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Abstract

The phenomenon of confounding, where both the treatment and the outcome variable
of interest are affected by certain ’confounding’ variables, is one of the biggest challenges
for valid causal inference. It underpins many fallacies and misconceptions in statistics,
such as Simpson’s paradox or the examples where 'correlation does not imply causation’.

Therefore, confounding adjustment is at the heart of the field of causality. However,
this is often not an easy task to do, even when the causal structure of our data is known.
The dimensionality of the confounding variables can potentially be large, the confounders
can be a mixture of discrete, continuous or categorical variables or they can affect the
variable of interest in a non-parametric way.

There exist many different methods for confounding adjustment in the case when the
confounding variables are known and observed in the data set at hand. However, very
little research has considered the challenging case when the confounding is latent. Even
though the assumption that there are no unobserved confounders is common in the causal
literature, it often does not hold in practice. Such misspecification of the data model
might lead to a decrease in performance of the conventional methods.

In this thesis we introduce novel methodology for confounding adjustment, addressing
both the case when the confounding is unobserved, and the case when the confounding
variables are observed, but their effect on the variables of interest is fairly complex and
thus the conventional methods do not apply.

In Paper A we approach the problem of adjusting for latent confounding. Since this
problem is extremely challenging, we consider the simple case where the data comes from a
(high-dimensional) linear model and the confounding variables linearly affect the observed
variables. We propose Spectral Deconfounding estimator which uses the standard Lasso
after applying a carefully chosen linear transformation to the data. We derive interesting
theoretical results and also empirically verify that it outperforms the conventional methods
which ignore existence of latent confounding.

In Paper B we propose Doubly Debiased Lasso estimator, which can be viewed as the
generalization of the Spectral Deconfounding estimator that has the advantage of having

nicer asymptotic distribution, thus allowing for a construction of asymptotically valid
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confidence intervals. The provided theoretical analysis is very elaborate and extends the
theoretical results of Paper A.

Paper C considers an important problem in biostatistics of detecting the perturbations
in the causal network between two conditions, such as, for example, cancer and normal cells.
The proposed methodology is also extended to account for potential latent confounding.
While it is not a direct application of the methods developed in Paper A and Paper B, it
shares the main ideas developed there.

In Paper D we address the case when confounding is observed, but potentially very
complex. We propose a versatile method called Distributional Random Forests that is able
to non-parametrically estimate the multivariate joint conditional distribution. This is done
in a model- and target-free way and can thus be used for many different learning problems

beyond the original problem of confounding adjustment for causal effect estimation.
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Résumé

Le phénomene de 'confounding’ dans lequel la variable de traitement mais aussi la
variable réponse sont toutes les deux afectées par certaines variables tierces (appelées
variables de confounding) est un challenge en inférence. Beaucoup d’idées fausses sont liées
a ce phénomene en statistiques, comme le paradoxe de Simpson ou encore les exemples
illustratifs de I'adage "une corrélation n’implique pas de causalité’.

L’ajustement pour ces variables de confounding est donc central en causalité. Cependant
ce n’est pas toujours une tache facile, méme dans le cas ou la structure causale des données
est connue. La dimensionalité des variables de confounding est potentiellement large, ces
variables peuvent étre une mixture de variables discretes, continues ou encore catégoriques.
Elle peuvent aussi affecter la variable de réponse de maniére non-parametrique.

Il existe plusieurs méthodes d’ajustement quand les variables de confounding sont
observées. Cependant peu de travaux existent sur le cas ou les variables de confounding
sont latentes. Méme si ’hypothese de latence des variables de confounding est souvent
écartée dans la litératture, il se trouve qu’elle est souvent fausse dans les cas réels. En
Faire abstraction peut amener une baisse de performance des méthodes conventionelles.

Dans cette these, nous introduisons une méthodologie nouvelle pour le probleme de
confounding applicable dans le cas ou les variables de confounding ne sont pas observées
et aussi dans le cas ou les variables de confounding sont observées, mais leur effet sur
les variables d’intérét est suffisamment complexe pour que les approches classiques ne
marchent pas.

Dans le papier A, nous étudions le probleme d’ajustement pour des variables de
confounding latentes. Comme ce probleme est difficile, nous considérons le cas simple o
les données proviennent d’un modele linéaire (a haute dimension) et ou les variables de
confounding affectent linéairement les variables observées. Nous proposons un estimateur
nommé Spectral Deconfounding, qui utilise la méthode classique du Lasso apres avoir
appliqué une transformation linéaire particuliere aux données. Nous dérivons des résultats
théoriques intéressants et nous vérifions de maniere empirique que notre estimateur
performe mieux que les méthodes classiques qui ignorent les variables de confounding

latentes.



Dans le papier B, nous proposons un estimateur appelé Doubly Debiased Lasso qui
peut étre vu comme une généralisation de 'estimateur du papier A avec I'avantage en plus
d’avoir de meilleurs propriétés asymptotiques qui permettent notamment de construire
des intervalles de confiance. La théorie développée est élaborée et étend les résultats du
papier A.

Dans le papier C, nous considérons un probleme important en biostatistiques: la
détection de perturbations dans un graphe causal entre les états, comme par exemple
cellule cancéreuse ou normale. La méthodologie proposée est aussi étendue pour prendre
en compte des potentielles variables latentes de confounding. Méme si ce n’est pas une
application directe des méthodes des papiers A et B, I'idée principale de la méthodologie
est similaire.

Dans le papier D, nous nous intéressons au cas ou les variables de confounding sont
observées, mais dans lequel leur effet est potentiellement complexe. Nous proposons une
méthode appelée Distributional Random Forests qui est une estimation non-paramétrique
d’une distribution conditionnelle multivariée. La méthode ne requiere pas d’hypothese
sur le modele est n’est pas spécifique a une variable réponse particuliere, ce qui ouvre un

grand champ d’applications qui va plus loin que le probleme de confounding en causalité.
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1 Introduction

Determining the causal relationships between different events, processes or states of
objects is at the centre of scientific endeavour and human intelligence overall. Knowledge
of cause and effect enables us to understand different mechanisms of nature more deeply,
to be able to transfer our knowledge to new and unseen situations and to answer in general
what would happen if certain action was performed, i.e. if we intervened on the observed
system.

Despite being so fundamental, the discipline of causality has not been considered as an
essential part of statistics for a long time. However, understanding only the associations
between random variables through their observational distribution is often not enough, as
we would like to derive useful conclusions from our data and to be able to transfer the
obtained knowledge to other situations. For example, one might observe from the data
that the population of a city and the air pollution tend to be highly (positively) correlated.
However, based only on this data, we can not determine which of the following 3 scenarios

is correct:
e the pollution is directly caused by the people,
e high air pollution at certain places causes people to move there,

e some other variable, such as e.g. the number of factories, causes both the air pollution

to be high and people to settle nearby.

It has been only relatively recently, through work of many great statisticians (Rubin,
2005; Pearl, 2009), that the field of causality has been formalized within the statistical
framework. Since then the field has been rapidly developing and the causal concepts have
proved to be useful in a variety of different fields such as econometrics, finance, machine
learning, biostatistics and many others. However, many challenges still remain to be solved

and this thesis is hopefully a small step in that direction.



2 CHAPTER 1. INTRODUCTION

Confounding

Suppose we have a treatment variable X € RP affecting the response variable Y € R
and that we would like to determine the causal effect of X on Y. Any other variable
H € R? affecting both X and Y is called a confounder. This is illustrated in the following
plot:

If there are no confounding variables, the causal effect of X on Y can easily be
determined directly from the observed conditional distribution P(Y | X'). However, in
presence of confounding, the observed distribution of X and Y is not a reliable indicator
of the causal relationship between them. This is a common fallacy known under many

names, such as ”correlation does not imply causation”.

I ICE CREAM SALES
B SHARK ATTACKS

JAN MAR MAY JUuL SEP NOV

Figure 1.1: The average number of shark attacks and the ice cream consumption per calendar month are
very correlated. However, this relationship is not causal but is due to confounding: hot weather is directly
causes higher ice cream consumption and people to swim in the sea more, leading to increased number of
shark attacks.

One funny example of this is given in Figure 1.1. However, sometimes confounding
issues are not that obvious and could potentially be very subtle. For example, assume
that some medication is effective against some lethal disease, but is much more likely to
be prescribed to the most ill patients (maybe due to some serious side-effects). Then we
might observe that mortality is higher in the group of patients who were treated with this
medication. However, it is wrong to deduce from the data that this medication increases
the mortality rate. In this example, the severity of the disease is a confounder as it
simultaneously increases the mortality and the probability of being treated.

Confounding adjustment is necessary for determining the causal effects from the data

and is thus at the heart of the causal inference. Confounding causes many difficulties in



statistical analysis, such as false positives in model selection. Another problem is bad
transferability of the fitted models to new environments, where the confounding mechanism
changes. Therefore, our models need to take confounding into account and thus to be

more 'causal’ in order to have better robustness properties.

Confounding Adjustment

There exist many different ways to adjust for the confounding effects, depending on
the causal structure and our model for the data generating mechanism. One of the most
commonly used general approaches is based on the back-door adjustment formula (Pearl,
2009)

P(Y | do(X =x)) = JIP’(Y|X:x,H:h)dIP(H=h), (1.1)

which relates the observational conditional distribution to the interventional distribution,
i.e. the distribution of the response Y if we had forcibly set the predictors X to attain
value x. The back-door adjustment formula is related to data stratification with respect to
the confounding variable, and aggregating the inferred causal effect over different strata.

However, one does not have a direct access to the observational distribution, but only
to the data drawn from this distribution. Therefore, using the adjustment formulae such as
(1.1) is not that straightforward and can be quite challenging. Many conventional methods
such as regression adjustment, inverse propensity weighting (Rubin, 2005), propensity
score matching or some modern ones such as double machine learning (Chernozhukov
et al., 2018) or causal forests (Athey et al., 2019) assume some special structure, such as
linearity or additivity of the true signal and the confounding effect; that the treatment or
outcome variables are univariate and binary or maybe that the confounding variable is

discrete or very low-dimensional.

Distributional Random Forests

In Paper D of this thesis we introduce a method called Distributional Random Forests
(DRF), which is able to non-parametrically estimate any multivariate conditional distribu-
tion and thus can be used for many different applications in causality, such as confounding
adjustment in an arbitrarily complex model. For example, if we are able to estimate
the conditional distribution P(Y | X, H) well, we can use formula 1.1 and Monte-Carlo
algorithm to estimate the causal effect P(Y | do(X =z)), see Paper D for mode details.

However, DRF is very versatile and can be used for a variety of applications, as
illustrated in the paper. It is based on the standard Random Forest algorithm (Breiman,
2001), but where the splits are performed based on some distributional metric, i.e. we
split such that the difference in the distribution of the response in the left and right child
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node is the largest. Having constructed our forest, we can obtain for any point of interest
x a weighting function wy(-) which assigns a weight to each training point indicating how
relevant it is for the given test point x. The weighting function can be used in the second

step for computing any target of interest, as illustrated in the following diagram:

1) get wy(-) with DRF

P(Y | X=x) P(Y | X=x)
objective l?) compute from wy(+)
#(P) <omme induced estimator (P)

Unobserved Confounding Adjustment

Almost all confounding adjustment approaches require the confounding variables to be
observed. The case when the confounding is unobserved has not received much attention
in the literature, mostly because this case is so difficult that at first one might think
that it is not possible to address. After all, how could one adjust for something that is
not observed? This is why almost all problems in causal literature are solved under the
assumption that there is no latent confounding.

However, such assumption might not hold in practice. It is very plausible that some
unobserved external variables, such as e.g. demographic factors, laboratory conditions or
batch effects, could affect our data and thus to introduce spurious associations. Therefore,
it is very important to address for potential latent confounding. However, since the data
need not be confounded, our method needs to have a comparable performance to the
conventional methods which ignore existence of confounding. A significant portion of this
thesis considers the problem of attaining robustness against potential hidden confounding.
Since this problem is very difficult, we start with some simpler, linear, models but explain
later how those ideas could be generalized to more complicated models, which we leave for

future research.

Linear Factor Model

We consider first the simplest confounding model, where the confounding variables
linearly affect the observed covariates. We assume that the predictors X € R? are generated
as follows

X~ UV'H+E, (1.2)

where W € R9*? is the loading matrix of coefficients and E € RP is the random error term.
It is evident that, up to the noise term FE, the covariates lie on a g-dimensional

hyperplane in RP, spanned by the rows of W. This is illustrated in Figure 1.2.
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Figure 1.2: When the confounders affect the covariates linearly, as in (1.2), our data lies approximately

on a low-dimensional hyperplane.

Principal Component Analysis (PCA) (Price et al., 2006) tries to find linear com-
binations of the predictors that capture the most variability of the data. If our data
approximately lies on the low-dimensional hyperplane, top several (around ¢) principal
components will account for a lot of variability. This is very related to the spiked covariance
structure (Paul, 2007), where the first few singular values of the covariance matrix are
much larger than the rest. By inspecting singular values of the data matrix we can also
test whether the data is confounded, i.e. whether it comes from the Linear Factor Model
(1.2). It has been known for a long time in the field of biostatistics that top principal
components contain some information about the confounding effects (Leek and Storey,
2007; Gagnon-Bartsch et al., 2013), see also Figure 1.3.

In Paper A, we develop Spectral Deconfounding estimator for the special case where
the predictors follow the Linear Factor Model (1.2) and the response variable comes from
the linear model

Y =B8TX +6TH +e,

where S € RP,§ € R? are coefficient vectors and ¢ is a random error. It can be viewed as a

standard Lasso estimator applied on the transformed data:

. 1
8= arg;naXEIIFY — FXBI5+ MB|L,

where the spectral transformation matrix F' € R™"™ is chosen such that it transforms
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Figure 1.3: Top principal components capture information about confounding. In this example, the first 2
principal components of the gene expression matrices match closely the geographic distribution of the

samples. The plot is borrowed from Novembre et al. (2008).

the singular values of the design matrix X. By default, we propose the trim transform
which caps all singular values at a given threshold (e.g. the median singular values). The
intuition is that the confounding is captured by the first several spiked singular values and
shrinking them helps to reduce the confounding effects. In Paper A, we rigorously show
that under some assumptions, one can get the same error rate as the Lasso for the data
model without confounding. Additionally, we provide simulation results which empirically
verify that in presence of latent confounding, we outperform standard Lasso for coefficient
estimation.

In Paper B, we propose the Doubly Debiased Lasso estimator for the same data model
considered in Paper A. It is analogous generalization of the Spectral Deconfounding
estimator as the Debiased Lasso (Zhang and Zhang, 2014) generalizes the standard Lasso
(Tibshirani, 1996). It has the advantage that its asymptotic distribution is nicely behaved
which enables us to construct asymptotically valid confidence intervals. However, the
performance of the plain Debiased Lasso deteriorates in the presence of latent confounding.
On the other hand, Doubly Debiased Lasso provides additional robustness against hidden
confounding. This is achieved by applying carefully chosen spectral transformations,
analogously as in Paper A, for both the initial estimator and the construction of the
proposed estimator. The main emphasis of the paper is on the rigorous theoretical analysis

of the estimation error and the asymptotic distribution of the estimator and the obtained
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Figure 1.4: When the predictors are affected by a small number of confounding variables, the data lies
approximately on a low-dimensional manifold. In the left plot we have only one confounding variable,
whereas in the right plot there are two. In both cases the confounding variables affect the predictors in a
highly non-linear way, but one can still recover some information about the latent confounders from the
data.

results generalize also the results obtained in Paper A.

Extensions of the Methodology

As we have seen, top several principal components capture a lot of information about
the confounding in the Linear Factor Model (1.2). Therefore, one can compute the
corresponding scores of the principal components and use those variables in the further
analysis as the proxies for the confounding variables.

For example, in Paper C we extend the proposed Differential Causal Effects method
to be more robust against hidden confounding. Given a biological pathway (i.e. the
causal graph) and the gene-expression data from two conditions, the goal is to determine
which part of the network has been dysregulated between the conditions, for example
between cancerous and normal cells. This is done by performing nodewise regression with
interaction terms in order to detect the changes in edge weights. Computing the scores
of principal components and adding them to the regression as the source nodes in the
pathway helps to reduce the confounding bias which can lead to false findings.

Similar idea can be used to generalize our approach to more complicated, nonlinear
models. When a small number of confounding variables affects a large number of the
observed covariates, our data will approximately lie on a low-dimensional manifold, just
as it lies on the low-dimensional hyperplane in the linear case (1.2). This is illustrated in

Figure 1.4.
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This manifold structure can be used to get some information about the latent variables,
which can be used for confounding adjustment. More specifically, one can first apply
some manifold learning (or dimensionality reduction) algorithm from the machine learning
literature in order to obtain confounding proxies, just as one can use the principal
components scores in the linear case. Those confounding proxies can in turn be used in
the downstream analysis in order to adjust for the latent confounding. Exploring this

approach in more detail is left for future research.
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Abstract

Standard high-dimensional regression methods assume that the underlying
coefficient vector is sparse. This might not be true in some cases, in particular
in presence of hidden, confounding variables. Such hidden confounding can be
represented as a high-dimensional linear model where the sparse coefficient vector
is perturbed. For this model, we develop and investigate a class of methods that
are based on running the Lasso on preprocessed data. The preprocessing step
consists of applying certain spectral transformations that change the singular
values of the design matrix. We show that, under some assumptions, one
can achieve the usual Lasso f1-error rate for estimating the underlying sparse
coefficient vector, despite the presence of confounding. Our theory also covers the
Lava estimator (Chernozhukov et al., 2017) for a special model class. The per-

formance of the methodology is illustrated on simulated data and a genomic dataset.

Keywords. confounding, data transformation, Lasso, latent wvariables,

principal components

1 Introduction

Many datasets nowadays include measurements from many variables. The correspond-
ing models are typically high-dimensional with many more parameters than the sample
size. For statistical estimation and inference, there is a vast literature which assumes
sparsity. For example, see the monographs by Biithlmann and van de Geer (2011), Giraud
(2014) or Hastie et al. (2015).

However, the performance of many high-dimensional regression methods might suffer

in presence of unobserved confounding variables which affect both the predictors and

11



12 Paper A

the response. Confounding is a severe issue when interpreting regression parameters,
often, but not necessarily, in connection with causal inference. A prime example are
genetic studies where unobserved confounding can easily lead to spurious correlations
and partial dependencies (Novembre et al., 2008). Even when one is concerned with only
prediction, the causal parameter leads to predictive robustness against perturbations of
the confounding variables.

Adjusting for unobserved confounding variables is very important in practice and
several deconfounding methods have been suggested for various settings (Gerard and
Stephens, 2017; Leek and Storey, 2007; Gagnon-Bartsch and Speed, 2012; Wang and Blei,
2018; Paul et al., 2008). Often, the methods try to estimate the confounding variables
directly from the data, usually by using some factor analysis technique. There are not
many theoretical results justifying the methods, especially since some of them are quite
complicated and therefore difficult to analyze.

Our focus is on linear models. In absence of confounding variables, when the response
is affected only by a small number of predictors, i.e. the coefficient vector is sparse, one
can efficiently estimate the active set and the corresponding coefficients with the Lasso
and related methods and thus achieve the minimax optimal ¢;-norm estimation error rate,
see, for example, Bickel et al. (2009) or the monographs by Biithlmann and van de Geer
(2011) or Wainwright (2019). However, these methods are not adequate in presence of
confounding in linear model, since in addition to just a few predictors that indeed affect
the response, we have additional association of the response with many other predictors,
as they contain information about the confounding variables.

Some approaches for relaxing the sparsity assumption are (i) the notion of weak sparsity
(Van de Geer, 2016), where the regression parameter § fulfills the condition that ||3]|, is
small for some 0 < ¢ < 1 or (ii) assuming the structure that the regression parameter can
be represented as a sum of a sparse and a dense vector. The case (i) does not call for a
new method or algorithm: in fact, the Lasso still exhibits optimal convergence rate if || 3|,
is sufficiently small (Van de Geer, 2016). On the other hand, case (ii) requires a different
method such as, for example, Lava (Chernozhukov et al., 2017).

Here we investigate how to deal with the confounding by analyzing the second case
where the parameter is a sum of a sparse and a dense part. If many predictors are affected
by the confounding variables, the true underlying regression vector will be changed by
some small, dense perturbation. We propose left multiplying the response Y and the
design matrix X consisting of the values of the predictors by a carefully chosen spectral
transformation matrix F' which transforms the singular values of X. The transformed
response and design matrix can then be used as the input for a high-dimensional sparse

regression technique: we consider the Lasso as a prime example. We investigate the
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theoretical properties and empirical performances for the class of spectral transformations.
As a result, we conclude that certain spectral transformations that shrink the large singular
values, such as the Trim transform which we introduce in this paper, perform well over a

range of scenarios, pointing out also some advantages over other techniques and approaches.

1.1 Relation to Other Work and Our Contribution

For adjusting for the effect of unobserved confounding, the most prominent method
in practice is to adjust for the top several principal components of the predictors, see
for example (Novembre et al., 2008). Such PCA adjustment is also a special case of the
FarmSelect estimator (Fan et al., 2020) for the linear model, which considers the problem
of high-dimensional variable selection where the latent variables cause the correlations of
the predictors, but do not directly affect the response. PCA adjustment is a special case
of a spectral transformation. Our presented theory explains when and why this method
works well and proposes an alternative transformation, called Trim transform, which has
an advantage that one does not need to estimate the number of principal components to
adjust for.

The Puffer transform, which maps all singular values to 1, has also been suggested for
improving the variable selection properties of the Lasso for a sparse high-dimensional linear
model (Jia et al., 2015). Our theory gives a more precise result about the Puffer transform
for the estimation problem: the Trim transform is at least as good as Puffer transform
and substantially better when the sample size is close to the number of predictors. In
Shah et al. (2020), the Puffer transform in combination with bootstrap aggregation is used
in order to estimate the covariance matrix in presence of confounding variables, a very
different quantity than the precision matrix or regression coefficients.

Chandrasekaran et al. (2012) address the problem of estimating the precision matrix in
presence of a few hidden confounding variables. Then the observed precision matrix can
be represented as a sum of the initial sparse precision matrix and a low-rank perturbation
due to the confounding variables. Their model is similar to the one we consider, but the
assumptions and the goals differ. We aim to estimate just the regression coefficients instead
of the whole precision matrix and the method we propose is much simpler. Furthermore,
the theoretical conclusions are substantially different: we establish the convergence rates in
terms of the ¢;-norm estimation error, while they consider support recovery and f,-norm
bounds for the low-dimensional setting, assuming strong conditions. Also Fan et al. (2013)
have considered low rank plus sparse problems from the viewpoint of factor models: their
contribution provides a rich source of references from an area which is vaguely related to
our current work.

The Lava estimator (Chernozhukov et al., 2017) is the most similar to our Trim
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transform. The theory we develop, covering also the Lava, gives a result for the ¢;-norm
estimation error rate for the sparse coefficient vector. This goes well beyond the theory
given by Chernozhukov et al. (2017) for justifying the original and interesting Lava method.
There, the authors mostly consider the Gaussian sequence model but also provide general
bounds for high-dimensional regression whose (e.g. asymptotic) behavior is not further
analyzed in terms of restricted eigenvalues and the sparse and dense component of the
underlying unknown parameter vector. Our presented theory exploits the specific structure
of a hidden confounding model which provides a different motivation than the one in
Chernozhukov et al. (2017), where no confounding was considered. In addition, our
developments suggest a simple rule for the choice of the f5-norm regularization parameter
for the Lava estimator, leaving only the ¢;-norm regularization parameter as the single
parameter to be tuned by cross-validation.

Our contribution can be seen as threefold. We describe a class of spectral transforma-
tions and propose a simple spectral transformation called Trim transform, which is perhaps
slightly easier to use than the Lava or the PCA adjustment estimator. Furthermore, for
the linear model where the underlying sparse parameter has been perturbed, we provide
novel theory establishing for a certain class of spectral transformations a fast convergence
rate for the /1-norm estimation error of the true underlying sparse parameter. Finally, and
as our primary goal, we use these results to show how the issue of hidden confounding can
be addressed by using a wisely chosen spectral transformation, such as e.g. Trim transform,
with the Lasso afterwards: we establish under certain assumptions the same convergence
rate as the one of the Lasso for a linear model without confounding and illustrate the
empirical performance of our method on simulated and real genomic data. Our method is
entirely modular and can be used not only in conjunction with the Lasso, but also any

other reasonable high-dimensional linear regression method.

2 The Models

In this section we consider a linear model with additional confounding. We also
introduce a perturbed linear model and show how it relates to the confounding model.
Our theoretical results apply to the perturbed linear model as well and it is useful for

better understanding of the confounding model.

2.1 Confounding Model

Consider a standard (high-dimensional) linear model with n observations and p pre-

dictors X, ..., X, linearly affecting the response Y. Suppose further that ¢ additional
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unobserved confounding variables linearly affect the response as well. The confounding
variables are correlated with the predictors, introducing additional spurious correlations
between the response and the predictors.

The model for n i.i.d. observations is given by:
Y =XB+Ho+v (1)

where X € R™*? is the matrix of predictors and H € R™*9 represents the hidden confounding
variables, which exhibit correlation with X, i.e., Cov(H, X) # 0 (with a slight abuse of
notation, we write Cov(H, X) as the covariance of any row of H and X). We assume
that X and H have i.i.d. rows that are jointly Gaussian and that v € R" is a vector of
sub-Gaussian errors with mean zero and standard deviation o,, independent of X and
H. The vectors g € RP and § € R? are fixed coefficients; we additionally assume that g
is sparse with exactly s non-zero components. Since the model does not change under
the transformation H « HCov(H)™'2, § « Cov(H)'Y2§, we can assume without loss of
generality that Cov(H) = I, i.e. the confounding variables are uncorrelated.

Note that by Ly projection, X can also be written as
X = HT + E, (2)
where we choose I' € R?*P such that Cov(H, E) = 0:
I' = Cov(H) 'Cov(H, X) = Cov(H, X).

The matrix I' € R?*P describes the linear effect of confounding variables on X. The
random term E € R™*P can be seen as the unconfounded design matrix; without confound-
ing, i.e. when H = 0, it equals X. The columns of E are allowed to be correlated and we
denote its covariance matrix by Xg; if the components of E are (weakly) uncorrelated,
X is generated from an (approximate) factor model (Anderson, 1958; Chamberlain and
Rothschild, 1982). Here the hidden variables do not encode a factor structure for X alone,
but also in addition generate confounding effects.

A main example of the above model is a structural equation model (SEM)

X « HT + F,
Y « XB+HS+1

and thus f is the direct causal effect of X on Y. In a standard SEM with no further
hidden variables, the components of E would be assumed independent.

We will show in Section 4 that one can recover the coefficient g if the confounding is
dense in a certain sense, e.g. when the rows or columns of I' = Cov(H, X)) are realizations

of independent and identically distributed random variables with mean zero.
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2.2 Perturbed Linear Model

The confounding model (1) is related to the perturbed linear model
Y =X(B+0b) +e, (3)

where the sparse coefficient vector § has been perturbed by the perturbation vector b € R?
and € € R™ is the vector of sub-Gaussian errors independent of X with standard deviation
0. Here we assume that the rows of X are i.i.d. sub-Gaussian vectors with mean zero and
covariance matrix X = Cov(X).

The relationship between models arises by rewriting (1) as
Y =X(B+0b)+ (Ho— Xb) + v,

where b satisfies that Cov(X, H) — Xb) = 0, i.e., Xb is the Lo-projection of Hé onto X.

This gives us the formula

b= Cov(X) *Cov(X, H)d
— (Cov(X, H)Cov(H)'Cov(H, X) + Cov(E)) ™" Cov(X, H)é (4)

The error is given by € = (Hé — Xb) + v, which by construction of b is uncorrelated
with X and thus independent of X, because the rows of X and H are assumed to be
jointly Gaussian in the confounding model. We require such independence (induced by
joint Gaussianity) in the proof of Theorem 2, although e being uncorrelated with X might

be sufficient. The variance of the error is given by
o = Var(Hé — Xb +v) < ||6]|5 + o2

One can think of Hd — Xb as the part of the confounding that can not be explained
by X and which just increases the variance of the additive error. Xb is the part of the
confounding effect Hd that is correlated with X and, as is well known, the bias b due to
the confounding makes the estimation of 5 more difficult.

In conclusion, the confounding model (1) can be thought of as a special case of the
perturbed linear model (3), but with additional relationship between the design matrix X,
the perturbation vector b, given by (4), and the additive error e.

The perturbed linear model is in general unidentifiable since we can only infer 5 + b
from the data generating distribution. This makes the estimation of § impossible, unless b
has a certain structure; we will be able to asymptotically retrieve the sparse coefficient
vector 3, by assuming, for example, that b converges to 0 in some norm. In Section 4,
we investigate under which conditions we are able to infer the sparse part § and how

efficiently in terms of statistical accuracy.
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It could be interesting to estimate the coefficient vector 8 + b rather than just (3,
but it is impossible to do in general in the high-dimensional case; even if we knew [
exactly, estimating b would mean estimating p coefficients from n < p data points, which

is impossible without additional assumptions about the structure of b.

2.3 Relationship with the Factor Model Literature

Even though the confounding variables are hidden, we are able to infer some of their
properties if they affect many of the observed predictors X. This is the essence of factor
analysis, where a lot of interesting work has been done. If the latent factors H linearly
affect the covariates, as it is the case in the confounding model (1), they can be estimated
well (up to a rotation) from the principal components of the design matrix X = HI' + F
(Chamberlain and Rothschild, 1982; Bai, 2003), especially if one additionally imposes
certain assumptions on the factor loadings I' (Bing et al., 2017).

There are several related models considered in the literature. In certain cases (Paul
et al., 2008; Bing et al., 2019) we assume that only the latent factors affect the response

and the observed covariates are only used to obtain information about the latent factors:
Y =Hj+v, X=HI'+FE.

In Bai and Ng (2006) one has an additional contribution of some other known low-

dimensional covariates W:
Y=Wp+Hé+v, X =HI'+FE.
Another line of work assumes that the latent factors do not directly affect the response:
Y =XgB+v, X =HT+F,

but that they only cause the predictors to be correlated (Huang and Jojic, 2011; Fan et al.,
2020). Such correlation makes the analysis much more difficult, especially for the problem
of variable selection, and one can use the factor analysis to address this issue.

In this paper we allow the latent confounders to affect both the predictors and the
response and focus on the estimation of the sparse coefficient vector 5, which has a causal
interpretation as it describes the direct effect of the predictors on the response. The key
difficulty is to handle the bias b in the observational data caused by the latent confounders.
The assumption of dense confounding, expressed in detail in Section 4, is related to
the spiked covariance assumptions common in the factor analysis literature (Paul et al.,
2008; Bai, 2003). It is used to make conclusions about the structure of the coefficient
perturbation b rather than about the factor identifiability. We avoid estimating the factor
variables directly, but instead we adjust for them implicitly, by transforming the singular

values of X.
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3 Methodology

In the following, we propose and motivate some methods based on a class of spectral

transformations.

3.1 Spectral Transformations

Let X = UDVT be the singular value decomposition of X, where U € R™*", D e
R™" V € RP*" where r = min(n,p) is the rank of X. We write d; > dy = ... > d, for
the diagonal elements of D. We use the truncated form of SVD, which uses only non-zero
singular values.

The idea is to first transform our data by applying some specific linear transformation

F :R"™ — R" and then perform the Lasso algorithm:

X o> X:=FX
Y Y = FY
~ (1.~ o~
B~ angmin { 117 — X613 + Al | 5)

We restrict our attention to the class of spectral transformations, which transform the

singular values of X, while keeping its singular vectors intact. Let D be an arbitrary r x r

diagonal matrix with diagonal elements Jl, e ,Jr. Our spectral transformation matrix is
given by
di/dy 0 ... 0
0 dyfdy ... 0
L I (6)
0 0 ... dJ/d,

and then we have

X=FX=UDVT

In this paper we explore the question of what is a good choice of I for the estimation
of 5. In general, the Lasso performs best when the predictors are uncorrelated and when
the errors are independent. Therefore, a good choice of F' needs to find a good balance
between a well behaved error term € = F'e, well behaved design matrix X and well behaved
perturbation term Xb.

