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A B S T R A C T

Machining continues to be one of the most important industrial manufacturing processes
and many advances in the understanding of the process have been made since Taylor began
his systematic investigation in 1890. However, due to the complex physics involved in
machining, there are still problems in process prediction today, which require not only
complex material models but also powerful numerical methods. If this symbiosis of different
disciplines (manufacturing science, materials science, continuum mechanics, numerics,
computer science) succeeds, cutting tools can be developed in a resource-saving way and
production can be optimized in a timely manner through extended tool life with increased
material removal rates.

The currently prevailing method in the simulation of machining is based on the finite element
method (FEM), which, however, requires constant adaptation of the computational grid to
the continuously changing geometry in view of the deformations and material separations
that occur. This is accompanied by a sharp increase in computational time requirements.

Alternatives to this are the mesh-free methods, which discretise the continuum with particles
and approximate the field quantities including their derivatives in the current neighbourhood
of each particle. This neighbourhood is inherently updated and therefore does not require
any explicit remeshing in case of geometrical changes. Applied to problems that are subject
to only minor deformations and no geometric changes, the method has no meaningful
application in engineering practice due to large computational time requirements. However,
when applied to machining simulation, the method shows drastic advantages over classical
methods, especially when using massive parallelization on the GPU.

This work serves as a link between the doctoral theses of M. Röthlin and M. Afrasiabi, which
have already been completed at the IWF, and extends the simulation tool with additional
material models in the GPU-accelerated program mfree_iwf for massive parallelization.
The question of what requirements exist for a material model for machining simulation
and how the chip segmentation of Ti6Al4V , which is difficult to machine, can be captured
in the simulation is investigated. For this purpose, the implementation of different mate-
rial models including damage modelling is described. The different material models are
primarily applied to 2D problems (orthogonal cutting) and comparisons to FEM analyses
and experimental results from the literature are shown. In addition, three-dimensional
recalculations of high strain rate material tests (SHTB tests) are performed and the results
are compared against FEM simulations and experiments. Furthermore, an application case
to a micro milling simulation of pure copper (OFHC) with a diamond tool is shown, where
the change from a standard material model to a physically motivated model allows much
better process predictions.

In the last part, material tests and microstructure analyses are performed for Ck45 and
Ti6Al4V, as well as an extensive machining test program for the same material batches to
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obtain measurement data as input for parameter identification of material properties under
the extreme conditions of machining. Thanks to GPU acceleration, process predictions
can be made within a few minutes using the SPH simulation model, which is why this
model serves as the basis for parameter identification of material parameters using inverse
methods. Specially conducted orthogonal cutting experiments, in which the process forces
were recorded, serve as input for the parameter identification. The material parameters are
then modified in the SPH simulation model by means of optimization algorithms so that
the errors in the numerically determined process forces become minimal compared to the
process forces measured in the experiment. Different optimization methods are used and
the advantages and disadvantages of each are shown. The obtained material parameters are
then used to recalculate cutting experiments at other process conditions and the quality of
the results is compared against experiments in terms of process force predictions as well
as chip thicknesses. It is shown that chip segmentation of Ti6Al4V can also be represented
by a standard material model with sufficiently fine discretization. Finally, the material
parameters for the material model obtained with the different methods are compared. The
material parameters determined inversely with the simulation program then represent the
best possible state for the simulation of machining processes.
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Z U S A M M E N FA S S U N G

Die Zerspanung stellt einen der wichtigsten industriellen Fertigungsprozesse dar und es wur-
den seit Beginn der systematischen Untersuchung durch Taylor ab 1890 viele Fortschritte im
Verständnis des Prozesses erzielt. Auf Grund der komplexen physikalischen Vorgänge beim
Zerspanungsvorgang gibt es dennoch bis heute Probleme in der Prozeßvorhersage, die neben
komplexen Werkstoffmodellen auch leistungsfähige numerische Methoden erfordern. Gelingt
diese Symbiose aus verschiedenen Disziplinen (Fertigungstechnik, Werkstoffkunde, Kontinu-
umsmechanik, Numerik, Informatik), lassen sich Zerspanungswerkzeuge ressourcenscho-
nend entwickeln und zeitnah die Produktion durch verlängerte Standzeiten bei gesteigertem
Abtragsvolumen optimieren.

Die derzeit vorherrschende Methode in der Simulation der Zerspanung beruht auf der finiten
Elemente Methode (FEM), die jedoch bei den auftretenden Deformationen und Material-
separationen eine ständige Adaption des Diskretisierungsgitters auf die sich kontinuierlich
ändernde Geometrie erfordert. Damit einher geht ein stark ansteigender Rechenzeitbedarf.

Alternativen hierzu stellen die netzfreien Methoden dar, welche das Kontinuum mit Partikeln
diskretisieren und die Feldgrößen samt ihren Ableitungen in der aktuellen Nachbarschaft
approximieren. Diese Nachbarschaft wird inhärent aktualisiert und erfordert daher bei
geometrischen Änderungen keinerlei explizite Neuvernetzung. Angewendet auf Probleme
die nur geringen Deformationen und keinerlei Geometrieänderungen unterliegen, besitzt
die Methode auf Grund großen Rechenzeitbedarfs keinerlei sinnvolle Einsatzmöglichkeiten
in der Ingenieurpraxis. Wendet man die Methode allerdings auf die Zerspanungssimulation
an, zeigen sich hier drastische Vorteile gegenüber klassischen Verfahren, insbesondere unter
Verwendung massiver Parallelisierung auf der GPU.

Diese Arbeit dient als Bindeglied zwischen den bereits am IWF fertiggestellten Doktorar-
beiten von M. Röthlin und M. Afrasiabi und erweitert das Simulationswerkzeug um weit-
ere Werkstoffmodelle im GPU-beschleunigten Programmwerk mfree_iwf zur massiven
Parallelisierung. Es wird der Frage nachgegangen, welche Anforderungen an ein Werk-
stoffmodell für die Zerspanungssimulation bestehen und wie die Spansegmentierung des
schwierig zu bearbeitenden Ti6Al4V in der Simulation erfaßt werden kann. Hierzu wird
die Implementierung verschiedener Werkstoffmodelle inklusive Schädigungsmodellierung
beschrieben. Die verschiedenen Werkstoffmodelle werden vorrangig auf 2D-Probleme (Or-
thogonalschnitt) angewandt und Vergleiche zu FEM-Analysen und experimentellen Ergeb-
nissen aus der Literatur werden gezeigt. Zusätzlich erfolgen dreidimensionale Nachrech-
nungen von Werkstoffversuchen mit hohen Dehnraten (SHTB-Versuche), deren Ergebnisse
gegen FEM-Simulationen und Experimente verglichen werden. Darüber hinaus wird auch
ein Anwendungsfall in der Mikrofrässimulation von Reinkupfer (OFHC) mit einem Dia-
mantwerkzeug gezeigt, in der der Wechsel von einem Standardwerkstoffmodell zu einem
physikalisch motivierten Modell wesentlich bessere Prozeßvorhersagen erlaubt.
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Im letzten Teil werden Werkstoffversuche und Mikrostrukturanalysen für Ck45 und Ti6Al4V,
sowie für die gleichen Werkstoffchargen ein umfangreiches Zerspanungstestprogramm
zur Gewinnung von Meßdaten als Eingang zur Parameteridentifikation von Werkstoff-
kennwerten bei den extremen Beanspruchungen der Zerspanung durchgeführt. Dank
der GPU-Beschleunigung lassen sich mit dem SPH-Simulationsmodell innerhalb weniger
Minuten Prozeßvorhersagen durchführen, weshalb dieses Modell als Basis für die Parame-
teridentifikation von Werkstoffkennwerten mit inversen Methoden dient. Als Eingang für die
Parameteridentifikation dienen eigens durchgeführte orthogonale Schnittversuche, bei denen
die Prozeßkräfte aufgezeichnet wurden. Daraufhin werden im SPH-Simulationsmodell
mittels Optimierungsalgorithmen die Werkstoffkennwerte dahingehend verändert, daß die
Fehler aus den im Experiment gemessenen Prozeßkräften im Vergleich zu den numerisch
ermittelten Kräften minimal werden. Verschiedene Optimierungsverfahren werden verwen-
det und die Vor- und Nachteile jeweils aufgezeigt. Die so gewonnenen Werkstoffkennwerte
werden dann verwendet, um Zerspanungsexperimente bei anderen Prozeßbedingungen
nachzurechnen und die Qualität der Ergebnisse wird durch Vergleich zwischen Experi-
menten und numerischen Vorhersagen der Prozeßkraft und Spandicke nachgewiesen. Es
wird gezeigt, daß die Spansegmentierung von Ti6Al4V auch mit einem Standardwerkstoff-
modell bei genügend feiner Diskretisierung dargestellt werden kann. Abschließend erfolgt
ein Vergleich der mit den verschiedenen Verfahren gewonnenen Kennwerte für das Werk-
stoffmodell. Die mit dem Simulationsprogramm invers ermittelten Werkstoffkennwerte
bilden dann den bestmöglichen Stand zur Simulation von Zerspanungsvorgängen ab.
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notation and operators

Symbol Meaning
x scalar quantity
X 1st order tensor (vector)
X 2nd order tensor
X 3rd order tensor
X 4th order tensor

Z = X : Y contraction of a 4th order tensor with a 2nd order tensor

det(X) determinant of a tensor
∇ Vector with partial derivatives wrt coordinates
∇σ Vector with partial derivatives wrt to

stress components ∇σF = [∂F/∂σxx, ..]T

∇0 Vector with partial derivatives wrt to reference configuration
tr(X) trace of a tensor tr(X) = Xii
< · > approximated quantity
|X| absolute value of X
||X|| tensor norm
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Symbol Meaning
α clearance angle of the cutter
αav artificial viscosity parameter
αth thermal expansion coefficient
A area in the current configuration
A, B, C, m, n Johnson-Cook flow stress model constants
Acontact contact surface area
b volume force
βav artificial viscosity parameter
cp specific heat
c speed of sound
C material parameter (Oxley model)
C right Cauchy-Green tensor
D damage variable for damage evolution
DRT1, DRT2 Rice & Tracey damage parameter
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D rate of deformation tensor
δ thickness ratio, material parameter (Oxley model)
ε strain tensor
εel elastic strain tensor
εpl plastic strain tensor

ε̄pl equivalent plastic strain
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pl reference plastic strain rate
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ηTQ fraction of plastic work converted into heat (Taylor-Quinney coefficient)
E Young’s modulus
E Green-Lagrange strain tensor
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E elasticity tensor
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f feed per revolution
f surface force
F(·) plastic potential
F force vector
Fc cut force
Fexp

c experimentally measured cut force
Fsim

c simulated cut force
∆Fc cut force error
Ff feed force
Fexp

f experimentally measured feed force
Fsim

f simulated feed force
∆Ff feed force error
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total summed square error of cut and feed force
FF friction force FF = |F f ric|
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Fcont contact force vector
F deformation gradient
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h tool-chip contact length (Oxley model)
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I identity matrix
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I1, I2, I3 stress tensor invariants
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kchip shear flow stress in the tool-chip interface
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K bulk modulus
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LE Cutting edge length
L velocity gradient
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L characteristic element length
∆λ plastic multiplier ∆λ = λ̇ · ∆t
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λ heat conductivity
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mp mass of particle
µ shear modulus
n surface normal
ncalls maximum number of optimizer function calls
nStress stress exponent artificial stresses
nx number of particles in x direction
ny number of particles in y direction
ν Poisson’s ratio
Ω0 domain of a body in the reference (initial) configuration
Ωc domain of a body in the current configuration

3



Contents

ω damage variable for damage initiation
ωCL damage variable according to Cockcroft-Latham
p hydrostatic pressure
φ shear angle
ϕ(·) mapping between current and reference configuration
Q̇ heat rate
rc cutting edge radius
rchip chip curling radius
rn optically measured cutting edge radius
$ density
R resultant force on the tool
RE Radius of cutter Edge
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R rotation matrix
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1
I N T R O D U C T I O N

Cutting operations are within the most important manufacturing processes worldwide.
Accoridng to Merchant [154], machining operations contribute to 15% of the total product
value in the industrialized countries. The cutting process is applicable to various materials
but needs to be optimized for each one individually. The main questions are which cutter
geometry and which process parameters (cut speed, feed) are required to minimize tool
wear, maximize the material removal rate and optimize surface finish and chip shapes. The
classic approach is based on cut tests in order to develop a new cutter or to adapt it to new
process conditions. An example for resulting chip shape and tool wear during a cut test is
provided with figure 1.1. These tests are time consuming and it is desirable to shorten the
development time of new cutters for reduced times to market.

Figure 1.1: Orthogonal cutting test without coolant and lubrication of Ti6Al4V with vc =
300 m

min and f = 0.4mm, cut width 2.05mm, average cut diameter davg = 64.45mm,
n=6 revolutions resulting in a removal of Vmr = 996.2mm3 material. The pictures
show the chip shape (left), tool wear (middle) and measured process forces (right).
The process forces, specifically the feed force, do not reach a steady state possibly
due to high wear.

Research is focussed on this task for more than 100 years [154] and went through three main
development steps for the prediction of metal cutting processes. Initially empirical models
were used to predict process forces and tool wear. In the 1940s science based modelling
evolved where force models were used to resolve the physics in the shear zone. Lately,
computer based modelling approaches came up to simulate cutting processes with numerical
methods. This was made possible by the development of computers and their strongly
increased computer power in the recent past. These simulations allow to predict chip
forming and breaking, the resulting process forces as well as the thermal and mechanical
loads on the cutting edge and its wear behaviour. Thus, tool and process optimization
becomes possible before the first in-situ tests are conducted. With the help of numerical
simulations the early cutter and process development are supported and can help to reduce
the experimental effort. On top, simulation results will deliver a better understanding of the
processes occurring in the micro-scale in and around the cutter and the cut surfaces.

Numerical modelling approaches for structural simulations can be classified into four main
types:
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• Finite Difference Method (FDM), listed for the sake of completeness but outdated in structural
mechanics.

• Boundary Element Method (BEM), some research has been done on metal cutting simulation
with BEM in the past.

• Finite Element Method (FEM)

• Meshless Methods (Particle Methods)

Nowadays, the FEM is dominating in numerical simulations of the cutting process. The
FEM is a very powerful and mature tool with several vendors on the market. It is based
on a mesh discretization of the continuum which leads in cutting simulation to its biggest
drawback: when higher deformations occur the mesh is prone to severe distortions leading
to numerical instabilities with a solution subsequently spoiled. This can be avoided by
regular remeshing of the domain but requires considerable computation time and may even
need manual user input. In order to avoid these drawbacks particle methods come into play:
In particle methods a mesh is not required. The continuum is resolved into particles only,
with each particle carrying the local field information. Fields and it’s gradients are assessed
by so called kernel functions which are defined in the vicinity of each particle. These kernel
functions have a limited diameter of influence around each particle and use field values from
neighbouring particles inside this diameter to approximate field values. In each time-step of
the analysis new neighbour constellations are possible due to particle movement induced
by stresses. By the help of these kernel functions, new particle compositions with changing
neighbours are inherently included in the assessment. Thus, any distortion of the domain /
continuum can be tracked automatically with arbitrary new particle arrangements.

Figure 1.2: Orthogonal cutting simulation of Ti6Al4V with FEM (left) shows severe mesh
distortion without domain remeshing while the SPH (right) resolves the material
separation without issues. The displayed result is the equivalent stress (von
Mises) in the bomb unit system [10−2GPa].

Even though particle methods are efficient in handling large deformations and material
separations the computational effort is still high resulting in large runtimes. With the advent
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of parallel computing, in particular general purpose computations on the graphics processing
unit (GPGPU), these can be reduced significantly to reasonable levels making the solver use
in optimization problems feasible.

Figure 1.3: Orthogonal cutting simulation of Ti6Al4V (vc = 70 m
min and f = 0.1mm) with SPH

in Abaqus/Explicit. Displayed are the plastic strain rates [1/s] which are in the
peak location at the cutting edge up to ε̇pl ≈ 500′000/s and in the primary shear
zone ε̇pl ≈ 100′000/s.

Besides the numerical method for discretizing the continuum another important aspect is
the selection of an appropriate constitutive model for the simulation. This is not an easy task
since in metal cutting the most severe imaginable conditions occur [13]:

• large deformations with strains up to 700% and strain rates reaching 106s−1,

• temperatures in the range of 500◦C to 1400◦C,

• temperature rates up to 106K/s, temperature gradients up to 60K/µm and

• compressive pressures up to 3 GPa.

Since these conditions cannot be reproduced in classic material testing, e.g. tensile tests, it is
required to use the "machining as a high-strain-rate property test" [182] to inversely identify
constitutive model constants from cutting experiments itself. Hence, this thesis focuses on
the constitutive modelling for numerical cutting simulations and the main contributions are
as follows:

• An in-depth investigation of the occurring stress states in metal cutting is performed
and requirements for constitutive models are derived.
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• Different constitutive models are implemented into a GPGPU-accelerated meshfree
solver. They are applied within 2D and 3D cutting cases and compared to experimental
results.

• For two materials, Ck45 & Ti6Al4V, material tests and orthogonal cutting experiments
are conducted.

• The results of the orthogonal cutting experiments will be used to inversely identify
constitutive model constants within optimization loops. The resulting constitutive
model constants are compared to the results of the material tests and will be used to
validate numerically predicted process forces at different process conditions with the
experimental results.

10



2
S TAT E O F T H E A RT

An overview of relevant work related to the fields broached in this thesis are provided.
Starting with an overview of meshless methods, GPGPU computations are introduced
followed by metal cutting simulations in general with a special focus set on meshfree
computations. Finally, constitutive modelling for cutting simulations and material parameter
identification conclude the state of the art, followed by a deduction of the research gap and
the objectives for this thesis.

2.1 meshless methods

Solutions for partial differential equations (PDE) can be derived in analytical form for
special cases only. Where this is impossible, approximations of the solution have to be
computed on discrete spatial points. When these spatial points are located on a grid with
fixed connectivity one recovers well known mehsbound methods like the Finite-Difference-
Method (FDM), Finite-Element-Method (FEM) or Boundary-Element-Method (BEM). An
alternative to meshbound methods are meshless methods which discretize the continuum
with loosely connected points. From these methods only those relevant to this work are listed
in short. Most prominent example of such meshless methods is today the smoothed particle
hydrodynamics (SPH) which works on the strong form. Its beginnings were in the 1970s
where it was developed by [140] and Gingold and Monaghan [196] to solve astrophysical
problems. Since then the method found applications not only in astrophysics but various
other disciplines, e.g. fluid dynamics [109, 136], highly dynamic events like explosions [135],
solid mechanics [8, 188], geophysics [124], in engineering problems [253] or virtual surgery
for medicine applications [169]. A large summary of SPH applications is compiled in [68].

Even though the SPH found intense use in various disciplines, it has some deficiencies
which require special attention. For various problems correctors have been introduced in
order to tackle the boundary deficiency [103, 106, 195, 259]. Under shock loading spurious
oscillations can occur in the velocity and pressure field leading to divergent simulations
which is usually attenuated by artificial viscosity terms [165]. Other issues are the tensile
instability, which can be improved with [103, 163]. A comprehensive overview can be found
in [219].

Another meshfree method is the Material Point Method (MPM) which is based on the Particle
In Cell (PIC) method for fluid dynamics applications [85] and was improved by the FLuid
Implicit Particle method (FLIP) [30]. Based on PIC and FLIP the MPM has developed for
solid mechanics [235, 236]. In contrast to the SPH which works on the strong form, the MPM
is based on the weak form. Particles (material points) are used to carry mass, density, velocity,
stresses and other internal variables in a Lagrangian description, while a fixed background
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grid is used to solve the balance of momentum in an Eulerian description. This is the main
difference to other particle methods, where all equations are solved on the particles. The
weak form used in the MPM gives an advantage over the SPH as stress free boundaries are
fulfilled automatically. Further, the MPM is first order complete and therefore rigid body
modes are correctly treated without any additional needs. A disadvantage of the method is
the higher computational cost which it shares with meshfree methods in general.

The last meshless method of interest in this work is the Particle Finite Element Method
(PFEM) which uses features of meshless and meshbound methods [178]. The continuum is
resolved by particles which are then used to mesh the domain. On this mesh the Lagrangian
equations are solved and the state variables are updated. The nodes of the mesh then move
accordingly and create the new particle positions of the next step. The method was initially
developed for fluid mechanics [178] and found application in various fields [176, 206].

From the aforementioned particle methods only the SPH (Abaqus, LS-DYNA) and the MPM
(mpmsim) are available in commercial software.

2.2 gpgpu acceleration

Numerical simulations often require large amounts of compute time. In an attempt to
keep runtimes reasonable developers strive to divide the work load of such simulations
and process in parallel on multiple CPU cores. The amount of CPU cores in workstations
is limited and further speedups would require swapping to compute cluster which is not
accessible to everyone and usually expensive. An alternative and rather recent development
are graphics processing units (GPUs) which were initially developed for computer games to
perform shader computations for visualizations purposes. These computations require fast
internal data transfer and multiple compute cores for performance reasons. Since shader
operations are in general nothing else then large scale vector operations, researchers started
to exploit these capabilities for solving a linear heat equation [212]. While this was a rather
clumsy approach things have changed since then with the introduction of CUDA by Nvidia,
which offers programming in a higher programming language like C or Fortran and makes
developments attractive for the research community.

Numerical simulations have since then utilized the advantages of GPGPU-computations
for example in FEM for solving the Poisson equation [70, 71], for surgical simulations [241]
or a mechanical cutting simulation of rock chipping and fragmentation in [161]. Already
in 2011 it found adoption to the commercially available FEM-software Abaqus offering
at least partial GPU-support. Recently, the simulation of 50 million atoms in molecular
dynamics on a single GPU was reported by [263]. Related to SPH, in 2003 the first trials on
GPU-accelerated SPH were performed in [10] but a breakthrough was achieved with [75]
which lead to various SPH implementations for fluid dynamics, for example GPUSPH and
dualsphysics.
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2.3 metal cutting (simulation)

In the early stage of metal cutting, valuable information about the cutting process could be
gained by experiments only. Groundbreaking work has been performed in 1907 by Taylor
[238] whose investigations over 26 years lead to productivity increases between 200− 300%.
According to Merchant [154], the development continued with some empiric relations, of
which the Kienzle-Victor model [110] is probably the most renowned and still in use today.
The empirical models do not consider real physical behaviour due to the very complex
process during the cutting. A science-based modeling was initiated with the work of Ernst
[64] and Merchant [155, 156] where the first force model of the cutting process was developed.
With several further steps these developments culminated in Oxley’s predictive maching
theory [182] which was extended in the mean time by some more recent material models in
[1, 120] and enhanced temperature prediction in [44].

With the development of computers two branches developed for the simulation of cutting
according to [50]: kinematic and numeric simulation. The kinematic simulation is an overall
simulation on the "macro-scale" of the cutting process and can deliver information on forces
and energies based on empirical relations but does not resolve detailed thermo-mechanical
aspects, unlike the numerical simulation.

As summarized in [13] the numerical simulation enables the prediction of process forces, tool
wear, chip formation and breaking, burr formation, surface finish and formation of residual
stresses. Due to the severe conditions of the cutting process this is however complicated,
since not only the material modelling is challenging but also the treatment of the large
deformations and material separations require special attention with regards to the domain
discretization.

In general, numerical simulations can be roughly classified into Eulerian approaches, with a
mesh fixed in space and the material flowing through; Lagrangian approaches, where the
mesh is fixed to the material and a mixture of both, the Arbitrary Eulerian-Lagrangian (ALE)
approach. Early work in metal cutting simulations [220, 234] utilized an Eulerian approach,
which has the advantage that the material can flow around the cutter. In order to model
the same with an Lagrangian approach (FEM) the material separation at the cutting edge
needs special treatment for which different approaches were developed. The separation
itself is modelled either by regular remeshing [174], element deletion [277] or a predefined
separation path [269]. All these approaches have drawbacks as the computational cost is
either high or inaccuracies are introduced into the solution due to remeshing or when a
predefined separation path or element deletion is used. Therefore, most often orthogonal
cutting processes are simulated because they allow for computationally efficient idealization
in 2D. Nevertheless, the FE-method can be seen as a standard approach for numerical cutting
simulations and can be used for 3D simulations as well [6, 35, 133].

A different attempt is the ALE which tries to overcome disadvantages of Eulerian and
Lagrangian approaches by calculating in parallel on Eulerian and Lagrangian meshes.
Quantities between the configurations are remapped. By that, the body behaves like a fluid
in zones of material separation and large deformations. In the recent past, the method
became quite popular in metal cutting simulations [12, 14, 138].
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2.3.1 Meshfree Metal Cutting Simulations

A completely different attempt are meshfree techniques. They easily represent large defor-
mations and material separation and offer an elegant way to model the plastic flow around
the cutter without the need of any remeshing of the continuum which is in contrast to
meshbound methods like the FEM. The utilization of meshless techniques for structural
simulations started in the early 1990s with the SPH[188] and are a rather new approach in
numerical cutting simulations initiated with [88]. Some more recent work was conducted by
[145, 177, 214] and the latest developments were performed at the IWF of ETH including
GPU-accelerated machining simulations [4, 5, 210, 211].

Besides SPH, other meshfree methods used for metal cutting simulations are mainly the
PFEM [205, 206, 215] and very rare use is found for MPM [11, 172] (only 2D) and the finite
point set method (FPM) [246, 247]. A comparison of the two main meshfree methods SPH
and FPEM versus FEM and ALE in metal cutting simulations is performed in [229].

2.4 constitutive modelling for metal cutting simulations

While the discretization of the continuum for numerical simulations can be solved with
different methods, each with advantages and drawbacks, another issue common to all
numerical (cutting) simulations is the constitutive model which describes the stress-strain
relationship. The requirements for the constitutive model in metal cutting are severe and
manifold, its validity has to be for large temperature ranges up to melting temperature, as
well as huge ranges for strain and strain rates [182].

In general, constitutive models can be classified into empiric, semi-empiric and physical
models [21, 217]. Empiric models describe the material behaviour with a few parameters
based on observations without real physical motivation, meaning that there is not necessarily
a physical meaning of the constants. The most prominent example for such an empirical
model in metal cutting simulations is the Johnson-Cook (JC) flow stress model [105]. In
contrast are physical models which aim to consider microstructural processes where each
material model constant has a physical meaning, for example the models of Preston, Tonks &
Wallace [191], Zerilli & Armstrong [266, 267, 268] or Babu & Lindgren [16, 17]. A combination
of both models are semi-empiric models with a partial physical meaning, e.g. the Steinberg-
Cochran-Guinan-Lind (SCGL) model [230, 231] or the Mechanical Threshold Model (MTS)
model [67, 74, 114]

In state of the art metal cutting simulations the empirical JC flow stress model is a de facto
standard used in the majority of research, for example in [100, 174, 277]. It found wide
use since its 5 model constants can be fitted comparably easy from experiments. However,
some deficiencies exist. For example Sievert [223] highlight that the temperature during
chip formation is overpredicted. Other important issues are the large variation in predicted
cutting and thrust forces as well as the prediction of residual stresses [102, 166] or the
underestimation of passive forces in both, FEM and SPH models [213]. Another problem
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are the large variations of available material parameters even for the same material [61].
The JC-model was modified by several researchers to improve the results prediction, most
notably are the extensions for Ti6Al4V material comprising a tanh-term [38, 39, 40, 224] to
model thermal softening at higher temperatures. With this model the prediction of chip
segmentation has improved significantly for Ti6Al4V[62].

Besides the JC flow stress model some other constitutive models are applied in machining
simulations, but to a lesser extent. For example good results were achieved with kinematic
hardening models according to Chaboche [43] in [99, 149] or according to the BCJ-model [20]
in [81]. Other approaches use a dislocation density model [16, 17] for machining simulations
in [202, 203, 204, 205, 206] or crystal plasticity finite element (CPFE) models for the cutting
simulation of copper [254] and for orthogonal micro-cutting of Ti-17 in [15].

The stress-strain relation cannot characterize the material desintegration upon accumulated
plastic straining and misses subsequent reduction of the load carrying capacity until rupture.
This gap can be closed by the utilization of fracture strain models which usually depend on
stress state, strain rate and temperature. Fracture strain models according to Johnson-Cook
[73] or Cockcroft-Latham [45] are often applied in metal cutting. Recently, the Johnson-Cook
fracture strain model found extensions to Lode-angle dependency [18] and inclusion of
blue-brittleness effects [69]. The predicted fracture strains are compared to the current plastic
strain increments and damage increments are computed. These damage increments are
linearly accumulated until a damage criterion is met which is often followed by a cohesive
crack model approach based on [93].

The damage modelling allows to model ductile failure upon which the chip forms and
separates. It is also possible to simulate the chip formation indirectly without damage
modelling but continuous remeshing such that the material flows around the cutter. Mod-
elling the damage with a fracture strain equation in combination with JC flow stress model
or derivatives of it results in reduced cutting forces but more realistic chip morphologies
[58, 62].

2.4.1 Material Testing

Constitutive models require for their application material dependent coefficients which have
to be determined within experiments. These experiments can be divided into direct and
indirect methods. Direct methods utilize rather basic experiments and usually comprise
tensile and compression tests where at a constant temperature and very low loading rates
at quasi-static conditions the load is increased until rupture of the specimen. These tests
are performed on servo-hydraulic test machines and can be performed at low loading rates
up to ε̇pl ≈ 100s−1 [91]. The tests are repeated at several temperature levels and allow the
determination of the strain hardening coefficients for static yield curves and its sensivity to
temperature and low strain rates [171]. These kind of tests are far below the strain rates of
machining operations and therefore more involved testing at higher loading rates is required
for which different testing devices are needed. A commonly used device is a refinement
of the Hopkinson bar [97] which is called Split Hopkinson Bar (SHB) or Kolsky-bar [115]
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test and can be used in tension (SHTB) and compression (SHPB). It allows to determine the
strain rate dependencies up to ε̇pl ≈ 5′000s−1. Similar to servo-hydraulic testing, the tests
are repeated at different temperature levels and can then be used to derive flow stress model
coefficients [157]. Still, conditions occuring at machining are not achieved with these direct
methods and indirect methods have to be favoured where impact tests, e.g. Taylor tests [239],
allow loading rates up to ε̇pl ≈ 100′000s−1 [217] but still stay one order of magnitude below
cutting conditions which leads to the need for inverse identification of constitutive model
constants directly out of the cutting experiments.

2.4.2 Inverse Parameter Identification from Cutting Tests

The determination is indirect, because the occuring effects (temperatures, strains, strain rates,
temperature gradients) are overlayed and cannot be separated into single causes anymore
and therefore they are not accessible by basic experiments. Instead, the determination of the
constitutive model constants is performed with a numerical model of the process itself where
process observables, such as process forces, chip shapes and temperatures are compared
to model predictions and the constitutive model constants are accordingly adjusted in an
attempt to reduce the differences between measured and predicted process observables. This
approach is however costly as the constants are not found ad-hoc but need to be iterated
within an optimization loop. For this reason some attempts use a design-of-experiment
(DOE) plan to compute numerical results at selected sampling points which are used to
drive a response surface method (RSM) [111] or analysis of variance (ANOVA) [190], offering
an analytical model (metamodel) which is then used for optimzation to replace the costly
numerical evaluations [147, 179]. Various optimization algorithms are used in the literature
for the determintation of constitutive model parameter by optimization of the metamodel,
for example gradient-based methods [243] or particle swarm optimization [127, 132]. While
being more efficient, the accuracy of the prediction, even at the sampling points, can be
questionable especially if the "true" shape of the response cannot be approximated well by
the response surface. An alternative is then to work directly on a numerically inexpensive
analytical force model [47, 147]. Another option is to work direcly on the numerical solution
as for example in [25, 84] where a Simplex-algorithm is used. This approach requires a good
guess for the initial simplex otherwise the optimization can result in long computing times.

Problematic to all optimization algorithms, especially to gradient based and Simplex-type
algorithms, is how to ensure the minimum - if found at all - is global and not local. Addi-
tionally, different sets of constitutive model parameter can lead to very similar cutting forces
[221, 222] which does not necessarily guarantee physically meaningful constitutive model
constants.

Left out so far from the provided overview is the determination of the friction coefficient to be
used in the cutting simulations. A standard approach used very often in cutting simulations
is the Coulomb model where the friction force is proportional to the normal force with the
proportionality factor being the friction coefficient. A modification to the Coulomb model
was introduced by Zorev [276] who divided the contact condition into a sliding zone (external
friction) and a sticking zone (internal friction). In the internal friction case the material slides
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inside the chip due to plastic shear which is under consideration of the required energy
more favourable then external friction. The assumption of a constant coefficient of friction is
however not justified since experimental results indicate dependencies e.g. on the interface
temperature [167] or the sliding speed [193, 265]. The friction coefficient can be measured
with an in-process tribometer [152] during cutting experiments. An alternative solution is
the identification within a numerical simulation of the cutting process, where the constitutive
model constants remain unchanged, for example in [5]. Inverse parameter identification of
constitutive model constants and the friction law coefficients within the same optimization is
not reported so far.

2.5 research gap and objectives

The following research gaps are identified from the literature review presented before:

• A GPU accelerated meshfree simulation software with advanced material models is
not available.

• A framework for fast numerical simulations of the cutting process for the inverse
parameter identification of material constitutive constants directly from orthogonal
cutting experiments does not exist.

• The inverse parameter identification of constitutive model constants together with the
friction law parameter has not been performed yet.

• Orthogonal cutting experiments at high cutting speeds as input for the inverse parame-
ter identification are not available.

• A thorough analysis of the requirements for a constitutive model for the harsh condi-
tions of metal cutting is missing in the literature.

• Damage modelling with meshfree methods including material separation without
deletion is only sparsely investigated in the literature.

• Simulations of 3D cutting processes on a macro scale cannot be solved efficiently with
available numerical methods.

From the listed research gaps the objectives of this thesis have been defined as follows. First
the required continuum mechanics and numerics of meshless methods are introduced. It is
followed by a thorough analysis of the requirements for a constitutive model for the harsh
conditions of metal cutting and a review of available constitutive models will be conducted
and suitable models for the metal cutting simulation will be implemented into the mfree_iwf

meshfree solver suite. Applications to 2D problems with validation against analytical and
commercial code solutions will ensure the correctness of the extensions. Then, the solver for
GPU computation will be enhanced by these constitutive models and massively reduce the
computational cost by utilization of high-performance parallel processing capabilities of the
GPGPU. The extended solver will then be applied to 2D prototype simulation of orthogonal
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cutting with material data available from literature and compared against existing cutting
test results. In the main part two materials, Ck45 and Ti6Al4V will undergo material tests, e.g.
tensile tests, and a microstructural investigation. From the same batch of material orthogonal
cutting experiments are performed such that a unified description of the material can be
generated. The results from the cutting experiments will serve as input to the determination
of constitutive model constants with inverse parameter identification methods for which
the GPU-accelerated meshfree cutting simulation will be used. The constitutive model
constants determined from material testing and those acquired from the inverse parameter
identification are compared. Finally, 3D simulations of micro milling with a diamond tool
will be performed. Overall, a significant increase in the quality of the numerical prediction of
cutting simulations is expected which will leverage new insights to the cutting process such
as process forces, chip generation and potentially burr formation and tool loading, wear and
even built-up edges.
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3
C O N T I N U U M M E C H A N I C S

The continuum mechanics is introduced in this chapter with the equations relevant to this
work. It starts with the kinematic description of the deformation, followed by kinetics and
material behaviour. The denominations and equations follow mainly [9, 23, 184].

3.1 eulerian and lagrangian description

The motion of a body can be treated from two perspectives, where in the Eulerian description
the continuum flows through a fixed spatial grid. In contrast, in the Lagrangian description
material points of the body are followed through the motion of the continuum, see figure 3.1.

Figure 3.1: Eulerian (left) and Lagrangian (right) description of a deformable continuum in
the initial configuration Ω0 and current configuration Ωc.

In this work the Lagrangian description is chosen to describe the motion.

3.2 kinematics

In figure 3.2 a deformable body is shown in the initial configuration Γ0 and in the deformed
(current) configuration Γc.

The motion of the material points can be described by a function ϕ(X, t) depending on the
initial configuration position X and maps at time t to a deformed position x:

x = ϕ(X, t) (3.1)

The distance vector u = X− x is the displacement of a material point and its derivative is
the velocity v:
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Figure 3.2: Deformable body with a material point in the initial configuration (left) and after
some deformation in the current configuration (right).

v = ẋ =
d
dt

x =
d
dt
(X + u) = u̇ (3.2)

The spatial derivative of ϕ(X, t) with regards to the initial configuration is:

∂ϕ(X, t)
∂X

=
∂x
X

= ∇0u (3.3)

and is called deformation gradient F.

3.2.1 Deformation Gradient

The deformation gradient F maps the displacement of a material line element from the
reference frame X to the current frame x and is defined as:

F =
∂x
∂X

(3.4)

x and X are connected via the displacement vector u:

u = x− X (3.5)
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3.2 kinematics

The determinant of the deformation gradient, labelled J, is always:

J = det(F) > 0 (3.6)

and relates the volumetric change of a material element from the reference to the current
configuration:

dV = det(F)dV0 (3.7)

Because the deformation gradient is non singular, equation (3.6), it can be decomposed by a
polar decomposition into a stretch and a rotation:

F = R ·U = V · R (3.8)

with R being a proper orthogonal tensor which describes the rotation of the material element
and the right U and left V stretch tensors, both symmetric and positive-definite, contain the
stretch of the material element.

Because the polar decomposition is quite some effort for retrieving the stretch one usually
prefers to use another rotation-free stretch measure which is the right Cauchy-Green tensor
C:

C = FT · F (3.9)

its rotation-freeness can be easily shown by combining equations (3.8) and (3.9) and utiliza-
tion of (A · B)T = BT · AT:

C = FT · F = (R ·U)T · R ·U = UT · RT · R
︸ ︷︷ ︸

=I

·U = U2 (3.10)

This measure is in unstretched condition C = I which is undesired behaviour and it is
preferred to have a 0-measure for unstretched mappings for which the Green-Lagrange strain
tensor is introduced:

E =
1
2
[FT · F− I] (3.11)

This can be rewritten with the displacement gradient H:

H = F− I = ∇0u− I (3.12)
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E =
1
2
[(H + I)T · (H + I)− I] =

1
2
[H + HT + HT · H] (3.13)

For small deformations HT · H vanishes and (3.13) reduces to the linearised Green-Lagrange
strain tensor (engineering strain):

Elin =
1
2
[F + FT] (3.14)

Another measure for the deformation is the velocity gradient L:

L = [∇v]T = Ḟ · F−1 (3.15)

which can be split into symmetric D and asymmetric W components:

L = Lsymm + Lasymm = D + W (3.16)

with

D =
1
2
(L + LT) (3.17)

W =
1
2
(L− LT) (3.18)

(3.19)

where the symmetric part D is the rate of deformation and the asymmetric part W is the
spin tensor. D relates to the time derivative of the linearised Green-Lagrange strain tensor
(3.11) simply as:

Ėlin = D (3.20)

3.2.2 Additive Strain Rate Decomposition - Hypoelasticity

Basis for the derivation of the additive strain rate decompisition is the multiplicative split of
the deformation gradient F into elastic and plastic parts [119, 122]:

F = Fel · Fpl (3.21)
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3.2 kinematics

Following the derivations in [90], inserting (3.21) into the equation for the velocity gradient
(3.15) and using (A · B)−1 = B−1 · A−1 one can write:

L = Ḟ · F−1 (3.22)

= (Fel · Fpl)
· · (Fel · Fpl)

−1 (3.23)

= (Ḟel · Fpl + Fel · Ḟpl) · (F−1
pl · F

−1
el ) (3.24)

= Ḟel · Fpl · F
−1
pl︸ ︷︷ ︸

=I

·F−1
el + Fel · Ḟpl · F

−1
pl︸ ︷︷ ︸

=Lpl

·F−1
el (3.25)

= Ḟel · F
−1
el︸ ︷︷ ︸

=Lel

+Fel · Lpl · F
−1
el (3.26)

= Lel + Fel · Lpl · F
−1
el (3.27)

(3.28)

Since F consists of rigid body motion and deformation and postulating that the rotation is
neither associated partially to inelastic and elastic deformation one can write:

F = Vel ·Vpl · R (3.29)

with

Vel = I + εel (3.30)

and assuming that the principal values of the nominal elastic strain ε are closely to unity
then:

Fel = Vel (3.31)

and inserting into (3.27):

L = Lel + (Iel + εel)︸ ︷︷ ︸
≈I

·Lpl · (Iel + εel)
−1

︸ ︷︷ ︸
≈I

(3.32)

≈ Lel + Lpl (3.33)

results for the symmetric part of L in the additive strain rate decomposition:
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ε̇ ≈ ε̇el + ε̇pl (3.34)

which is shown to yield under small elastic strains the same solution in a metal forming
simulation [255] as with the correct treatment (Hyperelasticity [227]). For this reason the
additive strain rate decomposition (Hypoelasticity) is used throughout this work.

3.3 kinetics

As of yet only geometric relations for the continuum were introduced which do not asso-
ciate any external forces exerted to the deformable body. These external forces result in
deformations and internal forces. The latter are subject of kinetics.

3.3.1 Stress Measures

An internal force ∆F acting on a cross section ∆A results in an averaged loading in this
element which is for the limit:

t = lim
∆A→0

∆F
∆A

=
dF
dA

(3.35)

is the traction vector in the cross section. Its component towards the normal n of the cross
section dA is:

σ = t · n (3.36)

and is named normal stress. The normal stress depends on the orientation of the cross
section dA. Orienting the cross section normal to each of the coordinate axes ei results in
three traction vectors tj which can be expressed as:

tj = σjiei (3.37)

The nine entries of σij are the cartesian components of the Cauchy stress tensor σ. It relates
the force over the area in the deformed (current) configuration. The stress tensor can be split
into a deviatoric and a volumetric part:

σ = S + σH (3.38)
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where S is the deviatoric part and the volumetric part σH is a diagonal tensor related to the
hydrostatic pressure p:

σH = −pI (3.39)

Other stress tensors exist which are related to other configurations, for example the first
Piola-Kirchhoff stress tensor relates a force element in the current configuration to a cross
section in the reference configuration which is defined as:

σPK1 = JF−T · σ (3.40)

In general, the first Piola-Kirchhoff stress tensor is not symmetric and therefore the second
Piola-Kirchhoff stress tensor was constructed such that the symmetry property is recovered:

σPK2 = JF−1 · σ · F−T (3.41)

3.3.2 Invariants of the Stress Tensor

A stress tensor exhibits three invariants which are independend from the spatial framework.
They are defined as [199]:

I1 = σxx + σyy + σzz = tr(σ) (3.42)

I2 = −(σxxσyy + σyyσzz + σxxσzz) + σ2
xy + σ2

xz + σ2
yz (3.43)

I3 = det(σ) (3.44)

for the stress deviator S invariants can be computed as well:

J1 = Sxx + Syy + Szz = tr(S) = 0 (3.45)

J2 =
1
2
(S2

xx + S2
yy + S2

zz) + S2
xy + S2

xz + S2
yz (3.46)

J3 = det(S) (3.47)

3.4 balance equations

3.4.1 Mass Conservation

The mass of a material volume is constant throughout the loading history:
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M =
∫

m
dm =

∫

V
$(x, t)dV

︸ ︷︷ ︸
current configuration

=
∫

V0

$0(X)dV0

︸ ︷︷ ︸
initial configuration

= const (3.48)

or formulated for a material volume dV:

dm = $0(X)dV0 = $(x, t)dV (3.49)

3.4.2 Momentum Equation

The change rate of the total momentum İ equals the sum of forces F exerted to the body:

İ =
d
dt

∫
v$dV = F (3.50)

The forces F consist of surface forces f (x, t) and volume forces $b(x, t):

d
dt

∫
v$dV =

∫
f (x, t)dA +

∫
b(x, t)$dV (3.51)

Rearranging (3.51) such that all terms are brought under one integral by using:

d
dt

∫
v$dV =

d
dt

∫
v$0dV0 =

∫
v̇$0dV0 =

∫
v̇$dV (3.52)

and using the divergence theorem (Gauß’s-theorem):

∫
t(x, t)dA =

∫
σ · ndA =

∫
divσdV (3.53)

leads to

∫ (
divσ + $b− $v̇

)
︸ ︷︷ ︸

!
=0

dV = 0 (3.54)

Because the integral in (3.54) must be valid for arbitrary volumes, the term in brackets must
be zero which finally yields the momentum equation in local form:

divσ + $b− $v̇ = 0 (3.55)
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3.4.3 Angular Momentum Equation

The angular momentum balance requires that the time derivative of the angular momentum
equals the externally applied torque:

∫
(x̄× v̇)$dV =

∫
(x̄× f (x, t))dA +

∫
(x̄× b(x, t))$dV (3.56)

with x̄ being a position vector. This equation is basically (3.50) multiplied with x̄ and
therefore not a new conditional equation. Equation (3.56) can be reorganized with some
tedious math (details in [184]) written in coordinate form with the Levi-Civita-Symbol:

εijk =





+ 1 if (i,j,k) is (1,2,3),(2,3,1), or (3,1,2)
− 1 if (i,j,k) is (3,2,1),(1,3,2), or (2,1,3)

0 if i=j, or j=k, or k=i

(3.57)

to:

∫
εijk(σjk − σkj)︸ ︷︷ ︸

!
=0

dV = 0 (3.58)

Equation (3.58) must be valid for arbitrary volumes similar to (3.55) and therefore it follows:

ε123(σ23 − σ32) = 0 (3.59)
ε231(σ31 − σ13) = 0 (3.60)
ε312(σ12 − σ21) = 0 (3.61)

(3.62)

Which means that the Cauchy stress tensor σ must be symmetric:

σ = σT (3.63)

The application of the angular momentum balance to the second Piola-Kirchhoff stress tensor
reveals its symmetry as well:

σPK2 =
(

σPK2
)T

(3.64)
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3.4.4 Energy Equation

The energy equation is defined as:

Ṫ =
λ

$ · cp
∇2T

︸ ︷︷ ︸
Fourier’s law

+
q̇

$ · cp︸ ︷︷ ︸
source term

(3.65)

with the material parameters density $, specific heat cp and heat conductivity λ. Since
thermally isotropic media are considered λ is a scalar. The source term accounts for
introduced heat fluxes, e.g. from plastic or frictional dissipation.

3.4.4.1 Frictional Dissipation

A Coulomb friction model is used in the simulations. The friction force |F f ric| depends
linearly on the contact force |Fcont| in the contact surface:

|F f ric| = µ f ric · |Fcont| (3.66)

where µ f ric is the friction coefficient. The frictional power is related to the relative (sliding)
velocity vrel of the mating contact surfaces:

Pf ric = |F f ric| · |vrel| (3.67)

This power is dissipated with a certain fraction η f ric into heat:

Q̇ f ric = η f ric · Pf ric = η f ric · |F f ric| · |vrel| (3.68)

with Q̇ f ric being distributed into the mating surfaces A and B:

Q̇ f ric = Q̇A + Q̇B = f AB
µ · Q̇ f ric︸ ︷︷ ︸

=Q̇A

+ (1− f AB
µ ) · Q̇ f ric︸ ︷︷ ︸
=Q̇B

(3.69)

where f AB
µ is a heat partition factor and describes how much of the generated frictional heat

power is received by the two contacting surfaces A and B. If the heat power is transmitted
into one of both surfaces, it becomes written in terms of the heat flux density:

q̇ f ric =
η f ric · |F f ric| · |vrel| · $

m
(3.70)

where it is assumed that m is the mass of the body to which the frictional dissipation is
released to. It is usually assumed that the frictional energy is fully dissipated into heat and
therefore η f ric = 1.0.
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3.4.4.2 Plastic Dissipation

Another source of heat is due to plastic deformation of metallic materials which lead to
energy release in the form of heat. The ratio of the mechanical work wmech converted into
heat energy wheat is described with the Taylor-Quinney coefficient ηTQ [240]:

wheat = ηTQ · wmech = ηTQ ·
∫

σy · εpldεpl (3.71)

and gives the heat energy introduced per volume V. Deriving (3.71) with respect to time
yields the heat flux:

q̇pl = ηTQ · σy · ε̇pl (3.72)

The Taylor-Quinney coefficient is usually assumed to be in the order of ηTQ = 90%. This is
however a subject for debate as some research [87, 95, 218, 274] discovered larger variation
during loading history where values can be as low as ηTQ ≈ 10% in cycling loading [24] and
even higher than ηTQ = 100% if phase transformations occur [264].

3.4.4.3 Modified Energy Equation

With the plastic dissipation (3.72) and the friction heat (3.70) the energy equation (3.65)
updates to:

Ṫ =
λ

$ · cp
∇2T +

q̇ f ric + q̇pl

$ · cp
(3.73)

3.5 material behaviour and constitutive modelling

The constitutive model describes the material response due to mechanical loading. In
its simplest representation a linear relationship (Hooke’s law) describes the stress-strain
behaviour of the loaded material. This holds true only for quasi-static and small loads below
the yield limit and temperatures below absolute temperatures of T < 0, 4 · Tmelt. Violating
the aforementioned boundaries, the material will respond in a nonlinear fashion. If, for
example, the material is loaded beyond the yield limit, irreversible deformations will remain
after completely unloading the structure.

In general, the material behaviour can be characterized according to [82] with the following
two classifications:

• rate independent (scleronomic) and
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• rate dependent (rheonomic), such as viscoelasticity and viscoplasticity

Rate independence is characterized by deformations immediately following the applied
loads, whereas in rate dependence the deformations still change after load application. A
rate independent behaviour can be treated as a valid simplification to steady state problems
(disregarding creep effects which will occur at absolute temperatures above 0, 4 · Tmelt).

In the following sections a brief introduction to the requirements on a material model will
be given.

3.5.1 Linear Elastic Material Behaviour

Linear elastic material behaviour is characterised by reversible deformations which are
described in the simplest case with a linear relationship, known as Hooke’s law. It reads as:

σ = E : ε (3.74)

σij = Eijklεkl, component form (3.75)

where the elasticity tensor Eijkl is a fourth order tensor and contains in its general form 81
free components which have to be determined by experiments. These 81 components are
not independent and can be reduced due to the symmetry of the stress and strain tensor
to 36 components (Cauchy elasticity). Further steps, see detailed steps in [9], lead under
consideration of isotropy and small strains to:

σij = 2µεij + λεiiδij (3.76)

with Lamé parameters of elasticity µ (shear modulus G) and λ. The two parameters can be
expressed with the Young’s modulus E and the Poisson’s ratio ν as:

λ =
ν

1− 2ν
· 1

1 + ν
· E (3.77)

µ = G =
1

2 · (1 + ν)
· E (3.78)

3.5.1.1 Rate Form

The time integration in numerical simulations leads to incremental solutions based on time
derivatives of field values, e.g. the strain rate tensor. A straight forward approach is the time
derivative of (3.74):
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3.5 material behaviour and constitutive modelling

σ̇ = E · ε̇ (3.79)

This however bears difficulties under rigid body rotations. While the Cauchy stress tensor
transforms from the initial to the current configuration as:

σcor = R · σ · RT (3.80)

its time derivative does not:

σ̇cor = Ṙ · σ · RT + R · σ̇ · RT + R · σ · ṘT 6= R · σ̇ · RT (3.81)

A correct treatment of the stress derivative with regard to time can be deduced [251] by
using the relation of the time derivative of an arbitrary vector ai in a spatially fixed cartesian
coordinate system to the same vector in a rotating cartesian coordinate system with angular
velocity ω:

dai

dt
=

d′ai

dt
+ ωkiak (3.82)

replacing the vector ai with the stress vector σjinj yields:

nj
dσji

dt
+ σji

dnj

dt
= nj

d′σji

dt
+ ωkiσjknj (3.83)

It follows from (3.82):

dnj

dt
= ωkjnk (3.84)

and combining (3.83) and (3.84) with relabelling of indices:

σ̇J =
d′σji

dt
=

dσji

dt
+ σkiωjk − σjkωki (3.85)

one arrives at the Jaumann rate σ̇J of the Cauchy stress tensor.
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3.5.1.2 Equation of State

The simplest equation of state (EOS) can be derived from Hooke’s law (3.74) where the
volumetric change e is the trace of the strain tensor ε:

e = εxx + εyy + εzz︸ ︷︷ ︸
=

V−V0
V0

=
1− 2ν

E
(σxx + σyy + σzz)︸ ︷︷ ︸

=3·p

(3.86)

e =
V −V0

V0
=

1− 2ν

E
· 3

︸ ︷︷ ︸
=1/K

·p =
p
K

(3.87)

reshaping and inserting the continuity equation (3.49) results in:

p = K · V −V0

V0
= K ·

(
V
V0
− 1
)
= K ·

(
$0

$
− 1
)

(3.88)

and finally inserting the bulk modulus for longitudinal waves K = $ · c2 one arrives at:

p = K ·
(

$0

$
− 1
)
= $ · c2 ·

(
$0

$
− 1
)
= c2 · ($0 − $) (3.89)

It has to be noted that in this derivation compressive hydrostatic pressures lead to negative
signs of p, while often a convention is used where compressive hydrostatic pressures have
positive signs and (3.89) becomes:

p = c2 · ($− $0) (3.90)

The latter convention (3.90) is used in this work.

