Initial Estimator pβinit

For the Doubly Debiased Lasso (10), we use the spectral deconfounding estimator

proposed in (Ćevid et al., 2018) as our initial estimator pβinit. It uses a spectral transfor-

mation Q “ QpXq, constructed similarly as the transformation Ppjq described in Section
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3.3, with the difference that instead of shrinking the singular values of X´j, Q shrinks

the leading singular values of the whole design matrix X P Rnˆp. Specifically, for any

percentile ρ P p0, 1q, the ρ-Trim transform Q is given by

Q “ UpXqSpXqrUpXqsᵀ with Sl,lpXq “

$

&

%

Λtρmu,tρmupXq

Λl,lpXq
if l ď tρmu

1 otherwise
(15)

The estimator pβinit is computed by applying the Lasso to the transformed data QX and

QY :

pβinit “ arg min
βPRp

1

2n
}Q py ´Xβq }22 ` λ

p
ÿ

j“1

}QX¨j}2
?
n

|βj|, (16)

where λ “ Aσe
a

log p{n is a tuning parameter with A ą
?

2.

The transformation Q reduces the effect of the confounding and thus helps for estimation

of β. In the supplementary material of Guo et al. (2020), the `1 and `2-error rates of pβinit

are given, thereby extending the results of (Ćevid et al., 2018).

3.5 Noise Level Estimator

In addition to an initial estimator of β, we also require a consistent estimator pσ2
e of the

error variance σ2
e “ Epe2

i q for construction of confidence intervals. Choosing a noise level

estimator which performs well for a wide range of settings is not easy to do in practice

(Reid et al., 2016). We propose using the following estimator:

pσ2
e “

1

TrpQ2q
}Qy ´QX pβinit}22, (17)

where Q is the same spectral transformation as in (16).

The motivation for this estimator is based on the expression

Qy ´QX pβinit “ Qε`QXpβ ´ pβinitq `QXb, (18)

which follows from the model (3). The consistency of the proposed noise level estimator,

formally shown in Proposition 2, follows from the following observations: the initial spectral

deconfounding estimator pβinit has a good rate of convergence for estimating β; the spectral

transformation Q significantly reduces the additional error Xb induced by the hidden

confounders; }Qε}22{TrpQ2q consistently estimates σ2
ε . Additionally, the dense confounding

model is shown to lead to a small difference between the noise levels σ2
ε and σ2

e , see the

supplement of Guo et al. (2020). In Section 4 we show that variance estimator pσ2
e defined

in (17) is a consistent estimator of σ2
e .
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3.6 Method Overview and Choice of the Tuning Parameters

The Doubly Debiased Lasso needs specification of various tuning parameters. A good

and theoretically justified rule of thumb is to use the Trim transform with ρ “ ρj “ 1{2,

which shrinks the large singular values to the median singular value, see (14). Furthermore,

similarly to the standard Debiased Lasso (Zhang and Zhang, 2014), our proposed method

involves the regularization parameters λ in the Lasso regression for the initial estimator
pβinit (see equation (16)) and λj in the Lasso regression for the projection direction PpjqZj
(see equation (9)). For choosing λ we use 10-fold cross-validation, whereas for λj, we

increase slightly the penalty chosen by the 10-fold cross-validation, so that the variance of

our estimator, which can be determined from the data up to a proportionality factor σ2
e ,

increases by 25%, as proposed in (Dezeure et al., 2017).

4 Theoretical Justification

This section provides theoretical justifications of the proposed method for the Hidden

Confounding Model (2). The proofs of the main results together with several other

technical results of independent interest can be found in the supplementary material of

Guo et al. (2020).

4.1 Model assumptions

In the following, we fix the index 1 ď j ď p and introduce the model assumptions for

establishing the asymptotic normality of our proposed estimator pβj defined in (10). For

the coefficient matrix Ψ P Rqˆp in (3), we use Ψj P Rq to denote the j-th column and

Ψ´j P Rqˆpp´1q denotes the sub-matrix with the remaining p´ 1 columns. Furthermore,

we write γ for the best linear approximation of X1,j P R by X1,´j P Rp´1, that is

γ “ arg minγ1PRp´1 EpX1,j ´X1,´jγ
1q2, whose explicit expression is:

γ “ rEpX1,´jX
ᵀ
1,´jqs

´1EpX1,´jX1,jq.

For ease of notation, we do not explicitly express the dependence of γ on j. Similarly,

define

γE “ rEpE1,´jE
ᵀ
1,´jqs

´1EpE1,´jE1,jq.

We denote the corresponding residuals by ηi,j “ Xi,j ´X
ᵀ
i,´jγ and νi,j “ Ei,j ´E

ᵀ
i,´jγ

E for

1 ď i ď n. We use σj to denote the standard deviation of νi,j.

The first assumption is on the precision matrix of Ei,¨ P Rp in (2):
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(A1) The precision matrix ΩE “ rEpEi,¨Eᵀ
i,¨qs

´1 satisfies c0 ď λmin pΩEq ď λmax pΩEq ď C0

and }pΩEq¨,j}0 ď s where C0 ą 0 and c0 ą 0 are some positive constants and s

denotes the sparsity level which can grow with n and p.

Such assumptions on well-posedness and sparsity are commonly required for estimation of

the precision matrix (Meinshausen and Bühlmann, 2006; Lam et al., 2009; Yuan, 2010;

Cai et al., 2011) and are also used for confidence interval construction in the standard

high-dimensional regression model without unmeasured confounding (van de Geer et al.,

2014). Here, the conditions are not directly imposed on the covariates Xi,¨, but rather on

their unconfounded part Ei,¨.

The second assumption is about the coefficient matrix Ψ in (3), which describes the

effect of the hidden confounding variables Hi,¨ P Rq on the measured variables Xi,¨ P Rp:

(A2) The q-th singular value of the coefficient matrix Ψ´j P Rqˆpp´1q satisfies

λqpΨ´jq " lpn, p, qq :“ max

"

M

c

qp

n
plog pq3{4,

a

Mqp1{4
plog pq3{8,

a

qn log p

*

(19)

where M is the sub-Gaussian norm for components of Xi,., as defined in Assumption

(A3). Furthermore, we have

max t}ΨpΩEq¨,j}2, }Ψj}2, }Ψ´jpΩEq´j,j}2, }φ}2u À
?
qplog pqc, (20)

where Ψ and φ are defined in (2) and 0 ă c ď 1{4 is some positive constant.

The condition pA2q is crucial for identifying the coefficient βj in the high-dimensional

Hidden Confounding Model (2). Condition (A2) is referred to as the dense confounding

assumption. A few remarks are in order regarding when this identifiability condition holds.

Since all vectors ΨpΩEq¨,j, Ψj, Ψ´jpΩEq´j,j and φ are q-dimensional, the upper bound

condition (20) on their `2 norms is mild. If the vector φ P Rq has bounded entries and the

vectors tΨ¨,lu1ďlďp P Rq are independently generated with zero mean and bounded second

moments, then the condition (20) holds with probability larger than 1´ plog pq´2c, where

c is defined in (20).

In the factor model literature (Fan et al., 2013; Wang et al., 2017b) the spiked singular

value condition λqpΨq —
?
p is quite common and holds under mild conditions. The

Hidden Confounding Model is closely related to the factor model, where the hidden

confounders Hi,¨ are the factors and the matrix Ψ describes how these factors affect the

observed variables Xi,¨. However, for our analysis, our assumption on λqpΨ´jq in (19)

can be much weaker than the classical factor assumption λqpΨ´jq —
?
p, especially for

a range of dimensionality where p " n. In certain dense confounding settings, we can

show that condition (19) holds with high probability. Consider first the special case with
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a single hidden confounder, that is, q “ 1 and the effect matrix is reduced to a vector

Ψ P Rp. In this case, λ1pΨ´jq “ }Ψ´j}2 and the denseness of the effect vector Ψ´j leads

to a large λ1pΨ´jq. The condition (19) can be satisfied even if only a certain proportion of

covariates is affected by hidden confounding. When q “ 1, if we assume that there exists

a set A Ď t1, 2, . . . , pu such that tΨlulPA are i.i.d. and |A| " lpn, p, qq2, where lpn, p, qq

is defined in (19), then with high probability λqpΨq Á
a

|A| " lpn, p, qq. In the multiple

hidden confounders setting, if the vectors tΨlulPA are generated as i.i.d. sub-Gaussian

random vectors, which has an interpretation that all covariates are analogously affected

by the confounders, then the spiked singular value condition (19) is satisfied with high

probability as well. See the supplementary material of Guo et al. (2020) for the exact

statement. In Section 5.1, we also explore the numerical performance of the method when

different proportions of the covariates are affected and observe that the proposed method

works well even if the hidden confounders only affect a small percentage of the covariates,

say 5%.

Under the model (2), if the entries of Ψ are assumed to be i.i.d. sub-Gaussian with zero

mean and variance σ2
Ψ, then we have λqpΨ´jq —

?
pσΨ with high probability. Together

with (19), this requires

σΨ " max

#

M

c

q

n
plog pq3{4,

d

qn log p

p
,

a

qMplog pq3{4

p1{4

+

,

So if p " qn log p and mintn, pu " q3plog pq3{2M2, then the required effect size σΨ of the

hidden confounder Hi,¨ on an individual covariate Xi,j can diminish to zero fairly quickly.

The condition (19) can in fact be empirically checked using the sample covariance

matrix pΣX . Since ΣX “ ΨᵀΨ ` ΣE, then the condition (19) implies that ΣX has at

least q spiked eigenvalues. If the population covariance matrix ΣX has a few spikes, the

corresponding sample covariance matrix will also have spiked eigenvalue structure with a

high probability (Wang et al., 2017b). Hence, we can inspect the spectrum of the sample

covariance matrix pΣX and informally check whether it has spiked singular values. See the

left panel of Figure 2 for an illustration.

The third assumption is imposed on the distribution of various terms:

(A3) The random error ei in (2) is assumed to be independent of pXᵀ
i,¨, H

ᵀ
i,¨q

ᵀ, the error

vector Ei,¨ is assumed to be independent of the hidden confounder Hi,¨, and the noise

term νi,j “ Ei,j ´ E
ᵀ
i,´jγ

E is assumed to be independent of Ei,´j. Furthermore, Ei,¨

is a sub-Gaussian random vector and ei and νi,j are sub-Gaussian random variables,

whose sub-Gaussian norms satisfy maxt}Ei,¨}ψ2 , }ei}ψ2 ,max1ďlďp }νi,l}2u ď C, where

C ą 0 is a positive constant independent of n and p. For 1 ď l ď p, Xi,l are sub-

Gaussian random variables whose sub-Gaussian norms satisfy max1ďlďp }Xi,l}ψ2 ďM ,
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where 1 ÀM À
a

n{ log p.

The independence assumption between the random error ei and pXᵀ
i,¨, H

ᵀ
i,¨q

ᵀ is commonly

assumed for the SEM (1) and thus it holds in the induced Hidden Confounding Model (2)

as well, see for example (Pearl, 2009). Analogously, when modelling Xi,¨ as a SEM where

the hidden variables Hi,¨ are directly influencing Xi,¨, that is, they are parents of the Xi,¨’s,

the independence of Ei,¨ from Hi,¨ is a standard assumption. The independence assumption

between νi,j and Ei,´j holds automatically if Ei,¨ has a multivariate Gaussian distribution

(but Xi,¨ is still allowed to be non-Gaussian, e.g. due to non-Gaussian confounders).

We emphasize that the individual components Xi,j are assumed to be sub-Gaussian,

instead of the whole vector Xi,¨ P Rp. The sub-Gaussian norm M is allowed to grow with

q and p. Particularly, if we assume Hi,¨ to be a sub-Gaussian vector, then condition (20)

implies that M À
?
qplog pqc‖Hi,¨‖ψ2 . Furthermore, our theoretical analysis also covers

the case when the sub-Gaussian norm M is of constant order. This happens, for example,

when the entries of Ψ are of order 1{
?
q, since M — maxl“1,...,p }Ψl}2.

The final assumption is that the restricted eigenvalue condition (Bickel et al., 2009) for

the transformed design matrices QX and PpjqX´j is satisfied with high probability.

(A4) With probability at least 1´ expp´cnq, we have

RE
`

1
nX

ᵀQ2X
˘

“ inf
T Ďrps
|T |ďk

min
ωPRp

}ωT c}1ďCM}ωT }1

ωᵀ
`

1
nX

ᵀQ2X
˘

ω

}ω}22
ě τ˚; (21)

RE
´

1
nX

ᵀ
´jpP

pjqq2X´j

¯

“ inf
T Ďrpsztju
|T |ďs

min
ωPRp´1

}ωT c}1ďCM}ωT }1

ωᵀp 1
nX

ᵀ
´jpPpjqq2X´jqω
}ω}22

ě τ˚ (22)

where c, C, τ˚ ą 0 are positive constants independent of n and p and M is the

sub-Gaussian norm for components of Xi,., as defined in Assumption (A3). For ease

of notation, the same constants τ˚ and C are used in (21) and (22).

Such assumptions are common in the high-dimensional statistics literature, see (Bühlmann

and van de Geer, 2011). The restricted eigenvalue condition (A4) is similar, but more

complicated than the standard restricted eigenvalue condition introduced in (Bickel et al.,

2009). The main complexity is that, rather than for the original design matrix, the

restricted eigenvalue condition is imposed on the transformed design matrices PpjqX´j
and QX, after applying the Trim transforms Ppjq and Q, described in detail in Sections

3.3 and 3.4, respectively. In the following, we verify the restricted eigenvalue condition

pA4q for 1
n
XᵀQ2X and the argument can be extended to 1

n
Xᵀ
´jpPpjqq2X´j.
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Proposition 1. Suppose that assumptions (A1) and (A3) hold, Hi,¨ is a sub-Gaussian

random vector, q ` log p À
?
n and k “ }β}0 satisfies M2kq2 log p log n{n Ñ 0. Assume

further that the loading matrix Ψ P Rqˆp satisfies }Ψ}8 À
a

logpqpq, λ1pΨq{λqpΨq À 1 and

that

λqpΨq "

?
Mpmaxtk1{4q5{4, 1u logpnpq

mintn, pu1{4
. (23)

If λtρmup
1
n
XXᵀq ě cmaxt1, p{nu for ρ defined in (15) and some positive constant c ą 0

independent of n and p, then there exist positive constants c1, c2 ą 0 such that, with

probability larger than 1´ p´c2 ´ expp´c2nq, we have RE
`

1
n
XᵀQ2X

˘

ě c1λminpΣXq.

An important condition for establishing Proposition 1 is the condition (23). Under

the commonly assumed spiked singular value condition λqpΨq —
?
p (Fan et al., 2013;

Wang et al., 2017b; Bai, 2003; Bai and Ng, 2002), the condition (23) is reduced to

k ! mintn, pu{pM2q5 logpnpq4q. As a comparison, for the standard high-dimensional

regression model with no hidden confounders, (Zhou, 2009; Raskutti et al., 2010) verified

the restricted eigenvalue condition under the sparsity condition k ! n{ log p. That is, if

λqpΨq —
?
p, then the sparsity requirement in Proposition 1 is the same as that for the

high-dimensional regression model with no hidden confounders, up to a polynomial order

of q and logpnpq,

In comparison to the condition (19) in (A2), (23) can be slightly stronger for a range

of dimensionality where p " n3{2. However, Proposition 1 does not require the strong

spiked singular value condition λqpΨq —
?
p. The proof of Proposition 1 is presented in

the supplement of Guo et al. (2020). The condition λtρmup
1
n
XXᵀq ě cmaxt1, p{nu can be

empirically verified from the data. In the supplementary material of Guo et al. (2020),

further theoretical justification for this condition is provided, under mild assumptions.

4.2 Main Results

In this section we present the most important properties of the proposed estimator

(10). We always consider asymptotic expressions in the limit where both n, pÑ 8 and

focus on the high-dimensional regime with c˚ “ lim p{n P p0,8s. We mention here that

some new results on point estimation of the initial estimator pβinit defined in (16) are given

in the supplementary material of Guo et al. (2020), as they are established under more

general conditions than in (Ćevid et al., 2018).

4.2.1 Asymptotic normality

We first present the limiting distribution of the proposed Doubly Debiased Lasso

estimator. The proof of Theorem 1 and important intermediary results for establishing
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Theorem 1 are presented in the supplementary material of Guo et al. (2020)

Theorem 1. Consider the Hidden Confounding Model (2). Suppose that conditions (A1)-

(A4) hold and further assume that c˚ “ lim p{n P p0,8s, k :“ }β}0 !
?
n{pM3 log pq,

s :“ }pΩEq¨,j}0 ! n{pM2 log pq and ei „ Np0, σ2
eq. Let the tuning parameters for

pβinit in (16) and pγ in (9) respectively be λ — σe
a

log p{n `
b

q log p{λ2
qpΨq and λj —

σj
a

log p{n`
b

q log p{λ2
qpΨ´jq. Furthermore, let Q and Ppjq be the Trim transform (14)

with mintρ, ρju ě pq ` 1q{mintn, p´ 1u and maxtρ, ρju ă 1. Then the Doubly Debiased

Lasso estimator (10) satisfies

1
?
V

´

pβj ´ βj

¯

d
Ñ Np0, 1q, (24)

where

V “
σ2
eZ

ᵀ
j pPpjqq4Zj

rZᵀ
j pPpjqq2Xjs

2
and V ´1 σ

2
eTrrpPpjqq4s

σ2
jTr2

rpPpjqq2s
p
Ñ 1. (25)

Remark 1. The Gaussianity of the random error ei is mainly imposed to simplify the

proof of asymptotic normality. We believe that this assumption is a technical condition

and can be removed by applying more refined probability arguments as in (Götze and

Tikhomirov, 2002), where the asymptotic normality of quadratic forms pPpjqeqᵀPpjqe is

established for the general sub-Gaussian case. The argument could be extended to obtain

the asymptotic normality for pPpjqηjqᵀPpjqe, which is essentially needed for the current

result.

Remark 2. For constructing Q and Ppjq, the main requirement is to trim the singular

values enough in both cases, that is, mintρ, ρju ě pq ` 1q{mintn, p´ 1u. This condition

is mild in the high-dimensional setting with a small number of hidden confounders. Our

results are not limited to the proposed estimator which uses the Trim transform Ppjq

in (14) and the penalized estimators pγ and pβinit in (9) and (16), but hold for any any

initial estimator and transformation that satisfy the conditions given in the supplementary

material of Guo et al. (2020).

Remark 3. If we further assume the error εi in the model (3) to be independent of Xi,¨,

then the requirement (19) of the condition pA2q can be relaxed to

λqpΨ´jq " max

"

M

c

qp

n
plog pq3{4,

a

qMp1{4
plog pq3{8,

b

psM2 ` k
?
nM3qq log p

*

.

Note that the factor model implies the upper bound λqpΨ´jq À
?
p. Even if n ě p, the

above condition on λqpΨ´jq can still hold if p " kqM3 log p
?
n. On the other hand, the

condition (19) together with λqpΨ´jq À
?
p imply that p " qn log p, which excludes the

setting n ě p.
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There are three conditions on the parameters s, q, k imposed in the Theorem 1 above.

The most stringent one is the sparsity assumption k !
?
n{rM3 log ps. In standard high-

dimensional sparse linear regression, a related sparsity assumption k !
?
n{ log p has

also been used for confidence interval construction (Zhang and Zhang, 2014; van de Geer

et al., 2014; Javanmard and Montanari, 2014) and has been established in (Cai and Guo,

2017) as a necessary condition for constructing adaptive confidence intervals. In the

high-dimensional Hidden Confounding Model with M — 1, the condition on the sparsity

of β is then of the same asymptotic order as in the standard high-dimensional regression

with no hidden confounding. The condition on the sparsity of the precision matrix,

s “ }pΩEq¨,j}0 ! n{pM2log pq, is mild in the sense that, for M — 1, it is the maximal

sparsity level for identifying pΩEq¨,j. Implied by (19), the condition that the number of

hidden confounders q is small is fundamental for all reasonable factor or confounding

models.

4.2.2 Efficiency

We investigate now the dependence of the asymptotic variance V in (25) on the choice

of the spectral transformation Ppjq. We further show that the proposed Doubly Debiased

Lasso estimator (10) is efficient in the Gauss-Markov sense, with a careful construction of

the transformation Ppjq.
The Gauss-Markov theorem states that the smallest variance of any unbiased linear

estimator of βj in the standard low-dimensional regression setting (with no hidden con-

founding) is σ2
e{pnσ

2
j q, which we use as a benchmark. The corresponding discussion on

efficiency of the standard high-dimensional regression can be found in Section 2.3.3 of

(van de Geer et al., 2014). The expression for the asymptotic variance V of our proposed

estimator (10) is given by σ2
eTrrpPpjqq4s

σ2
jTr2rpPpjqq2s (see Theorem 1). For the Trim transform defined in

(14), which trims top p100ρjq% of the singular values, we have that

σ2
eTrrpPpjqq4s

σ2
jTr2

rpPpjqq2s
“
σ2
e

σ2
j

¨

řm
l“1 S

4
l,l

p
řm
l“1 S

2
l,lq

2
,

where we write m “ mintn, p´ 1u and Sl,l “ Sl,lpX´jq P r0, 1s. Since S4
l,l ď S2

l,l for every l,
řm
l“1 S

2
l,l ě p1´ ρjqm and p

řm
l“1 S

2
l,lq

2 ď m ¨
řm
l“1 S

4
l,l, we obtain

σ2
e

σ2
jm

ď
σ2
eTrrpPpjqq4s

σ2
jTr2

rpPpjqq2s
ď

1

1´ ρj
¨
σ2
e

σ2
jm

.

In the high-dimensional setting where p´ 1 ě n, we have m “ n and then

σ2
e

σ2
jn
ď

σ2
eTrrpPpjqq4s

σ2
jTr2

rpPpjqq2s
ď

1

1´ ρj
¨
σ2
e

σ2
jn
. (26)
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Theorem 2. Suppose that the assumptions of Theorem 1 hold. If p ě n ` 1 and ρj “

ρjpnq Ñ 0, then the Doubly Debiased Lasso estimator in (10) has asymptotic variance σ2
e

σ2
jn

,

that is, it achieves the Gauss-Markov efficiency bound.

The above theorem shows that in the q ! n regime, the Doubly Debiased Lasso achieves

the Gauss-Markov efficiency bound if ρj “ ρjpnq Ñ 0 and mintρ, ρju ě pq ` 1q{n (which

is also a condition of Theorem 1). When using the median Trim transform, i.e. ρj “ 1{2,

the bound in (26) implies that the variance of the resulting estimator is at most twice the

size of the Gauss-Markov bound. In Section 5, we illustrate the finite-sample performance

of the Doubly Debiased Lasso estimator for different values of ρj; see Figure 6.