One such transformation is the Trim transform which limits all singular values to

be at most some constant 7:

~

d; = min(d;, 7). (7)
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We show in Section 4 that it can, under some assumptions, achieve the same ¢;-norm error
rate for the estimation of the unknown sparse coefficient vector 3 as the Lasso in the case

of no confounding. We also show that the median singular value is a good choice of 7:

T = djy

3.2 Existing Methods and Motivation

We discuss some existing methods which are related to the spectral transformation
method described above and provide further explanations and relationships between them.
We also present intuitive explanation why our suggested method should work well against
dense confounding.

3.2.1 Examples of Spectral Transformations

Several existing methods consist of first transforming the data with a certain matrix
F (some of which fall into class of spectral transformations (6)), and then using some

regression method, such as the Lasso.

Lava One such example is the Lava estimator (Chernozhukov et al., 2017), designed for
the linear model where the coefficient vector can be written as a sum of a dense and a

sparse vector. It is originally given by (with a slight change of notation)
A (1
(5.5 = angmin { 1Y = X(3 + )3 + Xalblf + M .

which can be seen as a combination of Lasso and Ridge regression. It is shown in

Chernozhukov et al. (2017) that the solution of this optimization problem is given by
F= (I, X(X"X +nXI,) ' XT)12,
= angmin { 11F - X2+ lglh
b= (XTX +nhol,) ' XT(Y — XB).

From here, one can see that the estimator of the sparse part is just a Lasso estimator

applied to the transformed data, where

J . n)\gdf
N g+ a2

This transformation is visualized in Figure 3.
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Puffer transform Another example is the Puffer transform introduced in Jia et al.
(2015), which uses the Lasso after mapping all non-zero singular values d; to a constant J, =
1. The algorithm is analyzed as a preconditioning method for the variable selection problem
without any coefficient perturbation. This transformation decreases the correlations
between the columns of the design matrix, but it can inflate the errors, especially when p
is close to n. It can also be thought of as a special case of the Lava transformation in the

case when Ay — 0, since then \/;li—/\Q — 1 (the denominator here is just a scaling factor).

The transformation is displayed in Figure 3.

PCA adjustment Another example of a spectral transformation is given by PCA-
based methods for adjusting for hidden confounders (Novembre and Stephens, 2008;
Fan et al., 2020; Bai, 2003). In the confounding model (1), the effect of confounding
variables will approximately lie in the span of the first few principal components of X
(see Figure 1). One adjusts for a first few principal components from the columns of the
design matrix X before further analysis in hope of removing the effect of the confounding
variables (Paul et al., 2008; Huang and Jojic, 2011). This procedure is in fact analogous to
applying a spectral transformation, where the matrix D is obtained from D by mapping
the first several singular values to 0. See also Figure 3 for an illustration. The slight
difficulty with this approach is knowing exactly the number of principal components to
remove. Asymptotically, this can be done with high probability (Bai, 2003) under certain
assumptions on the separation of the singular values. However, for finite samples or if
there is a slight model misspecification, it might not be that easy to estimate ¢, see e.g.

our real data genomic dataset in Figure 10.

3.2.2 Some Intuition

Since our method (5) is invariant under transformation F' — cF', for arbitrary constant
c € R, we can assume without loss of generality that the singular values of F' are at most
1, i.e. the transformation F' shrinks all vectors, with different shrinkage in directions of its
singular vectors. Ideally, we would like to shrink in a way such that the perturbation term
Xb becomes much smaller compared to the signal X 5.

Trim transform has the highest shrinkage along directions of the singular vectors
corresponding to large singular values. The more b is aligned with the first few singular
vectors of X (those corresponding to large singular values), the larger || Xb|2 will be.
Therefore, shrinking those large singular values ensures that ||)? b|| stays small regardless
of the direction b is pointing to. It is especially the case in the confounding model that b
approximately lies in the span of the first few singular vectors (see Figure 1).

As can be seen from definition of b, Xb is the part of the confounding effect Hé which
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n=100,p=120,s=5,q=10
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Figure 1: Size of the projection of b onto V; for different ¢, for a random dataset drawn from the confounding
model with ¢ = 10 confounding variables, as described in Section 5.1.1. We see that the projections of b

onto the first 10 singular values are substantially larger than the rest.

is correlated with X. Therefore, || Xb||2 can be just as large as ||Hd|2 = O(/n||d]|2)-

However, after applying the Trim transform we have that

N N NE
16l < Anan(X)[bla = O (ws 9 u) — O(4]),

p
which is substantially smaller than before. )\max()? ) is the largest singular value of X ,
which will be shown in Lemma 4.2 to be of order ,/p for the Trim transform and we have
162 = O(+/1|6]13/p) under certain model assumptions by Lemma 4.1.

On the other hand, the signal X/ lies in the span of a sparse set of predictors.
Therefore, the signal X [ will be approximately of the same size as the signal X before
transformation, unless f is aligned with the large singular vectors, which are shrunk the
most. This is very unlikely if they are sufficiently random. This is illustrated in Figure 2.

Therefore, by shrinking large singular values, || Xb||; will decrease much more compared to

1 X Bll2-

4 Theoretical Results

In this section we analyse the behaviour of the ¢;-estimation error for the sparse
coefficient S for an arbitrary spectral transformation F'. We derive results for the perturbed
linear model (3) and relate them to the confounding model (1) by using the relationship
between them. The proofs of the results can be found in the appendix of Cevid et al.
(2020a).

We show that if our spectral transformation fulfils certain criteria, and the confounding
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Figure 2: Visualisation of the relationship between the perturbation b, signal 8 and singular vectors of X.
In the confounding model b will be much more aligned with the singular vectors corresponding to large

singular values than (.

is dense in the sense that every confounding variable affects many predictors, we achieve
in the high-dimensional case the same /;-error rate as the Lasso in the case when we
have no confounding, despite the presence of the coefficient perturbation caused by
the confounding variables. Furthermore, in Section 4.4, we discuss specific choices of
spectral transformations and verify that the Trim transform (7), as well as Lava and PCA
adjustment, can be used in order to achieve this error rate.

We assume first for simplicity that we are in the high-dimensional case, where p > n.
However, the theory developed in this section also holds for the case n > p with small

adjustments. We discuss the case n > p in more details in Section 4.6.

4.1 Notation

For a matrix M we write

ol Mo
dn =

= inf S
ladi<slasih =y

where S is the support set of 3, s is the size of S and ayg is a vector consisting only of the
components of o which are in S.

Let us also write 3 = %)N( TX, and 3 = L XTX. We denote the k-th largest diagonal
element of the transformed singular values D by J(k). We denote the the largest, the
smallest and i-th (non-zero) singular value of any rectangular matrix A by Apax(A),
Amin(A) and A;(A) respectively. The condition number is defined as cond(A) = %.

Finally, we use the notation A = Q(B) if % = O(1), i.e. if A has asymptotically at least
the same rate as B and A = B if A and B have asymptotically the same rate. A = O,(B)
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means that there exists a constant ¢ > 0 such that P(A > ¢B) — 0 and €, is defined

analogously.

4.2 Main Result for the Confounding Model

We present here the main result for the confounding model (1), which we derive below
by considering the relationship with the corresponding perturbed linear model, as described

in Section 2.

Theorem 1. Consider the model in (1) with max; ¥; = O(1) and cond(¥g) = O(1) and

suppose that Apin(X) is bounded away from zero. Assume that the model satisfies
(A1) Muin(1) = Amin(Cov(X, H)) = Q(\/p).

Assume additionally that a spectral transformation F in (5) with Apax(F) = 1 satisfies
(42) Anax(X) = Oy(yP)
(A3) 62 = Oy hin(D)).

logp
n

Then for the penalty level A = o despite the confounding variables, the {1-estimation

error has the following rate:

~ - s [logp
Hﬁ - /6H1 - Op (Amin(z}) n > :

The assumption (A1) means that the confounding is dense in the sense that each

confounding variable is correlated with many predictors: The condition Awin(I') = €2,(1/P)
is satisfied, for example, if 1% — 0 and I' is drawn at random with either rows or columns
of I' being independent, identically distributed sub-Gaussian random vectors, as shown in
Lemma 4.1.

We also show in Section 4.4 that certain choices of the spectral transformation, such as
the Trim transform (7) with 7 = d,,), where ¢ € (0, 1) is an arbitrary constant, or the PCA
adjustment, which maps first several singular values to zero, satisfy with high probability

the conditions (A2) and (A3) in the high-dimensional setting under certain conditions.

4.3 /(i-estimation Error of 5 in the Perturbed Linear Model

In this section we derive an upper bound for the ¢;-estimation error of § in the
perturbed linear model and show that we can achieve the usual Lasso error rate in the

high-dimensional case, provided the perturbation b is sufficiently small. Then the main
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theorem for the confounding model, Theorem 1, follows from Corollary 4.1 by using the
relationship between the models described in Section 2.
The following result describes the effect of an arbitrary linear transformation F' on the

{1-estimation error of the Lasso:

Theorem 2. Assume the model in (3) with max; ¥;; = O(1). Let F € R™™ be an arbitrary
linear transformation and A > 0 an arbitrary fived constant. Then for the method described

in (5) with transformation F and penalty level A = Ao/ 1ofbp/\maX(F)Q, with probability at
1-A2%/(32max; 2;) _ pe —n/136

least 1 — 2p , we have

| X3
H/B /BHI ~ Olng C A 2

where C1,Cy are constants depending only on A.

Remark. One can get a better bound

foXsz
¢2 ¢2 Vi

by taking larger penalty A than the one above, but then A depends on the unknown quantity

I8~ Bl < Ci o5

|1 Xbl|s. For that reason we will use the bound above with standard penalty level X, since it

does not matter when || Xb||y is small, which holds in our case, as shown later.

The first term is the standard bound for the ¢;- -error of the Lasso, with only difference
that the compatibility constant is for the matrix 51 = XX pather than the matrix 3 = %
The second term shows the dependence of the error on the term Xb. Tt is also worth
noting that the penalty A has standard form up to the scaling correction factor Apax(F)?,
which equals 1 for the Trim transform and the PCA adjustment.

In order to control the error caused by the coefficient perturbation b, we need to make
I X b||2 small by shrinking the singular values enough, e.g. by ensuring that cil), the largest
singular value after transformation, is small. On the other hand, we must not shrink the
singular values too much, since we need ¢ to stay large. If we have that gb% is bounded
away from 0 with high probability, as it is the case with Q% (see Bithlmann and van de Geer
(2011)), and that || Xb||s is sufficiently small, we get from Theorem 2 that our estimator

achieves the usual Lasso error rate:

Corollary 4.1. Consider the model in (3) with max; ¥;; = O(1) and suppose that Ay, (2)

is bounded away from zero. For the coefficient perturbation b as in (4), assume that

(AT) b3 = O (skesz),

Assume additionally that the spectral transformation F' in (5) with Apax(F) = 1 satisfies
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~

(A2) Al ) = O,(y/P)
(A3) 6% = Q(Aun(D)).

Then for the penalty level A = o4/82 despite the coefficient perturbation, the ;-

n ?

estimation error has the following rate:

~ _ s [logp
Hﬁ - /6H1 - Op (Amin(z}) n ) :

We show in the following section that in the perturbed linear model that arises from

the confounding model (1), the induced coefficient perturbation b, given in (4), satisfies
the condition (A1), provided that the dense confounding assumption (A1) is satisfied.
We also show that certain spectral transformations, such as the Trim transform (7) with
T = djtn), where t € (0,1) is an arbitrary constant, or the PCA adjustment satisfy the

conditions (A2) and (A3) under certain conditions.

Remark (Fixed design). The results of Theorem 2 and Corollary 4.1 can be easily extended

to the perturbed linear model with fixed design. One can even relaz the assumption (A1’)

2]
VB2 = 0 ("Tgp)

It is worth noting that if the perturbation vector b has uniformly random direction, which is

to a weaker condition

not the case with the confounding model (1), this becomes much weaker than the condition
(A1’°) above and we only require ||b||3 = O (Sagogp)'

4.4 Validity of the Assumptions

In this section we will justify the assumptions in Theorem 1 and Corollary 4.1 for
certain spectral transformations F', with an emphasis on the Trim transform (7) and
the PCA adjustment. We also discuss later the performance of other choices of spectral

transformations.

Assumptions (Al) and (A1)

The assumption (A1’) for the perturbed linear model says that the coefficient per-
turbation must not be too large. It can also be viewed as the condition which makes
the perturbed linear model identifiable, since in general it is impossible to distinguish
the true coefficient vector # from the perturbed coefficient vector § + b, unless b has
some additional structure. The rate O(y/s02logp/p) may seem too strict, but this is

the rate with respect to the f,-norm, so if the perturbation vector is dense, this becomes

approximately |b]; = O(4/s0?logp).
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The following lemma shows that if the confounding is dense in the confounding model
(the assumption (A1) holds), then the induced coefficient perturbation in the underlying
perturbed linear model is small (the assumption (A1”) holds). It is important to note that
certain dense confounding assumption is necessary. The term Xb can be thought of as the
part of the confounding H¢d that can be explained by X and if, as an extreme example,
the confounder H; is correlated with only the predictor X, only the j-th component of X
will be useful for describing the effect of H; on Y and thus b; will be very large and we

will not be able to estimate f;.

Lemma 4.1. Assume that the confounding model (1) satisfies Ayin(I') = Amin(Cov(H, X)) =
Q (/p) and cond(Xg) = O(1). Then we have:

b3 = |Cov(X)'Cov(X, H)d|3 < cond () - m = (W) =0 <0—2>
Amin (I)? p p

The condition Awin(I') = €,(,/p) is satisfied, for example, if I — 0 and I is drawn at

random with either its rows or columns being independent, identically distributed sub-

Gaussian random variables with expectation 0 and covariance matrix 3, with Ay, (2r)

bounded away from zero.

From this we see that it is important that the effect of the latent variables is spread
out over many predictors. If this is not true, Apin(I') will be too small and thus ||b]]y will

be too large.

Assumption (A2)

We investigate quickly the behaviour of singular values of X in order to see whether
the assumption (A2) holds for the transformed matrix X. This assumption says that
after the transformation, the largest singular value is not too large.

In the confounding model we have 3 = I''T" + ¥, i.e. the covariance matrix of X has
additional low-rank component I'’T', which causes the top several singular values of 3 to
be very large. Since the rows of X are drawn from a distribution with covariance matrix
Y, the first few singular values of X will be large as well (Donoho et al., 2013). However,
the following lemma shows that the bulk of the singular values will never be too large, i.e.
they will be of order ,/p. The assumption (A2) requires the transformed singular values
to be of this order.

Lemma 4.2. Assume that X € R"*? is a random matrix whose rows are i.i.d. sub-
Gaussian vectors with covariance matrix 3. Let dy,...,d, = 0 be its singular values.
Assume also that Tr(X) = p and that 4/log p/n — 0. We have:

%Zﬁ_ﬂ@m+%m)



Cevid, BiihImann, Meinshausen (2020) 27

Furthermore, when p > n, dj;,,) = O,(y/p) for any t € (0,1).

For the Trim transform the largest singular value after transformation J(l) equals the
trimming threshold 7 and the above lemma shows that 7 = d, for ¢t € (0,1), e.g. the
median singular value when ¢ = 0.5, is a good choice and the assumption (A2) holds.

If we further assume that ¥z has bounded singular values, thus ensuring the gap
between the ¢-th and (g + 1)-st eigenvalues of 3, we get that all but the first ¢ singular
values of X will not be too large, thus justifying the assumption (A2) for the PCA

adjustment, since there we have )\max()N() = cj(l) = CZ]_H = dgt1-

Lemma 4.3. Assume that p > n and that X has i.i.d. sub-Gaussian rows with covariance
matrix ¥ = T"T+ g, where I' € R7? and Apax(Xg) = O(1), then we have dyi1 = O,(1/p).

This lemma also shows that in this case the trimming threshold 7 for the Trim transform
can be chosen to be 7 = dg;1, but 7 = d|;;,) might be a better choice as the number of

confounders ¢ is unknown.

Assumption (A3)

This assumption says that the compatibility constant ¢s does not substantially decrease
after applying our transformation F. We want to show that by shrinking the singular
values we have not shrunk our signal X3 too much. Intuitively, this means that the active
set Xg is not too aligned with the directions along which we substantially shrink, which
corresponds to the first several singular vectors in the case of Trim transform and PCA
adjustment.

It is difficult to bound ¢s for an arbitrary spectral transformation F, since the
distribution of the singular vectors V' of the design matrix X is complicated. However, one
can directly exploit the results from the factor analysis literature (Bai, 2003) for the PCA
adjustment, from which it follows that in a certain asymptotic regime the transformed
design matrix X is close to the unconfounded design matrix F. Using this result, one can
directly obtain the compatibility condition (A3) for the PCA adjustment by using the

standard argument (Bithlmann and van de Geer, 2011).

Lemma 4.4. Let X be generated from the confounding model (1) and let F' be a spectral

transformation shrinking the first ¢ singular values of X to 0. If ¢ is fixed, %Zp |(Xg)ij]

ij=1
d slog(pn)

upper bounded an (D)

— 0, we have that, with probability converging to 1, the
compatibility condition holds for the transformed design matrix X =FX:
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In the Appendix A.1 of Cevid et al. (2020a) the analysis of the compatibility constant
¢s is also provided for arbitrary spectral transformation under the somewhat restrictive
assumption that the singular vectors V' have uniformly distributed direction.

Since the ratio of the transformed singular values for the Trim transform and PCA
adjustment is bounded from below by ﬁ? the compatibility constant ¢y, for the Trim
transform can be bounded from below by the compatibility constant ¢pca for the PCA

adjustment:

djtn|
dg+1

PTvim = g PpoA = g PPCA

and thus the compatibility condition holds for the Trim transform as well if d,;; and

7 = djs) are of comparable sizes, i.e. i[;:ﬂ = ,(1). By Lemma 4.3, we have dg1 = O,(\/p)
and by the following lemma it holds that for quite a wide range of settings we also have that
dfmj = Q)(Amin(X)p). Therefore, Lemma 4.4 can be used for showing the compatibility

condition for the Trim transform as well.

Lemma 4.5. Assume that X is a random design matrix with i.i.d. rows with covariance

matrix Y and suppose p > n. Assume that any of the following conditions is satisfied:

i) the rows of X have a sub-Gaussian distribution and £ — oo
ii) the rows of X have a N(0, %) distribution and liminf 2 > 1

iii) the rows of X have N(0, %) distribution and limsup £ < 1

Then we have
d? = Q) (Amin (2)p).

4.5 Performance of Various Spectral Transformations

The result of Theorem 1 can be applied to any spectral transformation that satisfies
the assumptions (A2) and (A3). We discuss here which spectral transformations satisfy
them and what are their possible advantages and disadvantages for the performance of
the corresponding estimator B . The illustration of the spectral transformations discussed

below is given in Figure 3.

PCA adjustment As shown above, under certain assumptions we get that the spectral
transformation which maps first ¢ singular values to 0 will satisfy assumptions (A2)
and (A3). Even though it might seem that one disadvantage of this method is that the
number of confounding variables ¢ needs to be estimated from the data, one can show
that asymptotically it can be done accurately with high probability (Bai, 2003). PCA
adjustment leaves most of the singular values intact, so the increase in the estimator

variance will not be large.
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Figure 3: Singular values of X after applying spectral transformations corresponding to different methods

to 40 x 60 matrix X with i.i.d. standard normal entries.

Lasso The simplest option is to take CZ = d;, i.e. the usual Lasso algorithm without any
transformation. Standard Lasso theory shows that the assumption (A3) is satisfied (see
Bithlmann and van de Geer (2011)). However, (A2) requires that the largest singular
value of X is of order O(,/p), which typically does not hold in presence of confounding

variables.

Trim transform Asshown above, we have that the Trim transform satisfies assumptions
(A2) and (A3) if we take the trimming threshold to be 7 = djs,| for some ¢ € (0,1),
e.g. the median singular value. Compared to the PCA adjustment, it has an advantage
that one does not need to estimate the number of confounding variables from the data.
Moreover, it does not shrink first several singular values to 0, but only to the necessary
level. This more gradual shrinkage might lead to better performance especially if the

signal X/ is more aligned with the first few singular vectors.

Lava The mapping d; — v/nAad;/+/nAy + d? used in the Lava algorithm (Chernozhukov
et al., 2017) satisfies the conditions (A2) and (A3) as well, since the transformed singular

values d; are quite close to the ones for the Trim transform d; = min(d;,7), for an

appropriate choice of 7:

1 . \/n/\gdi .
—min(d;, \/nAy) < ———— < min(d;, v/n2).
g in( eVt < R S il vinde)
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This also reveals how to choose the penalty X\ in Lava: Ay = 1d? and A\; can

n"|min(n,p)/2]
be chosen by cross-validation. This transformation has the property that it is smoother
than the Trim transform. We note that with this comment and Corollary 4.1, we have
established the standard Lasso ¢;-error rate for Lava for estimating the sparse parameter

g in a high-dimensional regression model; such result is not given in Chernozhukov et al.
(2017).

Puffer transformation For the Puffer transform (Jia et al., 2015), where we map all
singular values to a constant d,, (because of homogeneity it does not matter to which
constant we map it, but we have assumed w.l.o.g. that cz < d;, so we need to map
them to d,,), the assumption (A2) is easily satisfied. However, for (A3) we need to have
d2 =, (Amin(X) p). From Vershynin (2012), we have that this holds only if liminf 2 > 1,

i.e. the Puffer transform will not work well if n and p are close.

Step function The justification of the assumptions (A2) and (A3) for Trim transform
apply as well for the step function 071 = 71(d; > 7) with the same threshold 7. However,
unnecessarily shrinking singular values might cause worse performance than for the Trim

transform.

4.6 Low-dimensional Case: n > p

The statement of Theorem 2 still holds in the low-dimensional case n > p. However,
%\])?b“g will now be of larger order than A. We have that Apay(X) = O,(y/n), compared
to /p before (see Lemma 4.2), which under the assumption (A1’) gives us that %H)N( bl|3 =
O(|0]|3) = O(”:&). Therefore, the second term in the bound of Theorem 2 will be too
large in comparison with the first term.

Fortunately, from the remark below Theorem 2, we see that by taking larger A, we can
decrease the rate of the second term. If the perturbation term %H)? b2 gets larger than

the standard penalty rate, as it is the case when n > p, it is better to penalize more. One

- B SO lng \/EHb“2
HB B”l - Op ()‘min(z)\/T—'_ Amin(i:))

which by Lemma 4.1 in the confounding model, under the dense confounding assumption
(A1), becomes:

gets in this case:

~ so log p NEL
— Bl = O, .
1351 <Am<z> 52 Tﬂ@)ﬁ)
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One can not expect the same error rate as in the high-dimensional setting, since this
would imply that, for fixed p, the error converges to 0 as n — o0 which can not happen
because the error is not only due to the randomness of the sample data, but also due to
the coefficient perturbation . The perturbation b only depends on how the confounding
variables affect the predictors and not on the number of data points and thus one can
not expect consistency for a fixed p. However, we see that the estimator is consistent
when n, p — c0. The more predictors we have, the more is the effect of the confounding
variables spread out.

This is also illustrated in Figure 4, where we can see that even though the error
decreases as we increase the number of data points, it still seems to have a nonzero limit.
However, the error is small, especially in comparison with the standard Lasso, and there is

a benefit in using our method.

p=600, g=6, s=5, sigma=1

L1 error

0 250 500 750 1000 1250
n

': Lasso ': Lava :_ Oracle PCA :_ Puffer ':Trim

Figure 4: Dependence of the estimation error HB — B|l1 on the sample size n for different spectral
transformations and data generated from the confounding model, including the case p < n, as described

in Section 5.1.1.

5 Empirical Results

We present here some empirical results for simulated and real data.

5.1 Simulations

We demonstrate the performance of various spectral transformations for estimating the

coefficient vector § with a subsequent use of the Lasso: Trim transform, Lava, Puffer and
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PCA adjustment. We investigate the cases when the perturbation b arises from hidden

confounding and when it is randomly sampled.

5.1.1 Setting

We generate the data from the confounding model (1). We take X5 = 0%1,, where
op=2and 8 =(1,1,1,1,1,0,...,0), so s = 5. For a fixed number ¢ of hidden confounders,
we sample the coefficients I';; and J; independently as standard normal random variables.
By default, we take ¢ = 6. Unless stated otherwise, we use the noise level 0 = 1 as the
standard deviation of €. Finally, the sample size is set to be n = 200 and the dimensionality
of the predictors is p = 600 as the default value. All results are based on N = 2!2 = 4096
independent simulations.

It is also interesting to consider the perturbed linear model (3). We do not generate
data from this model directly, but we will modify the underlying perturbation term b
which is implicit in the confounding model by formula (4). This way we can compare the
results obtained for the confounding model and the perturbed linear model directly with
each other. We replace b by Qb where () is a random rotation matrix so that the new
perturbation has the same size, but with uniformly random direction. We note that the
resulting distribution is the same as of the perturbed linear model (3), where rows of X
are drawn from N (0,Y), where 3 = I''T + I, and b is drawn uniformly from a ball of
radius [[(CTT + ,) 7 'T74§||,.

5.1.2 Choosing A

In practice we encounter the problem of choosing the penalty level A\ for the Lasso
after applying a spectral transformation. The results of Theorem 1 and Corollary 4.1 give
us that one can use the standard theoretical penalty rate A = o 10% to get the desired
error rate of our estimator. In practice one often resorts to using cross-validation (CV) for
choosing the penalty parameter rather than using the theoretical value, especially since o
is unknown.

However, one needs to be careful in presence of confounding variables; in this case
the coeflicient vector  + b describes the data better than §, which we are trying to
recover. Therefore, cross-validation tends to choose a smaller value of A than the optimal
for recovering (. This is illustrated in the Figure 5, where we see that, for example, the
Puffer transform is significantly affected by this choice of A. For recovering  in practice,
it might be better to increase slightly the value of A chosen by cross-validation (Janzing
and Scholkopf, 2018). But on the other hand, smaller A gives us a larger set of variables,

which might be beneficial for variable screening.
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n=300, q=6, s=5, sigma=1 n=300, g=6, s=5, sigma=1
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Figure 5: Dependence of the estimation error || 3 — B]1 on the number of predictors p for different spectral
transformations and data generated from the confounding model (1), as described in Section 5.1.1. In the
left plot, the penalty is chosen by cross-validation, whereas in the right plot we use the oracle value for

which the estimation error is minimal.

In all simulations, unless stated otherwise, the penalty level is chosen by cross-validation.
This choice does not seem to worsen the performance of the Trim transform or Lava a
lot, as one can see in Figure 5 and Figure 9, and it is of great practical importance since
the oracle value of A, i.e. the one for which || Br— B |l; is smallest, can not be directly

determined from the data.

5.1.3 Results

Here we present the results of the simulations for both the confounding model and the
perturbed linear model. A fundamental difference between them is that the coefficient
perturbation arising from the confounding model is pointing towards the singular vectors
of X corresponding to the large singular values (see Figure 1). This makes || Xb||, larger
for a fixed ||b||2, and in this case the estimation error will be larger. On the other hand, in
this case we can improve our accuracy more compared to the plain Lasso by shrinking

large singular values, as will be shown below.

Noise versus perturbation In the left plot in Figure 6 we can see how the estimation
error changes depending on the size of the noise ¢ in the confounding model. When o is
small, the perturbation b has the biggest effect on the error. On the other hand, if o is
large, then the influence of the perturbation b becomes less pronounced.

We can see that the standard Lasso is affected a lot by the coefficient perturbation,
whereas the Puffer transform and the PCA adjustment are affected more by the additive

noise than the Lava and the Trim transform, since the slopes of the corresponding curves
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Figure 6: Dependence of the estimation error | B — B]l1 on the size of the noise for different spectral
transformations for confounding model (left) and the perturbed linear model (right), as described in
Section 5.1.1.

are steeper. The higher variance of the Puffer transform is most evident in Figure 4 and
Figure 5; when n, p are close to each other, some of the singular values of X become quite
small and thus mapping them to a constant can inflate the error € in the corresponding
directions by a lot. We can observe that the oracle PCA adjustment, which removes
exactly the ¢ largest singular values of X, works well, especially when o is small. For larger
o, we see that Trim transform and Lava work slightly better since they do not remove
that much of the signal.

In the right plot of Figure 6, we have randomized the direction of b while keeping
everything else constant, as described in Section 5.1.1. This then corresponds to a model
with random perturbation b, but no specific further structure in terms of confounding. We
can see a substantial improvement of the standard Lasso: in hindsight this shows that
the Lasso is very sensitive to confounding variables but much less so to perturbation of
sparsity. Also, it is worth noting that the PCA adjustment method is now consistently
worse than the Trim transform or Lava, since the projection of b onto the span of the first
q singular vectors is not that large anymore.

We can see more clearly the bias-variance tradeoff for different spectral transformations
in Figure 7, where we have taken the rotated coefficient perturbation b, as in the right
plot of Figure 6 and then artificially scaled it by a chosen constant. For a very small b, we
see that Puffer and PCA adjustment have somewhat worse performance. As b increases,
Trim transform and Lava reduce the bias caused by b much better than the Lasso. We can
also see that the PCA adjustment does not reduce the bias as much, but its performance
would be significantly better if b was not rotated, but aligned with the top several principal

components as in the confounding model, see Figure 6.
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Figure 7: Dependence of the estimation error on the size of the perturbation vector b for different spectral

transformation for the perturbed linear model, as described in Section 5.1.1.

Number of confounding variables In Figure 8 we can see how the estimation error
depends on the number ¢ of confounding variables. As above, we see that the Lasso is
severely affected by the presence of confounding variables. The Puffer transform performs
reasonably well since n and p are different enough and the Trim transform and Lava
exhibit similar and good performance in all cases.

PCA adjustment works well for the confounding model if we correctly guess the number
of confounding variables. In the left plot in Figure 8 we can clearly see how the estimation
error is affected by the misspecification of the number of the principal components we
remove. The oracle PCA method, which removes exactly ¢ principal components, performs
reasonably well, particularly for smaller values of q. However, if we overestimate or
especially if we underestimate the number of confounding variables, the estimation error

will become significantly worse compared to the Trim transform or Lava.

Method robustness We are interested in whether there are any disadvantages in using
the spectral transformations if we wrongly think that there is some hidden confounding or
that the sparse coefficient has been perturbed.

In Figure 9 we display the estimation error for the confounding model as in Figure
8, but where the coefficient bias b has been set to 0, i.e. this is a standard sparse linear
model with X being generated from the spiked covariance model.

There is no indication for relevant differences between the performances of the Trim
transform, Lava and the Lasso. The Lasso performs slightly better for larger values of ¢
and slightly worse for smaller ¢. It is worth noting that on this plot the estimation error

starts to decrease as g increases, which is due to a scaling issue. This happens because
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Figure 8: Dependence of the estimation error || B — A1 on the number of confounding variables for different
spectral transformation for confounding model (left) and the perturbed linear model (right) as described
in Section 5.1.1.

the variance of X increases as ¢ increases, since Y = I''T" + X, thus effectively increasing
the signal to noise ratio. PCA adjustment seems to be affected most by the choice of A,
especially for larger ¢ since its shrinkage is larger in this case, see Figure 9. With the
oracle choice of the penalty level, its performance is very similar to the performance of the
Lasso.

Our empirical results support theoretical evidence, which showed that it is safe to use
wisely chosen spectral transformations such as the Trim transform or the Lava. If there are
any confounding variables present, there is a large improvement over the standard Lasso.
On the other hand, if there are no confounding variables, the Trim transform or Lava will
have about the same performance as the Lasso. Therefore, our method can be thought of

as an easy to use modification of the Lasso which is robust to hidden confounding.

5.2 Application to a Genomic Dataset

In this section we demonstrate the robustness of our method against hidden confounders
on a real genomic dataset where we have certain knowledge about the confounding variables.
We inspect various spectral transformations in combination with the Lasso and evaluate
the differences between the estimates for the original data set and the one where the

confounding variables have been adjusted for.

5.2.1 Gene Expression Dataset

We have obtained data from the GTEx Portal (http://gtexportal.org). The GTEx
project provides large-scale data with an aim to help the scientific community to study

gene expression, gene regulation and their relationship to genetic variation. It provides
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Figure 9: Size of the estimation error HB — Bl for a sparse linear model where > = T''T" + I,,, i.e. the
confounding model with the induced perturbation b set to b = 0. The penalty level X is either chosen by

cross-validation (left) or taken to be the oracle value, which minimizes the ¢;-error (right).

gene expression data from 11,688 samples collected postmortem from 53 different tissues
of 714 human donors.