Other EOS exist, where probably the EOS of the Mie-Grüneisen-type [77, 159] for highly
compressed matter is popular but usually not used for metal cutting cutting simulations.

3.5.1.3 Thermal Expansion

Thermal expansion occur when the temperature changes. The amount of length change
due to temperature change is proportional to the thermal expansion coefficient αth. It leads,
similar to hydrostatic pressures, to volume changes and reads in rate form as:
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3.5 material behaviour and constitutive modelling

ε̇th = αth(T) · Ṫ · I (3.91)
σ̇th = K · ε̇th (3.92)

or in total form:

∆εth = αth(T) · ∆T · I (3.93)
∆σth = K · ∆εth (3.94)

3.5.2 Nonlinear Material Behaviour - Plasticity

Within the elastic range deformations are reversible. Upon reaching the yield limit, irre-
versible deformations (plasticity) will occur and the constitutive models need modifications
to accurately predict the material behaviour. On an atomistic scale, plasticity is mainly due
to movement of dislocations through the grid.

3.5.2.1 Monotonic Tensile Loading

Figure 3.3 shows various uniaxial stress-strain relations for which the simplest representation
is the linear elastic curve with constant slope (purple line). Real materials behave like this
in an approximate fashion only up to the yield limit. If for a material the stress cannot
increase beyond the yield limit, a description for this is the linear elastic - perfectly plastic
behaviour (green dotted line). Linear elastic - perfectly plastic behaviour does not describe
any hardening. A material that exhibits hardening behaviour is schematically shown with the
"elastic plastic with hardening" curve (blue dash-dotted curve). The elastic plastic behaviour
with hardening (blue dash-dotted line) is valid for steady state conditions only. When it
comes to high loading rates (rate dependence) the material will respond dependent to the
applied strain rate, such characteristics are shown with the red curves. At higher strain rates,
the stress response increases in comparison to loadings at lower strain rates.

An often used flow stress model in the modeling of metal machining is the Johnson-Cook
[105] model which actually plays in a theory of plasticity the role of an isotropic hardening
law:

σy =
(

A + B · (εpl)
n)

︸ ︷︷ ︸
work hardening

(
1 + C · ln

(
ε̇pl

ε̇0
pl

))

︸ ︷︷ ︸
strain rate sensitivity

(
1−

(
T − Tre f

Tf − Tre f

)m)

︸ ︷︷ ︸
thermal softening

(3.95)

with the five material parameters: A, B, C, m and n. The model describes the current
flow stress depening on the current plastic strain εpl, plastic strain rate ε̇pl and current
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Figure 3.3: Classes of stress strain relationships: elastic (purple), linear elastic - perfectly plas-
tic (green dotted), plastic with hardening (blue dash-dotted) and time dependent
plasticity (red dotted / dash-dotted)

temperature T. The model consists of three multiplicative terms of which the first describes
work hardening, the second the strain rate sensitivity and the last one the thermal softening.
The melting temperature of the material is Tf and the reference temperature of the material
tests is at Tre f . The reference strain rate of the material test is ε̇0.

The thermal softening term is often expressed with the homologous temperature T∗:

T∗ =
T − Tre f

Tf − Tre f
(3.96)

and the dimensionless plastic strain rate ε̇∗pl is:

ε̇∗pl =
ε̇pl

ε̇0
pl

(3.97)

3.5.2.2 Load Reversal

So far, only uniaxial monotonic tensile loading was considered. When it comes to unloading
different characteristics can be observed for different materials.
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Figure 3.4: Schematic representation of isotropic (green line), kinematic (blue line) and a
combination of isotropic and kinematic (yellow) hardening behaviour

In figure 3.4, a loading beyond the initial yield limit σinitial
yield up to the new yield limit σ

′
yield is

shown (red curve). Upon unloading, materials can behave differently:

1. Yielding in reverse direction starts when the negative new yield limit −σ
′
yield is reached.

This case is well known as "isotropic hardening", the elastic regime has increased from
initial 2 · σinitial

yield to 2 · σ′yield.

2. Experiments, first conducted by Bauschinger [22], show that reverse yielding will
start even before the negative initial yield limit −σinitial

yield is reached, this effect is called

Bauschinger effect. That leads to the assumption that the elastic regime stays at 2 · σinitial
yield

but shifts in the stress-strain space (blue curve) and is therefore called "kinematic
hardening".

3. Some materials combine both, kinematic and isotropic hardening. Its characteristic is
depicted with the yellow curve.

4. Another material behaviour is the formative hardening. Its characteristic cannot be
shown by means of uniaxial tests - it requires a multiaxial generalization which is
introduced in the next section 3.5.3.

3.5.2.3 Behaviour at Elevated Temperatures

At elevated temperature creep occurs which also introduces rate dependence into the consti-
tutive equations. For metals the phenomenon is observed usually at absolute temperatures
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T > 0, 4 · Tmelt. Under constant external force (constant stress) a specimen would elongate
over time whereas under constant external displacement (constant total strain) the stresses
in the specimen would decrease over time. With increasing temperature and/or stress, the
effect of creep becomes more pronounced. The characteristics of creep under constant stress
and under constant external displacement are shown in figure 3.5.
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Figure 3.5: Schematic representation of creep under constant stress (left) / strain (right)

The creep under constant stress can be divided into three stages: primary creep with initially
high creep strain rates, secondary creep with approximately constant creep rates and tertiary
creep with again increasing creep strain rates until fracture.

The simplest mathematical description of the creep under constant stress is due to Norton
[175] and Bailey [19] for the secondary stage of creep:

ε̇cr = Bσn (3.98)

where B and n are material parameters. There are more sophisticated models available, for
example the characteristic strain model [27] which comprises primary, secondary and tertiary
creep. An overview of various other creep models can be found [63].

3.5.2.4 Recovery

Recovery describes a process of defect removal or rearrangement in the crystal structure of
deformed grains. The defects mainly consist of dislocations and were induced by plastic
deformations. The recovery process reduces the dislocation density and by that the ductility
increases (decrease of hardening), see also [56].

3.5.3 Multiaxial Generalization of Plasticity

So far, only uniaxial material behaviour was discussed. In this section the extension to three
dimensions is introduced. In 1D, there is only one stress and one strain but in 3D, the stress
and strain tensor consist of 6 independent components each. The question is now, how to
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3.5 material behaviour and constitutive modelling

define a measure in order to mathematically describe plastic yielding of the material in three
dimensions. For that purpose the so called yield surface is introduced:

F(σ) ≤ 0 (3.99)

For stress states inside the yield surface F(σ) < 0 the material behaves elastic and plastic
deformations occur for stress states on the outer boundary of the yield surface F(σ) = 0.

admissible stress states-
initial state

σ
0

F (σt=0) = 0

F
is
o
(σ

t
=
1 )
=
0

Fkin(σ
t=2) = 0

α

σ
1

σ
2

admissible stress states-

kinematic hardening

admissible stress states-
isotropic hardening

σ3

σ1 σ2

Figure 3.6: Yield surfaces: schematic representation of initial yield surface (light cyan circle),
kinematic hardening yield surface (light blue surface) and isotropic hardening
yield surface (yellow circle)

Figure 3.6 shows three different yield surfaces in the principal axes system in a diagonal
view. In the diagonal view, the yield surfaces appear as circles. Depending on the material,
the initial yield surface can behave upon loading to the yield limit in different ways:

• linear elastic - perfectly plastic material behaviour (light cyan circle) is characterized by
the yield surface not changing place nor size

• isotropic hardening (yellow circle): the yield surface increases its size self-similar due
to hardening/softening of the material but stays at the initial center, e.g. the material
model according to Johnson-Cook [105]

• kinematic hardening (light blue circle): the yield surface does not change size but the
center moves to another place in space

• kinematic + isotropic hardening (not shown in the figure): the yield surface changes
center and changes its size self-similarly

• formative hardening (not shown in the figure): the yield surface changes its shape
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According to [76], the yield surface depends for an isotropic material only on the three
invariants (I1, I2, I3) of the Cauchy stress tensor σ:

F(I1, I2, I3) ≤ 0 (3.100)

Equation (3.100) can be expressed also in terms of the second and third invariant (J2 and J3)
of the stress deviator:

F(I1, J2, J3) ≤ 0 (3.101)

For many materials it was found that yielding is not influenced by the hydrostatic pressure.
The hydrostatic pressure p is linked to the first invariant of the stress tensor with p = I1/3.
Therefore, the yield condition can be rewritten as:

F(J2, J3) ≤ 0 (3.102)

For the discussion of the treatment of the third invariant the Haigh-Westergard coordinate
system [180] is introduced. It allows to display the stress tensor without performing an
eigenvalue decomposition to retrieve the principal stresses σ1, σ2 and σ3 of a stress tensor. A
stress point in the Haigh-Westergaard coordinate system is described by three values ρ, ξ

and the Lode-angle θ, see figure 3.7. The parameter ξ depicts the position on the hydrostatic
axis and scales with the hydrostatic stress, ρ is the radius in the deviatoric plane and the
Lode-angle θ is the angular position on the radius ρ.

Figure 3.7: Haigh-Westergaard coordinate in the principal axis system: isometric view with
flow cylinder (left), view in direction of hydrostatic axis (right) where the flow
cylinder coincides with a circle.

Following the denominations in [180], the three parameters ρ, ξ and θ can be computed from
the stress tensor invariants I1, J2 and J3:
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3.5 material behaviour and constitutive modelling

ρ =
√

2J2 (3.103)

ξ =
I1√

3
(3.104)

cos3θ =
3
√

3J3

2J3/2
2

(3.105)

From this definition it can be seen that J3 is related to the Lode[139]-angle θ and therefore
describes the angular position along the circle with radius ρ. Assuming that the angular
position described by the angle θ does not influence the yield limit one arrives at the isotropic
von Mises yield surface which is defined as:

F(J2) = 0 (3.106)

Yielding occurs when the stress state described with the equivalent stress according to von
Mises equals the yield limit:

σeq − σy = 0 (3.107)

where σy is the yield limit. The second invariant J2 of the stress deviator is linked to the
equivalent stress σeq:

σeq =
√

3J2 (3.108)

with the equivalent stress according to von Mises being defined as:

σeq =
√

3J2 =
√

σ2
xx+σ2

yy+σ2
zz−σxxσyy−σxxσzz−σyyσzz+3(σ2

xy+σ2
xz+σ2

yz) (3.109)

=
√

3J2 =
√

3 ·
√√√√√

1
2

(
S2

xx + S2
yy + S2

zz

)
+ S2

xy + S2
xz + S2

yz
︸ ︷︷ ︸

=J2

(3.110)

Analogous to the equivalent stress an equivalent plastic strain can be defined [199]:

ε̄pl =
2√
3

√√√√
(

ε
pl
xx−ε

pl
yy

)2
+
(

ε
pl
xx−ε

pl
zz

)2
+
(

ε
pl
yy−ε

pl
zz

)2

6
+
(

ε
pl
xy

)2
+
(

ε
pl
xz

)2
+
(

ε
pl
yz

)2
(3.111)

=
2√
3

√
1
2

[(
ε

pl
xx

)2
+
(

ε
pl
yy

)2
+
(

ε
pl
zz

)2
]
+
(

ε
pl
xy

)2
+
(

ε
pl
xz

)2
+
(

ε
pl
yz

)2
(3.112)
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Combining (3.107) and (3.108) gives the isotropic von Mises yield criterion:

F(J2) =
√

3J2 − σy = 0 (3.113)

If however the yield is not isotropic but depends on the direction an extension to Mises’
model was proposed by Hill [92] in the so called Hill 48 model:

F(σij) =
√

F(σyy−σzz)2 + G(σzz−σxx)2+H(σxx−σyy)2+2(Lσ2
yz+Mσ2

zx+Nσ2
xy)−σy (3.114)

with 6 parameters F, G, H, L, M and N describing the anisotropy of the yield and which can
be computed by the yield stress ratios R11, R22, R33, R12, R13 and R23 in the 6 directions by:

F =
(σ0)2

2

(
1

σ2
22

+
1

σ2
33
− 1

σ2
11

)
=

1
2

(
1

R2
22

+
1

R2
33
− 1

R2
11

)
(3.115)

G =
(σ0)2

2

(
1

σ2
33

+
1

σ2
11
− 1

σ2
22

)
=

1
2

(
1

R2
33

+
1

R2
11
− 1

R2
22

)
(3.116)

H =
(σ0)2

2

(
1

σ2
11

+
1

σ2
22
− 1

σ2
33

)
=

1
2

(
1

R2
11

+
1

R2
22
− 1

R2
33

)
(3.117)

L =
3
2

(
τ0

σ23

)2

=
3

2R2
23

(3.118)

M =
3
2

(
τ0

σ13

)2

=
3

2R2
13

(3.119)

N =
3
2

(
τ0

σ12

)2

=
3

2R2
12

(3.120)

with σ0 being the reference yield stress and τ0 = σ0/
√

3 the reference shear yield strength.
For F = G = H = 0.5 (R11 = R22 = R33 = 1) and L = M = N = 1.5 (R12 = R23 = R13 = 1)
the isotropic von Mises yield criterion (3.113) is recovered.

As long as F(J2) < 0 there is no plastic strain. When F(J2) = 0 plastic straining occurs and
the total strain is the sum of elastic and plastic strain:

dε = dεel + dεpl (3.121)

It is assumed for the plastic strain that it can be derived from some plastic potential G:

dεpl = dλ
∂G
∂σ

= dλ∇σG (3.122)
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where dλ is a proportionality factor. ∇σG is the normal vector to the surface G with a length
scaled by dλ. As the determination of G is a difficult task it is often assumed that G = F,
which is known as associative flow-rule, while the general case G 6= F is a non-associative
flow rule for example used in [168].

With F = G (3.122) becomes:

dεpl = dλ
∂F
∂σ

= dλ∇σF (3.123)

Figure 3.8 shows an example where the stress state leads to F = 0 and results in a plastic
strain increment dε

pl
ij along the normal direction ∇σF scaled by dλ.

Figure 3.8: A loading state to F = 0 results in a plastic strain increment dε
pl
ij directed into the

normal direction ∇σF scaled by dλ.

The associated flow rule (3.123) bears with the von Mises yield locus (3.113) an attractive
feature since:

∇σF = S (3.124)
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with S being the deviatoric part of the Cauchy stress tensor σ, see (3.38).

3.5.4 Integration of Plasticity Models - Radial Return Projection

During the loading, the stress state must not exceed the flow surface F(σ) ≤ 0 (3.99). This
can be ensured by a special integration technique named radial return projection which was
introduced by [258]. It is used to determine the plastic multiplier in (3.123) and to compute
the plastic strain increment. For simple plasticity models these equations can be solved
analytically but more complex models require an iterative procedure for the computation of
the plastic multiplier which is explained in the following based on [78, 208]. The yield limit
σy in (3.113) is set to the Johnson-Cook flow stress model (3.95):

F(J2) =
√

3J2 − σy =
√

3J2 − σy(ε̄pl, ˙̄εpl, T)

=
√

3J2 −
(

A + B · (εpl)
n)
(

1 + C · ln
(

ε̇pl

ε̇0
pl

))(
1−

(
T − Tre f

Tf − Tre f

)m) (3.125)

inserting into (3.123) and applying the chain rule yields with (3.124):

dεpl = dλ
∂F
∂σ

(3.126)

= dλ
∂(
√

3J2 − σy)

∂σ
(3.127)

= dλ
1

2
√

3J2
· 3 · ∂J2

∂σ
(3.128)

= dλ

√
3

2
√

J2
S (3.129)

= dλ

√
3
2

S
||S|| (3.130)

where in equation (3.130) it was used that:

||S|| =
√

2J2 (3.131)

This result means that the plastic strain increment directs in the same direction as the stress
deviator S. The deviatoric stress rate updates with the elastic strain rate (3.121) as:

Ṡ = 2G · dev(ε̇el) = 2G · (dev(ε̇)− dev(ε̇pl)) = 2G · (dev(ε̇)− ε̇pl) (3.132)
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where the plastic strain is yet undetermined. The equations are integrated with an Euler
implicit scheme such that the resulting stress state fulfils F(J2) = 0 at the end of the increment
n + 1. It is assumed that the plastic strain rate is constant within the increment and therefore
˙̄εpl = ε̄pl/∆t. The idea is to compute an elastic trial stress Strial and check whether it violates
the yield criterion (3.113):

Strial = Sn + 2G · dev(ε̇)∆t (3.133)

with Sn being the deviatoric stress from the last increment and ∆t the time step. For
F(Strial) ≤ 0 the plastic strain and the plastic strain rate remain unchanged and the constitu-
tive update is:

Sn+1 = Strial (3.134)

ε̄n+1
pl = ε̄n

pl (3.135)

˙̄εn+1
pl = ˙̄εn

pl (3.136)

εn+1
el = εn

el + ε̇∆t (3.137)

If F(Strial) > 0 the plastic multiplier has to be determined such that F(Sn+1) = 0. It starts
with combining (3.132), (3.133), (3.134) and inserting (3.123):

Sn+1 = Sn + Ṡ∆t (3.138)

= Strial − 2G · dev(ε̇)∆t + Ṡ∆t (3.139)

= Strial − 2G · dev(ε̇)∆t + 2G · (dev(ε̇)− ε̇pl)∆t (3.140)

= Strial − 2G · ε̇pl∆t (3.141)

= Strial − 2G ·
(

λ̇

√
3
2

Sn+1

||Sn+1||

)
∆t (3.142)

Rearranging (3.142) leads to:

Sn+1 = Strial −
(√

3
2
(2G · λ̇ · ∆t · Sn+1)

||Sn+1||

)
(3.143)

Strial = Sn+1 +

(√
3
2
(2G · λ̇ · ∆t · Sn+1)

||Sn+1||

)
(3.144)

Strial = Sn+1 ·
[

1 +

(√
3
2
(2G · λ̇ · ∆t)
||Sn+1||

)]
(3.145)
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In (3.145) the term in brackets is a scalar from which it can be concluded that Strial and Sn+1

have the same direction which allows to write:

Strial

||Strial||
=

Sn+1

||Sn+1||
(3.146)

which can be inserted into (3.145):

[
||Strial||

Strial

]
Strial = Sn+1 ·

[
1 +

(√
3
2
(2G · λ̇ · ∆t)
||Sn+1||

)] [
||Sn+1||

Sn+1

]
(3.147)

||Strial|| =

[
1 +

(√
3
2
(2G · λ̇ · ∆t)
||Sn+1||

)]
[||Sn+1||] (3.148)

||Strial|| = ||Sn+1||+
√

3
2
(2G · λ̇ · ∆t) (3.149)

Since the stress state needs to fulfil F(J2) = 0 the stress ||Sn+1|| is:

||Sn+1|| =
√

2
3

σy(ε̄
n+1
pl , ˙̄εn+1

pl , T) (3.150)

which can be inserted into (3.149):

||Strial|| =
√

2
3

σy(ε̄
n+1
pl , ˙̄εn+1

pl , T) +

√
3
2
(2G · λ̇ · ∆t) (3.151)

g(λ̇) = 0 = ||Strial|| −
√

2
3

σy(ε̄
n+1
pl , ˙̄εn+1

pl , T)−
√

3
2
(2G · λ̇ · ∆t) (3.152)

and is a function that only depends on λ̇. This equation is with the flow stress σy(ε̄pl, ˙̄εpl, T)
nonlinear and needs to be solved by some numerical method to find G(λ̇) = 0. Only for the
case that the flow stress is constant (ideal plasticity) a direct analytical solution for λ̇ could
be obtained:

√
3
2

2G · λ̇ · ∆t = ||Strial|| −
√

2
3

σy (3.153)

λ̇ =
1√

6G · ∆t

(
||Strial|| −

√
2
3

σy

)
(3.154)

(3.155)
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The full constitutive update is then:

∆εpl = λ̇∆t

√
3
2

Strial

||Strial||
(3.156)

Sn+1 = Strial − 2G∆εpl (3.157)

ε̄n+1
pl = ε̄n

pl + λ̇∆t (3.158)

˙̄εn+1
pl = λ̇ (3.159)

εn+1
pl = εn

pl + ∆εpl (3.160)

εn+1
el = εn

el + ε̇∆t− ∆εpl (3.161)

3.6 damage modelling

Besides the material behaviour at various strains, strain rates and temperatures another
important aspect is the structural integrity after stressing the continuum beyond the yield
limit. The generally observed behaviour for ductile material is depicted in the stress-strain-
curve in figure 3.9 with different phases in the stress-strain curve.

While upon loading beyond the elastic limit (from (I) to (II)) irreversible deformation occurs
and the material hardens with an increase in the yield stress. Exceeding a certain point (III),
the material starts to lose its stiffness (IV) until complete loss and material separation occurs
(V).

The stages (II)-(V) are subject of the damage mechanics, whose beginnings date back to 1958
when Kachanov [108] introduced a scalar variable D assuming isotropic damage. In recent
works tensorial damage variables are used [51, 183] which is not the subject in this work.
Rabotnov [197] developed the effective stress concept for isotropic damage where the stresses
are scaled with increasing damage assuming a reduced cross section due to pore formation.
A good overview into the topic is provided with [125, 126].

Other research [63] uses energy based approaches [185, 237] for the damage accumulation in
creep fatigue interaction analyses. However, such interactions are not of interest in this work
since machining processes are subject to much smaller time scales in the order of less than a
second.

3.6.1 Damage Initiation

Usually the first phases (II-III) are modelled with a fracture strain model which gives the
fracture strain as a function of stress state, plastic strain, plastic strain rate and temperature:
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Figure 3.9: Damage initiation and evolution

ε f = f (σ, ˙̄εpl, T, ..) (3.162)

The effect of the pressure on tensile properties was investigated by [31] and later [150, 201]
derived an expression for the effect of stress triaxiality on the fracture strain by analysis of
void growth in ductile metals leading to an expression for the fracture strain ε̄ f :

ε̄
f
RT = DRT1 · eDRT2·σ∗ (3.163)

with DRT1 and DRT2 being material parameters and σ∗ the stress triaxiality ratio defined as:

σ∗ =
σH

σeq
=

σxx + σyy + σzz

3 · σequiv
(3.164)

with σH being the average of the trace of the stress tensor and σeq is the von Mises equivalent
stress (3.110).

An extension of this early model (3.163) is the fracture model introduced by Johnson and
Cook [73]. It considers strain sensitivity and temperature dependency of the fracture strain
as:

46



3.6 damage modelling

ε̄ f =
(

D1 + D2 · eD3·σ∗
)

︸ ︷︷ ︸
stress triaxiality dependency

(1 + D4 · ln( ˙̄ε∗))︸ ︷︷ ︸
strain rate sensitivity

(1 + D5T∗)︸ ︷︷ ︸
temperature dependency

(3.165)

and D1 to D5 material parameters. The dimensionless plastic strain rate ε̇∗ and the homolo-
gous temperature T∗ are defined similar to the Johnson-Cook flow stress model in equation
(3.95).

The Johnson-Cook fracture strain model found a recent extension by [18] where an asymmet-
ric fracture locus is considered with Lode-angle dependency.

The fracture strain model is used in simulations to compute the ratio of current plastic
strain increment ∆ε versus current fracture strain ε̄ f which is linearly summed up over all
increments into a damage variable ω:

ω = ∑
∆ε

ε̄ f (3.166)

When the damage ω reaches a critical value ωcrit (usually ωcrit = 1) the damage is fully
initiated and it is either assumed that fracture/separation occurs and the particle or element
is deleted.

In cutting simulations sometimes another damage initiation criterion than (3.166) is used
according to Cockcroft and Latham [45]:

ωCL =
∫ ε f

0
σ1dε (3.167)

where σ1 is the maximum principal stress. Similar to the linear damage evolution frac-
ture/separation is fully initiated when ωCL reaches a critical value ωCLcrit. The drawback of
this model is that it does not account for stress triaxiality effects.

An alternative to particle or element deletion is a follow-up damage evolution using a
fictitious crack model.

3.6.2 Damage Evolution

In the damage evolution phase a second damage variable D is used to model the fracture
growth. A pragmatic way is described in [93] where a fictitious crack is modelled. Upon
increased separation described by an effective plastic displacement the remaining load
carrying capacity is successively reduced until the critical energy release rate G f is reached:

G f =
∫ ε

f
pl

ε0
pl

Lσydε̄pl =
∫ ū f

pl

0
σydūpl (3.168)
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with L being a characteristic length which in finite element applications is the element length.
σy is the current yield limit and ε0

pl is the plastic strain when damage evolution starts and ε
f
pl

is the strain at fracture. Similar, an equivalent plastic displacement ūpl can be defined which

is ūpl = 0 at the onset of damage evolution and at fracture ūpl = ū f
pl . G f is the critical energy

release rate and is related to the fracture toughness K1C for plane strain conditions with [76]:

G f = K2
1C

1− ν2

E
(3.169)

During the load increments the accumulated damage of the evolution phase is computed
with an exponential rule [62, 271]:

D = 1− exp

(
−
∫ ūpl

0

σy

G f

)
(3.170)

This would require infinite plastic strain to reach D = 1 therefore the damage is usually set
to D = 1 when:

∫ ūpl

0
σydūpl = 0.99 · G f (3.171)

It is shown [250] that the value for G f has an important influence on the fracture morphology.

During the damage evolution the shear stiffness degrades with softening of the deviatoric
stress components. The bulk stiffness is retained in hydrostatic compression (p > 0), but
degrades in hydrostatic tension. Usually, the deviatoric stress S̄ and the hydrostatic pressure
p̄ are then modified according to [89]:

S = (1− Ddev)S̄ (3.172)
p = (1− Dvol) p̄ (3.173)

with the deviatoric and volumetric damage variables defined as:

Ddev = D (3.174)

Dvol =

{
D, if p̄ ≤ 0
0, if p̄ > 0

(3.175)

When the maximum damage Dmax is reached the respective element is deleted from the
simulation.

An evaluation of various damage initiation and evolution models is provided with [134].
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4
M E S H L E S S M E T H O D S

Within the class of numerical methods for solving boundary value problems particle methods
are an approach to solve problems undergoing large deformations without the need to remesh
the domain - in contrast to FEM where adaptive remeshing is required upon increased
element distortion invoked by large deformations.

In contrast, particle methods in general do not suffer from large deformations or material
separations. Basic principle of the SPH is the field value approximation based on each parti-
cle’s neighbourhood within a circle (2D) or cube (3D) with radius 2h. This neighbourhood is
updated not just continuously but automatically during the analysis. Particles moving out of
the radius 2h leave this neighbourhood and stop contributing to the approximation of the
center particle, while particles entering will start to contribute.

Particle methods originate from astrophysics (Gingold et al. [196]) where a smoothed density
is calculated from a set of points. In their publication, Gingold et al. utilized statistical
methods in order to recover analytical expressions for physical quantities from a given set of
fluid elements.

4.1 derivation of the sph

However, the method can be developed from different perspectives and in the following a
more convenient derivation will be shown, it is based on the partition of unity. The concept
is based on the approximation of a field value f at a location x:

< f (x) >=
∫

Rd
δ(x− x′) f (x′)dΩx′ , ∀x ∈ Rd (4.1)

with δ(x) being the Dirac-delta function which has the following two important properties:

∫ +∞

−∞
δ(x)dx = 1

∫ +∞

−∞
δ(ζ − x) · f (ζ)dζ = f (x)

(4.2)

The Dirac-delta function in equation (4.1) lacks continuity and differentiability and is there-
fore replaced by a smooth kernel W(x− x′, hSPH) with hSPH being a smoothing length. The
smooth kernel mimics the behaviour of the Dirac-delta function for the limit:
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lim
h→0

W(x− x′, hSPH) = δ(x− x′). (4.3)

With this replacement the value of a function at any spatial location can be approximated
from values at discrete locations:

< f (x) >=
∫ +∞

−∞
f (x′) ·W(x− x′, hSPH)dx′ (4.4)

Since the smoothing length h (support length) of the smooth kernel is chosen to be small,
only neighbouring points (particles) will contribute to the approximation.The expression in
equation (4.4) can be integrated using a Riemann-sum:

< fi >=
∫ +∞

−∞
f (x′) ·W(x− x′, hSPH)dx′

≈∑
j

f j ·W(xij, hSPH)∆Vj
(4.5)

with the distance between particles i and j defined as xij = |xi − xj|. Some standard smooth
kernel which are commonly used are the Gauß- kernel:

W(xij, hSPH) =
1

(πh2
SPH)

n/2
e−x2

ij/h2
SPH (4.6)

and the cubic spline kernel:

W(xij, hSPH) =
C

hn
SPH





1− 3
2 q2 + 3

4 q3, 0 ≤ q ≤ 1
1
4(2− q)3, 1 ≤ q ≤ 2
0, q > 2

with C =





2
3 , in 1D
10
7 π, in 2D

1/π, in 3D

(4.7)

with q = xij/h and n the dimension of x. An example picture of the cubic spline Kernel is
provided with figure 4.1. Other kernels are based on higher order splines described e.g. in
Price [192] or the Wendland kernel [256].

The approximation provided with equation (4.5) has some very interesting properties: By
differentiating equation (4.5) and applying the product rule one finds (see more detailed
derivation e.g. in Li & Liu [219]) that the interpolants can be used to approximate derivatives
of the interpolated field(s) in a rather simple manner:
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Figure 4.1: Function values of a cubic spline kernel with smoothing length hSPH = 1 and its
first and second derivative, based on [192].

< ∇ fi >= ∑
j

f j · ∇W(xij, hSPH)∆Vj (4.8)

The big advantage here is that derivatives of point clouds can be assessed without any
functional description or mesh-based relation between particles. By this relationship, a simple
way was found to approximate field values and it’s derivatives which made the method
attractive for applying it to the numerical solution of partial differential equations (PDE).
While this appears like a straightforward approach, it was found during the application
history of the method that some deficiencies exist. The encountered problems require
solutions which are briefly explained in the next chapter.

4.2 issues and improvements to the sph

As mentioned above, the use of the approximation in equation (4.8) is not free of deficiencies.
In practical applications the following problems can occur:

1. conservation of physical quantities not ensured, chapter 4.2.1

2. tensile instability, chapter 4.2.2

3. zero energy modes, chapter 4.2.3

4. difficult enforcement of boundary conditions, chapter 4.2.4 and

5. interpolation neither normalized nor consistent, chapter 4.2.5

The listed issues are addressed in the following.
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4.2.1 Conservation Properties

Even though the approximation in equation (4.8) is rather simple, it has the drawback that it
does not exhibit conservation properties [219] and therefore a simple correction, restoring
the conservation properties, is made to equation (4.8), based on [164]. If a function f (x) is
constant its derivative should vanish. The approximation in equation (4.8) does not vanish
for constant f (x) and therefore a correction is made:

∂ f
∂x

=
1
Φ

(
∂(Φ f )

∂x
− f

∂Φ
∂x

)
(4.9)

Φ being an arbitrary differentiable function. Bringing the before into SPH form:

(
∂ f
∂x

)

i
=

1
Φi

∑
j

mj
Φj

$j
( f j − fi)

∂Wij

∂xi
(4.10)

and setting Φ = 1 one finally receives:

(
∂ f
∂x

)

i
= ∑

j

mj

$j
( f j − fi)

∂Wij

∂xi
(4.11)

or with the approximation operator:

< ∇ fi >= ∑
j
( f j − fi) · ∇W(xij, hSPH)∆Vj (4.12)

4.2.2 Tensile Instability

An issue attracting attention since longer is the tensile instability: particles subjected to
tensile stress will lump under certain conditions and subsequently spoil the solution. An
analysis conducted by Swegle [54] revealed the cause not to lie within the numerical time
integration algorithm but in the interaction between constitutive relation and the kernel
function inducing imaginary sound speeds under special conditions. A partial solution is
the use of artificial viscosity or a Total Lagrangian formulation, which is less prone to tensile
instability, instead of the more common Updated Lagrangian approach. Another way to
circumvent the tensile instability is the utilization of so called stress points which are briefly
explained in the next paragraph.
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4.2.3 Zero Energy Modes

Zero energy modes are characterized by stress- / strain-free deformation of the discretized
continuum in numerical solutions. A common form of zero energy modes in FEM solutions
is the so called "hour-glassing", for more details see [23].

In particle methods, zero energy modes arise due to all field values located on the same
spatial location for each particle, shown by Vignjevic [130]. A solution is the introduction
of so called "stress points", initially developed by Dyka & Ingel [48] for the treatment of
the tensile instability in 1D by separating spatial locations carrying displacement and stress
informations. Later, the stress point method was extended into two dimensions by Randles
& Libersky [195]. The stress points not only solve the zero energy mode problem but also
simplify the application of stress boundary conditions. So far, no extension of the stress
point method exists for problems in three dimensions.

4.2.4 Boundary Condition Application

Due to the SPH being an interpolating method, the boundaries/edges of the domain are not
captured well. Usually, displacement/velocity boundary conditions are imposed directly on
the particles by overwriting these quantities in each time step. On free boundaries, the SPH
method results in approximate zero pressure (fluid dynamics) or approximate stress free
(structural dynamics) boundary conditions without explicit treatment. Randles & Libersky
[194] explain the effect with the missing neighbour interpolation particles acting as if they
are cancelling out in the momentum kernel sums due to zero stress/pressure components
of the non-existent particles. Important to note here is that the approximately stress free
boundaries work with the standard SPH only. For normalized and / or corrected SPH
schemes (see next paragraph below) different measures for ensuring stress free boundary
conditions have to be taken.

One way to improve boundary condition application is the use of the so called "ghost particle"
approach. The idea is to place at least one additional layer of particles at the boundary
outside of the domain. The number of layers depend on the chosen smoothing length h. The
ghost particles carry the desired boundary condition. During the kernel interpolation of the
main domain the ghost particles are incorporated automatically and by that imprinting the
specified boundary conditions.

In case stress boundary conditions shall be applied, the stress point method, first introduced
by Dyka & Ingel [48], is an elegant way to accomplish. A brief introduction of the stress
point method is given in the paragraph above.
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4.2.5 Interpolation Normalization and Consistency

The standard SPH approximation does not correctly approximate constant fields (zero order
inconsistent) as well as constant fields resulting from the derivation of linear functions (first
order inconsistent).

Figure 4.2: Cosine function in the interval x = [0 : 2π] and its SPH approximation the
showing boundary deficiency.

Another problems is the boundary deficiency where particles at the border of the domain
approximate incorrect values. An example for this boundary deficiency is shown in figure
4.2 for cosine function and its SPH approximation with 20 particles in the domain. The
requirement

∫
Ω

W(x− x̃, hSPH)dV = 1 (based on (4.2)) cannot be fulfilled at domain bound-

aries. This is illustrated with figure 4.3. Particle P1 is located at the domain boundary and
has a neighbour to its right side (particle P2) only. When interpolating function values or
its derivatives the missing interaction to the other side will lead to incorrect results since
the kernel sum over neighbouring particles won’t equal 1 and therefore does not mimic the
Dirac delta property.

P1 P2 P3 P4 P5

W

d
o
m
a
in

b
o
u
n
d
a
ry

Figure 4.3: SPH boundary deficiency

Several approaches exist in order to resolve the boundary deficiency and to restore the zero
and first order consistency. Two examples of them will be given below. In the following the
convention of Vignjevic [41] is used, where normalization refers to improvements of the zero
order consistency and correction to improvements of the first order consistency.
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The first example is the Corrected Smoothed Particle Method (CSPM) developed by Chen
[103]. Their modification is based on a Taylor series expansion of the SPH approximation of
a function. The expansion is truncated with the first derivative terms and reads:

fi
∼=

∑N
j=1 f (xj)W(xij, hSPH)Vj

∑N
j=1 W(xij)Vj

(4.13)

The resulting expression is able to restore zero order consistency when interpolating a
function, see the repeated approximation of the cosine function in figure 4.4.

Figure 4.4: Cosine function in the interval x = [0 : 2π] with SPH and CSPM approximation.
The latter correctly approximates at the domain boundary.

Repeating the Taylor series expansion with the SPH approximation of the first derivative of
a function gives a first order consistent approximation:

fxi
∼=

∑N
j=1[ f (xj)− f (xi)]W,x(xij, hSPH)Vjx

∑N
j=1(xj − xi)W,x(xij, hSPH)Vj

(4.14)

The CSPM can be shown to be equivalent to the Randles-Libersky correction [129, 194] for
which the reader is referred to [209].

The second example is the Reproducing Kernel Particle Method (RKPM) developed by Liu
[259]. Starting from the finding that the basic reproduction requirements in standard SPH
are violated:

∫

Ω
W(x− x̃)dx̃ = 1 (4.15a)

∫

Ω
W(x− x̃)(x− x̃)dx̃ = 0 (4.15b)

with Ω being the whole domain of the problem. Condition (4.15a) is based on equation (4.2)
and is not fulfilled at the boundary for the standard SPH. A corrective kernel is deduced by
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enforcing the conditions from equations (4.15) in each location. The corrective kernel then
reads:

K(x, x̃) = C(x, x̃)W(x− x̃)
C(x, x̃) = [C0(x) + C1(x) · (x− x̃)]

(4.16)

with K(x, x̃) being the corrective kernel, W(x− x̃) the SPH kernel and C(x, x̃) a correction
function. The corrective kernel K(x, x̃) is then used to substitute the kernel expression
W(xij, h) in equations (4.5) and (4.8), respectively.

Other examples for kernel modifications are:

• Corotated SPH as described by Becker [148],

• Vignjevic [41] or

• Johnson and Beissel [106]

A detailed discussion about first order kernel derivatives and corrections, exemplarily for
elastodynamics applications, is provided with [209] and for second order derivatives kernel
corrections in [3].

4.2.6 Artificial Viscosity

Oscillations in the field value, e.g. induced by shock loading, can lead to instabilities and
divergence of the solution. A remidy is the introduction of an artificial viscosity. Initially, it
was developed for the simulation of compressible flows under presence of shocks [252].

Two different kinds of artificial viscosity [165] are used where the first is the viscuos pressure
(von Neumann - Richtmyer[252]) which is proportional to the square of the velocity gradient:

q =

{
αav$h2

SPH(∇ · v)2, for vij · xij < 0
0, for vij · xij ≥ 0

(4.17)

and the second is the bulk viscosity being proportional to the linear velocity gradient:

q =

{
−αav$hSPHc(∇ · v), for vij · xij < 0
0, for vij · xij ≥ 0

(4.18)

SPH simulations use a combined form of (4.17) and (4.18) which results in[219]:
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Πij =





−αav c̄ijµij+βavµ2
ij

$̄ij
, for vij · xij < 0

0, for vij · xij ≥ 0
(4.19)

and

µij =
hSPHvij · xij

x2
ij + η2

av
(4.20)

with αav, βav are dimensionless parameters and ηav is a small parameter to prevent diver-
gences. Some standard parameters for the artificial viscosity are αav = βav = 1 and ηav = 0.1
[208].

4.2.7 Artificial Stresses

Artificial stresses were introduced by [107] to prevent the tensile instability. Attracting
particles are assigned with repulsive stresses to prevent from clumping. For this purpose a
new "artificial" stress tensor R is introduced. In the first step an eigenvalue decomposition of
the Cauchy stress tensor σ is performed for each particle:

E = Q · σ ·QT =




E1 0 0
0 E2 0
0 0 E3


 (4.21)

The principal stresses Ei are then modified as:

Êi =

{
εas

Ei
$2 , Ei > 0

0, Ei ≤ 0
(4.22)

with εas being a parameter which determines the "strength" of the artificial stress. Grey [107]
proposed a value of εas ≈ 0, 3. After modification of the principal stresses they are rotated
back into the initial system and form the artifical stress tensor R:

R = QT · Ê ·Q (4.23)

The principal stress determination is in mathematical terms an eigenvalue decomposition
which can be solved either analytically or numerically for example with the QR-algorithm.

The artificial stress tensor between two particles i and j is then defined as:
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Θij = (Ri + Rj) · f nStress
as (4.24)

where the factor fas is computed with:

fas =
W(rij)

W(∆p)
(4.25)

with ∆p being the particle spacing (usually constant) and rij the current distance between
particle i and j. This leads to a strong decay of fas between h and 2h such that the artificial
stresses are mainly effective when the particles are very close to each other. nStress is the stress
exponent and controls the decay of fas. Standard parameters are εas = 0.3 and nStress = 4
[208]. Figure 4.5 shows an example of impacting rubber rings where in the top half no
stabilization is performed and in the lower part the stabilization is switched on. Material
parameters according to table 4.1 were used.

Young’s modulus E [Pa] Poisson ratio ν [-] Density $[kg/m3] Initial velocity vinit[m/s]
10000 0.4 1 170

Table 4.1: Material parameters and initial conditions for rubber ring impact simulation.

The unstabilized rings are diverging while the stabilized rings behave as expected without
instabilities.

Figure 4.5: Impacting rubber rings at three different time points during / after collision. The
von Mises equivalent stresses are displayed. Top halves of the pictures show SPH
results without stabilization and numerical fracture of the rings while the lower
halves show the SPH results with stabilization and without any indications of
numerical fracture.

4.2.8 XSPH

For problems in tension the XSPH [162] can stabilize the solution since the particle velocities
are averaged over the neighboring particles which is controlled by a parameter εXSPH where
εXSPH = 0 is no averaging and εXSPH = 1 is maximum averaging. This computation does
not necessarily require the same kernel W as in the other interactions [107]. The form of the
XSPH given here is from [200]:
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dui
dt

= vi + εXSPH ·∑
JεS

mj

(
vj

$ji

)
W(xi − xj, hSPH) (4.26)

with

$ji =
$j + $i

2
(4.27)

and a constant:

0 ≤ εXSPH ≤ 1 (4.28)

whose value defines how much is averaged in the particle neighbourhood where εXSPH = 0
is no averaging at all.

4.3 discretization of the continuum equations

In this chapter the discretised SPH-equations of the continuum equations are introduced.
The approximation operator < · > is left out from the left sides of the equations for brevity
and W(xi − xj, hSPH) is written as Wij.

4.3.1 Velocity Gradient Computation

The velocity gradient L is required for the determination of the strain and stress rates and is
approximated with:

Li =
N

∑
j=1

(
vj − vi

)
⊗∇Wij ·

mj

$j
(4.29)

4.3.1.1 Strain Rate

The strain rate tensor ε̇ is computed from the symmetric part of the velocity gradient:

ε̇ = Di =
1
2
(Li + LT

i ) (4.30)
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4.3.1.2 Stress Rate

The deviatoric stress rate is computed with the Jaumann rate of the stress tensor ṠJ (3.85):

W i =
1
2
(Li − LT

i ) (4.31)

ṠJ
i = Ṡi + W iSi − SiW i (4.32)

and the hydrostatic pressure is:

pi = c2($i − $i
0) (4.33)

4.3.2 Continuity Equation

The continuity equation is discretised in this work as:

$̇i = $i ·
N

∑
j=1

(vj − vi) · ∇Wij
mj

$j
(4.34)

4.3.3 Momentum Equation

The form of the discretised momentum equation is given as:

v̇i =
N

∑
j=1

(
σi
$2

i
+

σj

$2
j
+ Πij · I + Θij

)
· ∇Wij ·mi + bi (4.35)

with bi the body forces which can be applied due to contact forces, see chapter 4.3.6. The
artificial viscosity Πij is specified in (4.24) and the artificial stress Θij in (4.23).

4.3.4 XSPH

The XSPH-stabilization is computed with:

ẋi = vi + εXSPH ·
N

∑
j=1

mj

$i + $j
(vj − vi) ·Wij (4.36)

60



4.3 discretization of the continuum equations

4.3.5 Heat Equation

Solving the heat equation (3.65) requires the computation of second order derivates. As
shown in [164] using straightforward second order kernel derivatives yields:

∇(∇ f (x)) ≈
∫

Ω
f (x′)∇(∇Wh(x− x′))dx′ (4.37)

which is cumbersome and simply motivated by deriving (4.5) twice. It is very sensitive to
particle disorder, the transfer of heat between two particles can be positive or negative thus
violating the second law of thermodynamics. This is induced due to the nature of the second
derivative of the kernel which changes its sign with increasing particle distance, see also
figure 4.1. A more elaborated method is according to [65]:

∇(∇ f (x)) ≈
∫

Ω

(
f (x)− f (x′)

)
∇(∇Wh(x− x′))dx′ (4.38)

which can have some issues with instabilities and a second derivative based on a finite
difference scheme proposed by Brookshaw [34] is introduced:

∇(∇ f (x)) ≈ 2 ·
N

∑
j=1

(
f (x)− f (xj)

|x− xj|)

)
eij∇Wh(x− xj)ωj (4.39)

The advantage of (4.39) is that a second kernel derivative is required. More such schemes
exist but are not part of this review. A completely different approach is the Particle Strength
Exchange (PSE) which was introduced by [49]. PSE is motivated to design specific kernels for
the derivatives required which means that between different derivatives completely different
kernels will be created. The basic principal is shown in one dimension motivated by a Taylor
series expansion:

f (x′) = f (x) + (x′ − x)
∂ f (x′)

∂x
|x +

1
2
(x′ − x)2 ∂2 f (x′)

∂2x
|x + .. (4.40)

subtracting f (x) and multiplication by a PSE kernel WPSE
h not yet determined and integration

over the complete domain:

∫

Ω

(
f (x′)− f (x)

)
WPSE

h (x′ − x) =
∫

Ω
(x′ − x)

∂ f (x′)
∂x
|xWPSE

h (x′ − x)+

1
2
(x′ − x)2 ∂2 f (x′)

∂2x
|xWPSE

h (x′ − x) + ..
(4.41)

and WPSE
h is now chosen that:
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1
2

∂2 f (x′)
∂2x

|x
∫

Ω
(x′ − x)2WPSE

h (x′ − x)
︸ ︷︷ ︸

!
=2

(4.42)

for which a kernel is selected that exhibits symmetry and terms containing (x′ − x)p vanish
for odd p. An intuitive choice in 1D is then:

WPSE
h (x′ − x) =

1
2h
√

π
e(
|x′−x|2

4h2 ) (4.43)

A detailed derivation can be found in [3]. The discretised heat equation without source terms
becomes then for the PSE:

Ṫi =
λ

$icp
∑

j
(Tj − Ti)WPSE

ij Vj (4.44)

In this work the energy equation (3.73) is discretised with kernels of the type (4.39) and
(4.43).

4.3.6 Contact Algorithm

4.3.6.1 Contact Force

Contact with tools are handled with a penalty contact algorithm in the SPH-simulations.
The basic idea is to allow small penetration through the surface and apply repulsive forces
based on the penetration depth multiplied by a contact stiffness. The repulsive force is then
applied as body force b in the momentum equation (4.35), see figure 4.6. The full algorithm
is outlined in [208].

The contact force is then computed:

b = Fcont = Fcont · n =
d · κ ·mp

∆t2 n (4.45)

with d being the penetration depth of the particle to the closes exterior boundary of the
contacting tool, κ the contact stiffness, mp the particle mass and n the normal at the contact
surface.
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4.3 discretization of the continuum equations

Figure 4.6: Penalty contact algorithm for SPH particles with rigid body.

4.3.6.2 Friction Force

Friction is computed with (3.66):

|F f ric| = µ f ric · |Fcont| (4.46)

this equation does not yet define the direction vector of F f ric. When it is related to the current
sliding velocity between particle and contacting body oscillations can occur and therefore
another more sophisticated approach needs to be chosen which penalizes directional changes
of the friction force in successive increments. For this purpose the algorithm used in LS-
DYNA [83] is implemented where first the friction Fn

f ric from the last increment n is used to
compute F∗:

F∗ = Fn
f ric − vrel ·mp/∆t (4.47)

The friction force Fn+1
f ric in the current increment n + 1 is then:
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meshless methods

Fn+1
f ric =

{
|F f ric| · F∗/|F∗|, if |F∗| > |Ff ric|
F∗ if |F∗| ≤ |Ff ric|

(4.48)

4.3.7 Time Integration

The time derivatives occurring in equations for continuity (4.34), momentum (4.35), advection
(4.36) stresses (4.32) and the energy equation (4.44) need to be integrated with respect to time.
A second order leapfrog time integration is used in the SPH-simulations. The integration
scheme requires first the computation of the solution variables at the half time step t + ∆t/2:

xn+1/2 = xn + ẋn ·
∆t
2

(4.49)

$n+1/2 = $n + $̇n ·
∆t
2

(4.50)

vn+1/2 = vn + v̇n ·
∆t
2

(4.51)

Sn+1/2 = Sn + ṠJ
n ·

∆t
2

(4.52)

Tn+1/2 = Tn + Ṫn ·
∆t
2

(4.53)

With the values at t + ∆t/2 the continuity (4.34), momentum (4.35), advection (4.36) stresses
(4.32) and the energy equation (4.44) are solved and the updated values are used to finally
update:

xn+1 = xn + ẋn+1/2 · ∆t (4.54)
$n+1 = $n + $̇n+1/2 · ∆t (4.55)
vn+1 = vn + v̇n+1/2 · ∆t (4.56)

Sn+1 = Sn + ṠJ
n+1/2 · ∆t (4.57)

Tn+1 = Tn + Ṫn+1/2 · ∆t (4.58)

Deviatoric stresses Sn+1 not fulfilling F(σ) ≤ 0 (3.113) are corrected in the plasticity algorithm
and the resulting deviatoric stresses and plastic strain increments are stored. Finally the
boundary conditions are applied and the contact algorithm is invoked to resolve potential
contact violations.
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5
O X L E Y ’ S P R O C E S S F O R C E M O D E L

In this chapter Oxley’s [182] process force model is introduced. It is then applied to the
prediction of process forces for an orthogonal cutting case and the computational results are
compared to experimental results. The model will be used in chapter 9.5 for the prediction
of process forces within an inverse identification of constitutive model parameters where by
variation of these constitutive model constants the error between predicted and experimental
process forces is minimized.

Oxley’s force model is an analytical approach based on the slipline theory of plasticity to
estimate the process forces in an orthogonal cutting setup. It was developed as a continuation
of Ernst’s [64] force model which considers, supported by observations, the chip formation
in a narrow zone by plastic deformation. This zone is called shear plane and extends from
the tool tip (point B) to the free surface of the workpiece at the outer root of the chip (point
A), represented by the line AB in figure 5.1.

Tool

γ

φ

vc

Workpiece

C
h
ip

A

B

V

U

t2

t1

Figure 5.1: Oxley force model

The angle φ depicts the shear plane angle, the angle γ is the rake angle and t1 and t2 are
the uncut chip thickness and the chip thickness, respectively. The clearance face and the
clearance angle are not considered in this model.

In this model the tool is assumed stationary and the workpiece moves with the velocity U
where the chip changes its velocity instantaneously to V in the shear plane. Therefore, it is
limited to perfectly-plastic material behaviour. The consequences are an infinite shear strain
rate in the shear plane which of course is not realistic. Further, this model cannot describe
the strain rate sensitivity as well as the work hardening of a material. Some basic relations
can be obtained by analysing the velocity diagram given in figure 5.2.

The velocity normal to the shear plane is:
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oxley’s process force model

γ

φ

V

U

VS

90
◦
− γ

Figure 5.2: Oxley force model: velocity diagram

VN = U · sinγ (5.1)

The chip velocity V is related to the workpiece velocity U by:

V =
U · sinφ

cos(φ− γ)
(5.2)

and the tangential component VS of the velocity in the shear plane (A-B):

VS =
U · cosα

cos(φ− γ)
(5.3)

The total tool force R in figure 5.3 can be decomposed:

FC = R · cos(λ− γ) cut force (5.4)
FT = R · sin(λ− γ) normal force (feed force) (5.5)
F = R · sin(λ) friction force at tool-chip interface (5.6)
N = R · cos(λ) normal force at tool-chip interface (5.7)

R = FS
cosθ = kAB·t1·w

sinφ·cosθ total tool force (5.8)

t2 = t1cos(φ−γ)
sinφ chip thickness (5.9)

where kAB is the shear flow stress in the shear plane between the points A and B, t1 is the
uncut (undeformed) chip thickness and w the width of cut.