In general for the high-dimensional setting p{nÑ c˚ P p0,8s, the Asymptotic Relative

Efficiency (ARE) of the proposed Doubly Debiased Lasso estimator with respect to the

Gauss-Markov efficiency bound satisfies the following:

ARE P

„

1

mintc˚, 1u
,

1

p1´ ρ˚qmintc˚, 1u



, (27)

where ρ˚ “ limnÑ8 ρjpnq P r0, 1q. The equation (27) reveals how the efficiency of the Dou-

bly Debiased Lasso is affected by the choice of the percentile ρj “ ρjpnq in transformation

Ppjq and the dimensionality of the problem. Smaller ρj leads to a more efficient estimator,

as long as the top few singular values are properly shrunk. Intuitively, a smaller percentile

ρj means that less information in X´j is trimmed out and hence the proposed estimator

is more efficient. In addition, for the case ρ˚ “ 0, we have ARE “ maxt1{c˚, 1u. With

ρ˚ “ 0, a plot of ARE with respect to the ratio c˚ “ lim p{n is given in Figure 1. We see

0 0.5 1 1.5 2 2.5 3

1

2

3

4

c˚ “ lim p{n

A
R

E

maxt1{c˚, 1u

Figure 1: The plot of ARE versus c˚ “ lim p{n, for the setting of ρ˚ “ 0.

that for c˚ ă 1 (that is p ă n), the relative efficiency of the proposed estimator increases

as the dimension p increases and when c˚ ě 1 (that is p ě n), we have that ARE “ 1,
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saying that the Doubly Debiased Lasso achieves the efficiency bound in the Gauss-Markov

sense.

The phenomenon that the efficiency is retained even in presence of hidden confounding

is quite remarkable. For comparison, even in the classical low-dimensional setting, the

most commonly used approach assumes availability of sufficiently many instrumental

variables (IV) satisfying certain stringent conditions under which one can consistently

estimate the effects in presence of hidden confounding. In Theorem 5.2 of (Wooldridge,

2010), the popular IV estimator, two-stage-least-squares (2SLS), is shown to have variance

strictly larger than the efficiency bound in the Gauss-Markov setting (with no unmeasured

confounding). It has been also shown in Theorem 5.3 of (Wooldridge, 2010) that the

2SLS estimator is efficient in the class of all linear instrumental variable estimators and

thus, all linear instrumental variable estimators are strictly less efficient than our Doubly

Debiased Lasso. On the other hand, our proposed method not only avoids the difficult

step of coming up with a large number of valid instrumental variables, but also achieves

the efficiency bound with a careful construction of the spectral transformation Ppjq. This

occurs due to a blessing of dimensionality and the assumption of dense confounding, where

a large number of covariates are assumed to be affected by a small number of hidden

confounders.

4.2.3 Asymptotic validity of confidence intervals

The asymptotic normal limiting distribution in Theorem 1 can be used for construction

of confidence intervals for βj. Consistently estimating the variance V of our estimator,

defined in (25), requires a consistent estimator of the error variance σ2
e . The following

proposition establishes the rate of convergence of the estimator pσ2
e proposed in (17):

Proposition 2. Consider the Hidden Confounding Model (2). Suppose that conditions

(A1)-(A4) hold. Suppose further that c˚ “ lim p{n P p0,8s, k À n{ log p and q !

mintn, p{ log pu. Then with probability larger than 1´ expp´ct2q ´ 1
t2
´ cplog pq´1{2 ´ n´c

for some positive constant c ą 0 and for any 0 ă t ď
?
n, we have

ˇ

ˇ

pσ2
e ´ σ

2
e

ˇ

ˇ À
t
?
n
`M2k

log p

n
`
q log p

p
`
pq
?

log p{n`M2kq log p

λ2
qpΨq

,

where M is the sub-Gaussian norm for components of Xi,. defined in Assumption (A3).

Together with (19) of the condition pA2q, we apply the above proposition and establish

pσ2
e ´σ

2
e

p
Ñ 0. As a remark, the estimation error |pσ2

e ´ σ
2
ε | is of the same order of magnitude

as |pσ2
e ´ σ

2
e | since the difference σ2

ε ´ σ
2
e is small in the dense confounding model.

Proposition 2, together with Theorem 1, imply the asymptotic coverage and precision

properties of the proposed confidence interval CIpβjq, described in (13):
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Corollary 1. Suppose that the conditions of Theorem 1 hold, then the confidence interval

defined in (13) satisfies the following properties:

lim inf
n,pÑ8

P pβj P CIpβjqq ě 1´ α, (28)

lim sup
n,pÑ8

P

˜

L pCIpβjqq ě p2` cqz1´α
2

d

σ2
eTrrpPpjqq4s

σ2
jTr2

rpPpjqq2s

¸

“ 0, (29)

for any positive constant c ą 0, where L pCIpβjqq denotes the length of the proposed

confidence interval.

Similarly to the efficiency results in Section 4.2.2, the exact length depends on the

construction of the spectral transformation Ppjq. Together with (26), the above proposition

shows that the length of constructed confidence interval is shrinking at the rate of n´1{2 for

the Trim transform in the high-dimensional setting. Specifically, for the setting p ě n` 1,

if we choose ρj “ ρjpnq ě pq ` 1q{n and ρjpnq Ñ 0, the constructed confidence interval

has asymptotically optimal length.

5 Empirical results

In this section we consider the practical aspects of Doubly Debiased Lasso methodology

and illustrate its empirical performance on both real and simulated data. The overview of

the method and the tuning parameters selection can be found in Section 3.6.

In order to investigate whether the given data set is potentially confounded, one can

inspect the principal components of the design matrix X, or equivalently consider its

SVD. Spiked singular value structure (see Figure 2) indicates the existence of hidden

confounding, as much of the variance of our data can be explained by a small number of

latent factors. This also serves as an informal check of the spiked singular value condition

in the assumption (A2).

The scree plot can also be used for choosing the trimming thresholds, if one wants to

depart from the default median rule (see Section 3.6). We have seen from the theoretical

considerations in Section 4 that we can reduce the estimator variance by decreasing the

trimming thresholds for the spectral transformation Ppjq. On the other hand, it is crucial

to choose them so that the number of shrunk singular values is still sufficiently large

compared to the number of confounders. However, exactly estimating the number of

confounders, e.g. by detecting the elbow in the scree plot (Wang et al., 2017b), is not

necessary with our method, since the efficiency of our estimator decreases relatively slowly

as we decrease the trimming threshold.
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Figure 2: Left: Spiked singular values of the standardized gene expression matrix (see Section 5.2) indicate

possible confounding. Right: Singular values after regressing out the q “ 65 confounding proxies given in

the dataset (thus labeled as “unconfounded”). The singular values in both plots are sorted decreasingly.

In what follows, we illustrate the empirical performance of the Doubly Debiased Lasso

in practice. We compare the performance with the standard Debiased Lasso (Zhang and

Zhang, 2014), even though it is not really a competitor for dealing with hidden confounding.

Our goal is to illustrate and quantify the error and bias when using the naive and popular

approach which ignores potential hidden confounding. We first investigate the performance

of our method on simulated data for a range of data generating mechanisms and then

investigate its behaviour on a gene expression dataset from the GTEx project (Lonsdale

et al., 2013).

5.1 Simulations

In this section, we compare the Doubly Debiased Lasso with the standard Debiased

Lasso in several different simulation settings for estimation of βj and construction of the

corresponding confidence intervals.

In order to make comparisons with the standard Debiased Lasso as fair as possible, we

use the same procedure for constructing the standard Debiased Lasso, but with Q “ Ip,

Ppjq “ Ip´1, whereas for the Doubly Debiased Lasso, Ppjq, Q are taken to be median Trim

transform matrices, unless specified otherwise. Finally, to investigate the usefulness of

double debiasing, we additionally include the standard Debiased Lasso estimator with

the same initial estimator pβinit as our proposed method, see Section 3.4. Therefore, this

corresponds to the case where Q is the median Trim transform, whereas Ppjq “ Ip´1.

We will compare the (scaled) bias and variance of the corresponding estimators. For a

fixed index j, from the equation (11) we have

V ´1{2
ppβj ´ βjq “ Np0, 1q `Bβ `Bb,
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where the estimator variance V is defined in (25) and the bias terms Bβ and Bb are given

by

Bβ “ V ´1{2
Zᵀ
j pPpjqq2X´jppβinit´j ´ β´jq

Zᵀ
j pPpjqq2Xj

, Bb “ V ´1{2
Zᵀ
j pPpjqq2Xb
Zᵀ
j pPpjqq2Xj

.

Larger estimator variance makes the confidence intervals wider. However, large bias makes

the confidence intervals inaccurate. We quantify this with the scaled bias terms Bβ, which

is due to the error in estimation of β, and Bb, which is due to the perturbation b arising

from the hidden confounding. Having small |Bβ| and |Bb| is essential for having a correct

coverage, since the construction of confidence intervals is based on the approximation

V ´1{2ppβj´βjq « Np0, 1q. We investigate the validity of the confidence interval construction

by measuring the coverage of the nominal 95% confidence interval. We present here a

wide range of simulations settings and further simulations can be found in the Section 7.

Simulation parameters Unless specified otherwise, in all simulations we fix q “ 3,

s “ 5 and β “ p1, 1, 1, 1, 1, 0, . . . 0qᵀ and we target the coefficient β1 “ 1. The rows of the

unconfounded design matrix E are generated from Np0,ΣEq distribution, where ΣE “ Ip,

as a default. The matrix of confounding variables H, the additive error e and the coefficient

matrices Ψ and φ all have i.i.d. Np0, 1q entries, unless stated otherwise. Each simulation

is averaged over 5, 000 independent repetitions.

Varying dimensions n and p In this simulation setting we investigate how the perfor-

mance of our estimator depends on the dimensionality of the problem. The results can

be seen in Figure 3. In the first scenario, shown in the top row, we have p “ 500 and n

varying from 50 to 2, 000, thus covering both low-dimensional and high-dimensional cases.

In the second scenario, shown in the bottom row, the sample size is fixed at n “ 500 and

the number of covariates p varies from 100 to 2, 000. We provide analogous simulations in

Section 7, where both the random variables and the model parameters are generated from

non-Gaussian distributions.

We see that the absolute bias term |Bb| due to confounding is substantially smaller for

Doubly Debiased Lasso compared to the standard Debiased Lasso, regardless of which

initial estimator is used. This is because Ppjq additionally removes bias by shrinking large

principal components of X´j . This spectral transformation helps also to make the absolute

bias term |Bβ| smaller for the Doubly Debiased Lasso compared to the Debiased Lasso,

even when using the same initial estimator pβinit. This comes however at the expense of

slightly larger variance, but we can see that the decrease in bias reflects positively on

the validity of the constructed confidence intervals. Their coverage is significantly more

accurate for Doubly Debiased Lasso, over a large range of n and p.
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There are two challenging regimes for estimation under confounding. Firstly, when

the dimension p is much larger than the sample size n, the coverage can be lower than

95%, since in this regime it is difficult to estimate β accurately and thus the term |Bβ| is

fairly large, even after the bias correction step. We see that the absolute bias |Bβ| grows

with p, but it is much smaller for the Doubly Debiased Lasso which positively impacts

the coverage. Secondly, in the regime where p is relatively small compared to n, |Bb|

begins to dominate and leads to undercoverage of confidence intervals. Bb is caused by the

hidden confounding and does not disappear when nÑ 8, while keeping p constant. The

simulation results agree with the asymptotic analysis of the bias term in the supplementary

material of Guo et al. (2020), where the term |Bb| vanishes as λqpΨq increases, in addition

to increasing the sample size n. In the regime considered in this simulation, |Bb| can

even grow, since the bias becomes increasingly large compared to the estimator’s variance.

However, it is important to note that even in these difficult regimes, Doubly Debiased

Lasso performs significantly better than the standard Debiased Lasso (irrespective of the

initial estimator) as it manages to additionally decrease the estimator’s bias.

Figure 3: (Varying dimensions) Dependence of the (scaled) absolute bias terms |Bβ | and |Bb| (left),

standard deviation V 1{2 (middle) and the coverage of the 95% confidence interval (right) on the number

of data points n (top row) and the number of covariates p (bottom row). On the left side, |Bβ | and |Bb|

are denoted by a dashed and a solid line, respectively. In the top row we fix p “ 500, whereas in the

bottom row we have n “ 500. Blue color corresponds to the Doubly Debiased Lasso, red color represents

the standard Debiased Lasso and green color corresponds also to the Debiased Lasso estimator, but with

the same pβinit as our proposed method. Note that the last two methods have almost indistinguishable

|Bb| and V .
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Toeplitz covariance structure for ΣE Now we fix n “ 300, p “ 1, 000, but we generate

the covariance matrix ΣE of the unconfounded part of the design matrix X to have Toeplitz

covariance structure: pΣEqi,j “ κ|i´j|, where we vary κ across the interval r0, 0.97s. As we

increase κ, the covariates X1, . . . , X5 in the active set get more correlated, so it gets harder

to distinguish their effects on the response and therefore to estimate β. Similarly, it gets as

well harder to estimate γ in the regression of Xj on X´j , since Xj can be explained well by

many linear combinations of the other covariates that are correlated with Xj. In Figure 4

we can see that Doubly Debiased Lasso is much less affected by correlated covariates. The

(scaled) absolute bias terms |Bb| and |Bβ| are much larger for standard Debiased Lasso,

which causes the coverage to worsen significantly for values of κ that are closer to 1.

Figure 4: (Toeplitz covariance for ΣE) Dependence of the (scaled) absolute bias terms |Bβ | and |Bb|

(left), standard deviation V 1{2 (middle) and the coverage of the 95% confidence interval (right) on the

parameter κ of the Toeplitz covariance structure. n “ 300 and p “ 1, 000 are fixed. On the leftmost plot,

|Bβ | and |Bb| are denoted by a dashed and a solid line, respectively. Blue color corresponds to the Doubly

Debiased Lasso, red color represents the standard Debiased Lasso and green color corresponds also to

the Debiased Lasso estimator, but with the same pβinit as our proposed method. Note that the last two

methods have almost indistinguishable |Bb| and V .

Proportion of confounded covariates In order to investigate how the confounding

denseness affects the performance of our method, we now again fix n “ 300 and p “ 1, 000,

but we change the proportion of covariates Xi that are affected by each confounding

variable. We do this by setting to zero a desired proportion of entries in each row of the

matrix Ψ P Rqˆp, which describes the effect of the confounding variables on each predictor.

Its non-zero entries are still generated as Np0, 1q. We set once again ΣE “ Ip and we vary

the proportion of nonzero entries of Ψ from 5% to 100%. The results can be seen in Figure

5. We can see that Doubly Debiased Lasso performs well even when only a very small

number (5%) of the covariates are affected by the confounding variables, which agrees

with our theoretical discussion for assumption (A2). We can also see that the coverage of

the standard Debiased Lasso is poor even for a small number of affected variables and

it worsens as the confounding variables affect more and more covariates. The coverage
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improves to some extent when we use a better initial estimator, but is still worse than our

proposed method.

In Section 7 we also show how the performance changes with the strength of confounding,

by gradually decreasing the size of the entries of the loading matrix Ψ.

Figure 5: (Proportion confounded) Dependence of the (scaled) absolute bias terms |Bβ | and |Bb| (left),

standard deviation V 1{2 (middle) and the coverage of the 95% confidence interval (right) on proportion of

confounded covariates. n “ 300 and p “ 1, 000 are fixed. On the leftmost plot, |Bβ | and |Bb| are denoted

by a dashed and a solid line, respectively. Blue color corresponds to the Doubly Debiased Lasso, red

color represents the standard Debiased Lasso and green color corresponds also to the Debiased Lasso

estimator, but with the same pβinit as our proposed method. Note that the last two methods have almost

indistinguishable |Bb| and V .

Trimming level We investigate here the dependence of the performance on the choice

of the trimming threshold for the Trim transform (14), parametrized by the proportion

of singular values ρj which we shrink. The spectral transformation Q used for the initial

estimator pβinit is fixed to be the default choice of Trim transform with median rule.

We fix n “ 300 and p “ 1, 000 and consider the same setup as in Figure 3. We take

τ “ Λtρjmu,tρjmu to be the ρj-quantile of the set of singular values of the design matrix

X, where we vary ρj across the interval r0, 0.9s. When ρj “ 0, τ is the maximal singular

value, so there is no shrinkage and our estimator reduces to the standard Debiased Lasso

(with the initial estimator pβinit). The results are displayed in Figure 6. We can see that

Doubly Debiased Lasso is quite insensitive to the trimming level, as long as the number of

shrunken singular values is large enough compared to the number of confounding variables

q. In the simulation q “ 3 and the (scaled) absolute bias terms |Bb| and |Bβ| are still small

when ρj « 0.02, corresponding to shrinking 6 largest singular values. We see that the

standard deviation decreases as ρj decreases, i.e. as the trimming level τ increases, which

matches our efficiency analysis in Section 4.2.1. However, we see that the default choice

τ “ Λtm{2u,tm{2u has decent performance as well. In Section 7 we also explore whether the

choice of spectral transformation significantly affects the performance, with a focus on the

PCA adjustment, which maps first several singular values to 0, while keeping the others
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intact.

Figure 6: (Trimming level) Dependence of the (scaled) absolyte bias terms |Bβ | and |Bb| (left), standard

deviation V 1{2 (middle) and the coverage of the 95% confidence interval (right) on the trimming level

ρj of the Trim transform (see Equation (14)). The sample size is fixed at n “ 300 and the dimension

at p “ 1, 000. On the leftmost plot, |Bβ | and |Bb| are denoted by a dashed and a solid line, respectively.

The case ρj “ 0 corresponds to Debiased Lasso with the spectral deconfounding initial estimator pβinit,

described in (16).

No confounding bias We consider now the same simulation setting as in Figure 3,

where we fix n “ 500 and vary p, but where in addition we remove the effect of the

perturbation b that arises due to the confounding. We generate from the model (2), but

then adjust for the confounding bias: Y Ð pY ´Xbq, where b is the induced coefficient

perturbation, as in Equation (3). In this way we still have a perturbed linear model, but

where we have enforced b “ 0 while keeping the same spiked covariance structure of X:

ΣX “ ΣE ` ΨᵀΨ as in (2). The results can be seen in the top row of Figure 7. We see

that Doubly Debiased Lasso still has smaller absolute bias |Bβ|, slightly higher variance

and better coverage than the standard Debiased Lasso, even in absence of confounding.

The bias term Bb equals 0, since we have put b “ 0. We can even observe a decrease in

estimation bias for large p, and thus an improvement in the confidence interval coverage.

This is due to the fact that X has a spiked covariance structure and trimming the large

singular values reduces the correlations between the predictors. This phenomenon is also

illustrated in the additional simulations in the Section 7, where we set q “ 0 and put

E to have either Toeplitz or equicorrelation covariance structure with varying degree of

spikiness (by varying the correlation parameters).

In the bottom row of Figure 7 we repeat the same simulation, but where we set q “ 0

and take ΣX “ ΣE “ I in order to investigate the performance of the method in the

setting without confounding, but where the covariance matrix of the predictors is not

spiked. We see that there is not much difference in the bias and only a slight increase in

the variance of our estimator and thus also there is not much difference in the coverage

of the confidence intervals. We conclude that our method can provide certain robustness
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against dense confounding: if there is such confounding, our proposed method is able to

significantly reduce the bias caused by it; on the other hand, if there is no confounding, in

comparison to the standard Debiased Lasso, our proposed method still has essentially as

good performance, with a small increase in variance.

Figure 7: (No confounding bias) Dependence of the (scaled) absolute bias terms |Bβ | and |Bb| (left),

standard deviation V 1{2 (middle) and the coverage of the 95% confidence interval (right) on the number of

covariates p, while keeping n “ 500 fixed. In the plots on the left, |Bβ | and |Bb| are denoted by a dashed

and a solid line, respectively, but Bb “ 0 since we have enforced b “ 0. Top row corresponds to the spiked

covariance case ΣX “ ΨTΨ` I, whereas for the bottom row we set ΣX “ I. Blue color corresponds to

the Doubly Debiased Lasso, red color represents the standard Debiased Lasso and green color corresponds

also to the Debiased Lasso estimator, but with the same pβinit as our proposed method. Note that the last

two methods have almost indistinguishable V .

Measurement error We now generate from the measurement error model (4), which

can be viewed as a special case of our model (2). The measurement error W “ ΨᵀH is

generated by q “ 3 latent variables Hi,¨ P Rq for 1 ď i ď n. We fix the number of data

points to be n “ 500 and vary the number of covariates p from 50 to 1, 000, as in Figure

3. The results are displayed in Figure 8, where we can see a similar pattern as before:

Doubly Debiased Lasso decreases the bias at the expense of a slightly inflated variance,

which in turn makes the inference much more accurate and the confidence intervals have

significantly better coverage.
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Figure 8: (Measurement error) Dependence of the (scaled) absolute bias terms |Bβ | and |Bb| (left),

standard deviation V 1{2 (middle) and the coverage of the 95% confidence interval (right) on the number

of covariates p in the measurement error model (4). The sample size is fixed at n “ 500. On the leftmost

plot, |Bβ | and |Bb| are denoted by a dashed and a solid line, respectively. Blue color corresponds to the

Doubly Debiased Lasso, red color represents the standard Debiased Lasso and green color corresponds

also to the Debiased Lasso estimator, but with the same pβinit as our proposed method. Note that the last

two methods have almost indistinguishable |Bb| and V .

5.2 Real data

We investigate here the performance of Doubly Debiased Lasso on a genomic dataset.

The data are obtained from the GTEx project (Lonsdale et al., 2013), where the gene

expression has been measured postmortem on samples coming from various tissue types. For

our purposes, we use fully processed and normalized gene expression data for the skeletal

muscle tissue. The gene expression matrix X consists of measurements of expressions of

p “ 12, 646 protein-coding genes for n “ 706 individuals. Genomic datasets are particularly

prone to confounding (Leek and Storey, 2007; Gagnon-Bartsch and Speed, 2012; Gerard

and Stephens, 2020), and for our analysis we are provided with q “ 65 proxies for hidden

confounding, computed with genotyping principal components and PEER factors.

We investigate the associations between the expressions of different genes by regressing

one target gene expression Xi on the expression of other genes X´i. Since the expression of

many genes is very correlated, researchers often use just „ 1, 000 carefully chosen landmark

genes as representatives of the whole gene expression (Subramanian et al., 2017). We will

use several such landmark genes as the responses in our analysis.

In Figure 9 we can see a comparison of 95%-confidence intervals that are obtained from

Doubly Debiased Lasso and standard Debiased Lasso. For a fixed response landmark gene

Xi, we choose 25 predictor genes Xj where j ‰ i such that their corresponding coefficients

of the Lasso estimator for regressing Xi on X´i are non-zero. The covariates are ordered

according to decreasing absolute values of their estimated Lasso coefficients. We notice

that the confidence intervals follow a similar pattern, but that the Doubly Debiased Lasso,

besides removing bias due to confounding, is more conservative as the resulting confidence
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Figure 9: Comparison of 95% confidence intervals obtained by Doubly Debiased Lasso (blue) and Doubly

Debiased Lasso (red) for regression of the expression of one target landmark gene on the other gene

expressions.

intervals are wider.

This behavior becomes even more apparent in Figure 10, where we compare all p-

values for a fixed response landmark gene. We see that Doubly Debiased Lasso is more

conservative and it declares significantly less covariates significant than the standard

Debiased Lasso. Even though the p-values of the two methods are correlated (see also

Figure 12), we see that it can happen that one method declares a predictor significant,

whereas the other does not.