Gene expression is a process in the cell in which the information stored in a certain
gene is used for the synthesis of gene products such as proteins. In the GTEx Project it
was quantified by the amount of the mRNA in the cell which was created from this gene.
Gene expression differs among different people and among different cells within the human
body. The type of the cells is determined by the gene expression within them; even though
the DNA in all cell nuclei is the same, cells in different tissues behave and look differently
and perform significantly different tasks. Gene expression is also affected by the genetic
variation and determining the expression quantitative trait loci (eQTL), which are parts
of genome which explain the variation in the gene expression, is a very important problem
which will help to understand the relationship between genetic variation and different

phenotypes.

5.2.2 Setting

We use the fully processed, filtered and normalized gene expression matrix for the
skeletal muscle tissue. We consider the gene expression of p = 14’713 protein-coding genes
measured from n = 491 samples. For our purpose, an important aspect of this dataset is
that there are also ¢ = 65 different covariates provided, which are proxies for the hidden
confounding variables. They include genotyping principal components and PEER factors.
We can thus obtain the deconfounded data by regressing out these given covariates.

The left panel of Figure 10 displays the singular values of the initial data matrix.

We see that the first several singular values are substantially larger than the rest which
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suggests a possible existence of hidden confounders. In the right part of Figure 10 we can
see the singular values of the deconfounded data matrix where we have regressed out all of

the ¢ = 65 covariates which are provided as confounding proxies.
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Figure 10: Singular values of the gene expression data matrix for skeletal muscle tissue before (left) and

after (right) regressing out the provided ¢ = 65 confounding covariates.

We are going to explore now the robustness of the Lasso, Trim transform, and Lava
against hidden confounders by comparing the estimates based on the original and the
deconfounded data. For a fixed value of k, we regress out first k given confounder proxies

) and we

from the original gene expression data matrix X in order to get the matrix X
randomly choose one column to represent the response Y. We are thus trying to explain
the expression of one gene by the expressions of other genes.

For every s = 1,...,20, we apply the given method on X and X®*) with the regulariza-
tion A chosen as the largest value such that the support size of B equals a prespecified value
s. This leads to estimates B\S and Eé’“) We measure the dissimilarity of the corresponding

supports by J(supp 35, supp Bé’“) ), where J is the Jaccard distance:

AAB
AUB

J(A,B) =

5.2.3 Results

In the top left image in Figure 11, we can see the difference of the estimates for the
original and the deconfounded data, where 5 randomly chosen confounding variables have
been removed and the response Y is the expression of a randomly chosen gene. We can
see that the Jaccard distance for the Lasso is closer to 1, indicating that the estimated
support sets are very different and almost disjoint; The Trim transform and Lava are much
more robust to the hidden confounders and we see that the Jaccard distance between the

estimates based on confounded and deconfounded data is much smaller.
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Figure 11: Jaccard distance of the supports of the estimates based on the original and deconfounded
data for one randomly chosen response (top left). Jaccard distance, averaged over 500 randomly chosen
responses, of the supports of estimates based on the original data and data with 5 (top right), 15 (bottom

left) and 65 (bottom right) confounder proxies removed.

In order to make sure that the choice of response Y did not affect the results, we have
repeated this experiment for 500 randomly chosen genes and averaged the obtained results.
The results are also displayed in Figure 11. We can see that, as we increase the number
k of confounding variables which we regress out, the Jaccard distance for all methods is
increasing. This is to be expected since X*) and X are becoming more different as we
increase k. However, we can infer that the Trim transform and Lava are consistently better
than the Lasso, exhibiting also in this real dataset the robustness against confounding

variables.

6 Discussion

We propose to add robustness against hidden confounding variables by employing a
wisely chosen spectral transformation before using the Lasso or other high-dimensional
sparse regression techniques. There is essentially nothing to lose but much to be gained

which is in line with the typical argument of robustness (Huber, 2011) We can also take



40 Paper A

directly the viewpoint of deconfounding before performing further analysis: this is the
more common thinking in many applications where hidden confounding is expected to
happen, a prime example being genetics (Novembre and Stephens, 2008).

The confounding issue in the context of linear models can be represented and analyzed
as a regression problem with coefficient 5 + b; the coefficient § is the true underlying
parameter in absence of confounding variables, while the perturbation b is due to the
confounding. We develop theory for a linear model with regression parameters g + b
where (8 is sparse and the perturbation b sufficiently small, a condition satisfied when the
confounding is sufficiently 'dense’ in the sense that each confounding variable affects many
predictors. We show that certain spectral transformations, such as the Trim transform or
the PCA adjustment, in conjunction with using the Lasso afterwards, achieve the same
¢1-convergence rate of the HB — f||1 as the Lasso for the linear model without confounding;
see Section 4 and Theorem 1. Such a theoretical result is entirely new and covers also the
Lava method (Chernozhukov et al., 2017). As a consequence, the theoretical result also
establishes spectral deconfounding as an excellent method for removing the effect of dense
hidden confounders in high-dimensional settings.

Another advantage of our approach is its simplicity: it consists of just one simple
pre-transformation step before using the Lasso. It requires the computation of the SVD of
the design matrix which has computational complexity of O(min(n?p, np?)) and can be
done in a few lines of code.

The topic of deconfounding has not received too much attention, despite its practical
importance (Greenland et al., 1999; Brookhart et al., 2010). Here we have shown that
it is possible and easy to protect against hidden dense confounding in the case of linear

regression. Similar ideas might be powerful as well for more complicated models.
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Abstract

Inferring causal relationships or related associations from observational data
can be invalidated by the existence of hidden confounding. We focus on
a high-dimensional linear regression setting, where the measured covariates
are affected by hidden confounding and propose the Doubly Debiased Lasso
estimator for individual components of the regression coefficient vector. Our
advocated method simultaneously corrects both the bias due to estimation of
high-dimensional parameters as well as the bias caused by the hidden confounding.
We establish its asymptotic normality and also prove that it is efficient in
the Gauss-Markov sense. The validity of our methodology relies on a dense
confounding assumption, i.e. that every confounding variable affects many
covariates. The finite sample performance is illustrated with an extensive

simulation study and a genomic application.

Keywords. Causal Inference; Structural Equation Model; Dense Confounding;;

Linear Model; Spectral Deconfounding

1 Introduction

Observational studies are often used to infer causal relationship in fields such as
genetics, medicine, economics or finance. A major concern for confirmatory conclusions is
the existence of hidden confounding (Guertin et al., 2016; Manghnani et al., 2018). In
this case, standard statistical methods can be severely biased, particularly for large-scale

observational studies, where many measured covariates are possibly confounded.

43
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To better address this problem, let us consider first the following linear Structural

Equation Model (SEM) with a response Y;, high-dimensional measured covariates X;. € R?

and hidden confounders H;. € R%
Y, "X, +¢"H;. +e;, and X;. —VUTH, +FE;. forl<i<n, (1)

where the random error e; € R is independent of X;. € RP, H; € R? and F,. € R? and the
components of £;. € RP are uncorrelated with the components of H;. € R?. The focus
on a SEM as in (1) is not necessary and we relax this restriction in model (2) below.
Such kind of models are used for e.g. biological studies to explore the effects of measured
genetic variants on the disease risk factor, and the hidden confounders can be geographic
information (Novembre et al., 2008), data sources in mental analysis (Price et al., 2006) or
general population stratification in GWAS (McCarthy et al., 2008).

Our aim is to perform statistical inference for individual components ;, 1 < j < p,
of the coefficient vector, where p can be large, in terms of obtaining confidence intervals
or statistical tests. This inference problem is challenging due to high dimensionality of
the model and the existence of hidden confounders. As a side remark, we mention that
our proposed methodology can also be used for certain measurement error models, an

important general topic in statistics and economics (Carroll et al., 2006; Wooldridge, 2010).

1.1 Our Results and Contributions

We focus on a dense confounding model, where the hidden confounders H; . in (1) are
associated with many measured covariates X;.. Such dense confounding model seems
reasonable in quite many practical applications, e.g. for addressing the problem of batch
effects in biological studies (Haghverdi et al., 2018; Johnson et al., 2007; Leek et al., 2010).

We propose a two-step estimator for the regression coefficient 3; for 1 < j < p in
the high-dimensional dense confounding setting, where a large number of covariates has
possibly been affected by hidden confounding. In the first step, we construct a penalized
spectral deconfounding estimator Eimt as in (Cevid et al., 2018), where the standard
squared error loss is replaced by a squared error loss after applying a certain spectral
transformation to the design matrix X and the response Y. In the second step, for the
regression coefficient of interest 3;, we estimate the high-dimensional nuisance parameters
B_j ={B; L #j} by BZ_”J” and construct an approximately unbiased estimator Bj.

The main idea of the second step is to correct the bias from two sources, one from
estimating the high-dimensional nuisance vector 3_; by Bﬁ?t and the other arising from
hidden confounding. In the standard high-dimensional regression setting with no hidden
confounding, debiasing, desparsifying or Neyman’s Orthogonalization were proposed

for inference for f; (Zhang and Zhang, 2014; van de Geer et al., 2014; Javanmard and
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Montanari, 2014; Belloni et al., 2014; Chernozhukov et al., 2015; Farrell, 2015; Chernozhukov
et al., 2018). However, these methods, or some of its direct extensions, do not account for
the bias arising from hidden confounding. In order to address this issue, we introduce a
Doubly Debiased Lasso estimator which corrects both biases simultaneously. Specifically,
we construct a spectral transformation PU) € R"*", which is applied to the nuisance design
matrix X_; when the parameter of interest is 8;. This spectral transformation is crucial
to simultaneously correcting the two sources of bias.

We establish the asymptotic normality of the proposed Doubly Debiased Lasso estimator
in Theorem 1. An efficiency result is also provided in Theorem 2 of Section 4.2.1, showing
that the Doubly Debiased Lasso estimator retains the same Gauss-Markov efficiency bound
as in standard high-dimensional linear regression with no hidden confounding (van de
Geer et al., 2014; Jankova and van de Geer, 2018). Our result is in sharp contrast to
Instrumental Variables (IV) based methods, see Section 1.2, whose inflated variance is
often of concern, especially with a limited amount of data (Wooldridge, 2010; Boef et al.,
2014). This remarkable efficiency result is possible by assuming denseness of confounding.
Various intermediary results of independent interest are also derived in the supplementary
material of Guo et al. (2020). Finally, the performance of the proposed estimator is
illustrated on simulated and real genomic data in Section 5.

To summarize, our main contribution is two-fold:

1. We propose a novel Doubly Debiased Lasso estimator for individual coefficients 3;
and estimation of the corresponding standard error in a high-dimensional linear SEM

with hidden confounding.

2. We show that the proposed estimator is asymptotically Gaussian and efficient in
the Gauss-Markov sense. This implies the construction of asymptotically optimal

confidence intervals for individual coefficients ;.

1.2 Related Work

In econometrics, hidden confounding and measurement errors are unified under the
framework of endogenous variables. Inference for treatment effects or corresponding
regression parameters in presence of hidden confounders or measurement errors has been
extensively studied in the literature with Instrumental Variables (IV) regression. The
construction of IVs typically requires a lot of domain knowledge, and obtained IVs are
often suspected of violating the main underlying assumptions (Han, 2008; Wooldridge,
2010; Kang et al., 2016; Burgess et al., 2017; Guo et al., 2018; Windmeijer et al., 2019). In
high dimensions, the construction of IVs is even more challenging, since for identification

of the causal effect, one has to construct as many IVs as the number of confounded
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covariates, which is the so-called “rank condition” (Wooldridge, 2010). Some recent work
on the high-dimensional hidden confounding problem relying on the construction of IVs
includes (Gautier and Rose, 2011; Fan and Liao, 2014; Lin et al., 2015; Belloni et al., 2017;
Zhu, 2018; Neykov et al., 2018; Gold et al., 2020). Another approach builds on directly
estimating and adjusting with respect to latent factors (Wang and Blei, 2019).

A major distinction of the current work from the contributions above is that we consider
a confounding model with a denseness assumption (Chandrasekaran et al., 2012; Cevid
et al., 2018; Shah et al., 2020). (Cevid et al., 2018) consider point estimation of 5 in the
high-dimensional hidden confounding model (1), whereas (Shah et al., 2020) deal with
point estimation of the precision and covariance matrix of high-dimensional covariates,
which are possibly confounded. The current paper is different in that it considers the
challenging problem of confidence interval construction, which requires novel ideas for
both methodology and theory.

The dense confounding model is also connected to the high-dimensional factor models
(Fan et al., 2008; Lam et al., 2011; Lam and Yao, 2012; Fan et al., 2016; Wang et al.,
2017b). The main difference is that the factor model literature focuses on accurately
extracting the factors, while our method is essentially filtering them out in order to provide
consistent estimators of regression coefficients, under much weaker requirements than for
the identification of factors.

Another line of research (Gagnon-Bartsch and Speed, 2012; Sun et al., 2012; Wang
et al., 2017a) studies the latent confounder adjustment models but focuses on a different
setting where many outcome variables can be possibly associated with a small number of

observed covariates and several hidden confounders.

Notation. We use X; € R* and X_; € R™®~D to denote the j—th column of the
matrix X and the sub-matrix of X excluding the j—th column, respectively; X;. € R?
is used to denote the i—th row of the matrix X (as a column vector); X, ; and X; _;
denote respectively the (i, j) entry of the matrix X and the sub-row of X;. excluding the
j-th entry. Let [p] = {1,2,...,p}. For a subset J < [p]| and a vector x € RP| z; is the
sub-vector of z with indices in J and x_; is the sub-vector with indices in J¢. For a set
S, |S| denotes the cardinality of S. For a vector x € RP, the ¢, norm of z is defined as
|zl = o0, |xl|q)é for ¢ = 0 with |z]o = {1 <I<p:2; # 0} and |z], = maxi<<, |71
We use e; to denote the i-th standard basis vector in R” and I, to denote the identity
matrix of size p x p. We use ¢ and C' to denote generic positive constants that may vary
from place to place. For a sub-Gaussian random variable X, we use || X|, to denote its
sub-Gaussian norm; see definitions 5.7 and 5.22 in (Vershynin, 2012). For a sequence
of random variables X,, indexed by n, we use X, 2 X and X, % X to represent that

X, converges to X in probability and in distribution, respectively. For a sequence of
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random variables X,, and numbers a,,, we define X,, = o,(a,) if X, /a, converges to zero
in probability. For two positive sequences a,, and b, a,, < b, means that 3C' > 0 such that
a, < Cb, for all n; a,, = b, if a, < b, and b, < a,, and a, < b, if limsup,,_,, a,/b, = 0.
For a matrix M, we use |M| g, | M|z and |M||s to denote its Frobenius norm, spectral
norm and element-wise maximum norm, respectively. We use \;(M) to denote the j-th
largest singular value of some matrix M, that is, \(M) = A\o(M) = ... = X\j(M) = 0. For
a symmetric matrix A, we use A\pax(A4) and Apin(A) to denote its maximum and minimum

eigenvalues, respectively.

2 Hidden Confounding Model

We consider the Hidden Confounding Model for i.i.d. data {X;.,Y;}1<i<, and unob-

served i.i.d. confounders {H;.}1<i<n, given by:
Y;‘ = BTXi,- + QbTHi,. +€; and Xi,~ = \IJTHi7. + Ei,-a (2)

where Y; € R and X, . € R? respectively denote the response and the measured covariates
and H;. € R? represents the hidden confounders. We assume that the random error e¢; € R
is independent of X;. € RP, H;. € R? and E;. € R? and the components of E;. € R are
uncorrelated with the components of H;. € R

The coefficient matrices ¥ € R9*P and ¢ € R?*! encode the linear effect of the hidden
confounders H;. on the measured covariates X, . and the response Y;. We consider the
high-dimensional setting where p might be much larger than n. Throughout the paper it
is assumed that the regression vector € R? is sparse, with a small number k of nonzero
components, and that the number ¢ of confounding variables is a small positive integer.
However, both k£ and ¢ are allowed to grow with n and p. We write X g or ¥Xx for the
covariance matrices of F;. or X; ., respectively. Without loss of generality, it is assumed
that EX;. = 0, EH;. = 0, Cov(H,.) = I, and hence X¥x = VTV + Xp.

The probability model (2) is more general than the Structural Equation Model in (1).
It only describes the observational distribution of the latent variable H;. and the observed
data (X;.,Y;), which possibly may be generated from the hidden confounding SEM (1).

Our goal is to construct confidence intervals for the components of 3, which in the
model (1) describes the causal effect of X on the response Y. The problem is challenging
due to the presence of unobserved confounding. In fact, the regression parameter S can
not even be identified without additional assumptions. Our main condition addressing
this issue is a denseness assumption that the rows W, € R? are dense in a certain sense
(see Condition (A2) in Section 4), i.e., many covariates of X;. € RP are simultaneously
affected by hidden confounders H;. e RY.
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2.1 Representation as a Linear Model

The Hidden Confounding Model (2) can be represented as a linear model for the
observed data {X;.,Y;}h<i<n:
Yi=+0b0)"X,. +¢ and X, =V'H, +E,., (3)
by writing
e=¢e +¢"H,. —b'X,. and b= E)’(lllﬂqﬁ.
As in (2) we assume that E;. is uncorrelated with H;. and, by construction of b, €; is
uncorrelated with X; .. With o2 denoting the variance of e;, the variance of the error ¢;
equals 02 = 02 + ¢T (Iq — \I/E)_(llllT) ¢. In model (3), the response is generated from a linear
model where the sparse coefficient vector S has been perturbed by some perturbation
vector b € RP. This representation reveals how the parameter of interest  is not in general
identifiable from observational data, where one can not easily differentiate it from the
perturbed coefficient vector 5 + b, where the perturbation vector b is induced by hidden
confounding. However, as shown in the supplement of Guo et al. (2020), b is dense and
[b]2 is small for large p under the assumption of dense confounding, which enables us to
identify 8 asymptotically. It is important to note that the term 47X, . induced by hidden
confounders H; . is not necessarily small and hence cannot be simply ignored in model (3),

but requires novel methodological approach.

Connection to measurement errors We briefly relate certain measurement error
models to the Hidden Confounding Model (2). Consider a linear model for the outcome Y;

and covariates X} € RP, where we only observe X; . € R? with measurement error W; . € R?:

Y;=p"X)+e and X;. = Xg, +W;. forl<i<n. (4)
Here, ¢; is a random error independent of XS, and W, ., and W, . is the measurement error
independent of X?. We can then express a linear dependence of Y; on the observed X,

Yi=p"X,. + (e, —TW,;.) and X,. =W, + Xg,
We further assume the following structure of the measurement error:
W, =VTH, |

i.e. there exist certain latent variables H;. € R? that contribute independently and

linearly to the measurement error, a conceivable assumption in some practical applications.

Combining this with the equation above we get
YVi=8"X;. + (e, —¢"H;.) and X, =VTH, + X!, (5)

where ¢ = W3 € R?. Therefore, the model (5) can be seen as a special case of the model
(2), by identifying X? in (5) with E;. in (2).
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3 Doubly Debiased Lasso Estimator

In this section, for a fixed index j € {1,...,p}, we propose an inference method for the
regression coefficient 3; of the Hidden Confounding Model (2). The validity of the method

is demonstrated by considering the equivalent model (3).

3.1 Double Debiasing

We denote by Eimt an initial estimator of 5. We will use the spectral deconfounding
estimator proposed in (Cevid et al., 2018), described in detail in Section 3.4. We start

from the following decomposition:

A~

Y — X570 = X (B + by) + X_j(By — B + X_jb_j+€ for je{l,....p}. (6)

—J -

The above decomposition reveals two sources of bias: the bias X_;(f_; — BTJ”) due to
the error of the initial estimator Bm” and the bias X_;b_; induced by the perturbation
vector b in the model (3), arising by marginalizing out the hidden confounding in (2). Note
that the bias b; is negligible in the dense confounding setting, see the supplement of Guo
et al. (2020). The first bias, due to penalization, appears in the standard high-dimensional
linear regression as well, and can be corrected with the debiasing methods proposed in
(Zhang and Zhang, 2014; van de Geer et al., 2014; Javanmard and Montanari, 2014)
when assuming no hidden confounding. However, in presence of hidden confounders,
methodological innovation is required for correcting both bias terms and conducting the
resulting statistical inference. We propose a novel Doubly Debiased Lasso estimator for
correcting both sources of bias simultaneously.

Denote by PU) € R™*™ a symmetric spectral transformation matrix, which shrinks the
singular values of the sub-design X_; € R =1 The detailed construction, together with
some examples, is given in Section 3.3. We shall point out that the construction of the
transformation matrix P depends on which coefficient B; is our target and hence refer to
PU) as the nuisance spectral transformation with respect to the coefficient 3;. Multiplying

both sides of the decomposition (6) with the transformation P gives:
POY — X5t = POX; (B + by) + POX_j(B-; — B4 + POX_jb_; + PYe. (7)

The quantity of interest /3; appears on the RHS of the equation (7) next to the vector
PUX j, whereas the additional bias lies in the span of the columns of PUX _;. For this
reason, we construct a projection direction vector PU )Zj € R™ as the transformed residuals
of regressing X, on X_;:

Zy=X; = X7, (8)
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where the coefficients 7 are estimated with the Lasso for the transformed covariates using
PpU).

. N I G 4 [PDX 42
7 = arg min {%P(J)Xj —POX_ 5+ X)) T\%\ > (9)

’VERP_I l?ﬁj

with \; = Aoj+/logp/n for some positive constant A > /2 (for o}, see Section 4.1).
Finally, motivated by the equation (7), we propose the following estimator for g;:
~ (PDZ)TPU(Y — X_;Binit)

— —J
B = (PO Z;,)TPUX; ‘ (10)

We refer to this estimator as the Doubly Debiased Lasso estimator as it simultaneously
corrects the bias induced by Bim't and the confounding bias X_;b_; by using the spectral
transformation P,

In the following, we briefly explain why the proposed estimator estimates [3; well. We

start with the following error decomposition of Bj, derived from (7)

B g (P Z;)T7PWe . (PO Z)TPDX_(B_; — Bi"j”) (PO Z)TPDX_b_ b
i~ P = POz, PUIX, (PO Z,)TPUIX, (PO Z,)TPUIX, j -
~ ~ -~ ~~ -

Variance Remaining Bias

(1)
In the above equation, the bias after correction consists of two components: the remaining
bias due to the estimation error of Bﬂ@?t and the remaining confounding bias due to X_;b_;
and b;. These two components can be shown to be negligible in comparison to the variance
component under certain model assumptions, see Theorem 1 and its proof for details.

Intuitively, the construction of the spectral transformation matrix P is essential for
(P(j)Zj)TP(j)X_jb_j
(PG Z)TPUX;
(11) is of a small order because P shrinks the leading singular values of X_; and hence

reducing the bias due to the hidden confounding. The term in equation
PUIX_;b_; is significantly smaller than X_;b_;. The induced bias X_;b_; is not negligible
since b_; points in the direction of leading right singular vectors of X_;, thus leading to
H\/LHX _;jb_j|l2 being of constant order. By applying a spectral transformation to shrink the

leading singular values, one can show that H\/LEPU)X_jb_jHZ = O0,(1/4/min{n, p}).
(PO Z;)TPOX_;(B_;—pinit)
(P(j)Zj)TP(j>Xj
since the initial estimator 4™ is close to 8 in ¢; norm and PY)Z; and PWX_; are nearly

Furthermore, the other remaining bias term

in (11) is small

orthogonal due to the construction of 4 in (9). This bias correction idea is analogous to
the Debiased Lasso estimator introduced in (Zhang and Zhang, 2014) for the standard

high-dimensional linear regression:

~

DB __ (ZJDB)T(Y - X—jginjit)

VA (ZDB)TX, ) (12)
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where ZPP is constructed similarly as in (8) and (9), but where P is the identity matrix.
Therefore, the main difference between the estimator in (12) and our proposed estimator
(10) is that for its construction we additionally apply the nuisance spectral transformation
PpU) .

We emphasize that the additional spectral transformation PU) is necessary even
for just correcting the bias of B’_"J” in presence of confounding (i.e., it is also needed
for the first besides the second bias term in (11)). To see this, we define the best
linear projection of X ; to all other variables X; _; € RP~! with the coefficient vector
v = [E(X;—;X] ;)] '"E(X;_;X;;) € R~ (which is then estimated by the Lasso in the
standard construction of Z”). We notice that v need not be sparse due to the fact
that all covariates are affected by a common set of hidden confounders yielding spurious
associations. Hence, the standard construction of ZP in (12) is not favorable in the
current setting. In contrast, the proposed method with P works for two reasons: first,
the application of P in (9) leads to a consistent estimator of the sparse component of +,
denoted as v (see the expression of v¥ given in the supplementary material of Guo et al.
(2020)); second, the application of PV leads to a small prediction error PV X_;(§ — ~F).
We illustrate in Section 5 how the application of P corrects the bias due to Eﬂ”jt and
observe a better empirical coverage after applying PY) in comparison to the standard

debiased Lasso in (12); see Figure 7.

3.2 Confidence Interval Construction

In Section 4, we establish the asymptotic normal limiting distribution of the proposed

estimator Bj under certain regularity conditions. Its standard deviation can be estimated

(PW)AZ;

62-Z1 1A . . . . .
([T}(;D(j—))QX_]; with o, denoting a consistent estimator of o.. The detailed construction
j J

of 0. is described in Section 3.5. Therefore, a confidence interval (CI) with asymptotic

coverage 1 — a can be obtained as

R 62 ZI(PW)Z; 62 ZI(PUYZ;
N — o N e 7 J ) o e i J
CI5;) <5J Zl—z\/ [ZT(PU)2X,]? O Zl‘z\/ [Z] (PO X517 ) )

where z_a

2 is the 1 — § quantile of a standard normal random variable.

3.3 Construction of Spectral Transformations

Construction of the spectral transformation PY) e R™*" is an essential step for the
Doubly Debiased Lasso estimator (10). The transformation P e R"*" is a symmetric
matrix shrinking the leading singular values of the design matrix X_; € R (=1 Denote

by m = min{n, p—1} and the SVD of the matrix X_; by X_; = U(X_;)A(X_;)[V(X_,)]T,
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where U(X_;) € R™™ and V(X _;) € RP~Y*™ have orthonormal columns and A(X_;) €
R™*™ is a diagonal matrix of singular values which are sorted in a decreasing order
A1(Xj) = Aoa(Xj) = ..o = A (X)) = 0. We then define the spectral transformation
PU) for X_; as PV = U(X_;)S(X_;)[U(X_;)]7, where S(X_;) € R™™ is a diagonal
shrinkage matrix with 0 < .5;;(X_;) <1 for 1 <! < m. The SVD for the complete design
matrix X is defined analogously. We highlight the dependence of the SVD decomposition
on X_;, but for simplicity it will be omitted when there is no confusion. Note that
PWX_; = U (SA) VT, so the spectral transformation shrinks the singular values {A;,}, <l<m
to {Sl,lAl,l}lngW where A = A (X_5).

Trim transform For the rest of this paper, the spectral transformation that is used is
the Trim transform (Cevid et al., 2018). It limits any singular value to be at most some

threshold 7. This means that the shrinkage matrix S is given as: for 1 <[ < m,

T/Al’l if Au > T

1 otherwise

A good default choice for the threshold 7 is the median singular value Ajy,/a /2|, SO
only the top half of the singular values is shrunk to the bulk value Aj,,/2)m/2) and the
bottom half is left intact. More generally, one can use any percentile p; € (0,1) to shrink
the top (100p;)% singular values to the corresponding pj;-quantile A, |p,m|- We define

the p;-Trim transform PU) as

A[pj'mj,[pjnLJ(X—j) .
PY) = U(X_;)S(X_j)[U(X_;)]" with Sp;(X_;) = A(X=3) Logm] (14)

1 otherwise

In Section 4 we investigate the dependence of the asymptotic efficiency of the resulting
Doubly Debiased Lasso Bj on the percentile choice p; = p;(n). There is a certain trade-off
in choosing p;: a smaller value of p; leads to a more efficient estimator, but one needs to
be careful to keep p;m sufficiently large compared to the number of hidden confounders g,
in order to ensure reduction of the confounding bias. In the supplementary material of
Guo et al. (2020), the general conditions that the used spectral transformations need to

satisfy in order to ensure good performance of the resulting estimator are described.

3.4 Initial Estimator 3"

For the Doubly Debiased Lasso (10), we use the spectral deconfounding estimator
proposed in (Cevid et al., 2018) as our initial estimator B’mt It uses a spectral transfor-

mation Q = Q(X), constructed similarly as the transformation PU) described in Section
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3.3, with the difference that instead of shrinking the singular values of X_;, Q shrinks
the leading singular values of the whole design matrix X € R™*P. Specifically, for any

percentile p € (0,1), the p-Trim transform Q is given by

Alpm),lpm] (X) if 1<
Q = U(X)S(X)[U(X)]T with Sy(X) = { A ! Lom] (15)

1 otherwise

The estimator Bi”it is computed by applying the Lasso to the transformed data QX and
NS

\/7
where A\ = Ac.+/log p/n is a tuning parameter with A > /2.

The transformation Q reduces the effect of the confounding and thus helps for estimation

G~ argmin |0y - X) 3+ 2 Y 19Kl 5. (16)
N gﬁeRP n y 2 ot n T

of 8. In the supplementary material of Guo et al. (2020), the ¢; and fs-error rates of Bm“
are given, thereby extending the results of (Cevid et al., 2018).

3.5 Noise Level Estimator

In addition to an initial estimator of 3, we also require a consistent estimator 52 of the
error variance o2 = E(e?) for construction of confidence intervals. Choosing a noise level
estimator which performs well for a wide range of settings is not easy to do in practice
(Reid et al., 2016). We propose using the following estimator:

52 = | Qy — QXA (7)
e TI'(QZ) 2
where Q is the same spectral transformation as in (16).

The motivation for this estimator is based on the expression
Qy— QX ™" = Qe+ QX (B — ™) + QX (18)

which follows from the model (3). The consistency of the proposed noise level estimator,
formally shown in Proposition 2, follows from the following observations: the initial spectral
deconfounding estimator Em“ has a good rate of convergence for estimating (; the spectral
transformation Q significantly reduces the additional error Xb induced by the hidden
confounders; | Qe|3/Tr(Q?) consistently estimates 0. Additionally, the dense confounding
model is shown to lead to a small difference between the noise levels 02 and o2, see the
supplement of Guo et al. (2020). In Section 4 we show that variance estimator 52 defined

in (17) is a consistent estimator of o2
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3.6 Method Overview and Choice of the Tuning Parameters

The Doubly Debiased Lasso needs specification of various tuning parameters. A good
and theoretically justified rule of thumb is to use the Trim transform with p = p; = 1/2,
which shrinks the large singular values to the median singular value, see (14). Furthermore,
similarly to the standard Debiased Lasso (Zhang and Zhang, 2014), our proposed method
involves the regularization parameters A in the Lasso regression for the initial estimator
Bmit (see equation (16)) and \; in the Lasso regression for the projection direction PV)Z;
(see equation (9)). For choosing A we use 10-fold cross-validation, whereas for \;, we

increase slightly the penalty chosen by the 10-fold cross-validation, so that the variance of
2

e’

our estimator, which can be determined from the data up to a proportionality factor o

increases by 25%, as proposed in (Dezeure et al., 2017).

4 Theoretical Justification

This section provides theoretical justifications of the proposed method for the Hidden
Confounding Model (2). The proofs of the main results together with several other
technical results of independent interest can be found in the supplementary material of
Guo et al. (2020).

4.1 Model assumptions

In the following, we fix the index 1 < 7 < p and introduce the model assumptions for
establishing the asymptotic normality of our proposed estimator éj defined in (10). For
the coefficient matrix ¥ € R¥*? in (3), we use ¥; € R to denote the j-th column and
V_;eR? x(P=1) denotes the sub-matrix with the remaining p — 1 columns. Furthermore,
we write v for the best linear approximation of X;; € R by X; _; € RP™! that is

v = argmin.gy-1 B(X1; — X1 _;7')?, whose explicit expression is:
v = [E(X1 XT_)]'E(X - X1,).

For ease of notation, we do not explicitly express the dependence of v on j. Similarly,
define
7E = BB B )] E(B, - Bry).-

We denote the corresponding residuals by n;; = X;; — X]_ .y and v;; = E; ; — E] 4" for
1 <7 <n. We use 0; to denote the standard deviation of v; ;.