The shear strain in the shear plane can be obtained from:

γAB =
VS

VN
=

cosα

sinφ · cos(φ− γ)
(5.10)

With the equation above the problem cannot be solved yet for a given rake angle γ and
uncut chip thickness t1 as the shear plane angle φ is not defined. For this problem different
solutions were developed which are compiled in table 5.
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5.1 oxley force model

Tool
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t1
Θ

Θ = Φ+ λ− γ

Figure 5.3: Oxley force model: force decomposition

Shear plane angle φ Reference Comments
φ = π

4 + γ
2 − λ

2 Ernst and Merchant [153] Φ such that AB is direction of max. shear stress
2φ = cot−1s + γ− λ Merchant [155] γAB increases linear with normal stress along AB

φ = π
4 + γ− λ Lee and Shaffer [121] shear angle based on slipline field model

Following the discussion in Oxley [182], the shear plane model is valid for non-hardening
materials only. This is a severe restriction and does not hold for a majority of materials.
Further, materials not only show a strain-hardening but also a hardening tendency towards
higher strain rates. For this reason the shear plane model was extended such that the shear
deformation takes place in a small finite zone instead of a infinite zone as in figures 5.1 and
5.3.

5.1 oxley force model

In Oxley’s force model a power law is used for the yield stress σ:

σ = σ1 · εn
pl (5.11)

with σ1 being a constant and n the strain-hardening exponent. To account for strain rate
and temperature effects a velocity modified temperature Tmod, first introduced by [144], is
calculated:

Tmod = T ·
(

1.0− vTmod · ln
(

ε̇pl

ε̇0
pl

))
(5.12)

with vTmod being a dimensionless material parameter, ε̇0
pl the reference strain rate and the

strain rate ε̇pl.

In addition to the equations (5.9) the shear strain rate in the shear zone is:

67



oxley’s process force model

γ̇AB = C
VS

l
(5.13)

with C being a material dependent parameter. The angle θ is expressed similarly to the shear
plane model as:

θ = φ + λ− γ (5.14)

And the shear plane strain AB is:

γAB =
1
2

cosγ

sinφ · cos(φ− γ)
(5.15)

The temperature in the shear plane TAB is:

TAB = TW + η∆TSZ (5.16)

with TW being the initial temperature of the workpiece, ηTQ the conversion factor of plastic
work into heat (Taylor-Quinney coefficient) and ∆TSZ is given by:

∆TSZ =
1− ηTQ

ρ · cp · t1 · w
FS · cosγ

cos(φ− γ)
(5.17)

with ρ the density and cp the specific heat of the material, l the length between points A and
B and FS the shear force along AB.

The amount of heat conducted into the workpiece is described with 0 ≤ β ≤ 1 and is given
according to [2]:

β =

{
0.5− 0.35 · lg(RT · tanφ), for 0.04 ≤ RT · tanφ ≤ 10.0
0.3− 0.15 · lg(RT · tanφ), for RT · tanφ > 10.0

(5.18)

where RT is the ”thermal number“ and defined as:

RT =
ρ · cp ·U · t1

K
(5.19)

with K being the thermal conductivity of the workpiece. The average tool-chip interface
temperature is computed by:

Tint = TW + ∆TSZ + ψ∆TM (5.20)
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5.1 oxley force model

with ∆TM being the temperature rise in the chip and 0 < ψ ≤ 1 being a factor for controlling
temperature variations along the interface. Considering the thickness of the tool-chip
interface as δ · t2 and the tool-chip contact length as h, the chip temperature increase is
assessed as:

lg
(

∆TM

∆TC

)
= 0.06− 0.195 · δ

(
RT · t2

h

)1/2

+ 0.5 · lg
(

RT · t2

h

)
(5.21)

Here, ∆TC is the average temperature rise in the chip:

∆TC = Fsinφ/ρcpt1wcos(φ− γ) (5.22)

The tool-chip contact length h is derived from a moment equilibrium of the normal stresses
on AB about point B and is:

h =
t1 · sinθ

cosλ · sinφ

(
1 +

C · n
3[1 + 2(1/4π − φ)− C · n]

)
(5.23)

The maximum tool-chip shear strain rate is:

γ̇int =
v

δt2
(5.24)

where it is assumed, supported by observations [244] that the chip material and the cutter
are interlocked in their interface such that the shear flow stress of the chip limits the friction
only. In the equation above δ is the ratio of the tool-chip plastic zone thickness to the chip
thickness.

The shear stress in the shear plane AB is:

kAB =
σ1εn

AB√
3

(5.25)

and the shear stress at the tool-chip interface is for a given φ:

τint =
F

hw
(5.26)

On the other hand, the shear flow stress in the tool-chip interface is.

kchip =
σ1√

3
(5.27)
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oxley’s process force model

Now, with equations (5.26) and (5.27) the intersection point of both lines can be found by
varying φ. By the set of equations above the determination of process forces still requires
the knowledge of the shear plane angle φ. Oxley [181] proposed to use the stress boundary
condition in point B in an attempt to find the parameters C and γ̇AB. Therefore the normal
stress on the tool face B is computed with:

σ′N = kAB · (1 + π/2− 2 · γ− 2 · C · n) (5.28)

on the other hand the normal stress at B is also given by:

σN = N/(h · w) (5.29)

With these equations for a given tool rake angle γ and cutting speed U, undeformed chip
thickness t1, cut width w and initial temperature TW the process forces can be computed
iteratively with three nested loops over a range of δ, C and φ.

5.1.1 Solution Algorithm

The original solution scheme [182] for Oxley’s algorithm is shown in figure 5.6. A short
summary of the algorithm is provided in the following. First the boundaries and increment
steps for δ, C and φ have to be defined, typical values in literature [120] are:

• δmin = 0.005, δmax = 0.2, ∆δ = 0.005

• Cmin = 2.0, Cmax = 10.0, ∆C = 0.1

• φmin = 5◦, φmax = 45◦, ∆φ = 0.1◦

Next, the computation is performed within three nested loops:

• loop over δ = δmin...δmax with step size ∆δ

– loop over C = Cmin...Cmax with step size ∆C

∗ loop over φ = φmin...φmax with step size ∆φ, store kchip(φ) and τint(φ).

∗ the shear plane angle φ is then found for the condition kchip(φ) = τint(φ). This
is shown left in figure 5.4 where at δ = 0.16 and C = 2.5 a shear plane angle
φ ≈ 31◦ is found. Store corresponding σN(C) and σ′N(C) at this φ.

– C is found for the condition σ′N(C) = σN(C), see right chart in figure 5.4. The
corresponding cut force Fc(δ) is stored
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5.1 oxley force model

• At each δ the cut force Fc(δ) can be determined after C and φ are found. The cut force
has a characteristics as shown in figure 5.5 and the final δ is taken from the point where
the cut force is a minimum: Fc(δ) = min.

Figure 5.4: Left: example characteristics of kchip(φ) and τint(φ) depending on the shear plane
angle φ and constant δ = 0.15 and C = 5.7. Right: determination of the material
constant C from the intersection point of σN(C) = σ′N(C)

Figure 5.5: Cut force variation Fc(δ) - its minimum determines the final δ.
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Process conditions:
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Figure 5.6: Oxley force model: structural chart of the algorithm.72



5.1 oxley force model

The execution time of this algorithm is in the order of a few seconds. Which makes it
attractive to be used for inverse identification of constitutive model parameters. However,
the resolution, e.g. Fc(δ) in this example, is questionable and can be improved by reducing
the increment sizes ∆δ, ∆C and ∆φ at the expense of computation time. For this reason a
modified algorithm is proposed in the next section 5.1.2.

5.1.2 Modified Algorithm

The original algorithm can be significantly improved by avoiding the three nested loops
over φ, C and δ as in the original algorithm from section 5.1.1. Instead, the intersections of
kchip(φ) = τint(φ) and σN(C) = σ′N(C) as well as the minimum Fc(δ) are evaluated within
three separate algorithms using numerical methods:

• Algorithm 1: determination of φ

– approximation of the functions kchip(φ) and τint(φ) by a straight line each at a
constant δ and C, therefore:

– compute at two different φn
1 and φn

2 = ε · φn
1 the values of kchip(φ

n
1 ), kchip(φ

n
2 ),

τint(φ
n
1 ), τint(φ

n
2 ), choose small ε for a good approximation of the gradient, e.g

ε = 1.0001

– compute the intersection point φintersect of the two approximated lines < kchip(φ) >
and < τint(φ) >

– this intersection point φintersect forms the start point φn+1
1 = φintersect for the next

loop until a termination criteria is met

– the determination of φn+1
1 within one iteration loop is shown in the left chart in

figure 5.7

• Algorithm 2: determination of C

– similar to Algorithm 1 the functions σN(C) and σ′N(C) are linearly approximated
with straight lines at a constant δ

– the gradient of each function is determined with two different C1 and C2 = ε · C1,
ε is chosen small for a good approximation of the gradient, e.g ε = 1.0001

– compute with algorithm 1: for C1 and C2 the shear plane angles at which
kchip(φ) = τint(φ)

– compute the intersection point Cintersect of the two approximated lines

– this intersection point Cintersect forms the start point Cn+1
1 = Cintersect for the next

loop until a termination criteria is met

73



oxley’s process force model

– the determination of Cn+1
1 within one iteration loop is shown in the right chart in

figure 5.7

• Algorithm 3: determination of δ

– this algorithm uses a different strategy since the minimum of the function Fc(δ) is
searched. A quadratic function is fitted with three points and the minimum point
of this fitted function is determined analytically. The minimum point is then used
as a new start point in the next iteration loop.

– choose three different δ1, δ2 = ε · δ1 and δ3 = (ε − 1) · δ1, choose ε for a good
approximation of the quadratic function, e.g ε = 1.1

– compute with algorithm 2: Fc1(δ
n
1 ), Fc2(δ

n
2 ) and Fc3(δ

n
3 )

– fit quadratic function < Fc(δ) >= a · δ2 + b · δ + c through Fc1(δ
n
1 ), Fc2(δ

n
2 ) and

Fc3(δ
n
3 ) and determine its minimum point δintersect = −b/2a

– set δ1 = δintersect and repeat loop until a termination criteria is met.

– the determination of δn
min within one iteration loop is shown in figure 5.8

• the shear plane temperature TAB is determined with a secant method instead of a
simple but computationally expensive loop

These improvements were implemented resulting in compute times of a fraction of a second.

Figure 5.7: Determination of φ (left) with algorithm 1 and determination of C (right) with
algorithm 2.
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5.2 extension to other flow stress models

Figure 5.8: Determination of the minimum of Fc(δ) with algorithm 3.

5.2 extension to other flow stress models

Adibi-Sedeh et al[1] extended Oxley’s force model for the use with the Johnson-Cook [105]
and mechanical threshold stress (MTS) flow stress models [67]. This extension was limited to
the secondary deformation zone and Lalwani[120] extended this with a purely Johnson-Cook
description by replacing the strain-hardening exponent n in Oxley’s force model with an
equivalent strain-hardening exponent neq. The shear flow stress in the shear plane AB (5.25)
becomes then:

kAB =
σ1εn

AB√
3

=

√
1
3
(A + B · (εAB)

n)

(
1 + C · ln

(
ε̇AB

ε̇0
pl

))(
1−

(
T − Tre f

Tf − Tre f

)m)
(5.30)

The angle θ can be expressed with either (5.14) or:

tanθ = 1 + 2(π/4− φ)− C · n = 1 + 2(π/4− φ)− C · neq (5.31)

where n is replaced with the equivalent strain hardening exponent neq:

neq ≈
n · B · εn

AB
A + Bεn

pl
(5.32)

and similarly n is replaced for neq in the expression for the tool contact length h (5.23):

h =
t1 · sinθ

cosλ · sinφ

(
1 +

C · neq

3[1 + 2(1/4π − φ)− C · neq]

)
(5.33)
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oxley’s process force model

The normal stress σ′N on the tool face B (5.28) becomes:

σ′N = kAB · (1 + π/2− 2 · γ− 2 · C · neq) (5.34)

And the last equation modified is the computation of the shear flow stress in the tool-chip
interface:

kchip =
1√
3
=

√
1
3
(A + B · (εint)

n)

(
1 + C · ln

(
ε̇int

ε̇0
pl

))(
1−

(
T − Tre f

Tf − Tre f

)m)
(5.35)

5.3 example calculations

An example calculation is performed for an orthogonal cutting experiment of Ti6Al4V from
[260] with a cut speed of vc = 70m/min, a feed of f = 0.1mm and a tool rake angle γ = 10◦

The measured process forces are Fc = 180N for the cut force and Ff = 85N for the feed force.
The Johnson-Cook flow stress model is used with two different material parameter set, see
table 5.1.

Material A[MPa] B[MPa] C[−] m[−] n[−] ε0
pl[s
−1] Tre f [K]

Ti6Al4V set 1 [213] 896 656 0.0128 0.8 0.5 1.0 300.0
Ti6Al4V set 2 [104] 862.5 331.2 0.012 0.8 0.34 1.0 300.0

Tmelt[K] ηTQ[−] cp[J/kgK] λ[W/mK] ∂λ
∂T [

W
mK2 ] $[kg/m3]

1678 0.9 526.0 4.7793 0.0206 4430.0

Table 5.1: Material parameters used for Oxley’s force model

The process force model predicts the following process quantities:

Oxley’s process force model is a fast analytical approach for the determination of process
forces in orthogonal cutting. However, the process forces are underpredicted compared to
the experimental results for both material parameter sets. The cut force deviates by at least
20% and the feed force deviates by more than 60%. Given the fact that Oxley’s force model
does not consider cutting edge radii, clearance angle or friction coefficents and is limited
to isotropic hardening its predictive quality is not too bad. It is noted that these results
can differ for other material parameter sets as there are lots of different sets available for
Ti6Al4V[61].
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5.3 example calculations

Quantity Ti6Al4V set 1 Ti6Al4V set 2 Experimental
Shear plane angle φ 33.8◦ 34.9◦

δ 0.0942 0.0637
Material constant C 1.923 3.964
Chip thickness t2 0.164mm 0.159mm
Shear plane strain εAB 0.558 0.548
Shear plane strain rate ε̇AB 7770s−1 16600s−1

Tool-chip interface strain εint 4.03 5.34
Tool-chip interface strain rate ε̇int 26500s−1 42000s−1

Shear plane temperature TAB 402.3◦C 350.2◦C
Tool-chip interface temperature Tint 979.7◦C 873.0◦C
Shear plane stress kAB 576.8MPa 501.1MPa
Normal stress on the tool face B σ′N 889.3MPa 791.4MPa
Tool-chip contact length h 0.1559mm 0.1486
Cut force Fc 146.5N 123.7N Fexp

c = 180N
Feed force Ff 32.58N 24.14N Fexp

f = 85N

Table 5.2: Comparison of measured and simulated process forces
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6
I N V E S T I G AT I O N O F S T R E S S S TAT E S I N O RT H O G O N A L C U T T I N G

A numerical study of orthogonal cutting of Ti6Al4V material is presented. The assessments
were carried out with the SPH method in Abaqus/Explicit to explore the capabilities of the
SPH implementation in Abaqus and to benchmark the solver speed on the one hand. On the
other hand, the main focus in this investigation is on the stress states occurring during metal
cutting. For this purpose material points (particles) are tracked which allows the analysis of
the evolution of physical quantities at material points, like stress and strain tensors. They
are analysed in detail with a newly developed method for tracking of eigenvectors and
eigenvalues and shall answer to which extent the assumption of isotropic hardening is
justified for the stress states occurring in metal cutting. For this purpose the time-wise
evolution of stress states at material points in and around the primary shear zone were
analysed with the SPH for two different cutting speeds, two different friction coefficients as
well as rigid and elastic cutter models.

6.1 numerical model

For the analyses presented here the SPH was used within Abaqus 6.14-1/Explicit. Since
Abaqus SPH does not support 2D SPH models, a 3D model was used for the orthogonal
cutting simulation. In order to keep the computational effort as low as possible a small strip
of metal was simulated only. The cutter was modelled as a rigid tool as well as an elastic tool.
All simulations considered adiabatic heating due to plastic dissipation. Heat conduction
is not considered as it is not supported in Abaqus SPH and the effect can be neglected in
this case since the time to cut is lower than 1ms where the rather slow heat conduction is
expected to play a minor role. The time stepping was used with Abaqus default settings
resulting in increment times of 3 · 10−3µs (rigid tool model) to 4 · 10−4µs (elastic tool model).
A convergence study is performed prior to the main analysis to ensure stable results at the
chosen simulation resolution.

6.1.1 Geometry and Mesh

The numerical model consists of the cutter and the workpiece. It is based on the LS-Dyna
model from [213]. The main dimensions of the workpiece are: length=2mm, height=0.3mm
and width=0.1mm. A schematic representation of the geometry is provided with figure
6.1. In the convergence study the particle resolution of the workpiece is varied from one
particle per cut width up to 12 particles. Based on the results from this convergence study,
in the main analysis the workpiece is discretised with 60’000 particles (200x30x10) with an
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inter-particle distance of ∆x = 0.01mm. The effective particle radius was set to ∆x
2 = 0.005mm

which is relevant for the computation of the particle volume, the contact algorithm and the
outer surface definition of the particle domain. It has to be noted that the effective particle
radius is not equivalent to the smoothing length!

Figure 6.1: Schematic representation of cutter (green) and workpiece (blue) geometry

The cutter is modelled with 10865 elements based on elements of type C3D8. The clearance
angle is α = 8◦, the rake angle is γ = 10◦ and the cutting edge radius is rc = 20µm. The
meshed/discretised model of the cutter and the workpiece is shown in figure 6.2.

6.1.2 Constitutive Model

6.1.2.1 Workpiece

The workpiece material is the titanium alloy Ti6Al4V. A flow stress model according to
Johnson-Cook (JC) came to application, see equation (3.95). All workpiece material param-
eters used throughout the analysis are provided in tables 6.1 and 6.2. Plastic dissipation
into thermal energy (adiabatic heating) was considered with a Taylor-Quinney coefficient of
ηTQ = 0.90:

∆T =
ηTQ · σy

$ · cp
∆εpl (6.1)

The temperature dependency of the elastic modulus, the density and the Poisson’s ratio as
well as the thermal expansion of the workpiece were not considered in the present work.
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Figure 6.2: Meshed model of cutter(green) and workpiece(blue)

Material E Poisson Density Specific heat capacity Source
[GPa] ν[−] $[kg/m3] cp[

J
kgK ]

Ti6Al4V 110.0 0.35 4300 526.0 [213]

Table 6.1: Physical properties of Ti6Al4V.

6.1.2.2 Cutter

Simulations were carried with rigid as well as elastic cutter models. The rigid cutter model
used a reference point for prescription of the cut velocity vc. For the simulations with an
elastic cutter the material properties for tungsten carbide from table 6.3 were used. Boundary
conditions were applied according to figure 6.3, where the top and back side (marked in red)
have fixed displacements in z-direction and the x-displacement is prescribed with the tool
velocity. The displacements in y-direction were fixed for the whole cutter model throughout
the analysis.

Material E Poisson Density Source
[GPa] ν[−] $[kg/m3]

WC 635.0 0.21 14700 [213]

Table 6.3: Physical properties of tungsten carbide cutter.

6.1.3 Boundary Conditions

The workpiece temperature was initialized with T = 300K. The workpiece displacements are
restrained at the bottom and back side (red surfaces in figure 6.3). To the left and right side,
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Material A B C m n ε̇0
pl Tre f Tf Source

[MPa] [MPa] [−] [−] [−] [s−1] [K] [K]
Ti6Al4V 896 656 0.0128 0.8 0.5 1.0 300.0 1678 [158, 213]

Table 6.2: Johnson Cook flow stress model parameters for Ti6Al4V.

the particle movement is laterally blocked by frictionless contact to analytical rigid surfaces
(grey surfaces in figure 6.3) which ensures that any particle is prevented from leaving the
left or right side of the bounded space during the course of the analysis - which cannot be
accomplished by simply restraining the displacement degree of freedom at the (initially)
outer layer of particles.

Figure 6.3: Faces to where displacement boundary conditions were applied for the model
with elastic cutter

At the free workpiece boundaries stress-free boundary conditions are included since Abaqus
uses an uncorrected SPH with cubic spline kernel by default. Therefore, stress free boundaries
are inherently included in an averaged fashion, see for example the discussion in [209].
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6.1.4 Contact and Friction

A general contact formulation with a kinematic contact algorithm has been used with default
settings. Some of the analyses (see chapter 6.3) utilize Coulomb friction where the maximum
frictional shear stress τf ric is proportional to the (positive) normal stress σN by a friction
coefficient µ:

τf ric =

{
µ · σN if σN > 0
0 if σN ≤ 0

(6.2)

Frictional heating was not considered in the simulations.

6.2 convergence study

In the convergence study it is investigated which resolution is required to achieve converged
process forces in the simulation at a cut speed of vc = 500 m

min , a feed f = 0.1mm, a friction
coefficient of µ = 0.35 and a rigid cutter model. The resolution per cut width is varied from
1 to 12 particles with the number of particles in the height and length direction as well as the
total particle number is given in table 6.4 for the 12 simulation cases.

Simulation Number of particles
width height length total

1 1 3 20 60
2 2 6 40 480
3 3 9 60 1’620
4 4 12 80 3’840
5 5 15 100 7’500
6 6 18 120 12’960
7 7 21 140 20’580
8 8 24 160 30’720
9 9 27 180 43’740

10 10 30 200 60’000
11 11 33 220 79’860
12 12 36 240 103’680

Table 6.4: Overview of particle resolutions in the convergence study.

The predicted process forces versus the particle resolution is shown in figure 6.4. It can be
seen that from resolutions above 9 particles per cut width the process forces are converged.
At the lowest resolution (simulation 1) the runtime is about 15 seconds while for the highest
resolution (simulation 12) the computational time is already 37 hours. In the following
investigation a resolution of 10 particles per cut width is chosen since the runtimes of the
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simulations are within 5...6 hours which is seen as an acceptable compromise between
accuracy and computation time.

Figure 6.4: Convergence study of process forces versus particle resolution in the SPH simula-
tion showing stable results for more than 50’000 particles.

6.3 results

The simulations were conducted as a parametric study with simulated cut speeds of vc =
70 m

min and vc = 500 m
min . The cutter was modelled as rigid tool as well as an elastic tool.

Contact with and without friction were simulated. The friction coefficient was used with
a friction coefficent experimentally determined by Wyen [260] for a cutting edge radius of
rc = 0.02mm, feed f = 0.1mm, cut speed of vc = 70 m

min , clearance angle of α = 8◦ and rake
angle of γ = 10◦. The cut length is l = 0.833mm. The uncut chip thickness is h = 0.1mm,
which is equivalent to the feed f in orthogonal cutting. All conducted simulations are
compiled with the main process parameters in table 6.5.

Simulation Cut speed Feed f [mm] Friction Cutter
case vc[

m
min ] coefficient µ[−] model

1 70 0.1 0.00 rigid
2 70 0.1 0.35 rigid
3 70 0.1 0.35 elastic
4 500 0.1 0.00 rigid
5 500 0.1 0.35 rigid
6 500 0.1 0.35 elastic

Table 6.5: Overview of simulated orthogonal cutting cases

Results have been evaluated and interpreted for temperature and temperature rates, strains
and strain rates and with a main emphasize the stress characteristics. These evaluations
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were performed on a small selection of particles. They are located close to the middle plane
of the workpiece such that the interference with the left and right contact surface is lowest.
The selected particles are located in a line vertical to the cutting direction, see red particles
labelled "A" to "O" in figure 6.5. In the initial configuration particles "A" to "J" are within the
uncut chip thickness region and particles "K" to "O" are below the uncut chip thickness. The
movement of the reviewed particles during the cutting up to time tsim = 31.5µs is shown
in figure 6.6 and the location of the particles after the cut is provided with table 6.6. All
particles that were initially below the uncut chip thickness were also there after the cut. For
particles initially within the uncut chip thickness the picture is slightly different: particle "J"
went, except from case 2, into the workpiece. Particles "A" to "I" went, except from case 3,
into the chip. The results indicate that the stagnation point of the material flow around the
cutter is influenced by the friction coefficient as well as the used tool model (elastic/rigid)
and therefore the particle position after the cut slightly change.

Figure 6.5: Initial positions of investigated particles, side view (left) and front view (right)

Case vc µ Tool A B C D E F G H I J K L M N O
[ m

min ] [-]
1 70 0 rigid C C C C C C C C C W W W W W W
2 70 0.35 rigid C C C C C C C C C C W W W W W
3 70 0.35 elastic C C C C C C C C W W W W W W W
4 500 0 rigid C C C C C C C C C W W W W W W
5 500 0.35 rigid C C C C C C C C C W W W W W W
6 500 0.35 elastic C C C C C C C C C W W W W W W

Table 6.6: Overview of particle locations after cut, W=workpiece, C=chip
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Figure 6.6: Equivalent stress (von Mises) [GPa] and redistribution of particles at two time
points. Results without friction µ = 0.0 at a cut speed of vc = 500 m

min (case 4).
The analysed particles A-O are shown in red.

6.3.1 Process Forces

The process forces obtained from the simulations are compiled in table 6.7 together with
experimental results from orthogonal cutting tests [260], where a cutting force of Fc ≈ 180N
and a feed force of Ff ≈ −85N was measured for the process parameters of α = 8◦, γ = 10◦,
rc = 20µm, vc = 70 m

min and f = 0.1mm. The numerical prediction of cutting and feed forces
versus time are shown in figure 6.7 together with averaged process forces (dashed lines)
which were determined in the range from 20% to 80% of the simulated time. All force
values are standardized to a cut width of b = 1mm. It is observed that cutting and feed
forces increase with an increasing coefficient of friction. The simulations with elastic cutter
model (cases 4/6) show very small differences compared to the same simulation with rigid
cutter (cases 2/4). In comparison to the experimental result, the simulation cases 2 and 3
underpredict the cut force (-23%) and the feed force (-50%) which is possibly due to the
Johnson-Cook flow stress parameters used in this analysis. An indepth discussion of this
issue on Ti6Al4V material can be found in [61]. Interestingly, the predicted cut and feed
forces are similar to those obtained with Oxley’s process force model, see table 5.2.

Simulation case Cut speed vc[
m

min ] Friction µ[−] Cut force Fc[N] Feed force Ff [N]

1 70 0.00 91 -17
2 70 0.35 138 -42
3 70 0.35 138 -42
4 500 0.00 104 -22
5 500 0.35 150 -46
6 500 0.35 148 -46

Experiment [260] 70 - 180 -85

Table 6.7: Comparison of measured and simulated process forces
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Figure 6.7: Tool forces: cutting and feed force exerted to the tool for the simulation cases
from table 6.5. Top row case 1 (left) and case 4 (right), middle row case 2 (left)
and case 5 (right), bottom row case 3 (left) and case 6 (right).
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6.3.2 Temperatures and Temperature Rates

Due to plastic dissipation, there is a general temperature increase mainly in the area of the
chip and in the freshly formed cut surface. The distribution of temperatures and temperature
rates are shown in figures 6.8 and 6.9 for case 2 (vc = 70 m

min , µ = 0.35). Locally some particles
reach almost the melting temperature of Tmelt = 1678K at the tool tip and the temperature
rates are up to Ṫ = 230 · 106K/s. It has to be emphasized, that peak temperatures would
decrease to some extent when considering heat conduction in tool and workpiece. The
majority of particles in the chip are within a temperature range of T = 500K...800K. The
temperature and temperature rate characteristics of particles A-O are given in figures 6.10
and 6.11 for all 6 simulation cases from table 6.7. It is observed that temperature levels rise
for the cases with friction compared to the frictionless cases and a further increase is seen
for the cases with elastic cutter model. In contrast, the temperature rates decrease when
friction is considered. The temperature rates increase in the simulation models with rigid
cutter models and an increase is seen also with increasing cut speed. The temperature rates
in simulations with rigid and elastic cutter are similar. The whole plastic deformation takes
place within roughly 200µs for the lower cutting speed of vc = 70m/min (cases 1-3) and
within 25µs for the higher cutting speed of vc = 500m/min (cases 4-6).

Figure 6.8: Workpiece temperature distribution [K], case 2 (vc = 70 m
min , µ = 0.35) at t =

683.2µs
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Figure 6.9: Workpiece temperature rates [K/s], vc = 70 m
min , µ = 0.35 at t = 683.2µs
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Figure 6.10: Temperature characteristics for particles A-O for the simulation cases from table
6.5. Top row case 1 (left) and case 4 (right), middle row case 2 (left) and case 5
(right), bottom row case 3 (left) and case 6 (right).
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Figure 6.11: Temperature rates for particles A-O for the simulation cases from table 6.5. Top
row case 1 (left) and case 4 (right), middle row case 2 (left) and case 5 (right),
bottom row case 3 (left) and case 6 (right).
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6.3.3 Plastic Strains and Plastic Strain Rates

The distribution of plastic strain rates is shown exemplarily in figure 6.12 for case 2 (vc =
70 m

min , µ = 0.35). A peak strain rate in the order of ε̇pl ≈ 535′000/s is observed at the
cutting edge radius. In the shear zone itself, strain rates reach levels in the order of
ε̇pl ≈ 10′000/s...100′000/s. Figures 6.13 and 6.14 show for particles A-O the characteristics of
the numerically predicted plastic strains and plastic strain rates during the cutting simulation
for all 6 simulation cases from table 6.7. Simulations including friction predict higher plastic
strains which increase further when considering an elastic tool model. A strong influence
of the friction coefficient on the plastic strain rates is seen where without friction, higher
plastic strain rates are predicted compared to the simulations with friction. Simulations with
elastic and rigid cutter show very similar plastic strain rates, which means that the type of
cutter model has a minor influence on the plastic strain rates. Peak plastic strains and plastic
strain rates are observed for the particles G, H, I and J which are located in the vicinity of the
uncut chip thickness of h = 0.1mm and can reach levels of even higher than 200%. Particles
which remain in the workpiece after the cut, show rather small strains.

Figure 6.12: Plastic strain rate [1/s] distribution, case 2 (vc = 70 m
min , µ = 0.35) at t = 683.2µs
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Figure 6.13: Accumulated plastic strain characteristics for particles A-O for the simulation
cases from table 6.5. Top row case 1 (left) and case 4 (right), middle row case 2
(left) and case 5 (right), bottom row case 3 (left) and case 6 (right).
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Figure 6.14: Plastic strain rates for particles A-O for the simulation cases from table 6.5. Top
row case 1 (left) and case 4 (right), middle row case 2 (left) and case 5 (right),
bottom row case 3 (left) and case 6 (right).
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6.3.4 Stress State Investigation

In this chapter the stresses occurring during orthogonal cutting are investigated in detail.
First, hydrostatic and equivalent stresses are analysed followed by some in depth analyses of
the stress tensor including a display in the principal axis system which shall answer in how
far the assumption of isotropic hardening is justified.

6.3.4.1 Hydrostatic Stresses

Hydrostatic stress characteristics for particles A-O are shown in Figure 6.15. Compressive
stresses in this investigation have negative signs in contrast to Abaqus-terms. They are
observed locally up to -4GPa which is slightly higher than reported in [13]. Hydrostatic
pressures are mainly compressive before the cutter arrives in the reviewed particles A-O.
After the cutter has passed a switch into tensile hydrostatic pressures is observed. The
hydrostatic stress levels are in general higher for a cut speed of vc = 500 m

min . The simulations
with rigid cutter show about 50% lower hydrostatic stresses when friction is considered.
On the other hand the simulations with elastic cutter showed higher hydrostatic stresses
possibly due to tool vibrations exerted to the workpiece.

6.3.4.2 Equivalent Stresses

Equivalent stress characteristics for particles A-O are shown in Figure 6.16. The peak stresses
during cutting are in the order of σeq = 1200MPa and after cutting the residual stresses are
at least 200MPa for cases 1-3 at vc = 70 m

min while for cases 4-6 at vc = 500 m
min these increase

to a minimum of about 400MPa.
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Figure 6.15: Hydrostatic stresses for particles A-O for the simulation cases from table 6.5.
Top row case 1 (left) and case 4 (right), middle row case 2 (left) and case 5 (right),
bottom row case 3 (left) and case 6 (right).
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Figure 6.16: Equivalent stresses (von Mises) for particles A-O for the simulation cases from
table 6.5. Top row case 1 (left) and case 4 (right), middle row case 2 (left) and
case 5 (right), bottom row case 3 (left) and case 6 (right).
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6.3.4.3 Detailed Investigation of a Single Particle

In figure 6.15 it is observed that hydrostatic pressures oscillate and change from compression
into tension during the cut. This raises the questions if the load direction reverses during
the cut and therefore a detailed analysis of the occurring stress states is conducted here.
The analysis is performed exemplarily for particle I and case 2. The characteristics of
hydrostatic stress and equivalent stress are shown in figure 6.17 with some smoothing using
a Savitzky-Golay-filter in Python to remove oscillations.

Figure 6.17: Hydrostatic stress in (left) and equivalent stress (right) in particle location I, case
2 (vc = 70 m

min , µ = 0.35)

The initial compressive hydrostatic pressure turns into tension (t ≈ 100µs), shortly back to
compression and then finally stays in tension. The equivalent stress fluctuates accordingly to
the hydrostatic stress. In the stress tensor component display (figure 6.18 left) σxx, σyy&σzz
are initially compressive and turn later into tension. Since the chip is rotated during cutting
the stress tensor components are spilled due to rigid body rotations of the material points.
In order to eliminate the rigid body rotation effect on the stress tensor components, the
deformation gradients F are extracted from the analysis and the material rotation is removed
from the stress tensor σ by using the corotated stress σcor:

σcor = RT · σ · R (6.3)

where R is obtained from the polar decomposition of the deformation gradient F:

F = R ·U (6.4)

Since Abaqus does not output the deformation gradient directly, a user material subroutine
(VUMAT) was implemented for the Johnson-Cook flow stress model including adiabatic
heating. Within this subroutine, access to the deformation gradient tensor F is granted and
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Figure 6.18: Cauchy stress tensor (left) and corotated stress components (right) in particle
location I, case 2 (vc = 70 m

min , µ = 0.35)

was written to the output database in conjunction with the respective stress tensors σ. The
components of the corotated stress tensor σcor are shown for particle location I in Figure 6.18.

One can see a more pronounced change from compression to tension in the corotated stress
tensor component σcor

xx , while σcor
zz shows a slightly reduced compression-tension change and

σcor
yy is almost unaffected. The observed stress tensor characteristics may hint that monotonic

loading is not the case and stress reversals or at least load path changes occur which would
mean that the isotropic hardening assumption is possibly not sufficient to describe the
phenomena accurately. Since for the Ti6Al4V alloy some Bauschinger effect was measured
[29] this could have significance in the simulation and would require models considering
combined (kinematic and isotropic) or formative (distortional) hardening for a more accurate
description of the underlying physics. The problem is depicted graphically in figure 6.19
where a uniform loading towards the stress point S can be described by pure isotropic
(dark red circle) or combined hardening (yellow circle) equally. But if the load path reverses
into opposite direction yielding occurs in the combined hardening model already when the
yellow cylinder is crossed while yield in isotropic hardening starts later when crossing the
dark red circle. This would result in less plastic work and lower forces. The maximum error
occurs at 180◦ reverse loading and vanishes towards uniform loading. The stress tensor
component analysis does not allow to draw a clear conclusion and therefore the load path is
investigated in the principal axis system.

6.3.4.4 Display in the Principal Axis System

Bringing the problem into the space of principal stresses and showing the evolution during
the loading sequence shall give a better impression of the loading path. For this purpose the
time evolution of the stress tensor was analyzed with Python/NumPy [86]. Considering the
principal stresses gives rise to the problem that there is no unique definition of how to sort
the principal stresses, e.g. one could use the principal stresses [113]:
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Figure 6.19: Schematic yield surfaces: initial (blue), pure isotropic hardening (brown) and
combined kinematic and isotropic hardening(orange)

Method 1: as is from the Python/NumPy Hermitean eigensolver np.linalg.eigh
Method 2: as is from the Python/NumPy general eigensolver np.linalg.eig
Method 3: sorted in descending order: σI > σI I > σI I I
Method 4: sorted in descending order of absolute values: |σI | > |σI I | > |σI I I |
Method 5: Haigh-Westergaard coordinate system

Table 6.8: Principle stress sorting methods

Visualized in the principal axis system, this results in the characteristics shown in figure
6.20. In the figure the diameter of the initial yield surface with the static yield limit of
σy0 = 896MPa (JC-classic parameter A) is shown as well. All load paths start in the
center with blue line color and end with red line color. In all path displays a zigzag
movement is visible which is induced by the overlay of stress waves due to the explicit time
stepping method of the solver. Each of the five methods gives a different load paths in the
visualization. The path display with Method 2 and Method 4 show strong kinks and could
be misinterpreted as load reversals. The paths in Method 1, Method 3 and Method 5
are very similar but rotated around the center to different angular positions. Given the 5
different visualizations the question is why they differ and which one should be selected
finally. The differences in the principal stress display are caused by ambiguities in the
eigenvalue determination which are discussed in [113] and a proposal is made how to sort
eigenvalues such that eigenvector basis rotations within successive increments are minimized.
This proposed sorting algorithm for principal stresses is applied to the orthogonal cutting
simulation in the next chapter.
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Figure 6.20: Principal stress evolution in the principal axis system displayed with different
methods for principle stress extraction according to table 6.8. All load paths
start in the center and the color indicates the normalized time where blue color
is in the initial state and the final state is in red color. The top row shows the
load path with Method 1 (left), Method 2 (middle) and Method 3 (right) and
the bottom row shows them with Method 4 (left) and Method 5 (right).

6.3.4.5 Sorting Principal Stresses by Quaternions

The input to the principal stress sorting algorithm is the time trace of the stress tensor σ(t)
of the material point of interest. The principal stresses of the stress tensor are computed and
the eigenvector base is aligned such that the eigenvector base rotation from the old to the
current increment is minimized by quaternion analysis. For this purpose the stress tensors
of the particles A-O were written to the output database at every increment of the analysis.
The result is the time trace of the three principal stresses which can then be displayed in the
principal axis system. Applied to particle I (case 2) the load path in figure 6.21 results.

Accidentally, the load path in figure 6.21 equals Method 1 in figure 6.20. In general this is
not necessarily the case as depicted in [113]. The quaternion sorting algorithm was applied
to all simulation cases of particle I and the resulting loading paths are displayed in figure
6.22. Similar load path visualizations can be found in the appendix for particles A (11.1.1), D
(11.1.2), E (11.1.3) and K (11.1.4). All visualizations show non uniform load paths but full
load reversals of 180◦ do not occur.
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Figure 6.21: Load path display of particle I in the principal axis system for case 2, the
principal stresses are sorted by quaternion analysis.

Figure 6.22: Load path visualization of particle I in the principal axis system for the simula-
tion cases from table 6.5. Top row case 1 (left), case 2 (middle) and case 3 (right),
bottom row case 4 (left), case 5 (middle) and case 6 (right).
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6.3.5 Runtimes

The analysis runtimes heavily depend on the simulated cut-speed vc and whether the cutter
is modelled as a rigid or elastic body. The computations were carried out on a single core
of a Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz and the measured runtimes tcompute are
compiled in table 6.9. Computations with the elastic cutter model consumed significantly
more compute time since the small elements of the cutter required smaller time increments
due to the CFL-condition. Mass scaling could be a viable method to significantly reduce the
compute times.

Simulation case Cutter Cut speed Process time Analysis runtime
vc[

m
min ] tsim[µs] tcompute[h]

1 Rigid 70 714 42
2 Rigid 70 714 36
3 Elastic 70 714 231.5
4 Rigid 500 100 5.3
5 Rigid 500 100 5.5
6 Elastic 500 100 34

Table 6.9: Simulation Runtimes

6.4 effect of material anisotropy

Based on the results of the load path analysis in chapter 6.3.4.5 the Hill 48 model (3.114) is
used here to predict the effect of the anisotropy on the process forces within the orthogonal
cutting model. In contrast to the previous analysis, Abaqus 2021/Explicit is used here
because it allows the Hill 48 model to be used with the SPH as well. However, it is not
possible to consider adiabatic heating, that is why only isothermal simulations (ηTQ = 0.0)
are used to determine the sensitivities with respect to anisotropy. The cutting speed is in
all simulations vc = 500m/min and the feed is f = 0.1mm. In total 8 different cases were
analysed with R11, R22 and R33 being varied and its values are given in table 6.10 together
with the resulting averaged process forces. The anisotropy coefficients in shear are set to
constant R12 = R13 = R23 = 1 for all simulation cases.

Simulation case R11 R22 R33 Fc[N] Ff [N] Comment
1 1 1 1 199 -58 von Mises criterion, no anisotropy, baseline
2 1.1 1 1 214 -61 anisotropy in length direction
3 1.2 1 1 222 -64 anisotropy in length direction
4 1.5 1 1 263 -76 anisotropy in length direction
5 1.8 1 1 322 -94 anisotropy in length direction
6 2.0 1 1 366 -109 anisotropy in length direction
7 1 1.5 1 183 -50 anisotropy in width direction
8 1 1 1.5 250 -74 anisotropy in height direction

Table 6.10: Investigated cases for the anisotropy study with average process force results.
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Figure 6.23 shows the predicted process forces for different anisotropies in the length
direction. Even a slightly higher yield stress in length direction (R11 = 1.1) leads to ≈ +10%
increase in the cut force and ≈ +5% in the feed force when compared to the baseline case.
With increasing yield stress in length direction, the process forces are steadily increasing, see
also table 6.10.

Figure 6.23: Cut (left) and feed (right) forces with different anisotropy coefficients in length
direction (2-6) compared to the isotropic simulation case (1). In brackets the
number of the respective simulation case from table 6.10 is given.

In figure 6.24 the influence of the anisotropy towards different directions with respect to
process forces is shown. The baseline case is the isotropic von Mises criterion and it can
be seen that an anisotropy in the width direction with R22 = 1.5 leads to slightly reduced
process forces of about 10%. On the other hand, anisotropies towards length (R11 = 1.5) or
height (R33 = 1.5) direction increase the cut and feed force by about 30% compared to the
baseline case.

Figure 6.24: Cut (left) and feed (right) forces with anisotropy in length (4), width (7) or
height (8) direction compared to the isotropic simulation case (1). In brackets
the number of the respective simulation case from table 6.10 is given.
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6.5 discussion

SPH simulations were performed at two cutting speeds with rigid and elastic cutter model
as well as friction and frictionless contact. The main findings are:

• The friction model plays an important role in the process prediction, as the friction
coefficient influences the plastic strain rates, temperature rates, process forces and
hydrostatic pressures. It does not affect or only to a small extent the temperature and
accumulated plastic strains.

• The predicted hydrostatic stresses were found inline with literature values. A mild
dependence on the cutting speed is visible.

• Strain rates were found with up to 70′000s−1 at vc = 70 m
min and up to 300′000s−1 at

vc = 500 m
min . Even at the very high cutting speed the strain rates are below literature

values which are reported up to ε̇pl = 106s−1 in [13].

• Temperatures can reach locally almost melting temperature (1678K) and the tem-
perature rates are locally up to 230 · 106K/s at the tool tip. Temperatures are most
likely exaggerated as no heat conduction inside the workpiece nor into the tool was
considered here.

• It is found by detailed analysis of stress states in specific material points (particle
locations) that loading paths during the cutting process are in general not proportional
but load reversals do not occur. Materials exhibiting anisotropic yield should be
simulated with appropriate constitutive models to improve the quality of the numerical
process prediction and further reduce the gap to experimental observations. The
effect of potential anisotropies is shown within a parametric study to have an effect
on the predicted process forces. It has to be noted, that capturing such material
anisotropies requires extensive testing on the material, see for example [28]. By this the
the uncertainties can be reduced in the constitutive modelling and will help to improve
in other areas of the process prediction, for example when numerical models of the
cutting experiments are used to identify the parameter of friction laws.

• The runtimes of the SPH are very large in Abaqus due to lack of (sufficient) paralleliza-
tion
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7
S P H T E S T S I M U L AT I O N S

In this chapter SPH test simulations are conducted with the mfree_iwf code. Corrected
and stabilized SPH schemes are investigated as well as the implementation and validation
of the Johnson-Cook plasticity model. Challenges of damage modelling within the SPH
are introduced and solutions to specific problems are derived and tested within a fracture
mechanics CT test specimen. Finally, a SHTB-Test is computed with the SPH and the fracture
strains and diameter are compared to experimental and FEM results.

7.1 improved sph - application example

The SPH corrections like CSPM and RKPM perform well in normalizing the kernels and
restoring consistency but induce another problem: in contrast to standard SPH, corrected
SPH schemes like the RKPM are not able to implicitly model stress-free boundaries. This
is highlighted by an example of the interaction between the SPH scheme and the material
model.

Linear elastic material behaviour

Young's modulus: E = 210GPa, Poisson: ν = 0; 3
Density: ρ = 7830kg=m3

v
x
=

5
0m

=s

y

x
120x10 particles, h=1, simulation time: 1e-4s, time step: 1e-7s

5
m
m

60mm

Figure 7.1: Simulation of a tensile test. Test setup, geometry, boundary conditions and
material properties

A linear elastic plane stress (2D) tensile test of a plate is simulated. A total Lagrangian
formulation on the strong form of the continuum equations is used. The plate dimensions
are 60mm x 5mm, with a Young’s modulus of E = 210GPa, a Poisson’s ratio of ν = 0.3 and a
density of $ = 7830kg/m3. The left edge is constrained in x- and y- direction. On the right
edge the y- displacement is restrained and a constant velocity in x-direction vx = 50m/s
is applied. Test setup, geometry, boundary conditions and material properties are shown
in figure 7.1. The tensile test is performed with particle methods and with the FEM in
Abaqus/Explicit, the latter acting as a baseline solution. The simulated time is 10−4 seconds
with a constant time step of 10−7 seconds for the particle methods, for the Abaqus solution
automatic time stepping is chosen. Figure 7.2 shows the lateral contractions uy due to
tensile stretching in x-direction for the FEM result with Abaqus/Explicit and for the particle
simulations with standard SPH and RKPM without and with enforced stressfree BC at free
surfaces. The minimum and maximum y-displacements are for the:

107



sph test simulations

FEM with Abaqus/Explicit: ±66, 6µm (baseline)
Standard SPH: ±67, 9µm (error: ≈ 2%)
RKPM without enforced stressfree BC: ±1, 3µm (error: ≈ 98%)
RKPM with enforced stressfree BC: ±67, 1µm (error: ≈ 1%)

Standard SPH

RKPM: no explicit treatment of stresses at free surfaces

RKPM: with enforced stressfree BC at free surfaces

Abaqus Explicit

Figure 7.2: Simulation of a tensile test. From top to bottom: displacement results uy obtained
with Abaqus/Explicit and different SPH schemes: standard SPH / RKPM /
RKPM with stressfree boundary conditions at free surfaces where the small lines
show the computed surface normals.

According to the given results, it becomes obvious that the RKPM without enforced stressfree
BC massively underpredicts the lateral contraction. The reason for this is that in SPH
missing neighbour particles at boundaries result in approximate stressfree states. The RKPM-
correction does not exhibit this behaviour and therefore the lateral contraction is blocked. A
workaround is the explicit enforcement of a stressfree state on free surfaces in RKPM based
on the surface normals. Doing so, the lateral contraction becomes very similar compared to
that of the standard SPH, which is displayed in the bottom case of the figure. While in this
simple example the determination of surface normals is rather simple, it becomes a problem
when simulating cutting operations as the material separates and new surfaces are created.
For this reason such SPH correctors are not used in the following.
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7.2 artificial stresses

While in 2D updated Lagrangian SPH simulations artificial stresses are required for the
rubber ring impact simulation to prevent instability modes, in the 3D simulation of a rubber
ball impact these problems do not appear. Instead, the simulations are used to study the
impact of artificial stress and viscosity terms as well as XSPH on the result. A comparison to
a FE model is performed.

Figure 7.3: Geometry of the sphere impact simulation.

The spheres have an outer radius of ro = 40mm and an inner radius of ri = 35mm and
the initial minimum distance between the two spheres is l = 0.8mm. The velocity is set
for the left sphere to vx = 250m/s and for the right sphere to vx = −250m/s. A sketch
is provided with figure 7.3. Rubber like material parameters are chosen with E = 107Pa,
ν = 0.4 and $0 = 1.0kg/m3 and the time step in the SPH simulations is set to ∆t = 10−7s.
The FE mesh is discretised with higher element density resulting in a stable time increment
of ∆t = 5.517 · 10−8s. The total time simulated is ttotal = 4.5 · 10−4s. The SPH model does not
use a contact formulation since the collision is handled by particle interactions automatically.
In the FE model a general contact formulation is used and the bulk viscosity is used with
the linear parameter b1 = 0.06 and the quadratic parameter b2 = 1.2. Four different SPH
cases were modelled where different stabilizers are switched on or off - see table 7.1. When
switched on, artificial viscosity is used with αav = 1, βav = 1, ηav = 0.1, artificial stresses
with nstress = 4 and the XSPH with εXSPH = 0.5.

Case Method XSPH Artificial Artificial Particles / Runtime
stresses viscosity Elements (single CPU core)

1 SPH on on on 40208 40min
2 SPH on off on 40208 38min
3 SPH on on off 40208 34min
4 SPH off off off 40208 29min
5 Abaqus/Explicit - - * 161626 C3D10M 20min

251330 nodes

Table 7.1: Overview of impacting spheres simulations
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Figure 7.4 shows the stress distribution at t = 1.5 · 10−4s for SPH cases 1 (top half) and 2
(bottom half). The peak stresses are in the order of 2 MPa. The same is shown for the Abaqus
simulation (case 5) in figure 7.6 but peak stresses reach 3.5 MPa. Compared to the SPH,
the inward bulging of the rubber balls in the impact contact zone is less pronounced in the
Abaqus simulation. SPH cases 3 and 4 are shown at t = 2 · 10−4s in figure 7.5. The simulation
without artificial viscosity (case 3) shows much larger inward bulging then the FEM and
both SPH simulations with artificial viscosity (case 1 and 2). Without any stabilizers the SPH
simulation shows even temporary openings of the rubber balls which close in a later stage of
the simulation (not shown in the figures).

Figure 7.4: Equivalent stress distribution computed with SPH cases 1 (top half) and 2 (bottom
half) at t = 1.5 · 10−4s.

The comparison of the kinetic, strain and total energy reveals, see figures 7.7, 7.8 and 7.9, that
the total energy is almost constant in Abaqus - the bulk viscosity leads to small reductions
only. In contrast are the SPH simulations which do not conserve the energy. For cases 1 and
2 the total energy constantly reduces over time, while for cases 3 and 4 it first reduces and
then increases again. The increase is mainly attributed to the increase of kinetic energy after
the impact while the strain energy remains at an almost constant high level. In case 4 the
increase is even above the initial kinetic energy. The findings are as follows:

• all simulations with artificial viscosity show loss of total energy

• simulations without artificial viscosity show even increases in the total energy beyond
the initial value which is not physical

• the XSPH averages linearly velocities in the particle neighbourhood therefore reducing
the kinetic energy

• artificial stresses have a small effect on the energy losses, see results of cases 1 and 2

• the form of the discretised momentum equation is possibly not energy conserving
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Figure 7.5: Equivalent stress distribution computed with SPH cases 3 (top half) and 4 (bottom
half) at t = 2 · 10−4s.

Figure 7.6: Equivalent stress distribution computed with Abaqus (case 5) at t = 1.5 · 10−4s.
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Figure 7.7: Kinetic energy evolution during rubber ball impact simulation.

Figure 7.8: Strain energy evolution during rubber ball impact simulation.

Figure 7.9: Total energy evolution during rubber ball impact simulation.
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7.3 johnson-cook model implementation and validation

In this section the integration of plasticity models with the radial return algorithm derived in
chapter 3.5.4 is discussed. The implementation in mfree_iwf is described and potential issues
are outlined. A comparison to an explicit integration procedure based on an overstress-type
law is performed. A 2D tensile test model with SPH is created and the results are compared
to a FEM model solution of a commercial code, here Abaqus/Explicit.

7.3.1 Accuracy of Radial Return Projection

The implementation of the radial return projection algorithm is explained and three different
methods for the determination of the required derivative are analysed.

7.3.1.1 Newton Method

A well known method for the iterative resolution is the Newton method which requires an
analytical first derivative of the function f (∆λ):

∆λn+1 = ∆λn −
f (∆λn)

f ′(∆λn)
(7.1)

Applied to (3.152) and changing f () to g() and using ∆λ instead of λ̇∆t the Newton method
reads:

g(∆λ) = 0 = ||Strial|| −
√

2
3

σy(ε̄
n+1
pl , ˙̄εn+1

pl , T)−
√

3
2
(2G · ∆λ) (7.2)

The equivalent plastic strain increment is derived from inserting (3.130) into (3.112) and
using (3.131):

∆ε̄pl =
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√
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2
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pl
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(7.4)
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= ∆λ (7.7)
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The updated plastic strain and strain rate are then:

εn+1
pl = εn

pl + ∆tλ̇ = εn
pl + ∆λn+1 (7.8)

ε̇n+1
pl = λ̇ =

∆λn+1

∆t
(7.9)

The first derivative of g(∆λ) is computed with the chain rule:

∂g(∆λn)

∂∆λ
= −

√
3
2

2G−
√

2
3

[
∂σy

∂εn+1
pl

∂εn+1
pl

∂∆λ
+

∂σy

∂ε̇n+1
pl

∂ε̇n+1
pl

∂∆λ

]
(7.10)

The derivatives of the plastic strain and plastic strain rate are:

∂εn+1
pl

∂∆λ
= 1 (7.11)

and

∂ε̇n+1
pl

∂∆λ
=

1
∆t

(7.12)

The derivatives of the yield stress are:

∂σy

∂εpl
=
(

n · B · (εpl)
(n−1)

)(
1 + C · ln

(
ε̇pl

ε̇0
pl

))(
1−

(
T − Tre f

Tf − Tre f

)m)
(7.13)

and

∂σy

∂ε̇pl
=
(

A + B · (εpl)
n)
(

C
ε̇pl

)(
1−

(
T − Tre f

Tf − Tre f

)m)
(7.14)

combining the equation (7.10) with (7.11), (7.12), (7.13) and (7.14) one arrives at:

∂g(∆λn)
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(7.15)
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7.3.1.2 Secant Method

If the first derivative of f (∆λ) cannot composed analytically or is computationally inefficient
a better alternative is the secant method, see also figure 7.10.