Figure 10: Comparison of p-values for two-sided test of the hypothesis βj “ 0, obtained by Doubly

Debiased Lasso (red) and Doubly Debiased Lasso (blue) for regression of the expression of one target gene

on the other gene expressions. The covariates are ordered by decreasing significance, either estimated by

the Debiased Lasso (left) or by the Doubly Debiased Lasso (right). Black dotted line indicates the 5%

significance level.

Robustness against hidden confounding We now adjust the data matrix X by

regressing out the q “ 65 provided hidden confounding proxies. By regressing out these

covariates, we obtain an estimate of the unconfounded gene expression matrix X̃. We

compare the estimates for the original gene expression matrix with the estimates obtained
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from the adjusted matrix.

Figure 11: Comparison of the sets of the most significant covariates chosen based on the original expression

matrix X and the deconfounded gene expression matrix X̃, for different cardinalities of the sets (model

size). The set differences are measured by Jaccard distance. Red line represents the standard Debiased

Lasso method, whereas the blue and green lines denote the Doubly Debiased Lasso that uses ρ “ 0.5 and

ρ “ 0.1 for obtaining the trimming threshold, respectively; see Equation (14).

For a fixed response landmark gene expression Xi, we can determine significance of

the predictor genes by considering the p-values. One can perform variable screening

by considering the set of most significant genes. For Doubly Debiased Lasso and the

standard Lasso we compare the sets of most significant variables determined from the gene

expression matrix X and the deconfounded matrix X̃. The difference of the chosen sets is

measured by the Jaccard distance. A larger Jaccard distance indicates a larger difference

between the chosen sets. The results can be seen in Figure 11. The results are averaged

over 10 different response landmark genes. We see that the Doubly Debiased Lasso gives

more similar sets for the large model size, indicating that the analysis conclusions obtained

by using Doubly Debiased Lasso are more robust in presence of confounding variables.

However, for small model size we do not see large gains. In this case the sets produced by

any method are quite different, i.e. the Jaccard distance is very large. This indicates that

the problem of determining the most significant covariates is quite difficult, since X and

X̃ differ a lot.

In Figure 12 we can see the relationship between the p-values obtained by Doubly

Debiased Lasso and the standard Debiased Lasso for the original gene expression matrix X

and the deconfounded matrix X̃. The p-values are aggregated over 10 response landmark

genes and are computed for all possible predictor genes. We can see from the left plot that

the Doubly Debiased Lasso is much more conservative for the confounded data. The cloud

of points is skewed upwards showing that the standard Debiased Lasso declares many
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Figure 12: Comparison of p-values for two-sided test of the hypothesis βj “ 0, obtained by Doubly

Debiased Lasso and standard Debiased Lasso for regression of the expression of one target gene on the

other gene expressions. The points are aggregated over 10 landmark response genes. The p-values are

either determined using the original gene expression matrix (left) or the matrix where we have regressed

out the given q “ 65 confounding proxies (right). Horizontal and vertical black dashed lines indicate the

5% significance level.

more covariates significant in presence of the hidden confounding. On the other hand, in

the right plot we can see that the p-values obtained by the two methods are much more

similar for the unconfounded data and the point cloud is significantly less skewed upwards.

The remaining deviation from the y “ x line might be due to the remaining confounding,

not accounted for by regressing out the given confounder proxies.

6 Discussion

We propose the Doubly Debiased Lasso estimator for hypothesis testing and confidence

interval construction for single regression coefficients in high-dimensional settings with

“dense” confounding. We present theoretical and empirical justifications and argue that our

double debiasing leads to robustness against hidden confounding. In case of no confounding,

the price to be paid is (typically) small, with a small increase in variance but even a

decrease in estimation bias, in comparison to the standard Debiased Lasso (Zhang and

Zhang, 2014); but there can be substantial gain when “dense” confounding is present.

It is ambitious to claim significance based on observational data. One always needs to

make additional assumptions to guard against confounding. We believe that our robust

Doubly Debiased Lasso is a clear improvement over the use of standard inferential high-

dimensional techniques, yet it is simple and easy to implement, requiring two additional

SVDs only, with no additional tuning parameters when using our default choice of trimming

ρ “ ρj “ 50% of the singular values in Equations (14) and (15).
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7 Additional Simulations

We present here some additional simulations to the ones presented in the Section

5.1. We use the same simulation setup where we further vary certain aspects of the data

generating distribution or we vary the tuning parameters of the proposed Doubly Debiased

Lasso method.

No confounding - Toeplitz and Equicorrelation covariance Here we explore fur-

ther the scenarios where there is no confounding at all, i.e. q “ 0, similarly as in the

bottom part of Figure 7, but with different covariance structure of X “ E. We fix

n “ 300, p “ 1, 000, and take the covariance matrix ΣE to be either a Toeplitz matrix,

with pΣEqi,j “ κ|i´j| for κ P r0, 1q, or we take it to be equicorrelation matrix where

pΣEqi,j “ κ P r0, 1q when i ‰ j and 1 otherwise. In both cases, as the correlation parame-

ter κ approaches 1, the singular values become more spiked and the predictors become

more correlated. The results can be seen in Figure 13. We see that Doubly Debiased

Lasso seems to have much smaller bias |Bβ| and thus better coverage even in the case

when q “ 0, because Trimming large singular values reduces the correlations between

the predictors. This difference in bias and the coverage is even more clearly pronounced

for the equicorrelation covariance structure, since for the Toeplitz covariance structure

CorpXi, Xjq decays as |i ´ j| gets bigger, whereas for equicorrelation case it is constant

and equal to κ.

Non-Gaussian distribution The Assumption (A3) in Section 3 requires that the noise

term νi,j “ Ei,j ´ Eᵀ
i,´jγ

E is is independent of Ei,´j. This condition will automatically

hold if Ei,¨ is multivariate Gaussian or Ei,¨ has independent entries. We now test the

robustness of Doubly Debiased Lasso method when this assumption is violated. In order

to examine that, we repeat the simulation setting displayed in Figure 3, where n “ 500

and p varies from 1 to 2, 000. We change the distribution as follows: Let P be some

real distribution with zero mean and unit variance. The entries of the matrix of the

confounders H are generated i.i.d. from P. Furthermore, the unconfounded part of the

predictors E is generated as ZΣ
1{2
E , where Z is a nˆ p matrix with i.i.d. entries coming

from the distribution P and ΣE is a Toeplitz matrix with pΣEqi,j “ κ|i´j| for κ “ 0.7.

Finally, the noise variables ei used for generating Y (see Equation 2) are also generated

from P. The results can be seen in Figure 14. We take P to be the following distributions:

standardized chi-squared with 1 degree of freedom, standardized t-distribution with 5

degrees of freedom and standardized Binp16, 0.5q. For comparisons of the performance, we

also include Np0, 1q distribution, but one needs to keep in mind that the obtained plot
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Figure 13: (No confounding - Toeplitz and Equicorrelation covariance) Dependence of the (scaled) absolute

bias terms |Bβ | and |Bb| (left), standard deviation V 1{2 (middle) and the coverage of the 95% confidence

interval (right) on the correlation parameter κ, while keeping p “ 1, 000, n “ 300, q “ 0 fixed. In the plots

on the left, |Bβ | and |Bb| are denoted by a dashed and a solid line, respectively, but Bb “ 0 since we zero

confounders q “ 0. Top row corresponds to the Toeplitz covariance structure pΣEqi,j “ κ|i´j|, whereas for

the bottom row we have equicorrelation covariance matrix where the off-diagonal elements equal κ. Blue

color corresponds to the Doubly Debiased Lasso, red color represents the standard Debiased Lasso and

green color corresponds also to the Debiased Lasso estimator, but with the same pβinit as our proposed

method. Note that the last two methods have almost indistinguishable V .

differs from the one in Figure 3 because of different correlation structure of E. We can see

that there is very little change in the performance of the proposed estimator, thus showing

that Doubly Debiased Lasso can be used for a wide range of models.

Comparison to PCA adjustment Here we investigate how the choice of the spectral

transformation can affect the performance of the Doubly Debiased Lasso estimator. We

focus on the PCA adjustment which maps first q̂ singular values to 0, for some tuning

parameter q̂, while keeping the remaining singular values unchanged. This transformation

is used frequently in the literature because it arises by regressing out the top q̂ principal

components from every predictor.

We fix n “ 300, p “ 1, 000, q “ 5 and vary the parameter q̂. We compare the estimator

using the PCA adjustment for both Ppjq and Q with the estimator using the Trim transform

with the median rule for both Ppjq and Q. Finally, we also consider the estimator using

the Trim transform for Q and PCA adjustment for Ppjq, in order to separate the effects of
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Figure 14: (Non-Gaussian distribution) Dependence of the (scaled) absolute bias terms |Bβ | and |Bb|

(left), standard deviation V 1{2 (middle) and the coverage of the 95% confidence interval (right) on the

number of predictors p, while keeping n “ 500, q “ 3 fixed. On the left side, |Bβ | and |Bb| are denoted by

a dashed and a solid line, respectively. We change the distribution of H,E, e in (1) as described in the

text. Each row in the plot corresponds to a different distribution P. We set ΣE to have Toeplitz structure

with parameter κ “ 0.7. Blue color corresponds to the Doubly Debiased Lasso, red color represents the

standard Debiased Lasso and green color corresponds also to the Debiased Lasso estimator, but with the

same pβinit as our proposed method. Note that the last two methods have almost indistinguishable |Bb|

and V .
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changing the spectral transformation for the initial estimator pβinit and the overall estimator

construction. The results can be seen in Figure 15.

We see that the performance is very sensitive to the choice of the tuning parameter q̂.

On one hand, if q̂ ă q, we do not manage to remove enough of the confounding bias Bb,

which has as a consequence that there is certain undercoverage of the confidence intervals.

On the other hand, if q̂ ď q, the bias Bb becomes very small, but the variance of our

estimator increases slowly as q̂ grows. Also, removing too many principal components when

computing pβinit can remove too much signal, resulting in the higher bias Bβ. Trim transform

has an advantage that we do not need to estimate the number of latent confounders q

from the data, which might be a quite difficult task. This is done by trimming many

principal components, but not removing them completely. However, this can result in

a small increase of the estimator variance compared to the PCA adjustment with the

optimal tuning q̂ “ q.

Figure 15: (Comparison to PCA adjustment) Dependence of the (scaled) absolute bias terms |Bβ | and

|Bb| (left), standard deviation V 1{2 (middle) and the coverage of the 95% confidence interval (right) on

the correlation parameter κ, while keeping p “ 1, 000, n “ 300, q “ 3 fixed. In the left plot, |Bβ | and |Bb|

are denoted by a dashed and a solid line, respectively. We vary the parameter q̂ of the PCA adjustment,

which maps the first q̂ to zero. Red color corresponds to the Doubly Debiased Lasso using Trim transform

for both Ppjq and Q, blue color represents the Doubly Debiased Lasso using PCA adjustment for both

Ppjq and Q and green color corresponds to the Doubly Debiased Lasso estimator using the same default
pβinit with Q being the median Trim transform, but uses PCA adjustment for Ppjq. Note that the last two

methods have almost indistinguishable V .

Weak confounding Here, we explore how the performance of our estimator depends

on the strength of the confounding, i.e. how H affects X. In Figure 5, we have already

explored how the performance of our method depends on the number of affected predictors

by each confounder. Here we allow all predictors to be affected, but with decaying strength.

This we achieve by generating the entries of the loading matrix Ψ as Ψij „ Np0, 1{σipjq
aq,

where for each of the q rows we take a random permutation σi : t1, . . . , pu Ñ t1, . . . , pu,

and a ě 1 is a tuning parameter describing the decay of the loading coefficients. The values
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n “ 300, p “ 1, 000 and q “ 3 are kept fixed. The results can be seen in the Figure 16. We

see that when a is close to 1 and the confounding is strong that our proposed estimator

is much better that the standard Debiased Lasso estimator. On the other hand, when a

is larger, meaning that the confounding gets much weaker, the difference in performance

decreases, but Doubly Debiased Lasso still has smaller bias and thus better coverage.

Figure 16: (Weak confounding) Dependence of the (scaled) absolute bias terms |Bβ | and |Bb| (left),

standard deviation V 1{2 (middle) and the coverage of the 95% confidence interval (right) on the loadings

decay parameter a, while keeping p “ 1, 000, n “ 300, q “ 3 fixed. In the left plot, |Bβ | and |Bb| are

denoted by a dashed and a solid line, respectively. Blue color corresponds to the Doubly Debiased Lasso,

red color represents the standard Debiased Lasso and green color corresponds also to the Debiased Lasso

estimator, but with the same pβinit as our proposed method. Note that the last two methods have almost

indistinguishable V .
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Beerenwinkel, N.

Submitted to Bioinformatics.





Identifying cancer pathway dysregulations using

differential causal effects

Kim Philipp Jablonski:, Martin Pirkl:, Domagoj Ćevid˚, Peter
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Abstract

Signaling pathways control cellular behavior. Dysregulated pathways, for example

due to mutations that cause genes and proteins to be expressed abnormally, can

lead to diseases, such as cancer. We introduce a novel computational approach,

called Differential Causal Effects (dce), which compares normal to cancerous cells

using the statistical framework of causality. The method allows to detect individual

edges in a signaling pathway that are dysregulated in cancer cells, while accounting

for confounding. Hence, artificial signals from, for example, batch effects have

less influence on the result and dce has a higher chance to detect the biological

signals. We show that dce outperforms competing methods on synthetic data sets

and on CRISPR knockout screens. In an exploratory analysis on breast cancer

data from TCGA, we recover known and discover new genes involved in breast

cancer progression.

1 Introduction

The complexity of cancer makes finding reliable diagnosis and treatment options a

difficult task. Decades of research made the intractable disease better understood. However,

many challenges remain due to its high variability and context specificity, e.g., regarding

tissue and cell type. Patients with common cancer types in early stages show promising

survival rates, even though rare subtypes still show low survival rates due to different

83
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traits like a more aggressive disease progression (Hawkes, 2019; Miller et al., 2019; Troester

and Swift-Scanlan, 2009).

It has been hypothesized that cancer diversity can at least in part be explained by

heterogeneous mutational patterns. These patterns influence the activity of biological

pathways at the cellular level (Khakabimamaghani et al., 2019; Hanahan and Weinberg,

2011). For example, signaling pathways consist of several genes, which regulate certain cell

programs, such as growth or apoptosis. The programs are driven by the causal interaction

between the genes, e.g., the up-regulation of one causes the up-regulation of another gene.

The causal effect (CE) determines the strength of this causal interaction, e.g., by increasing

the expression of gene X two-fold, the expression of its child Y increases four-fold. Thus,

X has a causal effect on Y of 2 (Pearl, 2000). Understanding how these causal networks are

perturbed in tumors is necessary for prioritizing drug targets, understanding inter-patient

heterogeneity, and detecting driver mutations (Vogelstein et al., 2013).

Traditionally, perturbed pathways are detected by assessing whether differentially

expressed genes are members of the respective pathway more often than expected by

chance. More sophisticated methods measure whether genes belonging to a pathway

are localized at certain positions of a rank-ordered set of differentially expressed genes

(Subramanian et al., 2005). In such cases, a pathway is interpreted as a simple set of

genes and all topological information concerning the functional interconnectivity of genes

is ignored. It has been recognized that interactions among genes can have a significant

effect on the computation of pathway enrichments. Some tools consider, for example, gene

expression correlations to account for confounding effects and control the type I error while

retaining good statistical power (Wu and Smyth, 2012). The underlying structure of gene

interactions can thus be either estimated from the data (P. Spirtes, 2000; Sedgewick et al.,

2016) used for the enrichment analysis, or obtained from existing databases. Canonical

pathway databases such as the Kyoto Encyclopedia of Genes and Genomes (KEGG)

(Ogata et al., 1999) can then be incorporated as prior knowledge to guide the enrichment

analysis using topological information of gene connectivity (Liu et al., 2019; Dutta et al.,

2012; Tarca et al., 2009; Saez-Rodriguez et al., 2009).

While such enrichment methods go beyond treating pathways as plain gene sets and

incorporate topological information of molecular interactions, they often only report a

global pathway dysregulation score (Tarca et al., 2009). An exception is PARADIGM,

which records an inferred activity for each entity in the pathway under consideration for a

given patient sample (Vaske et al., 2010). It does, however, not model causal effects, but

only quantifies whether there is some general association among the genes like correlation.

Differential causal effects (DCEs) on biological pathways have already been investigated

in a formal setting (Wang et al., 2018; He et al., 2019; Tian et al., 2016), where a DCE is
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modeled as the difference between CEs for the same edge under two conditions. These

methods infer the gene network from observational data, which is a difficult task due to

the combination of typically low sample size and noise of real data. An incorrect network

can result in biased estimation of CEs and DCEs. Additionally, none of these methods

make use of the DCEs to compute a pathway enrichment score.

Here, we separate the problem of estimating the causal network and the CEs by replacing

the former with the addition of prior knowledge in the form of biological pathways readily

available in public databases (Ogata et al., 1999; Nishimura, 2001; Whirl-Carrillo et al.,

2012; Mi et al., 2021; Schaefer et al., 2009). We make use of the general concept of causal

effects in order to define differential CEs. Specifically, we estimate the CE of gene X on

gene Y in normal samples and cancer samples and define the DCE as their difference. In

particular, we compare the causal effects between two conditions, such as a malignant

tissue from a tumor and a healthy tissue, to detect differences in the gene interactions.

We propose Differential Causal Effects (dce), a new method which computes the DCE for

every edge (i.e., molecular interaction) of a pathway for two given conditions based on

gene expression data (fig. 1).

This allows us to identify pathway perturbations at the individual edge level while

controlling for confounding factors using the statistical framework of causality. By including

the additional covariates constructed from the principal components of the design matrix,

we also provide a methodological extension of our method to handle potential unobserved

confounding that is ’dense’, i.e., where the confounding variable affects many covariates.

For example, batch effects from different experimental laboratories or cell cycle information

are not necessarily known, but are accounted for automatically. Our approach allows for

computing pathway enrichments in order to rank all networks in large pathway databases

to identify cancer specific dysregulated pathways. In this manner, we can detect pathways

which play a prominent role in tumorigenesis and pinpoint specific interactions in the

pathway that make a large contribution to its dysregulation and the disease phenotype.

We show that dce can recover significant DCEs and outperforms competitors in

simulations. In a validation on real data we apply dce to a public CRISPR (Clustered

Regularly Interspaced Short Palindromic Repeats) data set to recover differential effects in

the network. In an exploratory study, we apply dce to breast cancer samples and compare

the DCEs among different cancer stages. We identify dysregulated edges common across

stages as well as stage-specific edges.
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Figure 1: A causal network of genetic interactions in a biological pathway (A) is responsible for the

observed wild type expression levels in a cell (B: wild type). A disease can lead to perturbations of these

pathways and in turn generate altered expression levels (B: mutant). Pathway databases such as KEGG

(Ogata et al., 1999), PharmGKB (Whirl-Carrillo et al., 2012) and Panther (Mi et al., 2021) curate genetic

interaction data (C) and thus provide networks of putative causal interactions (D). Given the observed

wild type and disease expression levels as well as the causal structure, dce fits a generalized linear model

(GLM) for each edge to estimate differential causal effects (E). In the given example, the differential causal

effect from X on Y (solid edge) is estimated using the valid adjustment set tZu (as determined from the

dashed edges). These differential causal effects correspond to causal perturbations (i.e., differential causal

effects), e.g., an increase of causal effect strength from wild type to mutant is marked in blue. Negative

differential causal effects are marked in red. The transparency of an edge corresponds to the magnitude of

the associated effect) of the biological pathway caused by the disease and are important for diagnosis and

treatment design (F).
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2 Methods

In this section, we describe the Differential Causal Effects (dce) method. We briefly

review the causality framework and then introduce the model and computation of DCEs,

including under potential latent ’dense’ confounding. We provide implementation details

for obtaining both the estimates and their significance levels. Then, we describe the

generating mechanism for synthetic data used throughout the paper. Finally, we explain

the setup of our Perturb-seq validation as well as exploratory TCGA analysis.

Causality of biological pathways. First, we give a quick review of causality in the

context of biological pathways. A gene pathway can be represented as a structural equation

model (SEM) consisting of a directed acyclic graph (DAG) G with nodes X “ pXiq
p
i“1

describing the expression of genes, a set of directed edges E “ pEiq
m
i“1 representing the

causal structure and the structural equations pfiq
n
i“1 describing how each variable Xi

is generated from its parents Xpapiq in G, Xi Ð fipXpapiq, εiq, where pεiq
p
i“1 are jointly

independent noise variables. The causal interpretation of an edge between any two nodes

is as follows: changing the expression of a parent Xi affects the expression of the child

node Xj, which is propagated further to all descendants. The parental sets are given by

the edge set E. Of particular interest are the interventional distributions for the SEM, in

particular their expectations ErXi | dopXj “ xqs, which describe how the expected value

of the variable Xi changes when we intervene and set the variable Xj to some fixed value

x. We define the causal effect (CE) of a variable Xj on its descendant Xi as

CErXi | dopXj “ xqs “
d

dx
ErXi | dopXj “ xqs. (1)

This derivative equals βx if, by changing the value of Xj from x to x`∆x, for some small

value ∆x, the value of Xi changes on average by βx ¨ ∆x. In the literature, the CE is

often also referred to as the total causal effect, because it quantifies the overall effect of

an intervention at variable Xj on all of its descendants. We are interested in differential

causal effects (DCE) defined as the differences between the causal effects of two conditions

of interest, such as, e.g., two different cancer stages or healthy and cancerous samples.

Linearity of the conditional mean. We model the relationship between the mean of

any gene expression Xi and its parents Xpapiq by a linear function:

Xi Ð γ
piq
0 `

ÿ

jPpapiq

γ
piq
j Xj ` εipXpapiqq, (2)

where, conditionally on Xpapiq, the error term εipXpapiqq has mean zero and variance

depending on Xpapiq. A prime example is any generalized linear model (GLM) with identity
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link function. The coefficients γ
piq
j correspond to the direct causal effects, whereas the

total causal effects (1) measure the aggregate effect over all directed paths from a certain

variable Xj to Xi in G.

Let us consider two arbitrary genes Xi and Xj in the pathway. Under the linearity

assumption (2), the causal effect CErXi | dopXj “ xqs does not depend on x. Furthermore,

it can be computed as the coefficient β in the linear regression of Xi on Xj and an

adjustment set Z “ pZkq
|Z|
k“1,

Xi “ β0 ` βXj `

|Z|
ÿ

k“1

βkZk ` η, (3)

where β0 denotes the intercept and η is random noise with mean zero (Goldszmidt and

Pearl, 1992; Pearl, 1995). The adjustment set Z is a set of nodes in the pathway G which

fulfills the Back-door criterion (Pearl, 2000). Hence, it holds that no element of Z is a

descendant of Xj , and Z blocks every path between Xi and Xj that contains an edge with

Xj as the child. For example, the parent set Xpapjq always fulfills the Back-door criterion

and we always use it as adjustment set.

If the causal effects of the gene expression Xj on the gene expression Xi are respectively

denoted as βA and βB under different conditions A and B, then the differential causal

effect (DCE) δ is obtained as the difference

δ “ βB ´ βA. (4)

Given a graph G describing a biological pathway and observations of the variables, we

can compute all differential causal effects and identify interactions between any such two

variables Xj and Xi that are different between the two conditions (fig. 1).