The first assumption is on the precision matrix of E;. € R? in (2):
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(A1) The precision matrix Qp = [E(E;.E] )] ™" satisfies ¢ < Amin (25) < Amax (25) < Co
and [|(2g).jlo < s where Cy > 0 and ¢y > 0 are some positive constants and s

denotes the sparsity level which can grow with n and p.

Such assumptions on well-posedness and sparsity are commonly required for estimation of
the precision matrix (Meinshausen and Bithlmann, 2006; Lam et al., 2009; Yuan, 2010;
Cai et al., 2011) and are also used for confidence interval construction in the standard
high-dimensional regression model without unmeasured confounding (van de Geer et al.,
2014). Here, the conditions are not directly imposed on the covariates X ., but rather on
their unconfounded part F; ..

The second assumption is about the coefficient matrix ¥ in (3), which describes the

effect of the hidden confounding variables H;. € R? on the measured variables X, . € R?:

(A2) The g-th singular value of the coefficient matrix ¥_; € R?*P~1) satisfies

qp
A(W_j) » I(n, p, q) == max {M ~~(logp)**, A/ Mqp'"*(log p)*'*, \/qn logp}
(19)
where M is the sub-Gaussian norm for components of X; , as defined in Assumption

(A3). Furthermore, we have

max {|W(Q2p). jla, [V5]2, [V (2r)—j ]2 [6]2} < vallogp), (20)

where W and ¢ are defined in (2) and 0 < ¢ < 1/4 is some positive constant.

The condition (A2) is crucial for identifying the coefficient 5, in the high-dimensional
Hidden Confounding Model (2). Condition (A2) is referred to as the dense confounding
assumption. A few remarks are in order regarding when this identifiability condition holds.

Since all vectors W(Qg). ;, V;, ¥_,;(2g)_,,; and ¢ are g-dimensional, the upper bound
condition (20) on their ¢; norms is mild. If the vector ¢ € R? has bounded entries and the
vectors {¥.;}1<i<p € R? are independently generated with zero mean and bounded second

—2¢ where

moments, then the condition (20) holds with probability larger than 1 — (log p)
¢ is defined in (20).

In the factor model literature (Fan et al., 2013; Wang et al., 2017b) the spiked singular
value condition A\ (¥) = ,/p is quite common and holds under mild conditions. The
Hidden Confounding Model is closely related to the factor model, where the hidden
confounders H;. are the factors and the matrix W describes how these factors affect the
observed variables X;.. However, for our analysis, our assumption on A\, (¥_;) in (19)
can be much weaker than the classical factor assumption A\,(V_;) = /p, especially for
a range of dimensionality where p » n. In certain dense confounding settings, we can

show that condition (19) holds with high probability. Consider first the special case with
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a single hidden confounder, that is, ¢ = 1 and the effect matrix is reduced to a vector
U e RP. In this case, \j(¥_;) = [|[¥_;[|2 and the denseness of the effect vector ¥_; leads
to a large A\;(¥_;). The condition (19) can be satisfied even if only a certain proportion of
covariates is affected by hidden confounding. When ¢ = 1, if we assume that there exists
aset A< {1,2,...,p} such that {U;};c4 are i.i.d. and |A| » I(n,p,q)?, where I(n,p,q)
is defined in (19), then with high probability A\,(¥) = 1/|A] » I(n,p,q). In the multiple
hidden confounders setting, if the vectors {¥,;},c4 are generated as i.i.d. sub-Gaussian
random vectors, which has an interpretation that all covariates are analogously affected
by the confounders, then the spiked singular value condition (19) is satisfied with high
probability as well. See the supplementary material of Guo et al. (2020) for the exact
statement. In Section 5.1, we also explore the numerical performance of the method when
different proportions of the covariates are affected and observe that the proposed method
works well even if the hidden confounders only affect a small percentage of the covariates,
say 5%.

Under the model (2), if the entries of W are assumed to be i.i.d. sub-Gaussian with zero
mean and variance oy, then we have A\j(¥_;) = \/poy with high probability. Together
with (19), this requires

[qn1 M(log p)3/
a@>>max{M\[10gp3/4 anlogp +/q 1;)4gp }

So if p » gnlogp and min{n, p} » ¢*(logp)*>>M?, then the required effect size oy of the

hidden confounder H;. on an individual covariate X; ; can diminish to zero fairly quickly.

The condition (19) can in fact be empirically checked using the sample covariance
matrix f]X. Since Xx = VTV + Yp, then the condition (19) implies that ¥y has at
least ¢ spiked eigenvalues. If the population covariance matrix ¥y has a few spikes, the
corresponding sample covariance matrix will also have spiked eigenvalue structure with a
high probability (Wang et al., 2017b). Hence, we can inspect the spectrum of the sample
covariance matrix 3, x and informally check whether it has spiked singular values. See the
left panel of Figure 2 for an illustration.

The third assumption is imposed on the distribution of various terms:

(A3) The random error e; in (2) is assumed to be independent of (X] , H )T, the error
vector [J;. is assumed to be independent of the hidden confounder H; ., and the noise
term v;; = Ey; — B ]'y is assumed to be independent of E; _;. Furthermore, F; .
is a sub—Gaussmn random vector and e; and v; j are sub-Gaussian random variables,
< C, where
C > 0 is a positive constant independent of n and p. For 1 <[ < p, X;; are sub-
< M,

whose sub-Gaussian norms satisfy max{||E; .|y, |€illys,

Gaussian random variables whose sub-Gaussian norms satisfy maxy<i<p | Xi. ¢,
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where 1 < M < +/n/logp.

The independence assumption between the random error e; and (X, HJ )T is commonly
assumed for the SEM (1) and thus it holds in the induced Hidden Confounding Model (2)
as well, see for example (Pearl, 2009). Analogously, when modelling X;. as a SEM where
the hidden variables H; . are directly influencing X ., that is, they are parents of the X;.’s,
the independence of E; . from H; . is a standard assumption. The independence assumption
between v; ; and F; _; holds automatically if £;. has a multivariate Gaussian distribution
(but X; . is still allowed to be non-Gaussian, e.g. due to non-Gaussian confounders).

We emphasize that the individual components X, ; are assumed to be sub-Gaussian,
instead of the whole vector X;. € R?. The sub-Gaussian norm M is allowed to grow with
q and p. Particularly, if we assume H;. to be a sub-Gaussian vector, then condition (20)
implies that M < ,/q(logp)°||H;..||y,. Furthermore, our theoretical analysis also covers
the case when the sub-Gaussian norm M is of constant order. This happens, for example,
when the entries of W are of order 1/,/q, since M = max;_y,._, ||V

The final assumption is that the restricted eigenvalue condition (Bickel et al., 2009) for
the transformed design matrices QX and PU) X _; is satisfied with high probability.

(A4) With probability at least 1 — exp(—cn), we have

wT (1XTQ2X) w

wl3

RE (1X70%X) = Tm[f] min

D weRP > T (21)
[TI<k  lwreli<CM|wr|s

, WT(AXT (PUNZX_Nw
RE (%Xij(P“)Vij) = inf min G 7]( ) i) >T1  (22)

. 2
TClp\j}  weRP! lwl3
IT|<s  lwreli<CM|wr|s

where ¢,C, 1, > 0 are positive constants independent of n and p and M is the
sub-Gaussian norm for components of X; , as defined in Assumption (A3). For ease

of notation, the same constants 7, and C' are used in (21) and (22).

Such assumptions are common in the high-dimensional statistics literature, see (Biithlmann
and van de Geer, 2011). The restricted eigenvalue condition (A4) is similar, but more
complicated than the standard restricted eigenvalue condition introduced in (Bickel et al.,
2009). The main complexity is that, rather than for the original design matrix, the
restricted eigenvalue condition is imposed on the transformed design matrices P(j)X_j
and QX after applying the Trim transforms P and Q, described in detail in Sections
3.3 and 3.4, respectively. In the following, we verify the restricted eigenvalue condition
(A4) for LXTQ?*X and the argument can be extended to L XT (PU)2X_;.
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Proposition 1. Suppose that assumptions (A1) and (A3) hold, H;. is a sub-Gaussian
random vector, ¢ + logp < +/n and k = ||||o satisfies M?kq*logplogn/n — 0. Assume
further that the loading matriz U e RT*? satisfies | V], < A/log(gp), A1(¥)/A(¥) < 1 and
that

Apmax{k!4g*/%, 1} log(np)

Y
Aol)> min{m, P}

(23)

If Npm) (2 X XT) = cmax{1,p/n} for p defined in (15) and some positive constant ¢ > 0
independent of n and p, then there exist positive constants c1,co > 0 such that, with
probability larger than 1 — p~® — exp(—con), we have RE (%XTQQX) > 1 Amin(Xx)-

An important condition for establishing Proposition 1 is the condition (23). Under
the commonly assumed spiked singular value condition A\ (¥) = ,/p (Fan et al., 2013;
Wang et al., 2017b; Bai, 2003; Bai and Ng, 2002), the condition (23) is reduced to
k « min{n, p}/(M?¢®log(np)*). As a comparison, for the standard high-dimensional
regression model with no hidden confounders, (Zhou, 2009; Raskutti et al., 2010) verified
the restricted eigenvalue condition under the sparsity condition k « n/logp. That is, if
Ag(¥) = /p, then the sparsity requirement in Proposition 1 is the same as that for the
high-dimensional regression model with no hidden confounders, up to a polynomial order
of ¢ and log(np),

In comparison to the condition (19) in (A2), (23) can be slightly stronger for a range

3/2. However, Proposition 1 does not require the strong

of dimensionality where p » n
spiked singular value condition Ay (¥) = /p. The proof of Proposition 1 is presented in
the supplement of Guo et al. (2020). The condition Aj,m, (+XXT) > cmax{1,p/n} can be
empirically verified from the data. In the supplementary material of Guo et al. (2020),

further theoretical justification for this condition is provided, under mild assumptions.

4.2 Main Results

In this section we present the most important properties of the proposed estimator
(10). We always consider asymptotic expressions in the limit where both n,p — o and
focus on the high-dimensional regime with ¢* = limp/n € (0,00]. We mention here that
some new results on point estimation of the initial estimator Em” defined in (16) are given
in the supplementary material of Guo et al. (2020), as they are established under more

general conditions than in (Cevid et al., 2018).

4.2.1 Asymptotic normality

We first present the limiting distribution of the proposed Doubly Debiased Lasso

estimator. The proof of Theorem 1 and important intermediary results for establishing
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Theorem 1 are presented in the supplementary material of Guo et al. (2020)

Theorem 1. Consider the Hidden Confounding Model (2). Suppose that conditions (A1)-
(A4) hold and further assume that c* = limp/n € (0,0], k := |Blo « /n/(M3logp),
s = |(Qg).jlo « n/(M*logp) and e; ~ N(0,02). Let the tuning parameters for
Bimit in (16) and 3 in (9) respectively be A\ = oor/log p/n + 4 [qlog p/A2(¥) and \; =
o/ logp/n + \/q log p/A2(V_;). Furthermore, let Q and PY be the Trim transform (14)
with min{p, p;} = (¢ + 1)/ min{n, p — 1} and max{p, p;} < 1. Then the Doubly Debiased

Lasso estimator (10) satisfies

1 /5 d
where
522} (PY)'7; o2 Tr{(PV)")
_ e J -1 Ye N
V= [Z}(P(j)VXjP and 'V a?TrQ[(P(j))Q] 1. (25)

Remark 1. The Gaussianity of the random error e; is mainly imposed to simplify the
proof of asymptotic normality. We believe that this assumption is a technical condition
and can be removed by applying more refined probability arguments as in (Gotze and
Tikhomirov, 2002), where the asymptotic normality of quadratic forms (PWe)TPU)e is
established for the general sub-Gaussian case. The argument could be extended to obtain
the asymptotic normality for (PU)n;)TPWe, which is essentially needed for the current

result.

Remark 2. For constructing @ and P, the main requirement is to trim the singular
values enough in both cases, that is, min{p, p;} = (¢ + 1)/ min{n,p — 1}. This condition
is mild in the high-dimensional setting with a small number of hidden confounders. Our
results are not limited to the proposed estimator which uses the Trim transform P
in (14) and the penalized estimators 4 and Bimit in (9) and (16), but hold for any any
initial estimator and transformation that satisfy the conditions given in the supplementary
material of Guo et al. (2020).

Remark 3. If we further assume the error ¢; in the model (3) to be independent of X _,

then the requirement (19) of the condition (A2) can be relaxed to

Ag(W_;) » max {M« / %(logp)3/4, VqMp'*(log p)*/®, \/(8M2 + k\/ﬁM?’)qlogp} -

Note that the factor model implies the upper bound A\, (¥_;) < |/p. Even if n > p, the
above condition on A\, (¥_;) can still hold if p » kqM?3logpy/n. On the other hand, the
condition (19) together with A\,(V_;) < ,/p imply that p » gnlogp, which excludes the

setting n = p.
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There are three conditions on the parameters s, ¢, k imposed in the Theorem 1 above.
The most stringent one is the sparsity assumption k « 1/n/[M?log p]. In standard high-
dimensional sparse linear regression, a related sparsity assumption k « 4/n/logp has
also been used for confidence interval construction (Zhang and Zhang, 2014; van de Geer
et al., 2014; Javanmard and Montanari, 2014) and has been established in (Cai and Guo,
2017) as a necessary condition for constructing adaptive confidence intervals. In the
high-dimensional Hidden Confounding Model with M = 1, the condition on the sparsity
of £ is then of the same asymptotic order as in the standard high-dimensional regression
with no hidden confounding. The condition on the sparsity of the precision matrix,
s = [[(Qp).;
sparsity level for identifying (Q2g). ;. Implied by (19), the condition that the number of

o € n/(M?logp), is mild in the sense that, for M = 1, it is the maximal

hidden confounders ¢ is small is fundamental for all reasonable factor or confounding

models.

4.2.2 Efficiency

We investigate now the dependence of the asymptotic variance V' in (25) on the choice
of the spectral transformation PY). We further show that the proposed Doubly Debiased
Lasso estimator (10) is efficient in the Gauss-Markov sense, with a careful construction of
the transformation P,

The Gauss-Markov theorem states that the smallest variance of any unbiased linear
estimator of 3; in the standard low-dimensional regression setting (with no hidden con-
founding) is 02/(no?), which we use as a benchmark. The corresponding discussion on
efficiency of the standard high-dimensional regression can be found in Section 2.3.3 of
(van de Geer et al., 2014). The expression for the asymptotic variance V' of our proposed
o2 Tr[(PY))4]

estimator (10) is given by W

(14), which trims top (100p;)% of the singular values, we have that

2021 St

(see Theorem 1). For the Trim transform defined in

ATe[(PUYY] o

2
S2TP[(PD)2] o (X2 SE)?
where we write m = min{n, p — 1} and Sy; = Si;(X_;) € [0,1]. Since S}, < S, for every I,
27;1 512,1 > (1- Pj)m and (Zlﬁil 521)2 sm- Zlﬁil Sl%la we obtain

2 2 (9))4 2
o _ a2 Tr[(PY))%] _ ! o

€ €

o?m o T?[(PV))?] S l-p; oim

In the high-dimensional setting where p — 1 > n, we have m = n and then

2 2 (7)\4 1 2
% O 1;[(73 ')2] - e (26)
oin T [(PW)?] ~ 1—p; ojn
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Theorem 2. Suppose that the assumptions of Theorem 1 hold. If p > n+ 1 and p; =
pj(n) — 0, then the Doubly Debiased Lasso estimator in (10) has asymptotic variance %,
J

that is, it achieves the Gauss-Markov efficiency bound.

The above theorem shows that in the ¢ « n regime, the Doubly Debiased Lasso achieves
the Gauss-Markov efficiency bound if p; = p;(n) — 0 and min{p, p;} = (¢ + 1)/n (which
is also a condition of Theorem 1). When using the median Trim transform, i.e. p; = 1/2,
the bound in (26) implies that the variance of the resulting estimator is at most twice the
size of the Gauss-Markov bound. In Section 5, we illustrate the finite-sample performance
of the Doubly Debiased Lasso estimator for different values of p;; see Figure 6.

In general for the high-dimensional setting p/n — ¢* € (0, 0], the Asymptotic Relative
Efficiency (ARE) of the proposed Doubly Debiased Lasso estimator with respect to the

Gauss-Markov efficiency bound satisfies the following:

1
min{c*, 1} (1 — p*) min{c*, 1} |’

ARE € [ (27)
where p* = lim,,_,, p;(n) € [0,1). The equation (27) reveals how the efficiency of the Dou-
bly Debiased Lasso is affected by the choice of the percentile p; = p;(n) in transformation
PU) and the dimensionality of the problem. Smaller p; leads to a more efficient estimator,
as long as the top few singular values are properly shrunk. Intuitively, a smaller percentile
p; means that less information in X_; is trimmed out and hence the proposed estimator
is more efficient. In addition, for the case p* = 0, we have ARE = max{1/c*, 1}. With
p* =0, a plot of ARE with respect to the ratio ¢* = lim p/n is given in Figure 1. We see

i

0o 05 1 15 2 25 3
c¢* =limp/n

Figure 1: The plot of ARE versus ¢* = lim p/n, for the setting of p* = 0.

that for ¢* < 1 (that is p < n), the relative efficiency of the proposed estimator increases

as the dimension p increases and when ¢* > 1 (that is p > n), we have that ARE = 1,
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saying that the Doubly Debiased Lasso achieves the efficiency bound in the Gauss-Markov
sense.

The phenomenon that the efficiency is retained even in presence of hidden confounding
is quite remarkable. For comparison, even in the classical low-dimensional setting, the
most commonly used approach assumes availability of sufficiently many instrumental
variables (IV) satisfying certain stringent conditions under which one can consistently
estimate the effects in presence of hidden confounding. In Theorem 5.2 of (Wooldridge,
2010), the popular IV estimator, two-stage-least-squares (2SLS), is shown to have variance
strictly larger than the efficiency bound in the Gauss-Markov setting (with no unmeasured
confounding). It has been also shown in Theorem 5.3 of (Wooldridge, 2010) that the
2SLS estimator is efficient in the class of all linear instrumental variable estimators and
thus, all linear instrumental variable estimators are strictly less efficient than our Doubly
Debiased Lasso. On the other hand, our proposed method not only avoids the difficult
step of coming up with a large number of valid instrumental variables, but also achieves
the efficiency bound with a careful construction of the spectral transformation PY). This
occurs due to a blessing of dimensionality and the assumption of dense confounding, where
a large number of covariates are assumed to be affected by a small number of hidden

confounders.

4.2.3 Asymptotic validity of confidence intervals

The asymptotic normal limiting distribution in Theorem 1 can be used for construction
of confidence intervals for ;. Consistently estimating the variance V' of our estimator,
defined in (25), requires a consistent estimator of the error variance o2. The following

proposition establishes the rate of convergence of the estimator 2 proposed in (17):

Proposition 2. Consider the Hidden Confounding Model (2). Suppose that conditions
(A1)-(A4) hold. Suppose further that ¢* = limp/n € (0,0], &k < n/logp and q «
min{n, p/logp}. Then with probability larger than 1 — exp(—ct®) — & — c(logp)~"/? —n=°

for some positive constant ¢ > 0 and for any 0 <t < \/n, we have

67— 02 U ayzlosp | qlogp  pgylogp/n + M?kqlogp
e el ~~ \/ﬁ n p )\2(\1]) Y

where M is the sub-Gaussian norm for components of X, defined in Assumption (AS3).

Together with (19) of the condition (A2), we apply the above proposition and establish

A~

p . . ~ . .
02 — 0% = 0. As a remark, the estimation error |62 — ¢2| is of the same order of magnitude

as |02 — 02| since the difference 02 — o2

is small in the dense confounding model.
Proposition 2, together with Theorem 1, imply the asymptotic coverage and precision

properties of the proposed confidence interval CI(/;), described in (13):
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Corollary 1. Suppose that the conditions of Theorem 1 hold, then the confidence interval
defined in (13) satisfies the following properties:

limi&fP (Bj € CI(B))) = 1 — «, (28)
) o2Tr[(PW)4] _
lffgiljopp (L (CL(5;)) = (2 + C)zlg\/W> =0, (29)

for any positive constant ¢ > 0, where L (CI(53;)) denotes the length of the proposed

confidence interval.

Similarly to the efficiency results in Section 4.2.2, the exact length depends on the
construction of the spectral transformation P\, Together with (26), the above proposition
shows that the length of constructed confidence interval is shrinking at the rate of n='/2 for
the Trim transform in the high-dimensional setting. Specifically, for the setting p > n + 1,
if we choose p; = pj(n) = (¢ + 1)/n and pj(n) — 0, the constructed confidence interval

has asymptotically optimal length.

5 Empirical results

In this section we consider the practical aspects of Doubly Debiased Lasso methodology
and illustrate its empirical performance on both real and simulated data. The overview of
the method and the tuning parameters selection can be found in Section 3.6.

In order to investigate whether the given data set is potentially confounded, one can
inspect the principal components of the design matrix X, or equivalently consider its
SVD. Spiked singular value structure (see Figure 2) indicates the existence of hidden
confounding, as much of the variance of our data can be explained by a small number of
latent factors. This also serves as an informal check of the spiked singular value condition
in the assumption (A2).

The scree plot can also be used for choosing the trimming thresholds, if one wants to
depart from the default median rule (see Section 3.6). We have seen from the theoretical
considerations in Section 4 that we can reduce the estimator variance by decreasing the
trimming thresholds for the spectral transformation P, On the other hand, it is crucial
to choose them so that the number of shrunk singular values is still sufficiently large
compared to the number of confounders. However, exactly estimating the number of
confounders, e.g. by detecting the elbow in the scree plot (Wang et al., 2017b), is not
necessary with our method, since the efficiency of our estimator decreases relatively slowly

as we decrease the trimming threshold.
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Figure 2: Left: Spiked singular values of the standardized gene expression matrix (see Section 5.2) indicate
possible confounding. Right: Singular values after regressing out the ¢ = 65 confounding proxies given in

the dataset (thus labeled as “unconfounded”). The singular values in both plots are sorted decreasingly.

In what follows, we illustrate the empirical performance of the Doubly Debiased Lasso
in practice. We compare the performance with the standard Debiased Lasso (Zhang and
Zhang, 2014), even though it is not really a competitor for dealing with hidden confounding,.
Our goal is to illustrate and quantify the error and bias when using the naive and popular
approach which ignores potential hidden confounding. We first investigate the performance
of our method on simulated data for a range of data generating mechanisms and then
investigate its behaviour on a gene expression dataset from the GTEx project (Lonsdale
et al., 2013).

5.1 Simulations

In this section, we compare the Doubly Debiased Lasso with the standard Debiased
Lasso in several different simulation settings for estimation of 8; and construction of the
corresponding confidence intervals.

In order to make comparisons with the standard Debiased Lasso as fair as possible, we
use the same procedure for constructing the standard Debiased Lasso, but with Q = I,
PU) = I,_1, whereas for the Doubly Debiased Lasso, P Q are taken to be median Trim
transform matrices, unless specified otherwise. Finally, to investigate the usefulness of
double debiasing, we additionally include the standard Debiased Lasso estimator with
the same initial estimator Bimt as our proposed method, see Section 3.4. Therefore, this
corresponds to the case where Q is the median Trim transform, whereas P = L.

We will compare the (scaled) bias and variance of the corresponding estimators. For a

fixed index j, from the equation (11) we have

VY2(B; — 8;) = N(0,1) + Bs + By,
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where the estimator variance V is defined in (25) and the bias terms B and B, are given
by

By Z]T(P(j))Qx_j( injit — ;) B, _ v Z]T(P(j)>2Xb.
g ZI(PU))2X; ’ ZI(PU))2X;

Larger estimator variance makes the confidence intervals wider. However, large bias makes
the confidence intervals inaccurate. We quantify this with the scaled bias terms Bg, which
is due to the error in estimation of 3, and B, which is due to the perturbation b arising
from the hidden confounding. Having small |Bs| and |B| is essential for having a correct
coverage, since the construction of confidence intervals is based on the approximation
V- Q(Bj —p;) ~ N(0,1). We investigate the validity of the confidence interval construction
by measuring the coverage of the nominal 95% confidence interval. We present here a

wide range of simulations settings and further simulations can be found in the Section 7.

Simulation parameters Unless specified otherwise, in all simulations we fix ¢ = 3,
s=5and f=(1,1,1,1,1,0,...0)T and we target the coefficient 5; = 1. The rows of the
unconfounded design matrix E are generated from N (0, Xg) distribution, where X5 = I,
as a default. The matrix of confounding variables H, the additive error e and the coefficient
matrices ¥ and ¢ all have i.i.d. N(0,1) entries, unless stated otherwise. Each simulation

is averaged over 5,000 independent repetitions.

Varying dimensions n and p In this simulation setting we investigate how the perfor-
mance of our estimator depends on the dimensionality of the problem. The results can
be seen in Figure 3. In the first scenario, shown in the top row, we have p = 500 and n
varying from 50 to 2,000, thus covering both low-dimensional and high-dimensional cases.
In the second scenario, shown in the bottom row, the sample size is fixed at n = 500 and
the number of covariates p varies from 100 to 2,000. We provide analogous simulations in
Section 7, where both the random variables and the model parameters are generated from
non-Gaussian distributions.

We see that the absolute bias term |By| due to confounding is substantially smaller for
Doubly Debiased Lasso compared to the standard Debiased Lasso, regardless of which
initial estimator is used. This is because P additionally removes bias by shrinking large
principal components of X_;. This spectral transformation helps also to make the absolute
bias term |Bg| smaller for the Doubly Debiased Lasso compared to the Debiased Lasso,
even when using the same initial estimator B””t This comes however at the expense of
slightly larger variance, but we can see that the decrease in bias reflects positively on
the validity of the constructed confidence intervals. Their coverage is significantly more

accurate for Doubly Debiased Lasso, over a large range of n and p.
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There are two challenging regimes for estimation under confounding. Firstly, when
the dimension p is much larger than the sample size n, the coverage can be lower than
95%, since in this regime it is difficult to estimate § accurately and thus the term |Bj| is
fairly large, even after the bias correction step. We see that the absolute bias |Bgs| grows
with p, but it is much smaller for the Doubly Debiased Lasso which positively impacts
the coverage. Secondly, in the regime where p is relatively small compared to n, |By|
begins to dominate and leads to undercoverage of confidence intervals. By is caused by the
hidden confounding and does not disappear when n — oo, while keeping p constant. The
simulation results agree with the asymptotic analysis of the bias term in the supplementary
material of Guo et al. (2020), where the term |By| vanishes as A\;(¥) increases, in addition
to increasing the sample size n. In the regime considered in this simulation, |B,| can
even grow, since the bias becomes increasingly large compared to the estimator’s variance.
However, it is important to note that even in these difficult regimes, Doubly Debiased
Lasso performs significantly better than the standard Debiased Lasso (irrespective of the

initial estimator) as it manages to additionally decrease the estimator’s bias.
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Figure 3: (Varying dimensions) Dependence of the (scaled) absolute bias terms |Bg| and |Byp| (left),
standard deviation V1/2 (middle) and the coverage of the 95% confidence interval (right) on the number
of data points n (top row) and the number of covariates p (bottom row). On the left side, |Bg| and |By|
are denoted by a dashed and a solid line, respectively. In the top row we fix p = 500, whereas in the
bottom row we have n = 500. Blue color corresponds to the Doubly Debiased Lasso, red color represents
the standard Debiased Lasso and green color corresponds also to the Debiased Lasso estimator, but with
the same ,@i"” as our proposed method. Note that the last two methods have almost indistinguishable
|Bp| and V.
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Toeplitz covariance structure for Xz Now we fix n = 300, p = 1,000, but we generate
the covariance matrix X g of the unconfounded part of the design matrix X to have Toeplitz
covariance structure: (Xg);; = k"7, where we vary x across the interval [0,0.97]. As we
increase k, the covariates Xy, ..., X5 in the active set get more correlated, so it gets harder
to distinguish their effects on the response and therefore to estimate 5. Similarly, it gets as
well harder to estimate 7 in the regression of X; on X_;, since X; can be explained well by
many linear combinations of the other covariates that are correlated with X;. In Figure 4
we can see that Doubly Debiased Lasso is much less affected by correlated covariates. The
(scaled) absolute bias terms |B,| and | Bs| are much larger for standard Debiased Lasso,

which causes the coverage to worsen significantly for values of x that are closer to 1.
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Figure 4: (Toeplitz covariance for ¥g) Dependence of the (scaled) absolute bias terms |Bg| and |Bp|
(left), standard deviation V1/2 (middle) and the coverage of the 95% confidence interval (right) on the
parameter k of the Toeplitz covariance structure. n = 300 and p = 1,000 are fixed. On the leftmost plot,
|Bg| and | By| are denoted by a dashed and a solid line, respectively. Blue color corresponds to the Doubly
Debiased Lasso, red color represents the standard Debiased Lasso and green color corresponds also to
the Debiased Lasso estimator, but with the same ﬁi”“ as our proposed method. Note that the last two

methods have almost indistinguishable |B,| and V.

Proportion of confounded covariates In order to investigate how the confounding
denseness affects the performance of our method, we now again fix n = 300 and p = 1, 000,
but we change the proportion of covariates X; that are affected by each confounding
variable. We do this by setting to zero a desired proportion of entries in each row of the
matrix U e R?*? which describes the effect of the confounding variables on each predictor.
Its non-zero entries are still generated as N(0,1). We set once again ¥ = I, and we vary
the proportion of nonzero entries of ¥ from 5% to 100%. The results can be seen in Figure
5. We can see that Doubly Debiased Lasso performs well even when only a very small
number (5%) of the covariates are affected by the confounding variables, which agrees
with our theoretical discussion for assumption (A2). We can also see that the coverage of
the standard Debiased Lasso is poor even for a small number of affected variables and

it worsens as the confounding variables affect more and more covariates. The coverage
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improves to some extent when we use a better initial estimator, but is still worse than our
proposed method.
In Section 7 we also show how the performance changes with the strength of confounding,

by gradually decreasing the size of the entries of the loading matrix .
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Figure 5: (Proportion confounded) Dependence of the (scaled) absolute bias terms |Bg| and |By| (left),
standard deviation /2 (middle) and the coverage of the 95% confidence interval (right) on proportion of
confounded covariates. n = 300 and p = 1,000 are fixed. On the leftmost plot, |Bg| and |By| are denoted
by a dashed and a solid line, respectively. Blue color corresponds to the Doubly Debiased Lasso, red
color represents the standard Debiased Lasso and green color corresponds also to the Debiased Lasso
estimator, but with the same Bi"it as our proposed method. Note that the last two methods have almost
indistinguishable |Bp| and V.

Trimming level We investigate here the dependence of the performance on the choice
of the trimming threshold for the Trim transform (14), parametrized by the proportion
of singular values p; which we shrink. The spectral transformation Q used for the initial
estimator 3™ is fixed to be the default choice of Trim transform with median rule.
We fix n = 300 and p = 1,000 and consider the same setup as in Figure 3. We take
T = A|p,m),|p;m| t0 be the p;-quantile of the set of singular values of the design matrix
X, where we vary p; across the interval [0,0.9]. When p; = 0, 7 is the maximal singular
value, so there is no shrinkage and our estimator reduces to the standard Debiased Lasso
(with the initial estimator B"“t) The results are displayed in Figure 6. We can see that
Doubly Debiased Lasso is quite insensitive to the trimming level, as long as the number of
shrunken singular values is large enough compared to the number of confounding variables
¢. In the simulation ¢ = 3 and the (scaled) absolute bias terms |By| and | Bg| are still small
when p; ~ 0.02, corresponding to shrinking 6 largest singular values. We see that the
standard deviation decreases as p; decreases, i.e. as the trimming level 7 increases, which
matches our efficiency analysis in Section 4.2.1. However, we see that the default choice
T = Ajm/2|,|m/2) has decent performance as well. In Section 7 we also explore whether the
choice of spectral transformation significantly affects the performance, with a focus on the

PCA adjustment, which maps first several singular values to 0, while keeping the others
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intact.
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Figure 6: (Trimming level) Dependence of the (scaled) absolyte bias terms |Bg| and |By| (left), standard
deviation V'/? (middle) and the coverage of the 95% confidence interval (right) on the trimming level
p; of the Trim transform (see Equation (14)). The sample size is fixed at n = 300 and the dimension
at p = 1,000. On the leftmost plot, |Bs| and |B,| are denoted by a dashed and a solid line, respectively.
The case p; = 0 corresponds to Debiased Lasso with the spectral deconfounding initial estimator Bi”iﬂ
described in (16).