Figure 7.10: Radial return projection: exact tangent (red) dg
dλ and approximations with secant

method using ∆λn−1 from former iteration (black) and secant method with
support point in the close vicinity of ∆λn (purple).

The iterative procedure is the same as in the Newton method (7.1) but the derivative f (∆λ)
is replaced by a difference quotient computed with the function value from the last and the
current increment:

f ′(∆λn) ≈
f (∆λn)− f (∆λn−1)

∆λn − ∆λn−1
(7.16)

inserting into (7.1) yields:

∆λn+1 = ∆λn − f (∆λn)
∆λn − ∆λn−1

f (∆λn)− f (∆λn−1)
Secant A (7.17)

This method is named Secant A in the following. The accuracy of the approximation of the
first derivative in (7.16) can be poor for larger ∆λn − ∆λn−1 and therefore convergency of
(7.17) can be increased by using:

f ′(∆λn) ≈
f (∆λn)− f (εRR · ∆λn)

∆λn − εRR · ∆λn
(7.18)
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which gives a better approximation of the derivative for small εRR and results in the modified
iterative procedure named Secant B:

∆λn+1 = ∆λn − f (∆λn)
∆λn − εRR · ∆λn

f (∆λn)− f (εRR · ∆λn)
Secant B (7.19)

The analytical derivative of dg/dλ and its approximation with the secant method (7.19) with
εRR = 1.01 is shown in figure 7.11 and its obvious that both methods deliver the same results.

Figure 7.11: Analytical derivative of dg/d∆λ and approximation with secant method.
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7.3.2 Performance Newton and Secant Method

Here the performance of the iterative methods in equations (7.1), (7.17) and (7.19) is inves-
tigated. Different trials stresses ||Strial|| are given and different start values for the initial
guess of ∆λ are tested. For the secant methods εRR = 1.01 was used. The simulations were
performed with Python/NumPy [86]. The radial return tests were conducted with the JC
flow stress model with material parameters for Steel 4340 [73] which are given in table 7.3,
other required constants are summarized in table 7.2.

Quantity Symbol Equation Value
Homologous temperature T∗ (3.96) 0.2

Young’s modulus E - 200GPa
Poisson ν - 0.29

Shear modulus G E
2·(1+ν)

77.5GPa
Time increment ∆t - 10−8s

Trial stress ||Strial|| - [638MPa...1274MPa], 30 steps
Initial plastic multiplier ∆λn=0 [10−15...10−3], 30 steps

Tolerance plastic multiplier λtol abs(∆λn − ∆λn−1) 10−16

Table 7.2: Quantities used in the radial return performance computations.

A B C m n ε̇0
pl Tre f Tf Source

[MPa] [MPa] [−] [−] [−] [s−1] [K] [K]
792.0 510.0 0.014 1.03 0.26 1.0 273.0 1793.0 [73]

Table 7.3: Johnson Cook flow stress model parameters for Steel 4340.

Figure 7.12 shows the development of ∆λ during the iterations. A convergence criterion
|∆λn = ∆λn−1| < λtol is used to terminate the iterative procedure. The Newton method
performs best requiring 11 iterations until the convergence criterion is met while the two
secant methods required 15 iterations each.

In another test the trial stress and the initial plastic multiplier are varied and the number of
iterations required is recorded for the three methods. Figure (7.13) shows graphically the
numbers of iteration until convergency for the Newton-method (7.1), the Secant A method
(7.17) and the Secant B method (7.19). The color bar indicates the number of iterations until
the covergence criterion is met. The Newton-method needs slightly less iterations than the
two secant methods to the expense of much more arithmetics required to compute the
gradient. The two secant methods perform very similar.
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Figure 7.12: Radial return iteration: ∆λ versus number of iterations for the Newton method
and the two secant methods.

Figure 7.13: Radial return projection with Newton (top left), Secant A (top right) and Secant
B (bottom) method: the color indicates the number of iterations required for
the determination of the plastic multiplier depending on the trial stress and the
initial plastic multiplier. The Newton method requires slightly fewer iterations to
convergency than Secant A and Secant B which are very similar.
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7.3 johnson-cook model implementation and validation

Sometimes the iterations predicted negative ∆λn+1 which can happen for example for too
large initial values of ∆λn=0. A schematics of this issue is shown in figure 7.14. A useful
workaround for this problem is to set ∆λn+1 = 0.1 · ∆λn when a negative ∆λn+1 is predicted.

Figure 7.14: Radial return projection: treatment of negative lambda prediction

The following observations are made:

• ∆λn can be predicted even with negative sign during iteration with high initial guess
for ∆λn=0

• the Newton method needs usually less iterations from the initial guess ∆λn=0 towards
the region of the final ∆λ

• the final ∆λn are predicted almost exactly the same for each of the iterative methods,
there are only small differences in the very last digits after the comma - if at all

• the multiplication of very small and very large numbers in the analytical expression
for the derivative of g(∆λ) can introduce errors related to the computational accuracy
of floating point numbers [72]

• when the trial stress Strial only slightly exceeds the yield stress, very small ∆λ are
predicted. This can lead to accuracy problems since ∆λ can come close to the relative
error in rounding of floating point numbers which is expressed by the machine epsilon
[98]. For example single precision (32bit) numbers have a machine epsilon of 5.96 · 10−8

and double precision numbers have a machine epsilon of 1.11 · 10−16. Especially for
small time steps the use of double precision numbers should be envisaged in the radial
return algorithm which is especially important for the use on the GPU.

Another problem that can occur is when the plastic strain rate becomes small that ε̇pl ≤ ˙ε0
pl

which troubles the strain rate dependent term frate of the JC flow stress leading to softening
of the flow stress. A remedy is described in UINTAH [78] where a modification for the strain
rate dependent term frate is introduced:
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frate =





1.0 +
(

ε̇pl

ε̇0
pl

)C
, for

ε̇pl

ε̇0
pl
< 1 UINTAH modification

1.0 + C · ln
(

ε̇pl

ε̇0
pl

)
, for

ε̇pl

ε̇0
pl
≥ 1 JC classic

(7.20)

The difference between original and modified strain rate term is shown in figure 7.15 where
the inadmissible reduction of the original strain rate term is visible.

Figure 7.15: Original and modified JC strain rate term

From these tests no clear winner is evaluated. While the Newton method requires slightly
fewer iterations the two secant methods require less computational effort. This can be of
importance for more complex material models and therefore the secant method is used in all
simulations unless stated differently.
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7.3 johnson-cook model implementation and validation

7.3.3 Integration of the Plasticity Model with Implicit and Explicit Method

In explicit dynamic simulations small time steps occur and an Euler explicit integration of
the equations can be sufficient [273]. For this reason a test case is constructed to investigate
the performance of both methods, implicit with radial return and explicit, and a comparison
is shown to a FEM solution of the same problem. For the Euler explicit integration the JC
flow stress model is casted into the overstress type [187] of flow stress by reshaping (3.95)
for the plastic strain rate:

ε̇pl(σeq, εpl, T) = exp




1
C




σeq(
A + B · εn

pl

) (
1− T−Tre f

Tf−Tre f

m)

︸ ︷︷ ︸
Overstress ratio R

−1






· ε̇0

pl (7.21)

where σeq is the current equivalent stress according to von Mises (3.110). With an Euler
explicit scheme the plastic increment becomes for R > 1.0 with (7.21):

ε
tn+1
pl = ε̇tn

pl(σeq, εtn
pl, (T

∗)tn) · ∆t (7.22)

First, a comparison of the implicit and explicit Euler method is performed with a variation
of the overstress ratio R and resulting plastic strain increments for a single increment with
a time step of ∆t = 1 · 10−9s. The implicit methods give the same results and the explicit
integration gives very similar results for small overstress ratios R.

A small 2D plane strain tension test case is constructed with 900 particles (30x30) using an
Euler explicit integration as well as Euler implicit integration with the radial return algorithm.
For validation purposes a similar FE model is constructed with Abaqus/Explicit with 900
(30x30) elements of the type CPE4R with 961 nodes. Material parameters for Steel 4340
are used, see tables 7.2 and 7.3. The initial temperatures were set to Tinit = 273.15K and a
constant velocity of vx = 50m/s is applied to the right boundary of the model, see also figure
7.17. All models consider plastic dissipation into heat with a Taylor-Quinney coefficient of
fTQ = 90%. The SPH models use XSPH (εXSPH = 0.5), artificial stresses (εas = 0.3, nStress = 4)
and viscosity (αav = 1, βav = 1, ηav = 0.1). In Abaqus default parameters for the bulk
viscosity (b1 = 0.06, b2 = 1.2) are used. For overstress ratios R ≤ 1 no plastic straining occurs.
All simulations are run with a constant time step of ∆t = 2 · 10−6s.

The main results summary is provided with table 7.4. Taking the Abaqus FEM results as a
baseline one can see that the SPH simulation with explicit integration of the plasticity model
slightly overpredicts the maximum temperature, while the SPH with implicit plasticity model
integration predicts 15% lower plastic strains and 32K lower temperatures. The pattern of
the plastic strain fields, equivalent stresses and temperatures are very similar between the
three models (figures 7.17, 7.18, 7.19, 7.20 and 7.21). The explicit integration of the plasticity
model reduces the total simulation runtime by about 30% since no iteration loops for the
determination of the plastic multiplier are required.
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Figure 7.16: Comparison of explicit and implicit integration for a time increment of ∆t =
10−9s.

Figure 7.17: Tensile test geometry with boundary conditions (left) and Abaqus plastic strain
field at time t = 0.005s (right).

Case Numerical Integration of ε̄max
pl σmax

eq Tmax Runtime
model plasticity model [%] [GPa] [K] [s]

1 SPH Euler explicit 78 1.2 500 11
2 SPH Euler implicit (λtol = 10−6) 68 1.2 460 15
3 FEM Euler implicit 78 1.2 492 4

Table 7.4: Main results of the three tensile test simulations.
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Figure 7.18: Abaqus von Mises equivalent stress field at time t = 0.005s (left) and temperature
field at time t = 0.005s (right).

Figure 7.19: SPH plastic strain field at time t = 0.005s for explicit (left) and implicit (right)
integration of the plasticity model.

Figure 7.20: SPH von Mises equivalent stress field at time t = 0.005s for explicit (left) and
implicit (right) integration of the plasticity model.
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Figure 7.21: SPH temperature field at time t = 0.005s for explicit (left) and implicit (right)
integration of the plasticity model.
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7.4 damage modelling

Damage modelling with damage initiation and evolution is implemented into the SPH-solver
and test simulations are carried out which show some difficulties. These difficulties are
analysed and solutions are proposed.

7.4.1 Johnson Cook Fracture Strain

A compact tension (CT) test specimen ASTM E647 [242] is simulated with the JC flow stress
model, JC damage model and the Hillerborg [93] fictitious crack model. The geometry is
shown left in figure 7.22. A JC flow stress model for Ti6Al4V is used with a JC fracture strain
model with a linear accumulation of damage variable ω in the initiation phase until ωcrit = 1
followed by an exponential rule for the damage variable D in the damage evolution phase.
The damage is set to D = 1 when 99% of the critical energy release rate G f is achieved,
according to (3.171). The fracture toughness is K1C = 74.6MPa

√
m [116, 189] which is

converted with (3.169) into G f = 44501.7N/m. The initial crack length is ainit = 0.2 ·W
which is emulated by setting particle damage to D = 1 and ω = 1 along the initial crack.
This initial crack is shown on the right side of figure 7.22 with particles marked red. The load
is transmitted through both lugs of the specimen using rigid circles with frictionless contact.
The main dimension is chosen with W = 50mm and the initial crack length is a = 0.2W. Two
test cases are simulated. In the first test case constant velocities are applied to the lugs with
vpull = 20m/min in the upper lug and vpull = −20m/min in the lower lug. In the second load
case load reversal is simulated, where the lugs are first pulled until t1 = 5 · 10−5s followed
by 10 · 10−5s pushing into reverse direction until t2 = 15 · 10−5s and from then on reversing
back to tension. Load charts for both cases are displayed in figure 7.23. In both simulations
the specimen is pulled until rupture.

The model is discretised with 6144 particles. The dissipation heat into thermal energy is
considered with a Taylor-Quinney coefficient of ηTQ = 0.9. Heat conduction is not modelled.
The material parameter used for the JC flow stress model are provided in table 7.6, physical
properties in table 7.5 and the damage model constants in table 7.7. A constant time step of
∆t = 3 · 10−8s is used.

E Poisson Density Specific heat capacity Source
[GPa] ν[−] $[kg/m3] cp[

J
kgK ]

113.8 0.34 4430 580.0 [62]

Table 7.5: Physical properties of Ti6Al4V

A B C m n ε̇0
pl Tre f Tf Source

[MPa] [MPa] [−] [−] [−] [s−1] [K] [K]
862.5 331.2 0.012 0.8 0.34 1.0 298.0 1878 [62]

Table 7.6: Johnson Cook flow stress model parameter Ti6Al4V
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Figure 7.22: Dimensioned sketch of the ASTM E647 CT test specimen (left) and display of
the particles (red) where the initial damage variables D and ω are set to full
damage (D = 1 and ω = 1) to simulate a pre-cracked specimen.

D1[−] D2[−] D3[−] D4[−] D5[−] ε̇0
pl [s
−1] Tre f [K] Tmelt[K] Source

-0.09 0.27 0.48 0.014 3.87 1.0 273.0 1878.0 [73]

Table 7.7: Johnson Cook fracture strain equation parameter Ti6Al4V

7.4.2 Implementation Aspects of Damage Initiation and Evolution

The implementation of the damage evolution model is rather straightforward. A weak
coupling of stress and damage update is used, where first the plasticity model is integrated
and the damage variables are updated afterwards. A loop over all particles is conducted
and in each time increment the damage increments computed with (3.165) are linearly
accumulated with (3.166) until ω = ωcrit. For particles with initiated damage ω = ωcrit the
fictitious crack model is then applied to update the damage variable D. First the increment
of D is computed for every particle with (3.168):

∆Dn+1 =
Ln+1

char · σn+1
eq · ∆ε̄n+1

pl

G1C
(7.23)

with the characteristic "element" length Ln+1
char being the average "length" of a particle computed

from the current particle volume as:

Ln+1
char =

√
Vn+1

particle (7.24)

The damage increment is then linearly accumulated:
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Figure 7.23: Boundary conditions applied to the lugs of the CT test specimen for the mono-
tonic (left) and the load reversal simulation (right).

Dn+1 = Dn + ∆Dn+1 (7.25)

Second, the stress reduction factor is determined with:

Dn+1
red =

{
1.0− e−Dn+1

, for Dn+1 < 0.99 · G1C

0.0 , for Dn+1 ≥ 0.99 · G1C
(7.26)

The reduction factor Dred is then used to update the stress deviator:

Sn+1 = Sn+1
undamaged · D

n+1
red (7.27)

and the hydrostatic stress:

pn+1 =

{
pn+1

undamaged · Dn+1
red , for p ≤ 0(tension)

pn+1
undamaged , for p > 0(compression)

(7.28)

Particles with Dn+1 > 0 are treated specially in the plasticity model as it is assumed that
ductile damage leads to pore / void formation which reduces the effective cross section in
tension and therefore the deviatoric stress components are updated as:
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Sn+1 =





Sn+1
undamaged/Dn+1

red , for pn+1 < 0 (tension)

Sn+1
undamaged , for pn+1 ≥ 0, (compression)

(7.29)

Fully damaged particles with Dred = 0 are not deleted but remain in the analysis which
satisfies the continuity equation and still enables load transmission in compression.

7.4.2.1 Results

A results plot is shown at t = 4.8 · 10−5s in figure 7.24. While particles with initial damage
do not show a stress response a stress concentration is formed in the kerf as if there is no
initial crack. This is unphysical as the stress concentration should be located at the tip of the
initial crack. The distribution of the damage variable ω shows damage at the cracked edges
due to the unphysical stress response.

Figure 7.24: CT test specimen with equivalent stress field (left) and damage variable ω (right)
at t = 4.8 · 10−5s. The crack remains closed upon loading which is incorrect. A
correct opening requires modifications to the SPH particle interactions.

A deeper investigation revealed that the particle interactions performed for the continuum
mechanics equations lead to the undesired behaviour with the initially fully damaged
particles (ω = 1, D = 1). Particle interactions are still active in:

• the computation of the velocity gradient L (4.29) the velocities are considered from
damaged particles - this prevents crack opening
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• the computation of the stress derivative for the momentum equation (4.35) uses values
from damaged particles

• the XSPH stabilizer (4.26) which averages velocities for all particles

• stabilization terms in the artificial viscosity (4.19) which act on interactions with
damaged particles

For these reasons the four equations above are modified such that fully damaged particles
participate only in compressive stress states when pn+1 > 0:

Fj =

{
0, for pj < 0 and Dred,j = 1.0 (no interaction)
1, for pj ≥ 0 (full interaction)

(7.30)

Li = ∑N
j=1

(
vj · Fj − vi

)
⊗∇Wij ·

mj
$j

(vel. gradient) (7.31)

v̇i = ∑N
j=1

(
σi
$2

i
+

σj·Fj

$2
j
+ Πij · I + Θij

)
· ∇Wij ·mi + bi (mom. equation) (7.32)

dui
dt

= vi + εXSPH ·∑JεS mj

( vj·Fj
$ji

)
Wij (XSPH) (7.33)

µij =
hvij·xij

x2
ij+η2

av
· Fj (artif. viscosity) (7.34)

A sidemark: [249] came to similar conclusions for Total Lagrangian SPH but focused on the
velocity difference vij in the computation of the deformation gradient and its time derivative
as well as the momentum equation. Stabilization terms like XSPH or artificial viscosity
were not in their scope. The main difference to their work is that here particle interactions
are deactivated only in tension but remain active in compression and modified particle
interactions are limited here to the neighbourhood vj and do not concern vi as this approach
did not prove success. Another problem is the visibility of particles due to the smoothing
length - even if particles in the neighbourhood of particle i are fully damaged particles
behind will still contribute to the kernel function and its derivative which is unphysical. A
sketch of this problem is provided in figure 7.25.

A solution to this is the evaluation of a damage gradient which can be treated as the normal
vector of a plane which is used to block interactions beyond. While this is possible for simple
tension problems or fracture mode I crack openings, it becomes a tedious task when the
crack surfaces shift laterally with respect to each other and then requires tracking of the
newly forming surfaces upon separation.

7.4.2.2 Results with Modified Particle Interactions

With the modified particle interactions the equivalent stress and damage ω distribution
behaves as expected - at the crack a typical stress field develops and the damage progresses
at the crack tip only, see figure 7.26 for the same time t = 4.8 · 10−5s. The crack runs through
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Figure
7.25:V

isibility
problem
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the specimen and the stress concentration is always in front of the crack tip. The equivalent
stress field and the distribution of the damage variable D are shown in figure 7.27. Motivated
by the good results the simulation is now conducted with load reversals. The tensile load
part in the beginning is not different to the purely tensile case. Upon load reversal the
equivalent stress and hydrostatic pressure field as displayed in figure 7.28 is obtained during
the compression phase at at t = 1.32 · 10−4s. While the damaged particles have equivalent
stresses of σeq = 0, compressive hydrostatic pressures are still transmitted.

Figure 7.26: CT test specimen with equivalent stress field (left) and damage variable ω (right)
at t = 4.8 · 10−5s.
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Figure 7.27: CT test specimen with equivalent stress field (left) and damage variable D (right)
at t = 2.52 · 10−4s.

Figure 7.28: CT test specimen in the compression phase with equivalent stress field (left)
and hydrostatic pressures p (right) at t = 1.32 · 10−4s. Note that compressive
hydrostatic pressures are still transmitted with the fully damaged particles.
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7.4.3 Modified Johnson Cook Fracture Strain Equation for 50SiB8

The relatively new material 50SiB8 [42, 207] was developed by Swiss Steel c© as a lead
free alternative for classical free cutting steels, e.g. 11SMnPb30 and 16MnCrS5Pb. The
development became necessary as regulatory requirements have tightened and in future may
ban vehicle components containing heavy metals, such as lead [53]. The idea is to exchange
lead by graphite inclusions in order to keep the good machinability of free cuttings steels.
Experiments [225] including quasi-static tension, SHTB and SHPB have been conducted to
determine the material parameters [7, 69, 112] of this material for machining simulations. It
was found that 50SiB8 shows a tendency to blue-brittleness at temperatures around 600◦C
where the fracture strains are reduced in comparison to smaller and higher temperatures. For
this reason a modified fracture strain model based on the Johnson-Cook fracture strain (3.165)
was proposed by [69] to consider the blue-brittleness. Instead of the original temperature
term of the JC fracture strain equation this model uses a fourth order polynomial for the
description of the fracture strain reduction:

ε̄ f =
(

D1 + D2eD3η
)(

1 + D4 · ln
(

ε̇pl

ε̇0
pl

))
· Tterm (7.35)

Tterm = max
((

1 + D5T∗ + D6(T∗)2 + D7(T∗)3 + D8(T∗)4
)

, 2.5
)

(7.36)

where D1 − D4 are the constants of the classic JC fracture strain equation and D5 − D8 are
four new material parameters. The experimental temperature dependency of the fracture
strain is shown in figure 7.29 together with the fourth order polynomial fit of the modified
temperature term.

Figure 7.29: Experimental temperature dependency of the fracture strain and polynomial fit
(red curve) of the temperature term in the modified JC fracture strain equation,
from [69].

In [69, 112] JC flow stress and JC fracture strain model parameters were derived and
succesfully applied in numerical recalculations of the SHTB experiments at different strain
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rates and temperatures. In the following one of these simulations (T = 600◦C, ε̇ = 900/s)
is repeated with an SPH model of the SHTB-test and compared to FEM and experimental
results from [69]. The damage ω is linearly accumulated and upon reaching a damage of
ωcrit = 1 corresponding elements/particles are deleted from the analysis. The FEM model of
the SHTB-test is based on [112] where the geometry of the SHTB-test specimen was created
in Abaqus/CAE according to the SHTB-test specimen drawing from figure 7.29. The FEM
model is meshed with C3D8R elements and consists of 14032 elements with 16154 nodes. A
picture of the mesh is provided with figure 7.31 together with the nodes where the boundary
conditions are applied. The classic and modified fracture strain equations are implemented
in an Abaqus user subroutine VUMAT for explicit analyses together with the JC flow stress
model using the Secant B method from (7.19) using ε = 0.01. The source code is supplied
in 11.2. The simulations are carried out with Abaqus 6-14.1 and the explicit solver.

Figure 7.30: Drawing of the SHTB-test specimen, from [225].

Figure 7.31: FEM model of the SHTB-test specimen and nodes where boundary conditions
were applied (red), from [112].

The SPH model is based on the same geometry and is discretised with 65268 particles with a
constant particle spacing of 0.2 mm. The model is displayed in figure 7.32.
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Figure 7.32: SPH model of the SHTB-test specimen with marked regions where boundary
conditions were applied.

The physical properties of 50SiB8 are given in table 7.8, the JC-flow stress parameters in table
7.9 and the JC-fracture strain equations parameters for the original model in table 7.10 and
for the modified model in table 7.11.

E Poisson Density Specific heat Thermal Thermal Source
capacity conductivity expansion

[GPa] ν[−] $[kg/m3] cp[
J

kgK ] λ[ W
mK ] αth[1/K]

214 0.334875 7850 466 - - [225]

Table 7.8: Physical properties of 50SiB8

A B C m n ε̇0
pl Tre f Tf Source

[MPa] [MPa] [−] [−] [−] [s−1] [K] [K]
430.9 908.7 0.0047 0.7361 0.3854 10−3 293.15 2006 [112]

Table 7.9: Johnson Cook flow stress model parameters of 50SiB8

D1[−] D2[−] D3[−] D4[−] D5[−] ε̇0
pl [s
−1] Tre f [K] Tmelt[K] Source

0.0733 0.7204 1.5643 0.0371 1.5583 1e-3 293.15 2006 [69]

Table 7.10: Johnson Cook fracture strain equation parameters of 50SiB8 (JC classic)

D1[−] D2[−] D3[−] D4[−] D5[−] D6[−]
0.0733 0.7204 1.5643 0.0371 -3.5642 69.5723

D7[−] D8[−] ε̇0
pl [s
−1] Tre f [K] Tmelt[K] Source

318.5630 428.9243 1e-3 293.15 2006 [69]

Table 7.11: Johnson Cook modified fracture strain equation parameters of 50SiB8 (JC GG)
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Plastic dissipation into heat is considered in the FEM and SPH model with a Taylor-Quinney
coefficient of ηTQ = 0.90 but heat conduction is not considered due to the very short test
duration of 0.38 ms. All simulations are run on a single CPU core. The FEM model uses
default bulk viscosity parameters (b1 = 0.06, b2 = 1.2). In the SPH model the stabilizers
XSPH (εXSPH = 0.5) and artificial viscosity(αav = 1, βav = 1, ηav = 0.1) are used initially. This
approach without artificial stresses was quickly dropped since the SPH suffered from the
tensile instability mode leading to pair formation of particles and too early separation, see
figure 7.33. Therefore the artificial stresses (εas = 0.3, nStress = 4) had to be used.

Figure 7.33: Plastic strain distribution in the SPH model with classic JC fracture strain and
artificial stresses (top) and without artificial stresses (bottom). The simulation
without artificial stresses is too early fully fractured and shows the typical pair
formation hinting to the tensile instability issue.

The predicted plastic strain distribution in the SHTB-test specimen after separation are
shown for the FEM simulations in figure 7.34 and for the SPH simulations in figure 7.35. The
measurement result of the fracture diameter in the SPH models is given in figure 7.36.
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Figure 7.34: Plastic strains after fracture in the FEM model with classic JC fracture strain
(top) and modified model (bottom). Deleted particles are not displayed.

Figure 7.35: Plastic strains after fracture in the SPH model with classic JC fracture strain (top)
and modified model (bottom). Note that particles between the fracture surfaces
are deleted from the analysis but kept their last position without interfering
with active particles.
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Figure 7.36: Fracture diameter of the STHB specimen. Classic Johnson-Cook fracture strain
model (left) and modified model (right).

A results summary of the simulations is given in table 7.12 together with the experimental
results. SPH and Abaqus results are very similar and with the modified JC fracture strain
equation the experimental results can be reproduced which is not the case when using the
original JC fracture strain equation. Obviously, the use of artificial stresses in the SPH does
not negatively impact the physics of the model. Instead it enables a physical reasonable
result which is not possible without this stabilization term. Note the large differences in the
analysis times: while the SPH simulations took about 530 minutes, the FEM model required
with 4 minutes only less than a percent of the SPH simulation. Without artificial stresses the
runtimes of the SPH models are in the order of 372 minutes - which is a 30% reduction.

Case Numerical Fracture Fracture Fracture Runtime Time
model strain model strain ε̄ f diameter step ∆t

1 SPH JC classic 88 % 1.90 mm to 1.92 mm 530 minutes 10−8s
2 SPH JC GG 68 % 2.06 mm to 2.07 mm 530 minutes 10−8s
3 FEM JC classic 100.6 % 1.76 mm 4 minutes 1.1 · 10−8s
4 FEM JC GG 76.1 % 2.02 mm 4 minutes 1.1 · 10−8s
- Experiment - 62.7 % to 81.1 % 2.00 mm to 2.20 mm 0.38 ms -

Table 7.12: Simulation and experimental results for the SHTB-test at T = 600◦ and a strain
rate of 900s−1.
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8
M A C H I N I N G S I M U L AT I O N S

This chapter is dedicated to machining simulations with the GPU-accelerated mfree_iwf

code. In the beginning 2D simulations of orthogonal cutting are shown and later a 3D
simulation of micro milling with a diamond tool is shown.

8.1 johnson cook flow stress model extensions

In metal cutting applications most often the Johnson-Cook flow stress model is used. Espe-
cially in the machining of the titanium alloy Ti6Al4V it often fails to correctly predict the
chip shapes. For this reason several extensions were introduced.

8.1.1 Johnson Cook Tanh Extension: Calamaz 2008

The reason for the extension is a strain softening phenomenon observed for Ti6Al4V at
higher temperatures [55]. An excerpt of these experimental observations is provided with
figure 8.1.

The strain softening phenomenon is not completely understood and it is attributed to texture
softening, dynamic recrystallisation and dynamic recovery effects. To account for this
phenomenon Calamaz [38] extended the JC flow stress model with a special term using the
TANgens Hyperbolicus (TANH). This extended JC-flow stress model is named JC-tanh2008
in the following and reads as:

σy =
(

A + B ·
(
εpl
)n
) (

1

eεa
pl

)

︸ ︷︷ ︸
Modification

(
1 + C · ln

(
ε̇pl

ε̇0
pl

))

(
1−

(
T − Tre f

Tf − Tre f

)m)(
g + (1− g) · tanh

(
1

(εpl + S)c

))

︸ ︷︷ ︸
Modification

(8.1)

with
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Figure 8.1: Measured flow stress curves of Ti6Al4V at different temperatures and plastic
strain rates, from [55].

g = 1−
(

T
Tf

)d

(8.2)

S =

(
T
Tf

)b

(8.3)

with a, b, c and d are material parameters in additional to the classic JC material parameters.

8.1.1.1 Derivative of JC-tanh2008 Model for Newton Iterations

Using this model requires for the radial return algorithm in the plasticity model integration
the first derivative when using the Newton method (7.1). The derivatives are deduced in the
following. First the model is split into four terms T1, T2, T3&T4:
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σy =

(
A + B · (εpl)

n · ( 1

eεa
pl
)

)

︸ ︷︷ ︸
Term 1: T1

(
1 + C · ln

(
ε̇pl

ε̇0
pl

))

︸ ︷︷ ︸
Term 2: T2

(8.4)

(
1−

(
T − Tre f

Tf − Tre f

)m)

︸ ︷︷ ︸
Term 3: T3

(
g + (1− g) · tanh

(
1

(εpl + S)c

))

︸ ︷︷ ︸
Term 4: T4

The derivative of the flow stress with regards to the plastic strain is then:

∂σy

∂εpl
=

∂(T1(εpl) · T2 · T3 · T4(εpl))

∂εpl
=

∂(T1(εpl)

∂εpl
· T2 · T3 · T4 + T1 · T2 · T3 ·

∂(T4(εpl)

∂εpl
(8.5)

with the derivative of the first term T1:

∂T1

∂εpl
= B · e−εa

pl · εn−1
pl · (n− a · εa

pl) (8.6)

and the derivative of the fourth therm T4:

∂T4

∂εpl
= c · (g− 1)(S + εpl)

−c−1 · sech2((S + εpl)
−c) (8.7)

The derivative of the flow stress with regards to the plastic strain rate is then:

∂σy

∂ε̇pl
=

∂(T1 · T2(ε̇pl) · T3 · T4)

∂ε̇pl
= T1 ·

∂(T2(ε̇pl)

∂ε̇pl
· T3 · T4 (8.8)

with the derivative of the second term T2:

∂T2

∂ε̇pl
=

C
ε̇pl

(8.9)

Inserting the derivatives (8.5) and (8.8) with (7.11) and (7.12) and (8.9) into the equation for
the determination of the plastic multiplier (7.10) yields:
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∂g(∆λn)

∂∆λ
=−

√
3
2

2G−
√

2
3

[
∂σy

∂εn+1
pl

∂εn+1
pl

∂∆λ
+

∂σy

∂ε̇n+1
pl

∂ε̇n+1
pl

∂∆λ

]
(8.10)

∂g(∆λn)

∂∆λ
=−

√
3
2

2G−
√

2
3

B · e−εa
pl · εn−1

pl · (n− a · εa
pl) · T2 · T3 · T4

−
√

2
3

T1 · T2 · T3 · c · (g− 1)(S + εpl)
−c−1 · sech2((S + εpl)

−c)

−
√

2
3

T1 ·
C
ε̇pl
· T3 · T4 ·

1
∆t

which is even without inserting the terms T1 − T4 an awkward expression to be used within
a Newton method and obviously induce very high computational cost. For this reason only
the Secant B - method is used in the following.

8.1.2 Johnson Cook Tanh Extension - Calamaz 2010

Calamaz [39] later proposed an improved model of (8.1) because JC-tanh2008 shows strain
softening at all temperatures which is unphysical for the lower temperature range. In their
new model JC-tanh2010 the strain softening starts from T ≈ 0.3 · Tf which is according to
observations in [55].

σy =
(

A + B · (εpl)
n)
(

1 + C · ln
(

ε̇pl

ε̇0
pl

))(
1−

(
T − Tre f

Tf − Tre f

)m)
(8.11)

(
g2010 + (1− g2010) · tanh

(
1

(εpl + ε0
pl)

))

︸ ︷︷ ︸
additional term S2010

where the term S2010 models the strain softening and ε0
pl shall modulate the strain corre-

sponding to the peak stress. The parameter g2010 is defined as:

g2010 = 1−
(

p · εpl

1 + p · εpl
· tanh

(
T − Tr

Trec − Tr

)q
)

(8.12)

with p controlling the slope of the stress-strain curve after the peak stress, Trec being the
onset temperature of the strain softening phenomenon and q defines the temperature range
over which the strain softening is developed. With a similar argumentation as for the
JC-tanh2008-model the Secant B - method is used exclusively for the determination of the
plastic multiplier in the radial return algorithm.
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8.1.3 Johnson-Cook Tanh Extension - Calamaz 2011

A further modification JC-Calamaz2011 of the original JC flow stress model was proposed
[40] as:

σy =

(
A + B ·

(
1

ε̇pl

)a

· ε(n−0,12·(εpl ε̇pl)
a)

pl

)(
1 + C · ln

(
ε̇pl

ε̇0
pl

))(
1−

(
T − Tre f

Tf − Tre f

)m)
(8.13)

with only one additional parameter a affecting the first term of the JC flow stress and
coupling it with a strain rate dependency.

8.1.4 Johnson-Cook Tanh Extensions - Sima / Özel

Sima and Özel [224] came up with another three extensions of the JC flow stress based on
(8.1) and (8.11):

The first model JC-tanhSO1 is:

σy =
(

A + B · (εpl)
n)
(

1 + C · ln
(

ε̇pl

ε̇0
pl

))(
1−

(
T − Tre f

Tf − Tre f

)m)
(8.14)


M + (1−M) ·

(
tanh

(
1

(εpl + p)r

))S



with M, p, r and S being constants.

Their second modification JC-tanhSO2 is:

σy =
(

A + B · (εpl)
n)
(

1 + C · ln
(

ε̇pl

ε̇0
pl

))(
1−

(
T − Tre f

Tf − Tre f

)m)
(8.15)


g + (1− g) ·

(
tanh

(
1

(εpl + p)r

))S



with
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g =1−
(

T
Tf

)d

(8.16)

p =

(
T
Tf

)b

which is a modified JC-tanh2008-model without the 1

e
εa

pl
-term but an additional exponent r

in the tanh-term.

Their third modification JC-tanhSO3 reads:

σy =

(
A + B · (εpl)

n ·
(

1

eεa
pl

))(
1 + C · ln

(
ε̇pl

ε̇0
pl

))(
1−

(
T − Tre f

Tf − Tre f

)m)
(8.17)


g + (1− g) ·

(
tanh

(
1

(εpl + p)r

))S



with D and p using the same definition in (8.16). This model is a modified JC-tanh2008-
model with an additional exponent r in the tanh-term. For r = 1 the model recovers the
JC-tanh2008-model.

8.1.5 Comparison of Johnson-Cook-Type Flow Stress Models

All JC extensions shown before are compared against each other for the titanium alloy
Ti6Al4V. For that purpose the five parameters A, B, C, m and n of the JC-classic are the
same for each case and serve as a basis. Its values are given in table 8.1. The density and
the specific heat are given in table 8.2. The models differ only in the additional constants
of the respective parameters of the tanh-extensions which are given in table 8.3 together
with the source of the additional constants. These additional constants are mainly identified
from parametric simulations whose results are compared to experimental results. In the
JC-tanhSO3-model SHPB-test data is used to modify the stress strain curve at very low
strains while the final set is identified from parametric simulations and comparison to cutting
experiments as well.

A B C m n ε̇0
pl Tre f Tf Source

[MPa] [MPa] [−] [−] [−] [s−1] [K] [K]
968 380 0.0197 0.577 0.421 1.0 293.15 1903 [38, 128]

Table 8.1: Johnson Cook flow stress model parameters for Ti6Al4V.
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Density Specific heat capacity Source
$[kg/m3] cp[

J
kgK ]

4430 580.0 [62]

Table 8.2: Physical properties of Ti6Al4V .

Model Used additional constants Source
JC-classic - -
JC-tanh2008 a = 1.6, a = 0.4, a=6.0, d = 1.0 [38, 62]
JC-tanh2010 ε0 = 0.7, p = 0.6, Trec = 600.0, q = 5.0 [39]
JC-Calamaz2011 a = 0 / a = 0.11 / a = 0.22 [40]
JC-tanhSO1 p = 0, r = 1, S = 7.0, M = 0.7 [224]
JC-tanhSO2 b = 1.0, d = 0.5, r = 1.0, S = 5.0 [224]
JC-tanhSO3 a = 2.0, b = 1.0, d = 0.5, r = 1.0, S = 5.0 [224]

Table 8.3: Extended JC flow stress model: additional material parameters used for comparison
of these models.

First, the yield stress at a constant temperature of T = 800K and a constant strain rate of
ε̇pl = 104/s is shown in the range of εpl = 0...300%. Plastic dissipation is not considered and
therefore the temperature remains constant.

Figure 8.2: Computed stress-strain curves for various Johnson-Cook-type flow stress models,
isothermal

At very low plastic strains all models predict the same yield stress and the evaluation shows
that JC-classic and JC Calamaz2011 with a = 0 give very similar stress-strain curves. JC-
Calamaz2011 with a = 0.11 and a = 0.22 show very flat yield curves and all tanh-modified
models show more or less pronounced reductions of the yield stress where only JC-tanhSO1
shows first a decrease and beyond εpl = 1 starts to rise again. JC-tanhSO2 and JC-tanhSO3
show the strongest yield stress decreases. It is difficult to judge which model and parameter
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set is suited best to model the flow stress curve at high plastic strains since test data is
available only up to εpl = 80%, see figure 8.1. In a second test case the yield stress is adiabatic
heating with a Taylor-Quinney coefficient of ηTQ = 90% is considered. The temperature
increase is computed with an Euler explicit integration. The integration reads:

∆ε̄pl = 10−5 = const (8.18)

˙̄εpl = 10−5s−1 = const (8.19)
∆t = ∆ε̄pl/ ˙̄εpl (8.20)

ε̄n=0
pl = 0 (8.21)

Tn=0 = Tinit (8.22)
ε̄n+1

pl = ε̄n
pl + ∆ε̄pl (8.23)

σn+1
y = σ(ε̄n+1

pl , ˙̄εpl, Tn) (8.24)

Tn+1 = Tn +
σn+1

y · ∆ε̄pl · ηTQ

$ · cp
(8.25)

The equations (8.18)-(8.22) initialize the problem with an initial temperature of Tinit = 500K,
a constant strain rate of ˙̄εpl = 105s−1 and constant plastic strain increment of ∆ε̄pl = 10−5.
The incrementation loop is performed with (8.23)-(8.25) until ε̄pl = 0...300%. The resulting
temperature characteristics for the flow stress models are given with figure 8.3.

Figure 8.3: Computed stress-strain curves for various Johnson-Cook-type flow stress models,
with adiabatic heating

A slightly different picture is seen when adiabatic heating is considered. JC-classic and
JC-Calamaz2011 with a = 0 are still almost equal, while JC-tanhSO1 shows at strains higher
than εpl = 1 shows a similar trend as JC Calamaz2011 with a = 0.11 and a = 0.22. JC-
tanhSO2 and JC-tanhSO3 show again the strongest yield stress decreases with JC-tanh2008
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catching up at larger plastic strains. Again, it is difficult to judge which model and parameter
set is suited best to model the flow stress curve at high plastic strains since test data is
available only up to εpl = 80%, see figure 8.1.

8.2 orthogonal cutting simulations with original and modified jc-mod-
els

The orthogonal cutting simulation allows a simplified simulation approach in 2D for plane
strain conditions. In this part orthogonal cutting simulations of Ti6Al4V are performed
with the JC-classic-, JC-tanh2008-, JC-tanh2010- and JC-tanhSO3-model. The results
are compared against available FEM and experimental results from Ducobu [59, 62] whose
results are chosen as they have been continuously working with extended JC-models on metal
cutting simulations [57, 58, 60] and outlined the problem of suitable material parameters
for Ti6Al4V[61] in machining simulations. The computations are performed for the process
parameters given in table 8.4.

Cut speed Uncut chip thickness Rake angle Clearance angle Cutting edge radius
vc f γ α rc

30m/min 280µm 15◦ 2◦ 10µm

Table 8.4: Process parameter and cutter geometry of orthogonal cutting simulations, from
[62].

Physical properties for the workpiece material Ti6Al4V and the tungsten-carbide cutter are
given in table 8.5. In contrast to the work of [62], thermal expansion and elasticity of the tool
are not considered in this work. Thermal expansion and heat conduction are considered for
the workpiece where for the latter the Brookshaw-approximation of the Laplacian is used
(4.39). The friction coefficient µ f ric is chosen very low in accordance with the reference [62].
Its value and the frictional and plastic dissipation coefficients are provided with table 8.6.

Material E Poisson Density Specific heat Conductivity Thermal Source
capacity expansion

[GPa] ν[−] $[kg/m3] cp[
J

kgK ] λ[ W
mK ] αth[1/K]

Ti6Al4V 113.8 0.34 4430 580.0 7.3 8.6e-6 [62]
WC (800) (-) 15000 203 46 (4.7e-6) [62]

Table 8.5: Physical properties of Ti6Al4V and tungsten carbide.

Friction Frictional energy Plastic dissipation
coefficient converted into heat into heat
µ f ric η f ric ηTQ
0.05 100% 90%

Table 8.6: Friction and dissipation coefficients, from [62].

147



machining simulations

The JC flow stress model parameters used for the four models as well as the parameters for
the tanh terms are given in table 8.7. The parameters for the JC-classic model are taken
from [158] who refer to [104]. Since the latter document is not accessible it is unknown
how this material was treated and how the material parameters were determined. For the
modified JC-models, material parameters from the respective publications were used in
the simulations which are as well outlined in the table below. The material constitutive
parameters for JC-classic are derived from SHPB-tests except for the JC-tanh2010-model,
where the method for the parameter determination is not clear. The additional constants
for the tanh-terms are mainly identified from parametric simulations whose results are
compared to experimental results, see also chapter 8.1.5.

Parameter Unit JC-classic JC-tanh2008 JC-tanh2010 JC-tanhSO3
A MPa 862.5 968.0 870.0 724.7
B MPa 331.2 380.0 990.0 683.1
C - 0.012 0.0197 0.011 0.035
m - 0.8 0.577 1.0 1.0
n - 0.34 0.421 0.25 0.47
ε̇0

pl s−1 1.0 1.0 1.0 1.0
Tre f K 298.0 293.15 293.15 293.15
Tf K 1878 1903 1903 1903
Source SHPB [104, 158] SHPB [38, 128] [39, 62] SHPB [62, 123, 224]
a − - 1.6 - 2.0
b − - 0.4 - 5.0
c − - 6.0 - -
d − - 1.0 - 1.0
q − - - 5.0 -
p − - - 0.6 -
Trec K - - 600 -
ε0 − - - 0.7 -
r − - - - 1.0
S − - - - 0.05
Source - [62] [62] [62]

Table 8.7: Material parameter used for Ti6Al4V in the analyses.

The workpiece geometry has a length l = 1mm and a height of h = 0.75mm and is discretised
with 8586 particles. The right, bottom and half of the left particles are fixed. A picture is
provided with figure 8.4. Tool heat transfer is considered only for the GPU-calculations due
to the time demand, see cases 3-6 in table 8.8. For that purpose the tool is discretised with
additional 3267 tool particles where the left side of the tool has a temperature boundary
condition with T = Troom = 298K. The initial temperature for the workpiece and tool models
is Tinit = Troom = 298K.
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Figure 8.4: Geometry and boundary conditions of the SPH particle domain.

The simulated time is t = 1.2ms which equals to a cut length of lcut = 0.6mm.

8.2.1 Results without Damage Modelling

The computation for the JC-classic-model is conducted without tool heat transfer on a
single core of the CPU (AMD R©Ryzen 5 2600x) and serves as a performance comparison to
all other simulations which are conducted on the GPU with a NVidia GeForce GTX 1650.
An overview of the simulations is given in table 8.8.

Case JC model CPU / GPU Runtime Time step Heat transfer
1 JC-classic CPU 21.6 h ∆t = 4.7 · 10−10s only workpiece
2 JC-classic GPU 2.6 h ∆t = 4.7 · 10−10s only workpiece
3 JC-classic GPU 2.9 h a ∆t = 4.7 · 10−10s tool and workpiece
4 JC-tanh2008 GPU 3 h ∆t = 4.7 · 10−10s tool and workpiece
5 JC-tanh2010 GPU 3 h ∆t = 4.7 · 10−10s tool and workpiece
6 JC-tanhSO3 GPU 3.3 h ∆t = 4.7 · 10−10s tool and workpiece

Table 8.8: Computation times of the SPH models without damage modelling.
a The same simulations require on high performance GPUs runtimes of only 0.6 h (NVidia Tesla P100) and

0.5 h (NVidia Quadro GP100).

Comparing cases 1 and 2 in table 8.8 reveal a runtime reduction of about 88% when
computing the same model on the GPU. When modelling tool heat transfer (case 2 vs. 3) the
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computational expense increases and the compute time is about 10% higher. The extensions
of the JC-classic-model (cases 4, 5, 6) show moderate runtime increases for JC-tanh2008
and JC-tanh2010 in the order of 3% and a slightly higher runtime increase of 13% for
JC-tanhSO3.

The distribution of plastic strains is shown in figure 8.5 for the four simulations. Here,
JC-tanh2008 shows clearly segmentation while JC-tanh2010 and JC-tanhSO3 show only
smaller signs of segmentation while the JC-classic shows marginal traces of shear band
formations.

Figure 8.5: Plastic strain distribution for cases 3-6 from table 8.8 with tool and workpiece
heat transfer: JC-classic (top left), JC-tanh2008 (top right), JC-tanh2010 (bottom
left) and JC-tanhSO3 (bottom right).

The temperature distributions are given in figure 8.6 where the JC-tanh2010 shows sig-
nificantly higher temperatures, mainly in the tool-chip interface, compared to the other
flow stress models. This figure can be compared to FEM results from [62], their results are
shown in figure 8.7 and show a similar pattern with the highest predicted temperatures for
JC-tanh2010. This picture allows as well for a qualitative comparison of the predicted chip
shapes which show similar segmentation results where JC-tanh2008 is most pronounced as
well.
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Figure 8.6: Temperature distribution for cases 3-6 from table 8.8 with tool and workpiece
heat transfer: JC-classic (top left), JC-tanh2008 (top right), JC-tanh2010 (bottom
left) and JC-tanhSO3 (bottom right). The temperature unit is in [K].
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Figure 8.7: Temperature distribution of the FEM simulations conducted by [62] for JC-classic

(top left), JC-tanh2008 (top right), JC-tanh2010 (bottom left) and JC-tanhSO3
(bottom right).

152
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Figure 8.8: Cut force evolution with the SPH simulations for JC-classic (top left), JC-
tanh2008 (top right), JC-tanh2010 (bottom left) and JC-tanhSO3 (bottom right).
The cut forces are scaled to a cut width of 1mm.

The cut force evolution is shown in figure 8.8. A comparison of the averaged SPH cut forces
to FEM and experimental results of [62] is displayed in table 8.9. The SPH prediction of cut
forces are generally lower than the FEM results by about 20%− 30% where JC-tanh2010
comes closest to the experimentally determined cut force with a deviation of about 11%. The
trend of the cut force is similar to the reported results in Ducobu [62]: cut force predictions
obtained with JC-tanh2010 are closest to the experimental results while JC-tanh2008 gives
the worst cut force prediction. Lower process force prediction of the SPH with commercial
solvers like Abaqus and LS-Dyna are reported in literature [229, 248]. but the issue is so far
not understood and probably stems from the remeshing in FEM where due to remapping
from the old to the new mesh internal variables are dispersed. Further, distorted elements
appear to have higher stiffness than the continuum, which is the actual reason for remeshing.

JC model SPH FEM [62] Experiment [62]
JC-classic 243 N 292 N 387 N
JC-tanh2008 215 N 255 N 387 N
JC-tanh2010 343 N 442 N 387 N
JC-tanhSO3 282 N 432 N 387 N

Table 8.9: Comparison of cut forces from the SPH with the FEM and experimental results
from [62]. The cut forces are scaled to a cut width of 1mm.
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8.2.2 Results with Damage Modelling

The use of a constitutive model in machining simulations without consideration of damage is
often not satisfactory with respect to the predicted chip shapes. Therefore first attempts were
made by [80, 141] using the JC fracture strain equation with linear damage accumulation
and subsequent element deletion when reaching ωcrit. These approaches were refined
[142, 272] and not just the damage initiation was considered but also the damage evolution
phase where then the critical damage Dcrit leads to element deletion in the simulations. In
this investigation the deletion of particles (elements) is prevented such that fully damaged
particles can still participate in the transmission of loads in compression. The damage
initiation is computed with the Johnson Cook fracture strain model (3.165) and parameters
according to table 8.10. In the damage evolution phase an an exponential rule for the damage
variable D is used. The damage is set to D = 1 when 99% of the critical energy release rate
G f is achieved, according to (3.171). The fracture toughness is K1C = 74.6MPa

√
m [116, 189]

which is converted with (3.169) into G f = 44501.7N/m. Material parameters according to
table 8.10 are used and the SPH simulation cases 3-6 from table 8.8 are repeated this time
including damage initiation and evolution.

Set Material D1[−] D2[−] D3[−] D4[−] D5[−] ε̇0
pl [s
−1] Tre f [K] Tmelt[K] Source

1 Ti6Al4V -0.09 0.27 0.48 0.014 3.87 1.0 273.0 1878.0 [73]

Table 8.10: Johnson Cook fracture strain equation constants of Ti6Al4V.

The distribution of plastic strains is shown in figure 8.9 for the four simulations with the
same model resolution as in chapter 8.2.1. The chip segmentation becomes visible for all 4
constitutive models but in between the segments material accumulates. For this reason the
particle resolution is increased 4 times to a total of 48052 particles. The results are shown in
figure 8.10. The predicted chip segmentation is improved and JC-classic, JC-tanh2008 and
JC-tanh2010 show clearly segmentation while JC-tanhSO3 shows shear band formation
but the chip segments are still interconnected. The distribution of the damage variable ω

for damage initiation is shown in figure 8.11. Between each chip segment it reaches its
maximum value of ω = 1 which means that damage evolution has started in these regions.
The distribution of the damage variable D (damage evolution) is shown in figure 8.12. In
none of the simulations it ever reaches D = 1 which is conspicuous since [62] reports D = 1
with subsequent element deletion. The reason for this might be that they did not report
their used value for the critical stress intensity K1C. Possibly it is way lower than the one
used here which could explain as well the different segmentation behaviour with less chip
segments in the SPH than in the FEM. The temperature distributions are given in figure 8.13
where the JC-tanh2010 shows significantly higher temperatures, mainly in the tool-chip
interface, compared to the other flow stress models. This figure can be compared to FEM
results from [62], their results are shown in figure 8.14 and show a similar pattern with the
highest predicted temperatures for JC-tanh2010. This picture allows as well for a qualitative
comparison of the predicted chip shapes which show similar segmentation results where
JC-tanh2008 is most pronounced as well.