Testing for significance. We can compute the DCE δ for the edge Xj Ñ Xi by fitting

a joint model for both conditions, which also allows us to easily compute the significance of

the estimates. Let I be an indicator random variable, which is equal to 1, if the observation

comes from condition A, and 0, if it comes from condition B. The DCE δ can be computed

from all samples jointly by fitting the following linear model

Xi “ pβ
A
0 ` pβ

B
0 ´ β

A
0 qIq ` pβ

A
` pβB ´ βAqIqXj `

|Z|
ÿ

k“1

`

βAk ` pβ
B
k ´ β

A
k qI

˘

Zk ` η (5)

with interaction terms I ¨Xj and I ¨ Zi. The differential causal effect δ “ βB ´ βA can be

estimated by using the coefficient estimate corresponding to the interaction term IXj in

(5).

Testing the significance of the estimated DCEs now corresponds to the well-known

task of testing the significance of coefficient estimates in a linear model. However, some
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care is needed if the variances of the error terms εipXpapiqq in our structural equations

(2) indeed depend on the values of the predictors Xpapiq, i.e., if there is a certain mean-

variance relationship for the gene expression levels, as has been described for RNA-seq

data (Robinson and Smyth, 2007). In this case, the linear model (5) is heteroscedastic and

the usual formulae for standard errors of the coefficient estimates, that result in t-tests

for the significance, do not apply. We therefore use heteroscedasticity-consistent standard

errors that yield asymptotically valid confidence intervals and p-values regardless of the

dependence of the noise level on predictor values (Eicker, 1967; Huber et al., 1967; White,

1980).

Besides assessing significance of DCEs for single edges, we can also calculate a global

p-value measuring the overall dysregulation of a given pathway G: we combine the p-values

corresponding to different differential causal effects δ “ pδiq
m
i“1 by taking their harmonic

mean (Good, 1958).

Adjusting for latent confounding. A fundamental assumption for most of causal

inference methods is that there is no unobserved confounding, i.e., that there are no factors

affecting both the cause and the effect (Leek et al., 2012; Gagnon-Bartsch et al., 2013). For

example, batch effects due to varying laboratory conditions could act as such unobserved

confounders. Presence of latent confounding can result in spurious correlations and false

causal conclusions. Therefore, adjusting for potential latent confounding is crucial for

making the method robust in applications to biological data (Ćevid et al., 2020a).

Some information about latent factors can often be obtained from the principal

components of the data (Novembre and Stephens, 2008). This can be made rigorous under

the linearity assumption (2) for our structural equation model G, as follows. We assume

that there are q latent variables H1, . . . , Hq affecting our data. We extend the model (2)

to include the latent confounding as follows:

Xi Ð γ
piq
0 `

ÿ

jPpapiq

γ
piq
j Xj `

q
ÿ

j“1

δ
piq
j Hj ` εipXpapiq, Hq, (6)

i.e., the latent confounders H1, . . . , Hq are additional source nodes in the DAG G and affect

genes in the pathway linearly, analogously to (2). Not every gene needs to be affected

(δ
piq
j could be zero), but the methodology works better the more genes are affected, see

discussion below. By writing the structural equations (6) in matrix form, where we define

Γ0
ji “ γ

piq
0 , Γji “ γ

piq
j , ∆ji “ δ

piq
j and EpX,Hqji “ εipXpapiq, Hqj, we obtain

Xnˆp Ð Γ0
nˆp `XnˆpΓpˆp `Hnˆq∆qˆp ` EpX,Hqnˆp, (7)
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Figure 2: The scree plot (of synthetic data generated as described in the Methods section) shows that in

presence of latent confounding as in (6), the first q principal components explain much more variability of

the data, which we exploit for confounding adjustment.

which gives

X “ Γ0
ljhn

intercepts

`H ∆pI ´ Γq´1

l jh n

loadings PRqˆp

` EpX,HqpI ´ Γq´1

l jh n

random noise with mean = 0

, (8)

which is the standard linear factor model with heteroscedastic errors. From this represen-

tation, one can see that H can be determined from the principal components of X (fig. 2).

The scree plot for a toy example visualizes the effect of latent variables having a global

effect on the data. The first principal components are clearly separated from the rest, if

latent factors are present (fig. 2, left). Therefore we obtain the confounding proxies Ĥ

as the scores of the first q̂ principal components of the design matrix combining the data

from both conditions.

The confounding proxies Ĥ are then simply added to the adjustment set Z, see

equations (3) and (5). In this way, the Back-door adjustment not only adjusts for the

confounding variables observed in the DAG G as before, but also helps reducing the bias

induced by latent confounding.

The deconfounding methodology relies on the assumption that every confounding

variable affects many variables in the dataset, i.e., the confounding is dense (Guo et al.,

2020). In this case, we have a lot of information about the latent factors in the data and the

confounding proxies Ĥ capture the effect of the confounders H well. Furthermore, dense

confounding assumption ensures that the scree plot, showing the singular values of the

design matrix, has a spiked structure, as several latent factors can explain a relatively large

proportion of the variance (fig. 2). This helps estimating the number q̂ of the confounding

proxies used. As a default choice, we use a permutation method that can be shown to

work well under certain assumptions (Dobriban, 2017) and which compares the observed

value of the variance explained by the principal components with its expected value over

many random permutations of the values in each column of gene expression matrix X.
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Algorithm and implementation in R. The presented methods are implemented in

the R package dce which is freely available on Bioconductor. The function dce::dce takes

as input the structure of a biological pathway, i.e., the adjacency matrix of a DAG, and

two nˆ p matrices, with n samples and p genes, storing gene expression data for each of

the two conditions respectively. As output, the function returns the estimated DCEs, as

well as standard errors and two-sided p-values for the DCE at each edge in the pathway.

The results can be easily transformed into a dataframe and plotted for further downstream

analyses, together with the p-value measuring the overall pathway enrichment.

Generating synthetic data and benchmarking methods. We assess the behavior

of dce and its competitors in a controlled setting by generating synthetic data with known

DCEs (ground truth). We start by generating a random DAG G. Without loss of generality,

we assume the nodes of the DAG to be topologically ordered, i.e., node Xi can only be

parent of node Xj, if i ă j. This ensures that the network G is a DAG. In practice, we

sample edges from a binomial distribution with probability p̂ for the upper triangle of G.

We further sample the coefficients γ
piq
j for every edge as in (2) from a uniform distribution

U p´γmax, γmaxq. We generate the data for network G in the following way. For a node Xi,

we set the mean expression count

µi “ v ´~1 ¨
´

min
i
vi ´ ι

¯

, (9)

where each Xj „ Pois pµiq is a vector of counts, corresponding to gene expression values

from experiments like RNA-Seq and depends on its parents by

v “
ÿ

jPpapiq

γ
piq
j Xj. (10)

γ
piq
j represents the direct effect of Xj on Xi, ι ą 0 is a small shift, and ~1 is a vector of

ones. Subtracting the minimum ensures positive values of the mean for each data point.

Then, a realization of Xi is drawn from the Poisson distribution Pois pµiq. We introduce

negative binomial noise by drawing a realization of each source node in G from the negative

binomial distribution NB pµ, θq with a general mean µ and dispersion θ. We use this setup

to control the variance across all nodes, which can blow up for descendants with larger

means.

After sampling the data DA for the nodes of network G under condition A, we resample

a certain fraction of edge weights in order to generate new data DB under condition B.

For an edge weight βA we sample the new edge weight from a uniform distribution

βB „ U
``

βA ´ δmax, β
A
´ δmin

˘

∪
`

βA ` δmin, β
A
` δmax

˘˘

. (11)

This ensures that the absolute difference between the two edge weights lies in rδmin, δmaxs.
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We also simulate latent variables. They are neither included in the data nor the network

G, but have (unknown) outgoing edges to all genes in the data set with non-zero effects.

Hence, these latent variables have global effects on the data, e.g., emulating batch effects.

We compare dce to correlation (cor), partial correlation (pcor), the method Fast Gaus-

sian Graphical Models (fggm) tailored to DCEs (Wang et al., 2016; He et al., 2019), Latent

Differential Graphical Models (Tian et al., 2016), the pathway activity tool CARNIVAL

(car) (Liu et al., 2019), a differential gene expression approach (dge), and random guessing.

cor is provided by the R package stats (R Core Team, 2020). For pcor we use the general

matrix inversion from the R package MASS (Venables and Ripley, 2002) to compute the

precision matrix. fggm is based on partial correlation, but additionally tries to learn the

network structure to adjust for confounding effects. We use the R code provided by the

authors (He et al., 2019) to run fggm. ldgm is also based on partial correlation, but directly

computes the differential network instead of two networks for the two data sets. We use

the Matlab implementation of ldgm for the estimate of the latent correlation matrices by a

transformation of Kendall’s τ . We also add a permutation test to compute significance or

assume Gaussian coefficients, and evaluate only differences corresponding to an edge in the

graph. The parameter for ldgm is set according to the example at https://github.com/ma-

compbio/LDGM/blob/master/Stand alone example by LDGM/LDGM/LDGM.m. For

both fggm and ldgm we transform the gene expression count matrix by log p¨ ` 1q. We use

the function runInverseCarnival from the R Bioconductor package CARNIVAL (Gjerga

and Trairatphisan, 2021) to compute normalized edge weights e P r0, 100s, which we

normalize to p-values by 1´ e
100

. We use differential gene expression from edgeR (Robinson

and Smyth, 2007) as input to CARNIVAL. The same differential expression result is used

for dge. We compute the DCE for the edge between two genes x and y as the difference of

the log foldchanges of both genes. We compute the corresponding p-value for the same

edge with the minimum of the p-values for both genes x and y. We provide pcor with the

same adjustment set of confounding variables as dce. We run all methods on simulated

data for various modeling parameters. The default parameters are a network G of 100

genes, 200 samples for both sample conditions, an absolute magnitude in effect differences

between the two conditions of 1, mean of 100 negative binomial distributed counts with a

dispersion of 1 for the source genes in the network G (no parents), a true positive rate

of 50% (edges which have different effects between the two conditions), and library size

factors for each sample in the interval r1, 10s. The library size factor accounts for different

sequencing depth among the samples, i.e., for one sample including more reads because

more RNA was available even though the gene expression was the same as in samples with

less RNA. We account for different library sizes over all samples by computing transcripts

per million (tpm).

https://github.com/ma-compbio/LDGM
https://github.com/ma-compbio/LDGM
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Overall we simulate a full data set of 10, 000 genes including the genes in the network

G to allow for the realistic estimation of the library size. As a performance measure we use

the area under the receiver operating characteristic (ROC-AUC). We count the number of

true/false positive and false negative DCEs based on the edges in the ground truth network

and the significant p-values for different significance levels. Based on these true/false

positives we can compute the ROC curve and its AUC. For both correlation methods we

use a permutation test to compute empirical p-values.

LDGM’s runtime was too high for more than ten genes to use a permutation test

to compute p-values. For more genes we assumed a Gaussian distribution to compute

p-values.

Validation using Perturb-seq. Perturb-seq, a CRISPR-Cas9-based gene knockout

method, can be used to inhibit the expression of multiple target genes on a single-cell

level (Qi et al., 2013; Adamson et al., 2016). The data set we analyze is a CRISPR

knockout screen with global gene expression profiles as the read-out. We can use the

known knockout information of these experiments as ground-truth information for a

performance evaluation of our method. In (Adamson et al., 2016), this approach was

used to systematically analyze the response of an integrated endoplasmic reticulum (ER)

stress response pathway to the combinatorial knockout of the three transmembrane sensor

proteins IRE1α, ATF6, and PERK. Each considered combinatorial knockout (ATF6,

ATF6`EIF2AK3, ATF6`EIF2AK3`ERN1, ATF6`ERN1, EIF2AK3, EIF2AK3`ERN1,

ERN1) was treated either with a DMSO control, tunicamycin, or thapsigargin.

We download the raw gene expression count data from NCBI GEO (accession: GSE90546).

The repository provided us with a mapping of guide and cell barcodes, and gene expression

counts for all cells. We used this information to identify gene knock-outs for each cell. to

create a gene expression count matrix of the individual cells labeled by their corresponding

knockouts.

We download all pathway networks from KEGG and retain those which contain

at least one of the three transmembrane sensor proteins. This yields in the path-

ways hsa04137, hsa04140, hsa04141, hsa04210, hsa04932, hsa05010, hsa05016, hsa05017,

hsa05160, hsa05162, hsa05168.

For each combination of the three treatments, seven (combinatorial) knockouts and

11 pathways, we compute DCEs if the respective knocked-out gene is contained in the

respective pathway. In total, this yields 128 conditions for each of which we run our

method.

We compare the performance of dce to both cor (correlation) and pcor (partial

correlation). For the two correlation methods, we estimate the significance of whether a

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90546
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difference in correlation is different from zero using a permutation test. The performance

of each method is evaluated using the area-under-curve (AUC) metric for the receiver-

operating-characteristic (ROC) curve. The false and true positive rates for the ROC curve

are computed from the p-value per edge as in the synthetic benchmark.

Exploratory analysis with TCGA data. We retrieve gene expression matrices from

The Cancer Genome Atlas (TCGA) (Weinstein et al., 2013). These matrices have samples

as columns and genes as rows, and are from the data category Transcriptome Profiling,

data type Gene Expression Quantification, experimental strategy RNA-Seq and workflow

type HTSeq-Counts. Pathway structures in the form of adjacency matrices are obtained

from the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Ogata et al., 1999).

Unlike the Perturb-seq dataset, data obtained from TCGA is observational instead

of interventional. We do thus not have any ground truth information and perform an

exploratory analysis. For a given cancer type, the associated samples are first grouped

into normal and tumor samples. The tumor samples are subsequently stratified according

to their stage. The clinical data needed to stratify the samples is readily available on

TCGA as metadata for each gene expression matrix. In particular, we download all normal

and tumor gene expression samples from TCGA for breast cancer (TCGA-BRCA) and

selected all stages with a sufficient number of samples (stage I: 202 samples, stage II: 697

samples, stage III: 276 samples; normal: 113 samples). We use the breast cancer pathway

(hsa05224 ) from KEGG which contains 147 nodes and 509 edges. We then compute

DCEs between the normal condition and each of the three stages of the tumor condition,

respectively.

3 Results

In this section, we first show the performance of dce and its competitors on simulated

data and a CRISPR data set. Then, we use dce for an exploratory analysis of breast

cancer data from TCGA and show the progression of pathway dysregulation over different

cancer stages.

3.1 Simulation study

Pathway databases contain networks of different sizes. We first investigate the influence

of network size on the ability of each method to recover ground truth differential causal

effects. dce achieves the highest accuracy for all three network sizes considered (50, 100, 150

genes). Methods which do not account for confounding variables perform similar to random
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guessing for large networks (fig. 3a). However, dce also outperforms pcor with an AUC of

0.62 versus 0.56.

Overall, ldgm’s performance decreased a lot when using the Gaussian test to compute

p-values. A closer looked showed that ldgm computed very small effect sizes, which lead

to large p-values for dysregulated edges. While car seems very accurate in detecting true

positives, we assume performance was less than random guessing due to the high false

positve rate.

Second, we assess how the magnitude of differential causal effects affects the identifi-

cation of significant differences. We sample the magnitude from the set t0.1, 1, 2u. For

example, for a magnitude of 1 the edge weights between the network of the wild type

samples and the disease samples differ by at most 1. dce has difficulty estimating large

differences as well as very small differences. However, it still significantly outperforms all

other methods, which again show similar performance to random guessing for large effects

(fig. 3b).

In additional simulations, dce shows increasing accuracy for decreasing dispersion

and increasing number of samples (figs. 6 and 7) as is expected due to decreasing noise.

We found constant accuracy of dce over varying ranges of library size (fig. 8). Different

prevalence of positive edges has little effect on the accuracy of dce (fig. 9). dce with latent

variable adjustment performs similarly to dce without latent variable integration if we do

not simulate any latent variables. But dce significantly outperforms dce without latent

variable integration for five and ten latent variables influencing the data set (fig. 10). This

is because without latent confounding adjustment one has a large number of false positives

due to the confounding bias (fig. 11).

dce relies heavily on the given network G. Hence, we investigate how well dce performs

if G contains false edges or is missing true edges. We find that dce is robust to additional

false edges in the network, but starts breaking down if true edges are missing in larger

fractions (fig. 12).

3.2 Validation experiments using CRISPR knockout data

To benchmark our method using real-life data generated by Perturb-seq (Adamson

et al., 2016), we ask whether we can recover the CRISPR knockout from single-cell RNA-

seq data using pathways from KEGG which contain the knocked-out genes. Hence we

assume that these pathways capture the causal gene interactions governing the response

of the cell to the experimental intervention. As seen in the synthetic benchmark, slight

deviations of the observed network from the true underlying network have no major impact

on the performance of our method (fig. 12). By interpreting a CRISPR knockout as an

intervention of the causal pathway, we define the positive class to consist of all edges
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Figure 3: Performance benchmark. dce is compared to several competitors for varying network size (a)

and effect magnitude (b) over 100 synthetic data sets each. dce achieves the highest accuracy, which

decreases for large networks G and very large or small differential effects. The whiskers of the boxplot

correspond to the minimum and maximum of the data, the box denotes the first and third quartiles and

the horizontal line within the box describes the median.

adjacent to a knocked-out gene, and the negative class as all other genes. Consequently, a

true positive occurs when an edge adjacent to a CRISPR knocked-out gene is (significantly)

associated to a non-zero DCE.

Figure 4a shows an example of this procedure for one of the conditions described above.

The CRISPR knockout gene is highlighted in red and a positive DCE of „1.3 can be

observed on the edge connecting ATF6 and DDIT3. This can be seen in more detail in

fig. 4b. As this edge is adjacent to the knocked out gene ATF6, it is classified as a true

positive for an effect size threshold of |0.5|. Following an analogous argument, the edge

from EIF2AK3 to EIF2S1 is classified as a false positive.

We find that dce is significantly better (Wilcoxon signed-rank test (Wilcoxon, 1992)

p-value ď 10´5) at recovering the knockout effects with a median ROC-AUC of 0.63

compared to 0.51 for cor and 0.53 for pcor (fig. 4c). To better understand the variability

of the performance measure, we also investigate how performance varies when stratified

by treatment and knockout gene (fig. 13). For example, for the knockout gene ATF6

the ROC-AUC of dce decreases from 0.89 for treatment 1 to 0.67 for treatment 2. This

can be explained by the higher variability of the gene expression counts under treatment

2, as the p-value estimation becomes less stable. This pattern can also be observed for

other performance shifts between treatments. We note that cor outperforms dce for the

knockout of ATF6 in treatment 2, as the permutation test is able to better account for

the variance of the expression data in this case. In all other cases, dce is either better
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or roughly as good as the competing methods. We conclude that dce is able to better

recover the dysregulations of single as well as combinatorial knockouts when compared to

methods based on correlations.

3.3 Exploratory analysis of TCGA data

To demonstrate the ability of our method to recover known cancer-related pathway

dysregulations as well as to discover new genes of potential biological and clinical relevance,

we compute DCEs using breast cancer gene expression data from TCGA on the breast

cancer pathway obtained from KEGG. The results for each stage are then visualized on the

pathway structure (figs. 5a to 5c). The raw DCE values were transformed to a symmetric

logarithm for greater visibility with the following formula

symlogpDCEq “

$

’

’

’

&

’

’

’

%

log10pDCEq ` 1 if DCE ą 1

´log10p´DCEq ´ 1 if DCE ă ´1

DCE otherwise

. (12)

Roughly 40% of all investigated interactions (614 out of 1527) show no difference in

causal effects (|DCE| ă 1 and p-value ą 0.05) between normal and stage condition for all

stages. We will now discuss the cases with large DCE sizes or significant p-values (fig. 5d).

In the following, we will discuss cases with large effect sizes and significant p-values.

Throughout all stages, interactions between the WNT (Wingless/Int1) and FZD (Friz-

zled) protein complexes exhibit significant, non-zero DCEs indicating a strong dysregulation

of the breast cancer pathway. Most notably, we observe a strongly significant dysregulation

of WNT11ÑFZD1, WNT11ÑFZD3 and WNT11ÑFZD7 in stage II (p-value ă 1e´20),

as well as of WNT11ÑFZD7 in stages I and II. Additionally, the interaction between

WNT8A and FZD4 features a strongly positive DCE of „2000 in all three stages. These

observations are expected, because the interactions between the WNT and FZD protein

complexes have been implicated in disease formation in general (Dijksterhuis et al., 2015;

Chien et al., 2009; Schulte, 2010) and in breast cancer in particular (Yin et al., 2020; Koval

and Katanaev, 2018).

Interactions between the FGF (Fibroblast Growth Factor) and FGFR (Fibroblast

Growth Factor Receptor) protein complexes show strong negative effect sizes in all

three stages (DCE ă ´100 for most members of these complexes). In particular, the

FGF6ÑFGFR1 link features negative DCEs of´1279,´665,´1961, while the FGF8ÑFGFR1

link features negative DCEs of ´402,´336,´285, in the stages I, II, III respectively. This

pair has already been recognized as a promising therapeutic target for breast cancer

treatment (Santolla and Maggiolini, 2020).
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of the two connected nodes has zero coverage (and thus

no DCE can be estimated). The gene knocked out in

the CRISPR experiment is highlighted in red.
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(b) Zoomed-in version of fig. 4a with focus on the genes

ATF6, ATF6B, NFE2L2, XBP1, DDIT3, EIF2AK3,

EIF2S1. These genes constitute the neighborhood of

the knocked-out gene ATF6 and illustrate the edge clas-

sification scheme used in the performance evaluation.

Assume an effect size threshold of |0.5|. The edge

ATF6ÑDDIT3 has a DCE of „1.3 and is adjacent to

the knocked-out gene. Consequently, it is classified as

a true positive. Both the edge EIF2AK3ÑEIF2S1 and

NFE2L2ÑDDIT3 have a DCE whose absolute value is

larger than 0.5 and are not adjacent to the knocked-out

gene. They are thus classified as false positives. All

remaining edges are classified as true negatives.
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(c) Summary of the performance of the dce, cor and

pcor methods in the form of ROC-AUCs for the recov-

ery of the knocked-out genes in all considered pathways.

The whiskers of the boxplot correspond to the minimum

and maximum of the data, the box denotes the first and

third quartiles and the horizontal line within the box de-

scribes the median. Additionally, each data point is in-

dicated with a dot whose x position has been randomly

shifted to improve visibility. The method dce shows the

best performance with a ROC-AUC of 0.63 (standard

deviation (std): 0.23) compared to 0.51 (std: 0.23) for

cor and 0.53 (std: 0.22) for pcor. The significance of

the difference between the boxplots has been estimated

using the Wilcoxon signed-rank test (Wilcoxon, 1992).