No confounding bias We consider now the same simulation setting as in Figure 3,
where we fix n = 500 and vary p, but where in addition we remove the effect of the
perturbation b that arises due to the confounding. We generate from the model (2), but
then adjust for the confounding bias: Y « (Y — Xb), where b is the induced coefficient
perturbation, as in Equation (3). In this way we still have a perturbed linear model, but
where we have enforced b = 0 while keeping the same spiked covariance structure of X:
Yx =Yg+ VYTV as in (2). The results can be seen in the top row of Figure 7. We see
that Doubly Debiased Lasso still has smaller absolute bias | Bj|, slightly higher variance
and better coverage than the standard Debiased Lasso, even in absence of confounding.
The bias term B, equals 0, since we have put b = 0. We can even observe a decrease in
estimation bias for large p, and thus an improvement in the confidence interval coverage.
This is due to the fact that X has a spiked covariance structure and trimming the large
singular values reduces the correlations between the predictors. This phenomenon is also
illustrated in the additional simulations in the Section 7, where we set ¢ = 0 and put
E to have either Toeplitz or equicorrelation covariance structure with varying degree of
spikiness (by varying the correlation parameters).

In the bottom row of Figure 7 we repeat the same simulation, but where we set ¢ = 0
and take Yx = Yg = [ in order to investigate the performance of the method in the
setting without confounding, but where the covariance matrix of the predictors is not
spiked. We see that there is not much difference in the bias and only a slight increase in
the variance of our estimator and thus also there is not much difference in the coverage

of the confidence intervals. We conclude that our method can provide certain robustness
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against dense confounding: if there is such confounding, our proposed method is able to
significantly reduce the bias caused by it; on the other hand, if there is no confounding, in
comparison to the standard Debiased Lasso, our proposed method still has essentially as

good performance, with a small increase in variance.
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Figure 7: (No confounding bias) Dependence of the (scaled) absolute bias terms |Bg| and |By| (left),
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standard deviation V/2 (middle) and the coverage of the 95% confidence interval (right) on the number of
500 fixed. In the plots on the left, |Bg| and |By| are denoted by a dashed

and a solid line, respectively, but B, = 0 since we have enforced b = 0. Top row corresponds to the spiked

covariates p, while keeping n =

covariance case ¥y = U7 + I, whereas for the bottom row we set £¥x = I. Blue color corresponds to
the Doubly Debiased Lasso, red color represents the standard Debiased Lasso and green color corresponds
also to the Debiased Lasso estimator, but with the same Bi"” as our proposed method. Note that the last

two methods have almost indistinguishable V.

Measurement error We now generate from the measurement error model (4), which
can be viewed as a special case of our model (2). The measurement error W = WTH is
generated by ¢ = 3 latent variables H;. € RY for 1 < ¢ < n. We fix the number of data
points to be n = 500 and vary the number of covariates p from 50 to 1,000, as in Figure
3. The results are displayed in Figure 8, where we can see a similar pattern as before:
Doubly Debiased Lasso decreases the bias at the expense of a slightly inflated variance,
which in turn makes the inference much more accurate and the confidence intervals have

significantly better coverage.
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Figure 8: (Measurement error) Dependence of the (scaled) absolute bias terms |Bg| and |By| (left),
standard deviation V'/2 (middle) and the coverage of the 95% confidence interval (right) on the number
of covariates p in the measurement error model (4). The sample size is fixed at n = 500. On the leftmost
plot, |Bg| and |By| are denoted by a dashed and a solid line, respectively. Blue color corresponds to the
Doubly Debiased Lasso, red color represents the standard Debiased Lasso and green color corresponds
also to the Debiased Lasso estimator, but with the same Bi"” as our proposed method. Note that the last

two methods have almost indistinguishable |By| and V.

5.2 Real data

We investigate here the performance of Doubly Debiased Lasso on a genomic dataset.
The data are obtained from the GTEx project (Lonsdale et al., 2013), where the gene
expression has been measured postmortem on samples coming from various tissue types. For
our purposes, we use fully processed and normalized gene expression data for the skeletal
muscle tissue. The gene expression matrix X consists of measurements of expressions of
p = 12,646 protein-coding genes for n = 706 individuals. Genomic datasets are particularly
prone to confounding (Leek and Storey, 2007; Gagnon-Bartsch and Speed, 2012; Gerard
and Stephens, 2020), and for our analysis we are provided with ¢ = 65 proxies for hidden
confounding, computed with genotyping principal components and PEER factors.

We investigate the associations between the expressions of different genes by regressing
one target gene expression X; on the expression of other genes X ;. Since the expression of
many genes is very correlated, researchers often use just ~ 1,000 carefully chosen landmark
genes as representatives of the whole gene expression (Subramanian et al., 2017). We will
use several such landmark genes as the responses in our analysis.

In Figure 9 we can see a comparison of 95%-confidence intervals that are obtained from
Doubly Debiased Lasso and standard Debiased Lasso. For a fixed response landmark gene
X, we choose 25 predictor genes X; where j # ¢ such that their corresponding coefficients
of the Lasso estimator for regressing X; on X_; are non-zero. The covariates are ordered
according to decreasing absolute values of their estimated Lasso coefficients. We notice
that the confidence intervals follow a similar pattern, but that the Doubly Debiased Lasso,

besides removing bias due to confounding, is more conservative as the resulting confidence
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Figure 9: Comparison of 95% confidence intervals obtained by Doubly Debiased Lasso (blue) and Doubly
Debiased Lasso (red) for regression of the expression of one target landmark gene on the other gene

expressions.

intervals are wider.

This behavior becomes even more apparent in Figure 10, where we compare all p-
values for a fixed response landmark gene. We see that Doubly Debiased Lasso is more
conservative and it declares significantly less covariates significant than the standard
Debiased Lasso. Even though the p-values of the two methods are correlated (see also
Figure 12), we see that it can happen that one method declares a predictor significant,

whereas the other does not.
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Figure 10: Comparison of p-values for two-sided test of the hypothesis 8; = 0, obtained by Doubly
Debiased Lasso (red) and Doubly Debiased Lasso (blue) for regression of the expression of one target gene
on the other gene expressions. The covariates are ordered by decreasing significance, either estimated by
the Debiased Lasso (left) or by the Doubly Debiased Lasso (right). Black dotted line indicates the 5%

significance level.

Robustness against hidden confounding We now adjust the data matrix X by
regressing out the ¢ = 65 provided hidden confounding proxies. By regressing out these
covariates, we obtain an estimate of the unconfounded gene expression matrix X. We

compare the estimates for the original gene expression matrix with the estimates obtained
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from the adjusted matrix.
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Figure 11: Comparison of the sets of the most significant covariates chosen based on the original expression
matrix X and the deconfounded gene expression matrix X, for different cardinalities of the sets (model
size). The set differences are measured by Jaccard distance. Red line represents the standard Debiased
Lasso method, whereas the blue and green lines denote the Doubly Debiased Lasso that uses p = 0.5 and
p = 0.1 for obtaining the trimming threshold, respectively; see Equation (14).

For a fixed response landmark gene expression X;, we can determine significance of
the predictor genes by considering the p-values. One can perform variable screening
by considering the set of most significant genes. For Doubly Debiased Lasso and the
standard Lasso we compare the sets of most significant variables determined from the gene
expression matrix X and the deconfounded matrix X. The difference of the chosen sets is
measured by the Jaccard distance. A larger Jaccard distance indicates a larger difference
between the chosen sets. The results can be seen in Figure 11. The results are averaged
over 10 different response landmark genes. We see that the Doubly Debiased Lasso gives
more similar sets for the large model size, indicating that the analysis conclusions obtained
by using Doubly Debiased Lasso are more robust in presence of confounding variables.
However, for small model size we do not see large gains. In this case the sets produced by
any method are quite different, i.e. the Jaccard distance is very large. This indicates that
the problem of determining the most significant covariates is quite difficult, since X and
X differ a lot.

In Figure 12 we can see the relationship between the p-values obtained by Doubly
Debiased Lasso and the standard Debiased Lasso for the original gene expression matrix X
and the deconfounded matrix X. The p-values are aggregated over 10 response landmark
genes and are computed for all possible predictor genes. We can see from the left plot that
the Doubly Debiased Lasso is much more conservative for the confounded data. The cloud

of points is skewed upwards showing that the standard Debiased Lasso declares many
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Figure 12: Comparison of p-values for two-sided test of the hypothesis 8; = 0, obtained by Doubly
Debiased Lasso and standard Debiased Lasso for regression of the expression of one target gene on the
other gene expressions. The points are aggregated over 10 landmark response genes. The p-values are
either determined using the original gene expression matrix (left) or the matrix where we have regressed
out the given ¢ = 65 confounding proxies (right). Horizontal and vertical black dashed lines indicate the

5% significance level.

more covariates significant in presence of the hidden confounding. On the other hand, in
the right plot we can see that the p-values obtained by the two methods are much more
similar for the unconfounded data and the point cloud is significantly less skewed upwards.
The remaining deviation from the y = x line might be due to the remaining confounding,

not accounted for by regressing out the given confounder proxies.

6 Discussion

We propose the Doubly Debiased Lasso estimator for hypothesis testing and confidence
interval construction for single regression coefficients in high-dimensional settings with
“dense” confounding. We present theoretical and empirical justifications and argue that our
double debiasing leads to robustness against hidden confounding. In case of no confounding,
the price to be paid is (typically) small, with a small increase in variance but even a
decrease in estimation bias, in comparison to the standard Debiased Lasso (Zhang and
Zhang, 2014); but there can be substantial gain when “dense” confounding is present.

It is ambitious to claim significance based on observational data. One always needs to
make additional assumptions to guard against confounding. We believe that our robust
Doubly Debiased Lasso is a clear improvement over the use of standard inferential high-
dimensional techniques, yet it is simple and easy to implement, requiring two additional
SVDs only, with no additional tuning parameters when using our default choice of trimming

p = p;j = 50% of the singular values in Equations (14) and (15).
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7 Additional Simulations

We present here some additional simulations to the ones presented in the Section
5.1. We use the same simulation setup where we further vary certain aspects of the data
generating distribution or we vary the tuning parameters of the proposed Doubly Debiased

Lasso method.

No confounding - Toeplitz and Equicorrelation covariance Here we explore fur-
ther the scenarios where there is no confounding at all, i.e. ¢ = 0, similarly as in the
bottom part of Figure 7, but with different covariance structure of X = E. We fix
n = 300,p = 1,000, and take the covariance matrix g to be either a Toeplitz matrix,
with (Xg)i; = kI for k € [0,1), or we take it to be equicorrelation matrix where
(Xg)ij = k€[0,1) when i # j and 1 otherwise. In both cases, as the correlation parame-
ter k approaches 1, the singular values become more spiked and the predictors become
more correlated. The results can be seen in Figure 13. We see that Doubly Debiased
Lasso seems to have much smaller bias |Bg| and thus better coverage even in the case
when ¢ = 0, because Trimming large singular values reduces the correlations between
the predictors. This difference in bias and the coverage is even more clearly pronounced
for the equicorrelation covariance structure, since for the Toeplitz covariance structure
Cor(X;, X;) decays as |i — j| gets bigger, whereas for equicorrelation case it is constant

and equal to k.

Non-Gaussian distribution The Assumption (A3) in Section 3 requires that the noise
term v; ; = B j — EZT ﬂny is is independent of E; _;. This condition will automatically
hold if E;. is multivariate Gaussian or E;. has independent entries. We now test the
robustness of Doubly Debiased Lasso method when this assumption is violated. In order
to examine that, we repeat the simulation setting displayed in Figure 3, where n = 500
and p varies from 1 to 2,000. We change the distribution as follows: Let P be some
real distribution with zero mean and unit variance. The entries of the matrix of the
confounders H are generated i.i.d. from P. Furthermore, the unconfounded part of the
predictors F is generated as Z 2]15/2, where 7 is a n x p matrix with i.i.d. entries coming
from the distribution P and Xz is a Toeplitz matrix with (Xz);; = &l for k = 0.7.
Finally, the noise variables e; used for generating Y (see Equation 2) are also generated
from P. The results can be seen in Figure 14. We take P to be the following distributions:
standardized chi-squared with 1 degree of freedom, standardized t-distribution with 5
degrees of freedom and standardized Bin(16,0.5). For comparisons of the performance, we

also include N (0, 1) distribution, but one needs to keep in mind that the obtained plot
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Figure 13: (No confounding - Toeplitz and Equicorrelation covariance) Dependence of the (scaled) absolute
bias terms |Bs| and |By| (left), standard deviation /2 (middle) and the coverage of the 95% confidence
interval (right) on the correlation parameter x, while keeping p = 1,000, n = 300, ¢ = 0 fixed. In the plots
on the left, |Bg| and |Bp| are denoted by a dashed and a solid line, respectively, but By, = 0 since we zero
confounders ¢ = 0. Top row corresponds to the Toeplitz covariance structure (Xg);; = k"=l whereas for
the bottom row we have equicorrelation covariance matrix where the off-diagonal elements equal . Blue
color corresponds to the Doubly Debiased Lasso, red color represents the standard Debiased Lasso and
green color corresponds also to the Debiased Lasso estimator, but with the same Bm” as our proposed

method. Note that the last two methods have almost indistinguishable V.

differs from the one in Figure 3 because of different correlation structure of £. We can see
that there is very little change in the performance of the proposed estimator, thus showing

that Doubly Debiased Lasso can be used for a wide range of models.

Comparison to PCA adjustment Here we investigate how the choice of the spectral
transformation can affect the performance of the Doubly Debiased Lasso estimator. We
focus on the PCA adjustment which maps first ¢ singular values to 0, for some tuning
parameter ¢, while keeping the remaining singular values unchanged. This transformation
is used frequently in the literature because it arises by regressing out the top ¢ principal
components from every predictor.

We fix n = 300, p = 1,000, ¢ = 5 and vary the parameter ¢. We compare the estimator
using the PCA adjustment for both P and Q with the estimator using the Trim transform
with the median rule for both P and Q. Finally, we also consider the estimator using

the Trim transform for @ and PCA adjustment for PY), in order to separate the effects of
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Figure 14: (Non-Gaussian distribution) Dependence of the (scaled) absolute bias terms |Bg| and | By|
(left), standard deviation V/? (middle) and the coverage of the 95% confidence interval (right) on the
number of predictors p, while keeping n = 500, ¢ = 3 fixed. On the left side, |Bg| and | By| are denoted by
a dashed and a solid line, respectively. We change the distribution of H, E, e in (1) as described in the
text. Each row in the plot corresponds to a different distribution P. We set X g to have Toeplitz structure
with parameter x = 0.7. Blue color corresponds to the Doubly Debiased Lasso, red color represents the
standard Debiased Lasso and green color corresponds also to the Debiased Lasso estimator, but with the
same ,@’\m“ as our proposed method. Note that the last two methods have almost indistinguishable | By|
and V.
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changing the spectral transformation for the initial estimator Bimt and the overall estimator
construction. The results can be seen in Figure 15.

We see that the performance is very sensitive to the choice of the tuning parameter q.
On one hand, if § < ¢, we do not manage to remove enough of the confounding bias By,
which has as a consequence that there is certain undercoverage of the confidence intervals.
On the other hand, if § < ¢, the bias B, becomes very small, but the variance of our
estimator increases slowly as ¢ grows. Also, removing too many principal components when
computing 3™ can remove too much signal, resulting in the higher bias Bg. Trim transform
has an advantage that we do not need to estimate the number of latent confounders ¢
from the data, which might be a quite difficult task. This is done by trimming many
principal components, but not removing them completely. However, this can result in
a small increase of the estimator variance compared to the PCA adjustment with the

optimal tuning ¢ = ¢.
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Figure 15: (Comparison to PCA adjustment) Dependence of the (scaled) absolute bias terms |Bg| and
|By| (left), standard deviation V/2 (middle) and the coverage of the 95% confidence interval (right) on
the correlation parameter x, while keeping p = 1,000, n = 300, ¢ = 3 fixed. In the left plot, |Bg| and |B|
are denoted by a dashed and a solid line, respectively. We vary the parameter ¢ of the PCA adjustment,
which maps the first ¢ to zero. Red color corresponds to the Doubly Debiased Lasso using Trim transform
for both P) and @, blue color represents the Doubly Debiased Lasso using PCA adjustment for both
PU) and Q and green color corresponds to the Doubly Debiased Lasso estimator using the same default
Bimit with Q being the median Trim transform, but uses PCA adjustment for P(). Note that the last two

methods have almost indistinguishable V.

Weak confounding Here, we explore how the performance of our estimator depends
on the strength of the confounding, i.e. how H affects X. In Figure 5, we have already
explored how the performance of our method depends on the number of affected predictors
by each confounder. Here we allow all predictors to be affected, but with decaying strength.
This we achieve by generating the entries of the loading matrix ¥ as ¥;; ~ N(0,1/0;(j)%),
where for each of the g rows we take a random permutation o; : {1,...,p} — {1,...,p},

and a > 1 is a tuning parameter describing the decay of the loading coefficients. The values
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n = 300,p = 1,000 and g = 3 are kept fixed. The results can be seen in the Figure 16. We
see that when a is close to 1 and the confounding is strong that our proposed estimator
is much better that the standard Debiased Lasso estimator. On the other hand, when a
is larger, meaning that the confounding gets much weaker, the difference in performance

decreases, but Doubly Debiased Lasso still has smaller bias and thus better coverage.
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Figure 16: (Weak confounding) Dependence of the (scaled) absolute bias terms |Bg| and |By| (left),
standard deviation V1/2 (middle) and the coverage of the 95% confidence interval (right) on the loadings
decay parameter a, while keeping p = 1,000,n = 300,¢ = 3 fixed. In the left plot, |Bg| and |B| are
denoted by a dashed and a solid line, respectively. Blue color corresponds to the Doubly Debiased Lasso,
red color represents the standard Debiased Lasso and green color corresponds also to the Debiased Lasso
estimator, but with the same 3’"” as our proposed method. Note that the last two methods have almost

indistinguishable V.
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Abstract

Signaling pathways control cellular behavior. Dysregulated pathways, for example
due to mutations that cause genes and proteins to be expressed abnormally, can
lead to diseases, such as cancer. We introduce a novel computational approach,
called Differential Causal Effects (dce), which compares normal to cancerous cells
using the statistical framework of causality. The method allows to detect individual
edges in a signaling pathway that are dysregulated in cancer cells, while accounting
for confounding. Hence, artificial signals from, for example, batch effects have
less influence on the result and dce has a higher chance to detect the biological
signals. We show that dce outperforms competing methods on synthetic data sets
and on CRISPR knockout screens. In an exploratory analysis on breast cancer
data from TCGA, we recover known and discover new genes involved in breast

cancer progression.

1 Introduction

The complexity of cancer makes finding reliable diagnosis and treatment options a
difficult task. Decades of research made the intractable disease better understood. However,
many challenges remain due to its high variability and context specificity, e.g., regarding
tissue and cell type. Patients with common cancer types in early stages show promising

survival rates, even though rare subtypes still show low survival rates due to different
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traits like a more aggressive disease progression (Hawkes, 2019; Miller et al., 2019; Troester
and Swift-Scanlan, 2009).

It has been hypothesized that cancer diversity can at least in part be explained by
heterogeneous mutational patterns. These patterns influence the activity of biological
pathways at the cellular level (Khakabimamaghani et al., 2019; Hanahan and Weinberg,
2011). For example, signaling pathways consist of several genes, which regulate certain cell
programs, such as growth or apoptosis. The programs are driven by the causal interaction
between the genes, e.g., the up-regulation of one causes the up-regulation of another gene.
The causal effect (CE) determines the strength of this causal interaction, e.g., by increasing
the expression of gene X two-fold, the expression of its child Y increases four-fold. Thus,
X has a causal effect on Y of 2 (Pearl, 2000). Understanding how these causal networks are
perturbed in tumors is necessary for prioritizing drug targets, understanding inter-patient
heterogeneity, and detecting driver mutations (Vogelstein et al., 2013).

Traditionally, perturbed pathways are detected by assessing whether differentially
expressed genes are members of the respective pathway more often than expected by
chance. More sophisticated methods measure whether genes belonging to a pathway
are localized at certain positions of a rank-ordered set of differentially expressed genes
(Subramanian et al., 2005). In such cases, a pathway is interpreted as a simple set of
genes and all topological information concerning the functional interconnectivity of genes
is ignored. It has been recognized that interactions among genes can have a significant
effect on the computation of pathway enrichments. Some tools consider, for example, gene
expression correlations to account for confounding effects and control the type I error while
retaining good statistical power (Wu and Smyth, 2012). The underlying structure of gene
interactions can thus be either estimated from the data (P. Spirtes, 2000; Sedgewick et al.,
2016) used for the enrichment analysis, or obtained from existing databases. Canonical
pathway databases such as the Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Ogata et al., 1999) can then be incorporated as prior knowledge to guide the enrichment
analysis using topological information of gene connectivity (Liu et al., 2019; Dutta et al.,
2012; Tarca et al., 2009; Saez-Rodriguez et al., 2009).

While such enrichment methods go beyond treating pathways as plain gene sets and
incorporate topological information of molecular interactions, they often only report a
global pathway dysregulation score (Tarca et al., 2009). An exception is PARADIGM,
which records an inferred activity for each entity in the pathway under consideration for a
given patient sample (Vaske et al., 2010). It does, however, not model causal effects, but
only quantifies whether there is some general association among the genes like correlation.
Differential causal effects (DCEs) on biological pathways have already been investigated
in a formal setting (Wang et al., 2018; He et al., 2019; Tian et al., 2016), where a DCE is
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modeled as the difference between CEs for the same edge under two conditions. These
methods infer the gene network from observational data, which is a difficult task due to
the combination of typically low sample size and noise of real data. An incorrect network
can result in biased estimation of CEs and DCEs. Additionally, none of these methods
make use of the DCEs to compute a pathway enrichment score.

Here, we separate the problem of estimating the causal network and the CEs by replacing
the former with the addition of prior knowledge in the form of biological pathways readily
available in public databases (Ogata et al., 1999; Nishimura, 2001; Whirl-Carrillo et al.,
2012; Mi et al., 2021; Schaefer et al., 2009). We make use of the general concept of causal
effects in order to define differential CEs. Specifically, we estimate the CE of gene X on
gene Y in normal samples and cancer samples and define the DCE as their difference. In
particular, we compare the causal effects between two conditions, such as a malignant
tissue from a tumor and a healthy tissue, to detect differences in the gene interactions.
We propose Differential Causal Effects (dce), a new method which computes the DCE for
every edge (i.e., molecular interaction) of a pathway for two given conditions based on
gene expression data (fig. 1).

This allows us to identify pathway perturbations at the individual edge level while
controlling for confounding factors using the statistical framework of causality. By including
the additional covariates constructed from the principal components of the design matrix,
we also provide a methodological extension of our method to handle potential unobserved
confounding that is ’dense’, i.e., where the confounding variable affects many covariates.
For example, batch effects from different experimental laboratories or cell cycle information
are not necessarily known, but are accounted for automatically. Our approach allows for
computing pathway enrichments in order to rank all networks in large pathway databases
to identify cancer specific dysregulated pathways. In this manner, we can detect pathways
which play a prominent role in tumorigenesis and pinpoint specific interactions in the
pathway that make a large contribution to its dysregulation and the disease phenotype.

We show that dce can recover significant DCEs and outperforms competitors in
simulations. In a validation on real data we apply dce to a public CRISPR (Clustered
Regularly Interspaced Short Palindromic Repeats) data set to recover differential effects in
the network. In an exploratory study, we apply dce to breast cancer samples and compare
the DCEs among different cancer stages. We identify dysregulated edges common across

stages as well as stage-specific edges.
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Figure 1: A causal network of genetic interactions in a biological pathway (A) is responsible for the

observed wild type expression levels in a cell (B: wild type). A disease can lead to perturbations of these
pathways and in turn generate altered expression levels (B: mutant). Pathway databases such as KEGG
(Ogata et al., 1999), PharmGKB (Whirl-Carrillo et al., 2012) and Panther (Mi et al., 2021) curate genetic
interaction data (C) and thus provide networks of putative causal interactions (D). Given the observed
wild type and disease expression levels as well as the causal structure, dce fits a generalized linear model
(GLM) for each edge to estimate differential causal effects (E). In the given example, the differential causal
effect from X on Y (solid edge) is estimated using the valid adjustment set {Z} (as determined from the
dashed edges). These differential causal effects correspond to causal perturbations (i.e., differential causal
effects), e.g., an increase of causal effect strength from wild type to mutant is marked in blue. Negative
differential causal effects are marked in red. The transparency of an edge corresponds to the magnitude of
the associated effect) of the biological pathway caused by the disease and are important for diagnosis and

treatment design (F).
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2 Methods

In this section, we describe the Differential Causal Effects (dce) method. We briefly
review the causality framework and then introduce the model and computation of DCEs,
including under potential latent ’dense’ confounding. We provide implementation details
for obtaining both the estimates and their significance levels. Then, we describe the
generating mechanism for synthetic data used throughout the paper. Finally, we explain

the setup of our Perturb-seq validation as well as exploratory TCGA analysis.

Causality of biological pathways. First, we give a quick review of causality in the

context of biological pathways. A gene pathway can be represented as a structural equation
model (SEM) consisting of a directed acyclic graph (DAG) G with nodes X = (X;)"

i=1
describing the expression of genes, a set of directed edges E = (E;);", representing the

causal structure and the structural equations (f;);_, describing how each variable X;

p
=1

is generated from its parents Xp.;) in G, X; < fi(Xpa), €), where (¢;);_; are jointly
independent noise variables. The causal interpretation of an edge between any two nodes
is as follows: changing the expression of a parent X; affects the expression of the child
node X;, which is propagated further to all descendants. The parental sets are given by
the edge set E. Of particular interest are the interventional distributions for the SEM, in
particular their expectations E[X; | do(X; = z)], which describe how the expected value
of the variable X; changes when we intervene and set the variable X; to some fixed value

x. We define the causal effect (CE) of a variable X on its descendant X; as

CE[X;|do(X; =x)] = C%IE[XZ | do(X; = x)]. (1)
This derivative equals (3, if, by changing the value of X; from x to  + Az, for some small
value Az, the value of X; changes on average by 3, - Ax. In the literature, the CE is
often also referred to as the total causal effect, because it quantifies the overall effect of
an intervention at variable X; on all of its descendants. We are interested in differential
causal effects (DCE) defined as the differences between the causal effects of two conditions

of interest, such as, e.g., two different cancer stages or healthy and cancerous samples.

Linearity of the conditional mean. We model the relationship between the mean of

any gene expression X; and its parents X,; by a linear function:
Xi < 7(()” + Z rYjZ)Xj + €i<Xpa(i)>7 (2)
Jjepa(i)
where, conditionally on X, the error term €¢(Xpa(i)) has mean zero and variance

depending on X,,;). A prime example is any generalized linear model (GLM) with identity
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link function. The coefficients ’yJ@ correspond to the direct causal effects, whereas the

total causal effects (1) measure the aggregate effect over all directed paths from a certain
variable X; to X; in G.

Let us consider two arbitrary genes X; and X; in the pathway. Under the linearity
assumption (2), the causal effect CE[X; | do(X; = z)] does not depend on x. Furthermore,
it can be computed as the coefficient § in the linear regression of X; on X; and an
adjustment set Z = (Zk)‘kZ:‘l,

12

Xi = Po+ BX; + ) BZi +, (3)
k=1

where [y denotes the intercept and 7 is random noise with mean zero (Goldszmidt and
Pearl, 1992; Pearl, 1995). The adjustment set Z is a set of nodes in the pathway G which
fulfills the Back-door criterion (Pearl, 2000). Hence, it holds that no element of Z is a
descendant of X, and Z blocks every path between X; and X that contains an edge with
X; as the child. For example, the parent set X,,;) always fulfills the Back-door criterion
and we always use it as adjustment set.

If the causal effects of the gene expression X; on the gene expression X; are respectively
denoted as 4 and AP under different conditions A and B, then the differential causal

effect (DCE) § is obtained as the difference
5= 5" ()

Given a graph G describing a biological pathway and observations of the variables, we
can compute all differential causal effects and identify interactions between any such two

variables X; and X; that are different between the two conditions (fig. 1).

Testing for significance. We can compute the DCE ¢ for the edge X; — X; by fitting
a joint model for both conditions, which also allows us to easily compute the significance of
the estimates. Let I be an indicator random variable, which is equal to 1, if the observation
comes from condition A, and 0, if it comes from condition B. The DCE ¢ can be computed
from all samples jointly by fitting the following linear model

1]

X; = (B + (65 = BHD) + (B4 + (8% = 81D X, + ) (B + (B2 = Bi) Zi+ 0 (5)

k=1

with interaction terms I - X; and I - Z;. The differential causal effect § = 4% — 34 can be
estimated by using the coefficient estimate corresponding to the interaction term /X in
(5).

Testing the significance of the estimated DCEs now corresponds to the well-known

task of testing the significance of coefficient estimates in a linear model. However, some
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care is needed if the variances of the error terms €;(X,,;)) in our structural equations
(2) indeed depend on the values of the predictors X, ), i.e., if there is a certain mean-
variance relationship for the gene expression levels, as has been described for RNA-seq
data (Robinson and Smyth, 2007). In this case, the linear model (5) is heteroscedastic and
the usual formulae for standard errors of the coefficient estimates, that result in t-tests
for the significance, do not apply. We therefore use heteroscedasticity-consistent standard
errors that yield asymptotically valid confidence intervals and p-values regardless of the
dependence of the noise level on predictor values (Eicker, 1967; Huber et al., 1967; White,
1980).

Besides assessing significance of DCEs for single edges, we can also calculate a global
p-value measuring the overall dysregulation of a given pathway G: we combine the p-values
corresponding to different differential causal effects 6 = (¢;);-, by taking their harmonic
mean (Good, 1958).

Adjusting for latent confounding. A fundamental assumption for most of causal
inference methods is that there is no unobserved confounding, i.e., that there are no factors
affecting both the cause and the effect (Leek et al., 2012; Gagnon-Bartsch et al., 2013). For
example, batch effects due to varying laboratory conditions could act as such unobserved
confounders. Presence of latent confounding can result in spurious correlations and false
causal conclusions. Therefore, adjusting for potential latent confounding is crucial for
making the method robust in applications to biological data (Cevid et al., 2020a).

Some information about latent factors can often be obtained from the principal
components of the data (Novembre and Stephens, 2008). This can be made rigorous under
the linearity assumption (2) for our structural equation model G, as follows. We assume
that there are ¢ latent variables Hy, ..., H, affecting our data. We extend the model (2)

to include the latent confounding as follows:

q
Xi "+ 3 X+ D6V H; + € Xpagy, H), (6)

jepali) j=1
i.e., the latent confounders Hy, ..., H, are additional source nodes in the DAG G and affect

genes in the pathway linearly, analogously to (2). Not every gene needs to be affected

((53@ could be zero), but the methodology works better the more genes are affected, see

discussion below. By writing the structural equations (6) in matrix form, where we define
F?z = ((]2)7 Fji = (Z), Aji = 5](2) and E(X, H)ﬂ = ei(Xpa(i)7 H)j, we obtain

J

Xop < F?pr + XoxpUpsp + HuxgDgxp + E(X, H)pxp, (7)
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Figure 2: The scree plot (of synthetic data generated as described in the Methods section) shows that in
presence of latent confounding as in (6), the first ¢ principal components explain much more variability of

the data, which we exploit for confounding adjustment.

which gives

X= T 4+HAUI-T)'+ EX,H)(I-T)", (8)
\f'/ \_\f_J ~ ~ -
intercepts loadings € R9%P  random noise with mean = 0

which is the standard linear factor model with heteroscedastic errors. From this represen-
tation, one can see that H can be determined from the principal components of X (fig. 2).
The scree plot for a toy example visualizes the effect of latent variables having a global
effect on the data. The first principal components are clearly separated from the rest, if
latent factors are present (fig. 2, left). Therefore we obtain the confounding proxies H
as the scores of the first ¢ principal components of the design matrix combining the data
from both conditions.

The confounding proxies H are then simply added to the adjustment set 7, see
equations (3) and (5). In this way, the Back-door adjustment not only adjusts for the
confounding variables observed in the DAG G as before, but also helps reducing the bias
induced by latent confounding.