The cut force evolution is shown in figure 8.15. A comparison of the averaged SPH cut
forces to FEM and experimental results of [62] is displayed in table 8.11. The SPH cut force
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Figure 8.9: Plastic strain distribution for JC-classic (top left), JC-tanh2008 (top right), JC-
tanh2010 (bottom left) and JC-tanhSO3 (bottom right) with low particle resolu-
tion of 8586 workpiece and 3267 tool particles.

predictions are again generally lower than the FEM results by about 20%− 30%, except for
JC-tanh2010 which gives "only" a 5% lower cut force compared to the respective FEM result.
Compared to the SPH simulation without damage, the SPH cut forces dropped by about 20%
when considering damage. Similar to the SPH simulations without damage, JC-tanh2010
gives the best match to the experimental result with still a large deviation of about 30%. The
other three models deviate more, with JC-tanh2008 being the worst (> 50%). The trend of
the cut force is different than for the FEM [62]: JC-tanh2010 still performs best in the SPH
where JC-tanh2010 and JC-tanhSO3 predict the same cut force in the FEM simulation.

JC model SPH FEM [62] Experiment [62]
JC-classic 200 N 254 N 387 N
JC-tanh2008 169 N 220 N 387 N
JC-tanh2010 287 N 301 N 387 N
JC-tanhSO3 241 N 301 N 387 N

Table 8.11: Comparison of cut forces from the SPH with the FEM and experimental results
from [62]. The cut forces are scaled to a cut width of 1mm.
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Figure 8.10: Plastic strain distribution for JC-classic (top left), JC-tanh2008 (top right), JC-
tanh2010 (bottom left) and JC-tanhSO3 (bottom right) with increased particle
resolution of 34668 workpiece and 13384 tool particles.

Figure 8.11: Damage variable ω (damage initiation) in the SPH simulations for JC-classic

(top left), JC-tanh2008 (top right), JC-tanh2010 (bottom left) and JC-tanhSO3
(bottom right) with increased particle resolution of 34668 workpiece and 13384
tool particles.
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Figure 8.12: Damage variable D (damage evolution) in the SPH simulations for JC-classic

(top left), JC-tanh2008 (top right), JC-tanh2010 (bottom left) and JC-tanhSO3
(bottom right) with increased particle resolution of 34668 workpiece and 13384
tool particles.

Figure 8.13: Temperature distribution for JC-classic (top left), JC-tanh2008 (top right), JC-
tanh2010 (bottom left) and JC-tanhSO3 (bottom right) with increased particle
resolution of 34668 workpiece and 13384 tool particles. The temperature unit is
in [K].
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Figure 8.14: Temperature distribution of the FEM simulations conducted by [62] for JC-
classic (top left), JC-tanh2008 (top right), JC-tanh2010 (bottom left) and
JC-tanhSO3 (bottom right).

Figure 8.15: Cut forces evolution with the SPH simulations for JC-classic (top left), JC-
tanh2008 (top right), JC-tanh2010 (bottom left) and JC-tanhSO3 (bottom right).
The cut forces are scaled to a cut width of 1mm.
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8.2.3 Discussion

Orthogonal cutting simulations of Ti6Al4V were performed with JC-classic and three ex-
tensions to it with and without damage modelling. The results are compared to the same
analyses performed by [62] but with the FEM. The SPH simulations underpredict the cutting
forces compared to the same simulations with FEM. The isse is known with commercial
solvers like Abaqus and LS-Dyna and is reported already in the literature [229, 248]. The
reason for the lower process force predictions with the SPH are so far not understood and
probably stems from the remeshing procedure in the FEM which introduces dispersion into
the internal veriables due to remapping. Another reason could be that distorted elements
appear to have higher stiffness than the continuum, which is the actual reason for remeshing.
Simulations without damage modelling gave similiar chip segmentation pattern when com-
pared to the FEM but when using damage modelling the chip segmentation does not match
well with the FEM simulation in [62]. The reason might be that K1C (G f ) used in the reference
simulations in [62] is unknown and was therefore taken from other literature. It is rather
obvious that FEM neither SPH predict well the cutting force when compared to experiments.
One reason for the deviation is very likely the very low coefficient of friction used in these
simulations. Another reason are the underlying constitutive models as well as their material
parameters which are often fitted to experimental data at far less severe conditions than
those of the cutting process, e.g. within SHPB experiments. A complicating factor here is that
the cutting experiments and experiments for obtaining the material properties were carried
out on different material batches, whereby their heat treatments as well as the processing
prior to testing are unknown. As a consequence the conclusion is drawn that a numerical
simulation model of the cutting experiment itself should serve for the inverse identification
of material constitutive constants.
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8.3 micro milling of ofhc copper

Micro milling is a main application for the manufacturing of micro features in electrodes
for die-sinking electrical discharge machining (EDM) [36, 37]. These electrode tools for the
EDM process are commonly made of pure copper (OFHC) or tungsten reinforced copper.
The shape and quality of the tool are crucial for the quality and reliability of the EDM
process. In that light micro milling is an important part in the production of these electrodes.
Key issues are the burr formation and surface roughness induced by the micro milling
process. In the investigation conducted here a diamond two flute micro milling tool with a
diameter of dtool = 200µm and a cutting edge radius of rc = 3µm is applied for a numerical
analysis of the burr formation during micro milling of OFHC copper without lubricant and
compared against experimental results. For the simulation two material models are used:
the Johnson-Cook flow stress model and the Steinberg-Cochran-Guinan-Lund (SCGL) model.
The latter, because in [21] it is shown that flow stress predictions are more accurate at higher
temperatures with the SCGL-model compared to the JC-model.

8.3.1 Experiments

The experiments in [36, 37] were considered for OFHC and tungsten reinforced copper
with and without lubricant. Relevant for this simulation are the experimental results
for OFHC copper without lubricant for which unfortunately no force measurements are
documented but the burr formation is given for a cut speed of vc = 125m/min (n=200’000/min
at dtool = 200µm), width and depth of cut of ae = ap = 40µm and a feed per tooth and
revolution of ft = 15µm which gives a tool speed of vtool = 0.1m/s for two tool teeth.

Figure 8.16: Experimental burr formation in micro milling [36, 37].

8.3.2 Numerical Model

The geometry and process parameter definition of the micro milling model are provided
with figure 8.17 and the CAD-model of the diamond micro milling tool is displayed in figure
8.18. The following parameters are selected for the simulation:
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Workpiece dimensions Height H [µm] Width W [µm] Length L [µm]
100 100 100

Tool geometry dtool[µm] Edge radius rc[µm] Flutes / teeth
200 3 2

Process parameter ap[µm] ae[µm] ω[1/min] vtool[m/s]
40 40 200’000 0.1

Table 8.12: Geometry and process parameter of the micro milling simulation.

Figure 8.17: Workpiece dimension and process parameter definition of the micro cutting
simulation.

Figure 8.18: CAD model of the diamond tool Dixi v4 viewed from the bottom (left) and from
the side (right).

The discretised tool and workpiece model are shown in figure 8.19. The tool is modelled
as rigid with 1121 tetrahedrons and the workpiece is discretised with 30x30x30 = 27000
particles.
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Figure 8.19: Discretised tool and workpiece model in the micro milling simulation.

8.3.3 SCGL Model

The Steinberg-Cochran-Guinan-Lund (SCGL) model is a semi-empirical model that was
developed by Steinberg [231] for high strain-rate applications with an extension to low strain-
rates by Steinberg and Lund [230]. This model incorporates a temperature and pressure
dependent shear modulus as well as a melt temperature model based on the density which
is affected by hydrostatic pressures.

8.3.3.1 SCG Shear Modulus Model

The Steinberg-Cochran-Guinan (SCG) shear modulus model [231, 275] is used in the simula-
tion with the SCGL-flow stress model. It is pressure and temperature dependent and of the
following form:
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µ(p, T) = µ0 +
∂µ

∂p
p

η1/3 +
∂µ

∂T
(T − 300.0), with η =

$

$0
(8.26)

with µ0 being the shear modulus at the reference state at T = 300K, p = 0 and η = 1. T is
the temperature and p the hydrostatic pressure. With the temperature T approaching Tf the
shear modulus is set to zero. The melting temperature Tf is computed with the SCG melt
temperature model (8.27).

8.3.3.2 SCG Melt Temperature Model

The melting temperature Tf depends in this model on the hydrostatic pressure p which can
be expressed also by the density ratio η = $

$0
:

Tf ($) = Tm0 · exp
(

2 · a
(

1− 1
η

))
· η2·(Γ0−a−1/3), with η =

$

$0
(8.27)

The melting temperature Tf is in hydrostatic tension constant Tf = Tm0 and increases for
compressive hydrostatic pressure. Since in machining operations the hydrostatic pressures
reach up to 3GPa this is expected to have some effect on the flow stress. The melt temperature
characteristics is shown in figure 8.20 depending on the density.

Figure 8.20: Melt temperature of OFHC copper predicted with the SCG-melt-temperature
model. The chart depends on the density which is related to the hydrostatic
pressure.

8.3.3.3 SCGL Flow Stress Model

The flow stress model reads as:
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σy(εpl, ε̇pl, T) =
(
σa · f (εpl) + σth(ε̇pl)

)
· µ(p, T)

µ0
for σa ≤ σmax and σth ≤ σp (8.28)

with σa the athermal component of the flow stress, f (εpl) a function representing the
hardening, σth is the thermally activated component of the flow stress, µ(p, T) is the pressure-
dependent shear modulus and µ0 is the shear modulus at standard temperature and pressure.
The athermal stress component σa has a saturation at σmax and the thermally activated stress
has its saturation at the Peierls stress σp. The shear modulus µ(p, T) in this model is
computed with the SCG shear modulus model (8.26).

The strain hardening function f (εpl) is:

f (εpl) =
(
1 + β · (εpl + εpi)

)n (8.29)

with β and n being work hardening parameter and εpi is the initial equivalent plastic strain.
The thermal component σth is given implicit:

ε̇pl =

[
1

C1
· e

2Uk
kbT

(
1− σth

σp

)2

+
C2

σth

]−1

(8.30)

with 2 · Uk the energy to form a kink-pair in a dislocation segment of length Ld, kb the
Boltzmann constant and σp the Peierls stress. The constants C1 and C2 are given with:

C1 =
ρd · Ld · a · b2 · ν

2 · w2 (8.31)

C2 =
D

ρd · b2 (8.32)

and ρd is the dislocation density, a is the distance between Peierls valleys, b is the magnitude
of the Burgers vector, ν the Debye frequency, w is the width of a kink loop and D the drag
coefficient. In a 3D display the dependency of σth from temperature T and strain rate ε̇pl
displays as:
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Figure 8.21: SCGL-model: thermal part σth(T, ε̇pl) of the flow stress.

8.3.3.4 Numerical Integration of the SCGL Flow Stress Model

For similar reasons as in chapter 8.1.1.1 the SCGL-model is integrated with the Secant

B-method (7.19). Because the thermal part of the flow stress σth is given implicitly in (8.30),
the equation is iteratively solved with a bisection algorithm to find σth(ε̇pl, T).

8.3.4 Material Parameters

The simulations are performed with the JC-classic and SCGL flow stress models with
material parameters available from the literature. Physical properties are given in table 8.13.
The JC-classic flow stress parameters are taken from [105] who conducted static tensile
tests, torsion tests and dynamic SHB tests. The parameters are given in table 8.14. The SCGL
flow stress model parameters are based on data from [231] for the athermal part, the Peierl’s
stress is from [94] and the other parameters from [21]. They are summarized in table 8.17.
The material parameters for the SCG-melt temperature model are given in table 8.15 and for
the SCG-shear modulus model in table 8.16. The simulations with both flow stress models
consider heat transfer in the workpiece and plastic dissipation into heat was considered
with a Taylor-Quinney coefficient of ηTQ = 0.90. Heating due to friction was assumed with
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η f ric = 0.5 since no tool heat transfer is modelled. The friction coefficient is assumed as
µ f ric = 0.35. A time step of ∆t = 5 · 10−11s is used in both analyses.

E Poisson Density Specific heat Conductivity Thermal Source
capacity expansion

[GPa] ν[−] $[kg/m3] cp[
J

kgK ] λ[ W
mK ] αth[1/K]

110 0.34 8960 383 394 - [105, 257]

Table 8.13: Physical properties of OFHC copper.

A B C m n ε̇0
pl Tre f Tf Source

[MPa] [MPa] [−] [−] [−] [s−1] [K] [K]
90 292 0.025 1.09 0.31 1.0 273 1356 [105]

Table 8.14: Johnson Cook flow stress model for OFHC copper.

Tm0[K] Γ0[−] a[−] Source
1356.5 1.99 1.5 [21, 79, 143]

Table 8.15: Material parameters for SCG melt temperature model used in the simulations.

µ0[GPa] ∂µ
∂p

∂µ
∂T [GPa/K] Source

47.7 1.3356 0.018126 [21, 79]

Table 8.16: Material parameters for SCG shear modulus model used in the simulations.

σa[MPa] σmax[MPa] β[−] εpi[−] n[−] C1[/s] Uk[eV] σp[MPa] C[MPa/s] Source
125 640 36 0 0.45 0.71 · 106 0.31 20 0.012 [21, 231]

Table 8.17: Material parameters for SCGL flow stress model used in the simulations.

8.3.5 Results

The runtimes for the SPH simulations were in the order of 88h for 40’000’000 time steps
on a NVidia QuadroGP 100 GPU. The raw process forces are shown in figure 8.22 for the
simulation with the JC-classic- and the SCGL-flow stress model. Both show large force peaks
for the time period when the cutting edge is engaged. These peaks are predicted with about
4 times higher magnitude by the SCGL-flow stress model in comparison to JC-classic. This
is possibly due to the stronger thermal softening of JC-classic.
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8.3 micro milling of ofhc copper

Figure 8.22: Resulting tool forces in the numerical micro milling simulation for JC-classic-
(left) and SCGL (right)- flow stress model.

Figure 8.23 shows the residual stresses in the workpiece at the simulation end. The SCGL-
model predicts higher residual stresses than the JC-classic-model. While with JC-classic

almost no burr formation is predicted, with SCGL a large burr can be observed with a
maximum height of ≈ 49µm and width of ≈ 65µm, see figure 8.24. The burr is predicted
roughly 2− 3 times higher than in the experiment, where the burr height is between 15...20µm
and the burr width is between 15...25µm, see also figure 8.16.

Figure 8.23: Stress distributions [Pa] after the simulation end in the numerical micro milling
simulation for JC-classic- (left) and SCGL (right)- flow stress model.
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Figure 8.24: Maximum burr height (yellow line 48.5µm) and width (red line 64.8µm) pre-
dicted with the SCGL- flow stress model.

8.3.6 Discussion

Two different flow stress models, JC-classic and SCGL were applied to the simulation of
micro milling. In comparison to experimental results SCGL outperforms JC-classic as it
is able to to predict the burr formation, even though to some higher extent than observed
experimentally, but which cannot be seen with the JC-classic-model at all. Possibly JC-
classic suffers due to the bad prediction of flow stresses towards higher temperatures due
to thermal softening. This is probably also the reason for the prediction of lower process
forces.
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9
M AT E R I A L PA R A M E T E R D E T E R M I N AT I O N

In the preceding chapter several orthogonal cutting simulations were performed with
constitutive model constants taken from literature. These values show larger variations and
so the results do. The ’same’ material can have different ’initial conditions’: slightly different
chemical compositions within the tolerance bands as well as different heat treatments and
processing methods of the raw material, e.g. rolling or forging. These are often not clear
which makes it difficult to compare various constitutive model parameter sets from literature
or to select the one suited best for simulations. In an attempt to circumvent this problem, a
testing program is initiated where Ck45 (1.1191) and Ti6Al4V (3.7165, Grade 5) raw material
in bar form has been purchased. Test specimen from this material are subjected to hardness
tests to detect any irregularities that may be caused by the manufacturing process. The micro
structure is then examined by means of etched samples and EBSD in order to investigate
the microstructure as well as possible preferential orientations of the grains or anisotropies.
Tensile tests are carried out on test specimen of this material and material parameter for
quasi-stationary conditions are derived as well as the rate dependency at low strain rates.
Further, the main part of this material is used for orthogonal cutting experiments. These
cutting experiments are then used to drive inverse parameter identifications of constitutive
model constants within numerical cutting simulations of these experiments. Since the inverse
parameter identification requires many iteration loops it is crucial to use cutting experiments
at high cut speeds as they scale inversely proportional to the required simulation time. The
cutting simulations are performed with the 2D SPH orthogonal cutting model developed in
the previous chapter 8.2 as it can provide fast and accurate results with low computing times.
The inversely identified material parameters are used on the one hand to compare them to
parameters derived from the tensile tests. On the other hand, the inversely identified material
parameters are used for the numerical simulation of cutting at other process conditions and
the results are compared versus experimental results.

9.1 raw material

Raw material was ordered in cylindrical form with a diameter of 80mm and a length of 90mm
from the same badge/slab for each material. The inner parts of these cylinders were removed
by the EDM process and then used for manufacturing of test specimens for tensile testing,
see chapter 9.2.1. The outer cylinders were used for orthogonal cutting experiments. From
each material a small disc with a height of ≈ 1cm was cut from the raw cylinder and used to
perform hardness measurements on the top surface. After hardness measurements the same
discs were cut to prepare etched samples from the top and side surface for microstructural
investigations and EBSD analyses. A sketch of such a disc with denominations is shown
together with the hardness measurement directions in figure 9.2.
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Figure 9.1: Raw material (left) usage for material tests (middle) and orthogonal cutting tests
(right).

Figure 9.2: Sketch of a disc cut from raw cylinder with denominations (left) and top surface
hardness measurement directions (right).
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9.1 raw material

9.1.1 Chemical Analysis

9.1.1.1 Ti6Al4V

Ti6Al4V is an alloy containing 6% (weight) Aluminium and 4% (weight) of Vanadium. This
alloy consists of two phases: α-phase and β-phase. The α-phase is stabilized by aluminium
and has a hcp-structure, while the β-phase is stabilized by vanadium, consisting of a bcc-
lattice [17]. This batch of material was produced using the triple Vacuum Arc Remelting
(VAR) method. After production a heat treatment at 750◦C for 90min was performed followed
by air cooling. The chemical composition is given from the supplier in table 9.1 and the
tensile properties (minimum values) in table 9.2.

Fe C N H O Y Al V Residuals Residuals Ti
each (Max) total (max)

0.111 0.025 0.020 0.003 0.15 < 0.005 6.12 4.11 < 0.10 < 0.40 Balance

Table 9.1: Ti6Al4V: supplier information on the chemical composition from this material
batch.

Tensile Yield strength Elongation Reduction Hardness
strength [MPa] (0,2% Offset) [MPa] at break [%] of Area [%] test [HRC]

952 869 16.5 39 30.0

Table 9.2: Ti6Al4V: supplier information on tensile test results from this material batch.

9.1.1.2 Ck45

The material batch of Ck45 (C45E) was produced in an electric shaft furnace and afterwards
rolled into cylindric form. The chemical composition is given from the supplier in table
9.3 and the tensile properties are shown in table 9.4. A Jominy-test was performed by the
supplier and the results are shown in table 9.5. The material exhibits a high hardenability
at the outer surface where the hardness is up to 59 HRC which indicates a martensitic
microstructure, while at higher depths the hardness drops to 19 HRC indicating a ferritic-
perlitic microstructure.

C Mn Si P S Cr Ni Mo Cu
0.445 0,760 0,240 0,018 0,020 0,180 0,050 0,010 0,150

Sn Al Ti V Nb B
0,006 0,010 0,010 0,002 0,001 0,0000

Table 9.3: Ck45: supplier information on the chemical composition from this material batch.
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Tensile strength Yield strength Elongation at break
Rm [MPa] Re (0,2% Offset) [MPa] A5 [%]

671 420 22.2

Table 9.4: Ck45: supplier information on tensile test results from a normalized sample of this
material batch.

[mm] 1 2 3 4 5 6 7 8 9 10 11 13 15 20 25 30
HRC 59 57 54 46 37 34 30 29 28 27 26 25 24 23 21 19

Table 9.5: Ck45: supplier information on Jominy test results from this material batch.

9.1.2 Hardness

Vickers hardness measurements HV10 were conducted for Ck45 and Ti6Al4V. The measure-
ments were performed on the top faces along four directions of the samples where in one
direction a 1mm stepping and in the others a 2mm stepping was used. Both discs are shown
in figure 9.3. The results of the hardness measurement are shown in figure 9.4 where the
Ck45 shows a hardness reduction at the disc center within a radius of around 6mm. Towards
the outer radius the hardness is constant except for the very last measurement point in
direction 2 which shows a slight drop in hardness. The hardness distribution of the Ti6Al4V
sample is almost constant in all directions and radial positions with the exception of some
spots.

Figure 9.3: Ck45 (left) and Ti6Al4V (right) discs from cylinders used for the hardness mea-
surements. The Ck45 disc is shown here before grinding, polishing and hardness
measurements while the Ti6Al4V is already cut in half for microstructural investi-
gations with the right half showing imprints from the hardness measurements
(2mm stepping) along the slightly visible red line.
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9.1 raw material

Figure 9.4: Hardness measurement Ti6Al4V(left) and Ck45 (right).

9.1.3 Microstructure

The microstructure of the two materials is investigated here by etching and EBSD-analysis.
This investigation should indicate possible irregularities of the grain structure or anisotropies
in the material which could influence the material modelling for numerical simulations.

9.1.3.1 Etching

Etched samples were prepared for microstructural analyses of the top and side surface.
The Ti6Al4V samples were etched with Kroll. The microstructure of the top surface is
shown in figure 9.5 and for the side surface in figure 9.6. Due to the heat treatment both
show a uniform microstructure without any salience. The Ck45 was etched with Nital. A
ferritic-perlitic microstructure is visible and towards the outer surface of the microstructure
decarburations and mill scales are visible on the top surface, see figure 9.8. At the disc center
the microstructure is uniform, see figure 9.8. The side surface microstructure revealed a
columnar structure along the cylinder axis, see figure 9.9. This is likely to have been induced
by rolling during the manufacturing process.
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Figure 9.5: Microstructure of Ti6Al4V: the top surface shows a uniform grain structure.

Figure 9.6: Microstructure of Ti6Al4V: the side surface shows a uniform grain structure.
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Figure 9.7: Microstructure of Ck45 steel: top surface at the disc center showing a uniform
grain structure.

Figure 9.8: Microstructure of Ck45 steel: top surface at outer radius showing decarburation
and mill scale.
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Figure 9.9: Microstructure of Ck45 steel: side surface showing a columnar structure.
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9.1.3.2 EBSD

The crystallographic orientations in the grains and the textures were measured by the
Electron Back Scatter Diffraction-analysis (EBSD) for the top and side surfaces of the Ck45
and Ti6Al4V material. The measured areas of the samples are given in table 9.6. The
EBSD-analysis of Ti6Al4V revealed a slightly different ratio of α- and β-phase for top and
side surface. The average grain diameter and average aspect ratios of the grains are similar
for the side and top surface. The results, together with grain sizes and aspect ratios, are
given in table 9.7. Grain sizes and aspect ratios determined from the EBSD-analysis of the
Ck45 material are shown with in table 9.8. The grain orientations of Ti6Al4V are shown for
the side surface in figure 9.10 and for the top surface in figure 9.13, the distribution of α

and β-phases for the side surface in figure 9.11 and for the top surface in figure 9.14. The
pole figures of the α-phases are given with figures 9.12 and 9.15 for side and top surface,
respectively. The pole figures reveal a slightly stronger texture in the side surface than in
the top surface. The grain orientations of Ck45 are shown for the top surface in figure 9.16
and for the side surface in figure 9.18. Similar to Ti6Al4V, the side surface shows a stronger
texture than the top surface which could have been induced from the rolling process during
manufacturing.

Specimen Surface X-size [µm] Y-size [µm] Figures
Ti6Al4V Side surface 443 347 9.10, 9.11, 9.12
Ti6Al4V Top surface 331 428 9.13, 9.14,9.15

Ck45 Side surface 545 428 9.16, 9.17
Ck45 Top surface 709 556 9.18, 9.19

Table 9.6: EBSD measurement sizes of the four specimen.

Surface Avg. equiv. Std.dev. Avg. grain Std.dev. grain α-phase β-phase
grain diameter Dg[µm] µDg [µm] aspect ratio aspect ratio vol. % vol.%

Side surface 9.862 4.198 1.79 0.621 96.69 3.31
Top surface 9.076 3.246 1.7 0.519 94.76 5.24

Table 9.7: Ti6Al4V: EBSD measurement results for side and top surface.

Surface Average equiv. Std. dev. Avg. grain Std. dev. Comment
grain diameter Dg[µm] µDg [µm] aspect ratio grain aspect ratio

Side surface 17.75 13.47 1.75 0.5 noisy raw data
Top surface 14.30 9.25 1.81 0.6

Table 9.8: Ck45: EBSD measurement results for side and top surface.
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Figure 9.10: EBSD of Ti6Al4V: side surface with crystal orientations.
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Figure 9.11: EBSD of Ti6Al4V: side surface with α / β- phase distribution.

Figure 9.12: EBSD of Ti6Al4V: side surface pole figure of the α- phase.
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Figure 9.13: EBSD of Ti6Al4V: top surface with crystal orientations.
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Figure 9.14: EBSD of Ti6Al4V: top surface with α / β- phase distribution.

Figure 9.15: EBSD of Ti6Al4V: top surface pole figure of the α- phase.
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Figure 9.16: EBSD of Ck45: top surface with crystal orientations.

Figure 9.17: EBSD of Ck45: top surface pole figure.
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Figure 9.18: EBSD of Ck45: side surface with crystal orientations.

Figure 9.19: EBSD of Ck45: side surface pole figures.
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9.2 material parameter determination from material testing

9.2.1 Tensile Tests

Tensile tests were performed for both materials, Ck45 and Ti6Al4V, at room temperature
for three different strain rates and each repeated three times. The tensile test specimen
were produced from the inner core of the cylinders according to DIN50125[52] with form
B and the dimensions B8 x 40. A drawing of the tensile test specimen is shown in figure
9.20. Johnson-Cook parameters A, B, C and n were determined as in [112]. The strain rate
sensitivity, parameter C, is valid at very low strain rates only, as the tests were conducted
in the strain rate range from 0.002/s to 0.15/s. The Johnson-Cook parameter m was not
determined as all tests were conducted at room temperature only. The test matrix is given in
Table 9.9.

Figure 9.20: Drawing of tensile test specimen for Ck45 and Ti6Al4V according to DIN50125
form B[52].

Temperature [K] Strain rate ε̇pl[s−1] Repetitions
300 0.002 3
300 0.1 3
300 0.15 3

Table 9.9: Test matrix tensile tests

During the measurements engineering strain and stress values were recorded and later
converted into true strains and stresses. Until uniform elongation AG the conversion can be
performed by the following equations given in [26]:
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εtrue = ln(1 + εeng) (9.1)

and

σtrue = σeng · (1 + εeng) (9.2)

The true strain in equation (9.1) consists of elastic and plastic contributions. According to
[26], assuming an additive split of both components, the true plastic strain can be computed
by:

ε
pl
true = εtrue − εel

true = εtrue −
σtrue

E
(9.3)

Beyond uniform elongation AG the conversions (9.1) and (9.2) are invalid. The determination
of true stresses and strains would require ad-hoc tracking of the progressively reducing
diameter in the necking zone which is not performed in this investigation. Instead, the
true strain at fracture ε f can be computed from the measurement of initial Di and fracture
diameter D f of the specimen according to [26]:

ε f = ln

(
Ai

A f

)
= ln

(
D2

i
D2

f

)
(9.4)

The corresponding true stress σf at fracture is then computed from the force at fracture Ff
and the fracture surface area A f :

σf =
Ff

A f
· ζ (9.5)

with ζ being Bridgman’s [32] stress correction factor for the three-dimensionality of the stress
state after onset of necking. The stress correction factor is computed as:

ζ =
1(

1 + 2·R
D f /2

)
· ln

(
1 +

D f /2
2·R

) (9.6)

with D f being the fracture diameter and R the necking radius of the specimen.
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9.2.2 Parameter A, B and n from Quasi-Static Tests at Room Temperature

Quasi-static tensile test results at room temperature were used to derive the parameters A, B
and n for the static part (first term) of the Johnson-Cook flow stress model (3.95):

σstatic
y = A + B · εn

pl (9.7)

The measured stresses and strains until uniform elongation AG were converted into true
plastic strains and true stresses by use of equations (9.1), (9.2) and (9.3). Additionally, the
stresses and strains at fracture were incorporated to the true stress- true plastic strain data.
They were computed by equations (9.4), (9.5) and (9.6) based on measured initial Di and
fracture diameter D f of the specimen, the necking radius R of the specimen and the force at
fracture Ff . The latter approach follows the proposal of [26] and is improved by consideration
of Bridgman’s stress correction factor which shall enhance predictions of the flow stress
curve at higher strains towards fracture.

A least squares fit is used to fit the parameters A, B and n from equation (9.7) to the
experimental data, by minimizing the sum of the squared error of the model prediction [33]:

∑
i

[
σstatic

y (εn
pl)− σmeasured

y,i (εpl)
]2

= ∑
i

[
A + B · εn

pl − σmeasured
y,i (εpl)

]2
= min (9.8)

9.2.3 Parameter C from Low Strain Rate Tests at Room Temperature

The strain rate sensitivity parameter C of the Johnson-Cook flow stress model is determined
with tensile test data from the low strain rate range according to the test matrix in table 9.9.
For this purpose, the yield stresses σy,i are evaluated at a plastic strain of εpl = 5%. Each
yield stress σy,i(εpl =5%) is then divided by the static yield stress σstatic

y (εpl =5%) with (9.7)

to compute the flow stress ratios rdyn
σ,i :

rdyn
σ,i =

σy,i(εpl =5%)

σstatic
y (εpl =5%)

(9.9)

The reference strain rate is set to the strain rate of the tensile test with the lowest strain rate
of ε̇

re f
pl =0.002s−1. Finally, all flow stress ratios rdyn

σ,i are then used to find the parameter C by
a least squares fit:

∑
i


rdyn

σ,i −

1 + C · ln ε̇pl,i

ε̇
re f
pl






2

= min (9.10)
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9.2.3.1 Ti6Al4V

The stress- strain curves for Ti6Al4V are given for ε̇pl = 0.002s−1 in figure 9.21, for ε̇pl =

0.1s−1 in figure 9.22 and for ε̇pl = 0.15s−1 in figure 9.23.

Figure 9.21: Engineering (left) and true stress strain (right) curves from Ti6Al4V tensile test
at a strain rate of ε̇pl = 0.002/s. Note that the true stress strain curve can be
reconstructed until onset of necking only. The fracture stresses and strains are
computed from the fracture surface measurement with (9.4) and (9.5).

Figure 9.22: Engineering (left) and true stress strain (right) curves from Ti6Al4V tensile test
at a strain rate of ε̇pl = 0.1/s. Note that the true stress strain curve can be
reconstructed until onset of necking only. The fracture stresses and strains are
computed from the fracture surface measurement with (9.4) and (9.5).
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Figure 9.23: Engineering (left) and true stress strain (right) curves from Ti6Al4V tensile test
at a strain rate of ε̇pl = 0.15/s. Note that the true stress strain curve can be
reconstructed until onset of necking only. The fracture stresses and strains are
computed from the fracture surface measurement with (9.4) and (9.5).

Test Strain rate Force at Fracture Fracture Stress at
ε̇pl[s−1] fracture Ff [N] diameter [mm] strain [-] fracture [MPa]

T1 0.002 33991.6 5.63 0.702 1168.2
T2 0.002 34205.6 5.62 0.705 1159.5
T3 0.002 35263.3 5.87 0.62 1134.8
T4 0.1 36279.3 5.82 0.636 1146
T5 0.1 38254.4 5.93 0.598 1190.7
T6 0.1 36998.8 5.82 0.635 1197.5
T7 0.15 38678.2 5.8 0.642 1210
T8 0.15 39070.6 5.9 0.609 1210.1
T9 0.15 38908 5.85 0.627 1191

Table 9.10: Strains and stresses at fracture for Ti6Al4V.

The JC coefficients for the static part (9.7) are fitted for ε̇pl = 0.002s−1 under consideration of
the fracture data provided in table 9.10 and resulted in the parameters A, B and n given in
table 9.11. The fitted flow curve is given in figure 9.24. The fit of the strain rate sensitivity to
the experimental data at 5% strain with (9.10) results in C = 0.0145 with the reference strain
rate set to the lowest test speed ε̇

re f
pl = 0.002/s. The curve fit of the strain rate sensitivity is

shown in figure 9.25 and its values are given in table 9.11.

A [MPa] B [MPa] n [-] ε̇
re f
pl [s] C [-]

867 344 0.361 0.002 0.0145

Table 9.11: Ti6Al4V: fit of the work hardening parameters A, B and n and the strain rate
sensitivity C of the JC flow stress model (9.7).
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9.2 material parameter determination from material testing

Figure 9.24: Ti6Al4V: fit of JC parameter A, B and n at a strain rate of ε̇pl = 0.002/s.

Figure 9.25: Ti6Al4V: fit of parameter C at a strain of εpl = 5%.

9.2.3.2 Ck45

The stress- strain curves for Ck45 are given for ε̇pl = 0.002s−1 in figure 9.26, for ε̇pl = 0.1s−1

in figure 9.27 and for ε̇pl = 0.15s−1 in figure 9.28. At all strain rates a Lüders-plateau is
visible.
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Figure 9.26: Engineering (left) and true stress strain (right) curves from Ck45 tensile test
at a strain rate of ε̇pl = 0.002/s. Note that the true stress strain curve can be
reconstructed until onset of necking only. The fracture stresses and strains are
computed from the fracture surface measurement with (9.4) and (9.5).

Figure 9.27: Engineering (left) and true stress strain (right) curves from Ck45 tensile test
at a strain rate of ε̇pl = 0.1//s. Note that the true stress strain curve can be
reconstructed until onset of necking only. The fracture stresses and strains are
computed from the fracture surface measurement with (9.4) and (9.5).
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Figure 9.28: Engineering (left) and true stress strain (right) curves from Ck45 tensile test
at a strain rate of ε̇pl = 0.15//s. Note that the true stress strain curve can be
reconstructed until onset of necking only. The fracture stresses and strains are
computed from the fracture surface measurement with (9.4) and (9.5).

Test Strain rate Force at Fracture Fracture Stress at
ε̇pl[s−1] fracture Ff [N] diameter [mm] strain [-] fracture [MPa]

C1 0.002 27735.5 5.59 0.718 1001.7
C2 0.002 27862.7 5.59 0.717 988.5
C3 0.002 27960.6 5.63 0.702 978.8
C4 0.1 28577.7 5.64 0.699 997.9
C5 0.1 28800.1 5.66 0.691 981.7
C6 0.1 29090.2 5.64 0.699 1007.8
C7 0.15 29225.6 5.67 0.69 1022.3
C8 0.15 30036.1 5.67 0.689 1017.5
C9 0.15 29184.6 5.61 0.711 1034.1

Table 9.12: Strains and stresses at fracture for Ck45.

The JC coefficients for the static part (9.7) are fitted for ε̇pl = 0.002s−1 under consideration of
the fracture data provided in table 9.12 and resulted in the parameters A, B and n given in
table 9.13. The fitted flow curve is given in figure 9.29. The fit was improved by considering
data above plastic strains of 2% only. This avoids bad fits with unphysical low static yield
limits A which would be induced by the Lüders-plateau otherwise. The fit of the strain rate
sensitivity to the experimental data at 5% strain with (9.10) results in C = 0.0108 with the
reference strain rate set to the lowest test speed ε̇

re f
pl = 0.002/s. The curve fit of the strain

rate sensitivity is shown in figure 9.30 and its values are given in table 9.13.
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A [MPa] B [MPa] n [-] ε̇
re f
pl [s] C [-]

392 735 0.304 0.002 0.0108

Table 9.13: Ck45: fit of the work hardening parameters A, B and n and the strain rate
sensitivity C of the JC flow stress model (9.7).

Figure 9.29: Ck45: fit of JC parameter A, B and n at a strain rate of ε̇pl = 0.002/s.

Figure 9.30: Ck45: fit of parameter C at a strain of εpl = 5%.
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9.3 cutting experiments

The measurement of material parameters for constitutive models at high strains, strain rates
and temperatures is not possible with standard material testing procedures as they are not
able to reproduce such conditions, especially when overlayed. Instead, using process forces
of cutting experiments as input for inverse identification of material parameters is a viable
alternative. For this purpose orthogonal cutting experiments were conducted for Ti6Al4V
(3.7165 Grade 5) and Ck45 (1.1191) as input for numerical parameter identification by inverse
methods. The advantage of orthogonal cutting is that it can be modelled simplified in 2D.
Resulting chip shapes of selected experiments as well as pre- measurements of the cutter
geometries are provided. Orthogonal cuts were approximated by cutting cylinders with
average diameters of D ≈ 72mm and a wall thickness of d ≈ 2mm. Due to the rework of the
outer surface the mill scale and the decarburated zone of the Ck45 cylinders were removed.
In total 10 cylinders were prepared for cutting tests with 5 being of Ck45 and 5 out of
Ti6Al4V material. Coolant and lubrication are not used in the test program so that numerical
modelling of the cutting process is simplified since there is no viable approach to account
for the effects of cooling and lubricant thus reducing unknowns in the numerical modelling
of these cutting experiments. Test durations are kept short such that wear stays insignificant.

9.3.1 Cut Tool

150 uncoated turning inserts CCMW 09 T3 04 H13A (ISO) were acquired from Sandvik
Coromant. Pictures of the turning insert geometry are provided in figure 9.31. The main
geometrical data of the inserts are:

• Edge radius: RE = 0, 397mm

• Cutting edge height: S = 3, 969mm

• Inscribed cirlce : IC = 9, 525mm

• Cutting edge length: LE = 9, 272mm

• Clearance angle: α = 7◦

• Rake angle: γ = 0◦

The cutting edge radii along the cutting edge length LE are not defined. Since these radii
have a significant impact on the process forces they are optically measured, see chapter
9.3.1.1. The inserts are used with a tool holder Applitec SCACL-2020X-09 (ISO-2216). Each
insert was used for four cutting experiments (2 cuts per side of the insert) where after every
experiment another position A-D was used on the insert. The four cut positions are shown
in figure 9.32.
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Figure 9.31: Cutting insert (left) and geometry (right) from [216].

Figure 9.32: Cutting insert with the four cut positions A-D and corner reference points.
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9.3.1.1 Optical Measurement of Cutter

The cutting edge radius of the insert has a major influence on the process forces of the
turning operation. This dependency is shown in figure 9.33. With increasing cutting edge
radius, the feed force Ff increases strongly, while there is a moderate increase in the cutting
force Fc which becomes more pronounced towards higher feed. The effect of the cutting
edge radius on the process forces is shown in figure 9.33.

Figure 9.33: Influence of cutting edge radius rn and feed f on the process forces for turning
of Ti6Al4V. The forces are standardised to a cut width of b = 1mm, the cut speed
was vc = 70m/min, from [261]

The inserts in this investigation have an unspecified cutting edge radius and therefore
all cutting edges (2 x 149 inserts) of the cutters were optically measured with an Alicona
InfiniteFocusG4 microscope prior to the cut tests in unused condition. A 20x magnification
was used and the radii along the complete cutting edge length (LE) were scanned. The
determination of the cutting edge radii follows the procedures outlined in [151, 262] in order
to ensure reproducibility of the results. A total of almost 1’275’000 cutting edge radii were
extracted from the scans. The cutting edge radius varies in the 149 cutters between ≈ 20µm
and ≈ 50µm. The mean cutting edge radius is 37.5µm with a standard deviation 4.9µm.
Since the length between the cutting edges is subject to tolerances the exact position of the
cut was determined after the test for every insert and its four cut positions A-D. The insert’s
edge radii serve as reference points to determine the start point of the cut positions. From
this start point the cutting edge radii were averaged along the cut width of ≈ 2mm. Its
averaged values along the cut width, including the standard deviation, are given for each
cutting experiment in tables 11.2 and 11.1. Histogram plots of the cutting edge length LE
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and the cutting edge radii are given in figure 9.34. The length of the cutting edge LE varies
between ≈ 8.7...8.95mm which is due to the tolerance class of the selected inserts.

Figure 9.34: Histogramm of cutting edge lengths LE (left) and cutting edge radii (right).

The variation of the cutting edge radius along the cutting edge length LE can be significant
see for example figure 9.35 where it varies between ≈ 25...50µm.

Figure 9.35: Example for cutting edge radii variation along a single cutting edge.
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9.3.2 Cutting Experiments

A Schaublin 42L CNC turning machine is used for the orthogonal cutting experiments. From
the procured raw material, see section 9.1, hollow cylinders from the outer cores according to
figure 9.1 are manufactured and used for the cutting experiments. Such a cylinder is shown
in figure 9.36 together with the experimental setup for the orthogonal cutting tests.

Figure 9.36: Orthogonal cutting setup: insert attached to the tool holder with cylinder to cut.

9.3.2.1 Force Measurement

The force measurements were conducted in three axes with a Kistler 9121A5 dynamometer.
The dynamometer signals where amplified with a Kistler 5019A charge amplifier using a low
pass filter with 30Hz. The measured force signals F̃meas were corrected after the test since
small drifts F̃dri f t in the signal can occur and overlay the the process forces F̃proc:

F̃proc = F̃meas − F̃dri f t (9.11)
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The drift F̃dri f t was evaluated by positioning the cutter before the cut with a distance of
one mm away from the cylinder to cut. With the desired feed of the experiment the cutter
approached the workpiece and during this time the idle-forces F̃dri f t = F̃idle were recorded
and then used to correct to force signals with (9.11). A schematics is shown in figure 9.37.

Figure 9.37: Force signal overlayed with a drift.

9.3.2.2 Test Plan

Orthogonal cutting tests were conducted for a large range of feeds and cut speeds. The
parameter ranges are compiled in table 9.14 and all conducted cutting experiments of Ck45
and Ti6Al4V are provided with figure 9.38.

Material Cutting speed vc[m/min] Feed f [mm]
Ti6Al4V 10...500 0.01...0.4

Ck45 10...500 0.01...0.4

Table 9.14: Test matrix of the cutting tests
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Figure 9.38: Process parameter combinations used in the cutting experiments

9.3.2.3 Experimental Results

The complete cutting test results are provided for Ti6Al4V (V0001-V0068, V0301-V0520)
in table 11.1 and for Ck45 (V0069-V0300) in table 11.2 in the Appendix 11.3. The test
results which are used in the inverse parameter identification (V0060, V0300) procedure
and recomputations are given for Ti6Al4V in table 9.15 and for Ck45 in table 9.16. The
process forces Fc and Ff were normalized to a cutting width of w = 1mm and are given
together with their respective standard deviations µFc and µFf . The second last two columns
contain the averaged cutting edge radius rn and its standard deviation µrn . The last column
Status gives a quality statement of the process forces. Tests labelled with ok are without
any objections. Tests labelled short have to be treated with care as prolongations of such
experiments is recommended. If however the standard deviations in the process forces
of such tests are small, they still can be considered as valid. Results from tests labelled
questionable or initially stable should not be used for parameter identifications while tests
labelled with saturation ran into the amplifier limits and are therefore invalid for further
use. Tests marked instable are most likely of insufficient quality and must not be used for
parameter identifications.

Test vc f Fc µFc Ff µFf rn µrn Status
[m/min] [mm] [N] [N] [N] [N] [µm] [µm]

V0060 381.3 0.1 157.5 3.3 115.5 2.8 33.0 2.4 short
V0320 19.9 0.01 55.9 3.1 84.5 5.2 40.5 2.8 ok
V0325 19.9 0.04 110.5 3.5 104.9 5.6 37.5 2.6 ok
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Test vc f Fc µFc Ff µFf rn µrn Status
[m/min] [mm] [N] [N] [N] [N] [µm] [µm]

V0348 125.0 0.01 42.7 0.9 77.5 2.6 38.3 2.4 ok
V0350 125.0 0.04 102.3 2.3 110.9 3.2 37.9 2.4 ok
V0461 400.1 0.01 41.2 0.2 74.3 0.4 35.5 4.5 ok
V0471 400.1 0.04 99.8 0.6 116.0 0.9 41.9 2.9 ok

Table 9.15: Experimental results Ti6Al4V orthogonal cutting tests

Test vc f Fc µFc Ff µFf rn µrn Status
[m/min] [mm] [N] [N] [N] [N] [µm] [µm]

V0186 69.9 0.02 66.1 22.0 40.6 13.8 36.4 2.5 ok
V0189 69.9 0.06 167.0 16.7 109.4 11.7 39.9 2.8 ok
V0278 200.0 0.02 81.1 1.1 80.3 1.1 40.1 2.6 ok
V0280 200.0 0.06 213.6 1.9 220.6 3.3 38.8 2.6 short
V0286 450.0 0.02 86.5 1.2 91.1 0.6 40.0 2.7 short
V0289 450.0 0.06 193.1 2.6 167.8 1.9 38.0 2.4 short
V0300 500.0 0.1 260.3 1.5 174.6 2.3 42.0 2.4 ok

Table 9.16: Experimental results Ck45 orthogonal cutting tests

9.3.3 Chip Shapes

Chips from the experiments listed in tables 9.15 (Ti6Al4V) and 9.16 (Ck45) were embedded,
ground and polished. After polishing, the chips were etched with Nital (Ck45) and Kroll
(Ti6Al4V). The geometry and microstructure were then analysed with a Keyence VHX-5000
microscope. The main dimensions which were measured under the microscope are:

• the chip area Achip,

• the unrolled chip length lchip,

• the chip curling radius rchip (if applicable),

• the segment distance lseg (if applicable),

• the minimum chip thickness hmin (if applicable),

• the maximum chip thickness hmax (if applicable).

These dimensions are provided in figure 9.39. From the chip area Achip and the unrolled
chip length lchip the average chip thickness havg was computed with:

havg =
Achip

lchip
(9.12)
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Figure 9.39: Measurement of main chip dimensions.

Further, the shear layer thicknesses in the primary shear zone tseg and in the secondary shear
zone tsl were measured, if applicable, according to figure 9.40.

Figure 9.40: Measurement of shear layer thicknesses.
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9.3.3.1 Ti6Al4V

Chips from experiments listed in table 9.15 were embedded, ground and polished. An
overview of these chips is provided in table 9.17. The chips are analysed - where possible -
with regards to chip thicknesses, chip shapes and the radius of chip curling - see table 9.19.
Only the chip curling radius of the chip from experiment V0325 was determinable, all other
chips were too soft or did not have a constant radii. All chips of these cutting experiments
show chip segmentation.

vc[
m

min ] 20 125 381.3 400

f [mm]

0.01

0.04

0.10

Table 9.17: Ti6Al4V: chip overview of selected experiments.

Feed [mm] vc = 20m/min vc = 125m/min vc = 381.3m/min vc = 400m/min
0.01 V0320, figure 9.42 V0348, figure 9.44 - V0461, figure 9.46
0.04 V0325, figure 9.43 V0350, figure 9.45 - V0471, figure 9.47
0.1 - - V0060, figure 9.41 -

Table 9.18: Ti6Al4V: Investigated chip shapes.
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Figure 9.41: Chip from experiment V0060 vc = 381.3m/min, f = 0.10mm.

Test vc [ m
min ] f [mm] havg [µm] hmin[µm] hmax[µm] lseg[µm] rchip [mm] tseg[µm] tsl [µm] Segmentation? BUE?

V0060 381.3 0.1 100 80 150 51-56 - 4-6 3 yes no
V0320 20 0.01 28 24 35 13-23 - - - yes no
V0325 20 0.04 68 57 69 11-16 2.7-2.8 - - yes no
V0348 125 0.01 16 12 23 6-15 - - - yes no
V0350 125 0.04 61 54 106 27-38 - - - yes no
V0461 400 0.01 16 7-12 23-25 15-24 - - - yes no
V0471 400 0.04 52 33-36 63-71 34-44 - 2-6 6 yes no

Table 9.19: Ti6Al4V: measured chip thicknesses, chip shapes and chip curling radii from
experiments

Chip pictures with measurement details can be found below with picture references according
to table 9.18.
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Figure 9.42: Chip from experiment V0320 vc = 20m/min, f = 0.01mm.

Figure 9.43: Chip from experiment V0325 vc = 20m/min, f = 0.04mm.
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Figure 9.44: Chip from experiment V0348 vc = 125m/min, f = 0.01mm.

Figure 9.45: Chip from experiment V0350 vc = 125m/min, f = 0.04mm.
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Figure 9.46: Chip from experiment V0461 vc = 400m/min, f = 0.01mm.

Figure 9.47: Chip from experiment V0471 vc = 400m/min, f = 0.04mm.
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9.3.3.2 Ck45

Chips from experiments listed in table 9.16 were embedded, ground, polished and etched.
An overview of these chips is provided in table 9.20. The chips are analysed - where possible
- with regards to chip thicknesses, chip shapes and the radius of chip curling - see table 9.22.
All investigated Ck45-chips show largely stretched grains with and the chip side sliding
along the rake face sticking as the grains are stretched in sliding direction with the material
above shearing over these grains in the contact zone which indicates very high friction
coefficients. Only the chip from experiment V0300 shows chip segmentation, all other are
continuous chips.

vc[
m

min ] 70 200 450 500

f [mm]

0.02

0.06

0.10

Table 9.20: Ck45: chip overview of selected experiments.

Feed [mm] vc = 70m/min vc = 200m/min vc = 450m/min vc = 500m/min
0.02 V0186, figure 9.48 V0278, figure 9.50 V0286, figure 9.52
0.06 V0189, figure 9.49 V0280, figure 9.51 V0289, figure 9.53
0.10 V0300, figure 9.54

Table 9.21: Ck45: Investigated chip shapes.
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Test vc [ m
min ] f [mm] havg [µm] hmin[µm] hmax[µm] lseg[µm] rchip [mm] tseg[µm] tsl [µm] Segmentation? BUE?

V0186 70 0.02 66 - - - - - - no yes
V0189 70 0.06 166 109 235 - 3.2-3.4 - 8-10 no yes
V0278 200 0.02 58 42 73 - - - 4 no yes
V0280 200 0.06 201 177 212 - - - 6 no no
V0286 450 0.02 69 67 81 - 5.02 - 4 no no
V0289 450 0.06 146 133 162 - 26.2 - 7 no no
V0300 500 0.1 217 194 238 85-95 - 19 6 yes no

Table 9.22: Ck45: measured chip thicknesses, chip shapes and chip curling radii from experi-
ments

Chip pictures with measurement details can be found below with picture references according
to table 9.21.

Figure 9.48: Chip from experiment V0186 vc = 70m/min, f = 0.02mm.
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Figure 9.49: Chip from experiment V0189 vc = 70m/min, f = 0.06mm.

Figure 9.50: Chip from experiment V0278 vc = 200m/min, f = 0.02mm.
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Figure 9.51: Chip from experiment V0280 vc = 200m/min, f = 0.06mm.

Figure 9.52: Chip from experiment V0286 vc = 450m/min, f = 0.02mm.
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Figure 9.53: Chip from experiment V0289 vc = 450m/min, f = 0.06mm.

Figure 9.54: Chip from experiment V0300 vc = 500m/min, f = 0.1mm.
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9.4 inverse material parameter identification

In this section the material constitutive parameters for the JC-classic-model are inversely
identified based on cutting experiments from section 9.3.2. First an introduction is given into
optimization including a test case using different optimization methods. In the next step
Oxley’s force model is applied to derive material constitutive parameters for all conducted
cutting experiments. This, in an attempt to down-select permissible constitutive model
parameter ranges for the last part of this chapter where the SPH-solver mfree_iwf is then
used to inversely identify material constitutive model parameters directly within a numerical
model of the cutting experiment. Experiments at very high cutting speeds are taken as basis
for the inverse identification since the computation time linearly scales with the cut speed
because an explicit time integration scheme used in the SPH solver: twice the cut speed
results in half compute time. The identified constitutive model parameters are then used
to recalculate cutting experiments at other process conditions and the experimental and
numerical results are compared.

9.4.1 Optimization Algorithms

Optimization algorithms are iterative procedures which aim to reduce an objective/cost
function depending on parameters x. Start point is an initial parameter set x0 from which
the design space is explored into various direction in an attempt to minimize the objective
function [118]. The exploration of the design space depends on the optimization algorithm
of which three are introduced in the following sections. The optimization finished when a
convergence criterion is met. Optimization with only one objective are called single-objective
optimization versus multi-objective optimizations with several objectives. A single-objective
can be constructed from multi-objectives [232] where each objective has to be weighted
versus the other objectives.

9.4.1.1 Simplex (Nelder-Mead)

The Nelder-Mead-Simplex[173, 228] method, also known as Downhill-Simplex, and in the
following abbreviated with Simplex is a robust method that does not require any derivatives
of the objective function. The algorithm is based on the objective function evaluation at n + 1
corner points where n is the number of depending parameters of the objective function. In
each iteration step the corner point with the worst objective function value is replaced by a
new value. The optimization finishes when the n + 1 corner points are sufficiently close to
each other which means they have centered in a minimum of the objective function. In this
investigation the implementation of the Simplex in Python based on [186] is used.