Figure 4: Overview of the CRISPR benchmark.
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We also find the interaction between EGFR (Epidermal Growth Factor Receptor) and

PIK3CA (Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha) to be

significantly (p-values ă 1e´14) dysregulated with a small negative DCE of approximately

´0.2 in stages I and II but not III. EGFRÑPIK3CB shows similar behavior for stage

II with a DCE of ´0.12 and a p-value ă 1e´15. While the small effect size suggests

that there is only a small dysregulation of these interactions, the dysregulation of EGFR

together with PIK3CA mutations have been recognized as independent prognostic factors

in triple negative breast cancers (Jacot et al., 2015).

The interaction between DLL3 (Delta Like Canonical Notch Ligand 3) and NOTCH4

(Notch Receptor 4) features a significant DCE of „140 with p-values ă 1e´6 in all

three stages. The Notch signaling pathway has been shown to play an important role

in Pancreatic ductal adenocarcinoma tumor cells, but has not been implicated in breast

cancer (Song and Zhang, 2018). Our finding suggests that stromal cells located in the

breast may play an important role for disease progression throughout all stages.

For the interaction between TCF7L2 (Transcription Factor 7 Like 2) and CCND1

(Cyclin D1) we observe a significant negative DCE of ´11.9 with a p-value of ă 1e´6

in stage III. The role of TCF7L2, which participates in the Wnt/β-catenin signaling

pathway and is important for cell development and growth regulation, has already been

discussed in the context of breast cancer (Connor et al., 2012). However, its interaction

with CCND1 has, to the best of our knowledge, not been investigated in the literature.

Due to the down-regulation in the diseased condition for stage III, we suggest that an

improved understanding of the underlying biological reasons might provide insights into

the late-stage behavior of breast cancer.

Overall, we are able to recover both interactions which are known to be dysregulated

in breast cancer as well as novel ones. The former indicates that the prioritization of

interactions given by dce is in accordance with current literature. The latter suggests that

dce is also able find dysregulated interactions which up to now have only been recognized

for other diseases but may play an important role for breast cancer.

4 Discussion

We have presented a new method, dce, to compute differential causal effects between

two conditions using a regression approach. dce enables the edge-specific identification

of signaling pathway dysregulations. This piece of information can help to further our

understanding of subtle differences on the molecular level in seemingly similar cancer

types.

dce assumes a linear relationship among pathway genes. The linear model is solved using
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(d) Volcano plot of effect size on the x-axis against the p-value

on the y-axis for all interactions over all three stages.

Figure 5: DCEs for TCGA-BRCA normal samples versus stage I, stage II, and stage III computed with

the hsa05224 pathway. In (a)-(c), edge thickness and opacity scale with absolute DCE size. More negative

DCEs appear red, more positive DCEs appear blue. The color follows a symmetric logarithmic scale for

values |x| ě 1 and is linear otherwise. (d) shows a volcano plot for the symmetric logarithm of DCE

against its associated p-value. DCE thresholds of 1 and ´1 as well as a p-value threshold of 0.05 are

denoted with grey dashed lines.
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network information to account for additional genes confounding the linear relationship

between gene pairs. The network information is included via prior knowledge from

literature. dce also includes latent variables in the model accounting, e.g., for batch effects,

which are unknown and not included in the gene network, as confounders.

We have shown in our simulations that dce is able to detect changes in causal effects

even in the presence of noise and for certain ranges of effect sizes. For a wide array

of parameter choices, dce outperforms methods using (partial) correlation and fggm.

Especially in the case of latent confounders we showed that dce with the integration of

latent variables outperforms dce without, except if no latent confounders were used to

simulate the data. In this case both methods are equally accurate. Hence, we recommend

the integration of latent variables in the model as the default configuration.

In addition to the synthetic benchmark, we have also validated our method on real

data derived from Perturb-seq experiments. We have shown that dce is able to recover the

experimental knockouts with better performance than correlations and partial correlations.

For breast cancer, we have shown that not all parts of the signaling pathway are

perturbed and characteristic hotspots exist. Some causal effects between two genes are

invariant to stage information, while other causal effects can vary in either magnitude or

even sign of their effect size. This indicates that certain areas of such pathways are more

relevant than others. This phenomenon has also been observed in other studies ((Song

et al., 2014; Feng et al., 2018)). Some parts of a pathway seem to be either more conserved

or just not relevant to tumorigenesis. This provides exciting opportunities to identify

drugs which target certain parts of a pathway and might explain their efficacy. However,

the robustness of our method depends on the availability of enough samples. In many

cases, few are available and make our approach infeasible. While dce performs still better

than random for even 10 samples, it is significantly worse than for higher sample sizes.

In summary, we have proposed a novel application of the concept of differential causal

effects which describe the differences in causal effects between two conditions and developed

a regression approach to compute those differences. We demonstrate their robustness in

a simulation study, and point out interesting results in application to real data, e.g., we

show that some dysregulated edges are consistent among breast cancer tumor stages I-III,

but that other dysregulations are unique to each stage.

Our simulations show the need for sufficiently large data sets when dealing with large

pathways. Additionally dce relies on correct network information. While very robust to

incorrect edges in the network, dce’s performance breaks down significantly when edges

are missing from the network. We have also simulated data from DAGs only. However,

this assumption is made throughout all analyses. In reality biological pathways include

cycles, which could affect the result of dce. Similarly, we rely on the assumption that all
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causal effects are propagated linearly. Other types of causal effect could affect dce as well.

Future research should focus on modifying the regression to make working with small

data sets more robust, for example, enforcing sparsity by the introduction of L1- or

L2-norms on the coefficients to avoid outliers produced by artifacts in the data.

We have shown the performance of dce on count data from simulations and (single

cell) RNA-Seq. However, dce is also suited to analyze other types of data like Gaussian

data from log-normal microarray intensities.

5 Data availability

The code used to construct the synthetic data sets is available as part of the R software

package dce. The experimental data used in the Perturb-seq validation is available under

the accession GSE90546 from NCBI GEO. The experimental data used in the exploratory

breast cancer analysis is available under the accession TCGA-BRCA from The Cancer

Genome Atlas. The pathway structures have been obtained from the Kyoto Encyclopedia

of Genes and Genome.

6 Code availability

The method dce is freely available as an R package on Bioconductor as well as on

https://github.com/cbg-ethz/dce. The GitHub repository also contains the Snake-

make (Mölder et al., 2021) workflows needed to reproduce all results presented here.
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Figure 6: Dispersion. dce is compared to its competitors over 100 synthetic data sets with varying

dispersion values. Performance decreases for higher dispersion values. The whiskers of the boxplot

correspond to the minimum and maximum of the data, the box denotes the first and third quartiles and

the horizontal line within the box describes the median.
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Figure 7: Sample size. dce is compared to its competitors over 100 synthetic data sets with varying sample

sizes for one condition. The other conditions has a fixed sample size of 200. Performance decreases for

lower sample sizes. The whiskers of the boxplot correspond to the minimum and maximum of the data,

the box denotes the first and third quartiles and the horizontal line within the box describes the median.
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Figure 8: Library size. dce is compared to its competitors over 100 synthetic data sets with varying library

size factors. Library size has little effect on the accuracy of all methods. The whiskers of the boxplot

correspond to the minimum and maximum of the data, the box denotes the first and third quartiles and

the horizontal line within the box describes the median.
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Figure 9: Prevalence. dce is compared to its competitors over 100 synthetic data sets with varying

prevalence for DCE ‰ 0. Accuracy decreases for all methods and higher prevalence except for dce. The

whiskers of the boxplot correspond to the minimum and maximum of the data, the box denotes the first

and third quartiles and the horizontal line within the box describes the median.
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Figure 10: Latent variables. dce is compared to its competitors over 100 synthetic data sets with varying

numbers of latent variables. dce’s accuracy stays robust, if we account for latent variables, but drastically

decreases, if we do not. The whiskers of the boxplot correspond to the minimum and maximum of the

data, the box denotes the first and third quartiles and the horizontal line within the box describes the

median.
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Figure 11: The performance of the dce without latent confounding adjustment (left), dce using true values

of condounders (not known in practice) and dce with the latent confounding adjustment. Null DCEs

are denoted in green, whereas the non-zero DCEs are denoted in black. This figure uses synthetic data

with 300 genes, 300 observations and 3 latent confounders. Red line in the bottom row indicates the

0.05 threshold. The performance with the deconfounding step is close to the performance if we actually

observed the latent confounders. Furthermore, it avoids increased number of falsely significant findings

due to confounding bias (bottom row).
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Figure 12: dce is compared to its competitors over 100 synthetic data sets with incorrect network

information. Performance decreases for networks with missing edges, but stays robust, if additional edges

are included. The whiskers of the boxplot correspond to the minimum and maximum of the data, the box

denotes the first and third quartiles and the horizontal line within the box describes the median.
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Abstract

Random Forests (Breiman, 2001) is a successful and widely used regression

and classification algorithm. Part of its appeal and reason for its versatility is

its (implicit) construction of a kernel-type weighting function on training data,

which can also be used for targets other than the original mean estimation. We

propose a novel forest construction for multivariate responses based on their

joint conditional distribution, independent of the estimation target and the data

model. It uses a new splitting criterion based on the MMD distributional metric,

which is suitable for detecting heterogeneity in multivariate distributions. The

induced weights define an estimate of the full conditional distribution, which in

turn can be used for arbitrary and potentially complicated targets of interest. The

method is very versatile and convenient to use, as we illustrate on a wide range of

examples. The code is available as Python and R packages drf.

Keywords. causality, distributional regression, fairness, Maximal Mean

Discrepancy, Random Forests, two-sample testing

1 Introduction

In practice, one often encounters heterogeneous data, whose distribution is not constant,

but depends on certain covariates. For example, data can be collected from several different

sources, its distribution might differ across certain subpopulations or it could even change

111
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with time, etc. Inferring valid conclusions about a certain target of interest from such data

can be very challenging as many different aspects of the distribution could potentially

change. As an example, in medical studies, the effectiveness of a certain treatment might

not be constant throughout the population but depend on certain patient characteristics

such as age, race, gender, or medical history. Another issue could be that different patient

groups were not equally likely to receive the same treatment in the observed data.

Obviously, pooling all available data together can result in invalid conclusions. On the

other hand, if for a given test point of interest one only considers similar training data

points, i.e. a small homogeneous subpopulation, one may end up with too few samples for

accurate statistical estimation. In this paper, we propose a method based on the Random

Forest algorithm (Breiman, 2001) which in a data-adaptive way determines for any given

test point which training data points are relevant for it. This in turn can be used for

drawing valid conclusions or for accurately estimating any quantity of interest.

Let Y “ pY1, Y2, . . . , Ydq P Rd be a multivariate random variable representing the data

of interest, but whose joint distribution is heterogeneous and depends on some subset of a

potentially large number of covariates X “ pX1, X2, . . . , Xpq P Rp. Throughout the paper,

vector quantities are denoted in bold. We aim to estimate a certain target object τpxq

that depends on the conditional distribution PpY |X“xq “ PpY |X1“x1, . . . , Xp“xpq,

where x “ px1, . . . , xpq is an arbitrary point in Rp. The estimation target τpxq can range

from simple quantities, such as the conditional expectations ErfpYq |Xs (Breiman, 2001)

or quantiles QαrfpYq |Xs (Meinshausen, 2006) for some function f : Rd Ñ R, to some

more complicated aspects of the conditional distribution PpY |X“xq, such as conditional

copulas or conditional independence measures. Given the observed data tpxi,yiqu
n
i“1, the

most straightforward way of estimating τpxq nonparametrically would be to consider only

the data points in some neighborhood Nx around x, e.g. by considering the k nearest

neighbors according to some metric. However, such methods typically suffer from the

curse of dimensionality even when p is only moderately large: for a reasonably small

neighborhood, such that the distribution PpY |X P Nxq is close to the distribution

PpY |X“xq, the number of training data points contained in Nx will be very small, thus

making the accurate estimation of the target τpxq difficult. The same phenomenon occurs

with other methods which locally weight the training observations such as kernel methods

(Silverman, 1986), local MLE (Fan et al., 1998) or weighted regression (Cleveland, 1979)

even for the relatively simple problem of estimating the conditional mean ErY |X“xs

for fairly small p. For that reason, more importance should be given to the training data

points pxi,yiq for which the response distribution PpY |X“xiq at point xi is similar to the

target distribution PpY |X“xq, even if xi is not necessarily close to x in every component.

In this paper, we propose the Distributional Random Forest (DRF) algorithm which
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estimates the multivariate conditional distribution PpY |X“xq in a locally adaptive

fashion. This is done by repeatedly dividing the data points in the spirit of the Random

Forest algorithm (Breiman, 2001): at each step, we split the data points into two groups

based on some feature Xj in such a way that the distribution of Y for which Xj ď l, for

some level l, differs the most compared to the distribution of Y when Xj ą l, according

to some distributional metric. One can use any multivariate two-sample test statistic,

provided it can detect a wide variety of distributional changes. As the default choice, we

propose a criterion based on the Maximal Mean Discrepancy (MMD) statistic (Gretton

et al., 2007a) with many interesting properties. This splitting procedure partitions the

data such that the distribution of the multivariate response Y in the resulting leaf nodes is

as homogeneous as possible, thus defining neighborhoods of relevant training data points

for every x. Repeating this many times with randomization induces a weighting function

wxpxiq as in Lin and Jeon (2002, 2006), described in detail in Section 2, which quantifies

the relevance of each training data point xi for a given test point x. The conditional

distribution is then estimated by an empirical distribution determined by these weights

(Meinshausen, 2006). This construction is data-adaptive as it assigns more weight to the

training points xi that are closer to the test point x in the components which are more

relevant for the distribution of Y.

Our forest construction does not depend on the estimation target τpxq, but it rather

estimates the conditional distribution PpY |X “ xq directly and the induced forest weights

can be used to estimate τpxq in a second step. This approach has several advantages. First,

only one DRF fit is required to obtain estimates of many different targets, which has a big

computational advantage. Furthermore, since those estimates are obtained from the same

forest fit, they are mutually compatible. For example, if the conditional correlation matrix

tCorpYi, Yj |X“xqudi,j“1 were estimated componentwise, the resulting matrix might not

be positive semidefinite, and as another example, the CDF estimates P̂pY ď y |X“xq

might not be monotone in y, see Figure 6. Finally, it can be extremely difficult to tailor

forest construction to more complex targets τpxq. The induced weighting function can

thus be used not only for obtaining simple distributional aspects such as, for example, the

conditional quantiles, conditional correlations, or joint conditional probability statements,

but also to obtain more complex objectives, such as conditional independence tests (Zhang

et al., 2012), heterogeneous regression (see also Section 4.4 for more details) (Künzel et al.,

2019; Wager and Athey, 2018) or semiparametric estimation by fitting a parametric model

for Y, having nonparametrically adjusted for X (Bickel et al., 1993). Representation of the

conditional distribution via the weighting function has a great potential for applications in

causality such as causal effect estimation or as a way of implementing do-calculus (Pearl,

2009) for finite samples, as we discuss in Section 4.4.
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Therefore, DRF is used in two steps: in the first step, we obtain the weighting function

wxp¨q describing the conditional distribution PpY |X“xq in a target- and model-free way,

which is then used as an input for the second step. Even if the method used in the

second step does not directly support weighting of the training data points, one can easily

resample the data set with sampling probabilities equal to twxpxiqu
n
i“1. The two-step

approach is visualized in the following diagram:

PpY |X“xq P̂pY |X“xq

τpPq τpP̂q

1) get wxp¨q with DRF

objective 2) compute from wxp¨q

induced estimator

1.1 Related work and our contribution

Several adaptations of the Random Forest algorithm have been proposed for targets

beyond the original one of the univariate conditional mean ErY |X“xs: for survival anal-

ysis (Hothorn et al., 2006), conditional quantiles (Meinshausen, 2006), density estimation

(Pospisil and Lee, 2018), CDF estimation (Hothorn and Zeileis, 2021) or heterogeneous

treatment effects (Wager and Athey, 2018). Almost all such methods use the weights in-

duced by the forest, as described in Section 2, rather than averaging the estimates obtained

per tree. This view of Random Forests as a powerful adaptive nearest neighbor method

is well known and dates back to Lin and Jeon (2002, 2006). It was first used for targets

beyond the conditional mean in Meinshausen (2006), where the original forest construction

with univariate Y was used (Breiman, 2001). However, the univariate response setting

considered there severely restricts the number of interesting targets τpxq and our DRF can

thus be viewed as an important generalization of this approach to the multivariate setting.

In order to be able to perform certain tasks or to achieve a better accuracy, many

forest-based methods adapt the forest construction by using a custom splitting criterion

tailored to their specific target, instead of relying on the standard CART criterion.

In Zeileis et al. (2008) and Hothorn and Zeileis (2021), a parametric model for the

response Y |X“x „ fpθpxq, ¨q is assumed and recursive splitting is performed based

on a permutation test which uses the user-provided score functions. Similarly, Athey

et al. (2019) estimate certain univariate targets for which there exist corresponding score

functions defining the local estimating equations. The data is split so that the estimates

of the target in resulting child nodes differ the most. This is different, though, to the

target-free splitting criterion of DRF, which splits so that the distribution of Y in child

nodes is as different as possible.
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Since the splitting step is extensively used in the algorithm, its complexity is crucial

for the overall computational efficiency of the method, and one often needs to resort to

approximating the splitting criterion (Pospisil and Lee, 2018; Athey et al., 2019) to obtain

good computational run time. We propose a splitting criterion based on a fast random

approximation of the MMD statistic (Gretton et al., 2012a; Zhao and Meng, 2015), which

is commonly used in practice for two-sample testing as it is able to detect any change in

the multivariate distribution of Y with good power (Gretton et al., 2007a). DRF with the

MMD splitting criterion also has interesting theoretical properties as shown in Section 3

below.

The multivariate response case has not received much attention in the Random Forest

literature. Most of the existing forest-based methods focus on either a univariate response

Y or on a certain univariate target τpxq. One interesting line of work considers density

estimation (Pospisil and Lee, 2018) and uses aggregation of the CART criteria for different

response transformations. Another approach (Kocev et al., 2007; Segal and Xiao, 2011;

Ishwaran and Kogalur, 2014) is based on aggregating standard univariate CART splitting

criteria for Y1, . . . , Yd and targets only the conditional mean of the responses, a task

which could also be solved by separate regression fits for each Yi. In order to capture any

change in the distribution of the multivariate response Y, one needs to not only consider

the marginal distributions for each component Yi, but also to determine whether their

dependence structure changes, see e.g. Figure 8.

There are not many methods that nonparametrically estimate the joint multivariate

conditional distribution PpY |X“xq in the statistics or machine learning literature. Other

than a few simple classical methods such as k-nearest neighbors and kernel regression, there

are methods based on normalizing flows such as Inverse Autoregressive Flow (Kingma et al.,

2016) or Masked Autoregressive Flow (Papamakarios et al., 2017) and also conditional

variants of several popular generative models such as Conditional Generative Adversarial

Networks (Mirza and Osindero, 2014) or Conditional Variational Autoencoder (Sohn et al.,

2015). The focus of these methods is more on the settings with large d and small p, such

as image or text generation. The comparison of DRF with the competing methods for

distributional estimation can be found in Section 4.1.

Our contribution, resulting in the proposal of the Distributional Random Forest (DRF),

can be summarized as follows: First, we introduce the idea of forest construction based

on sequential multivariate two-sample test statistics. It does not depend on a particular

estimation target and is completely nonparametric, which makes its implementation and

usage very simple and universal. Not only does it not require additional user input such

as the log-likelihoods or score functions, but it can be used even for complicated targets

for which there is no obvious forest construction. Furthermore, it has a computational
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advantage as only a single forest fit is needed for producing estimates of many different

targets that are additionally compatible with each other. Second, we propose an MMD-

based splitting criterion with good statistical and computational properties, for which we

also derive interesting theoretical results in Section 3. It underpins our implementation,

which we provide as R and Python packages drf. Finally, we show on a broad range of

examples in Section 4 how many different statistical estimation problems, some of which

not being easily tractable by existing forest-based methods, can be cast to our framework,

thus illustrating the usefulness and versatility of DRF.

2 Method

In this section we describe the details of the Distributional Random Forest (DRF)

algorithm. We closely follow the implementations of the grf (Athey et al., 2019) and

ranger (Wright and Ziegler, 2015) R-packages. A detailed description of the method and

its implementation and the corresponding pseudocode can be found in the Appendix A of

Ćevid et al. (2020b).

2.1 Forest Building

The trees are grown recursively in a model-free and target-free way as follows: For

every parent node P , we determine how to best split it into two child nodes of the form

CL “ tXj ď lu and CR “ tXj ą lu, where the variable Xj is one of the randomly chosen

splitting candidates and l denotes its level based on which we perform the splitting. The

split is chosen such that we maximize a certain (multivariate) two-sample test statistic

D ptyi | xi P CLu , tyi | xi P CRuq , (1)

which measures the difference of the empirical distributions of the data Y in the two

resulting child nodes CL and CR. Therefore, in each step we select the candidate predictor

Xj which seems to affect the distribution of Y the most, as measured by the metric Dp¨, ¨q.
Intuitively, in this way we ensure that the distribution of the data points in every leaf of

the resulting tree is as homogeneous as possible, which helps mitigate the bias caused by

pooling the heterogeneous data together. A related idea can be found in GRF (Athey

et al., 2019), where one attempts to split the data so that the resulting estimates τ̂L and

τ̂R, obtained respectively from data points in CL and CR, differ the most:

nLnR
n2
P

pτ̂L ´ τ̂Rq
2 , (2)

where we write nP “ |ti | xi P P u| and nL, nR are defined analogously.
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One could construct the forest using any metric Dp¨, ¨q for empirical distributions.

However, in order to have a good accuracy of the overall method, the corresponding

two-sample test using Dp¨, ¨q needs to have a good power for detecting any kind of change

in distribution, which is a difficult task in general, especially for multivariate data (Bai

and Saranadasa, 1996; Székely and Rizzo, 2004). Another very important aspect of the

choice of distributional metric Dp¨, ¨q is the computational efficiency; one needs to be able

to sequentially compute the values of D ptyi | xi P CLu , tyi | xi P CRuq for every possible

split very fast for the overall algorithm to be computationally feasible, even for moderately

large datasets. Below, we propose a splitting criterion based on the MMD two-sample

test statistic (Gretton et al., 2007a) which has both good statistical and computational

properties.

In contrast to other forest-based methods, we do not use any information about our

estimation target τ in order to find the best split of the data, which comes with a certain

trade-off. On one hand, it is sensible that tailoring the splitting criterion to the target

should improve the estimation accuracy; for example, some predictors might affect the

conditional distribution of Y, but not necessarily the estimation target τ and splitting on

such predictors unnecessarily reduces the number of training points used for estimating τ .

On the other hand, our approach has multiple benefits: it is easier to use as it does not

require any user input such as the likelihood or score functions and it can also be used

for very complicated targets for which one could not easily adapt the splitting criterion.

Furthermore, only one DRF fit is necessary for producing estimates of many different

targets, which has both computational advantage and the practical advantage that the

resulting estimates are mutually compatible (see e.g. Figure 5).