The deconfounding methodology relies on the assumption that every confounding
variable affects many variables in the dataset, i.e., the confounding is dense (Guo et al.,
2020). In this case, we have a lot of information about the latent factors in the data and the
confounding proxies H capture the effect of the confounders H well. Furthermore, dense
confounding assumption ensures that the scree plot, showing the singular values of the
design matrix, has a spiked structure, as several latent factors can explain a relatively large
proportion of the variance (fig. 2). This helps estimating the number § of the confounding
proxies used. As a default choice, we use a permutation method that can be shown to
work well under certain assumptions (Dobriban, 2017) and which compares the observed
value of the variance explained by the principal components with its expected value over

many random permutations of the values in each column of gene expression matrix X.
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Algorithm and implementation in R. The presented methods are implemented in
the R package dce which is freely available on Bioconductor. The function dce::dce takes
as input the structure of a biological pathway, i.e., the adjacency matrix of a DAG, and
two n x p matrices, with n samples and p genes, storing gene expression data for each of
the two conditions respectively. As output, the function returns the estimated DCEs, as
well as standard errors and two-sided p-values for the DCE at each edge in the pathway.
The results can be easily transformed into a dataframe and plotted for further downstream

analyses, together with the p-value measuring the overall pathway enrichment.

Generating synthetic data and benchmarking methods. We assess the behavior
of dce and its competitors in a controlled setting by generating synthetic data with known
DCEs (ground truth). We start by generating a random DAG G. Without loss of generality,
we assume the nodes of the DAG to be topologically ordered, i.e., node X; can only be
parent of node Xj, if ¢« < j. This ensures that the network G is a DAG. In practice, we
sample edges from a binomial distribution with probability p for the upper triangle of G.
We further sample the coefficients vj(i) for every edge as in (2) from a uniform distribution
U (—Ymax; Ymax)- We generate the data for network G in the following way. For a node X,

we set the mean expression count

uizv—f-(mjnvi—a>, (9)

where each X; ~ Pois () is a vector of counts, corresponding to gene expression values

from experiments like RNA-Seq and depends on its parents by

v = Z %@Xj. (10)
Jjepal(i)

'yj@ represents the direct effect of X; on X;, ¢ > 0 is a small shift, and 1 is a vector of
ones. Subtracting the minimum ensures positive values of the mean for each data point.
Then, a realization of X; is drawn from the Poisson distribution Pois (y;). We introduce
negative binomial noise by drawing a realization of each source node in G from the negative
binomial distribution NB (u, ) with a general mean p and dispersion 6. We use this setup
to control the variance across all nodes, which can blow up for descendants with larger

means.
After sampling the data D4 for the nodes of network G under condition A, we resample

a certain fraction of edge weights in order to generate new data Dpg under condition B.

For an edge weight 34 we sample the new edge weight from a uniform distribution
63 ~ U ((BA - 6maX7 614 - 5min) U (BA + 5min; BA + 5max)) . (11)

This ensures that the absolute difference between the two edge weights lies in [Omin, Omax]-
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We also simulate latent variables. They are neither included in the data nor the network
G, but have (unknown) outgoing edges to all genes in the data set with non-zero effects.
Hence, these latent variables have global effects on the data, e.g., emulating batch effects.

We compare dce to correlation (cor), partial correlation (pcor), the method Fast Gaus-
sian Graphical Models (fggm) tailored to DCEs (Wang et al., 2016; He et al., 2019), Latent
Differential Graphical Models (Tian et al., 2016), the pathway activity tool CARNIVAL
(car) (Liu et al., 2019), a differential gene expression approach (dge), and random guessing,.
cor is provided by the R package stats (R Core Team, 2020). For pcor we use the general
matrix inversion from the R package MASS (Venables and Ripley, 2002) to compute the
precision matrix. fggm is based on partial correlation, but additionally tries to learn the
network structure to adjust for confounding effects. We use the R code provided by the
authors (He et al., 2019) to run fggm. ldgm is also based on partial correlation, but directly
computes the differential network instead of two networks for the two data sets. We use
the Matlab implementation of Idgm for the estimate of the latent correlation matrices by a
transformation of Kendall’'s 7. We also add a permutation test to compute significance or
assume Gaussian coefficients, and evaluate only differences corresponding to an edge in the
graph. The parameter for ldgm is set according to the example at https://github.com/ma-
compbio/LDGM /blob/master/Stand_alone_example_by LDGM /LDGM /LDGM.m. For
both fggm and ldgm we transform the gene expression count matrix by log (- + 1). We use
the function runInverseCarnival from the R Bioconductor package CARNIVAL (Gjerga
and Trairatphisan, 2021) to compute normalized edge weights e € [0,100], which we
normalize to p-values by 1— 5. We use differential gene expression from edgeR (Robinson
and Smyth, 2007) as input to CARNIVAL. The same differential expression result is used
for dge. We compute the DCE for the edge between two genes x and y as the difference of
the log foldchanges of both genes. We compute the corresponding p-value for the same
edge with the minimum of the p-values for both genes x and y. We provide pcor with the
same adjustment set of confounding variables as dce. We run all methods on simulated
data for various modeling parameters. The default parameters are a network G of 100
genes, 200 samples for both sample conditions, an absolute magnitude in effect differences
between the two conditions of 1, mean of 100 negative binomial distributed counts with a
dispersion of 1 for the source genes in the network G (no parents), a true positive rate
of 50% (edges which have different effects between the two conditions), and library size
factors for each sample in the interval [1,10]. The library size factor accounts for different
sequencing depth among the samples, i.e., for one sample including more reads because
more RNA was available even though the gene expression was the same as in samples with
less RNA. We account for different library sizes over all samples by computing transcripts

per million (tpm).
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Overall we simulate a full data set of 10,000 genes including the genes in the network
G to allow for the realistic estimation of the library size. As a performance measure we use
the area under the receiver operating characteristic (ROC-AUC). We count the number of
true/false positive and false negative DCEs based on the edges in the ground truth network
and the significant p-values for different significance levels. Based on these true/false
positives we can compute the ROC curve and its AUC. For both correlation methods we
use a permutation test to compute empirical p-values.

LDGM’s runtime was too high for more than ten genes to use a permutation test
to compute p-values. For more genes we assumed a Gaussian distribution to compute

p-values.

Validation using Perturb-seq. Perturb-seq, a CRISPR-Cas9-based gene knockout
method, can be used to inhibit the expression of multiple target genes on a single-cell
level (Qi et al., 2013; Adamson et al., 2016). The data set we analyze is a CRISPR
knockout screen with global gene expression profiles as the read-out. We can use the
known knockout information of these experiments as ground-truth information for a
performance evaluation of our method. In (Adamson et al., 2016), this approach was
used to systematically analyze the response of an integrated endoplasmic reticulum (ER)
stress response pathway to the combinatorial knockout of the three transmembrane sensor
proteins IREla, ATF6, and PERK. Each considered combinatorial knockout (ATF6,
ATF6+EIF2AKS, ATF6+EIF2AK3+ERN1, ATF6+ERN1, EIF2AK3, EIF2AK3+ERNT,
ERN1) was treated either with a DMSO control, tunicamycin, or thapsigargin.

We download the raw gene expression count data from NCBI GEO (accession: GSE90546).
The repository provided us with a mapping of guide and cell barcodes, and gene expression
counts for all cells. We used this information to identify gene knock-outs for each cell. to
create a gene expression count matrix of the individual cells labeled by their corresponding
knockouts.

We download all pathway networks from KEGG and retain those which contain
at least one of the three transmembrane sensor proteins. This yields in the path-
ways hsa04137, hsa04140, hsa04141, hsa04210, hsa04932, hsa05010, hsa05016, hsa05017,
hsa05160, hsa05162, hsa05168.

For each combination of the three treatments, seven (combinatorial) knockouts and
11 pathways, we compute DCEs if the respective knocked-out gene is contained in the
respective pathway. In total, this yields 128 conditions for each of which we run our
method.

We compare the performance of dce to both cor (correlation) and pcor (partial

correlation). For the two correlation methods, we estimate the significance of whether a
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difference in correlation is different from zero using a permutation test. The performance
of each method is evaluated using the area-under-curve (AUC) metric for the receiver-
operating-characteristic (ROC) curve. The false and true positive rates for the ROC curve

are computed from the p-value per edge as in the synthetic benchmark.

Exploratory analysis with TCGA data. We retrieve gene expression matrices from
The Cancer Genome Atlas (TCGA) (Weinstein et al., 2013). These matrices have samples
as columns and genes as rows, and are from the data category Transcriptome Profiling,
data type Gene Expression Quantification, experimental strategy RNA-Seq and workflow
type HT'Seq-Counts. Pathway structures in the form of adjacency matrices are obtained
from the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Ogata et al., 1999).
Unlike the Perturb-seq dataset, data obtained from TCGA is observational instead
of interventional. We do thus not have any ground truth information and perform an
exploratory analysis. For a given cancer type, the associated samples are first grouped
into normal and tumor samples. The tumor samples are subsequently stratified according
to their stage. The clinical data needed to stratify the samples is readily available on
TCGA as metadata for each gene expression matrix. In particular, we download all normal
and tumor gene expression samples from TCGA for breast cancer (TCGA-BRCA) and
selected all stages with a sufficient number of samples (stage I: 202 samples, stage II: 697
samples, stage III: 276 samples; normal: 113 samples). We use the breast cancer pathway
(hsa05224) from KEGG which contains 147 nodes and 509 edges. We then compute
DCEs between the normal condition and each of the three stages of the tumor condition,

respectively.

3 Results

In this section, we first show the performance of dce and its competitors on simulated
data and a CRISPR data set. Then, we use dce for an exploratory analysis of breast
cancer data from TCGA and show the progression of pathway dysregulation over different

cancer stages.

3.1 Simulation study

Pathway databases contain networks of different sizes. We first investigate the influence
of network size on the ability of each method to recover ground truth differential causal
effects. dce achieves the highest accuracy for all three network sizes considered (50, 100, 150

genes). Methods which do not account for confounding variables perform similar to random
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guessing for large networks (fig. 3a). However, dce also outperforms pcor with an AUC of
0.62 versus 0.56.

Overall, ldgm’s performance decreased a lot when using the Gaussian test to compute
p-values. A closer looked showed that ldgm computed very small effect sizes, which lead
to large p-values for dysregulated edges. While car seems very accurate in detecting true
positives, we assume performance was less than random guessing due to the high false
positve rate.

Second, we assess how the magnitude of differential causal effects affects the identifi-
cation of significant differences. We sample the magnitude from the set {0.1,1,2}. For
example, for a magnitude of 1 the edge weights between the network of the wild type
samples and the disease samples differ by at most 1. dce has difficulty estimating large
differences as well as very small differences. However, it still significantly outperforms all
other methods, which again show similar performance to random guessing for large effects
(fig. 3b).

In additional simulations, dce shows increasing accuracy for decreasing dispersion
and increasing number of samples (figs. 6 and 7) as is expected due to decreasing noise.
We found constant accuracy of dce over varying ranges of library size (fig. 8). Different
prevalence of positive edges has little effect on the accuracy of dee (fig. 9). dce with latent
variable adjustment performs similarly to dce without latent variable integration if we do
not simulate any latent variables. But dce significantly outperforms dce without latent
variable integration for five and ten latent variables influencing the data set (fig. 10). This
is because without latent confounding adjustment one has a large number of false positives
due to the confounding bias (fig. 11).

dce relies heavily on the given network G. Hence, we investigate how well dce performs
if G contains false edges or is missing true edges. We find that dce is robust to additional
false edges in the network, but starts breaking down if true edges are missing in larger
fractions (fig. 12).

3.2 Validation experiments using CRISPR knockout data

To benchmark our method using real-life data generated by Perturb-seq (Adamson
et al., 2016), we ask whether we can recover the CRISPR knockout from single-cell RNA-
seq data using pathways from KEGG which contain the knocked-out genes. Hence we
assume that these pathways capture the causal gene interactions governing the response
of the cell to the experimental intervention. As seen in the synthetic benchmark, slight
deviations of the observed network from the true underlying network have no major impact
on the performance of our method (fig. 12). By interpreting a CRISPR knockout as an

intervention of the causal pathway, we define the positive class to consist of all edges
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Figure 3: Performance benchmark. dce is compared to several competitors for varying network size (a)
and effect magnitude (b) over 100 synthetic data sets each. dce achieves the highest accuracy, which
decreases for large networks G and very large or small differential effects. The whiskers of the boxplot
correspond to the minimum and maximum of the data, the box denotes the first and third quartiles and

the horizontal line within the box describes the median.

adjacent to a knocked-out gene, and the negative class as all other genes. Consequently, a
true positive occurs when an edge adjacent to a CRISPR knocked-out gene is (significantly)
associated to a non-zero DCE.

Figure 4a shows an example of this procedure for one of the conditions described above.
The CRISPR knockout gene is highlighted in red and a positive DCE of ~1.3 can be
observed on the edge connecting ATF6 and DDIT3. This can be seen in more detail in
fig. 4b. As this edge is adjacent to the knocked out gene ATFG, it is classified as a true
positive for an effect size threshold of |0.5|. Following an analogous argument, the edge
from EIF2AK3 to EIF2S1 is classified as a false positive.

We find that dce is significantly better (Wilcoxon signed-rank test (Wilcoxon, 1992)
p-value < 107°) at recovering the knockout effects with a median ROC-AUC of 0.63
compared to 0.51 for cor and 0.53 for pcor (fig. 4¢). To better understand the variability
of the performance measure, we also investigate how performance varies when stratified
by treatment and knockout gene (fig. 13). For example, for the knockout gene ATF6
the ROC-AUC of dce decreases from 0.89 for treatment 1 to 0.67 for treatment 2. This
can be explained by the higher variability of the gene expression counts under treatment
2, as the p-value estimation becomes less stable. This pattern can also be observed for
other performance shifts between treatments. We note that cor outperforms dce for the
knockout of ATF6 in treatment 2, as the permutation test is able to better account for

the variance of the expression data in this case. In all other cases, dce is either better
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or roughly as good as the competing methods. We conclude that dce is able to better
recover the dysregulations of single as well as combinatorial knockouts when compared to

methods based on correlations.

3.3 Exploratory analysis of TCGA data

To demonstrate the ability of our method to recover known cancer-related pathway
dysregulations as well as to discover new genes of potential biological and clinical relevance,
we compute DCEs using breast cancer gene expression data from TCGA on the breast
cancer pathway obtained from KEGG. The results for each stage are then visualized on the
pathway structure (figs. 5a to 5¢). The raw DCE values were transformed to a symmetric

logarithm for greater visibility with the following formula

loglO(DCFE) + 1 if DCE > 1
symlog(DCE) = { —logl0(—DCE) —1 if DCE < —1. (12)
DCE otherwise

Roughly 40% of all investigated interactions (614 out of 1527) show no difference in
causal effects (|DCE| < 1 and p-value > 0.05) between normal and stage condition for all
stages. We will now discuss the cases with large DCE sizes or significant p-values (fig. 5d).
In the following, we will discuss cases with large effect sizes and significant p-values.

Throughout all stages, interactions between the WNT (Wingless/Int1) and FZD (Friz-
zled) protein complexes exhibit significant, non-zero DCEs indicating a strong dysregulation
of the breast cancer pathway. Most notably, we observe a strongly significant dysregulation
of WNT11-FZD1, WNT11-FZD3 and WNT11-FZD7 in stage II (p-value < 1le—20),
as well as of WNT11—-FZD7 in stages I and II. Additionally, the interaction between
WNTS8A and FZD4 features a strongly positive DCE of ~2000 in all three stages. These
observations are expected, because the interactions between the WNT and FZD protein
complexes have been implicated in disease formation in general (Dijksterhuis et al., 2015;
Chien et al., 2009; Schulte, 2010) and in breast cancer in particular (Yin et al., 2020; Koval
and Katanaev, 2018).

Interactions between the FGF (Fibroblast Growth Factor) and FGFR (Fibroblast
Growth Factor Receptor) protein complexes show strong negative effect sizes in all
three stages (DCE < —100 for most members of these complexes). In particular, the
FGF6—FGFRI link features negative DCEs of —1279, —665, —1961, while the FGF8—-FGFR1
link features negative DCEs of —402, —336, —285, in the stages I, II, III respectively. This
pair has already been recognized as a promising therapeutic target for breast cancer
treatment (Santolla and Maggiolini, 2020).
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shifted to improve visibility. The method dce shows the
best performance with a ROC-AUC of 0.63 (standard
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cor and 0.53 (std: 0.22) for pcor. The significance of
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using the Wilcoxon signed-rank test (Wilcoxon, 1992).
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(b) Zoomed-in version of fig. 4a with focus on the genes
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EIF2S1. These genes constitute the neighborhood of
the knocked-out gene ATF6 and illustrate the edge clas-
sification scheme used in the performance evaluation.
Assume an effect size threshold of [0.5|. The edge
ATF6—DDIT3 has a DCE of ~1.3 and is adjacent to
the knocked-out gene. Consequently, it is classified as
a true positive. Both the edge EIF2AK3—EIF2S1 and
NFE2L2—DDIT3 have a DCE whose absolute value is
larger than 0.5 and are not adjacent to the knocked-out
gene. They are thus classified as false positives. All

remaining edges are classified as true negatives.

Figure 4: Overview of the CRISPR benchmark.
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We also find the interaction between EGFR (Epidermal Growth Factor Receptor) and
PIK3CA (Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha) to be
significantly (p-values < le—14) dysregulated with a small negative DCE of approximately
—0.2 in stages I and II but not III. EGFR—PIK3CB shows similar behavior for stage
IT with a DCE of —0.12 and a p-value < le—15. While the small effect size suggests
that there is only a small dysregulation of these interactions, the dysregulation of EGFR
together with PIK3CA mutations have been recognized as independent prognostic factors
in triple negative breast cancers (Jacot et al., 2015).

The interaction between DLL3 (Delta Like Canonical Notch Ligand 3) and NOTCH4
(Notch Receptor 4) features a significant DCE of ~140 with p-values < le—6 in all
three stages. The Notch signaling pathway has been shown to play an important role
in Pancreatic ductal adenocarcinoma tumor cells, but has not been implicated in breast
cancer (Song and Zhang, 2018). Our finding suggests that stromal cells located in the
breast may play an important role for disease progression throughout all stages.

For the interaction between TCF7L2 (Transcription Factor 7 Like 2) and CCND1
(Cyclin D1) we observe a significant negative DCE of —11.9 with a p-value of < le—6
in stage III. The role of TCF7L2, which participates in the Wnt/f$-catenin signaling
pathway and is important for cell development and growth regulation, has already been
discussed in the context of breast cancer (Connor et al., 2012). However, its interaction
with CCND1 has, to the best of our knowledge, not been investigated in the literature.
Due to the down-regulation in the diseased condition for stage III, we suggest that an
improved understanding of the underlying biological reasons might provide insights into
the late-stage behavior of breast cancer.

Overall, we are able to recover both interactions which are known to be dysregulated
in breast cancer as well as novel ones. The former indicates that the prioritization of
interactions given by dce is in accordance with current literature. The latter suggests that
dce is also able find dysregulated interactions which up to now have only been recognized

for other diseases but may play an important role for breast cancer.

4 Discussion

We have presented a new method, dce, to compute differential causal effects between
two conditions using a regression approach. dce enables the edge-specific identification
of signaling pathway dysregulations. This piece of information can help to further our
understanding of subtle differences on the molecular level in seemingly similar cancer

types.
dce assumes a linear relationship among pathway genes. The linear model is solved using
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Figure 5: DCEs for TCGA-BRCA normal samples versus stage I, stage 11, and stage III computed with
the hsa05224 pathway. In (a)-(c), edge thickness and opacity scale with absolute DCE size. More negative
DCEs appear red, more positive DCEs appear blue. The color follows a symmetric logarithmic scale for
values |z| = 1 and is linear otherwise. (d) shows a volcano plot for the symmetric logarithm of DCE
against its associated p-value. DCE thresholds of 1 and —1 as well as a p-value threshold of 0.05 are
denoted with grey dashed lines.
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network information to account for additional genes confounding the linear relationship
between gene pairs. The network information is included via prior knowledge from
literature. dce also includes latent variables in the model accounting, e.g., for batch effects,
which are unknown and not included in the gene network, as confounders.

We have shown in our simulations that dce is able to detect changes in causal effects
even in the presence of noise and for certain ranges of effect sizes. For a wide array
of parameter choices, dce outperforms methods using (partial) correlation and fggm.
Especially in the case of latent confounders we showed that dce with the integration of
latent variables outperforms dce without, except if no latent confounders were used to
simulate the data. In this case both methods are equally accurate. Hence, we recommend
the integration of latent variables in the model as the default configuration.

In addition to the synthetic benchmark, we have also validated our method on real
data derived from Perturb-seq experiments. We have shown that dce is able to recover the
experimental knockouts with better performance than correlations and partial correlations.

For breast cancer, we have shown that not all parts of the signaling pathway are
perturbed and characteristic hotspots exist. Some causal effects between two genes are
invariant to stage information, while other causal effects can vary in either magnitude or
even sign of their effect size. This indicates that certain areas of such pathways are more
relevant than others. This phenomenon has also been observed in other studies ((Song
et al., 2014; Feng et al., 2018)). Some parts of a pathway seem to be either more conserved
or just not relevant to tumorigenesis. This provides exciting opportunities to identify
drugs which target certain parts of a pathway and might explain their efficacy. However,
the robustness of our method depends on the availability of enough samples. In many
cases, few are available and make our approach infeasible. While dce performs still better
than random for even 10 samples, it is significantly worse than for higher sample sizes.

In summary, we have proposed a novel application of the concept of differential causal
effects which describe the differences in causal effects between two conditions and developed
a regression approach to compute those differences. We demonstrate their robustness in
a simulation study, and point out interesting results in application to real data, e.g., we
show that some dysregulated edges are consistent among breast cancer tumor stages I-III,
but that other dysregulations are unique to each stage.

Our simulations show the need for sufficiently large data sets when dealing with large
pathways. Additionally dce relies on correct network information. While very robust to
incorrect edges in the network, dce’s performance breaks down significantly when edges
are missing from the network. We have also simulated data from DAGs only. However,
this assumption is made throughout all analyses. In reality biological pathways include

cycles, which could affect the result of dce. Similarly, we rely on the assumption that all



102 Paper C

causal effects are propagated linearly. Other types of causal effect could affect dce as well.
Future research should focus on modifying the regression to make working with small
data sets more robust, for example, enforcing sparsity by the introduction of Li- or
Lo-norms on the coefficients to avoid outliers produced by artifacts in the data.
We have shown the performance of dce on count data from simulations and (single
cell) RNA-Seq. However, dce is also suited to analyze other types of data like Gaussian

data from log-normal microarray intensities.

5 Data availability

The code used to construct the synthetic data sets is available as part of the R software
package dce. The experimental data used in the Perturb-seq validation is available under
the accession GSE90546 from NCBI GEO. The experimental data used in the exploratory
breast cancer analysis is available under the accession TCGA-BRCA from The Cancer
Genome Atlas. The pathway structures have been obtained from the Kyoto Encyclopedia

of Genes and Genome.

6 Code availability

The method dce is freely available as an R package on Bioconductor as well as on
https://github.com/cbg-ethz/dce. The GitHub repository also contains the Snake-

make (Molder et al., 2021) workflows needed to reproduce all results presented here.
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Figure 6: Dispersion. dce is compared to its competitors over 100 synthetic data sets with varying
dispersion values. Performance decreases for higher dispersion values. The whiskers of the boxplot
correspond to the minimum and maximum of the data, the box denotes the first and third quartiles and

the horizontal line within the box describes the median.
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Abstract

Random Forests (Breiman, 2001) is a successful and widely used regression
and classification algorithm. Part of its appeal and reason for its versatility is
its (implicit) construction of a kernel-type weighting function on training data,
which can also be used for targets other than the original mean estimation. We
propose a novel forest construction for multivariate responses based on their
joint conditional distribution, independent of the estimation target and the data
model. It uses a new splitting criterion based on the MMD distributional metric,
which is suitable for detecting heterogeneity in multivariate distributions. The
induced weights define an estimate of the full conditional distribution, which in
turn can be used for arbitrary and potentially complicated targets of interest. The
method is very versatile and convenient to use, as we illustrate on a wide range of

examples. The code is available as Python and R packages drf.

Keywords. causality, distributional regression, fairness, Maximal Mean

Discrepancy, Random Forests, two-sample testing

1 Introduction

In practice, one often encounters heterogeneous data, whose distribution is not constant,
but depends on certain covariates. For example, data can be collected from several different

sources, its distribution might differ across certain subpopulations or it could even change
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with time, etc. Inferring valid conclusions about a certain target of interest from such data
can be very challenging as many different aspects of the distribution could potentially
change. As an example, in medical studies, the effectiveness of a certain treatment might
not be constant throughout the population but depend on certain patient characteristics
such as age, race, gender, or medical history. Another issue could be that different patient
groups were not equally likely to receive the same treatment in the observed data.

Obviously, pooling all available data together can result in invalid conclusions. On the
other hand, if for a given test point of interest one only considers similar training data
points, i.e. a small homogeneous subpopulation, one may end up with too few samples for
accurate statistical estimation. In this paper, we propose a method based on the Random
Forest algorithm (Breiman, 2001) which in a data-adaptive way determines for any given
test point which training data points are relevant for it. This in turn can be used for
drawing valid conclusions or for accurately estimating any quantity of interest.

Let Y = (Y1, Ys,...,Y,) € R? be a multivariate random variable representing the data
of interest, but whose joint distribution is heterogeneous and depends on some subset of a
potentially large number of covariates X = (X3, Xs,...,X,) € RP. Throughout the paper,
vector quantities are denoted in bold. We aim to estimate a certain target object 7(x)
that depends on the conditional distribution P(Y | X=x) = P(Y | X1=21,..., X, =%,),
where x = (21,...,2,) is an arbitrary point in R”. The estimation target 7(x) can range
from simple quantities, such as the conditional expectations E[f(Y) | X] (Breiman, 2001)
or quantiles Q.[f(Y) | X] (Meinshausen, 2006) for some function f : R? — R, to some
more complicated aspects of the conditional distribution P(Y | X =x), such as conditional
copulas or conditional independence measures. Given the observed data {(x;,y;)}",, the
most straightforward way of estimating 7(x) nonparametrically would be to consider only
the data points in some neighborhood N, around x, e.g. by considering the k nearest
neighbors according to some metric. However, such methods typically suffer from the
curse of dimensionality even when p is only moderately large: for a reasonably small
neighborhood, such that the distribution P(Y | X € AN) is close to the distribution
P(Y | X=x), the number of training data points contained in Ny will be very small, thus
making the accurate estimation of the target 7(x) difficult. The same phenomenon occurs
with other methods which locally weight the training observations such as kernel methods
(Silverman, 1986), local MLE (Fan et al., 1998) or weighted regression (Cleveland, 1979)
even for the relatively simple problem of estimating the conditional mean E[Y | X =x]
for fairly small p. For that reason, more importance should be given to the training data
points (x;,y;) for which the response distribution P(Y | X =x;) at point x; is similar to the
target distribution P(Y | X =x), even if x; is not necessarily close to x in every component.

In this paper, we propose the Distributional Random Forest (DRF) algorithm which
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estimates the multivariate conditional distribution P(Y | X=x) in a locally adaptive
fashion. This is done by repeatedly dividing the data points in the spirit of the Random
Forest algorithm (Breiman, 2001): at each step, we split the data points into two groups
based on some feature X; in such a way that the distribution of Y for which X; <, for
some level [, differs the most compared to the distribution of Y when X; > [, according
to some distributional metric. One can use any multivariate two-sample test statistic,
provided it can detect a wide variety of distributional changes. As the default choice, we
propose a criterion based on the Maximal Mean Discrepancy (MMD) statistic (Gretton
et al., 2007a) with many interesting properties. This splitting procedure partitions the
data such that the distribution of the multivariate response Y in the resulting leaf nodes is
as homogeneous as possible, thus defining neighborhoods of relevant training data points
for every x. Repeating this many times with randomization induces a weighting function
wx(x;) as in Lin and Jeon (2002, 2006), described in detail in Section 2, which quantifies
the relevance of each training data point x; for a given test point x. The conditional
distribution is then estimated by an empirical distribution determined by these weights
(Meinshausen, 2006). This construction is data-adaptive as it assigns more weight to the
training points x; that are closer to the test point x in the components which are more
relevant for the distribution of Y.

Our forest construction does not depend on the estimation target 7(x), but it rather
estimates the conditional distribution P(Y | X = x) directly and the induced forest weights
can be used to estimate 7(x) in a second step. This approach has several advantages. First,
only one DRF fit is required to obtain estimates of many different targets, which has a big
computational advantage. Furthermore, since those estimates are obtained from the same
forest fit, they are mutually compatible. For example, if the conditional correlation matrix
{Cor(Y;, Y; | X=x)}¢,_, were estimated componentwise, the resulting matrix might not
be positive semidefinite, and as another example, the CDF estimates I@’(Y <y|X=x)
might not be monotone in y, see Figure 6. Finally, it can be extremely difficult to tailor
forest construction to more complex targets 7(x). The induced weighting function can
thus be used not only for obtaining simple distributional aspects such as, for example, the
conditional quantiles, conditional correlations, or joint conditional probability statements,
but also to obtain more complex objectives, such as conditional independence tests (Zhang
et al., 2012), heterogeneous regression (see also Section 4.4 for more details) (Kiinzel et al.,
2019; Wager and Athey, 2018) or semiparametric estimation by fitting a parametric model
for Y, having nonparametrically adjusted for X (Bickel et al., 1993). Representation of the
conditional distribution via the weighting function has a great potential for applications in
causality such as causal effect estimation or as a way of implementing do-calculus (Pearl,

2009) for finite samples, as we discuss in Section 4.4.
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Therefore, DRF is used in two steps: in the first step, we obtain the weighting function
wx(+) describing the conditional distribution P(Y | X=x) in a target- and model-free way,
which is then used as an input for the second step. Even if the method used in the
second step does not directly support weighting of the training data points, one can easily
resample the data set with sampling probabilities equal to {wy(x;)}!;. The two-step

approach is visualized in the following diagram:

1) get wy(-) with DRF

P(Y | X=x) P(Y | X=x)
objective i l?) compute from wy(-)
(P) <omme induced estimator (P)

1.1 Related work and our contribution

Several adaptations of the Random Forest algorithm have been proposed for targets
beyond the original one of the univariate conditional mean E[Y | X =x]: for survival anal-
ysis (Hothorn et al., 2006), conditional quantiles (Meinshausen, 2006), density estimation
(Pospisil and Lee, 2018), CDF estimation (Hothorn and Zeileis, 2021) or heterogeneous
treatment effects (Wager and Athey, 2018). Almost all such methods use the weights in-
duced by the forest, as described in Section 2, rather than averaging the estimates obtained
per tree. This view of Random Forests as a powerful adaptive nearest neighbor method
is well known and dates back to Lin and Jeon (2002, 2006). It was first used for targets
beyond the conditional mean in Meinshausen (2006), where the original forest construction
with univariate Y was used (Breiman, 2001). However, the univariate response setting
considered there severely restricts the number of interesting targets 7(x) and our DRF can
thus be viewed as an important generalization of this approach to the multivariate setting.

In order to be able to perform certain tasks or to achieve a better accuracy, many
forest-based methods adapt the forest construction by using a custom splitting criterion
tailored to their specific target, instead of relying on the standard CART criterion.
In Zeileis et al. (2008) and Hothorn and Zeileis (2021), a parametric model for the
response Y | X=x ~ f(A(x),) is assumed and recursive splitting is performed based
on a permutation test which uses the user-provided score functions. Similarly, Athey
et al. (2019) estimate certain univariate targets for which there exist corresponding score
functions defining the local estimating equations. The data is split so that the estimates
of the target in resulting child nodes differ the most. This is different, though, to the
target-free splitting criterion of DRF, which splits so that the distribution of Y in child

nodes is as different as possible.



C’evid, Michel, Naff, Biihlmann, Meinshausen 115

Since the splitting step is extensively used in the algorithm, its complexity is crucial
for the overall computational efficiency of the method, and one often needs to resort to
approximating the splitting criterion (Pospisil and Lee, 2018; Athey et al., 2019) to obtain
good computational run time. We propose a splitting criterion based on a fast random
approximation of the MMD statistic (Gretton et al., 2012a; Zhao and Meng, 2015), which
is commonly used in practice for two-sample testing as it is able to detect any change in
the multivariate distribution of Y with good power (Gretton et al., 2007a). DRF with the
MMD splitting criterion also has interesting theoretical properties as shown in Section 3
below.