9.4.1.2 Bayes

The Bayes optimization is a global optimization method introduced by [160]. The basic idea is
the optimization of an a priori unknown objective function which can be difficult or expensive
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to evaluate, e.g. by experiments or numerical simulations. Succesful applications of the
method can be found for example [137, 146, 226]. Commonly, the Bayesian optimization is
coupled with a Gaussian process (GP) model which forms a surrogate model of the unknown
objective and constraint function. The already available samples/function evaluations are
used to estimate the cost function at other parameter sets. Based on the mean and uncertainty
estimation of the GP model new parameters are selected to be evaluated next. The GP model
is then continuously updated with the new data and derives the next parameter set to
be evaluated. Here, the capabilities of NumPy and SciKit-Learn[186] are used for the
application of the Bayes-optimization.

9.4.1.3 Differential Evolution

Evolutionary algorithms are based on biological principles such as reproduction, mutation,
isolation, recombination and selection which are applied to individuals in a population
[170]. The population members evolve over time with adaptation to their environment
where in a every generation the individuals with the highest score / best fit are selected
for recombination and mutation. The latter brings some stochastic into the development
of the population which helps to explore the parameter space globally. As with Simplex

and Bayes no gradients are required for this kind of optimization. There are many different
evolutionary algorithms, e.g. [66, 96, 117, 198, 233]. From these the Differential Evolution

from [233] is selected to be used in the investigations presented here. The algorithm is
available in Numpy/Scipy [86].

9.4.2 Test Simulations

A test case is created to analyse the three optimization algorithms presented before. The
JC-model with parameters for 50SiB8 from table 7.9 is used to generate a flow stress curve
including adiabatic heating with a Taylor-Quinney coefficient of ηTQ = 0.90. For this purpose
the temperature is integrated with an Euler explicit integration scheme, see equations (8.19) -
(8.25), thus introducing thermal softening with increasing strain. The simulation is conducted
until a plastic strain of εpl = 3.0 is achieved. From this so generated flow curve a few flow
stresses at different plastic strain levels are taken.
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Figure 9.55: Flow stress curve of 50SiB8 computed with the JC-model including adiabatic
heating. The blue points show the evaluation points of flow stresses used for
the optimization.

The initial temperature is set Tinit = 300K, the plastic strain rate is constant with ε̇pl =
1e− 3/s and from the resulting stress-strain curve 11 stess points were sampled to be taken
as comparison values for the inverse parameter identification loop, see table 9.23.

ε
j
pl 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

σ
j
y,sample [MPa] 423.5 911.7 994.6 1024.5 1028.5 1017.3 996.3 968.7 936.6 901.7 864.9

Table 9.23: Evaluation points for the cost function.

Since the second term of the JC-classic-model is a constant throughout the selected loading
case it is scaling the other two terms with a constant which prevents the optimizer from
finding a useful value and is therefore set to ε̇pl = ε̇0

pl = 1e− 3/s. This makes the second
term always 1 and the value found by the optimizer for parameter C is meaningless.

The objective (cost) function c for the optimization is the squared sums of the error in the 11
sampled stress points and shall be minimized:

c = ∑
j
(σ

j
y − σ

j
y,sample)

2 = min (9.13)

The Simplex-optimization was initialized with 6 simplexes in the parameter space for A, B,
C, m and n:
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Initial Simplex A [MPa] B [MPa] C [-] m [-] [n]
1 100 7 0.001 0.2 0.6
2 100 60 0.05 0.1 0.5
3 200 5 0.02 0.9 0.4
4 500 4 0.1 0.4 0.3
5 800 3 0.001 0.7 0.2
6 1000 2 0.01 0.9 0.1

Table 9.24: Initial values for the Simplex-optimization.

The optimization results are given in table 9.25. The Simplex and DE-methods found both
the correct values for A, B, m and n while the Bayes suffered but came close to the correct
values. The Simplex-method showed the shortest runtimes while the DE-method required
around 40 times more function evaluations. The Bayes-method has an extreme runtime
compared to the other methods. This is induced by the large overhead when evaluating the
Gaussian process (GP) model - the function evaluations itself required in total 4 seconds
while the remaining 2348s are attributed to the GP process model. A comparison of the yield
curves from the optimized parameter sets is provided with figure 9.56. All methods match
the sample points quite well even though Bayes did not end up at the correct values.

Result from A [MPa] B [MPa] C [-] m [-] [n] Iterations Runtime
Simplex 430.9 908.7 (-1.4192) 0.7361 0.3854 912 8s
Bayes 424.6 764.2 (0.01) 1.0 0.302 400 2352s
DE 430.9 908.7 (0.0075) 0.7361 0.3854 39351 386s
Original data 430.9 908.7 0.0047 0.7361 0.3854 - -

Table 9.25: Inversely identified parameter with different optimization methods.

Figure 9.56: Comparison of the flow stress curves generated with inversely identified material
parameters, Simplex (left), DE (middle) and Bayes (right) algorithm.

The evolution of the material parameters A, B, C, m and n during the optimization is given in
figure 9.57. Remind that C has no real meaning here, since its effect vanishes with ε̇pl = ε̇0

pl.
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Figure 9.57: Evolutions of material parameter constants A, B, C, m and n during the op-
timization for the three optimization algorithms Simplex (top), DE (middle),
Bayes (bottom).

The most interesting comparison is however the development of the summed square error
over the number of iterations in figure 9.58. Bayes performs best in the beginning phase
(first 100 iterations) of the optimization but stagnates in the long run. As mentioned before,
the problem of Bayes is the increasing overhead with increasing number of iterations which
can be seen in figure 9.59 where the runtime per iteration is shown over the iterations. The
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fast decay in the beginning phase makes Bayes still an interesting candidate for the inverse
parameter identification from cutting experiments.

Figure 9.58: Evolution of the summed square error of the stresses with the three optimization
methods.

Figure 9.59: Evolution of the computation time per iteration with Bayes showing a steady
increase due to the process model evaluation time.
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9.5 identification of material parameters with oxley’s process force model

Oxley’s process force model is used to drive an inverse parameter identification of all cutting
experiments with the Simplex-method. The idea is to derive a possible constitutive model
parameter range based on the experimental results. This parameter range would then serve as
a guess for the input boundaries for the inverse identification using the meshfree simulation
tool. Guess, because Oxley’s model uses some modelling simplifications, e.g. no clearance
angle, no cutting edge radius and no friction coefficient is considered. The maximum number
of iterations was restricted to a maximum of ncalls = 500 for the identification of parameters
from each of the cutting experiments.

The optimization of a problem requires an objective function to be minimized. In this
investigation a single-objective is constructed from the difference of experimental and
simulated process forces, here cut and feed force. The passive force Fp is negligible in an
orthogonal cutting setup which allows for a 2D plane strain numerical abstraction of the real
cutting process. The experimental process forces stem from orthogonal cutting experiments
whose results are given in tables 11.1 (Ti6Al4V) and 11.2 (Ck45). The cost function is the
summed squared error of the predicted and experimental process force components:

∆Fc = Fsim
c − Fexp

c (9.14)
∆Ff = Fsim

f − Fexp
f (9.15)

∆F2
total = wc · ∆F2

c + w f · ∆F2
f (9.16)

where the objectives are weighted with respective weights wc and w f for the force components.
In all investigations conducted in this work these weights are wc = w f = 1.0 such that the
minimization of cut and feed force errors are equally important. The structogram of the
inverse parameter identification from cutting experiments is provided with figure 9.60.
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Parameter identification of constitutive models

Optimization algorithm:

variation of free

constitutive model

parameters

Simulation of orthogonal cut with
Oxley’s analytical process force model

Predicted process

forces F sim
c and F sim

f

Compute force component errors

∆Fc = F sim
c − F exp

c ,

∆Ff = F sim
f − F exp

f
and squared sum of

errors ∆F 2
total = ∆F 2

c + ∆F 2
f

Measured process forces
F exp
c and F exp

f

from orthogonal cutting tests

Tool geometry:
rake angle γ

Process parameter:
Cut speed vc and feed f

Error minimized?

Resulting material parameters

(for this process conditions)

no

yes

Figure 9.60: Structogram of the parameter identification with Oxley’s process force model

The initial simplexes are computed with the equations given in table 9.26:

Simplex Ai+1[MPa] Bi+1[MPa] Ci+1[−] mi+1 [-] ni+1[−]
1 Ai Bi Ci mi ni

2 Ai + (∆A)/20 Bi + (∆B)/20 Ci + (∆C)/20 mi + (∆m)/20 ni + (∆n)/20
3 (∆A)/2 (∆B)/2 Ci + (∆C)/20 mi + (∆m)/20 ni + (∆n)/20
4 Ai Bi (∆C)/2 mi ni

5 Ai Bi Ci (∆m)/2 ni

6 (∆A)/2 (∆B)/2 (∆C)/2 (∆m)/2 (∆n)/2

Table 9.26: Initial simplexes used in the Simplex-optimization with Oxley’s force model.

where ∆A, ∆B, ∆C, ∆m and ∆m are the differences between minimum and maximum
permissible parameter ranges for Ck45 and Ti6Al4V as given in table 9.27.
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Material A [MPa] B [MPa] C [-] m [-] [n]
Ti6Al4V [300...1200] [50...1200] [0.001...0.07] [0.577...1.50] [0.02...0.9]
Ck45 [100...800] [50...1200] [0.001...0.07] [0.577...1.50] [0.02...0.9]

Table 9.27: Permissible parameter ranges used in the Simplex-optimization with Oxley’s
force model.

The initial set at i = 0 for the JC-parameters is Ai=0 = 600MPa, Bi=0 = 300MPa, Ci=0 = 0.014,
mi=0 = 0.9 and ni=0 = 0.1 and is continuously updated with the parameters from the
preceding inverse parameter identification: Ai+1 = Ai, Bi+1 = Bi, Ci+1 = Ci, mi+1 = mi,
ni+1 = ni.

The inverse parameter identification with Oxley’s model and the Simplex-method took 3
weeks on a single CPU for a total of 510 cutting experiments. From these 510 results 229 are
Ck45- and 281 Ti6Al4V cutting experiments. A summary of the optimizations is provided
with table 9.28

Material Number of experiments i ∆F2
total = min ∆F2

total = 0
Ti6Al4V 281 78 61
Ck45 229 106 71

Table 9.28: Overview of inverse parameter identifications with Oxley’s force model and
Simplex-method.

The comparison of the cases where a minimum is found (∆F2
total = min) and how much

of them are ∆F2
total = 0 reveals that the topology of the cost function ∆F2

total obviously has
local minima. This means that in general gradient based methods or the Simplex-method
potentially can trap into one of these local minima subsequently excluding the chance to
find a global minimum. In such cases the use of more costly optimization algorithms are
required. On the other hand, this could be exploited to extend the optimization procedure
for an additional parameter to be optimized, e.g. the chip thicknesses, shear angle and or
the chip temperature.

9.5.1 Ti6Al4V Results

The resulting material constitutive parameters based on the inverse identification from each
Ti6Al4V experiment shows a large range for each of the parameters. Even when considering
successful optimizations (∆F2

total = min) only, a large scatter is visible. This is shown in
histogram plots for parameters A and B in figure 9.61, C and m in figure 9.62 and for n in
figure 9.63 together with the histogram of the runtimes for each experiment.

220



9.5 identification of material parameters with oxley’s process force model

Figure 9.61: Histogram of parameters A (left) and B (right) resulting from the parameter
identification of Ti6Al4V experiments with the Simplex-method using Oxley’s
force model. Histograms in blue are the resulting coefficients from all identifica-
tions while histograms in red show the parameters for successful optimizations
only.

Figure 9.62: Histogram of parameters C (left) and m (right) resulting from the parameter
identification of Ti6Al4V experiments with the Simplex-method using Oxley’s
force model. Histograms in blue are the resulting coefficients from all identifica-
tions while histograms in red show the parameters for successful optimizations
only.
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Figure 9.63: Histogram of parameters n (left) and runtimes (right) resulting from the pa-
rameter identification of Ti6Al4V experiments with the Simplex-method using
Oxley’s force model. Histograms in blue are the resulting coefficients from all
identifications while histograms in red show the parameters from successful
optimizations only.

9.5.2 Ck45 Results

Similar to the Ti6Al4V optimization the resulting material constitutive parameters based on
the inverse identification from each Ck45 experiment show large ranges for each of the five
parameters. Even when considering successful optimizations (∆F2

total = min) only, a large
scatter is visible. This is shown in histogram plots for parameters A and B in figure 9.64, C
and m in figure 9.65 and for n in figure 9.66 together with the histogram of the runtimes for
each experiment.
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Figure 9.64: Histogram of parameters A (left) and B (right) resulting from the parameter
identification of Ck45 experiments with the Simplex-method using Oxley’s force
model. Histograms in blue are the resulting coefficients from all identifications
while histograms in red show the parameters for successful optimizations only.

Figure 9.65: Histogram of parameters C (left) and m (right) resulting from the parameter
identification of Ck45 experiments with the Simplex-method using Oxley’s force
model. Histograms in blue are the resulting coefficients from all identifications
while histograms in red show the parameters for successful optimizations only.

223



material parameter determination

Figure 9.66: Histogram of parameters n (left) and runtimes (right) resulting from the pa-
rameter identification of Ck45 experiments with the Simplex-method using
Oxley’s force model. Histograms in blue are the resulting coefficients from all
identifications while histograms in red show the parameters from successful
optimizations only.

9.5.3 Identification with Several Experiments Simultaneously

Results for both materials, Ck45 and Ti6Al4V, show for each of the five constitutive model
constants large possible parameter ranges. For this reason the parameter identification is
repeated where instead of using a single cutting experiment, several cutting experiments
are used simultaneously in an attempt to find a constitutive model parameter set that is
optimal to all of the n selected experiments. This is realized by computing the total sum of
the squared force errors:

F2
total =

n

∑
i=1

∆F2
total,i =

n

∑
i=1

∆F2
c,i + ∆F2

f ,i (9.17)

which is the objective function to be minimized in the optimization procedure. The updated
structogram of the inverse parameter identification is provided with figure 9.67. Again, the
Simplex-method is used here with a maximum number of iterations ncalls = 500.

9.5.3.1 Ti6Al4V

For the parameter identification n = 8 cutting experiments were selected with cut speeds
between vc = 20...500m/min and feeds of f = 0.03...0.15mm. These are given in table 9.29.
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Experiment V0375 V0429 V0433 V0448 V0478 V0484 V0508 V0519
vc,i[m/min] 19.9 162.4 162.4 79.9 500.0 40.0 150.0 150.0
fi[mm] 0.06 0.08 0.12 0.10 0.02 0.15 0.06 0.03
Fc,i[N] 150.9 171.5 222.6 213.0 65.6 286.8 139.8 85.4
Ff ,i[N] 134.9 137.6 150.6 148.4 98.7 173.3 130.6 105.7

Table 9.29: Ti6Al4V- cutting experiments used for simultaneous inverse parameter identifica-
tion with Oxley’s force model

The simulation of the parameter identification was 2 hours and resulted in a total squared
error of F2

total = 59932N2 and the 5 JC-parameters given in table 9.30. Compared to the
JC-parameter fitted to tensile test results (table 9.11), the parameter A (static yield stress) is
about 25% lower here, while parameter B is 40% lower and the strain hardening exponent n
is similar.

A [MPa] B [MPa] C [-] m [-] [n]
671 558 0.0377 0.7429 0.3562

Table 9.30: Ti6Al4V: inversely identified JC-parameter with Oxley’s force model using several
cutting experiments simultaneously.

9.5.3.2 Ck45

For the parameter identification n = 9 cutting experiments were selected with cut speeds
between vc = 10...250m/min and feeds of f = 0.01...0.2mm. These experiments are given in
table 9.31.

Experiment V0124 V0126 V0149 V0177 V0184 V0236 V0253 V0256 V0267
vc,i[m/min] 30.0 30.0 150.0 10.0 10.0 250.1 50.0 50.0 250.0
fi[mm] 0.10 0.20 0.02 0.02 0.15 0.10 0.01 0.08 0.12
Fc,i[N] 253.2 488.6 68.2 81.9 414.3 304.0 38.0 210.5 335.9
Ff ,i[N] 144.5 289.1 51.6 49.3 233.3 256.9 24.2 128.9 265.3

Table 9.31: Ck45- cutting experiments used for simultaneous inverse parameter identification
with Oxley’s force model

The simulation of the parameter identification was 2 hours and resulted in a total squared
error of F2

total = 167718N2 and the 5 JC-parameters given in table 9.32. Interestingly the
parameters A (static yield stress) and B are similar to data from the tensile test fit of Ck45 in
table 9.13. On the other hand parameter n is lower by almost one magnitude when compared
to the JC-parameter fit to the tensile test, see table 9.13.

A [MPa] B [MPa] C [-] m [-] [n]
396 722 0.07 0.7467 0.0452

Table 9.32: Ck45: inversely identified JC-parameter with Oxley’s force model using several
cutting experiments simultaneously.
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9.5 identification of material parameters with oxley’s process force model

9.5.4 Results Discussion and Conclusion

Results for both materials, Ck45 and Ti6Al4V, show for each of the five constitutive model
constants large possible parameter ranges when running the optimization for each cutting
experiment separately. Using several cutting experiments simultaneously in the optimization
loop results in JC-parameters that are partially similar to tensile test results for the static part.
The results however do not allow for a down-selection / reduction of the possible parameter
space for the inverse identification with the SPH. Possibly the inclusion of chip thicknesses
from the experiments or chip temperatures into the objective function could help to improve
the results.
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9.6 identification of material parameters using a sph cutting simulation

From the cutting experiments conducted for each material an experiment with high cutting
speed vc was used to drive an inverse parameter identification to estimate material parameters
for the JC flow stress model. The structogram of the inverse identification is a modification
of figure 9.60, where now the full cutter geometry is considered with clearance angle and
cutting edge radii. It is provided with figure 9.68.

Parameter identification of constitutive models

Optimization algorithm:

variation of free

constitutive model

parameters

SPH simulation of orthogonal
cut with MFree GPU

Predicted process

forces F sim
c and F sim

f

Compute force component errors

∆Fc = F sim
c − F exp

c ,

∆Ff = F sim
f − F exp

f
and squared sum of

errors ∆F 2
total = ∆F 2

c + ∆F 2
f

Measured process forces
F exp
c and F exp

f

from orthogonal cutting tests

Tool geometry:
rake angle γ, clearance angle α and

measured cutting edge radii rn

Process parameter:
Cut speed vc and feed f

Error minimized?

Resulting material parameters

(for this process conditions)

no

yes

Figure 9.68: Structogram of the parameter identification with mfree_iwf

The numerical model for the orthogonal cutting simulation is based on the 2D plane strain
assumption which can be developed from the real 3D cutting experiment (figures 9.1 and
9.36) when the diameter of the cylinder to cut is becoming large. This is shown in figure 9.69
where on the left side a 3D visualization of the cutting experiment is shown together with the
cutting plane (yellow color) in which approximately orthogonal cutting conditions prevail.
On the right side the setup is displayed from the back side from which the numerical model
used for the inverse parameter identification is constructed, see figure 9.70. The workpiece
has fixed boundary conditions at the left, lower and right side. The model dimension in
y-direction is automatically adopted with the feed and uses in this direction a discretization
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9.6 identification of material parameters using a sph cutting simulation

with ny = 30 particles, which guarantees always 10 particles in the uncut chip thickness. The
number of particles in x-direction changes with the selected feed nx = l

3 f · ny. The cutter is
modelled as a rigid with a rake angle of γ = 0◦ and a clearance angle of α = 7◦, see chapter
9.3.1. The cutting edge radii rn is adopted to the respective experiment from tables 11.1 and
11.2.

Figure 9.69: Development of a 2D plane strain orthogonal cutting model from a cylindric
cutting test setup. On the left side a 3D visualization of the cutting experiment
is shown together with the cutting plane (yellow color) where approximately
orthogonal cutting conditions prevail. On the right side the same setup is
displayed from the back side from which the numerical model used for the
inverse parameter identification is constructed.

Figure 9.70: Numerical model of the orthogonal cut within mfree_iwf for the inverse param-
eter identification.
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9.6.1 Inverse Parameter Identification for Ti6Al4V

For the inverse identification of the constitutive model constants for the JC-classic-model
the cutting test V0060 has been selected from table 11.1 with a feed of f = 0.1mm and a very
high cut speed of vc = 381.3m/min. This experiment was chosen although it was short, but
the standard deviations of the process forces indicate a stable signal. The high cut speed is
attractive for the explicit mfree_iwf-solver since the cut speed scales with the simulation
time and enables very fast iteration loops - up to 400 per day. The cutting edge radii of
this experiment was determined with rn = 33µm and the friction coefficient is assumed
to be µ f ric = 0.35 based on [213]. Adiabatic heating with a Taylor-Quinney coefficient of
ηTQ = 0.90 is considered and the heat conduction is considered only in the workpiece.
Frictional heating is not considered. The reference plastic strain rate was set to ε̇0

pl = 1.0/s.
Physical constants according to table 9.33 were used.

Young’s Density Poisson Thermal Specific
modulus E [GPa] $[ kg

m3 ] ratio [-] conductivity λ[ W
mK ] heat cp[

J
kgK ]

110 4430 0.35 6.8 526

Table 9.33: Physical constants used for Ti6Al4V in the parameter identifications.

9.6.1.1 Inverse Parameter Identification with DE-method

The permissible parameter ranges for the optimization are provided with table 9.34. They
are based on the constitutive model parameter ranges provided in [61] under consideration
of the results from the tensile tests in chapter 9.2.3.1 and the parameter identification with
Oxley’s force model in chapter 9.5.3.

A [MPa] B [MPa] C [-] m [-] n [-]
min 400 300 0.008 0.577 0.12
max 1200 1200 0.05 1.51 1.01

Table 9.34: Permissible parameter range for the DE-optimization.

The cost function for the optimization is the summed square error of the predicted and
experimentally measured process forces:

∆Fc = Fsim
c − Fexp

c (9.18)
∆Ff = Fsim

f − Fexp
f (9.19)

∆F2
total = wc · ∆F2

c + w f · ∆F2
f (9.20)

with both force errors ∆Fc and ∆Ff in (9.20) being weighted equally with wc = w f = 1.0.
The optimization was run for more than 37’000 iterations on a GPU NVidia Quadro GP100
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and the ten best results with lowest ∆F2
total are given in table 9.35 where positive force errors

∆Fc and ∆Ff indicate that the predicted force is higher than experimentally measured. The
lowest summed square error of the process forces ∆F2

total = 56.2N2 results in a cut force
error of about 3% and a feed force error of about 5%. The development of the process force
errors and the summed square error during the optimization iterations is shown in figure
9.71. In the first few thousand iterations a slight decrease in the summed square error ∆F2

total
is visible which is then stagnating and only a few parameter sets lead to ∆F2

total < 100N2.
Histograms of the parameters evaluated by the DE-optimizer are given in figures 9.72, 9.73
and 9.74. The histograms show for each parameter a clustering around the values which
give the lowest summed square errors ∆F2

total.

If however the focus is on a good prediction of the cutting force, very low errors in Fc of
almost 0 are possible, see table 9.36 where the optimization results are sorted for lowest
cutting force errors ∆Fc. It differs from the lowest summed square error results (table 9.35)
with a lower static yield stress A, a slightly increased strain rate sensitivity C and significantly
increased strain hardening exponent n. Contrary, if a low feed force error ∆Ff is targeted one
can resort the optimization results for lowest feed force error, see table 9.37. The static yield
stress A becomes even lower, the strain hardening factor B becomes drastically higher, the
strain rate sensitivity C increases further and the strain hardening exponent n is in between
the results for lowest error in ∆F2

total and ∆Fc.

Ranking A [MPa] B [MPa] C [-] m [-] n [-] ∆F2
total [N2] ∆Fc [N] ∆Ff [N]

10 952.5 311.0 0.02015 0.5881 0.1835 104.40153 8.47227 5.71158
9 863.5 310.3 0.03492 0.5907 0.158 104.01427 7.73899 6.64247
8 887.5 313.7 0.02301 0.5913 0.1648 103.09502 4.90528 8.89006
7 952.7 347.8 0.01512 0.5847 0.1234 102.94207 3.65818 9.4636
6 971.2 312.4 0.02197 0.5823 0.1977 92.29864 6.30019 7.25302
5 949.1 345.3 0.01614 0.5834 0.1531 90.79748 3.57632 8.83218
4 816.5 304.0 0.02961 0.5847 0.1234 87.7417 0.0577 9.36688
3 778.2 351.5 0.03556 0.5872 0.1369 80.29325 4.08018 7.97781
2 906.1 323.8 0.0223 0.6048 0.1417 57.57823 4.06974 6.40433
1 852.1 338.9 0.02754 0.5961 0.1483 56.18071 5.31721 5.2828

Table 9.35: Inversely identified JC-parameter for Ti6Al4V with DE-method sorted for mini-
mum ∆F2

total.
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Ranking A [MPa] B [MPa] C [-] m [-] n [-] ∆F2
total [N2] ∆Fc [N] ∆Ff [N]

10 897.9 356.7 0.0193 0.5873 0.1677 1291.18376 -0.00532 35.93305
9 931.6 374.2 0.00915 0.5976 0.5021 827.48616 0.00376 28.76606
8 812.8 318.8 0.02633 0.583 0.133 850.3156 0.00291 29.16017
7 863.3 340.1 0.02831 0.5966 0.1545 1019.99345 0.00225 31.93734
6 830.9 340.2 0.02602 0.6007 0.1625 426.55488 -0.00172 20.6532
5 871.0 325.8 0.02663 0.5948 0.1602 1244.31108 -0.0015 35.27479
4 811.2 303.4 0.03202 0.5927 0.1612 348.04275 0.00075 18.6559
3 728.8 367.9 0.03331 0.6012 0.1477 908.36069 -0.00064 30.13902
2 802.9 367.1 0.02256 0.6017 0.1554 304.26632 -0.00025 17.44323
1 763.8 354.3 0.03056 0.5872 0.9036 973.74 8e-05 31.20481

Table 9.36: Inversely identified JC-parameter for Ti6Al4V with DE-method sorted for mini-
mum cut force error ∆Fc.

Ranking A [MPa] B [MPa] C [-] m [-] n [-] ∆F2
total [N2] ∆Fc [N] ∆Ff [N]

10 886.7 300.6 0.03912 0.6049 0.1428 1024.77926 32.01217 0.02315
9 884.1 340.4 0.04244 0.6636 0.1701 831.41502 28.83426 0.02209
8 820.8 341.0 0.03304 0.8752 0.1253 1530.83821 39.12592 0.0214
7 965.5 300.6 0.0416 0.6046 0.1935 742.10836 27.24166 0.01854
6 853.4 334.8 0.03531 0.5917 0.1294 535.34367 23.13749 -0.01653
5 787.8 339.2 0.03602 1.2172 0.1436 4810.06216 69.35461 0.00758
4 968.9 471.7 0.03162 0.6482 0.2268 1611.34055 40.14151 -0.00542
3 774.6 343.1 0.0417 1.281 0.1316 5720.93779 75.63688 0.00507
2 800.4 375.4 0.04894 0.6151 0.1258 1195.7498 34.57961 0.00506
1 728.3 1156.9 0.04049 0.6095 0.4327 7042.96303 83.92236 -0.00356

Table 9.37: Inversely identified JC-parameter for Ti6Al4V with DE-method sorted for mini-
mum feed force error ∆Ff .

Figure 9.71: Evolution of process force errors (left) and summed square errors (right) during
the optimization with the DE-method
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Figure 9.72: Histogram of parameters A (left) and B (right) considered during the optimiza-
tion with the DE-method.

Figure 9.73: Histogram of parameters C (left) and m (right) considered during the optimiza-
tion with the DE-method.

Figure 9.74: Histogram of parameter n considered during the optimization with the DE-
method.
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9.6.1.2 Inverse Parameter Identification with Bayes-method

The maximum number of iterations was set to ncalls = 5000 and noise was set to a small value
of 10−5 since the numerical simulation gives the same results when repeated with the same
set of parameters - in contradiction to experiments where a scatter can occur. The permissible
parameter ranges in this optimization remained the same as before in the DE-method and
are given in table 9.38.

A [MPa] B [MPa] C [-] m [-] n [-]
min 400 300 0.008 0.577 0.12
max 1200 1200 0.05 1.51 1.01

Table 9.38: Permissible parameter range for the Bayes-optimization.

The cost function (9.20) is kept unchanged with both force errors ∆Fc and ∆Ff being weighted
equally with wc = w f = 1.0. Again, the cutting test V0060 from table 11.1 has been selected
for the inverse identification since it has a very high cut speed vc = 500m/min. The
optimization was run for 29 days with almost 3’000 iterations and the ten best results with
lowest ∆F2

total are given in table 9.39 where positive force errors ∆Fc and ∆Ff indicate that the
predicted force is higher than experimentally measured. The lowest summed square error
of the process forces ∆F2

total = 351.8N2 results in a cut force error of about 8% and a feed
force error of about 12%. Similar to the 1D-test case in chapter 9.4.2 the process overhead of
the Bayes-method is increasing heavily. Since the computing time of one SPH simulation is
almost constant in the order of 4-5 minutes, the runtime increase per iteration stems from
the overhead of the Bayes-method which is towards the end after almost 3’000 iterations in
the order of 20 minutes per iteration, see figure 9.75. The runtime spikes are because the
SPH simulations were either run on a GPU NVidia Tesla P100 or a GPU NVidia Quadro

GP100 depending on the load of the server. It has to be noted that the DE-method performs
almost 3 times more iterations (8’300) in the same time. The parameter identification with
Bayes shows within the first 100 iterations a distinct reduction of ∆F2

total but almost no
progress beyond which is similar to the inverse parameter identification in section 9.4.2 with
Bayes. The development of the process force errors and the summed square error during the
optimization iterations is shown in figure 9.76. In the first few thousand iterations a slight
decrease in the summed square error ∆F2

total is visible which is then stagnating at around
∆F2

total ≈ 1000N2 with only a few parameter sets leading to lower summed square errors. The
bandwith of the summed square errors is apparently lower compared to the DE-method from
figure 9.76. Histograms of the parameters evaluated by the Bayes-optimization are given in
figures 9.77, 9.78 and 9.79. Contrary to the histograms of the DE-method, no clustering of
values is visible here except for parameter m.
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Ranking A [MPa] B [MPa] C [-] m [-] n [-] ∆F2
total [N2] ∆Fc [N] ∆Ff [N]

10 719.8 389.1 0.03796 0.6528 0.288 504.79653 16.51241 15.23603
9 477.6 434.4 0.02848 0.9523 0.143 504.13061 9.05484 20.54606
8 522.8 358.5 0.04906 0.7432 0.253 489.93979 7.93913 20.6618
7 550.2 606.8 0.03353 0.7162 0.1915 487.03043 16.35288 14.81937
6 802.6 367.2 0.01598 0.9184 0.1683 473.79723 16.09083 14.65887
5 630.5 369.3 0.04019 0.6278 0.3102 461.80828 3.82117 21.14727
4 407.8 529.2 0.0433 0.7297 0.168 449.22267 10.53 18.39407
3 772.9 409.0 0.04168 0.6078 0.3331 416.75913 15.03971 13.80457
2 407.8 529.3 0.0433 0.7297 0.1678 393.27756 8.61923 17.86019
1 799.9 400.1 0.01246 0.7585 0.217 351.82085 13.10105 13.42324

Table 9.39: Inversely identified JC-parameter for Ti6Al4V with Bayes-method sorted for
minimum ∆F2

total.

Figure 9.75: Runtime evolution during the optimization with the Bayes-method.
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Figure 9.76: Evolution of process force errors (left) and summed square error (right) during
the optimization with the Bayes-method

Figure 9.77: Histogram of parameters A (left) and B (right) considered during the optimiza-
tion with the Bayes-method.

Figure 9.78: Histogram of parameters C (left) and m (right) considered during the optimiza-
tion with the Bayes-method.
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Figure 9.79: Histogram of parameter n considered during the optimization with the Bayes-
method.

9.6.1.3 Inverse Parameter Identification with Simplex-method

The optimization is here performed with the Simplex-method. It is based on the same cutting
experiment V0060 and uses start values for the initial simplexes based on the tensile test
results in chapter 9.2.1. The 6 simplexes in the parameter space for A, B, C, m and n are
given in table 9.40:

Initial Simplex A [MPa] B [MPa] C [-] m [-] [n]
1 892 549 0.02754 0.6 0.58
2 942 599 0.03754 0.6 0.58
3 842 599 0.02754 0.7 0.58
4 892 499 0.02754 0.5 0.58
5 942 549 0.03754 0.6 0.68
6 892 549 0.04754 0.6 0.68

Table 9.40: Initial simplexes for the Simplex-optimization.

The cost function for the optimization (9.20) is used with both force errors ∆Fc and ∆Ff being
weighted equally with wc = w f = 1.0. A total of 549 iterations was run within 4 days and the
10 best results in terms of minimum squared force errors ∆F2

total are provided in table 9.41.
The best results are all the same in terms of constitutive model parameters as well as force
errors indicating that the Simplex-method is trapped into a local minimum. The minimum
error in ∆F2

total is more than four times higher than that achieved with the DE-method, but
about 30% lower than with the Bayes-method.
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Ranking A [MPa] B [MPa] C [-] m [-] n [-] ∆F2
total [N2] ∆Fc [N] ∆Ff [N]

10 891.6 500.3 0.02769 0.5009 0.579 256.2671 8.40749 13.62282
9 891.6 500.3 0.02769 0.5009 0.579 256.2671 8.40749 13.62282
8 891.6 500.3 0.02769 0.5009 0.579 256.2671 8.40749 13.62282
7 891.6 500.3 0.02769 0.5009 0.579 256.2671 8.40749 13.62282
6 891.6 500.3 0.02769 0.5009 0.579 256.2671 8.40749 13.62282
5 891.6 500.3 0.02769 0.5009 0.579 256.2671 8.40749 13.62282
4 891.6 500.3 0.02769 0.5009 0.579 256.2671 8.40749 13.62282
3 891.6 500.3 0.02769 0.5009 0.579 256.2671 8.40749 13.62282
2 891.6 500.3 0.02769 0.5009 0.579 256.2671 8.40749 13.62282
1 891.6 500.3 0.02769 0.5009 0.579 256.2671 8.40749 13.62282

Table 9.41: Inversely identified JC-parameter for Ti6Al4V with Simplex-method sorted for
minimum ∆F2

total.

238



9.6 identification of material parameters using a sph cutting simulation

9.6.2 Inverse Parameter Identification for Ck45

For the inverse identification of the constitutive model constants for the JC-classic-model
the cutting test V0300 from table 11.2 has been selected since it has a very high cut speed
vc = 500m/min. This is attractive for the explicit mfree_iwf-solver since the cut speed
scales with the simulation time and thus enables very fast iteration loops - up to 400 per
day. The feed in this experiment is f = 0.1mm. The cutting edge radii of this experiment
was determined with rn = 42µm and the friction coefficient is assumed with µ f ric = 0.35.
Adiabatic heating with a Taylor-Quinney coefficient of ηTQ = 0.90 is considered and the heat
conduction is considered only in the workpiece. Frictional heating is not considered. The
reference plastic strain rate was set to ε̇0

pl = 1.0/s. Physical constants according to table 9.42
were used.

Young’s Density Poisson Thermal Specific
modulus E [GPa] $[ kg

m3 ] ratio [-] conductivity λ[ W
mK ] heat cp[

J
kgK ]

200 7870 0.29 42 470

Table 9.42: Physical constants used for Ck45 in the parameter identifications.

9.6.2.1 Inverse Parameter Identification with DE-method

The permissible parameter ranges for the optimization are provided with table 9.43. They
are based on the constitutive model parameters provided in [101], results from the tensile
tests in chapter 9.2.3.2 and the parameter identification with Oxley’s force model in chapter
9.5.3.

A [MPa] B [MPa] C [-] m [-] n [-]
min 200 300 0.008 0.577 0.02
max 700 800 0.07 1.0 0.3

Table 9.43: Permissible parameter range for the DE-method.

The cost function for the optimization is the summed square error from the difference of the
predicted and experimentally measured process forces (9.20) with both force errors ∆Fc and
∆Ff being weighted equally with wc = w f = 1.0. The optimization was run for more than
40’000 iterations on a GPU NVidia Tesla P100 and the ten best results with lowest ∆F2

total are
given in table 9.44 where positive force errors ∆Fc and ∆Ff indicate that the predicted force
is higher than experimentally measured. The lowest summed square error of the process
forces ∆F2

total = 0.006N2 results in a cut force error of about 0.02% and a feed force error
of about 0.03%. The development of the process force errors and the summed square error
during the optimization iterations is shown in figure 9.80. During the iterations the feed
force tend to be overpredicted, while the cutting force is mainly underpredicted. In the first
few thousand iterations a slight decrease in the summed square error ∆F2

total is visible which
is then stagnating with a few parameter sets leading to ∆F2

total < 0.1N2. Histograms of the
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parameters evaluated by the DE-optimizer are given in figures 9.81, 9.82 and 9.83. Similar
to the DE-optimization for Ti6Al4V the histograms show for each parameter a clustering
around the values which give the lowest summed square errors ∆F2

total.

Ranking A [MPa] B [MPa] C [-] m [-] n [-] ∆F2
total [N2] ∆Fc [N] ∆Ff [N]

10 536.4 782.9 0.0571 0.6767 0.0521 0.05609 0.22255 0.08103
9 554.2 794.3 0.05826 0.6541 0.0451 0.05148 -0.20159 0.10412
8 636.4 679.6 0.06284 0.6675 0.0451 0.04808 -0.15828 0.15175
7 603.2 720.1 0.06017 0.697 0.0685 0.03959 0.19489 0.04012
6 533.6 749.2 0.05106 0.7643 0.021 0.03629 0.17667 0.07123
5 670.0 748.2 0.06076 0.612 0.1198 0.03324 0.05695 0.1732
4 596.8 728.4 0.06159 0.667 0.045 0.02186 0.13755 0.05422
3 602.8 684.7 0.06327 0.7164 0.0685 0.00979 0.02012 -0.0969
2 531.3 764.5 0.06051 0.7088 0.0501 0.00652 0.07832 0.0197
1 569.0 736.6 0.06005 0.7147 0.0685 0.00605 -0.05796 -0.05185

Table 9.44: Inversely identified JC-parameter for Ck45 with DE-method sorted for minimum
∆F2

total.

Figure 9.80: Evolution of process force errors (left) and summed square error (right) during
the optimization with the DE-method.
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Figure 9.81: Histogram of parameters A (left) and B (right) considered during the optimiza-
tion with the DE-method.

Figure 9.82: Histogram of parameters C (left) and m (right) considered during the optimiza-
tion with the DE-method.

Figure 9.83: Histogram of parameter n considered during the optimization with the DE-
method.
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9.6.2.2 Inverse Parameter Identification with Simplex-method

The optimization is here performed with the Simplex-method. It is based on the same cutting
experiment V0300 and uses start values for the initial simplexes based on the tensile test
results in chapter 9.2.1. The 6 simplexes in the parameter space for A, B, C, m and n are
given in table 9.45:

Initial Simplex A [MPa] B [MPa] C [-] m [-] [n]
1 400 200 0.008 0.6 0.4
2 450 250 0.018 0.6 0.4
3 350 250 0.008 0.7 0.4
4 400 150 0.008 0.5 0.4
5 450 200 0.018 0.6 0.5
6 400 200 0.028 0.6 0.5

Table 9.45: Initial simplexes for the Simplex-optimization.

A total of 1000 iterations was run within 6 days and the 10 best results in terms of minimum
squared force errors ∆F2

total are provided in table 9.46.

Ranking A [MPa] B [MPa] C [-] m [-] n [-] ∆F2
total [N2] ∆Fc [N] ∆Ff [N]

10 497.5074395093 457.7195338459 0.058569357741 0.943220289331 0.594913739302 1464.3971 18.86534 33.29408
9 497.507439247 457.7195281444 0.058569358678 0.943220287709 0.594913753808 1463.49908 18.76324 33.33827
8 497.5074395096 457.7195338489 0.058569357741 0.94322028933 0.594913739293 1463.13533 19.10258 33.1395
7 497.5074395096 457.7195338503 0.05856935774 0.943220289329 0.594913739289 1461.65111 19.04779 33.14864
6 497.5074395096 457.7195338503 0.05856935774 0.943220289329 0.594913739289 1459.44188 19.1956 33.02985
5 497.507439509 457.7195338439 0.058569357739 0.943220289331 0.5949137393 1458.64547 19.103 33.07145
4 497.5074395014 457.7195335443 0.058569357966 0.943220288723 0.59491374021 1458.2366 19.17168 33.02549
3 497.50743951 457.7195338472 0.058569357739 0.943220289332 0.594913739294 1457.84536 18.66255 33.30998
2 497.5074394947 457.7195338094 0.058569357744 0.943220289282 0.594913739323 1454.25568 18.80679 33.17469
1 497.5074395096 457.7195338503 0.05856935774 0.943220289329 0.594913739289 1453.7111 18.96408 33.0768

Table 9.46: Inversely identified JC-parameter for Ck45 with Simplex-method sorted for mini-
mum ∆F2

total.

The best results are already centred within a very small parameter range, they differ only in
the last digits which are not displayed in the table. The minimum error is far higher than
that achieved with the DE-method and the Simplex seems to be trapped in a local minimum.
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9.7 identification of material parameters including the friction coeffi-
cient

In the preceding section the friction coefficient was assumed to be constant with µ f ric = 0.35
during the parameter identification of the constitutive model constants for Ti6Al4V and Ck45.
This assumption is often made in machining simulations, but it is known from literature [260]
that the magnitude of the friction coefficient can vary depending on the process parameters
like the cutting speed and the cutting edge radius. The grain structure of the experimental
chips reveal that there must be some sort of sticking condition on the rake face, see for
example in figure 9.54. This indicates either very high friction coefficients, or very high
contact pressures, or both. For this reason, in this part the friction coefficient is identified
together with the constitutive model constants of the JC-classic-model which totals in 6
constants to be identified simultaneously.

9.7.1 Identification of the Friction Coefficient Constant

9.7.1.1 Ti6Al4V

Similar to the preceding parameter identification of Ti6Al4V the cutting test V0060 has
been selected from table 11.1 with a feed of f = 0.1mm and a very high cut speed of
vc = 381.3m/min. The cutting edge radii of this experiment was determined with rn = 33µm.
Adiabatic heating with a Taylor-Quinney coefficient of ηTQ = 0.90 is considered and the
heat conduction is considered only in the workpiece. Frictional heating is not considered.
The reference plastic strain rate was set to ε̇0

pl = 1.0/s. Physical constants according to table
9.33 were used. The permissible parameter ranges for the JC-model constants A, B, C, m
and n remained unchanged and are provided with table 9.34, the permissible range for the
friction coefficient is µ f ric = 0.1...1.0. The cost function for the optimization is (9.20) with
both force errors ∆Fc and ∆Ff being weighted equally with wc = w f = 1.0. The DE-method
was used. Table 9.47 shows the lowest summed square errors ∆F2

total of the parameter
identification. Interestingly, a more than 5 times lower ∆F2

total is found when identifying
the friction coefficient together with the constitutive model constants for Ti6Al4V. On the
other hand, the static yield stress (parameter A) lost its physical meaning and is now about
30% lower than in the tensile test result as well as in the identification without friction
coefficient. Compared to the identification with a constant friction coefficient of µ f ric = 0.35
the friction coefficient has increased to around µ f ric = 0.7. Interestingly, this is in the order

of the apparent friction coefficient of µ f ric,app =
Ff
Fc

= 115.5N
157.5N = 0.73 for this cutting test.

9.7.1.2 Ck45

The cutting test V0300 from table 11.2 served as a basis for the parameter identification as in
the preceding parameter identification of Ck45. This experiment has a feed of f = 0.1mm
and a very high cut speed of vc = 500m/min. The cutting edge radii of this experiment
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Ranking A [MPa] B [MPa] C [-] m [-] n [-] µ f ric [-] ∆F2
total [N2] ∆Fc [N] ∆Ff [N]

10 651.3 373.9 0.01575 0.6436 0.1549 0.6101 39.46448 2.85532 5.59568
9 632.8 346.1 0.01437 0.6773 0.1593 0.7062 38.87475 5.46468 3.00201
8 633.5 405.4 0.01435 0.607 0.1496 0.5999 38.86439 1.30422 6.09618
7 621.8 371.7 0.01505 0.6023 0.138 0.6853 37.1847 -0.85824 6.03723
6 655.3 318.8 0.02073 0.6547 0.1755 0.6808 34.85521 5.90089 -0.1862
5 683.8 327.8 0.01667 0.6618 0.1417 0.5848 32.99311 5.3087 2.19335
4 711.6 318.3 0.0155 0.5848 0.1561 0.6762 31.14309 3.77397 4.11099
3 672.2 350.2 0.01602 0.6126 0.137 0.6335 24.70144 2.34395 4.38262
2 622.1 331.5 0.01631 0.6834 0.1415 0.7086 15.68025 1.62114 3.61277
1 611.9 357.7 0.01609 0.6239 0.1365 0.7009 10.1903 -1.83991 2.60865

Table 9.47: Inversely identified JC-parameter and friction coefficient for Ti6Al4V with DE-
method sorted for minimum ∆F2

total.

Ranking A [MPa] B [MPa] C [-] m [-] n [-] µ f ric [-] ∆F2
total [N2] ∆Fc [N] ∆Ff [N]

10 520.6 559.9 0.06652 0.6881 0.0625 0.5339 0.2402 -0.4743 -0.12346
9 690.6 521.9 0.05676 0.7348 0.1526 0.442 0.22906 0.26529 -0.39835
8 517.9 560.6 0.06179 0.7141 0.0457 0.6507 0.21295 0.39163 0.24408
7 502.0 516.4 0.06725 0.6609 0.079 0.6689 0.16651 -0.39411 0.10577
6 639.9 549.2 0.06287 0.7426 0.0963 0.437 0.15933 -0.39383 0.06499
5 517.5 553.3 0.05738 0.7031 0.0956 0.6716 0.15673 0.25911 -0.29932
4 549.0 687.8 0.06478 0.6565 0.0714 0.4346 0.10707 -0.31454 -0.0902
3 662.1 436.0 0.06101 0.6815 0.1159 0.594 0.10639 -0.28941 -0.15043
2 622.4 576.9 0.04954 0.7024 0.0714 0.559 0.09853 0.0095 -0.31376
1 567.5 592.6 0.06297 0.6742 0.0956 0.5107 0.0068 0.04805 -0.06705

Table 9.48: Inversely identified JC-parameter and friction coefficient for Ck45 with DE-
method sorted for minimum ∆F2

total.

was determined with rn = 42µm. Adiabatic heating with a Taylor-Quinney coefficient of
ηTQ = 0.90 is considered and the heat conduction is considered only in the workpiece.
Frictional heating is not considered. The reference plastic strain rate was set to ε̇0

pl = 1.0/s.
Physical constants according to table 9.42 were used. The permissible parameter ranges for
the JC-model constants A, B, C, m and n remained unchanged and are provided with table
9.43, the permissible range for the friction coefficient is µ f ric = 0.1...1.0. The cost function for
the optimization is (9.20) with both force errors ∆Fc and ∆Ff being weighted equally with
wc = w f = 1.0. The DE-method was used. Table 9.48 shows the lowest summed square
errors ∆F2

total of the parameter identification. The minimum summed square error of the
process forces ∆F2

total is at a comparable level to the inverse identification without friction
coefficient. The identified friction coefficient is about 50% higher than in the preceding
identification where the friction coefficient was constant µ f ric = 0.35. Obviously, this high
friction coefficient enforces a stick condition in the contact surface such that plastic flow is
initiated in the chip close to the contact face (internal friction). It has to be noted that similar
friction coefficients were reported in literature [270].
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9.7.2 Identification of a Friction Coefficient Using Shear Stress Limit

It is convenient to limit the maximum friction force Fmax
F [276] such that the yield limit in

shear τY of the mating materials are not exceeded in the contact surface Acontact:

Fmax
F = m · τY · Acontact = m · 1√

3
· σY · Acontact (9.21)

with a factor m which is in this investigation set to m = 1. Since tool materials are usually
characterized with a huge yield limit because plastic deformations must not occur, the
maximum flow stress, also shear stress limit (SSL), in (9.21) is that of the workpiece material
at the current conditions σY = σY(ε̄pl, ˙̄εpl, T):

Fmax
F = m · 1√

3
· σY(ε̄pl, ˙̄εpl, T) · Acontact (9.22)

In this formulation the shear stress has automatically a depdendency on the strain, strain
rate and temperature. Alternatively, other friction laws exist, e.g. in [5] with two parameters:

µ(T) = µ0 ·
(

1−
(

T − Tre f

Tf − Tred

)q)
(9.23)

where µ0 is the friction coefficient and q controlling the temperature dependency. This is
however not used here as the temperature dependency with (9.22) is already imposed by the
current yield stress σY(ε̄pl, ˙̄εpl, T).

9.7.2.1 Ti6Al4V

The model from chapter 9.7.1.1 was reused without changes except that the frictional shear
stress was limited to the shear strength of the material at current conditions (9.22). The
minimum summed square error ∆F2

total is comparable to the identification without friction
coefficient, but the static yield stress (parameter A) is about 10% lower than in the tensile
test result as well as in the identification without friction coefficient. The identified friction
coefficient µ f ric increases to almost 1, see table 9.49. This leads to a similar interpretation
as in chapter 9.7.1.1 where a sticking condition is obviously imposed in the contact zone
leading to more internal friction.
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Ranking A [MPa] B [MPa] C [-] m [-] n [-] µ f ric [-] ∆F2
total [N2] ∆Fc [N] ∆Ff [N]

10 823.0 321.0 0.01379 0.5985 0.1824 0.9411 84.76589 6.13272 6.86699
9 830.2 317.6 0.01407 0.6356 0.1821 0.9353 83.67551 5.2079 7.52019
8 819.9 331.9 0.01164 0.5836 0.1605 0.9898 83.15855 6.38667 6.50915
7 833.4 345.7 0.01361 0.5791 0.1338 0.8656 81.1443 6.81223 5.89389
6 838.9 321.7 0.01337 0.6152 0.1409 0.9446 80.66476 5.63939 6.99014
5 903.9 323.7 0.01178 0.5999 0.1745 0.9467 77.07405 7.30751 4.86563
4 885.2 323.4 0.01157 0.5866 0.1628 0.959 74.45334 1.92273 8.41169
3 778.1 316.8 0.0138 0.5841 0.1426 0.9879 71.9409 3.35032 7.79206
2 808.2 313.4 0.01246 0.6042 0.1377 0.9979 59.11539 2.14979 7.38199
1 800.1 327.5 0.01292 0.5902 0.1833 0.9596 51.31082 1.85545 6.91868

Table 9.49: Inversely identified JC-parameter and friction coefficient with shear stress limit
for Ti6Al4V with DE-method sorted for minimum ∆F2

total.

9.7.2.2 Ck45

A slight increase of the identified friction coefficient µ f ric can be seen, while the static
yield limit A is in this identification below the tensile test yield limit for the fit with the
lowest ∆F2

total. The summed square error of the process forces ∆F2
total is lower in this inverse

identification compared to the identifications without friction coefficient and the identification
with friction coefficient but without shear stress limit. An overview of the ten best parameter
sets is given with table 9.50.

Ranking A [MPa] B [MPa] C [-] m [-] n [-] µ f ric [-] ∆F2
total [N2] ∆Fc [N] ∆Ff [N]

10 404.5 776.2 0.04336 0.8597 0.0419 0.5871 0.05618 0.13906 -0.19194
9 461.9 663.4 0.04798 0.8648 0.0503 0.6129 0.04911 0.14635 0.16641
8 414.0 730.2 0.04696 0.8749 0.0314 0.6633 0.04696 -0.18388 -0.11468
7 485.7 745.5 0.04708 0.8175 0.0251 0.5131 0.04636 0.15492 0.14953
6 284.1 762.8 0.05257 0.8578 0.0382 0.697 0.04165 -0.06025 0.19498
5 407.3 744.1 0.0367 0.952 0.022 0.6949 0.03272 -0.02055 -0.17971
4 504.9 730.0 0.0381 0.9158 0.0317 0.6329 0.03192 -0.04228 -0.17358
3 554.4 719.7 0.03094 0.9068 0.0351 0.6068 0.02884 0.10565 -0.13295
2 449.7 709.8 0.04263 0.8943 0.0221 0.6253 0.00824 0.01735 -0.08911
1 331.0 762.2 0.04534 0.9176 0.0215 0.6623 0.00237 0.04755 0.01025

Table 9.50: Inversely identified JC-parameter and friction coefficient with shear stress limit
for Ck45 with DE-method sorted for minimum ∆F2

total.
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9.8 recalculation of cutting experiments

9.8.1 Ti6Al4V

The material parameters determined from the parameter identifications:

• without friction coefficient, set 1 in table 9.35

• with friction coefficient and without SSL, set 1 in table 9.47

• with friction coefficient and SSL, set 1 in table 9.49

are used here to recompute a few cutting experiments at other process conditions and
compare the experimental versus the computed process forces and chip thicknesses. The best
parameter sets from the inverse identification of material constitutive constants for Ti6Al4V
are displayed in table 9.52. The selection of experiments for the recomputation is compiled
in table 9.51.