Interestingly, sometimes it could even be beneficial to split based on a predictor which

does not affect the target of estimation, but which affects the conditional distribution. This

is illustrated by the following toy example. Suppose that for a bivariate response pY1, Y2q

we are interested in estimating the slope of the linear regression of Y2 on Y1 conditionally

on p “ 30 predictors X, i.e. our target is τpxq “ CovpY1, Y2 |X“xq{VarpY1 |X“xq. This

is one of the main use cases for GRF and its variant which estimates this target is called

Causal Forest (Wager and Athey, 2018; Athey et al., 2019). Let us assume that the data

has the following distribution:

P

˜«

Y1

Y2

ff
ˇ

ˇ

ˇ

ˇ

ˇ

X“x

¸

„ N

˜«

x1

x1

ff

,

«

σ2 0

0 σ2

ff¸

X „ Np0, Ipq, (3)

i.e. X1 affects only the mean of the responses, while the other p´ 1 predictors have no

effect. In Figure 1 we illustrate the distribution of the data when n “ 300, p “ 30, σ “ 0.2,

together with the DRF and GRF splitting criteria. The true value of the target is τpxq “ 0,

but when σ is not too big, the slope estimates τ̂ on pooled data will be closer to 1.
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Therefore, the difference of τ̂L and τ̂R between the induced slope estimates for a candidate

split, which is used for splitting criterion (2) of GRF, might not be large enough for us to

decide to split on X1, or the resulting split might be too unbalanced. This results in worse

forest estimates for this toy example, see Figure 1.

Figure 1: Top left: Illustration of data distribution for the toy example (3) when n “ 300, p “ 30. Bottom:

The corresponding MMD (12) (left) and GRF (2) splitting criteria (right) at the root node. The curves

of different colors correspond to different predictors, with X1 denoted in black. Top right: Comparison

of the estimates of DRF and Causal Forest (Athey et al., 2019) which respectively use those splitting

criteria. Test points were randomly generated from the same distribution as the training data. Black

dashed line indicates the correct value of the target quantity.

2.2 Weighting Function

Having constructed our forest, just as the standard Random Forest (Breiman, 2001)

can be viewed as the weighted nearest neighbor method (Lin and Jeon, 2002), we can

use the induced weighting function to estimate the conditional distribution at any given

test point x and thus any other quantity of interest τpxq. This approach is commonly

used in various forest-based methods for obtaining predictions Hothorn and Zeileis (2021);

Pospisil and Lee (2018); Athey et al. (2019).

Suppose that we have built N trees T1, . . . , TN . Let Lkpxq be the set of the training

data points which end up in the same leaf as x in the tree Tk. The weighting function
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wxpxiq is defined as the average of the corresponding weighting functions per tree (Lin

and Jeon, 2006):

wxpxiq “
1

N

N
ÿ

k“1

1 pxi P Lkpxqq
|Lkpxq|

. (4)

The weights are positive add up to 1:
řn
i“1wxpxiq “ 1. In the case of equally sized leaf

nodes, the assigned weight to a training point xi is proportional to the number of trees

where the test point x and xi end up in the same leaf node. This shows that forest-based

methods can in general be viewed as adaptive nearest neighbor methods. The sets Lkpxq
of DRF will contain data points pxi,yiq such that PpY |X “ xiq is close to PpY |X “ xq,

thus removing bias due to heterogeneity of Y caused by X. On the other hand, since

the trees are constructed randomly and are thus fairly independent (Breiman, 2001),

the leaf sets Lkpxq will be different enough so that the induced weights wxpxiq are not

concentrated on a small set of data points, which would lead to high estimation variance.

Such good bias-variance tradeoff properties of forest-based methods are also implied by

their asymptotic properties (Biau, 2012; Wager, 2014), even though this is a still active

area of research and not much can be shown rigorously.

One can estimate the conditional distribution PpY |X “ xq from the weighting function

by using the corresponding empirical distribution:

P̂pY |X “ xq “
n
ÿ

i“1

wxpxiq ¨ δyi , (5)

where δyi is the point mass at yi.

The weighting function wxpxiq can directly be used for any target τpxq in a second

step and not just for estimating the conditional distribution. For example, the estimated

conditional joint CDF is given by

F̂Y |X“xptq “ P̂pY1 ď t1, . . . , Yd ď td |X“xq “
n
ÿ

i“1

wxpxiq1pX
d
j“1tpyiqj ď tjuq. (6)

It is important to point out that using the induced weighting function for locally

weighted estimation is different than the approach of averaging the noisy estimates

obtained per tree (Wager and Athey, 2018), originally used in standard Random Forests

(Breiman, 2001). Even though the two approaches are equivalent for conditional mean

estimation, the former approach is often much more efficient for more complex targets

(Athey et al., 2019), since the number of data points in a single leaf is very small, leading

to large variance of the estimates.

For the univariate response, the idea of using the induced weights for estimating targets

different than the original target of conditional mean considered in Breiman (2001) dates

back to Quantile Regression Forests (QRF) (Meinshausen, 2006), where a lot of emphasis
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is put on the quantile estimation, as the number of interesting targets is quite limited in

the univariate setting.

In the multivariate case, on the other hand, many interesting quantities such as, for

example, conditional quantiles, conditional correlations or various conditional probability

statements can easily be directly estimated from the weights.

By using the weights as an input for some other method, we can accomplish some

more complicated objectives, such as conditional independence testing, causal effect

estimation, semiparametric learning, time series prediction or tail-index estimation in

extreme value analysis. As an example, suppose that our data Y come from a certain

parametric model, where the parameter θ is not constant, but depends on X instead, i.e.

Y |X “ x „ fpθpxq, ¨q, see also Zeileis et al. (2008). One can then estimate the parameter

θpxq by using weighted maximum likelihood estimation:

θ̂pxq “ arg max
θPΘ

n
ÿ

i“1

wxpxiq log fpθ,yiq.

Another example is heterogeneous regression, where we are interested in the regression

fit of an outcome Y P R on certain predicting variables W P Rs conditionally on some

event tX “ xu. This can be achieved by weighted regression of Y on W, where the weight

wxpxiq assigned to each data point pwi, yiq is obtained from DRF with the multivariate

response pY,Wq P Rs`1 and predictors X P Rp, for an illustration see Section 4.4.

The weighting function of DRF is illustrated on the air quality data in Figure 2. Five

years (2015´2019) of air pollution measurements were obtained from the US Environmental

Protection Agency (EPA) website. Six main air pollutants (nitrogen dioxide (NO2), carbon

monoxide (CO), sulphur dioxide (SO2), ozone (O3) and coarse and fine particulate matter

(PM10 and PM2.5)) that form the air quality index (AQI) were measured at many different

measuring sites in the US for which we know the longitude, latitude, elevation, location

setting (rural, urban, suburban) and how the land is used within a 1{4 mile radius.

Suppose we would want to know the distribution of the pollutant measurements at some

new, unobserved, measurement site. The top row illustrates for a given test site, whose

characteristics are indicated in the plot title, how much weight in total is assigned to

the measurements from a specific training site. We see that the important sites share

many characteristics with the test site and that DRF determines the relevance of each

characteristic in a data-adaptive way. The bottom row shows the corresponding estimates

of the joint conditional distribution of the pollutants (we choose 2 of them for visualization

purposes) and one can clearly see how the estimated pollution levels are larger for the

suburban site than for the rural site. The induced weights can be used, for example, for

estimating the joint density (whose contours can be seen in the plot) or for estimating

the probability that the AQI is below a certain value by summing the weights in the
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Figure 2: Top: the characteristics of the important training sites, for a fixed test site whose position is

indicated by a black star and whose characteristics are indicated in the title. The total weight assigned

corresponds to the symbol size. Bottom: estimated joint conditional distribution of two pollutants NO2

and PM2.5, where the weights correspond to the transparency of the data points. Green area corresponds

to ’Good’ air quality category (AQI ď 50).

corresponding region of space.

2.3 Distributional Metric

In order to determine the best split of a parent node P , i.e. such that the distributions

of the responses Y in the resulting child nodes CL and CR differ the most, one needs a good

distributional metric Dp¨, ¨q (see Equation (1)) which can detect change in distribution of

the response Y when additionally conditioning on an event tXj ą lu. Testing equality

of distributions from the corresponding samples is an old problem in statistics, called

two-sample testing problem. For univariate data, many good tests exist such as Wilcoxon

rank test (Wilcoxon, 1946), Welch’s t-test (Welch, 1947), Wasserstein two-sample testing

(Ramdas et al., 2017), Kolmogorov-Smirnov test (Massey Jr, 1951) and many others, but

obtaining an efficient test for multivariate distributions has proven to be quite challenging

due to the curse of dimensionality (Friedman and Rafsky, 1979; Baringhaus and Franz,

2004).

Additional requirement for the choice of distributional metric Dp¨, ¨q used for data

splitting is that it needs to be computationally very efficient as splitting is used extensively

in the algorithm. If we construct N trees from n data points and in each node we consider
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mtry candidate variables for splitting, the complexity of the standard Random Forest

algorithm (Breiman, 2001) in the univariate case is OpN ˆmtryˆ n log nq provided our

splits are balanced. It uses the CART splitting criterion, given by:

1

nP

˜

ÿ

xiPCL

pyi ´ yLq
2
`

ÿ

xiPCR

pyi ´ yRq
2

¸

, (7)

where yL “
1
nL

ř

xiPCL
yi and yR is defined analogously. This criterion has an advantage

that not only it can be computed in OpnP q complexity, but this can be done for all

possible splits tXj ď lu as cutoff level l varies, since updating the splitting criterion when

moving a single training data point from one child node to the other requires only Op1q
computational steps (most easily seen by rewriting the CART criterion as in (13)).

If the time complexity of evaluating the DRF splitting criterion (1) for a single splitting

candidate Xj and all cutoffs l of interest (usually taken to range over all possible values)

is at least nc for some c ą 1, say OpfpnP qq for some function f : RÑ R, then by solving

the recursive relation we obtain that the overall complexity of the method is given by

OpN ˆmtryˆ fpnqq (Akra and Bazzi, 1998), which can be unfeasible even for moderately

large n if f grows too fast.

The problem of sequential two-sample testing is also central to the field of change-

point detection (Wolfe and Schechtman, 1984; Brodsky and Darkhovsky, 2013), with

the slight difference that in the change-point problems the distribution is assumed to

change abruptly at certain points in time, whereas for our forest construction we only are

interested in finding the best split of the form tXj ď lu and the conditional distribution

PpY | tX P P u X tXj ď luq usually changes gradually with l. The testing power and

the computational feasibility of the method play a big role in change-point detection as

well. However, the state-of-the-art change-point detection algorithms (Li et al., 2019;

Matteson and James, 2014) are often too slow for our purpose as sequential testing is done

OpN ˆmtryˆnq times for forest construction, much more frequently than in change-point

problems.

2.3.1 MMD splitting criterion

Even though DRF could in theory be constructed with any distributional metric Dp¨, ¨q,
as a default choice we propose splitting criterion based on the Maximum Mean Discrepancy

(MMD) statistic (Gretton et al., 2007a). Let pH, x¨, ¨yHq be the RKHS of real-valued

functions on Rd induced by some positive-definite kernel k, and let ϕ : Rd Ñ H be the

corresponding feature map satisfying that kpu,vq “ xϕpuq, ϕpvqyH.

The MMD statistic DMMDpkq pU, V q for kernel k and two samples U “ tu1, . . . ,u|U |u
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and V “ tv1, . . . ,v|V |u is given by:

DMMDpkq pU, V q “
1

|U |2

|U |
ÿ

i,j“1

kpui,ujq `
1

|V |2

|V |
ÿ

i,j“1

kpvi,vjq ´
2

|U ||V |

|U |
ÿ

i“1

|V |
ÿ

j“1

kpui,vjq. (8)

MMD compares the similarities, described by the kernel k, within each sample with the

similarities across samples and is commonly used in practice for two-sample testing. It is

based on the idea that one can assign to each distribution P its embedding µpPq into the

RKHS H, which is the unique element of H given by

µpPq “ EY„PrϕpYqs. (9)

The MMD two-sample statistic (8) can then can then equivalently be written as the

squared distance between the embeddings of the empirical distributions with respect to

the RKHS norm ‖¨‖H:

DMMDpkq pU, V q “

∥∥∥∥∥µ
˜

1

|U |

|U |
ÿ

i“1

δui

¸

´ µ

˜

1

|V |

|V |
ÿ

i“1

δvi

¸
∥∥∥∥∥

2

H

, (10)

recalling that δy is the point mass at y.

As the sample sizes |U | and |V | grow, the MMD statistic (10) converges to its population

version, which is the squared RKHS distance between the corresponding embeddings of

the data-generating distributions of U and V . Since the embedding map µ is injective

for characteristic kernel k, we see that MMD is able to detect any difference in the

distribution. Even though the power of the MMD two sample test also deteriorates as the

data dimensionality grows, since the testing problem becomes intrinsically harder (Reddi

et al., 2014), it still has good empirical power compared to other multivariate two-sample

tests for a wide range of k (Gretton et al., 2012a).

However, the Opp|U | ` |V |q2q complexity for computing DMMDpkqpU, V q from (8) is

too large for many applications. For that reason, several fast approximations of MMD

have been suggested in the literature (Gretton et al., 2012a; Zaremba et al., 2013). As

already mentioned, the complexity of the distributional metric Dp¨, ¨q used for DRF is

crucial for the overall method to be computationally efficient, since the splitting step

is used extensively in the forest construction. We therefore propose splitting based on

an MMD statistic computed with an approximate kernel k̃, which is also a fast random

approximation of the original MMD (Zhao and Meng, 2015).

Bochner’s theorem (see e.g. Wendland (2004, Theorem 6.6)) gives us that any bounded

shift-invariant kernel can be written as

kpu,vq “

ż

Rd
eiω

T pu´vqdνpωq, (11)
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i.e. as a Fourier transform of some measure ν. Therefore, by randomly sampling the

frequency vectors ω1, . . . ,ωB from normalized ν, we can approximate our kernel k by

another kernel k̃ (up to a scaling factor) as follows:

kpu,vq “

ż

Rd
eiω

T pu´vqdνpωq «
1

B

B
ÿ

b“1

eiω
T
b pu´vq “ k̃pu,vq,

where we define k̃pu,vq “ x rϕpuq, rϕpvqyCB as the kernel function with the feature map

given by

rϕpuq “
1
?
B
pϕ̃ω1puq, . . . , ϕ̃ωBpuqq

T
“

1
?
B

´

eiω
T
1 u, . . . , eiω

T
Bu
¯T

,

which is a random vector consisting of the Fourier features rϕωpuq “ eiω
Tu P C (Rahimi and

Recht, 2008). Such kernel approximations are frequently used in practice for computational

efficiency (Rahimi and Recht, 2009; Le et al., 2013). As a default choice of k we take the

Gaussian kernel with bandwidth σ, since in this case we have a convenient expression for

the measure ν and we sample ω1, . . . ,ωB „ Ndp0, σ
´2Idq. The bandwidth σ is chosen as

the median pairwise distance between all training responses tyiu
n
i“1, commonly referred to

as the ’median heuristic’ (Gretton et al., 2012b).

From the representation of MMD via the distribution embeddings (10) we can obtain

that MMD two-sample test statistic DMMDpk̃q using the approximate kernel k̃ is given by

DMMDpk̃q

´

tuiu
|U |
i“1, tviu

|V |
i“1

¯

“
1

B

B
ÿ

b“1

∣∣∣∣∣ 1

|U |

|U |
ÿ

i“1

ϕ̃ωbpuiq ´
1

|V |

|V |
ÿ

i“1

ϕ̃ωbpviq

∣∣∣∣∣
2

.

Interestingly, DMMDpk̃q is not only an MMD statistic on its own, but can also be viewed

as a random approximation of the original MMD statistic DMMDpkq (8) using kernel k; by

using the kernel representation (11), it can be written (the derivation can be found in the

Appendix B of Ćevid et al. (2020b)) as

DMMDpkq

´

tuiu
|U |
i“1, tviu

|V |
i“1

¯

“

ż

Rd

∣∣∣∣∣ 1

|U |

|U |
ÿ

i“1

ϕ̃ωpuiq ´
1

|V |

|V |
ÿ

i“1

ϕ̃ωpviq

∣∣∣∣∣
2

dνpωq.

Finally, our DRF splitting criterion Dp¨, ¨q (1) is then taken to be the (scaled) MMD

statistic nLnR
n2
P

DMMDpk̃q ptyi | xi P CLu , tyi | xi P CRuq with the approximate random kernel

k̃ used instead of k, which can thus be conveniently written as:

1

B

B
ÿ

b“1

nLnR
n2
P

∣∣∣∣∣ 1

nL

ÿ

xiPCL

ϕ̃ωbpyiq ´
1

nR

ÿ

xiPCR

ϕ̃ωbpyiq

∣∣∣∣∣
2

, (12)

where we recall that nP “ |ti | xi P P u| and nL, nR are defined analogously. The additional

scaling factor nLnR
n2
P

in (12) occurs naturally and compensates the increased variance of
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the test statistic for unbalanced splits; it also appears in the GRF (2) and CART (see

representation (13)) splitting criteria.

The main advantage of the splitting criterion based on DMMDpk̃q is that by using

the representation (1) it can be easily computed for every possible splitting level l

in OpBnP q complexity, whereas the MMD statistic DMMDpkq using kernel k would re-

quire Opn2
P q computational steps, which makes the overall complexity of the algorithm

O pB ˆN ˆmtryˆ n log nq instead of much slower O pN ˆmtryˆ n2q.

We do not use the same approximate random kernel k̃ for different splits; for every

parent node P we resample the frequency vectors tωbu
B
b“1 defining the corresponding feature

map ϕ̃. Using different k̃ at each node might help to better detect different distributional

changes. Furthermore, having different random kernels for each node agrees well with the

randomness of the Random Forests and helps making the trees more independent. Since

the MMD statistic DMMDpk̃q used for our splitting criterion is not only an approximation of

DMMDpkq, but is itself an MMD statistic, it inherits good power for detecting any difference

in distribution of Y in the child nodes for moderately large data dimensionality d, even

when B is reasonably small. One could even consider changing the number of random

Fourier features B at different levels of the tree, as nP varies, but for simplicity we take it

to be fixed.

There is some similarity of our MMD-based splitting criterion (12) with the standard

variance reduction CART splitting criterion (7) when d “ 1, which can be rewritten as:

nLnR
n2
P

˜

1

nL

ÿ

xiPCL

yi ´
1

nR

ÿ

xiPCR

yi

¸2

. (13)

The derivation can be found in Appendix B of Ćevid et al. (2020b). From this representation,

we see that the CART splitting criterion (7) is also equivalent to the GRF splitting

criterion (2) when our target is the univariate conditional mean τpxq “ ErY |X“xs which

is estimated for CL and CR by the sample means τ̂L “ yL and τ̂R “ yR. Therefore, as it

compares the means of the univariate response Y in the child nodes, the CART criterion

can only detect changes in the response mean well, which is sufficient for prediction of Y

from X, but might not be suitable for more complex targets. Similarly, for multivariate

applications, aggregating the marginal CART criteria (Kocev et al., 2007; Segal and Xiao,

2011) across different components Yi of the response can only detect changes in the means

of their marginal distributions. However, it is possible in the multivariate case that the

pairwise correlations or the variances of the responses change, while the marginal means

stay (almost) constant. For an illustration on simulated data, see Figure 7. Additionally,

aggregating the splitting criteria over d components of the response Y can reduce the

signal size if only the distribution of a few components change. Our MMD-based splitting
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criterion (12) is able to avoid such difficulties as it implicitly inspects all aspects of the

multivariate response distribution.

If we take a trivial kernel kidpyi, yjq “ yiyj with the identity feature map ϕidpyq “ y,

the corresponding distributional embedding (9) is given by µpPq “ EY„PY and thus

the corresponding splitting criterion based on DMMDpkidq (10) corresponds exactly to the

CART splitting criterion (7), which can be seen from its equivalent representation (13).

Interestingly, Theorem 3 in Section 3 below shows that the MMD splitting criterion with

kernel k can also be viewed as the abstract CART criterion in the RKHS H corresponding

to k (Fan et al., 2010). Moreover, it is also shown that DRF with the MMD splitting

criterion can thus be viewed asymptotically as a greedy minimization of the squared RKHS

distance between the corresponding embeddings of our estimate P̂pY |X“xq and the

truth PpY |X“xq averaged over x, thus justifying the proposed method. In Section 3, we

exploit this relationship to derive interesting theoretical properties of DRF with the MMD

splitting criterion.

3 Theoretical Results

In this section we exploit the properties of kernel mean embedding in order to relate

DRF with the MMD splitting criterion to an abstract version of the standard Random

Forest with the CART splitting criterion (Breiman, 2001) when the response is taking

values in the corresponding RKHS. We further exploit this relationship to adapt the

existing theoretical results from the Random Forest literature to show that our estimate

(5) of the conditional distribution of the response is consistent with respect to the MMD

metric for probability measures and with a good rate. Finally, we show that this implies

consistency of the induced DRF estimates for a range interesting targets τpxq, such as

conditional CDFs or quantiles. The proofs of all results can be found in the Appendix B

in Ćevid et al. (2020b).

Recalling the notation from above, let pH, x¨, ¨yHq be the Reproducing kernel Hilbert

space induced by the positive definite kernel k : Rd ˆ Rd Ñ R and let ϕ : Rd Ñ H be its

corresponding feature map. The kernel embedding function µ : MbpRdq Ñ H maps any

bounded signed Borel measure P on Rd to an element µpPq P H defined by

µpPq “
ż

Rd
ϕpyqdPpyq,

see (9). Boundedness of k ensures that µ is indeed defined on all of MbpRdq, while

continuity of k ensures that H is separable Hsing and Eubank (2015).

By considering the kernel embedding µp¨q and using its linearity, we can write the

embedding of the distributional estimate µpP̂pY |X“xqq of DRF (5) as the average of the
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embeddings of the empirical distributions of Y in the leaves containing x over all trees:

µpP̂pY |X“xqq “
1

N

N
ÿ

k“1

µ

¨

˝

1

|Lkpxq|
ÿ

xiPLkpxq

δyi

˛

‚“
1

N

N
ÿ

k“1

1

|Lkpxq|
ÿ

xiPLkpxq

µpδyiq. (14)

This is analogous to the prediction of the response for the standard Random Forest,

but where we average the embeddings µpδyiq “ ϕpyiq instead of the response values

themselves. Therefore, by using the kernel embedding, we can shift the perspective to the

RKHS H and view DRF as the analogue of the original Random Forest for estimation of

µpPpY |X “ xqq “ ErϕpYq |X“xs in some abstract Hilbert space.

With this viewpoint, we can relate the MMD splitting criterion to the original CART

criterion (7), which measures the mean squared prediction error for splitting a certain

parent node P into children CL and CR. On one hand, from Equation (13) we see that the

CART criterion measures the squared distance between the response averages 1
nL

ř

xiPCL
yi

and 1
nR

ř

xiPCR
yi in the child nodes, but on the other hand, Equation (10) shows that

the MMD splitting criterion measures the RKHS distance between the embeddings of

the empirical response distributions in CL and CR. This is summarized in the following

theorem, which not only shows that the MMD splitting criterion can be viewed as the

abstract CART criterion in the RKHS H (Fan et al., 2010), but also that DRF with the

MMD splitting criterion can be viewed as greedy minimization of the average squared

distance between the estimated and true conditional distributions, as measured by the

RKHS norm between the corresponding embeddings to H:

Theorem 3. For any split of a parent node P into child nodes CL and CR, let P̂splitpxq “
ř

jPtL,Ru 1px P Cjq
1
nj

ř

xiPCj
δyi denote the resulting estimate of the distribution PpY |X“xq

when x P P . Then the MMD splitting criterion is equivalent to the abstract version of the

CART criterion (7) on H:

arg max
split

nLnR
n2
P

DMMDpkq ptyi | xi P CLu, tyi | xi P CRuq “ arg min
split

1

nP

ÿ

xiPP

∥∥∥µpδyiq ´ µpP̂splitpxiqq
∥∥∥2

H
.