The multivariate response case has not received much attention in the Random Forest
literature. Most of the existing forest-based methods focus on either a univariate response
Y or on a certain univariate target 7(x). One interesting line of work considers density
estimation (Pospisil and Lee, 2018) and uses aggregation of the CART criteria for different
response transformations. Another approach (Kocev et al., 2007; Segal and Xiao, 2011;
Ishwaran and Kogalur, 2014) is based on aggregating standard univariate CART splitting
criteria for Yp,...,Y,; and targets only the conditional mean of the responses, a task
which could also be solved by separate regression fits for each Y;. In order to capture any
change in the distribution of the multivariate response Y, one needs to not only consider
the marginal distributions for each component Y;, but also to determine whether their
dependence structure changes, see e.g. Figure 8.

There are not many methods that nonparametrically estimate the joint multivariate
conditional distribution P(Y | X=x) in the statistics or machine learning literature. Other
than a few simple classical methods such as k-nearest neighbors and kernel regression, there
are methods based on normalizing flows such as Inverse Autoregressive Flow (Kingma et al.,
2016) or Masked Autoregressive Flow (Papamakarios et al., 2017) and also conditional
variants of several popular generative models such as Conditional Generative Adversarial
Networks (Mirza and Osindero, 2014) or Conditional Variational Autoencoder (Sohn et al.,
2015). The focus of these methods is more on the settings with large d and small p, such
as image or text generation. The comparison of DRF with the competing methods for
distributional estimation can be found in Section 4.1.

Our contribution, resulting in the proposal of the Distributional Random Forest (DRF),
can be summarized as follows: First, we introduce the idea of forest construction based
on sequential multivariate two-sample test statistics. It does not depend on a particular
estimation target and is completely nonparametric, which makes its implementation and
usage very simple and universal. Not only does it not require additional user input such
as the log-likelihoods or score functions, but it can be used even for complicated targets

for which there is no obvious forest construction. Furthermore, it has a computational
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advantage as only a single forest fit is needed for producing estimates of many different
targets that are additionally compatible with each other. Second, we propose an MMD-
based splitting criterion with good statistical and computational properties, for which we
also derive interesting theoretical results in Section 3. It underpins our implementation,
which we provide as R and Python packages drf. Finally, we show on a broad range of
examples in Section 4 how many different statistical estimation problems, some of which
not being easily tractable by existing forest-based methods, can be cast to our framework,

thus illustrating the usefulness and versatility of DRF.

2 Method

In this section we describe the details of the Distributional Random Forest (DRF)
algorithm. We closely follow the implementations of the grf (Athey et al., 2019) and
ranger (Wright and Ziegler, 2015) R-packages. A detailed description of the method and
its implementation and the corresponding pseudocode can be found in the Appendix A of
Cevid et al. (2020b).

2.1 Forest Building

The trees are grown recursively in a model-free and target-free way as follows: For
every parent node P, we determine how to best split it into two child nodes of the form
Cr = {X; <!} and Cg = {X; > I}, where the variable X is one of the randomly chosen
splitting candidates and [ denotes its level based on which we perform the splitting. The

split is chosen such that we maximize a certain (multivariate) two-sample test statistic

D ({yi|xi € CL}, {yi|xi € Cr}), (1)

which measures the difference of the empirical distributions of the data Y in the two
resulting child nodes C7, and Cr. Therefore, in each step we select the candidate predictor
X; which seems to affect the distribution of Y the most, as measured by the metric D(-, -).
Intuitively, in this way we ensure that the distribution of the data points in every leaf of
the resulting tree is as homogeneous as possible, which helps mitigate the bias caused by
pooling the heterogeneous data together. A related idea can be found in GRF (Athey
et al., 2019), where one attempts to split the data so that the resulting estimates 7, and

Tgr, obtained respectively from data points in C, and Cp, differ the most:

nrnr

A A \2
— 2
TL%; (TL TR) ) ( )

where we write np = |[{i | x; € P}| and np,ng are defined analogously.
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One could construct the forest using any metric D(,-) for empirical distributions.
However, in order to have a good accuracy of the overall method, the corresponding
two-sample test using D(-, -) needs to have a good power for detecting any kind of change
in distribution, which is a difficult task in general, especially for multivariate data (Bai
and Saranadasa, 1996; Székely and Rizzo, 2004). Another very important aspect of the
choice of distributional metric D(+,-) is the computational efficiency; one needs to be able
to sequentially compute the values of D ({y; | x; € Cr}, {y: | x; € Cr}) for every possible
split very fast for the overall algorithm to be computationally feasible, even for moderately
large datasets. Below, we propose a splitting criterion based on the MMD two-sample
test statistic (Gretton et al., 2007a) which has both good statistical and computational
properties.

In contrast to other forest-based methods, we do not use any information about our
estimation target 7 in order to find the best split of the data, which comes with a certain
trade-off. On one hand, it is sensible that tailoring the splitting criterion to the target
should improve the estimation accuracy; for example, some predictors might affect the
conditional distribution of Y, but not necessarily the estimation target 7 and splitting on
such predictors unnecessarily reduces the number of training points used for estimating 7.
On the other hand, our approach has multiple benefits: it is easier to use as it does not
require any user input such as the likelihood or score functions and it can also be used
for very complicated targets for which one could not easily adapt the splitting criterion.
Furthermore, only one DRF fit is necessary for producing estimates of many different
targets, which has both computational advantage and the practical advantage that the
resulting estimates are mutually compatible (see e.g. Figure 5).

Interestingly, sometimes it could even be beneficial to split based on a predictor which
does not affect the target of estimation, but which affects the conditional distribution. This
is illustrated by the following toy example. Suppose that for a bivariate response (Y7,Y3)
we are interested in estimating the slope of the linear regression of Y5 on Y; conditionally
on p = 30 predictors X, i.e. our target is 7(x) = Cov(Y, Y2 | X=x)/Var(Y; | X=x). This
is one of the main use cases for GRF and its variant which estimates this target is called
Causal Forest (Wager and Athey, 2018; Athey et al., 2019). Let us assume that the data
has the following distribution:

Y, T a2 0
@) come o

i.e. X affects only the mean of the responses, while the other p — 1 predictors have no
effect. In Figure 1 we illustrate the distribution of the data when n = 300,p = 30,0 = 0.2,
together with the DRF and GRF splitting criteria. The true value of the target is 7(x) = 0,

but when ¢ is not too big, the slope estimates 7 on pooled data will be closer to 1.
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Therefore, the difference of 7;, and 7 between the induced slope estimates for a candidate
split, which is used for splitting criterion (2) of GRF, might not be large enough for us to
decide to split on X7, or the resulting split might be too unbalanced. This results in worse

forest estimates for this toy example, see Figure 1.
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Figure 1: Top left: Illustration of data distribution for the toy example (3) when n = 300, p = 30. Bottom:
The corresponding MMD (12) (left) and GRF (2) splitting criteria (right) at the root node. The curves
of different colors correspond to different predictors, with X; denoted in black. Top right: Comparison
of the estimates of DRF and Causal Forest (Athey et al., 2019) which respectively use those splitting
criteria. Test points were randomly generated from the same distribution as the training data. Black

dashed line indicates the correct value of the target quantity.

2.2 Weighting Function

Having constructed our forest, just as the standard Random Forest (Breiman, 2001)
can be viewed as the weighted nearest neighbor method (Lin and Jeon, 2002), we can
use the induced weighting function to estimate the conditional distribution at any given
test point x and thus any other quantity of interest 7(x). This approach is commonly
used in various forest-based methods for obtaining predictions Hothorn and Zeileis (2021);
Pospisil and Lee (2018); Athey et al. (2019).

Suppose that we have built N trees Tq,...,Ty. Let Li(x) be the set of the training

data points which end up in the same leaf as x in the tree 7. The weighting function
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wyx(x;) is defined as the average of the corresponding weighting functions per tree (Lin
and Jeon, 2006):

1Y xle[,k (x))
X Z o @

The weights are positive add up to 1: Z¢:1 wx(x;) = 1. In the case of equally sized leaf
nodes, the assigned weight to a training point x; is proportional to the number of trees
where the test point x and x; end up in the same leaf node. This shows that forest-based
methods can in general be viewed as adaptive nearest neighbor methods. The sets L (x)
of DRF will contain data points (x;,y;) such that P(Y | X = x;) is close to P(Y | X = x),
thus removing bias due to heterogeneity of Y caused by X. On the other hand, since
the trees are constructed randomly and are thus fairly independent (Breiman, 2001),
the leaf sets L;(x) will be different enough so that the induced weights wy(x;) are not
concentrated on a small set of data points, which would lead to high estimation variance.
Such good bias-variance tradeoff properties of forest-based methods are also implied by
their asymptotic properties (Biau, 2012; Wager, 2014), even though this is a still active
area of research and not much can be shown rigorously.

One can estimate the conditional distribution P(Y | X = x) from the weighting function

by using the corresponding empirical distribution:
P(Y | X =x) = wa(xi) -y, (5)

where dy, is the point mass at y;.
The weighting function wy(x;) can directly be used for any target 7(x) in a second
step and not just for estimating the conditional distribution. For example, the estimated

conditional joint CDF is given by

A

Py x-x(t) =P(Y1 < ty,..., Yy <tg| X=x) = wa(xi)ﬂ(ﬂ?:1{(yi)j <t}).  (6)

It is important to point out that using the induced weighting function for locally
weighted estimation is different than the approach of averaging the noisy estimates
obtained per tree (Wager and Athey, 2018), originally used in standard Random Forests
(Breiman, 2001). Even though the two approaches are equivalent for conditional mean
estimation, the former approach is often much more efficient for more complex targets
(Athey et al., 2019), since the number of data points in a single leaf is very small, leading
to large variance of the estimates.

For the univariate response, the idea of using the induced weights for estimating targets
different than the original target of conditional mean considered in Breiman (2001) dates
back to Quantile Regression Forests (QRF) (Meinshausen, 2006), where a lot of emphasis
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is put on the quantile estimation, as the number of interesting targets is quite limited in
the univariate setting.

In the multivariate case, on the other hand, many interesting quantities such as, for
example, conditional quantiles, conditional correlations or various conditional probability
statements can easily be directly estimated from the weights.

By using the weights as an input for some other method, we can accomplish some
more complicated objectives, such as conditional independence testing, causal effect
estimation, semiparametric learning, time series prediction or tail-index estimation in
extreme value analysis. As an example, suppose that our data Y come from a certain
parametric model, where the parameter 6 is not constant, but depends on X instead, i.e.
Y | X =x~ f(0(x),), see also Zeileis et al. (2008). One can then estimate the parameter

0(x) by using weighted maximum likelihood estimation:

0(x) = arg maXZ wx(x;) log f(0,y;).

S ——

Another example is heterogeneous regression, where we are interested in the regression
fit of an outcome Y € R on certain predicting variables W € R® conditionally on some
event {X = x}. This can be achieved by weighted regression of Y on W, where the weight
wy (x;) assigned to each data point (w;,y;) is obtained from DRF with the multivariate
response (Y, W) € R¥™! and predictors X € R?, for an illustration see Section 4.4.

The weighting function of DRF is illustrated on the air quality data in Figure 2. Five
years (2015—2019) of air pollution measurements were obtained from the US Environmental
Protection Agency (EPA) website. Six main air pollutants (nitrogen dioxide (NOs), carbon
monoxide (CO), sulphur dioxide (SO3), ozone (O3) and coarse and fine particulate matter
(PM10 and PM2.5)) that form the air quality index (AQI) were measured at many different
measuring sites in the US for which we know the longitude, latitude, elevation, location
setting (rural, urban, suburban) and how the land is used within a 1/4 mile radius.
Suppose we would want to know the distribution of the pollutant measurements at some
new, unobserved, measurement site. The top row illustrates for a given test site, whose
characteristics are indicated in the plot title, how much weight in total is assigned to
the measurements from a specific training site. We see that the important sites share
many characteristics with the test site and that DRF determines the relevance of each
characteristic in a data-adaptive way. The bottom row shows the corresponding estimates
of the joint conditional distribution of the pollutants (we choose 2 of them for visualization
purposes) and one can clearly see how the estimated pollution levels are larger for the
suburban site than for the rural site. The induced weights can be used, for example, for
estimating the joint density (whose contours can be seen in the plot) or for estimating

the probability that the AQI is below a certain value by summing the weights in the
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Figure 2: Top: the characteristics of the important training sites, for a fixed test site whose position is
indicated by a black star and whose characteristics are indicated in the title. The total weight assigned
corresponds to the symbol size. Bottom: estimated joint conditional distribution of two pollutants NOg
and PM2.5, where the weights correspond to the transparency of the data points. Green area corresponds
to ’Good’ air quality category (AQI < 50).

corresponding region of space.

2.3 Distributional Metric

In order to determine the best split of a parent node P, i.e. such that the distributions
of the responses Y in the resulting child nodes C'y, and Cg differ the most, one needs a good
distributional metric D(-, ) (see Equation (1)) which can detect change in distribution of
the response Y when additionally conditioning on an event {X; > [}. Testing equality
of distributions from the corresponding samples is an old problem in statistics, called
two-sample testing problem. For univariate data, many good tests exist such as Wilcoxon
rank test (Wilcoxon, 1946), Welch’s t-test (Welch, 1947), Wasserstein two-sample testing
(Ramdas et al., 2017), Kolmogorov-Smirnov test (Massey Jr, 1951) and many others, but
obtaining an efficient test for multivariate distributions has proven to be quite challenging
due to the curse of dimensionality (Friedman and Rafsky, 1979; Baringhaus and Franz,
2004).

Additional requirement for the choice of distributional metric D(-,-) used for data
splitting is that it needs to be computationally very efficient as splitting is used extensively

in the algorithm. If we construct N trees from n data points and in each node we consider
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mtry candidate variables for splitting, the complexity of the standard Random Forest
algorithm (Breiman, 2001) in the univariate case is O(N x mtry x nlogn) provided our

splits are balanced. It uses the CART splitting criterion, given by:

% ( Z (i —71)? + Z (yi _yR)2> ; (7)
x;€C, x;€Cp

where y; = % ineCL y; and Yy is defined analogously. This criterion has an advantage

that not only it can be computed in O(np) complexity, but this can be done for all

possible splits {X; < 1} as cutoff level [ varies, since updating the splitting criterion when

moving a single training data point from one child node to the other requires only O(1)

computational steps (most easily seen by rewriting the CART criterion as in (13)).

If the time complexity of evaluating the DRF splitting criterion (1) for a single splitting
candidate X, and all cutoffs [ of interest (usually taken to range over all possible values)
is at least n° for some ¢ > 1, say O(f(np)) for some function f: R — R, then by solving
the recursive relation we obtain that the overall complexity of the method is given by
O(N x mtry x f(n)) (Akra and Bazzi, 1998), which can be unfeasible even for moderately
large n if f grows too fast.

The problem of sequential two-sample testing is also central to the field of change-
point detection (Wolfe and Schechtman, 1984; Brodsky and Darkhovsky, 2013), with
the slight difference that in the change-point problems the distribution is assumed to
change abruptly at certain points in time, whereas for our forest construction we only are
interested in finding the best split of the form {X; <[} and the conditional distribution
P(Y | {X € P} n {X; < [}) usually changes gradually with {. The testing power and
the computational feasibility of the method play a big role in change-point detection as
well. However, the state-of-the-art change-point detection algorithms (Li et al., 2019;
Matteson and James, 2014) are often too slow for our purpose as sequential testing is done
O(N x mtry x n) times for forest construction, much more frequently than in change-point

problems.

2.3.1 MMD splitting criterion

Even though DRF could in theory be constructed with any distributional metric D(-, -),
as a default choice we propose splitting criterion based on the Maximum Mean Discrepancy
(MMD) statistic (Gretton et al., 2007a). Let (H,{:,-)3) be the RKHS of real-valued
functions on R? induced by some positive-definite kernel k, and let ¢ : R? — H be the
corresponding feature map satisfying that k(u,v) = {p(u), ¢(v))%.

The MMD statistic Dyivipry (U, V) for kernel k and two samples U = {uy,...,upy}
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and V = {vy,..., vy} is given by:

o v vl V]
D U,V) k(u;, k(vi, v Blu, 8
MMD (k) ( ’UP ”21 u;, u;) |V!2 Z]Z_l Vi) |U|\V\lz;j21 u;, v;). (8)

MMD compares the similarities, described by the kernel k, within each sample with the
similarities across samples and is commonly used in practice for two-sample testing. It is
based on the idea that one can assign to each distribution P its embedding p(P) into the
RKHS H, which is the unique element of H given by

1(P) = Eyp[e(Y)]. (9)

The MMD two-sample statistic (8) can then can then equivalently be written as the

squared distance between the embeddings of the empirical distributions with respect to

the RKHS norm ||-||%:
|U| Vi
1 1
(S0 ) = [ e,
(wi2) #(w2)

recalling that o, is the point mass at y.

2
Dyiviny) (U, V) = : (10)

H

As the sample sizes |U| and |V'| grow, the MMD statistic (10) converges to its population
version, which is the squared RKHS distance between the corresponding embeddings of
the data-generating distributions of U and V. Since the embedding map p is injective
for characteristic kernel k, we see that MMD is able to detect any difference in the
distribution. Even though the power of the MMD two sample test also deteriorates as the
data dimensionality grows, since the testing problem becomes intrinsically harder (Reddi
et al., 2014), it still has good empirical power compared to other multivariate two-sample
tests for a wide range of k (Gretton et al., 2012a).

However, the O((|U] + |V])?) complexity for computing Dyvp (U, V) from (8) is
too large for many applications. For that reason, several fast approximations of MMD
have been suggested in the literature (Gretton et al., 2012a; Zaremba et al., 2013). As
already mentioned, the complexity of the distributional metric D(-,-) used for DRF is
crucial for the overall method to be computationally efficient, since the splitting step
is used extensively in the forest construction. We therefore propose splitting based on
an MMD statistic computed with an approximate kernel /;:, which is also a fast random
approximation of the original MMD (Zhao and Meng, 2015).

Bochner’s theorem (see e.g. Wendland (2004, Theorem 6.6)) gives us that any bounded

shift-invariant kernel can be written as

k(u,v) = fRd e () dy(w), (11)
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i.e. as a Fourier transform of some measure v. Therefore, by randomly sampling the
frequency vectors wy,...,wp from normalized v, we can approximate our kernel k by

another kernel k (up to a scaling factor) as follows:
B
k _ iwT (u—v d (u—v) _ l~€
W)= [ o)~ 3 < by,

where we define k(u,v) = (p(u), p(v))ce as the kernel function with the feature map
given by

p(u) — \/LE (Go (W), o ()T = %E (et ... ewgu)T,

which is a random vector consisting of the Fourier features @, (u) = ewue C (Rahimi and
Recht, 2008). Such kernel approximations are frequently used in practice for computational
efficiency (Rahimi and Recht, 2009; Le et al., 2013). As a default choice of k we take the
Gaussian kernel with bandwidth o, since in this case we have a convenient expression for
the measure v and we sample wy,...,wp ~ Ny(0,02I;). The bandwidth o is chosen as
the median pairwise distance between all training responses {y;}! ;, commonly referred to
as the 'median heuristic’ (Gretton et al., 2012b).

From the representation of MMD via the distribution embeddings (10) we can obtain
that MMD two-sample test statistic Dynip iy using the approximate kernel & is given by

2
Ul \4

1 B
’DMMD(I%) <{u2}‘zzll7 {VZ}WI> Z ’U’ Z ‘wa uz ‘V‘ Zﬂpwb Vz

Interestingly, Dyinp iy 18 not only an MMD statistic on its own, but can also be viewed

as a random approximation of the original MMD statistic Dyvn(r) (8) using kernel k; by
using the kernel representation (11), it can be written (the derivation can be found in the
Appendix B of Cevid et al. (2020b)) as

U] IV

|U’Z¢w |V’Z§0w Vz

Finally, our DRF splitting criterion D(-,-) (1) is then taken to be the (scaled) MMD

statistic "Lyt DMMD ({y: | xi € Cr}, {y: | x; € Cr}) with the approximate random kernel

Dyivipr) ({ui}l[i'l,{vz}'v'> J dv(w).

k used 1nstead of k, Wthh can thus be conveniently written as:

BZnLnR nr Z prb YZ - Z prb Yz

X,LECL XZECR
where we recall that np = |{i | x; € P}| and np, ng are defined analogously. The additional

: (12)

scaling factor "Lz in (12) occurs naturally and compensates the increased variance of
P
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the test statistic for unbalanced splits; it also appears in the GRF (2) and CART (see
representation (13)) splitting criteria.

The main advantage of the splitting criterion based on Dynipgiy 1s that by using
the representation (1) it can be easily computed for every possible splitting level [
in O(Bnp) complexity, whereas the MMD statistic Dyvpky using kernel & would re-
quire O(n%) computational steps, which makes the overall complexity of the algorithm
O (B x N x mtry x nlogn) instead of much slower O (N x mtry x n?).

We do not use the same approximate random kernel k for different splits; for every
parent node P we resample the frequency vectors {w;} ; defining the corresponding feature
map ¢. Using different k at each node might help to better detect different distributional
changes. Furthermore, having different random kernels for each node agrees well with the
randomness of the Random Forests and helps making the trees more independent. Since
the MMD statistic DMMD(,;) used for our splitting criterion is not only an approximation of
Dynvip(k), but is itself an MMD statistic, it inherits good power for detecting any difference
in distribution of Y in the child nodes for moderately large data dimensionality d, even
when B is reasonably small. One could even consider changing the number of random
Fourier features B at different levels of the tree, as np varies, but for simplicity we take it
to be fixed.

There is some similarity of our MMD-based splitting criterion (12) with the standard

variance reduction CART splitting criterion (7) when d = 1, which can be rewritten as:

2
nrnr 1 1
o (n Dy - > y) (13)

L XZ'ECL xZ'ECR

The derivation can be found in Appendix B of Cevid et al. (2020b). From this representation,
we see that the CART splitting criterion (7) is also equivalent to the GRF splitting
criterion (2) when our target is the univariate conditional mean 7(x) = E[Y | X =x] which
is estimated for C, and Cgr by the sample means 7;, = y; and 7 = Y. Therefore, as it
compares the means of the univariate response Y in the child nodes, the CART criterion
can only detect changes in the response mean well, which is sufficient for prediction of Y
from X, but might not be suitable for more complex targets. Similarly, for multivariate
applications, aggregating the marginal CART criteria (Kocev et al., 2007; Segal and Xiao,
2011) across different components Y; of the response can only detect changes in the means
of their marginal distributions. However, it is possible in the multivariate case that the
pairwise correlations or the variances of the responses change, while the marginal means
stay (almost) constant. For an illustration on simulated data, see Figure 7. Additionally,
aggregating the splitting criteria over d components of the response Y can reduce the

signal size if only the distribution of a few components change. Our MMD-based splitting
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criterion (12) is able to avoid such difficulties as it implicitly inspects all aspects of the
multivariate response distribution.

If we take a trivial kernel kiq(vi,y;) = viy; with the identity feature map pia(y) = v,
the corresponding distributional embedding (9) is given by u(P) = Ey.pY and thus
the corresponding splitting criterion based on Dyip(k,) (10) corresponds exactly to the
CART splitting criterion (7), which can be seen from its equivalent representation (13).
Interestingly, Theorem 3 in Section 3 below shows that the MMD splitting criterion with
kernel k& can also be viewed as the abstract CART criterion in the RKHS H corresponding
to k (Fan et al., 2010). Moreover, it is also shown that DRF with the MMD splitting
criterion can thus be viewed asymptotically as a greedy minimization of the squared RKHS
distance between the corresponding embeddings of our estimate P(Y | X=x) and the
truth P(Y | X=x) averaged over x, thus justifying the proposed method. In Section 3, we
exploit this relationship to derive interesting theoretical properties of DRF with the MMD

splitting criterion.

3 Theoretical Results

In this section we exploit the properties of kernel mean embedding in order to relate
DRF with the MMD splitting criterion to an abstract version of the standard Random
Forest with the CART splitting criterion (Breiman, 2001) when the response is taking
values in the corresponding RKHS. We further exploit this relationship to adapt the
existing theoretical results from the Random Forest literature to show that our estimate
(5) of the conditional distribution of the response is consistent with respect to the MMD
metric for probability measures and with a good rate. Finally, we show that this implies
consistency of the induced DRF estimates for a range interesting targets 7(x), such as
conditional CDFs or quantiles. The proofs of all results can be found in the Appendix B
in Cevid et al. (2020b).

Recalling the notation from above, let (H, <, )3) be the Reproducing kernel Hilbert
space induced by the positive definite kernel &k : R x R? — R and let ¢ : R — H be its
corresponding feature map. The kernel embedding function yu : My(R?) — H maps any
bounded signed Borel measure P on R? to an element u(P) € H defined by

u(P) = | P,

see (9). Boundedness of k ensures that yu is indeed defined on all of M,(RY), while
continuity of k ensures that H is separable Hsing and Eubank (2015).

By considering the kernel embedding p(-) and using its linearity, we can write the
embedding of the distributional estimate p(P(Y | X=x)) of DRF (5) as the average of the
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embeddings of the empirical distributions of Y in the leaves containing x over all trees:

X N 1Y 1
BB [ X=x)) = Z rck iy O SN ALk

x; €L (

D, ny). (14)

XiELk (X)

This is analogous to the prediction of the response for the standard Random Forest,
but where we average the embeddings p(dy,) = ¢(y;) instead of the response values
themselves. Therefore, by using the kernel embedding, we can shift the perspective to the
RKHS H and view DRF as the analogue of the original Random Forest for estimation of
p(P(Y | X =x)) = E[p(Y) | X=x] in some abstract Hilbert space.

With this viewpoint, we can relate the MMD splitting criterion to the original CART
criterion (7), which measures the mean squared prediction error for splitting a certain
parent node P into children C, and Cg. On one hand, from Equation (13) we see that the
CART criterion measures the squared distance between the response averages % ineCL Yi
and % Yixecy, Yi in the child nodes, but on the other hand, Equation (10) shows that
the MMD splitting criterion measures the RKHS distance between the embeddings of
the empirical response distributions in C7, and Cg. This is summarized in the following
theorem, which not only shows that the MMD splitting criterion can be viewed as the
abstract CART criterion in the RKHS A (Fan et al., 2010), but also that DRF with the
MMD splitting criterion can be viewed as greedy minimization of the average squared
distance between the estimated and true conditional distributions, as measured by the

RKHS norm between the corresponding embeddings to H:

Theorem 3. For any split of a parent node P into child nodes Cp, and Cg, let I@’split(x) =
Djeinpy Lx € Cj)nij 2ixiec, Oy, denote the resulting estimate of the distribution P(Y | X =x)
when x € P. Then the MMD splitting criterion is equivalent to the abstract version of the
CART criterion (7) on H.:

nr, 2
arg max "5 Dyupy (3% € Cuby{yi | % € Ci)) = angmin ZHu ) = @)
split np split H

Moreover, for any node P and any fized distributional estimator ]fD(Y | X=x), we have:

Z Hu )~ B | X=x))|[} = VorE [Jn(BOY X)) — u(BOY | X)X € P40y (n~ ),

where Vp = E[||u(dy) — u(P(Y | X))|I%, | X € P] is a deterministic term not depending on
the estimates P(Y | X =x).

In conclusion, DRF with the MMD splitting criterion can be viewed as the standard
Random Forest with the CART splitting criterion, but with the response p(dy) taking

values in an abstract RKHS H instead of R. Therefore, one could in principle derive
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properties of DRF by adapting any theoretical result for standard Random Forests from
the literature. However, a lot of care is needed for making the results rigorous in this
abstract setup, as many useful properties of R need not hold for infinite-dimensional H.
The remaining part of this section is inspired by the results from Wager and Athey (2018).

We suppose that the forest construction satisfies the following properties, which
significantly facilitate the theoretical considerations of the method and ensure that our

forest estimator is well behaved, as stated in Wager and Athey (2018):

(P1) (Data sampling) The bootstrap sampling with replacement, usually used in forest-
based methods, is replaced by a subsampling step, where for each tree we choose
a random subset of size s,, out of n training data points. We consider s,, going to

infinity with n, with the rate specified below.

(P2) (Honesty) The data used for constructing each tree is split into two parts; the first
is used for determining the splits and the second for populating the leaves and thus

for estimating the response.

(P3) (a-regularity) Each split leaves at least a fraction o < 0.2 of the available training
sample on each side. Moreover, the trees are grown until every leaf contains between

r and 2k — 1 observations, for some fixed tuning parameter x € N.

(P4) (Symmetry) The (randomized) output of a tree does not depend on the ordering of

the training samples.

(P5) (Random-split) At every split point, the probability that the split occurs along the
feature X is bounded below by 7/p, for some 7 > 0 and for all j = 1,...,p.

The validity of the above properties are easily ensured by the forest construction. For
more details, see Appendix A of Cevid et al. (2020b).

From Equation (14), the prediction of DRF for a given test point x can be viewed as an
element of 7. If we denote the i-th training observation by Z; = (x;, it(dy,)) € RP x H, then
by (14) we estimate the embedding of the true conditional distribution u(P(Y | X=x))

by the average of the corresponding estimates per tree:
. 1 ¥
p(P(Y | X=x)) :NZ (x;¢4, Z;),

where Zj, is a random subset of {Z;}" , of size s,, chosen for constructing the j-th tree T;
and ¢; is a random variable capturing all randomness in growing 7;, such as the choice of
the splitting candidates. T'(x;e, Z) denotes the output of a single tree: i.e. the average of
the terms p(dy,) over all data points Z; contained in the leaf £(x) of the tree constructed

from ¢ and Z.
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Since one can take the number of trees N to be arbitrarily large, we consider an

“idealized” version of our estimator, as done in Wager and Athey (2017), which we denote
as fin(X):

fin(X) = <n>_1 Y, ET(x{Zi,. . 2}, (15)

Sn gy A
11<iz<...<is,

where the sum is taken over all (8”) possible subsets of {Z;}™_,. We have that u(P(Y | X=x)) —
fin(x) as N — oo, while keeping the other variables constant, and thus we assume for
simplicity that those two quantities are the same.

Our main result shows that, under similar assumptions as in Wager and Athey (2017),
the embedding of our conditional distribution estimator s, (x) = u(P(Y | X=x)) consis-
tently estimates p(x) = u(P(Y | X=x)) with respect to the RKHS norm with a certain

rate:

Theorem 4. Suppose that our forest construction satisfies properties (P1)—-(P5). Assume
additionally that k is a bounded and continuous kernel and that we have a random design
with Xy, ..., X, independent and identically distributed on [0, 1]P with a density bounded
away from 0 and infinity. If the subsample size s, is of order n® for some 0 < B < 1, the
mapping

x = p(x) = E[u(dy) | X=x] e K,

is Lipschitz and supycpo 1o B[ p(0v) (3, | X=x] < 0, we obtain the consistency w.r.t. the
RKHS norm:

12 (3¢) = (=) ll2 = 0, (n77) , (16)

1. i log(1—a) T
for any v < 5 min (1 B, ox(@) v ﬁ).

Remark. The rate in (16) is analogous to the one from Wager and Athey (2018), who
used it further to derive the asymptotic normality of the random forest estimator in R.
Indeed, one can show in our case that there exists a sequence of real numbers o, — 0,
such that (fi,(x) — p(x))/on as a random element of H is “asymptotically linear”, in the
sense that it is indistinguishable asymptotically from an average of independent random
elements in H. Unfortunately, this alone is not enough to establish asymptotic normality

of (fin(x) — u(x))/on as an element of H, a task left for future research.