Feed [mm] vc = 20m/min vc = 125m/min vc = 400m/min
0.01 V0320 (rn = 40.5µm) V0348 (rn = 38.3µm) V0461 (rn = 35.5µm)
0.04 V0325 (rn = 37.5µm) V0350 (rn = 37.9µm) V0471 (rn = 41.9µm)

Table 9.51: Recomputation of cutting experiments with the identified material constitutive
sets for Ti6Al4V.

A B C m n µ f ric Comment SSL Reference
[MPa] [MPa] [-] [-] [-]
852.1 338.9 0.02754 0.5961 0.148 0.35 no table 9.35
611.9 357.7 0.01609 0.6239 0.1365 0.7009 µ f ric identified no table 9.47
800.1 327.5 0.01292 0.5902 0.1833 0.9596 µ f ric identified yes table 9.49

Table 9.52: Best material constitutive sets for Ti6Al4V from the inverse parameter identifica-
tions.

A comparison of experimental and numerically predicted cut forces is provided in table
9.53 and for the feed force in table 9.54, a graphical comparison is provided in figure 9.84.
The experimental and numerical chip thicknesses are given in table 9.55 and figure 9.85.
Even though a very large range of cut speeds is used, the process force predictions are quite
acceptable where the largest deviations is in the order of 20% at the lowest cut speed of
vc = 20m/min. The feed force error is higher with up to 47%. Simulations with parameter
sets where the friction coefficient was identified together with the material constitutive
parameters tend to higher process force errors where the results from the identification
without shear stress limit is worse. A different picture is seen for the chip thickness prediction
where the parameter identification without friction coefficient is closer to the experimental
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values for the lower feed of f = 0.01mm (V0320, V0348, V461) whereas at the higher feed of
f = 0.04mm (V0325, V0350, V0471) the parameter sets from both identifications including
the friction coefficient show better predictions.

Experiment Fexp
c [N] Fµ=0.35

c [N] ∆[%] FµnoSSL
c [N] ∆[%] FµSSL

c [N] ∆[%]
V0060 157.5 162.8 3.38 155.7 -1.17 159.4 1.2
V0320 55.9 47.7 -14.61 47.2 -15.63 51.4 -8.1
V0325 110.5 85.8 -22.33 76.9 -30.44 85.1 -23.0
V0348 42.7 44.3 3.75 45.6 6.9 49.6 16.1
V0350 102.3 84.8 -17.07 73.9 -27.74 81.0 -20.8
V0461 41.2 40.9 -0.73 45.3 9.86 48.2 17.0
V0471 99.8 92.6 -7.19 81.8 -18.01 85.9 -14.0

Table 9.53: Ti6Al4V: Experimental and simulated cut forces Fc with inversely identified
material constitutive parameters.

Experiment Fexp
f [N] Fµ=0.35

f [N] ∆[%] FµnoSSL
f [N] ∆[%] FµSSL

f [N] ∆[%]

V0060 115.5 120.8 4.57 118.1 2.26 122.4 6.0
V0320 84.5 63.0 -25.41 50.6 -40.12 58.6 -30.6
V0325 104.9 68.2 -35.01 54.9 -47.65 73.3 -30.1
V0348 77.5 69.7 -10.06 51.4 -33.71 57.2 -26.2
V0350 110.9 85.6 -22.85 66.7 -39.83 80.3 -27.6
V0461 74.3 76.4 2.81 51.8 -30.33 63.2 -15.0
V0471 116.0 108.5 -6.42 80.2 -30.89 102.9 -11.3

Table 9.54: Ti6Al4V: Experimental and simulated feed forces Ff with inversely identified
material constitutive parameters.

Experiment hexp[µm] hµ f ric=0.35[µm] ∆[%] hµnoSSL [µm] ∆[%] hµSSL [µm] ∆[%]
V0060 99.7 116.3 16.6 140.9 41.3 141.1 41.6
V0320 28.3 26.3 -7.1 24.9 -11.9 24.8 -12.3
V0325 67.7 51.7 -23.7 71.3 5.2 74.6 10.2
V0348 16 21.5 34.2 22.7 41.8 20.9 30.4
V0350 61.5 48.7 -20.7 54.5 -11.3 65.3 6.2
V0461 16 17.4 8.8 18.8 17.6 16.8 4.8
V0471 51.9 45 -13.3 52.1 0.5 54.6 5.3

Table 9.55: Ti6Al4V: Experimental and numerical predicted chip thicknesses h with inversely
identified material constitutive parameters.

In figure 9.86 the experimental chip shape is shown together with numerical results for
experiment V0060. In contrast to the chip from the experiment, none of the numerical simu-
lations show chip segmentation. The explanation for this can be found when investigating
the experimental chips. It can be seen for the experiment V0060 in figure 9.41 and from
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Figure 9.84: Ti6Al4V: Experimental and predicted cut (top) and feed force (bottom).

Figure 9.85: Ti6Al4V: Experimental and predicted chip thicknesses.
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9.8 recalculation of cutting experiments

table 9.19 that at an uncut chip thickness of f = 0.1mm the thickness of the shear layer in
the contact zone is about 3µm and in the shear layer of the primary shear zone is about
4− 6µm. Since for performance reasons the model resolution was chosen with 10 particles
per uncut chip thickness, one particle covers a length scale of 10µm which is in comparison
to the shear layer thickness too coarse to resolve the physics on this length scale. For this
reason the heat released by plastic dissipation is averaged over a larger volume leading to a
lesser thermal softening and thus preventing the chip to develop segmentation. To overcome
this situation the resolution of the simulation is increased from the initial resolution with
5’640 particles over 64’300 particles up to 126’000 particles for the model with heat transfer
in the workpiece only and without frictional heating using material parameters set 1 in table
9.35 from the parameter identification without friction coefficient. The effect on the chip
segmentation is displayed in figure 9.87 where the simulation with 64’300 particles shows
already some segmentation which becomes much more pronounced when simulating with
126’000 particles.

Figure 9.87: Ti6Al4V: Recomputation of experiment V0060 vc = 381.3m/min, f = 0.1mm
with material parameters identified without friction coefficient (set 1 from table
9.35) and increased particle resolution: left (64’300 particles) and right (126’000
particles) show chip segmentation towards higher resolutions. The simulations
are run with heat transfer in the workpiece but without tool heat transfer and
without frictional heating.

If however a more realistic simulation of the cutting process is desired, the tool heat transfer
and frictional heating need to be considered. In this case a further increase of the resolution
to 208’732 particles is required to model the chip segmentation. The resulting segmented
chip geometry is displayed in figure 9.88. A comparison of the numerically predicted and
experimental chip geometry is provided in table 9.56. The predicted minimum chip thickness
hmin is at a comparable level to the experiment while the maximum chip thickness hmax
is roughly 20% lower predicted. The distance between segments lseg is almost 50% lower,
while the shear layer thicknesses in the primary and secondary shear zone, tseg and tsl, are
overpredicted by about 100%. The process forces vary slightly with the different resolutions
and the effect of tool heat transfer and frictional heating is small, see table 9.57.
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Figure 9.88: Ti6Al4V: Recomputation of experiment V0060 vc = 381.3m/min, f = 0.1mm
with material parameters identified without friction coefficient (set 1 from table
9.35) shows chip segmentation when simulated with 208’732 particles. The
simulations are run with heat transfer in the workpiece and tool including
frictional heating.

Result hmin[µm] hmax[µm] lseg[µm] tseg[µm] tsl[µm]

Experiment 80 150 51-56 4-6 3
Simulation 73-82 120 33-39 6-11 5-6

Table 9.56: Ti6Al4V: Experimental and simulated chip shape for experiment V0060.

Result Fc[N] Ff [N] Heat transfer Heat transfer Frictional Particle
workpiece tool heating number

Experiment 157.5 115.5 - - - -
Simulation 162.8 120.8 yes no no 5’640
Simulation 170.0 113.3 yes no no 64’300
Simulation 161.4 108.5 yes no no 126’000
Simulation 154.6 105.0 yes yes yes 208’732

Table 9.57: Ti6Al4V: Experimental and simulated process forces for experiment V0060.
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9.8.2 Ck45

The material parameters determined from the parameter identifications for Ck45:

• without friction coefficient, set 1 in table 9.44

• with friction coefficient and without SSL, set 1 in table 9.48

• with friction coefficient and SSL, set 1 in table 9.50

are used here to recompute a few cutting experiments at other process conditions and
compare the experimental versus the computed process forces and chip thicknesses. The
selection of experiments is compiled in table 9.58 The process forces and chip shapes are
compared to the numerical results and are shown in tables 9.60 (Fc), 9.61 (Ff ) and 9.62 (chip
thickness h). An example of the experimental and numerically simulated chip shapes is
provided in figure 9.91 for the experiment V0300, which was used in all identifications of the
JC-classic model coefficients for Ck45.

Feed [mm] vc = 70m/min vc = 200m/min vc = 450m/min
0.02 V0186 (rn = 36.4µm) V0278 (rn = 40.1µm) V0286 (rn = 40.0µm)
0.06 V0189 (rn = 39.9µm) V0280 (rn = 38.8µm) V0289 (rn = 38.0µm)

Table 9.58: Recomputation of cutting experiments with the identified material constitutive
sets for Ck45.

A B C m n µ f ric Comment SSL Reference
[MPa] [MPa] [-] [-] [-]
569.0 736.6 0.06 0.7147 0.0685 0.35 no table 9.44
567.5 592.6 0.063 0.6742 0.0956 0.5107 µ f ric identified no table 9.48
331.0 762.2 0.045 0.9176 0.0215 0.6623 µ f ric identified yes table 9.50

Table 9.59: Best material constitutive sets for Ck45 from the inverse parameter identifications.

The cut forces match better with experimental results than the feed forces. At cut speeds
of vc = 200m/min and vc = 450m/min the cut force deviation in the numerical simulation is
between 5...20% and for vc = 70m/min up to 50%, see also table 9.60 and figure 9.89. The
error in the feed force is up to almost 150% at the lowest simulated cut speed and for both
higher vc between 8...45%, see also table 9.61 and figure 9.89 Whether the friction coefficient
was identified together with the material constitutive parameters or not, affects the process
force only marginally. The chip thickness prediction is slightly better when the friction
coefficient was identified with the constitutive parameters but the error in the prediction
is generally high in the order of 34...75%, see table 9.62 and figure 9.90. An example of
the experimental and numerically simulated chip shapes is provided in figure 9.91 for the
experiment V0300, which was used for the identification of the JC-classic model coefficients
for Ck45.
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Experiment Fexp
c [N] Fµ=0.35

c [N] ∆[%] FµnoSSL
c [N] ∆[%] FµSSL

c [N] ∆[%]
V0300 260.3 260.2 -0.02 260.3 0.02 260.3 0.0
V0186 66.1 96.9 46.54 94.5 42.96 99.5 50.5
V0189 167.1 180.2 7.85 165.2 -1.15 167.8 0.4
V0278 81.1 100.6 24.03 97.3 19.99 100.5 23.9
V0280 213.6 177.2 -17.06 168.6 -21.07 171.1 -19.9
V0286 86.5 99.2 14.71 95.7 10.66 98.9 14.3
V0289 193.1 182.3 -5.57 172.9 -10.47 169.8 -12.1

Table 9.60: Ck45: Experimental and simulated cut forces Fc with inversely identified material
constitutive parameters.

Experiment Fexp
f [N] Fµ=0.35

f [N] ∆[%] FµnoSSL
f [N] ∆[%] FµSSL

f [N] ∆[%]

V0300 174.6 174.5 -0.03 174.5 -0.04 174.6 0.0
V0186 40.6 98.8 143.23 89.3 119.85 100.7 148.1
V0189 109.4 124.1 13.47 102.2 -6.59 112.8 3.1
V0278 80.3 116.8 45.47 102.9 28.15 108.7 35.4
V0280 220.6 137.0 -37.89 131.7 -40.32 134.7 -38.9
V0286 91.1 131.6 44.46 106.4 16.83 119.1 30.7
V0289 167.8 153.5 -8.55 126.7 -24.52 141.1 -15.9

Table 9.61: Ck45: Experimental and simulated feed forces Ff with inversely identified mate-
rial constitutive parameters.

Experiment hexp[µm] hµ f ric=0.35[µm] ∆[%] hµnoSSL [µm] ∆[%] hµSSL [µm] ∆[%]
V0186 65.8 39 -40.8 37.3 -43.3 40.3 -38.8
V0189 166.1 84.8 -48.9 100.2 -39.7 96.3 -42
V0278 58 36.8 -36.5 38 -34.4 38.2 -34.1
V0280 201 80.5 -59.9 85.1 -57.7 95.9 -52.3
V0286 69 30.8 -55.3 36.9 -46.5 35.9 -47.9
V0289 145.9 76.9 -47.3 79.3 -45.7 85.8 -41.2
V0300 216.6 116.4 -46.3 136.9 -36.8 141.9 -34.5

Table 9.62: Ck45: Experimental and numerical predicted chip thicknesses h with inversely
identified material constitutive parameters.

In figure 9.91 the experimental chip shape is shown together with numerical results for
experiment V0300.
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Figure 9.89: Ck45: Experimental and predicted cut (top) and feed force (bottom).

Figure 9.90: Ck45: Experimental and predicted chip thicknesses.
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9.8 recalculation of cutting experiments

9.8.3 Comparison of Parameter Identification Results

9.8.3.1 Static Flow Curve

The Johnson-Cook model parameters A, B and n obtained from the parameter identifications
are compared versus the JC model parameters extracted from the tensile tests in chapter
9.2.1 and versus literature values. In figure 9.92 the comparison is shown for Ti6Al4V and in
figure 9.93 for Ck45. For Ti6Al4V the parameters identified from the tensile test give almost
the same flow stress characteristics as the parameters from literature [62]. Parameter sets
identified without friction coefficient and with friction coefficient and SSL are in the range of
the flow stress curve from literature values, while the parameter set from the identification
with friction coefficient without SSL differs largely with flow stresses roughly 20% lower
over the whole plastic strain range.

Figure 9.92: Ti6Al4V: Flow stress curve comparison of the identified JC-classic-parameter
A, B and n versus parameters from tensile test and values from literature [62].

In the Ck45 parameter identification the parameter sets identified together with the friction
coefficients and the set from the analytical process force model give very similar static flow
curves. The parameter set from the literature [101] and from the tensile test give lower flow
stresses for small plastic strains and for plastic strains around εpl ≈ 1 the flow stresses are
almost the same for all parameter sets except the one from the parameter identification
without friction coefficient. The latter gives over the whole plastic strain range about 20%
higher flow stresses.
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Figure 9.93: Ck45: Flow stress curve comparison of the identified JC-classic-parameter A, B
and n versus parameters from tensile test and values from literature [101].

9.8.3.2 Strain Rate Sensitivity

Here the strain rate sensitivities are compared between those from experiments at low strain
rates, the parameter identifications and literature values. The material parameters used in
this comparison are provided in table 9.63.

Material C [-] ε̇0
pl[−] Source

Ti6Al4V 0.0145 0.002 tensile test, chapter 9.2.3.1
Ti6Al4V 0.0377 1.0 Oxley model, table 9.30
Ti6Al4V 0.02754 1.0 SPH ABCmn, table 9.52
Ti6Al4V 0.01609 1.0 SPH ABCmn & µ w/o SSL, table 9.52
Ti6Al4V 0.01292 1.0 SPH ABCmn & µ w/ SSL, table 9.52
Ti6Al4V 0.012 1.0 Ducobu [62]
Ck45 0.0108 0.002 tensile test, chapter 9.2.3.2
Ck45 0.07 1.0 Oxley model, table 9.32
Ck45 0.06 1.0 SPH ABCmn, table 9.59
Ck45 0.063 1.0 SPH ABCmn & µ w/o SSL, table 9.59
Ck45 0.045 1.0 SPH ABCmn & µ w/ SSL, table 9.59
Ck45 0.0134 1.0 Jaspers & Dautzenberg [101]

Table 9.63: JC-Parameters used for the strain rate sensitivity comparison.

For each set the yield stress ratio σratio
y is computed in the strain rate range ε̇pl = 1...106/s by

using the strain rate sensitivity part from the Johnson-Cook flow stress model (3.95):

σratio
y = 1 + C · ln

(
ε̇pl

ε̇0
pl

)
(9.24)

and the resulting charts are displayed in figure 9.95 (Ck45) and 9.94 (Ti6Al4V). The strain
rate sensitivity from the tensile tests are in general low and for Ck45 comparable to literature
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values. For both materials, Ck45 and Ti6Al4V, the sensitivities obtained from the identification
with the Oxley-model are the highest in comparison to the other parameter sets. The
sensitivities from literature values are in both cases the lowest which might be due to their
determination from SHB-tests as well as a different delivery condition of the material. It
has to be noted that the Johnson-Cook strain rate sensitivity increases only linearly in the
semi-logarithmic display while it is known from literature [131, 245] that towards higher
strain rates the yield stress is progressively increasing. This progressive increase cannot be
modelled with the Johnson-Cook flow stress model which possibly means that the identified
strain rate sensitivities have limited validity only at the process conditions used for the
inverse identification of the material parameters.

Figure 9.94: Ti6Al4V: Strain rate sensitivities in the range from ε̇pl = 1...106/s computed for
results from tensile tests, parameter identifications and values from literature
[62].

Figure 9.95: Ck45: Strain rate sensitivities in the range from ε̇pl = 1...106/s computed for
results from tensile tests, parameter identifications and values from literature
[101].
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9.8.3.3 Flow Stress Curves at Different Strain Rates and Temperatures

The full JC-parameter sets are used to compute flow stress curves at three different temper-
atures (T = 473, 1073, 1473K) and three different strain rates (ε̇pl = 1, 1′000, 500′000/s) for
Ti6Al4V (figure 9.96) and Ck45 (figure 9.97). For Ti6Al4V the flow stress curve for parameters
identified with the Oxley-model give a similar characteristics as values from literature [62] at
the lowest strain rate. All three parameter sets identified with the SPH give the lowest yield
stresses at all temperatures and strain rates. Towards the highest strain rate the flow stresses
predicted with the parameter set from the literature comes closer to the predicted yield
stresses with parameter sets from the SPH parameter identification. For the Ck45 material
the predicted flow stresses from the parameter sets identified with the Oxley-model and
the SPH simulations give similar characteristics while the flow stress curve created with the
parameter set from the literature [101] predicts at the lowest strain rate higher flow stresses
than the other sets. At ε̇pl = 1′000/s it gives similar yield stresses and at ε̇pl = 500′000/s it
shows lower yield stresses than the other flow stress curves. The reason for this behaviour is
the very low strain rate sensitivity parameter C of the parameter set from the literature. It
increases in the range from ε̇pl = 1...106/s by less than 20%, while for the other parameter
sets the increase is between 60...100%.
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9.8.4 Results Discussion

Based on orthogonal cutting experiments material parameters were inversely identified
within a numerical simulation model of the cutting process. Three different optimization
methods were used of which the DE-method proved to be the most versatile but demanding in
terms of computation time. The Bayes-method showed in the initial phase of the optimization
good progress in minimizing the cost function but suffered from largely increasing overhead
of the process model evaluation which made it not suitable to minimize the cost function.
The Simplex-method is efficient but tends to trap often in local minima leading to higher
process force errors. The identified parameter sets for each of both materials provide similar
predictions at other process conditions in terms of forces and chip thicknesses. The chip
segmentation can not be reproduced for the Ti6Al4V even though the predicted average chip
thicknesses are similar to the experimental values. If however the resolution is increased
by a factor of about 40, chip segmentation can be predicted even with the classic Johnson-
Cook flow stress model. This model resolution is however not suitable for the parameter
identification since the runtimes increase from a few minutes to more than 2 hours. For the
Ck45 material the chip thicknesses are under-predicted with errors in the order of 30...40%.
The feed force error in the predictions for Ck45 at other process conditions is partially up to
60% for each of the three identified parameter sets. This is remarkable since the prediction at
reference experiment conditions gives negligible errors in the process forces. Apparently, the
identified Johnson-Cook flow stress model parameters have limited validity only at similar
process conditions which are used for the inverse identification of the material parameters.
As discussed in the strain rate sensitivity comparison in chapter 9.8.3.2, the likely reason
for this is that the Johnson-Cook strain rate sensitivity term increases only linearly in the
semi-logarithmic display while it is known from literature [131, 245] that towards higher
strain rates the yield stress is usually progressively increasing. A possibility to improve here
would be the use of the Cowper-Symonds model [46] for the strain rate sensitivity term at
the expense of an additional material parameter to be identified.

The identified friction coefficients for Ck45 and Ti6Al4V are much higher than known from
tests. These high friction coefficients indicate that obviously an adhesion condition of the
chip on the rake face is required to force shearing (internal friction) inside the chip. Possibly
a dependence of the friction coefficient on temperature, sliding velocity and contact pressure
should be considered in future investigations. A further improvement is expected when
other aspects, such as temperatures, chip thicknesses, or the chip segment geometry are
considered in the optimization as well. The difficulty here is to automate the measurement of
the numerically predicted chip shapes within every loop of the optimization. If this is solved,
one can also use the extended JC flow stress models within the parameter identification to be
able to predict the chip segmentation at lower model resolutions already. Alternatively other
constitutive models, e.g. with anisotropic hardening, can be used as well in the parameter
identification but here the problem is that the larger amount of parameters to be fitted may
needs supportive experiments for a proper down-selection of possible parameter ranges
within the inverse parameter identification procedure.
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The complicated physics of the metal cutting process is a challenging task for the numerical
simulation of such processes since various severe conditions are overlayed. Large deforma-
tions, high temperatures, strains and strain rates occur in the process zone in conjunction
with the forming of new surfaces due to material separation. Classic numerical approaches
like the FEM are fast and reliable approaches for problems that are subject to small deforma-
tions but applied to the simulation of metal cutting they require remeshing upon increasing
mesh distortion. This leads to an enormous drawback in the computation times for such
simulations as the cost for remeshing is intense.

An alternative method are meshfree methods which dissolve the continuum into particles and
do not require remeshing upon large deformations or material separations since field values
and their derivatives are approximated from the current neighbourhood of each particle
being updated in every compute increment. This makes them unappealing in situations
where deformations stay small due to higher computational cost compared to the FEM. In the
simulation of a SHTB-experiment in this work the runtime difference between FEM and SPH,
each computed on a single core of a CPU, was shown to be in the order of a factor 100 in
favour of the FEM. On the other hand, the SPH becomes attractive in situations where large
deformations occur. Exploiting the capabilities of GPGPU-computing allows for extremely
short compute times in the order of minutes for the simulation of orthogonal cutting
experiments at high speeds. This is so far a unique feature and sets a new state of the art in
metal cutting simulations. With this acceleration it became possible to use the simulation
tool for the inverse identification of material constitutive constants by optimization methods
which require a huge amount of evaluations, e.g. within genetic algorithms. So far, such
optimizations were only possible with the application of an analytical force model (Oxley).
The direct use of the FEM is possible only, when the number of evaluations is limited, e.g.
with the Simplex-method, and higher errors in the process forces are accepted. Oxley’s
model was used in this work to inversely identify from almost every cutting experiment (510
tests) JC-classic material parameters with the Simplex-method by minimizing the error in
the process force prediction. There are two main findings:

• The material parameters show large scatter which does not allow to reduce the range
of each material parameter for a large scale inverse identification with a numerical
model of the cutting experiment.

• Simplex traps sometimes into local minima. Therefore it should be envisaged to include
more experimental data into the objective function of the optimization, for example, in
addition to the process forces the chip thicknesses or temperatures.

In this work the inverse identification of material constitutive constants was done for two
materials, Ck45 and Ti6Al4V, by means of numerical simulation models of the cutting
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experiments - the cutting experiment itself served as a material test. Due to the GPU-
acceleration, the numerical simulation models had compute times in the order of 3...4
minutes for every parameter set. For Ck45 the process force error was far lower than 1% for
the identified parameter set, while for Ti6Al4V the cut force error was in the order 3% and
for the feed force in the order of 5%. Using these material parameter sets for recalculation of
cutting experiments at other feeds and cut speeds showed surprisingly for the well fitted
Ck45 constants larger deviations in the process forces which are smallest for experiments
being close to the conditions of the experiment which was used for the inverse identification
of the constitutive model constants. A slightly different picture is seen for the identified
constitutive model constants of Ti6Al4V where the deviations for predictions at higher
cutting speeds are less than 10%. When simulating experiments at one third of the cut
speed from the identification, the force errors increase to about 20% and when using for
recalculations of experiments at only 5% of the cut speed of the identification the deviations
increase to about 20% in the cut force and about 30% for the feed force.

In an attempt to improve the process force predictions, the friction coefficients were deter-
mined together with the material parameters for Ck45 and Ti6Al4V. While the process force
errors at the process conditions of the experiment used for the inverse identification stayed
at similar low levels, the prediction at other process conditions changed only slightly. For
this reason another inverse identification was performed where the friction coefficient and
the material parameters where inversely determined, but here the frictional shear stress was
limited to the current shear yield limit of the material. This again did not led to improve-
ments in the process force prediction at other process conditions. It seems that the identified
material parameters have limited validity in the proximity of the process conditions which
were used for the inverse parameter identifications. A potential reason for this is the inability
of the Johnson-Cook flow stress model to describe progressively increasing flow stresses
towards higher strain rates. To improve here, the strain rate term of the Cowper-Symonds
model [46] could be used instead at the expense of an additional material parameter to be
identified.

Independent of the friction coefficient determination within the parameter identification or
not, the comparison of experimental and simulated chip thicknesses revealed differences in
the order of 30...40% for Ck45. This is not the case for Ti6Al4V - the chip thickness prediction
was in general closer to the experimentally observed ones but still not sufficient.

All simulations suffer to correctly predict the resulting chip thicknesses. The chip segmen-
tation of Ti6Al4V could not be predicted with the low particle resolution used within the
numerical model for the inverse parameter identification. This is because the length scale of
the shear layer is much smaller then the used particle length scale. If however the model
resolution is increased drastically, the chip segmentation can be predicted at the cost of
roughly 30x times increased computational time. Interestingly, the predicted process forces
vary only slightly upon changes of the model resolution. These results show that empirical
extensions of the JC-classic-model like those of Calamaz [38, 39] or Sima [224] are not
required to model the chip segmentation. In future research it should be investigated in
how far the chip segment shape prediction can be improved when using the aforementioned
extensions of the JC-classic-model even though they would add at least four more empirical
material constants which complicate the parameter identification even more. Alternatively,
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the consideration of damage initiation and evolution was shown to predict chip segmentation
with the JC-classic flow stress model but again adds another six parameters which need
to be determined - be it inversely or by separate tests. A completely different attempt to
tackle the problems would be the use of physical models which are - at least partially - able
to describe the physics of the complex behaviour of Ti6Al4V, for example the model from
[17] which was already succesfully applied to metal cutting in [203, 205]. Improvements
can be expected also when using constitutive models which consider anisotropic yield since
it was shown that the loading path is not uniform in orthogonal cutting and the material
investigation showed some indications for anisotropy in the raw material and for the Ck45
the analysis of the chip microstructure revealed that along the chip thickness only one heavily
distorted grain remains with a very large aspect ratio. The application of the JC-classic flow
stress model in such situations is questionable.

How much results can differ when changing from the JC-classic-model to another constitu-
tive model, in this case the SCGL-model, was demonstrated in a numerical simulation of
micro milling of OFHC copper. While JC-classic predicts almost no burr formation, the
SCGL-model was able to reproduce the burr formation but to a slightly higher extent than
experimentally observed. In this simulation still some improvements are to expect as for
example the tool heat transfer was not modelled.

Another aspect that needs to be scrutinized is why the process force predictions are lower
with the SPH when compared to the same numerical simulation with the FEM. This is
seen with SPH in commercial solvers like Abaqus and LS-Dyna as well as with the solver
mfree_iwf used in the investigations here and also reported in literature [229, 248]. The
issue is so far not understood and probably stems from the remeshing in FEM where due to
remapping from the old to the new mesh internal variables are dispersed. Further, distorted
elements appear to have higher stiffness than the continuum, which is the actual reason for
remeshing.
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11.1 stress states in orthogonal cutting

11.1.1 Load Path Visualization Particle A

Figure 11.1: Load path visualization of particle A in the principal axis system. Top row case 1
(left), case 2 (middle) and case 3 (right), bottom row case 4 (left), case 5 (middle)
and case 6 (right).
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11.1.2 Load Path Visualization Particle D

Figure 11.2: Load path visualization of particle D in the principal axis system. Top row case 1
(left), case 2 (middle) and case 3 (right), bottom row case 4 (left), case 5 (middle)
and case 6 (right).
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11.1 stress states in orthogonal cutting

11.1.3 Load Path Visualization Particle E

Figure 11.3: Load path visualization of particle E in the principal axis system. Top row case 1
(left), case 2 (middle) and case 3 (right), bottom row case 4 (left), case 5 (middle)
and case 6 (right).
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11.1.4 Load Path Visualization Particle K

Figure 11.4: Load path visualization of particle K in the principal axis system. Top row case 1
(left), case 2 (middle) and case 3 (right), bottom row case 4 (left), case 5 (middle)
and case 6 (right).
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11.2 jc flow stress and fracture strain material user subroutine vumat

11.2.1 Abaqus VUMAT User Subroutine

The following listing shows the VUMAT material user subroutine used for the FEM simula-
tions of the 50SiB8 SHTB-test specimen with classic and modified JC fracture strain model
from chapter 7.4.3.

C Subroutine für Abaqus/ Explizit --> Werkstoff mit Johnson -Cook Fließ
spannung ; HK , So , 23.09.2018

C Basierend auf Matlabversion der radialen Rü ckprojektion für JC
C
C Elementl öschung über *DEPVAR , DELETE = Variablennummer : file :/// home/

hk/abqdoc/ Documentation /docs/v6 .14/ books/usb/ default .htm? startat =
pt05ch26s07abm69 .html#usb -mat - cusermat

C
C Adiabate Simulation mit plastischer Dissipation : muß auch hier

implementiert werden mit eigener Statusvariable für die Temperatur ,
da Variablen TempOld / TempNew nicht beeinflu ßt werden können!

C
C ACHTUNG : Implizite Typvereinbarung : "The default implicit typing rule

is that if the first letter of the name is I, J, K, L, M, or N,
then the data type is integer , otherwise it is real ."; implicit real

(a-h,o-z)
C
C ACHTUNG2 : Nur für 3D- Probleme zu verwenden !
C
C Modifikation (= universal ) mit Werkstoffkennwert ü bergabe über die

Abaqus -Input -Datei; HK , Fr , 26.04.2019
C
C

**********************************************************************

SUBROUTINE VUMAT(NBLOCK ,NDIR ,NSHR ,NSTATEV ,NFIELDV ,NPROPS ,LANNEAL ,
C Nur lesbar

+ StepTime , TotalTime , dt , CMName , CoordMP , CharLength ,
+ Props , Density , StrainInc , RelSpinInc ,
+ TempOld , StretchOld , DefGradOld , FieldOld ,
+ StressOld , StateOld , EnerInternOld , EnerInelasOld ,
+ TempNew , StretchNew , DefGradNew , FieldNew ,

C Muß definiert werden
+ StressNew , StateNew ,

C Kann definiert werden
+ EnerInternNew , EnerInelasNew )

INCLUDE ’vaba_param .inc ’

C Statusvariablen :
C STATE (* ,1) = Plastische Vergleichsverzerrung
C STATE (* ,2) = Plastische Vergleichsverzerrungsrate
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C STATE (* ,3) = Temperatur (durch plastische Dissipation )
C STATE (* ,4) = Schadenvariable (-> Element -/ Partikell öschung über *

DEPVAR , DELETE =... siehe Kommentar oben)

INTEGER NBLOCK , NDIR , NSHR , NPROPS , NSTATEV

DIMENSION Props(NPROPS), Density (NBLOCK), COORDMP (NBLOCK ,*) ,
+ CharLength (NBLOCK), StrainInc (NBLOCK , NDIR+NSHR),
+ RelSpinInc (NBLOCK , NSHR), TempOld (NBLOCK),
+ StretchOld (NBLOCK , NDIR+NSHR), DefGradOld (NBLOCK ,NDIR+NSHR+NSHR)

,
+ FieldOld (NBLOCK , NFIELDV ), StressOld (NBLOCK ,NDIR+NSHR),
+ StateOld (NBLOCK , NSTATEV ), EnerInternOld (NBLOCK),
+ EnerInelasOld (NBLOCK), TempNew (NBLOCK),
+ StretchNew (NBLOCK ,NDIR+NSHR), DefGradNew (NBLOCK ,NDIR+NSHR+NSHR),
+ FieldNew (NBLOCK , NFIELDV ), StressNew (NBLOCK ,NDIR+NSHR),
+ StateNew (NBLOCK , NSTATEV ), EnerInternNew (NBLOCK),
+ EnerInelasNew (NBLOCK)

CHARACTER *80 CMNAME

C NBLOCK - Anzahl zu bearbeitender materieller Punkte in diesem
Schleifendurchlauf

C NDIR - Anzahl direkter Komponenten eines symmetrischen Tensors
C NSHR - Anzahl indirekter Komponenten eines symmetrischen Tensors
C NPROPS - Anzahl ü bergebener Eigenschaften ( Werkstoffkennwerte )
C NSTATEV - Anzahl Statusvariablen

C IMPLICIT NONE
C IMPLICIT INTEGER (i-k)
C
C ***********************************************
C *** Erste Zeile einlesen (1 -8) ****************
C ***********************************************

p_E = Props (1)
p_nu = Props (2)

C ***********************************************
C Johnson -Cook Fließ spannungskennwerte

p_A = Props (3)
p_B = Props (4)
p_C = Props (5)
p_m = Props (6)
p_n = Props (7)

C Zulässiger Fehler für radiale Rü ckkehrprojektion
p_maxFehlerRR = Props (8)

C ***********************************************
C *** Zweite Zeile einlesen (9 -16) **************
C ***********************************************
C Schmelztemperatur für JC -Fließ spannung

T_m = Props (9)
C Raumtemperatur für JC -Fließ spannung
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T_R = Props (10)
C Referenz Dehnrate für JC -Fließ spannung

eps_pl_ref = Props (11)
C ***********************************************
C Taylor - Quinney Koeffizient

p_TQ = Props (12)
p_cp = Props (13)

C ***********************************************
C *** Dritte Zeile einlesen (17 -24) *************
C ***********************************************
C JC - Schadenmodell ( klassisch )

p_D1 = Props (17)
p_D2 = Props (18)
p_D3 = Props (19)
p_D4 = Props (20)
p_D5 = Props (21)
p_Damage_eps_pl_ref = Props (22)

C ***********************************************
C *** Vierte Zeile einlesen (25 -32) *************
C ***********************************************
C *** Achtung , wenn M.GG Erweiterung für den ****
C *** T-Term benutzt wird , wird D5 **************
C *** ü berschrieben ! ****************************

IF (NPROPS .GT. 24) THEN
p_D5 = Props (25)
p_D6 = Props (26)
p_D7 = Props (27)
p_D8 = Props (28)

ENDIF
C ***********************************************
C

p_G = p_E /(2.0*(1.0+ p_nu))
p_K = 2.0* p_G *(1.0+ p_nu) /(3.0*(1.0 -2.0* p_nu))

C
p_LambdaLame = p_K - 2.0 * p_G / 3.0

C ***********************************************
C
C PRINT *, "E: ", p_E , ", G: ", p_G , ", K: ", p_K , ", nu: ", p_nu

delta_t = dt

C Schleife über aktuellen Block materieller Punkte
DO km = 1, NBLOCK

C Plastische Vergleichsverzerrung / -srate initialisieren , wenn
Totalzeit = 0

eps_Vgl = StateOld (km , 1)
eps_Vgl_Rate = StateOld (km , 2)

C Adiabate Temperatur (-> Taylor - Quinney )
T_Adiabat = StateOld (km ,3)

C Schadenvariable
Schaden = StateOld (km ,4)

C Variable für Lö schungsstatus (1 - aktiv , 0 - inaktiv )
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StatusLoeschung = StateOld (km ,5)
C Statusvariablen im ersten Schritt initialisieren
C ACHTUNG : Scheinbar werden diese Werte später in den Feldern nicht

gesichert ! HK , Fr , 28.09.2018 --> TODO: kontrollieren
IF ( TotalTime .EQ. 0.0) THEN

eps_Vgl = 0.0
eps_Vgl_Rate = 0.0
T_Adiabat = T_R
Schaden = 0.0
StatusLoeschung = 1.0

IF (km .EQ. 1) THEN
PRINT*, "JC_A:", p_A , "JC_B:", p_B , "JC_C:", p_C ,

+ "JC_m:", p_m , "JC_n:", p_n
PRINT*, "JC_D1:", p_D1 , "JC_D2:", p_D2 , "JC_D3:", p_D3 ,

+ "JC_D4:", p_D4 , "JC_D5:", p_D5
C PRINT*, "NBlock: ", NBLOCK

ENDIF
ENDIF

C **********************************************
C Deformationsgradient sichern *****************
C **********************************************

IF ( NSTATEV .GT .5) THEN
DO I = 1, 9

StateNew (km , 5+I) = DefGradNew (km , I) !
Deformationsgradienten vom Inkrementende sichern

END DO
ENDIF

C **********************************************
IF ( T_Adiabat .LT.T_R) T_Adiabat = T_R ! Sicherheitshalber ,

falls Initialisierung nicht wie vorgesehen läuft!
C **********************************************
C S - Cauchy Spannungstensor zum Inkrementbeginn

Sxx = StressOld (km , 1)
Syy = StressOld (km , 2)
Szz = StressOld (km , 3)
Sxy = StressOld (km , 4)
Syz = StressOld (km , 5)
Szx = StressOld (km , 6)

C print *, " Cauchyspannungen ausgelesen "
C print *, "S1: ", Sxx , ", S2: ", Syy , ", S3: ", Szz , ", S4: ",
C + Sxy , ", S5: ", Syz , ", S6: ", Szx

SHydro = (Sxx + Syy + Szz)/3.0
C Sd - Spannungsdeviator zum Inkrementbeginn

Sdxx = Sxx - SHydro
Sdyy = Syy - SHydro
Sdzz = Szz - SHydro
Sdxy = Sxy
Sdyz = Syz
Sdzx = Szx
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C ACHTUNG : Schubdehnungen hier mit Faktor 2! (Abaqus - Konvention ); HK ,
Do , 27.09.2018

Sdxx = Sdxx + 2.0* p_G * StrainInc (km ,1)
Sdyy = Sdyy + 2.0* p_G * StrainInc (km ,2)
Sdzz = Sdzz + 2.0* p_G * StrainInc (km ,3)
Sdxy = Sdxy + 2.0* p_G * StrainInc (km ,4)
Sdyz = Sdyz + 2.0* p_G * StrainInc (km ,5)
Sdzx = Sdzx + 2.0* p_G * StrainInc (km ,6)

C
EpsInkr_Spur = StrainInc (km ,1)+ StrainInc (km ,2)+ StrainInc (km ,3)
SHydroNeu = SHydro + p_LambdaLame * EpsInkr_Spur

C - Norm der Testspannung
STrialNorm = sqrt(Sdxx **2.0+ Sdyy **2.0+ Sdzz **2.0+

+ 2.0*( Sdxy **2.0+ Sdyz **2.0+ Sdzx **2.0))
C Misesspannung

SvM = sqrt (3.0/2.0) * STrialNorm
C Fließgrenze
C SigY_JC = SyJC(p_A ,p_B ,p_C ,p_m ,p_n ,eps_pl_ref ,
C + eps_Vgl ,eps_Vgl_Rate , TempOld (km),T_R ,T_m)

SigY_JC = SyJC(p_A ,p_B ,p_C ,p_m ,p_n ,eps_pl_ref ,
+ eps_Vgl ,0.0 , T_Adiabat ,T_R ,T_m)

C Unterhalb der Fließgrenze rein elastischer Schritt
IF (SvM .LE. SigY_JC ) THEN

C Unterhalb der Fließgrenze rein elastischer Schritt , 3% Fließflä
chenfehler erlauben ( bessere Konvergenz , da pl. Multiplikatoren größ
er werden)

C IF (SvM .LE. (1.03 * SigY_JC )) THEN
StateNew (km , 1) = eps_Vgl

C StateNew (km , 2) = eps_Vgl_Rate
StateNew (km , 2) = 0.0
StateNew (km , 3) = T_Adiabat
StateNew (km , 4) = Schaden
StateNew (km , 5) = StatusLoeschung

C
StressNew (km ,1) = Sdxx + SHydroNeu
StressNew (km ,2) = Sdyy + SHydroNeu
StressNew (km ,3) = Sdzz + SHydroNeu
StressNew (km ,4) = Sdxy
StressNew (km ,5) = Sdyz
StressNew (km ,6) = Sdzx

C Plastische Dehnungsraten , Spannungen und
Temperaturraten sichern *****************

IF ( NSTATEV .GT .14) THEN
StateNew (km , 15) = eps_Vgl_Rate ! Plastische

Dehnungsrate sichern
StateNew (km , 16) = SvM ! Spannung (Mises)

sichern
StateNew (km , 17) = 0.0 ! Temperaturrate [K/

s] sichern
ENDIF
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CYCLE ! nächsten Integrationspunkt bearbeiten , da
elastisches MV vorliegt

ENDIF

C PRINT *, "SvM: ", SvM , ", SigYJC: ",SigY_JC ,", T: ", TempOld (
km)

C PRINT *, "SvM: ", SvM , ", SigYJC: ",SigY_JC ,", T: ", T_Adiabat

C Plastischer Multiplikator , Initialisierung
C p_lambda1 = 1e-9 ! Macht bei Single Precision keinen Sinn!

p_lambda1 = 1e-6
C p_lambda = 1e-7

g1 = 2* p_maxFehlerRR
C

nSchleife = 0
maxnS = 100
DO WHILE ((g1 .GT. p_maxFehlerRR ) .AND. ( nSchleife .LT. maxnS)

)
C

nSchleife = nSchleife +1
C PRINT *, nSchleife , p_lambda1 , g1
C

eps_Vgl1 = eps_Vgl + p_lambda1 * sqrt (2.0/3.0)
eps_Vgl_Rate1 = (eps_Vgl1 - eps_Vgl ) / delta_t

C
SigY_JC1 = SyJC(p_A ,p_B ,p_C ,p_m ,p_n ,eps_pl_ref ,

+ eps_Vgl1 ,eps_Vgl_Rate1 ,T_Adiabat ,T_R ,T_m)
C
C Fließflä chenfehler bei aktuellem lambda

g1 = STrialNorm - 2.0 * p_G * p_lambda1 -
+ sqrt (2.0/3.0) * SigY_JC1

C Lambda1 für zweiten Stü tzpunkt für Sekantenverfahren
p_lambda2 = p_lambda1 * 1.01;

C Vergleichsdehnung und -srate für zweiten Stü tzpunkt
eps_Vgl2 = eps_Vgl + p_lambda2 * sqrt (2.0/3.0)
eps_Vgl_Rate2 = (eps_Vgl2 - eps_Vgl ) / delta_t

C JC -Fließgrenze für zweiten Stü tzpunkt ; Term_C ( Temperatur ) wird als
unverä nderlich angenommen im Inkrement

SigY_JC2 = SyJC(p_A ,p_B ,p_C ,p_m ,p_n ,eps_pl_ref ,
+ eps_Vgl2 ,eps_Vgl_Rate2 ,T_Adiabat ,T_R ,T_m)

C Fließflä chenfehler bei aktuellem lambda1
g2 = STrialNorm - 2.0 * p_G * p_lambda2 -

+ sqrt (2.0/3.0) * SigY_JC2
C Sekantenverfahren

delta_l = p_lambda1 - p_lambda2 ;
delta_g = g1 - g2;

C
C PRINT *, " delta_lambda : ", delta_l , ", delta_g : ",

delta_g ,
C + ",g1:",g1 ,", g2: ",g2 ,", l1: ",p_lambda1 ,",l2:",

p_lambda2 ,
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C + ", SigY1: ", SigY_JC1 , ", SigY2: ", SigY_JC2
C Anstieg für Sekantenverfahren

AnstiegSekante = delta_g / delta_l ;
C Neues lambda

IF ((g1 / AnstiegSekante ) .GT. p_lambda1 ) THEN
p_lambda1 = p_lambda1 / 10.0;

ELSE
p_lambda1 = p_lambda1 - g1 / AnstiegSekante ;

ENDIF
C Schleifenende über Fehler: maxFehlerRR implementieren ! HK , Di ,

25.09.2018
END DO

C
eps_Vgl1 = eps_Vgl + p_lambda1 * sqrt (2.0/3.0) ;
eps_Vgl_Rate1 = (eps_Vgl1 - eps_Vgl ) / delta_t ;

C
C Temperaturerh öhung per TQ berechnen

delta_Temp = 0.0 ! Initialisierung
IF (( p_TQ.GT .0.0).AND .( eps_Vgl_Rate1 .GT .0.0)) THEN ! Nur

Ausführung wenn TQ -Koeffz > 0,0
SY = SyJC(p_A ,p_B ,p_C ,p_m ,p_n ,eps_pl_ref ,

+ eps_Vgl1 ,eps_Vgl_Rate1 ,T_Adiabat ,T_R ,T_m)
delta_Temp =dt_TQ(eps_Vgl1 -eps_Vgl , density (km),p_cp ,p_TQ ,SY)

ENDIF
C Schaden berechnen , Modell beliebig
C

Delta_Schaden = 0.0
IF ( eps_Vgl_Rate1 .GT .0.0) THEN ! Schadeninkrement nur bei

aktivem Fließen im Inkrement ausführen

SY = SyJC(p_A ,p_B ,p_C ,p_m ,p_n ,eps_pl_ref ,
+ eps_Vgl1 , eps_Vgl_Rate1 ,T_Adiabat ,T_R ,T_m)

SigStar = SHydroNeu /SY
TStar = ( T_Adiabat + delta_Temp - T_R)/(T_m -T_R)

d_eps_pl = eps_Vgl_Rate1 * delta_t

IF (NPROPS .EQ. 24) THEN
Delta_Schaden = Damage_JC (p_D1 , p_D2 , p_D3 , p_D4 , p_D5 ,

+ TStar , SigStar , eps_Vgl1 , d_eps_pl ,
+ eps_Vgl_Rate1 / p_Damage_eps_pl_ref )

ELSE IF(NPROPS .EQ .32) THEN
Delta_Schaden = Damage_JC_GG (p_D1 , p_D2 , p_D3 , p_D4 ,

+ p_D5 , p_D6 , p_D7 , p_D8 , TStar , SigStar , eps_Vgl1 ,
+ d_eps_pl , eps_Vgl_Rate1 / p_Damage_eps_pl_ref )

ELSE
Delta_Schaden = 0.0

ENDIF
ENDIF

C
C Statusvariablen am Inkrementende sichern
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StateNew (km , 1) = eps_Vgl1
StateNew (km , 2) = eps_Vgl_Rate1
T_Adiabat_neu = T_Adiabat + delta_Temp
IF ( T_Adiabat_neu .GT. T_m) T_Adiabat_neu = T_m ! Hö

chsttemperatur auf die Schmelztemperatur limitieren
StateNew (km , 3) = T_Adiabat_neu ! Temperaturerh öhung durch

plastische Dissipation
SchadenNeu = Schaden + Delta_Schaden
IF ( SchadenNeu .GE. 1.0) THEN

SchadenNeu = 1.0
StatusLoeschung = 0.0
PRINT *," IntPunkt gelöscht , bei eps_pl: ", eps_Vgl1
PRINT *," eps_pl_alt : ", eps_Vgl
PRINT *," Spannung : ", SY
PRINT *," Aktuelle Bruchdehnung : ", d_eps_pl / Delta_Schaden

ENDIF
StateNew (km , 4) = SchadenNeu
StateNew (km , 5) = StatusLoeschung

C
Sxx = Sdxx+SHydroNeu -Sdxx/ STrialNorm * p_lambda1 *2.* p_G
Syy = Sdyy+SHydroNeu -Sdyy/ STrialNorm * p_lambda1 *2.* p_G
Szz = Sdzz+SHydroNeu -Sdzz/ STrialNorm * p_lambda1 *2.* p_G
Sxy = Sdxy - Sdxy/ STrialNorm * p_lambda1 * 2.0 * p_G
Syz = Sdyz - Sdyz/ STrialNorm * p_lambda1 * 2.0 * p_G
Szx = Sdzx - Sdzx/ STrialNorm * p_lambda1 * 2.0 * p_G

C
StressNew (km ,1)= Sxx
StressNew (km ,2)= Syy
StressNew (km ,3)= Szz
StressNew (km ,4)= Sxy
StressNew (km ,5)= Syz
StressNew (km ,6)= Szx

C
C Plastische Dehnungsraten , Temperaturrate und

Spannungen sichern *****************
IF ( NSTATEV .GT .14) THEN

StateNew (km , 15) = eps_Vgl_Rate1 ! Plastische Dehnungsrate
sichern

C Misesspannung nach radialer Rückkehr
*****************

SvM = sqrt (0.5*(( Sxx -Syy)**2 + (Syy -Szz)**2 + (Szz -Sxx)**2)
+

+ 3.0*( Sxy **2+ Syz **2+ Szx **2))
C

StateNew (km , 16) = SvM ! Spannung
(Mises) sichern

StateNew (km , 17) = delta_Temp / delta_t !
Temperaturrate [K/Zeit] sichern

ENDIF
C

END DO
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RETURN

END

C
**********************************************************************

C *** Fließ spannung nach Johnson -Cook
C

FUNCTION SyJC(pA ,pB ,pC ,pm ,pn ,eps0 ,eps ,epsRate ,T,TR ,Tm)
C
C Dehnungsabh ängiger Term

Term_A = pA+pB*eps **pn
C Dehnratenabh ängiger Term; Weiche für epsRate <eps0 -> sonst Abstürze

Term_B = 1.0
IF ( epsRate .GE. eps0) THEN

Term_B = 1.0+ pC*log( epsRate /eps0)
END IF

C Temperaturabh ängiger Term
theta = 0.0
IF (T.GE.TR) THEN

theta = (T - TR)/(Tm -TR)
END IF
Term_C = 1.0- theta **pm
SyJC = Term_A * Term_B * Term_C

C
C PRINT *, pA ,",",pB ,",",pC ,",",pm ,",",pn ,",",eps0 ,",",eps ,",",
C + epsRate ,",",T,",",TR ,",",Tm ,",Y:", SyJC

RETURN
END

C
**********************************************************************

C *** Temperaturerh öhung durch plastische Dissipation (Taylor - Quinney )
C

FUNCTION dt_TQ(delta_eps_pl , rho , cp , TQ , sigmaY)
C
C delta_eps_pl - plastisches Vergleichsdehnungsinkrement
C rho - Dichte
C cp - spezifische Wä rmekapazit ät
C TQ - Taylor - Quinney Koeffizient
C sigmaY - aktuelle Fließ spannung
C
C dt_TQ = 0.0

dt_TQ = TQ/(cp*rho)* delta_eps_pl *sigmaY;
C
C PRINT *, dt_TQ
C
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RETURN
END

C

C
**********************************************************************

C *** Bruchdehnung nach Johnson -Cook (1985)
C

FUNCTION Damage_JC (D1 , D2 , D3 , D4 , D5 , TStar ,SigStar ,
+ eps_tot ,delta_eps_pl , epsRate )

C
C D1 -D5: JC - Bruchdehnungskonstanten
C SigStar : Verhältnis Misesspannung zu Fließ spannung (

Mehrachsigkeit )
C TStar: Dimensionslose Temperatur , analog zu "theta" in JC -Flie

ß spannung
C eps: Plastisches Dehnungsinkrement
C epsRate : Dehnrate
C
C Damage_JC : gibt Verhältnis von aktuellem pl. Dehnungsinkrement zur

aktuellen Bruchdehnung zurück ( Schadenzuwachs bei linearer
Akkumulation )

C
Damage_JC = 0.0

C
IF ( epsRate .LT. 1.0) epsRate = 1.0

epsB =(D1+D2*EXP(D3* SigStar ))*(1.0+ D4*LOG( epsRate ))*(1.0+ D5*TStar
)

IF (epsB .LE. 0.0) epsB = 1e -09

Damage_JC = delta_eps_pl /epsB
C

RETURN
END

C

C
**********************************************************************

C *** Modifizierte Bruchdehnung Gerstgrasser , nach Johnson -Cook (1985)
C *** nach Glg. 38 im Verö ffentlichungsentwurf von 2018
C

FUNCTION Damage_JC_GG (D1 , D2 , D3 , D4 , D5 , D6 , D7 , D8 , TStar ,
+ SigStar , eps_tot , delta_eps_pl , epsRate )

C
C D1 -D4: Klassische JC - Bruchdehnungskonstanten
C D5 -D8: JC - Erweiterungskonstanten für Temperatur ( Gerstgrasser )
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C SigStar : Verhältnis Misesspannung zu Fließ spannung (
Mehrachsigkeit )

C TStar: Dimensionslose Temperatur , analog zu "theta" in JC -Flie
ß spannung

C eps: Plastisches Dehnungsinkrement
C epsRate : Dehnrate
C
C Damage_JC : gibt Verhältnis von aktuellem pl. Dehnungsinkrement zur

aktuellen Bruchdehnung zurück ( Schadenzuwachs bei linearer
Akkumulation )

C
Damage_JC = 0.0

C
IF ( epsRate .LT. 1.0) epsRate = 1.0

TFak = 1.0 + D5*TStar + D6*TStar **2 + D7*TStar **3 + D8*TStar **4

C ****** Modifikation HK , Di , 28.04.2020 ****************
IF (TFak .GT. 2.5) THEN

TFak = 2.5
C PRINT *," Temperaturfaktor JC -modGG gekappt auf 2,5"

END IF
C *******************************************************

C epsB =(D1+D2*EXP(D3* SigStar ))*(1.0+ D4*LOG( epsRate ))*(1.0+ D5*
TStar)

epsB = (D1+D2*EXP(D3* SigStar )) * (1.0+ D4*LOG( epsRate )) * TFak
IF (epsB .LE. 0.0) epsB = 1e -09

Damage_JC = delta_eps_pl /epsB
C

RETURN
END

C

11.2.2 Abaqus Input File Template

The subroutine requires the specification of the Abaqus *USER MATERIAL-card to specify
the material parameters to be used in the VUMAT user subroutine. When the user material
definition contains 3 lines, the classic JC fracture strain model (3.165) is used, when it
contains 4 lines the modified JC fracture strain model (7.35) is used. An input file template is
presented in the following where first the *PARAMETER-card is used to define all material
constansts in variables which are then replaced in the *USER MATERIAL-card for the classic
JC fracture strain and modified JC fracture strain model.