Moreover, for any node P and any fixed distributional estimator P̂pY |X“xq, we have:

1

nP

ÿ

xiPP

∥∥∥µpδyiq ´ µpP̂pY |X“xiqq
∥∥∥2

H
“ VP`E

”

‖µpP̂pY |Xqq ´ µpPpY |Xqq‖2
H |X P P

ı

`Oppn
´1{2q,

where VP “ E r‖µpδYq ´ µpPpY |Xqq‖2
H |X P P s is a deterministic term not depending on

the estimates P̂pY |X“xq.

In conclusion, DRF with the MMD splitting criterion can be viewed as the standard

Random Forest with the CART splitting criterion, but with the response µpδYq taking

values in an abstract RKHS H instead of R. Therefore, one could in principle derive
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properties of DRF by adapting any theoretical result for standard Random Forests from

the literature. However, a lot of care is needed for making the results rigorous in this

abstract setup, as many useful properties of R need not hold for infinite-dimensional H.

The remaining part of this section is inspired by the results from Wager and Athey (2018).

We suppose that the forest construction satisfies the following properties, which

significantly facilitate the theoretical considerations of the method and ensure that our

forest estimator is well behaved, as stated in Wager and Athey (2018):

(P1) (Data sampling) The bootstrap sampling with replacement, usually used in forest-

based methods, is replaced by a subsampling step, where for each tree we choose

a random subset of size sn out of n training data points. We consider sn going to

infinity with n, with the rate specified below.

(P2) (Honesty) The data used for constructing each tree is split into two parts; the first

is used for determining the splits and the second for populating the leaves and thus

for estimating the response.

(P3) (α-regularity) Each split leaves at least a fraction α ď 0.2 of the available training

sample on each side. Moreover, the trees are grown until every leaf contains between

κ and 2κ´ 1 observations, for some fixed tuning parameter κ P N.

(P4) (Symmetry) The (randomized) output of a tree does not depend on the ordering of

the training samples.

(P5) (Random-split) At every split point, the probability that the split occurs along the

feature Xj is bounded below by π{p, for some π ą 0 and for all j “ 1, . . . , p.

The validity of the above properties are easily ensured by the forest construction. For

more details, see Appendix A of Ćevid et al. (2020b).

From Equation (14), the prediction of DRF for a given test point x can be viewed as an

element of H. If we denote the i-th training observation by Zi “ pxi, µpδyiqq P RpˆH, then

by (14) we estimate the embedding of the true conditional distribution µpPpY |X“xqq

by the average of the corresponding estimates per tree:

µpP̂pY |X“xqq “
1

N

N
ÿ

j“1

T px; εj,Zjq,

where Zk is a random subset of tZiu
n
i“1 of size sn chosen for constructing the j-th tree Tj

and εj is a random variable capturing all randomness in growing Tj, such as the choice of

the splitting candidates. T px; ε,Zq denotes the output of a single tree: i.e. the average of

the terms µpδYi
q over all data points Zi contained in the leaf Lpxq of the tree constructed

from ε and Z.
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Since one can take the number of trees N to be arbitrarily large, we consider an

“idealized” version of our estimator, as done in Wager and Athey (2017), which we denote

as µ̂npxq:

µ̂npxq “

ˆ

n

sn

˙´1
ÿ

i1ăi2ă...ăisn

Eε T px; ε; tZi1 , . . . ,Zisnuq, (15)

where the sum is taken over all
`

n
sn

˘

possible subsets of tZiu
n
i“1. We have that µpP̂pY |X“xqq Ñ

µ̂npxq as N Ñ 8, while keeping the other variables constant, and thus we assume for

simplicity that those two quantities are the same.

Our main result shows that, under similar assumptions as in Wager and Athey (2017),

the embedding of our conditional distribution estimator µnpxq “ µpP̂pY |X“xqq consis-

tently estimates µpxq :“ µpPpY |X“xqq with respect to the RKHS norm with a certain

rate:

Theorem 4. Suppose that our forest construction satisfies properties (P1)–(P5). Assume

additionally that k is a bounded and continuous kernel and that we have a random design

with X1, . . . ,Xn independent and identically distributed on r0, 1sp with a density bounded

away from 0 and infinity. If the subsample size sn is of order nβ for some 0 ă β ă 1, the

mapping

x ÞÑ µpxq “ ErµpδYq |X“xs P H,

is Lipschitz and supxPr0,1sp Er}µpδYq}2H |X“xs ă 8, we obtain the consistency w.r.t. the

RKHS norm:

‖µ̂npxq ´ µpxq‖H “ op
`

n´γ
˘

, (16)

for any γ ă 1
2

min
´

1´ β, logp1´αq
logpαq

π
p
¨ β

¯

.

Remark. The rate in (16) is analogous to the one from Wager and Athey (2018), who

used it further to derive the asymptotic normality of the random forest estimator in R.

Indeed, one can show in our case that there exists a sequence of real numbers σn Ñ 0,

such that pµ̂npxq ´ µpxqq{σn as a random element of H is “asymptotically linear”, in the

sense that it is indistinguishable asymptotically from an average of independent random

elements in H. Unfortunately, this alone is not enough to establish asymptotic normality

of pµ̂npxq ´ µpxqq{σn as an element of H, a task left for future research.

The above result shows that DRF estimate P̂pY |X“xq converges fast to the truth

PpY |X“xq in the MMD distance, i.e. the RKHS distance between the corresponding

embeddings. Even though this is interesting on its own, ultimately we want to relate this

result to estimation of certain distributional targets τpxq “ τpPpY |X“xqq.
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For any f P H, we have that the DRF estimate of the target τpxq “ ErfpYq |X“xs

equals the dot product xf, µ̂npxqyH in the RKHS:

xf, µ̂npxqyH “

B

f,

ż

Rd
ϕpyqdP̂py |X“xq

F

H
“

ż

Rd
fpyq dP̂py |X“xq “

n
ÿ

i“1

wxpxiqfpyiq,

where we recall the weighting function wxp¨q induced by the forest (4). Therefore, the

consistency result (16) in Theorem 4 directly implies that

n
ÿ

i“1

wxpxiqfpyiq “ xf, µ̂npxqyH
p
Ñ xf, µpxqyH “ ErfpYq |X“xs for any f P H, (17)

i.e. that the DRF consistently estimates the targets of the form τpxq “ ErfpYq |X“xs,

for f P H. From (16) we also obtain the rate of convergence when sn — nβ:
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

wxpxiqfpyiq ´ ErfpYq |X“xs

ˇ

ˇ

ˇ

ˇ

ˇ

“ op
`

n´γ‖f‖H
˘

,

for γ as in Theorem 4. When k is continuous, it is well known that all elements of H
are continuous, see e.g. Hsing and Eubank (2015). Under certain assumptions on the

kernel and its input space, holding for several popular kernels, (e.g. the Gaussian kernel)

(Sriperumbudur, 2016), we can generalize the convergence result (17) to any bounded

and continuous function f : Rd Ñ R, as the convergence of measures P̂pY |X“xq Ñ

PpY |X“xq in the MMD metric will also imply their weak convergence, i.e. k metrizes

weak convergence (Sriperumbudur, 2016; Simon-Gabriel and Schölkopf, 2018; Simon-

Gabriel et al., 2020):

Corollary 3.1. Assume that one of the following two sets of conditions holds:

(a) The kernel k is bounded, (jointly) continuous and has
ż ż

kpx,yqdPpxqdPpyq ą 0 @P PMbpRd
qzt0u. (18)

Moreover, y ÞÑ kpy0,yq is vanishing at infinity, for all y0 P Rd.

(b) The kernel k is bounded, shift-invariant, (jointly) continuous and ν in the Bochner

representation in (11) is supported on all of Rd. Moreover, Y takes its values almost

surely in a closed and bounded subset of Rd.

Then, under the conditions of Theorem 4, we have for any bounded and continuous function

f : Rd Ñ R that DRF consistently estimates the target τpxq “ ErfpYq |X“xs for any

x P r0, 1sp:
n
ÿ

i“1

wxpxiqfpyiq
p
Ñ ErfpYq |X“xs.
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Recalling the Portmanteau Lemma on separable metric spaces, see e.g. Dudley (2002,

Chapter 11), this has several other interesting consequences, such as the consistency of

CDF and quantile estimates; Let FY |X“xp¨q be the conditional CDF of Y and for any

index 1 ď i ď d, let FYi |X“xp¨q be the conditional CDF of Yi and F´1
Yi |X“xp¨q its generalized

inverse, i.e. the quantile function. Let F̂Yi |X“xp¨q and F̂´1
Yi |X“xp¨q be the corresponding

DRF estimates via weighting function (6). Then we have the following result:

Corollary 3.2. Under the conditions of Corollary 3.1, we have

F̂Y |X“xptq
p
Ñ FY |X“xptq

F̂´1
Yi |X“xptq

p
Ñ F´1

Yi |X“xptq

for all points of continuity t P Rd and t P R of FY |X“xp¨q and F´1
Yi |X“xp¨q respectively.

4 Applications and Numerical Experiments

The goal of this section is to demonstrate the versatility and applicability of DRF for

many practical problems. We show that DRF can be used not only as an estimator of

the multivariate conditional distribution, but also as a two-step method to easily obtain

out-of-the box estimators for various, and potentially complex, targets τpxq.

Our main focus lies on the more complicated targets which cannot be that straight-

forwardly approached by conventional methods. However, we also illustrate the usage of

DRF for certain applications for which there already exist several well-established methods.

Whenever possible in such cases, we compare the performance of DRF with the specialized,

task-specific methods to show that, despite its generality, there is at most a very small

loss of precision. However, we should point out that for many targets such as, that can

not be written in a form of a conditional mean or a conditional quantile, for example,

conditional correlation, direct comparison of the accuracy is not possible for real data,

since no suitable loss function exists and the ground truth is unknown. Finally, we show

that, in addition to directly estimating certain targets, DRF can also be a very useful tool

for many different applications, such as causality and fairness.

Detailed descriptions of all data sets and the corresponding analyses, together with

additional simulations can be found in the Appendix C of Ćevid et al. (2020b).

4.1 Estimation of Conditional Multivariate Distributions

In order to provide good estimates for any target τpxq “ τpPpY |X“xqq, our method

needs to estimate the conditional multivariate distribution PpY |X“xq well. Therefore, we
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first investigate here the accuracy of the DRF estimate (5) of the full conditional distribution

and compare its performance with the performance of several existing methods.

There are not many algorithms in the literature that nonparametrically estimate the

multivariate conditional distribution PpY |X “ xq. In addition to a few simple methods

such as the k-nearest neighbors or the kernel regression, which locally weight the training

points, we also consider advanced machine learning methods such as the Conditional

Generative Adversarial Network (CGAN) (Mirza and Osindero, 2014; Aggarwal et al.,

2019), Conditional Variational Autoencoder (CVAE) (Sohn et al., 2015) and Masked

Autoregressive Flow (Papamakarios et al., 2017). It is worth mentioning that the focus in

the machine learning literature has been more on applications where d is very large (e.g.

pixels of an image) and p is very small (such as image labels). Even though some methods

do not provide the estimated conditional distribution in a form as simple as DRF, one

is still able to sample from the estimated distribution and thus perform any subsequent

analysis and make fair comparisons between the methods.

Figure 3: The illustration of the estimated joint conditional distribution obtained by different methods

for the toy example (19). For 1000 randomly generated test points Xtest „ Up0, 1qp the top row shows

the estimated distribution of the response component Y1, whereas the bottom row shows the estimated

distribution of Y2. The 0.1 and 0.9 quantiles of the true conditional distribution are indicated by a dashed

black line, whereas the conditional mean is shown as a black solid line.

We first illustrate the estimated distributions of the above method on a toy example

where n “ 1000, p “ 10, d “ 2 and

Y1 KK Y2 |X“x, Y1 |X“x „ Upx1, x1 ` 1q, Y2 |X“x „ Up0, x2q, X „ Up0, 1qp.

(19)

That is, in the above example X1 affects the mean of Y1, whereas X2 affects the both mean

and variance of Y2, and X3, . . . , Xp have no impact. The results can be seen in Figure 3
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for the above methods. We see that, unlike some other methods, DRF is able to balance

the importance of the predictors X1 and X2 and thus to estimate the distributions of Y1

and Y2 well.

One can do a more extensive comparison on real data sets. We use the benchmark

data sets from the multi-target regression literature (Tsoumakas et al., 2011) together

with some additional ones created from the real data sets described throughout this paper.

The performance of DRF is compared with the performance of other existing methods

for nonparametric estimation of multivariate distributions by using the Negative Log

Predictive Density (NLPD) loss, which evaluates the logarithm of the induced multivariate

density estimate (Quinonero-Candela et al., 2005). As the number of test points grows

to infinity, NLPD loss becomes equivalent to the average KL divergence between the

estimated and the true conditional distribution and is thus able to capture how well one

estimates the whole distribution instead of only its mean.

In addition to the methods mentioned above, we also include the methods that are

intended only for mean prediction, by assuming that the distribution of the response around

its mean is homogeneous, i.e. that the conditional distribution P pY ´ ErY |Xs |X“xq

does not depend on x. This is fitted by regressing each component of Y separately on

X and using the pooled residuals. We consider the standard nonparametric regression

methods such as Random Forest (Breiman, 2001), XGBoost (Chen and Guestrin, 2016),

and Deep Neural Networks (Goodfellow et al., 2016).

The results are shown in Table 1. We see that DRF performs well for a wide range

of sample size and problem dimensionality, especially in problems where p is large and

d is moderately big. It does so without the need for any tuning or involved numerical

optimization. More detailed analysis and descriptions of each competing method and the

loss function can be found in the Appendix C of Ćevid et al. (2020b).

4.2 Estimation of Statistical Functionals

Because DRF represents the estimated conditional distribution P̂pY |X “ xq “
ř

iwxpxiq¨δyi in a convenient form by using weights wxpxiq, a plug-in estimator τpP̂pY |X “

xqq of many common real valued statistical functionals τpPpY |X “ xqq P R can be easily

constructed from wxp¨q.

We first investigate the performance for the classical problem of univariate quantile

estimation on simulated data. We consider the following three data generating mechanisms

with p “ 40, n “ 2000 and Xi
i.i.d.
„ Up´1, 1qp:

• Scenario 1: Y „ Np0.8 ¨ 1pX1 ą 0q, 1q (mean shift based on X1)

• Scenario 2: Y „ Np0, p1` 1pX1 ą 0qq2q (variance shift based on X1)
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n 359 103 1K 768 337 296 143 323 1K 5K 10K 10K 10K 10K

p 15 7 16 8 370 370 8 21 22 10 73 23 24 15

d 3 3 14 2 6 6 3 3 6 2 2 2 4 6

DRF 3.9 4.0 22.5 2.1 7.3 7.0 2.0 -24.2 -24.3 2.8 2.8 2.5 4.2 8.5

CGAN 10.8 5.3 27.3 3.5 10.4 363 4.8 9.8 21.1 5.8 360 2.4 ą1K 11.8

CVAE 4.8 37.8 36.8 2.6 ą1K ą1K 108.8 8.6 ą1K 2.9 ą1K ą1K 49.7 9.6

MAF 4.6 4.5 23.9 3.0 8.0 8.1 2.6 4.7 3.8 2.9 3.0 2.5 ą1K 8.5

k-NN 4.5 5.0 23.4 2.4 8.8 8.6 4.1 -22.4 -19.7 2.9 2.8 2.7 4.4 8.8

kernel 4.1 4.2 23.0 2.0 6.6 7.1 2.9 -23.0 -20.6 2.8 2.9 2.6 4.3 8.4

RF 7.1 12.1 35.2 5.7 12.7 13.3 16.7 3.9 2.2 5.8 6.1 5.0 8.3 13.9

XGBoost 11.4 38.3 25.9 3.0 ą1K ą1K ą1K 0.3 1.6 3.5 2.9 ą1K ą1K 12.8

DNN 4.0 4.2 23.3 2.6 8.6 8.7 2.6 2.3 2.2 2.9 3.0 2.6 5.4 8.6

Table 1: NLPD loss computed on out-of-sample observations for the estimated conditional distributions

obtained by several different methods (corresponding to rows) for many real data sets (corresponding

to columns). The best method is indicated in bold. Detailed description of both the data sets and the

competing methods can be found in Appendix C of Ćevid et al. (2020b)

• Scenario 3: Y „ 1pX1 ď 0q ¨Np1, 1q ` 1pX1 ą 0q ¨ Expp1q (distribution shift based

on X1, constant mean and variance)

The first two scenarios correspond exactly to the examples given in Athey et al. (2019).

In Figure 4 we can see the corresponding estimates of the conditional quantiles for

DRF, Quantile Regression Forest (QRF) (Meinshausen, 2006), which uses the same forest

construction with CART splitting criterion as the original Random Forest (Breiman, 2001)

but estimates the quantiles from the induced weighting function, Generalized Random

Forests (GRF) (Athey et al., 2019) with a splitting criterion specifically designed for

quantile estimation and Transformation Forests (TRF) (Hothorn and Zeileis, 2021). We

see that DRF is performing very well even compared to methods that are specifically

tailored to quantile estimation. For more detailed analysis and some additional examples,

such as the univariate mean regression, we refer the reader to Appendix D in Ćevid et al.

(2020b).

The multivariate setting is however more interesting, as one can use DRF to compute

much more interesting statistical functionals τpxq. We illustrate this in Figure 5 for the

the air quality data set, described in Section 2.2. The left plot shows one value of the

estimated multivariate CDF, specifically the estimated probability of the event that the

air quality index (AQI) is at most 50 at a given test site. This corresponds to the ”Good”
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Figure 4: Scatter plot of predictions of the 0.1, 0.5 and 0.9 quantiles against X1 for randomly generated

500 test data points Xtest „ Up´1, 1qp. The true values of the quantiles are displayed by black dashed

lines. The columns corresponds to different methods DRF (red), GRF (green), QRF (blue), TRF (purple).

The rows correspond to different simulation scenarios. The first two are taken from Athey et al. (2019).

category and means that the amount of every air pollutant is below a certain threshold

determined by the EPA. Such probability estimates can be easily obtained by summing

the weights of the training points belonging to the event of interest.

Figure 5: Estimates of the probability PpAQI ď 50 | test siteq (left) and the conditional correlation (right)

derived from the DRF estimate of the multivariate conditional distribution.

In order to investigate the accuracy of the conditional CDF obtained by DRF, we

compare the estimated probabilities with estimates of the standard univariate classification

forest (Breiman, 2001) with the response 1pAQI ď 50q. In the left plot of Figure 6, we

can see that the DRF estimates of the PpAQI ď 50 |X “ xq (also visualized in Figure

5) are quite similar to the estimates of the classification forest predicting the outcome
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1pAQI ď 50q. Furthermore, the cross-entropy loss evaluated on the held-out measurements

equals 0.4671 and 0.4663 respectively, showing almost no loss of precision. In general,

estimating the simple functionals from the weights provided by DRF comes usually at a

small to no loss compared to the classical methods specifically designed for this task.

In addition to the classical functionals τpxq in the form of an expectation EpfpYq |X “

xq or a quantile QαpfpYq |X “ xq for some function f : Rd Ñ R, which can also be

computed by solving the corresponding one-dimensional problems, additional interesting

statistical functionals with intrinsically multivariate nature that are not that simple to

estimate directly are accessible by DRF, such as, for example, the conditional correlations

CorpYi, Yj |X“xq. As an illustration, the estimated correlation of the sulfur dioxide (SO2)

and fine particulate matter (PM2.5) is shown in the right plot of Figure 5. The plot reveals

also that the local correlation in many big cities is slightly larger than in its surroundings,

which can be explained by the fact that the industrial production directly affects the levels

of both pollutants.

Figure 6: Left: Comparison of the CDF estimates obtained by DRF (displayed also in the left plot

of Figure 5) and by the classification forest. Right: Example how the CDF estimated by using the

classification forest (blue) need not be monotone, whereas the DRF estimates (red) are well-behaved.

A big advantage of the target-free forest construction of DRF is that all subsequent

targets are computed from same the weighting function wx obtained from a single forest

fit. First, this is computationally more efficient, since we do not need for every target of

interest to fit the method specifically tailored to it. For example, estimating the CDF

with classification forests requires fitting one forest for each function value. Secondly and

even more importantly, since all statistical functionals are plug-in estimates computed

from the same weighting function, the obtained estimates are mathematically well-behaved

and mutually compatible. For example, if we estimate CorpYi, Yj |X“xq by separately

estimating the terms CovpYi, Yj |X“xq, VarpYi |X“xq, and VarpYj |X“xq, one can not

in general guarantee the estimate to be in the range r´1, 1s, but this is possible with

DRF. Alternatively, the correlation or covariance matrices that are estimated entrywise

are guaranteed to be positive semi-definite if one uses DRF. As an additional illustration,

Figure 6 shows that the estimated (univariate) CDF using the classification forest need
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not be monotone due to random errors in each predicted value, which can not happen

with the DRF estimates.

4.3 Conditional Copulas and Conditional Independence Testing

One can use the weighting function not only to estimate certain functionals, but also

to obtain more complex objects, such as, for example, the conditional copulas. The

well-known Sklar’s theorem (Sklar, 1959) implies that at a point x P Rp, the conditional

CDF PpY ď y |X “ xq “ PpY1 ď y1, . . . , Yd ď yd |X “ xq can be represented by

a CDF Cx on r0, 1sd, the conditional copula at x, and d conditional marginal CDFs

FYi |X“xpyq “ PpYi ď y |X “ xq for 1 ď i ď d, as follows:

PpY ď y |X “ xq “ Cx

`

FY1 |X“xpy1q, . . . , FYd |X“xpydq
˘

. (20)

Copulas capture the dependence of the components Yi by the joint distribution of

the corresponding quantile levels of the marginal distributions: FYi |X“xpYiq P r0, 1s.

Decomposing the full multivariate distribution to marginal distributions and the copula

is a very useful technique used in many fields such as risk analysis or finance (Cherubini

et al., 2004). Using DRF enables us to estimate copulas conditionally, either by fitting

certain parametric model or nonparametrically, directly from the weights.

Figure 7: Estimated conditional joint distribution of pY1, Y2q and conditional copulas obtained by DRF at

different test points x, where x1 equals 0.25 and 0.75 respectively. The red lines are the contours of the

true multivariate density function.