The above result shows that DRF estimate P(Y | X =x) converges fast to the truth
P(Y | X=x) in the MMD distance, i.e. the RKHS distance between the corresponding
embeddings. Even though this is interesting on its own, ultimately we want to relate this

result to estimation of certain distributional targets 7(x) = 7(P(Y | X=x)).
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For any f € H, we have that the DRF estimate of the target 7(x) = E[f(Y) | X=x]
equals the dot product {f, fi,,(x))3 in the RKHS:

Foinlone = (1. [ oty | X x> Iy By | X=x) zwxxz

where we recall the weighting function wy(-) induced by the forest (4). Therefore, the

consistency result (16) in Theorem 4 directly implies that

i = (0 B (0w = E[F(Y) | X=x] for any feH, (1)

i.e. that the DRF consistently estimates the targets of the form 7(x) = E[f(Y) | X=x],

for f € H. From (16) we also obtain the rate of convergence when s, = n®:

D wx(xi) f(y) = E[F(Y) | X=x] = 0, (0| fl})

for v as in Theorem 4. When k is continuous, it is well known that all elements of H
are continuous, see e.g. Hsing and Eubank (2015). Under certain assumptions on the
kernel and its input space, holding for several popular kernels, (e.g. the Gaussian kernel)
(Sriperumbudur, 2016), we can generalize the convergence result (17) to any bounded
and continuous function f : RY — R, as the convergence of measures P(Y | X=x) —
P(Y | X=x) in the MMD metric will also imply their weak convergence, i.e. k metrizes
weak convergence (Sriperumbudur, 2016; Simon-Gabriel and Scholkopf, 2018; Simon-
Gabriel et al., 2020):

Corollary 3.1. Assume that one of the following two sets of conditions holds:

(a) The kernel k is bounded, (jointly) continuous and has

f f k(x,y)dP(x)dP(y) > 0 VP e My(R)\{0}. (18)

Moreover, y +— k(yo,y) is vanishing at infinity, for all y, € R%.

(b) The kernel k is bounded, shift-invariant, (jointly) continuous and v in the Bochner
representation in (11) is supported on all of RY. Moreover, Y takes its values almost

surely in a closed and bounded subset of RY.

Then, under the conditions of Theorem 4, we have for any bounded and continuous function
f:R? - R that DRF consistently estimates the target 7(x) = E[f(Y) | X=x] for any
e [0, 1]7:

wa(xi)f(}’i) - E[f(Y) | X=x].
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Recalling the Portmanteau Lemma on separable metric spaces, see e.g. Dudley (2002,
Chapter 11), this has several other interesting consequences, such as the consistency of
CDF and quantile estimates; Let Fy |x—_x(-) be the conditional CDF of Y and for any
index 1 <@ < d, let Fy; | x—x(-) be the conditional CDF of Y; and F£1|X:x(') its generalized
inverse, i.e. the quantile function. Let Fy. | x—x(-) and F;,-I|X=x(’) be the corresponding

DRF estimates via weighting function (6). Then we have the following result:

Corollary 3.2. Under the conditions of Corollary 3.1, we have

for all points of continuity t € R? and ¢ € R of Fy |x_x(+) and F;szx(-) respectively.

4 Applications and Numerical Experiments

The goal of this section is to demonstrate the versatility and applicability of DRF for
many practical problems. We show that DRF can be used not only as an estimator of
the multivariate conditional distribution, but also as a two-step method to easily obtain
out-of-the box estimators for various, and potentially complex, targets 7(x).

Our main focus lies on the more complicated targets which cannot be that straight-
forwardly approached by conventional methods. However, we also illustrate the usage of
DREF for certain applications for which there already exist several well-established methods.
Whenever possible in such cases, we compare the performance of DRF with the specialized,
task-specific methods to show that, despite its generality, there is at most a very small
loss of precision. However, we should point out that for many targets such as, that can
not be written in a form of a conditional mean or a conditional quantile, for example,
conditional correlation, direct comparison of the accuracy is not possible for real data,
since no suitable loss function exists and the ground truth is unknown. Finally, we show
that, in addition to directly estimating certain targets, DRF can also be a very useful tool
for many different applications, such as causality and fairness.

Detailed descriptions of all data sets and the corresponding analyses, together with
additional simulations can be found in the Appendix C of Cevid et al. (2020D).

4.1 Estimation of Conditional Multivariate Distributions

In order to provide good estimates for any target 7(x) = 7(P(Y | X=x)), our method

needs to estimate the conditional multivariate distribution P(Y | X =x) well. Therefore, we
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first investigate here the accuracy of the DRF estimate (5) of the full conditional distribution
and compare its performance with the performance of several existing methods.

There are not many algorithms in the literature that nonparametrically estimate the
multivariate conditional distribution P(Y | X = x). In addition to a few simple methods
such as the k-nearest neighbors or the kernel regression, which locally weight the training
points, we also consider advanced machine learning methods such as the Conditional
Generative Adversarial Network (CGAN) (Mirza and Osindero, 2014; Aggarwal et al.,
2019), Conditional Variational Autoencoder (CVAE) (Sohn et al., 2015) and Masked
Autoregressive Flow (Papamakarios et al., 2017). It is worth mentioning that the focus in
the machine learning literature has been more on applications where d is very large (e.g.
pixels of an image) and p is very small (such as image labels). Even though some methods
do not provide the estimated conditional distribution in a form as simple as DRF, one

is still able to sample from the estimated distribution and thus perform any subsequent

analysis and make fair comparisons between the methods.
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Figure 3: The illustration of the estimated joint conditional distribution obtained by different methods
for the toy example (19). For 1000 randomly generated test points Xiest ~ U(0,1)P the top row shows
the estimated distribution of the response component Y7, whereas the bottom row shows the estimated
distribution of Y5. The 0.1 and 0.9 quantiles of the true conditional distribution are indicated by a dashed

black line, whereas the conditional mean is shown as a black solid line.

We first illustrate the estimated distributions of the above method on a toy example
where n = 1000, p = 10,d = 2 and

VilY | X=x, Y|X=x~U(z1,21+1), Yo|X=x~U(0,22), X ~U(0,1).
(19)
That is, in the above example X affects the mean of Y7, whereas X5 affects the both mean

and variance of Y5, and X3, ..., X, have no impact. The results can be seen in Figure 3
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for the above methods. We see that, unlike some other methods, DRF is able to balance
the importance of the predictors X; and X, and thus to estimate the distributions of Y;
and Y5 well.

One can do a more extensive comparison on real data sets. We use the benchmark
data sets from the multi-target regression literature (Tsoumakas et al., 2011) together
with some additional ones created from the real data sets described throughout this paper.
The performance of DRF' is compared with the performance of other existing methods
for nonparametric estimation of multivariate distributions by using the Negative Log
Predictive Density (NLPD) loss, which evaluates the logarithm of the induced multivariate
density estimate (Quinonero-Candela et al., 2005). As the number of test points grows
to infinity, NLPD loss becomes equivalent to the average KL divergence between the
estimated and the true conditional distribution and is thus able to capture how well one
estimates the whole distribution instead of only its mean.

In addition to the methods mentioned above, we also include the methods that are
intended only for mean prediction, by assuming that the distribution of the response around
its mean is homogeneous, i.e. that the conditional distribution P (Y — E[Y | X] | X=x)
does not depend on x. This is fitted by regressing each component of Y separately on
X and using the pooled residuals. We consider the standard nonparametric regression
methods such as Random Forest (Breiman, 2001), XGBoost (Chen and Guestrin, 2016),
and Deep Neural Networks (Goodfellow et al., 2016).

The results are shown in Table 1. We see that DRF performs well for a wide range
of sample size and problem dimensionality, especially in problems where p is large and
d is moderately big. It does so without the need for any tuning or involved numerical
optimization. More detailed analysis and descriptions of each competing method and the
loss function can be found in the Appendix C of Cevid et al. (2020b).

4.2 Estimation of Statistical Functionals

Because DRF represents the estimated conditional distribution P(Y |X = x) =
3wy (x;)-dy, in a convenient form by using weights wy (x;), a plug-in estimator 7(P(Y | X =
x)) of many common real valued statistical functionals 7(P(Y | X = x)) € R can be easily
constructed from wy(+).

We first investigate the performance for the classical problem of univariate quantile
estimation on simulated data. We consider the following three data generating mechanisms

with p = 40,1 = 2000 and X; "% U(—1,1)P:

e Scenario 1: Y ~ N(0.8 - 1(X; > 0),1) (mean shift based on X)

e Scenario 2: Y ~ N(0, (1 + 1(X; > 0))?) (variance shift based on X)
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359 103 1K 768 337 296 143 323 1K 5K 10K 10K 10K 10K
s 7 16 8 370 370 8 21 22 10 73 23 24 15
d 3 3 14 2 6 6 3 3 6 2 2 2 4 6
DRF [3.9 4.0 225 21 73 7.0 2.0 -24.2 -24.3 2.8 2.8 25 4.2 8.5
CGAN [10.8 5.3 273 3.5 104 363 48 9.8 21.1 58 360 2.4 >1K 11.8
CVAE |48 378 36.8 26 >1K >1K 108.8 86 >1K 2.9 >1K >1K 49.7 9.6
MAF |46 45 239 30 80 81 26 47 38 29 30 25 >1K 85
k-NN |45 50 234 24 88 86 4.1 -224 -197 29 2.8 2.7 44 88
kernel | 4.1 42 230 2.0 6.6 7.1 29 -23.0 -206 28 29 26 43 84
RF 7.1 12,1 352 5.7 127 133 16.7 39 22 58 6.1 50 83 139
XGBoost [11.4 38.3 259 3.0 >1K >1K >1K 0.3 1.6 35 29 >1K >1K 12.8
DNN |40 42 233 26 86 87 26 23 22 29 30 26 54 86

Table 1: NLPD loss computed on out-of-sample observations for the estimated conditional distributions
obtained by several different methods (corresponding to rows) for many real data sets (corresponding
to columns). The best method is indicated in bold. Detailed description of both the data sets and the
competing methods can be found in Appendix C of Cevid et al. (2020Db)

e Scenario 3: Y ~ 1(X; <0)- N(1,1) + 1(X; > 0) - Exp(1) (distribution shift based

on X, constant mean and variance)

The first two scenarios correspond exactly to the examples given in Athey et al. (2019).

In Figure 4 we can see the corresponding estimates of the conditional quantiles for
DRF, Quantile Regression Forest (QRF) (Meinshausen, 2006), which uses the same forest
construction with CART splitting criterion as the original Random Forest (Breiman, 2001)
but estimates the quantiles from the induced weighting function, Generalized Random
Forests (GRF) (Athey et al., 2019) with a splitting criterion specifically designed for
quantile estimation and Transformation Forests (TRF) (Hothorn and Zeileis, 2021). We
see that DRF is performing very well even compared to methods that are specifically
tailored to quantile estimation. For more detailed analysis and some additional examples,
such as the univariate mean regression, we refer the reader to Appendix D in Cevid et al.
(2020Db).

The multivariate setting is however more interesting, as one can use DRF to compute
much more interesting statistical functionals 7(x). We illustrate this in Figure 5 for the
the air quality data set, described in Section 2.2. The left plot shows one value of the
estimated multivariate CDF, specifically the estimated probability of the event that the
air quality index (AQI) is at most 50 at a given test site. This corresponds to the ”Good”
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Figure 4: Scatter plot of predictions of the 0.1,0.5 and 0.9 quantiles against X; for randomly generated
500 test data points Xyest ~ U(—1,1)P. The true values of the quantiles are displayed by black dashed
lines. The columns corresponds to different methods DRF (red), GRF (green), QRF (blue), TRF (purple).
The rows correspond to different simulation scenarios. The first two are taken from Athey et al. (2019).

category and means that the amount of every air pollutant is below a certain threshold
determined by the EPA. Such probability estimates can be easily obtained by summing
the weights of the training points belonging to the event of interest.

P(O3 < 0.055ppm, SO2 < 36ppb, PM2.5 < 12.1ug/m? | test_site) Corr(SO2, PM2.5 | test_site)
l. o o o ". 0
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Figure 5: Estimates of the probability P(AQI < 50 | test site) (left) and the conditional correlation (right)
derived from the DRF estimate of the multivariate conditional distribution.

In order to investigate the accuracy of the conditional CDF obtained by DRF, we
compare the estimated probabilities with estimates of the standard univariate classification
forest (Breiman, 2001) with the response 1(AQI < 50). In the left plot of Figure 6, we
can see that the DRF estimates of the P(AQI < 50 | X = x) (also visualized in Figure

5) are quite similar to the estimates of the classification forest predicting the outcome
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1(AQI < 50). Furthermore, the cross-entropy loss evaluated on the held-out measurements
equals 0.4671 and 0.4663 respectively, showing almost no loss of precision. In general,
estimating the simple functionals from the weights provided by DRF comes usually at a
small to no loss compared to the classical methods specifically designed for this task.

In addition to the classical functionals 7(x) in the form of an expectation E(f(Y) | X =
x) or a quantile Q,(f(Y)|X = x) for some function f : R? — R, which can also be
computed by solving the corresponding one-dimensional problems, additional interesting
statistical functionals with intrinsically multivariate nature that are not that simple to
estimate directly are accessible by DRF, such as, for example, the conditional correlations
Cor(Y;, Y; | X=x). As an illustration, the estimated correlation of the sulfur dioxide (SO3)
and fine particulate matter (PM2.5) is shown in the right plot of Figure 5. The plot reveals
also that the local correlation in many big cities is slightly larger than in its surroundings,
which can be explained by the fact that the industrial production directly affects the levels
of both pollutants.

1.0 ; .

o
©
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o
3

0.5 0.6 0.7 0.8 0.9 1.0 0.00 0.02 0.04 0.06
DRF estimates threshold (ppm)

Figure 6: Left: Comparison of the CDF estimates obtained by DRF (displayed also in the left plot
of Figure 5) and by the classification forest. Right: Example how the CDF estimated by using the

classification forest (blue) need not be monotone, whereas the DRF estimates (red) are well-behaved.

A big advantage of the target-free forest construction of DRF is that all subsequent
targets are computed from same the weighting function wy obtained from a single forest
fit. First, this is computationally more efficient, since we do not need for every target of
interest to fit the method specifically tailored to it. For example, estimating the CDF
with classification forests requires fitting one forest for each function value. Secondly and
even more importantly, since all statistical functionals are plug-in estimates computed
from the same weighting function, the obtained estimates are mathematically well-behaved
and mutually compatible. For example, if we estimate Cor(Y;,Y; | X=x) by separately
estimating the terms Cov(Y;, Y; | X=x), Var(Y; | X=x), and Var(Y; | X=x), one can not
in general guarantee the estimate to be in the range [—1, 1], but this is possible with
DREF. Alternatively, the correlation or covariance matrices that are estimated entrywise
are guaranteed to be positive semi-definite if one uses DRF. As an additional illustration,

Figure 6 shows that the estimated (univariate) CDF using the classification forest need
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not be monotone due to random errors in each predicted value, which can not happen

with the DRF estimates.

4.3 Conditional Copulas and Conditional Independence Testing

One can use the weighting function not only to estimate certain functionals, but also

to obtain more complex objects, such as, for example, the conditional copulas. The

well-known Sklar’s theorem (Sklar, 1959) implies that at a point x € R?, the conditional
CDF P(Y <y|X =x) =P <wy,...,Ys < yq|X = x) can be represented by
a CDF Cy on [0,1]¢, the conditional copula at x, and d conditional marginal CDFs
Fy, 1 x=x(y) =P(Y; <y | X =x) for 1 <i<d, as follows:

P(Y < Yy | X = X) = Cx (Fyl |X=x<y1>7 ce FYd|X=x<yd)) . (20)

Copulas capture the dependence of the components Y; by the joint distribution of

the corresponding quantile levels of the marginal distributions: Fy,|x_«(Y;) € [0,1].

Decomposing the full multivariate distribution to marginal distributions and the copula

is a very useful technique used in many fields such as risk analysis or finance (Cherubini

et al., 2004). Using DRF enables us to estimate copulas conditionally, either by fitting

certain parametric model or nonparametrically, directly from the weights.

-4 2 0 2 ;‘ 0 1000 2500

Y2

0.0 02 04 0.6 0.8 1.0

X;=0.25 X;=0.75

0.0 0.2 04 06 08 1.0

0.0 0.2 04 0.6 0.8 1.0
Y4 Y4

Figure 7: Estimated conditional joint distribution of (Y7, Y3) and conditional copulas obtained by DRF at

different test points x, where z; equals 0.25 and 0.75 respectively. The red lines are the contours of the

true multivariate density function.

To illustrate this, consider an example where the 5-dimensional Y is generated from

the equicorrelated Gaussian copula Y = (Y;,...,¥;) | X = x ~ C’Ezj‘(‘)lss conditionally on

i.0.d.

the covariates X with distribution X; "~ U(0,1)?, where p = 30 and n=>5000. All Y;
have a N(0, 1) distribution marginally, but their conditional correlation for i # j is given
by Cor(Y;,Y;) = p(x) = z1. Figure 7 shows that DRF estimates the full conditional

distribution at different test points x quite accurately and thus we can obtain a good

nonparametric estimate of the conditional copula as follows. First, for each component
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Y;, we compute the corresponding marginal CDF estimate Fy, | x—x(-) from the weights.
Second, we map each response y; — u; = <Fy1 1x=x ((¥Yi)1),---, Fyd‘X:x ((Yi)d)>- The
copula estimate is finally obtained from the weighted distribution " | wx(X;)dy,, from
which we sample the points in Figure 7 in order to visualize the copula.

If we want to instead estimate the copula parametrically, we need to find the choice
of parameters for a given model family which best matches the estimated conditional
distribution, e.g. by weighted maximum likelihood estimation (MLE). For the above
example, the correlation parameter of the Gaussian copula can be estimated by computing
the weighted correlation with weights {wx(x;)}";. The left plot in Figure 8 shows
the resulting estimates of the conditional correlation Cor (Y7, Y2 | X = x) obtained from
DRFyp, which uses the MMD splitting criterion (12) described in Section 2.3.1, and
DRFcarr, which aggregates the marginal CART criteria (Kocev et al., 2007; Segal and
Xiao, 2011). We see that DRFyvp is able to detect the distributional heterogeneity and
provide good estimates of the conditional correlation. On the other hand, DRFcagrr
cannot detect the change in distribution of Y caused by X; that well. The distributional
heterogeneity can not only occur in marginal distribution of the responses (a case extensively
studied in the literature), but also in their interdependence structure described by the
conditional copula Cy, as one can see from decomposition (20). Since DRFyup relies on
a distributional metric for its splitting criterion, it is capable of detecting any change

in distribution (Gretton et al., 2007a), whereas aggregating marginal CART criteria for

Y1, ..., Yy in DRFcagr only captures the changes in the marginal means.
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Figure 8: Estimated conditional correlation of Y and Y3 (left) and estimated conditional dependence
quantified by HSIC statistic (right), obtained by DRFyMmp (blue) and DRFcagrT (red) respectively. For

every test point, we set X; = 0.5, 7 # 1. Black dashed curve indicates the population values.

This is further illustrated for a related application of conditional independence testing,
where we compute some dependence measure from the obtained weights. For example,
we can test the independence Y; I Y5 conditionally on the event X = x by using the
Hilbert Schmidt Independence Criterion (HSIC) (Gretton et al., 2007b), which measures

the difference between the joint distribution and the product of the marginal distributions.
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The right plot of Figure 8 shows that the DRFynp estimates are quite close to the
population value of the HSIC, unlike the ones obtained by DRFcagt.

4.4 Heterogeneous Regression and Causal Effect Estimation

In this and the following section, we illustrate that, in addition to direct estimation
of certain targets, DRF can also be a useful tool for complex statistical problems and
applications, such as causality.

Suppose we would like to investigate the relationship between some (univariate) quantity
of interest Y and certain predictors W from heterogeneous data, where the change in
distribution of (W,Y) can be explained by some other covariates X. Very often in
causality applications, W is a (multivariate) treatment variable, Y is the outcome, which
is commonly, but not necessarily, discrete, and X is a set of observed confounding variables
for which we need to adjust if we are interested in the causal effect of W on Y. This is

illustrated by the following causal graph:

The problem of nonparametric confounding adjustment is hard; not only can the
marginal distributions of Y and W be affected by X, thus inducing spurious associations
due to confounding, but the way how W affects Y can itself depend on X i.e. the treatment
effect might be heterogeneous. The total causal effect can be computed by using the
adjustment formula (Pearl, 2009):

E[Y | do(W=w)]| = J]E[Y | do(W=w),X=x|P(X=x|do(W=w))dx
_ J]E[Y W —w, X —x] P(X = x)dx. (21)

However, implementing do-calculus for finite samples and potentially non-discrete data
might not be straightforward and comes with certain difficulties. The standard approach
would be to estimate the conditional mean E[Y | W =w, X =x]| nonparametrically by
regressing Y on (X, W) with some method of choice and to average out the estimates
over different x sampled from the observed distribution of X. Using DRF for this is
not necessary, but has an advantage that one can easily estimate the full interventional
distribution P(Y | do(W =w)) and not only the interventional mean.

Another way to compute the causal effect is explained in the following, which allows to

add more structure to the problem. We use DRF to first fit the forest with the multivariate
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response (W,Y") and the predictors X. In this way, one can for any point of interest x
obtain the joint distribution of (W,Y") conditionally on the event X=x and then the
weights {wx(x;)}1; can be used as an input for some regression method for regressing ¥ on
W in the second step. This conditional regression fit might be of separate interest and it can
also be used for estimating the causal effect E[Y | do(W =w)] from (21), by averaging the
estimates E[Y | W=w, X=x]| over x, where x is sampled from the empirical observation
of X. In this way one can efficiently exploit and incorporate any prior knowledge of the
relationship between W and Y, such as, for example, monotonicity, smoothness or that
it satisfies a certain parametric regression model, without imposing any assumptions on
the effect of X on (W,Y’). Furthermore, one might be able to better extrapolate to the
regions of space where P(W =w, X =x) is small, compared to the standard approach
which computes E[Y | W=w, X =x] directly, by regressing Y on (W, X). Extrapolation
is crucial for causal applications, since for computing E[Y | do(W =w)] we are interested
in what would happen with Y when our treatment variable W is set to be w, regardless of
the value achieved by X. However, it can easily happen that for this specific combination
of X and W there are very few observed data points, thus making the estimation of the
causal effect hard (Pearl, 2009).

87X, =1,X,=4

Figure 9: Left: Visualization of heterogeneous synthetic example (22). Middle: Gray points depict
joint distribution of (W,Y) conditionally on X=x, for some choices of x indicated in the top left
corner. Black curve indicates the true conditional mean E[Y | W =w, X =x], the blue curve represents
the estimate obtained by DRF with response (W,Y") and predictors X in combination with smoothing
splines regression, whereas the red curve represents the estimate obtained by standard Random Forest.
Right: The corresponding estimates for both methods of the causal effect E[Y | do(W =w)] computed
from (21). The true causal effect is denoted by a black dashed curve.

As an illustration, we consider the following synthetic data example, with continuous
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outcome Y, continuous univariate treatment W, n = 5000 and p = 20:
X ~U(0,5)P, WI|X~N(Xy1), Y |XW~NXy+ X;ysin(W),1). (22)

A visualization of the data can be seen on the left side of Figure 9; treatment W affects
Y non-linearly, X5 is a confounding variable that affects the marginal distributions of Y’
and W and X; makes the treatment effect heterogeneous. The middle part of Figure 9
shows the conditional regression fits, i.e. the estimates of E[Y | W =w, X =x] as w varies
and x is fixed. We see that combination of DRF with response (Y, W) and predictors
X with the smoothing splines regression of Y on W (blue curve) is more accurate than
the estimates obtained by standard Random Forest (Breiman, 2001) with response Y
and predictors (W, X) (red curve). Furthermore, we see that the former approach can
extrapolate better to regions with small number of data points, which enables us to better
estimate the causal effect E[Y | do(W =w)] from (21), by averaging the corresponding
estimates of E[Y | W =w, X =x] over observed x, as shown in the right plot of Figure 9.

The conditional regression fit E[Y | W=w, X =x] is related to the concept of the
conditional average treatment effect (CATE) as it quantifies the effect of W on Y for the
subpopulation for which X = x. There exist many successful methods in the literature
for estimating the causal effects and the (conditional) average treatment effects for a
wide range of settings (Abadie and Imbens, 2006; Chernozhukov et al., 2018; Wager and
Athey, 2018; Kiinzel et al., 2019). Due to its versatility, DRF can easily be used when the
underlying assumptions of existing methods are violated, when some additional structure
is given in the problem or for the general, nonparametric, settings (Imbens, 2004; Ernest
et al., 2015; Kennedy et al., 2017). Appendix D of Cevid et al. (2020b) contains additional

comparisons with some existing methods for causal effect estimation.

4.4.1 Births data

We further illustrate the applicability of DRF for causality-related problems on the
natality data obtained from the Centers for Disease Control and Prevention (CDC) website,
where we have information about all recorded births in the USA in 2018. We investigate the
relationship between the pregnancy length and the birthweight, an important indicator of
baby’s health. Not only is this relationship complex, but it also depends on many different
factors, such as parents’ race, baby’s gender, birth multiplicity (single, twins, triplets...)
etc. In the left two plots of Figure 10 one can see the estimated joint distribution of
birthweight and pregnancy length conditionally on many different covariates, as indicated
in the plot. The black curves denote the subsequent regression fit, based on smoothing
splines and described in detail in Appendix C of Cevid et al. (2020b). In addition to

the estimate of the mean, indicated by the solid curve, we also include the estimates of
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the conditional 0.1 and 0.9 quantiles, indicated by dashed curves, which is very useful in
practice for determining whether a baby is large or small for its gestational age. Notice
how DRF assigns less importance to the mother’s race when the point of interest is a twin
(middle plot), as in this case more weight is given to twin births, regardless of the race of

the parents.

MOTHER - age: 34 MOTHER - age: 22
race: black . race: black 4000 single
education: master's degree o dnia” education: associate degree )

4000 height: 67in 3 4000 height: 67in — twin
BMI: 28.2 BMI: 21.9 -
smoking: no smoking: no

3000 FATHER - age: 37 3000 FATHER - age: 28

2 race: black race: black
education: high school

BIRTH - multiplicity: 1

2000 gender: male
birth order: 2 .
prenatal care: yes .- %"~

1000  Method: vaginal 7~ "

gender baby

3000

« male
4 female

grams)

education: doctorate
BIRTH - multiplicity: 2
2000 gender: female

race mother
black
* white
asian

2000

birthweight (grams)
birthweight (grams)

birthweight

1000

25 30 35 40 25
pregnancy length (weeks)

40

30 35 25 30 35
pregnancy length (weeks) pregnancy length (weeks)

Figure 10: Left and middle: estimated relationship of pregnancy length and birthweight, conditionally on
the criteria indicated in the upper left corner. Right: estimated interventional effect of twin birth on the
birthweight for a fixed pregnancy length. In all plots the solid curves denote the estimated conditional

mean and the dashed denote the estimated 0.1 and 0.9 quantiles.

Suppose now we would like to understand how a twin birth 7' causally affects the
birthweight B, but ignoring the obvious indirect effect due to shorter pregnancy length
L. For example, sharing of resources between the babies might have some effect on their
birthweight. We additionally need to be careful to adjust for other confounding variables
X, such as, for example, the parents’ race, which can affect B,T and L. We assume that

this is represented by the following causal graph:

In order to answer the above question, we investigate the causal quantity P(B | do(T =t, L=1)).
Even though one cannot make such do-intervention in practice, this quantity describes
the total causal effect if the birth multiplicity and the length of the pregnancy could
be manipulated and thus for a fixed pregnancy length [, we can see the difference in
birthweight due to 7. We compute this quantity as already stated above, by using DRF
with subsequent regression fits (described in detail in Appendix C of Cevid et al. (2020b)),
which has the advantage of better extrapolating to regions with small probability, such
as long twin pregnancies (see middle plot of Figure 10). In the right plot of Figure 10

we show the mean and quantiles of the estimated interventional distribution and we see
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that, as one might expect, a twin birth causes smaller birthweight on average, with the

difference increasing with the length of the pregnancy.

4.5 Fairness

Being able to compute different causal quantities with DRF could prove useful in a
range of applications, including fairness (Kusner et al., 2017). We investigate the data on
approximately 1 million full-time employees from the 2018 American Community Survey
by the US Census Bureau from which we have extracted the salary information and all
covariates that might be relevant for salaries. In the bottom left plot of Figure 11 one can
see the distribution of hourly salary of men and women (on the logarithmic scale). The
overall salary was scaled with working hours to account for working part-time and for the
fact that certain jobs have different working hours. We can see that men are paid more in
general, especially for the very high salaries. The difference between the median hourly
salaries, a commonly used statistic in practice, amounts 17% for this data set.

We would like to answer whether the observed gender pay gap in the data is indeed
unfair, i.e. only due to the gender, or whether it can at least in part be explained by
some other factors, such as age, job type, number of children, geography, race, attained
education level and many others. Hypothetically, it could be, for example, that women
have a preference for jobs that are paid less, thus causing the gender pay gap.

In order to answer this question, we assume that the data is obtained from the following
causal graph, where GG denotes the gender, W the hourly wage and all other factors are
denoted by X:

i.e. GG is a source node and W is a sink node in the graph. In order to determine the
direct effect of the gender on wage that is not mediated by other factors, we would like
to compute the distribution of the nested counterfactual W (male, X(female)), which is
interpreted in the data-generating process as the women’s wage had they been treated
in same way as men by their employers for determining the salary, but without changing
their propensities for other characteristics, such as the choice of occupation. Therefore, it

can be obtained from the observed distribution as follows:
P (W (male, X(female))) = JP(W(szale, X =x))P(X=x | G=female)dx

= JIP’ (W | G=male, X=x)P(X=x | G=female)dx, (23)
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Put in the language of the fairness literature, it quantifies the unfairness when all variables
X are assumed to be resolving (Kilbertus et al., 2017), meaning that any difference in
salaries directly due to factors X is not viewed as gender discrimination. For example, one
does not consider unfair if people with low education level get lower salaries, even if the

gender distribution in this group is not balanced.
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Figure 11: Top row: Estimated joint distribution of wage and gender for some fixed values of other
covariates X indicated in the top left part of each plot. Bottom row: observed overall distribution of
salaries (left), estimated counterfactual distribution P (W (male, X (female))) of women’s salaries (middle)

and the quantile comparison of the counterfactual distribution of women’s salaries and the observed

distribution of men’s salaries (right).

There are several ways how one can compute the distribution of W (male, X(female))
from (23) with DRF. The most straightforward option is to take W as the response and
(G, X) as predictors in order to compute the conditional distribution P (W | G=male, X =x).
However, with this approach it could happen that for predicting P (W | G =male, X =x)
we also assign weight to training data points for which G =female. This happens if in some
trees we did not split on variable G, which is likely, for example, if P(G = male | X =x) is
low. Using salaries of both genders to estimate the distribution of men’s salaries might be
an issue if our goal is to objectively compare how women and men are paid.

Another approach is to take (W, G) as a multivariate response and X as the predictors
for DRF and thus obtain joint distribution of (W, G) conditionally on the event X =x.
In this way we can also quantify the gender discrimination of a single individual with
characteristics x by comparing his/her salary to the corresponding quantile of the salary
distribution of people of the opposite gender with the same characteristics x (Plecko and

Meinshausen, 2020). This is interesting because the distribution of salaries, and thus also
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the gender discrimination, can be quite different depending on other factors such as the
industry sector or job type, as illustrated for a few choices of x in the top row of Figure 11.

Finally, by averaging the DRF estimates of P (W | X=x, G =male), conveniently rep-
resented via the weights, over different x sampled from the distribution P(X | G =female),
we can compute the distribution of the nested counterfactual W (male, X(female)). In the
middle panel in the bottom row of Figure 11 a noticeable difference in the means, also
called natural direct effect in the causality literature (Pearl, 2009), is still visible between
the observed distribution of women’s salaries and the hypothetical distribution of their
salaries had they been treated as men, despite adjusting for indirect effects of the gender
via covariates X. By further matching the quantiles of the counterfactual distribution
P (W (male, X(female))) with the corresponding quantiles of the observed distribution of
men’s salaries in the bottom right panel of Figure 11, we can also see that the adjusted
gender pay gap even increases for larger salaries. Median hourly wage for women is still
11% lower than the median wage for the hypothetical population of men with exactly the
same characteristics X as women, indicating that only a minor proportion of the actually

observed hourly wage difference of 17% can be explained by other demographic factors.

5 Conclusion

We have shown that DRF is a flexible, general and powerful tool, which exploits the
well-known properties of the Random Forest as an adaptive nearest neighbor method
via the induced weighting function. Not only does it estimate multivariate conditional
distributions well, but it constructs the forest in a model- and target-free way and is thus
an easy to use out-of-the-box algorithm for many, potentially complex, learning problems
in a wide range of applications, including also causality and fairness, with competitive

performance even for problems with existing tailored methods.
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