To illustrate this, consider an example where the 5-dimensional Y is generated from

the equicorrelated Gaussian copula Y “ pY1, . . . , Y5q |X “ x „ CGauss
ρpxq conditionally on

the covariates X with distribution Xi
i.i.d.
„ Up0, 1qp, where p “ 30 and n“5000. All Yi

have a Np0, 1q distribution marginally, but their conditional correlation for i ‰ j is given

by CorpYi, Yjq “ ρpxq “ x1. Figure 7 shows that DRF estimates the full conditional

distribution at different test points x quite accurately and thus we can obtain a good

nonparametric estimate of the conditional copula as follows. First, for each component
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Yi, we compute the corresponding marginal CDF estimate F̂Yi |X“xp¨q from the weights.

Second, we map each response yi Ñ ui :“
´

F̂Y1 |X“x ppyiq1q , . . . , F̂Yd |X“x ppyiqdq
¯

. The

copula estimate is finally obtained from the weighted distribution
řn
i“1wxpxiqδui , from

which we sample the points in Figure 7 in order to visualize the copula.

If we want to instead estimate the copula parametrically, we need to find the choice

of parameters for a given model family which best matches the estimated conditional

distribution, e.g. by weighted maximum likelihood estimation (MLE). For the above

example, the correlation parameter of the Gaussian copula can be estimated by computing

the weighted correlation with weights twxpxiqu
n
i“1. The left plot in Figure 8 shows

the resulting estimates of the conditional correlation Cor pY1, Y2 |X “ xq obtained from

DRFMMD, which uses the MMD splitting criterion (12) described in Section 2.3.1, and

DRFCART, which aggregates the marginal CART criteria (Kocev et al., 2007; Segal and

Xiao, 2011). We see that DRFMMD is able to detect the distributional heterogeneity and

provide good estimates of the conditional correlation. On the other hand, DRFCART

cannot detect the change in distribution of Y caused by X1 that well. The distributional

heterogeneity can not only occur in marginal distribution of the responses (a case extensively

studied in the literature), but also in their interdependence structure described by the

conditional copula Cx, as one can see from decomposition (20). Since DRFMMD relies on

a distributional metric for its splitting criterion, it is capable of detecting any change

in distribution (Gretton et al., 2007a), whereas aggregating marginal CART criteria for

Y1, . . . , Yd in DRFCART only captures the changes in the marginal means.

Figure 8: Estimated conditional correlation of Y1 and Y2 (left) and estimated conditional dependence

quantified by HSIC statistic (right), obtained by DRFMMD (blue) and DRFCART (red) respectively. For

every test point, we set Xj “ 0.5, j ‰ 1. Black dashed curve indicates the population values.

This is further illustrated for a related application of conditional independence testing,

where we compute some dependence measure from the obtained weights. For example,

we can test the independence Y1 KK Y2 conditionally on the event X “ x by using the

Hilbert Schmidt Independence Criterion (HSIC) (Gretton et al., 2007b), which measures

the difference between the joint distribution and the product of the marginal distributions.
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The right plot of Figure 8 shows that the DRFMMD estimates are quite close to the

population value of the HSIC, unlike the ones obtained by DRFCART.

4.4 Heterogeneous Regression and Causal Effect Estimation

In this and the following section, we illustrate that, in addition to direct estimation

of certain targets, DRF can also be a useful tool for complex statistical problems and

applications, such as causality.

Suppose we would like to investigate the relationship between some (univariate) quantity

of interest Y and certain predictors W from heterogeneous data, where the change in

distribution of pW, Y q can be explained by some other covariates X. Very often in

causality applications, W is a (multivariate) treatment variable, Y is the outcome, which

is commonly, but not necessarily, discrete, and X is a set of observed confounding variables

for which we need to adjust if we are interested in the causal effect of W on Y . This is

illustrated by the following causal graph:

W

X

Y

The problem of nonparametric confounding adjustment is hard; not only can the

marginal distributions of Y and W be affected by X, thus inducing spurious associations

due to confounding, but the way how W affects Y can itself depend on X, i.e. the treatment

effect might be heterogeneous. The total causal effect can be computed by using the

adjustment formula (Pearl, 2009):

ErY | dopW“wqs “

ż

ErY | dopW“wq,X“xsPpX“x | dopW“wqqdx

“

ż

ErY |W“w,X“xsPpX“xqdx. (21)

However, implementing do-calculus for finite samples and potentially non-discrete data

might not be straightforward and comes with certain difficulties. The standard approach

would be to estimate the conditional mean ErY |W“w,X“xs nonparametrically by

regressing Y on pX,Wq with some method of choice and to average out the estimates

over different x sampled from the observed distribution of X. Using DRF for this is

not necessary, but has an advantage that one can easily estimate the full interventional

distribution PpY | dopW“wqq and not only the interventional mean.

Another way to compute the causal effect is explained in the following, which allows to

add more structure to the problem. We use DRF to first fit the forest with the multivariate
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response pW, Y q and the predictors X. In this way, one can for any point of interest x

obtain the joint distribution of pW, Y q conditionally on the event X“x and then the

weights twxpxiqu
n
i“1 can be used as an input for some regression method for regressing Y on

W in the second step. This conditional regression fit might be of separate interest and it can

also be used for estimating the causal effect ErY | dopW“wqs from (21), by averaging the

estimates ErY |W“w,X“xs over x, where x is sampled from the empirical observation

of X. In this way one can efficiently exploit and incorporate any prior knowledge of the

relationship between W and Y , such as, for example, monotonicity, smoothness or that

it satisfies a certain parametric regression model, without imposing any assumptions on

the effect of X on pW, Y q. Furthermore, one might be able to better extrapolate to the

regions of space where PpW“w,X“xq is small, compared to the standard approach

which computes ErY |W“w,X“xs directly, by regressing Y on pW,Xq. Extrapolation

is crucial for causal applications, since for computing ErY | dopW“wqs we are interested

in what would happen with Y when our treatment variable W is set to be w, regardless of

the value achieved by X. However, it can easily happen that for this specific combination

of X and W there are very few observed data points, thus making the estimation of the

causal effect hard (Pearl, 2009).

Figure 9: Left: Visualization of heterogeneous synthetic example (22). Middle: Gray points depict

joint distribution of pW,Y q conditionally on X“x, for some choices of x indicated in the top left

corner. Black curve indicates the true conditional mean ErY |W“w,X“xs, the blue curve represents

the estimate obtained by DRF with response pW,Y q and predictors X in combination with smoothing

splines regression, whereas the red curve represents the estimate obtained by standard Random Forest.

Right: The corresponding estimates for both methods of the causal effect ErY | dopW“wqs computed

from (21). The true causal effect is denoted by a black dashed curve.

As an illustration, we consider the following synthetic data example, with continuous



Ćevid, Michel, Näff, Bühlmann, Meinshausen 141

outcome Y , continuous univariate treatment W , n “ 5000 and p “ 20:

X „ Up0, 5qp, W |X „ NpX2, 1q, Y |X,W „ NpX2 `X1 sinpW q, 1q. (22)

A visualization of the data can be seen on the left side of Figure 9; treatment W affects

Y non-linearly, X2 is a confounding variable that affects the marginal distributions of Y

and W and X1 makes the treatment effect heterogeneous. The middle part of Figure 9

shows the conditional regression fits, i.e. the estimates of ErY |W“w,X“xs as w varies

and x is fixed. We see that combination of DRF with response pY,W q and predictors

X with the smoothing splines regression of Y on W (blue curve) is more accurate than

the estimates obtained by standard Random Forest (Breiman, 2001) with response Y

and predictors pW,Xq (red curve). Furthermore, we see that the former approach can

extrapolate better to regions with small number of data points, which enables us to better

estimate the causal effect ErY | dopW“wqs from (21), by averaging the corresponding

estimates of ErY |W“w,X“xs over observed x, as shown in the right plot of Figure 9.

The conditional regression fit ErY |W“w,X“xs is related to the concept of the

conditional average treatment effect (CATE) as it quantifies the effect of W on Y for the

subpopulation for which X “ x. There exist many successful methods in the literature

for estimating the causal effects and the (conditional) average treatment effects for a

wide range of settings (Abadie and Imbens, 2006; Chernozhukov et al., 2018; Wager and

Athey, 2018; Künzel et al., 2019). Due to its versatility, DRF can easily be used when the

underlying assumptions of existing methods are violated, when some additional structure

is given in the problem or for the general, nonparametric, settings (Imbens, 2004; Ernest

et al., 2015; Kennedy et al., 2017). Appendix D of Ćevid et al. (2020b) contains additional

comparisons with some existing methods for causal effect estimation.

4.4.1 Births data

We further illustrate the applicability of DRF for causality-related problems on the

natality data obtained from the Centers for Disease Control and Prevention (CDC) website,

where we have information about all recorded births in the USA in 2018. We investigate the

relationship between the pregnancy length and the birthweight, an important indicator of

baby’s health. Not only is this relationship complex, but it also depends on many different

factors, such as parents’ race, baby’s gender, birth multiplicity (single, twins, triplets...)

etc. In the left two plots of Figure 10 one can see the estimated joint distribution of

birthweight and pregnancy length conditionally on many different covariates, as indicated

in the plot. The black curves denote the subsequent regression fit, based on smoothing

splines and described in detail in Appendix C of Ćevid et al. (2020b). In addition to

the estimate of the mean, indicated by the solid curve, we also include the estimates of
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the conditional 0.1 and 0.9 quantiles, indicated by dashed curves, which is very useful in

practice for determining whether a baby is large or small for its gestational age. Notice

how DRF assigns less importance to the mother’s race when the point of interest is a twin

(middle plot), as in this case more weight is given to twin births, regardless of the race of

the parents.

Figure 10: Left and middle: estimated relationship of pregnancy length and birthweight, conditionally on

the criteria indicated in the upper left corner. Right: estimated interventional effect of twin birth on the

birthweight for a fixed pregnancy length. In all plots the solid curves denote the estimated conditional

mean and the dashed denote the estimated 0.1 and 0.9 quantiles.

Suppose now we would like to understand how a twin birth T causally affects the

birthweight B, but ignoring the obvious indirect effect due to shorter pregnancy length

L. For example, sharing of resources between the babies might have some effect on their

birthweight. We additionally need to be careful to adjust for other confounding variables

X, such as, for example, the parents’ race, which can affect B, T and L. We assume that

this is represented by the following causal graph:

T

X

L

B

In order to answer the above question, we investigate the causal quantity PpB | dopT“t, L“lqq.
Even though one cannot make such do-intervention in practice, this quantity describes

the total causal effect if the birth multiplicity and the length of the pregnancy could

be manipulated and thus for a fixed pregnancy length l, we can see the difference in

birthweight due to T . We compute this quantity as already stated above, by using DRF

with subsequent regression fits (described in detail in Appendix C of Ćevid et al. (2020b)),

which has the advantage of better extrapolating to regions with small probability, such

as long twin pregnancies (see middle plot of Figure 10). In the right plot of Figure 10

we show the mean and quantiles of the estimated interventional distribution and we see
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that, as one might expect, a twin birth causes smaller birthweight on average, with the

difference increasing with the length of the pregnancy.

4.5 Fairness

Being able to compute different causal quantities with DRF could prove useful in a

range of applications, including fairness (Kusner et al., 2017). We investigate the data on

approximately 1 million full-time employees from the 2018 American Community Survey

by the US Census Bureau from which we have extracted the salary information and all

covariates that might be relevant for salaries. In the bottom left plot of Figure 11 one can

see the distribution of hourly salary of men and women (on the logarithmic scale). The

overall salary was scaled with working hours to account for working part-time and for the

fact that certain jobs have different working hours. We can see that men are paid more in

general, especially for the very high salaries. The difference between the median hourly

salaries, a commonly used statistic in practice, amounts 17% for this data set.

We would like to answer whether the observed gender pay gap in the data is indeed

unfair, i.e. only due to the gender, or whether it can at least in part be explained by

some other factors, such as age, job type, number of children, geography, race, attained

education level and many others. Hypothetically, it could be, for example, that women

have a preference for jobs that are paid less, thus causing the gender pay gap.

In order to answer this question, we assume that the data is obtained from the following

causal graph, where G denotes the gender, W the hourly wage and all other factors are

denoted by X:

G

X

W

i.e. G is a source node and W is a sink node in the graph. In order to determine the

direct effect of the gender on wage that is not mediated by other factors, we would like

to compute the distribution of the nested counterfactual W pmale, Xpfemaleqq, which is

interpreted in the data-generating process as the women’s wage had they been treated

in same way as men by their employers for determining the salary, but without changing

their propensities for other characteristics, such as the choice of occupation. Therefore, it

can be obtained from the observed distribution as follows:

P pW pmale, Xpfemaleqqq “

ż

P pW pG“male, X“xqqPpX“x |G“femaleqdx

“

ż

P pW |G“male, X“xqPpX“x |G“femaleqdx, (23)
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Put in the language of the fairness literature, it quantifies the unfairness when all variables

X are assumed to be resolving (Kilbertus et al., 2017), meaning that any difference in

salaries directly due to factors X is not viewed as gender discrimination. For example, one

does not consider unfair if people with low education level get lower salaries, even if the

gender distribution in this group is not balanced.

Figure 11: Top row: Estimated joint distribution of wage and gender for some fixed values of other

covariates X indicated in the top left part of each plot. Bottom row: observed overall distribution of

salaries (left), estimated counterfactual distribution P pW pmale, Xpfemaleqqq of women’s salaries (middle)

and the quantile comparison of the counterfactual distribution of women’s salaries and the observed

distribution of men’s salaries (right).

There are several ways how one can compute the distribution of W pmale, Xpfemaleqq

from (23) with DRF. The most straightforward option is to take W as the response and

pG,Xq as predictors in order to compute the conditional distribution P pW |G“male, X“xq.

However, with this approach it could happen that for predicting P pW |G“male, X“xq

we also assign weight to training data points for which G“female. This happens if in some

trees we did not split on variable G, which is likely, for example, if PpG “ male |X“xq is

low. Using salaries of both genders to estimate the distribution of men’s salaries might be

an issue if our goal is to objectively compare how women and men are paid.

Another approach is to take pW,Gq as a multivariate response and X as the predictors

for DRF and thus obtain joint distribution of pW,Gq conditionally on the event X“x.

In this way we can also quantify the gender discrimination of a single individual with

characteristics x by comparing his/her salary to the corresponding quantile of the salary

distribution of people of the opposite gender with the same characteristics x (Plečko and

Meinshausen, 2020). This is interesting because the distribution of salaries, and thus also



Ćevid, Michel, Näff, Bühlmann, Meinshausen 145

the gender discrimination, can be quite different depending on other factors such as the

industry sector or job type, as illustrated for a few choices of x in the top row of Figure 11.

Finally, by averaging the DRF estimates of P pW |X“x, G“maleq, conveniently rep-

resented via the weights, over different x sampled from the distribution PpX |G“femaleq,

we can compute the distribution of the nested counterfactual W pmale, Xpfemaleqq. In the

middle panel in the bottom row of Figure 11 a noticeable difference in the means, also

called natural direct effect in the causality literature (Pearl, 2009), is still visible between

the observed distribution of women’s salaries and the hypothetical distribution of their

salaries had they been treated as men, despite adjusting for indirect effects of the gender

via covariates X. By further matching the quantiles of the counterfactual distribution

P pW pmale, Xpfemaleqqq with the corresponding quantiles of the observed distribution of

men’s salaries in the bottom right panel of Figure 11, we can also see that the adjusted

gender pay gap even increases for larger salaries. Median hourly wage for women is still

11% lower than the median wage for the hypothetical population of men with exactly the

same characteristics X as women, indicating that only a minor proportion of the actually

observed hourly wage difference of 17% can be explained by other demographic factors.

5 Conclusion

We have shown that DRF is a flexible, general and powerful tool, which exploits the

well-known properties of the Random Forest as an adaptive nearest neighbor method

via the induced weighting function. Not only does it estimate multivariate conditional

distributions well, but it constructs the forest in a model- and target-free way and is thus

an easy to use out-of-the-box algorithm for many, potentially complex, learning problems

in a wide range of applications, including also causality and fairness, with competitive

performance even for problems with existing tailored methods.
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Székely, G. J. and Rizzo, M. L. (2004). Testing for equal distributions in high dimension. InterStat,

5(16.10):1249–1272.

159



Tarca, A. L., Draghici, S., Khatri, P., Hassan, S. S., Mittal, P., Kim, J.-s., Kim, C. J., Kusanovic,

J. P., and Romero, R. (2009). A novel signaling pathway impact analysis. Bioinformatics,

25(1):75–82.

Tian, D., Gu, Q., and Ma, J. (2016). Identifying gene regulatory network rewiring using latent

differential graphical models. Nucleic acids research, 44(17):e140–e140.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society. Series B (Methodological), 58(1):267–288.

Troester, M. A. and Swift-Scanlan, T. (2009). Challenges in studying the etiology of breast

cancer subtypes. Breast Cancer Research, 11(3):104.

Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., and Vlahavas, I. (2011). Mulan: A java

library for multi-label learning. Journal of Machine Learning Research, 12.

Van de Geer, S. (2016). Estimation and testing under sparsity. Lecture Notes in Mathematics,

2159.

van de Geer, S., Bühlmann, P., Ritov, Y., and Dezeure, R. (2014). On asymptotically optimal

confidence regions and tests for high-dimensional models. The Annals of Statistics, 42(3):1166–

1202.

Vaske, C. J., Benz, S. C., Sanborn, J. Z., Earl, D., Szeto, C., Zhu, J., Haussler, D., and Stuart,

J. M. (2010). Inference of patient-specific pathway activities from multi-dimensional cancer

genomics data using paradigm. Bioinformatics, 26(12):i237–i245.

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. Springer, New York,

fourth edition. ISBN 0-387-95457-0.

Vershynin, R. (2012). Introduction to the non-asymptotic analysis of random matrices. In Eldar,

Y. and Kutyniok, G., editors, Compressed sensing: theory and applications, pages 210–268.

Cambridge University Press.

Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S., Diaz, L. A., and Kinzler, K. W.

(2013). Cancer genome landscapes. science, 339(6127):1546–1558.

Wager, S. (2014). Asymptotic theory for random forests. arXiv preprint arXiv:1405.0352.

Wager, S. and Athey, S. (2017). Estimation and inference of heterogeneous treatment effects

using random forests.

Wager, S. and Athey, S. (2018). Estimation and inference of heterogeneous treatment effects

using random forests. Journal of the American Statistical Association, 113(523):1228–1242.

160



Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint, volume 48.

Cambridge University Press.

Wang, J., Zhao, Q., Hastie, T., and Owen, A. B. (2017a). Confounder adjustment in multiple

hypothesis testing. Annals of statistics, 45(5):1863–1894.

Wang, T., Ren, Z., Ding, Y., Fang, Z., Sun, Z., MacDonald, M. L., Sweet, R. A., Wang, J.,

and Chen, W. (2016). Fastggm: An efficient algorithm for the inference of gaussian graphical

model in biological networks. PLOS Computational Biology, 12(2):1–16.

Wang, W., Fan, J., et al. (2017b). Asymptotics of empirical eigenstructure for high dimensional

spiked covariance. The Annals of Statistics, 45(3):1342–1374.

Wang, Y. and Blei, D. M. (2018). The blessings of multiple causes. arXiv preprint

arXiv:1805.06826.

Wang, Y. and Blei, D. M. (2019). The blessings of multiple causes. Journal of the American

Statistical Association, 114(528):1574–1596.

Wang, Y., Squires, C., Belyaeva, A., and Uhler, C. (2018). Direct estimation of differences in

causal graphs. In Advances in Neural Information Processing Systems, pages 3770–3781.

Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K. R. M., Ozenberger, B. A., Ellrott, K.,

Shmulevich, I., Sander, C., Stuart, J. M., Network, C. G. A. R., et al. (2013). The cancer

genome atlas pan-cancer analysis project. Nature genetics, 45(10):1113.

Welch, B. L. (1947). The generalization of ’student’s’ problem when several different population

variances are involved. Biometrika, 34(1/2):28–35.

Wendland, H. (2004). Scattered Data Approximation. Cambridge Monographs on Applied and

Computational Mathematics. Cambridge University Press.

Whirl-Carrillo, M., McDonogh, E., Herbet, J., Gong, L., Sangkuhl, K., Thotn, C., Altman,

R., and Klein, E. (2012). Pharmacogenomics knowledge for personlized medicine. clinical

pharmacology and therpeutics 92, 4 (2012), 414–417.

White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test

for heteroskedasticity. Econometrica: journal of the Econometric Society, pages 817–838.

Wilcoxon, F. (1946). Individual comparisons of grouped data by ranking methods. Journal of

economic entomology, 39(2):269–270.

Wilcoxon, F. (1992). Individual comparisons by ranking methods. In Breakthroughs in statistics,

pages 196–202. Springer.

161



Windmeijer, F., Farbmacher, H., Davies, N., and Davey Smith, G. (2019). On the use of the lasso

for instrumental variables estimation with some invalid instruments. Journal of the American

Statistical Association, 114(527):1339–1350.

Wolfe, D. A. and Schechtman, E. (1984). Nonparametric statistical procedures for the changepoint

problem. Journal of Statistical Planning and Inference, 9(3):389–396.

Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. MIT press.

Wright, M. N. and Ziegler, A. (2015). ranger: A fast implementation of random forests for high

dimensional data in C++ and R. arXiv preprint arXiv:1508.04409.

Wu, D. and Smyth, G. K. (2012). Camera: a competitive gene set test accounting for inter-gene

correlation. Nucleic acids research, 40(17):e133–e133.

Yin, P., Wang, W., Gao, J., Bai, Y., Wang, Z., Na, L., Sun, Y., and Zhao, C. (2020). Fzd2

contributes to breast cancer cell mesenchymal-like stemness and drug resistance. Oncology

Research Featuring Preclinical and Clinical Cancer Therapeutics, 28(3):273–284.

Yuan, M. (2010). High dimensional inverse covariance matrix estimation via linear programming.

Journal of Machine Learning Research, 11(Aug):2261–2286.

Zaremba, W., Gretton, A., and Blaschko, M. (2013). B-test: A non-parametric, low variance

kernel two-sample test. In Advances in neural information processing systems, pages 755–763.

Zeileis, A., Hothorn, T., and Hornik, K. (2008). Model-based recursive partitioning. Journal of

Computational and Graphical Statistics, 17(2):492–514.

Zhang, C.-H. and Zhang, S. S. (2014). Confidence intervals for low dimensional parameters in

high dimensional linear models. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 76(1):217–242.

Zhang, K., Peters, J., Janzing, D., and Schölkopf, B. (2012). Kernel-based conditional indepen-

dence test and application in causal discovery. arXiv preprint arXiv:1202.3775.

Zhao, J. and Meng, D. (2015). Fastmmd: Ensemble of circular discrepancy for efficient two-sample

test. Neural computation, 27(6):1345–1372.

Zhou, S. (2009). Restricted eigenvalue conditions on subgaussian random matrices. arXiv preprint

arXiv:0912.4045.

Zhu, Y. (2018). Sparse linear models and l1-regularized 2sls with high-dimensional endogenous

regressors and instruments. Journal of Econometrics, 202(2):196–213.

162



Curriculum Vitae

Personal data

Name Domagoj Ćevid
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PhD in Mathematics

2016–2017 University of Cambridge, United Kingdom

MMath in Mathematics

2013–2016 University of Cambridge, United Kingdom

BA in Mathematics

2009–2013 Fifth Grammar School, Croatia

Professional experience
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