* PARAMETER
** 24 -> JC - Schaden klassisch , 32-> JC - Schaden Erweiterung GG
JC_A = 430.9 E6
JC_B = 908.7 E6
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JC_C = 0.00447
JC_m = 0.7361
JC_n = 0.3854
maxRRFehler = 1E-6
JC_Tmelt = 2006.0
JC_Tref = 293.15
JC_epsplref = 1E-3
JC_TQ = 0.9
JC_cp = 466.0
** JC - Schadenmodell
JC_D1 = 0.0733
JC_D2 = 0.7204
JC_D3 = -1.5643
JC_D4 = 0.0371
JC_D5 = 1.5583
JC_Depsref = 1E-3
** JC - Schadenmodell , Erweiterung GG
JCGG_D5 = -3.5642
JCGG_D6 = 69.5723
JCGG_D7 = -318.5630
JCGG_D8 = 428.9243
* ******************
*MATERIAL , NAME= JC_50SiB8_HK_VUMAT_JCGG
*USER MATERIAL , TYPE=MECHANICAL , CONSTANTS =32
**E, nu , A, B,

C. m, n,
max_RadialReturnFehler

2.14e+11, 0.334875 , <JC_A >, <JC_B >, <JC_C >, <JC_m >,
<JC_n >, <maxRRFehler >,

** Tmelt , Tref , eps_pl_ref , TQ , cp
<JC_Tmelt >, <JC_Tref >, <JC_epsplref >, <JC_TQ >, <JC_cp >
** Schadenmodell : D1 , D2 , D3 , D4 , D5 , eps_pl_ref
<JC_D1 >, <JC_D2 >, <JC_D3 >, <JC_D4 >, <JC_D5 >, <JC_Depsref >
** Schadenmodell : D5 , D6 , D7 , D8 ( Erweiterung M. GG)
<JCGG_D5 >, <JCGG_D6 >, <JCGG_D7 >, <JCGG_D8 >
* ******************
*MATERIAL , NAME= JC_50SiB8_HK_VUMAT_klassisch
*USER MATERIAL , TYPE=MECHANICAL , CONSTANTS =24
**E, nu , A, B,

C. m, n,
max_RadialReturnFehler

2.14e+11, 0.334875 , <JC_A >, <JC_B >, <JC_C >, <JC_m >,
<JC_n >, <maxRRFehler >,

** Tmelt , Tref , eps_pl_ref , TQ , cp
<JC_Tmelt >, <JC_Tref >, <JC_epsplref >, <JC_TQ >, <JC_cp >
** Schadenmodell : D1 , D2 , D3 , D4 , D5 , eps_pl_ref
<JC_D1 >, <JC_D2 >, <JC_D3 >, <JC_D4 >, <JC_D5 >, <JC_Depsref >

For the display of results quantities from the user subroutine the Abaqus *DEPVAR-card
for user dependent variables is used with the fifth variable defined as the damage status
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variable DELETE=5 for element deletion. The string after the number defines the displayed
variable identifier (output variable key) for postprocessing:

*DEPVAR , DELETE =5
5
1, PEEQ , " Plastic strain"
2, EPS_PL_Rate , " Plastic strain rate"
3, Temperatur , " Temperature "
4, Schaden , "Damage variable "
5, Status , " Activity status of the integration point"
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11.3 orthogonal cutting experiments

The cutting test results are provided for Ti6Al4V (V0001-V0068, V0301-V0520) in table 11.1
and for Ck45 (V0069-V0300) in table 11.2. The process forces Fc and Ff were normalized to a
cutting width of w = 1mm and are given together with their respective standard deviations
µFc and µFf . The second last two columns contain the averaged cutting edge radius rn and
its standard deviation µrn . The last column Status gives a quality statement of the process
forces. Tests labelled with ok are without any objections. Tests labelled short have to be
treated with care as prolongations of such experiments is recommended. If however the
standard deviations in the process forces of such tests are small, they still can be considered
as valid. Results from tests labelled questionable or initially stable should not be used for
parameter identifications while tests labelled with saturation ran into the amplifier limits
and are therefore invalid for further use. Tests marked instable are most likely of insufficient
quality and must not be used for parameter identifications.

Test vc f Fc µFc Ff µFf rn µrn Status
[m/min] [mm] [N] [N] [N] [N] [µm] [µm]

V0001 10.5 0.01 55.7 2.1 83.8 4.9 37.1 2.0 ok
V0002 12.6 0.01 55.2 1.8 76.4 4.2 32.0 2.4 ok
V0003 10.5 0.01 57.4 1.8 80.7 4.6 30.8 4.0 ok
V0004 12.6 0.1 214.0 7.7 149.0 6.5 33.5 3.2 ok
V0005 10.5 0.1 209.1 7.0 130.7 5.2 27.4 5.0 ok
V0006 12.6 0.1 210.4 7.0 138.1 6.0 29.8 2.1 ok
V0010 10.5 0.2 361.3 15.3 189.1 7.1 31.4 2.4 ok
V0011 12.6 0.2 363.5 14.2 182.5 6.2 28.1 5.7 ok
V0012 10.5 0.2 366.1 14.5 199.1 7.4 31.7 2.9 ok
V0013 12.6 0.01 54.9 1.8 76.2 4.4 32.0 4.1 ok
V0014 10.5 0.01 53.3 1.6 70.2 3.8 25.4 3.3 ok
V0015 12.6 0.01 53.8 1.6 74.0 4.0 31.6 4.0 ok
V0016 10.5 0.1 207.0 6.6 132.8 5.0 28.9 3.9 ok
V0017 12.6 0.1 208.0 7.2 138.3 5.6 31.3 2.1 ok
V0018 10.5 0.1 211.4 7.2 141.6 6.2 31.9 2.0 ok
V0019 12.6 0.2 362.2 13.9 181.2 6.4 26.2 3.1 ok
V0020 10.5 0.2 360.2 12.0 179.2 5.6 25.2 3.8 ok
V0021 12.6 0.2 358.8 12.8 186.6 6.7 30.5 2.1 ok
V0022 74.3 0.01 40.3 1.2 61.0 2.7 27.2 3.3 ok
V0024 74.3 0.01 42.7 1.3 73.2 3.3 34.2 2.9 ok
V0025 88.9 0.1 194.8 5.4 133.6 3.8 31.3 2.8 short
V0026 74.3 0.1 195.9 5.3 137.5 4.6 33.6 5.3 short
V0027 88.9 0.1 196.3 4.2 139.4 3.3 30.8 2.5 short
V0028 74.3 0.2 316.1 9.1 170.5 3.8 32.0 1.9 short
V0029 88.9 0.2 308.8 4.5 147.6 2.3 27.1 4.0 short
V0030 74.3 0.2 319.2 6.7 172.1 3.3 33.3 1.8 short
V0031 190.5 0.01 35.1 0.7 53.2 1.1 23.8 1.9 ok
V0032 159.1 0.01 37.1 1.0 64.2 1.4 29.1 2.9 ok
V0033 190.5 0.01 41.3 0.7 79.2 1.3 34.2 1.7 ok
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Test vc f Fc µFc Ff µFf rn µrn Status
[m/min] [mm] [N] [N] [N] [N] [µm] [µm]

V0034 159.1 0.1 179.4 4.6 126.9 2.2 33.6 2.4 short
V0035 190.5 0.1 175.5 1.4 119.2 0.8 32.7 1.8 short
V0037 159.1 0.2 288.5 6.2 144.5 2.8 29.7 4.0 short
V0038 190.5 0.2 289.8 4.8 158.9 2.4 32.8 2.2 short
V0039 159.1 0.2 289.2 3.3 145.0 2.2 29.3 3.6 short
V0040 190.5 0.4 491.3 7.5 225.5 9.3 28.9 4.2 short
V0041 159.1 0.4 471.4 16.9 203.5 19.6 33.3 2.9 short
V0042 190.5 0.4 490.8 8.5 238.2 8.3 35.6 2.4 short
V0043 212.2 0.01 36.0 1.1 67.5 1.4 30.0 4.3 ok
V0044 254.1 0.01 42.3 0.8 84.2 1.5 37.5 1.7 ok
V0045 212.2 0.01 38.0 0.9 66.4 1.5 30.5 2.0 ok
V0046 254.1 0.01 39.5 0.8 72.5 1.2 32.1 3.6 ok
V0047 212.2 0.1 171.0 2.3 120.9 1.0 33.8 2.8 short
V0048 254.1 0.1 168.3 2.3 119.0 1.9 32.9 2.5 short
V0049 212.2 0.1 171.8 2.8 126.7 2.0 36.8 1.9 short
V0050 254.1 0.2 269.5 4.1 145.0 2.9 31.4 2.1 short
V0051 212.2 0.2 288.3 6.1 165.0 4.4 37.5 2.1 short
V0052 254.1 0.2 271.2 7.1 143.7 4.7 31.3 2.8 short
V0053 212.2 0.4 481.5 13.6 214.9 5.9 31.7 2.3 short
V0054 254.1 0.4 449.8 12.2 208.4 7.9 35.3 3.4 short
V0055 212.2 0.4 483.4 8.0 216.1 4.1 33.4 3.7 short
V0056 381.3 0.01 38.6 0.7 68.6 1.2 33.0 3.0 ok
V0057 318.5 0.01 38.0 0.8 69.0 1.2 34.2 2.2 ok
V0058 381.3 0.01 36.2 0.7 61.0 1.0 28.4 2.3 ok
V0059 318.5 0.1 162.0 3.5 112.1 2.6 32.2 2.2 short
V0060 381.3 0.1 157.5 3.3 115.5 2.8 33.0 2.4 short
V0061 318.5 0.1 159.1 3.8 104.9 3.0 28.7 4.6 short
V0062 381.3 0.2 262.1 5.7 162.7 11.8 34.1 2.1 short
V0063 318.5 0.2 270.3 4.9 158.3 6.0 32.5 2.1 short
V0064 381.3 0.2 260.0 4.3 165.6 9.5 35.2 2.7 short
V0065 318.5 0.4 455.6 10.5 272.1 32.2 36.8 2.2 short
V0066 381.3 0.4 468.5 9.4 412.3 59.6 34.8 2.1 short
V0067 318.5 0.4 453.9 12.1 253.6 28.6 35.8 4.2 short
V0068 254.1 0.2 299.5 12.7 305.9 103.5 29.8 5.0 instable
V0301 10.0 0.02 79.0 2.3 85.7 5.3 36.8 3.0 ok
V0302 10.0 0.02 83.5 2.4 97.2 5.9 41.2 2.2 ok
V0303 10.0 0.02 78.5 2.2 84.9 5.3 34.1 2.8 ok
V0304 10.0 0.06 155.4 4.8 121.7 6.5 40.6 2.4 ok
V0305 10.0 0.06 154.3 4.9 118.9 6.5 39.9 2.9 ok
V0306 10.0 0.06 156.4 5.0 125.0 6.9 41.3 2.5 ok
V0308 10.0 0.1 223.0 7.2 152.4 7.7 42.2 4.4 ok
V0309 10.0 0.1 223.5 7.8 154.6 8.4 42.4 3.6 ok
V0310 50.1 0.02 61.7 1.7 71.4 3.3 32.4 4.0 ok
V0311 50.1 0.02 68.2 1.9 95.1 4.7 42.5 1.9 ok
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Test vc f Fc µFc Ff µFf rn µrn Status
[m/min] [mm] [N] [N] [N] [N] [µm] [µm]

V0312 50.1 0.02 67.1 1.8 89.8 4.4 40.7 2.4 ok
V0313 50.1 0.06 139.8 4.2 121.3 4.5 38.4 2.9 ok
V0314 50.1 0.06 141.5 4.4 126.7 4.7 40.2 3.6 ok
V0315 50.1 0.06 138.4 4.2 117.8 4.4 38.3 2.7 ok
V0316 50.1 0.1 211.4 6.2 143.2 3.7 38.7 2.5 ok
V0317 50.1 0.1 210.8 6.2 141.6 3.8 36.7 2.2 ok
V0318 50.1 0.1 210.9 5.9 140.6 3.4 36.3 2.2 ok
V0319 10.0 0.1 221.9 7.1 145.8 7.1 37.7 2.4 ok
V0320 19.9 0.01 55.9 3.1 84.5 5.2 40.5 2.8 ok
V0321 19.9 0.01 57.2 1.8 85.8 5.1 39.2 2.3 ok
V0322 19.9 0.01 56.2 2.2 84.3 5.0 39.5 2.2 ok
V0323 19.9 0.04 111.7 4.2 108.5 5.9 38.1 3.1 ok
V0324 19.9 0.04 104.3 3.1 87.8 4.4 31.2 3.6 ok
V0325 19.9 0.04 110.5 3.5 104.9 5.6 37.5 2.6 ok
V0326 19.9 0.1 211.1 6.5 146.8 6.4 37.3 2.0 ok
V0327 19.9 0.1 213.5 6.8 158.1 7.1 42.9 2.2 ok
V0328 19.9 0.1 205.8 6.4 133.0 5.5 33.5 3.5 ok
V0329 100.0 0.01 44.1 1.0 81.4 3.3 40.6 2.1 ok
V0330 100.0 0.01 43.5 1.1 77.7 3.1 40.0 2.7 ok
V0331 100.0 0.01 43.6 1.0 78.7 3.1 38.8 2.7 ok
V0332 100.0 0.04 99.0 2.1 96.0 2.4 33.8 3.3 ok
V0333 100.0 0.04 98.4 2.0 93.9 2.1 34.5 3.2 ok
V0334 100.0 0.04 102.8 2.4 111.5 3.0 41.0 2.7 ok
V0335 100.0 0.1 203.3 2.9 140.0 2.3 37.9 4.7 ok
V0336 100.0 0.1 200.0 2.3 122.0 1.5 32.5 3.6 ok
V0337 100.0 0.1 199.2 2.5 123.6 2.0 32.8 3.2 ok
V0338 39.9 0.01 48.5 1.3 77.5 3.9 42.4 2.2 ok
V0339 39.9 0.01 47.1 1.2 72.6 3.8 39.1 4.8 ok
V0340 39.9 0.01 45.9 1.2 68.2 3.6 35.2 2.4 ok
V0341 39.9 0.04 102.3 3.0 100.2 4.6 36.7 2.4 ok
V0342 39.9 0.04 103.1 3.0 103.7 4.9 38.0 2.4 ok
V0343 39.9 0.04 100.3 2.9 97.7 4.4 36.0 4.4 ok
V0344 39.9 0.1 211.9 6.8 152.2 5.1 40.1 3.2 ok
V0345 39.9 0.1 209.0 6.6 143.5 4.4 37.4 2.3 ok
V0346 39.9 0.1 209.3 6.8 143.8 4.9 36.7 2.1 ok
V0347 125.0 0.01 35.0 0.7 49.1 1.5 28.6 4.1 ok
V0348 125.0 0.01 42.7 0.9 77.5 2.6 38.3 2.4 ok
V0349 125.0 0.01 43.1 0.9 78.8 2.6 38.9 2.3 ok
V0350 125.0 0.04 102.3 2.3 110.9 3.2 37.9 2.4 ok
V0351 125.0 0.04 97.7 2.2 93.0 2.5 32.9 2.6 ok
V0352 125.0 0.04 101.5 2.3 107.1 3.0 39.5 4.2 ok
V0353 125.0 0.1 197.3 2.1 141.2 1.7 40.5 3.0 ok
V0354 125.0 0.1 197.7 2.0 141.2 1.8 40.1 3.1 ok
V0355 125.0 0.1 195.9 2.0 138.9 1.7 39.8 2.4 ok
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Test vc f Fc µFc Ff µFf rn µrn Status
[m/min] [mm] [N] [N] [N] [N] [µm] [µm]

V0356 19.9 0.02 69.9 1.9 77.8 4.2 36.1 2.8 ok
V0357 19.9 0.02 75.1 2.0 91.4 5.1 40.9 2.1 ok
V0358 19.9 0.02 71.8 1.9 82.0 4.5 35.4 2.0 ok
V0359 19.9 0.08 170.1 5.1 112.5 4.4 30.7 3.3 ok
V0360 19.9 0.08 174.4 5.4 127.9 6.0 38.8 2.8 ok
V0361 19.9 0.08 177.0 5.6 138.3 6.6 42.5 2.4 ok
V0362 19.9 0.15 291.4 9.5 171.8 5.9 38.5 2.7 ok
V0363 19.9 0.15 292.8 9.7 176.4 6.1 39.2 2.3 ok
V0364 19.9 0.15 293.2 9.4 172.8 5.5 38.4 3.2 ok
V0365 100.0 0.02 61.0 1.4 80.6 3.0 37.2 2.8 ok
V0366 100.0 0.02 62.9 1.5 89.9 3.2 37.5 3.0 ok
V0367 100.0 0.02 60.9 1.3 82.5 3.0 35.0 3.1 ok
V0368 100.0 0.08 173.8 3.3 129.3 2.8 39.2 3.4 ok
V0369 100.0 0.08 175.4 3.1 137.6 2.6 42.5 3.5 ok
V0370 100.0 0.08 174.7 3.2 135.9 2.7 44.6 7.2 ok
V0371 100.0 0.15 265.0 3.0 161.1 2.1 43.3 4.0 ok
V0372 100.0 0.15 265.7 3.0 161.8 2.2 42.6 3.2 ok
V0373 100.0 0.15 264.8 3.0 159.1 2.0 41.1 3.0 ok
V0374 19.9 0.06 148.2 4.4 122.5 5.6 34.5 2.6 ok
V0375 19.9 0.06 150.9 4.5 134.9 6.7 40.7 2.1 ok
V0376 19.9 0.06 143.6 4.3 115.4 5.1 32.4 3.1 ok
V0377 19.9 0.12 248.4 7.8 172.7 6.2 40.4 2.2 ok
V0378 19.9 0.12 240.7 7.3 149.2 4.5 33.0 4.2 ok
V0379 19.9 0.12 245.1 7.8 169.6 6.3 40.7 2.7 ok
V0380 19.9 0.2 366.6 14.0 198.7 9.1 40.9 2.8 ok
V0381 19.9 0.2 366.3 13.4 198.0 9.8 37.8 2.1 ok
V0382 19.9 0.2 367.6 13.6 190.7 9.5 36.5 3.0 ok
V0383 70.0 0.06 140.0 3.7 127.8 3.3 41.6 2.2 ok
V0385 70.0 0.06 139.1 3.2 122.6 2.9 39.4 3.3 ok
V0386 70.0 0.12 237.6 4.0 151.1 4.0 39.4 2.4 ok
V0387 70.0 0.12 236.2 4.3 149.3 4.4 38.2 2.8 ok
V0388 70.0 0.12 240.0 4.0 162.5 3.9 43.9 2.6 ok
V0389 70.0 0.2 330.7 4.2 167.6 3.3 37.9 3.4 ok
V0390 70.0 0.2 334.4 4.8 181.7 5.8 40.5 2.4 ok
V0391 70.0 0.2 335.3 4.1 188.1 3.7 41.9 2.0 ok
V0392 19.9 0.06 137.7 3.1 122.0 3.0 39.3 2.4 ok
V0393 50.1 0.04 99.0 2.4 95.8 3.5 34.6 3.5 ok
V0394 50.1 0.04 99.3 2.4 98.8 3.6 36.0 2.8 ok
V0395 50.1 0.04 101.3 2.4 107.4 4.0 40.8 3.2 ok
V0396 50.1 0.08 172.2 4.6 129.9 3.5 38.4 3.8 ok
V0397 50.1 0.08 174.5 4.5 141.3 3.8 42.2 2.5 ok
V0398 50.1 0.08 166.4 4.6 110.6 3.1 32.4 3.4 ok
V0399 50.1 0.15 281.3 2.7 166.9 2.7 41.7 2.3 ok
V0400 50.1 0.15 279.3 2.9 162.5 3.3 40.8 2.6 ok
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Test vc f Fc µFc Ff µFf rn µrn Status
[m/min] [mm] [N] [N] [N] [N] [µm] [µm]

V0401 50.1 0.15 274.1 2.9 144.9 2.9 34.9 3.3 ok
V0402 70.0 0.04 100.6 2.5 108.0 3.6 40.5 2.5 ok
V0403 70.0 0.04 99.6 2.4 104.4 3.4 37.7 2.4 ok
V0404 70.0 0.04 98.4 2.2 99.3 3.0 36.2 2.8 ok
V0405 70.0 0.08 168.2 3.5 121.4 2.3 36.6 2.7 ok
V0406 70.0 0.08 165.7 3.3 113.2 1.8 33.9 3.0 ok
V0407 70.0 0.08 165.7 3.5 115.7 2.2 35.9 2.9 ok
V0408 70.0 0.15 271.8 2.9 149.0 2.2 33.7 4.3 ok
V0409 70.0 0.15 272.6 3.5 158.4 2.8 37.3 2.5 ok
V0410 70.0 0.15 274.1 3.3 160.4 2.6 37.6 2.4 ok
V0411 70.0 0.1 202.7 4.2 133.0 3.4 36.8 3.0 ok
V0412 70.0 0.1 202.7 4.3 133.7 3.4 38.1 3.1 ok
V0413 70.0 0.1 203.0 4.3 138.5 3.7 38.6 2.3 ok
V0414 50.1 0.2 337.4 5.8 174.0 6.1 38.5 2.8 ok
V0415 50.1 0.2 328.4 5.5 143.0 4.3 29.1 4.1 ok
V0416 50.1 0.2 336.8 6.3 174.0 5.5 37.6 2.5 ok
V0417 52.0 0.02 67.8 1.5 89.3 3.7 37.3 2.5 ok
V0418 52.0 0.02 64.6 1.5 79.1 3.2 36.1 2.9 ok
V0419 52.0 0.02 67.3 1.5 89.0 3.6 39.1 2.4 ok
V0420 52.0 0.08 183.0 4.5 143.0 3.7 39.5 2.3 ok
V0421 52.0 0.08 180.6 4.5 138.5 3.5 38.1 2.2 ok
V0422 52.0 0.08 180.7 4.3 138.1 3.4 37.8 1.9 ok
V0423 52.0 0.12 247.7 4.7 153.7 2.8 38.9 2.8 ok
V0424 52.0 0.12 247.9 4.6 152.1 2.7 38.8 4.0 ok
V0425 52.0 0.12 248.4 4.7 162.1 3.2 41.1 2.6 ok
V0426 162.4 0.02 65.9 0.9 98.2 1.7 41.9 2.2 ok
V0427 162.4 0.02 63.1 0.9 86.9 1.5 37.8 3.2 ok
V0428 162.4 0.02 58.1 0.7 68.4 1.1 30.5 4.3 ok
V0429 162.4 0.08 171.5 1.6 137.6 2.2 39.6 2.4 ok
V0430 162.4 0.08 169.4 1.3 128.1 1.5 37.7 3.0 ok
V0431 162.4 0.08 171.5 1.6 138.5 2.3 41.0 1.9 ok
V0432 162.4 0.12 222.3 1.9 146.5 2.3 38.1 2.8 ok
V0433 162.4 0.12 222.6 2.4 150.6 3.0 39.4 2.3 ok
V0434 162.4 0.12 221.7 2.0 150.3 2.6 42.0 2.2 ok
V0435 60.0 0.02 65.4 1.4 86.1 3.4 36.6 2.4 ok
V0436 60.0 0.02 63.8 1.3 81.7 3.1 36.6 3.1 ok
V0437 60.0 0.02 66.3 1.4 88.9 3.5 39.0 2.6 ok
V0438 60.0 0.1 211.8 3.6 136.2 2.3 37.3 3.1 ok
V0439 60.0 0.1 212.3 3.7 140.0 2.3 37.2 2.1 ok
V0440 60.0 0.1 214.3 3.7 145.3 2.7 39.8 2.9 ok
V0441 60.0 0.2 353.5 5.6 191.6 5.3 40.4 3.2 ok
V0442 60.0 0.2 354.2 5.6 192.5 3.9 39.9 3.0 ok
V0443 60.0 0.2 353.4 5.5 193.8 3.1 39.4 2.7 ok
V0444 60.0 0.02 65.0 1.3 86.3 3.4 39.9 6.3 ok
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Test vc f Fc µFc Ff µFf rn µrn Status
[m/min] [mm] [N] [N] [N] [N] [µm] [µm]

V0445 60.0 0.02 67.8 1.4 96.3 3.9 41.3 2.0 ok
V0446 79.9 0.02 66.5 1.4 95.8 3.5 41.2 2.4 ok
V0447 79.9 0.1 205.6 3.6 126.9 3.7 32.8 3.9 ok
V0448 79.9 0.1 213.0 3.4 148.4 3.6 39.5 3.0 ok
V0449 79.9 0.1 212.0 3.4 149.3 3.7 41.1 3.7 ok
V0450 79.9 0.2 337.1 4.0 171.6 2.1 37.7 3.4 ok
V0451 79.9 0.2 340.5 4.6 186.4 2.9 41.8 2.8 ok
V0452 79.9 0.2 339.0 4.0 179.4 2.4 38.9 2.1 ok
V0453 79.9 0.02 64.0 1.4 88.2 3.2 36.6 2.8 ok
V0454 79.9 0.02 66.4 1.4 96.5 3.5 40.8 2.6 ok
V0455 150.0 0.1 196.3 1.4 137.2 1.3 38.5 2.9 ok
V0456 150.0 0.1 195.9 1.8 134.3 1.5 36.4 2.3 ok
V0457 150.0 0.1 200.1 1.6 152.6 1.7 42.9 2.9 ok
V0458 199.9 0.1 192.7 1.6 137.2 2.8 38.2 2.8 short
V0459 199.9 0.1 190.5 1.1 142.5 1.8 40.6 2.7 short
V0460 199.9 0.1 188.3 1.5 121.4 2.2 32.7 3.7 short
V0461 400.1 0.01 41.2 0.2 74.3 0.4 35.5 4.5 ok
V0462 400.1 0.01 37.8 0.2 61.4 0.3 31.7 2.9 ok
V0463 400.1 0.01 40.6 0.2 72.6 0.5 35.9 4.4 ok
V0464 400.1 0.02 61.1 0.4 84.0 0.7 36.7 3.1 ok
V0465 400.1 0.02 63.8 0.4 94.0 0.8 40.9 2.4 ok
V0466 400.1 0.02 62.7 0.5 90.3 0.6 38.2 2.6 ok
V0467 400.1 0.03 80.5 0.8 96.6 0.8 37.0 2.7 ok
V0468 400.1 0.03 81.2 0.7 98.4 0.8 38.7 3.2 ok
V0469 400.1 0.03 82.9 0.6 108.1 0.7 42.5 2.4 ok
V0470 400.1 0.04 98.6 1.0 109.0 1.3 38.2 3.2 short
V0471 400.1 0.04 99.8 0.6 116.0 0.9 41.9 2.9 ok
V0472 400.1 0.04 97.2 1.0 101.6 1.7 38.4 3.4 short
V0473 500.0 0.01 42.2 0.6 76.6 0.6 37.7 3.2 ok
V0474 500.0 0.01 44.3 0.7 83.6 0.7 39.1 3.6 ok
V0475 500.0 0.01 43.2 0.6 81.2 0.7 37.6 2.4 ok
V0476 500.0 0.02 64.0 0.9 91.6 0.9 38.4 2.6 ok
V0477 500.0 0.02 66.0 0.6 101.1 0.8 42.3 2.5 ok
V0478 500.0 0.02 65.6 0.6 98.7 1.0 39.9 2.3 ok
V0479 500.0 0.1 234.1 14.0 603.5 23.7 39.9 2.3 short
V0480 40.0 0.06 139.5 3.6 115.9 4.1 34.7 2.8 ok
V0481 40.0 0.06 142.7 3.8 127.8 4.8 39.7 2.4 ok
V0482 40.0 0.06 140.4 3.7 121.2 4.4 36.9 2.5 ok
V0483 40.0 0.15 290.2 7.9 174.8 8.7 42.1 3.1 ok
V0484 40.0 0.15 286.8 7.5 173.3 10.3 40.0 3.4 ok
V0485 40.0 0.15 285.3 7.4 162.7 9.8 38.0 2.4 ok
V0486 40.0 0.2 349.7 6.5 178.7 9.7 33.2 4.4 ok
V0487 40.0 0.2 352.3 5.2 169.1 6.0 33.4 3.1 ok
V0488 40.0 0.2 353.1 6.2 180.6 8.8 37.2 3.3 ok
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Test vc f Fc µFc Ff µFf rn µrn Status
[m/min] [mm] [N] [N] [N] [N] [µm] [µm]

V0489 125.0 0.06 141.9 2.2 123.3 2.0 37.7 3.2 ok
V0490 125.0 0.06 141.7 2.3 122.8 2.3 37.9 3.3 ok
V0491 125.0 0.06 141.9 2.2 125.2 2.1 39.0 3.2 ok
V0492 125.0 0.15 258.3 2.6 150.5 1.8 37.1 4.0 ok
V0493 125.0 0.15 256.5 2.6 137.3 1.7 34.6 3.2 ok
V0494 125.0 0.15 259.2 2.6 154.2 1.9 39.3 2.7 ok
V0495 125.0 0.2 322.3 4.9 166.6 5.0 35.4 2.4 short
V0496 125.0 0.2 324.0 5.3 176.1 5.0 38.6 3.3 short
V0497 125.0 0.2 321.7 4.1 173.4 3.6 42.9 4.6 ok
V0498 100.0 0.06 143.9 3.1 136.8 3.7 46.8 2.8 ok
V0499 100.0 0.06 142.5 3.4 132.2 4.0 40.5 3.2 ok
V0500 100.0 0.06 140.9 3.1 128.7 3.6 39.3 3.0 ok
V0501 100.0 0.12 229.3 2.0 147.5 1.4 39.1 3.0 ok
V0502 100.0 0.12 227.1 1.9 142.5 1.6 37.7 2.9 ok
V0503 100.0 0.12 229.4 1.9 149.9 1.6 38.1 2.9 ok
V0504 100.0 0.2 325.2 4.1 172.5 2.3 39.4 4.0 ok
V0505 100.0 0.2 329.4 4.1 177.2 2.7 41.0 2.2 ok
V0506 100.0 0.2 323.9 3.8 164.0 2.4 35.9 2.7 ok
V0507 150.0 0.06 138.2 1.4 118.3 1.1 36.5 3.0 ok
V0508 150.0 0.06 139.8 1.4 130.6 1.5 41.0 2.8 ok
V0509 150.0 0.06 137.4 1.3 117.1 1.2 37.3 3.0 ok
V0510 150.0 0.12 218.6 1.7 144.3 1.7 39.0 2.4 ok
V0511 150.0 0.12 219.6 1.8 149.3 1.9 41.2 2.3 ok
V0512 150.0 0.12 216.9 1.7 137.5 1.5 35.4 2.2 ok
V0513 150.0 0.2 324.2 4.7 176.0 7.3 36.0 2.9 short
V0514 150.0 0.2 325.1 5.8 185.3 7.9 37.8 2.8 short
V0515 150.0 0.2 326.2 5.2 184.0 7.3 37.3 2.1 short
V0516 150.0 0.02 63.6 1.0 91.0 1.9 38.3 2.5 ok
V0517 150.0 0.02 61.6 0.8 83.2 1.5 34.8 3.6 ok
V0518 150.0 0.02 63.4 0.8 89.0 1.6 36.2 3.9 ok
V0519 150.0 0.03 85.4 1.2 105.7 1.8 40.0 2.8 ok
V0520 150.0 0.03 87.1 1.2 108.3 1.9 38.1 4.1 ok

Table 11.1: Experimental results Ti6Al4V orthogonal cutting tests
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11.3 orthogonal cutting experiments

Test vc f Fc µFc Ff µFf rn µrn Status
[m/min] [mm] [N] [N] [N] [N] [µm] [µm]

V0069 10.1 0.01 52.1 11.0 31.6 6.7 33.9 1.6 short
V0070 10.1 0.01 47.0 7.1 28.4 4.2 35.5 2.3 ok
V0071 10.1 0.01 47.7 9.5 28.4 5.7 39.5 4.9 ok
V0072 10.1 0.1 325.1 26.7 185.5 19.3 42.3 2.4 ok
V0073 10.1 0.1 312.1 38.8 175.8 20.0 39.2 3.0 ok
V0074 10.1 0.1 310.3 25.2 173.0 15.9 39.0 3.8 ok
V0075 10.1 0.2 509.0 9.2 303.2 27.0 42.4 2.0 saturation
V0076 10.1 0.2 543.9 39.7 306.9 30.7 39.2 4.0 ok
V0077 10.1 0.2 543.7 39.9 298.6 32.0 42.4 2.3 ok
V0078 10.1 0.2 542.9 32.6 297.3 28.2 33.2 4.7 ok
V0079 70.1 0.01 38.5 9.5 24.3 6.4 41.2 2.5 instable
V0080 70.1 0.01 38.0 9.0 23.7 5.6 36.3 4.6 instable
V0081 70.1 0.01 37.0 9.8 23.3 6.2 42.4 2.5 ok
V0082 70.1 0.1 283.7 14.6 233.6 25.6 40.6 2.6 instable
V0083 70.1 0.1 329.6 8.9 319.8 11.2 39.5 3.6 instable
V0084 70.1 0.1 379.7 4.0 401.0 5.7 38.2 4.1 ok
V0085 70.1 0.1 387.3 2.9 412.2 2.9 43.8 2.3 ok
V0086 70.1 0.2 612.8 9.9 511.3 2.7 38.1 3.5 saturation
V0087 70.1 0.2 617.0 8.1 511.5 0.7 41.4 2.5 saturation
V0088 70.1 0.2 614.7 8.5 511.5 0.7 41.4 2.5 saturation
V0089 70.1 0.2 614.3 8.3 544.9 14.6 36.0 2.6 instable
V0091 150.0 0.01 36.5 5.9 25.0 4.3 41.7 2.1 ok
V0092 150.0 0.01 36.3 6.4 24.9 4.6 39.5 2.5 ok
V0093 150.0 0.1 344.4 1.2 334.9 1.6 41.5 3.5 ok
V0094 150.0 0.1 346.8 2.3 340.2 3.8 43.4 2.0 ok
V0095 150.0 0.1 342.9 2.3 332.4 3.6 36.1 3.0 ok
V0096 150.0 0.2 549.0 3.0 410.3 4.1 40.6 2.5 ok
V0097 150.0 0.2 544.6 5.0 401.9 9.7 44.7 2.1 ok
V0098 150.0 0.2 544.8 3.7 402.0 6.1 41.3 2.2 ok
V0099 150.0 0.4 876.9 20.6 470.4 39.7 42.9 2.5 instable
V0100 150.0 0.4 920.4 5.9 515.7 4.5 40.0 2.5 ok
V0101 150.0 0.4 899.5 15.1 498.8 23.7 42.0 2.9 ok
V0102 30.0 0.02 72.6 27.8 45.2 16.3 40.5 2.9 ok
V0103 30.0 0.02 71.6 24.5 43.9 14.2 39.2 2.9 ok
V0104 30.0 0.02 70.2 24.1 43.2 14.3 40.2 2.7 ok
V0105 30.0 0.06 188.3 20.8 108.6 14.2 42.4 2.4 questionable
V0106 30.0 0.06 170.6 29.0 96.9 16.4 36.0 3.9 questionable
V0107 30.0 0.06 166.2 32.6 95.5 18.1 42.3 2.1 questionable
V0108 30.0 0.15 377.0 29.3 216.1 19.9 38.3 2.9 ok
V0109 30.0 0.15 370.1 27.3 209.4 20.3 42.9 2.3 ok
V0110 30.0 0.15 377.1 26.8 218.9 18.8 39.9 2.7 ok
V0111 100.0 0.02 64.0 18.6 41.2 12.1 40.5 2.4 questionable
V0112 100.0 0.02 64.1 19.9 41.9 12.9 38.2 4.9 questionable
V0113 100.0 0.02 63.2 12.6 41.2 8.3 42.4 3.0 ok
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Test vc f Fc µFc Ff µFf rn µrn Status
[m/min] [mm] [N] [N] [N] [N] [µm] [µm]

V0114 100.0 0.06 198.4 2.9 177.9 4.6 41.6 2.3 ok
V0115 100.0 0.06 196.9 2.3 175.5 3.9 38.1 4.5 ok
V0116 100.0 0.06 195.8 2.7 172.6 4.8 37.3 3.7 ok
V0117 100.0 0.15 455.2 6.2 405.4 12.7 38.4 3.5 initially stable
V0118 100.0 0.15 461.8 6.5 420.1 11.5 37.2 4.0 short
V0119 100.0 0.15 476.3 8.1 443.7 14.2 39.5 3.0 short
V0120 30.0 0.04 126.3 25.2 72.6 15.5 38.2 2.6 questionable
V0121 30.0 0.04 127.7 23.3 75.3 13.3 40.5 3.1 ok
V0122 30.0 0.04 121.7 35.2 71.5 20.1 35.2 4.5 questionable
V0123 30.0 0.1 262.5 23.4 152.9 15.5 43.1 2.1 ok
V0124 30.0 0.1 253.2 26.7 144.5 16.8 39.0 2.9 ok
V0125 30.0 0.1 258.1 25.7 147.2 15.7 38.4 2.5 ok
V0126 30.0 0.2 488.6 26.6 289.1 23.2 39.6 3.2 ok
V0127 30.0 0.2 501.3 28.5 307.1 30.0 44.0 2.1 ok
V0128 30.0 0.2 493.3 25.7 296.3 25.5 40.6 3.5 ok
V0129 100.0 0.04 122.9 8.3 91.6 9.0 43.4 2.1 ok
V0130 100.0 0.04 120.1 10.7 85.4 8.7 31.6 3.3 ok
V0131 100.0 0.04 113.6 12.7 79.9 11.4 36.5 4.7 ok
V0132 100.0 0.1 350.9 3.1 360.2 5.4 39.2 3.5 short
V0133 100.0 0.1 350.0 2.4 355.7 5.5 37.6 2.3 short
V0134 100.0 0.1 353.6 1.8 364.8 2.8 38.3 2.7 short
V0135 100.0 0.2 565.3 10.5 459.0 19.1 38.5 6.2 initially stable
V0136 100.0 0.2 552.9 12.3 444.3 24.6 44.3 5.2 initially stable
V0137 100.0 0.2 565.9 9.2 461.8 16.3 40.4 3.2 initially stable
V0139 50.1 0.02 67.9 25.9 41.2 15.0 38.9 3.7 questionable
V0140 50.1 0.02 73.1 22.6 45.3 13.3 39.9 3.3 questionable
V0141 50.1 0.02 68.0 28.1 42.1 17.0 40.4 2.6 questionable
V0142 50.1 0.06 164.3 40.3 99.1 23.0 38.4 3.3 ok
V0143 50.1 0.06 167.2 29.7 100.9 16.6 35.2 5.2 ok
V0144 50.1 0.06 158.0 40.8 94.6 23.1 36.6 2.6 ok
V0145 50.1 0.15 506.7 10.7 487.4 16.5 42.8 2.6 short
V0146 50.1 0.15 511.1 6.1 493.2 9.5 43.3 2.5 ok
V0147 50.1 0.15 504.7 7.7 483.2 15.1 38.1 2.8 short
V0148 150.0 0.02 73.5 4.9 59.7 4.3 36.3 2.6 ok
V0149 150.0 0.02 68.2 7.9 51.6 6.2 39.3 2.9 ok
V0150 150.0 0.02 69.2 6.3 53.7 5.5 41.0 4.3 ok
V0151 150.0 0.06 224.4 1.8 239.6 3.0 37.2 2.1 ok
V0152 150.0 0.06 226.2 1.4 244.7 2.0 38.2 3.3 ok
V0153 150.0 0.06 224.5 1.4 239.9 3.0 40.8 1.9 initially stable
V0154 150.0 0.15 428.6 2.9 353.1 4.1 35.3 2.9 ok
V0155 150.0 0.15 425.4 2.3 345.2 3.0 35.4 7.9 ok
V0156 150.0 0.15 430.4 3.6 356.7 4.7 37.9 2.4 ok
V0157 50.1 0.04 113.1 28.8 65.8 16.2 38.2 2.6 questionable
V0158 50.1 0.04 122.7 23.1 73.0 13.4 37.8 4.4 questionable
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11.3 orthogonal cutting experiments

Test vc f Fc µFc Ff µFf rn µrn Status
[m/min] [mm] [N] [N] [N] [N] [µm] [µm]

V0159 50.1 0.04 114.3 40.4 68.6 23.4 43.5 4.8 questionable
V0160 50.1 0.1 262.1 19.9 168.6 18.4 42.2 3.0 ok
V0161 50.1 0.1 261.7 20.0 167.3 17.0 39.5 2.0 ok
V0162 50.1 0.1 257.4 18.4 160.1 14.1 33.6 3.0 ok
V0163 50.1 0.2 654.4 6.4 623.0 10.6 42.4 2.4 short
V0164 50.1 0.2 651.7 5.2 615.7 8.6 43.2 2.2 short
V0165 50.1 0.2 649.6 5.3 613.7 8.6 42.1 2.9 short
V0166 150.0 0.04 141.8 5.2 131.9 11.9 33.6 3.1 short
V0167 150.0 0.04 137.9 3.7 128.9 10.2 40.4 2.1 initially stable
V0168 150.0 0.04 139.7 5.7 133.5 14.6 40.5 1.8 initially stable
V0169 150.0 0.1 325.3 3.9 312.0 6.1 35.4 2.9 short
V0170 150.0 0.1 322.4 6.1 307.5 10.7 36.3 2.7 short
V0171 150.0 0.1 326.6 6.6 313.6 11.5 40.5 2.7 short
V0172 150.0 0.2 517.5 7.9 373.6 13.5 32.7 3.6 ok
V0173 150.0 0.2 519.2 4.3 377.3 5.5 40.3 4.5 ok
V0174 150.0 0.2 520.0 12.2 380.3 20.9 40.7 2.8 ok
V0175 150.0 0.02 77.3 3.7 77.2 1.7 36.0 3.0 ok
V0176 10.0 0.02 80.9 15.4 48.6 8.9 39.0 2.4 ok
V0177 10.0 0.02 81.9 16.3 49.3 9.5 40.6 2.8 ok
V0178 10.0 0.02 80.8 16.4 48.3 9.2 37.2 2.7 ok
V0179 10.0 0.06 195.0 29.5 111.5 15.5 43.5 1.8 ok
V0180 10.0 0.06 190.9 18.7 106.3 10.8 33.9 2.7 ok
V0181 10.0 0.06 189.1 28.3 104.9 15.4 35.1 3.4 ok
V0182 10.0 0.15 404.7 24.7 221.7 18.4 41.3 2.2 ok
V0183 10.0 0.15 409.8 22.6 225.3 18.9 35.8 2.4 ok
V0184 10.0 0.15 414.3 23.3 233.3 19.9 40.3 2.0 ok
V0185 69.9 0.02 62.9 7.8 36.8 5.1 30.0 3.5 ok
V0186 69.9 0.02 66.1 22.0 40.6 13.8 36.4 2.5 ok
V0187 69.9 0.02 66.7 12.3 40.9 7.6 40.9 2.3 ok
V0188 69.9 0.06 167.1 17.3 109.0 12.7 37.5 4.8 ok
V0189 69.9 0.06 167.0 16.7 109.4 11.7 39.9 2.8 ok
V0190 69.9 0.06 166.2 15.1 107.8 10.7 36.1 3.5 ok
V0191 69.9 0.15 501.5 5.3 491.3 7.8 39.3 2.8 short
V0192 69.9 0.15 497.3 3.7 485.0 6.1 32.9 4.6 short
V0193 69.9 0.15 501.2 3.6 490.2 6.3 39.5 3.2 short
V0194 199.9 0.01 36.9 3.3 26.0 2.5 33.5 3.2 ok
V0195 199.9 0.01 39.5 3.8 28.3 2.9 40.5 3.8 ok
V0196 199.9 0.01 39.5 3.2 28.4 2.8 39.5 3.1 ok
V0197 199.9 0.04 159.1 1.0 171.3 1.6 40.8 3.1 ok
V0198 199.9 0.04 158.0 1.2 170.2 1.8 33.0 4.1 ok
V0199 199.9 0.04 159.3 0.9 172.3 1.1 38.3 3.7 ok
V0200 199.9 0.08 269.7 2.8 261.2 4.1 41.6 4.0 short
V0201 199.9 0.08 268.2 2.5 257.7 3.5 36.3 3.6 short
V0202 199.9 0.08 273.3 2.6 267.9 4.2 40.9 2.8 short
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Test vc f Fc µFc Ff µFf rn µrn Status
[m/min] [mm] [N] [N] [N] [N] [µm] [µm]

V0203 300.0 0.01 49.6 0.9 51.7 1.2 35.8 3.4 ok
V0204 300.0 0.01 51.5 1.2 55.9 1.8 38.6 2.7 ok
V0205 300.0 0.01 51.2 1.2 55.6 1.7 37.8 3.0 ok
V0206 300.0 0.04 146.9 3.3 150.4 3.4 43.5 2.0 short
V0207 300.0 0.04 149.2 3.2 152.9 5.3 41.7 2.5 short
V0208 300.0 0.04 149.9 2.4 152.9 3.5 36.6 2.9 short
V0209 300.0 0.08 260.1 2.7 233.5 1.9 42.4 3.0 short
V0210 300.0 0.08 259.7 1.4 233.0 1.0 43.3 2.5 short
V0211 300.0 0.08 257.5 1.8 227.2 2.1 40.4 2.3 short
V0212 10.0 0.01 45.2 14.2 28.6 8.3 36.9 2.9 ok
V0213 10.0 0.01 46.0 7.4 28.7 4.6 40.5 2.6 ok
V0214 10.0 0.01 44.9 7.8 27.6 4.6 35.4 2.8 ok
V0215 10.0 0.04 144.6 27.7 84.1 16.0 39.1 2.9 ok
V0216 10.0 0.04 145.4 27.6 85.1 15.2 41.6 3.4 ok
V0217 10.0 0.04 138.0 30.8 79.1 16.8 39.6 2.8 ok
V0218 10.0 0.08 249.5 20.2 142.7 12.1 36.3 3.4 ok
V0219 10.0 0.08 249.5 17.4 142.6 11.3 36.7 2.5 ok
V0220 10.0 0.08 244.7 18.2 138.7 12.0 36.7 2.5 ok
V0221 349.9 0.01 49.7 0.5 49.6 0.4 33.5 3.9 ok
V0222 349.9 0.01 56.3 0.5 61.1 0.4 42.6 2.0 ok
V0223 349.9 0.01 54.0 0.5 56.0 0.4 39.8 1.9 ok
V0224 349.9 0.04 152.1 1.1 156.1 1.6 36.2 2.5 short
V0225 349.9 0.04 152.1 0.8 154.1 1.5 34.9 2.2 short
V0226 349.9 0.04 153.4 2.0 158.2 2.7 38.7 3.1 short
V0227 349.9 0.08 250.3 2.3 213.0 2.1 40.6 2.6 short
V0228 349.9 0.08 245.8 2.0 203.6 2.3 36.5 2.2 short
V0229 349.9 0.08 242.0 3.0 198.0 2.8 34.6 3.2 short
V0230 250.1 0.02 83.6 0.5 82.3 0.4 43.0 1.8 ok
V0231 250.1 0.02 81.6 0.5 79.3 0.5 39.8 2.5 ok
V0232 250.1 0.02 82.5 0.7 80.6 0.5 41.6 3.0 ok
V0233 250.1 0.06 207.7 2.4 202.2 3.9 39.9 3.5 short
V0234 250.1 0.06 213.0 2.8 212.8 4.1 41.3 2.4 short
V0235 250.1 0.06 206.2 2.3 198.2 3.8 33.3 3.7 short
V0236 250.1 0.1 304.0 1.8 256.9 2.8 38.6 2.2 ok
V0237 250.1 0.1 304.5 2.8 258.5 4.0 39.5 2.3 short
V0238 250.1 0.1 304.6 2.6 258.2 3.2 39.2 2.8 short
V0239 349.9 0.02 87.8 0.7 93.5 0.9 36.2 2.5 short
V0240 349.9 0.02 88.7 0.9 94.4 1.0 33.6 2.9 short
V0241 349.9 0.02 89.3 1.3 97.2 1.6 35.2 3.0 short
V0242 349.9 0.06 207.1 2.1 194.6 2.5 38.2 3.4 short
V0243 349.9 0.06 208.6 2.4 199.6 3.0 39.7 2.4 short
V0244 349.9 0.06 204.3 2.2 187.9 3.0 34.7 3.0 short
V0245 349.9 0.1 285.0 2.6 216.7 1.8 40.1 2.5 ok
V0246 349.9 0.1 283.0 3.5 212.8 5.4 37.7 2.6 ok
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11.3 orthogonal cutting experiments

Test vc f Fc µFc Ff µFf rn µrn Status
[m/min] [mm] [N] [N] [N] [N] [µm] [µm]

V0247 349.9 0.1 283.3 3.1 215.1 3.8 39.5 2.7 ok
V0249 349.9 0.15 369.7 4.8 229.6 6.0 35.2 3.1 ok
V0250 349.9 0.15 375.2 3.3 236.9 4.2 38.4 3.0 ok
V0252 50.0 0.01 39.7 13.2 26.8 7.9 34.3 3.8 ok
V0253 50.0 0.01 38.0 9.0 24.2 5.6 40.0 2.4 ok
V0254 50.0 0.01 37.8 7.4 24.4 4.7 40.4 3.3 ok
V0255 50.0 0.08 211.2 24.2 128.1 15.2 36.0 2.8 ok
V0256 50.0 0.08 210.5 26.3 128.9 16.8 38.3 2.1 ok
V0257 50.0 0.08 209.5 29.4 128.9 18.0 38.1 2.3 ok
V0258 50.0 0.12 320.4 19.8 234.3 33.8 40.2 2.3 short
V0259 50.0 0.12 325.1 16.7 241.1 29.7 41.2 2.5 short
V0260 50.0 0.12 322.7 20.0 238.8 36.0 40.5 2.0 short
V0261 250.0 0.01 51.1 0.5 53.9 0.7 35.6 3.1 ok
V0262 250.0 0.01 52.6 1.1 57.3 1.3 41.6 2.1 short
V0263 250.0 0.01 49.3 0.9 51.4 1.3 35.5 2.9 short
V0264 250.0 0.08 250.4 1.8 223.6 2.6 32.0 3.1 short
V0265 250.0 0.08 255.7 2.7 234.4 3.4 37.0 2.1 short
V0266 250.0 0.08 259.8 2.9 241.9 3.9 40.6 2.4 short
V0267 250.0 0.12 335.9 2.9 265.3 3.3 41.7 2.2 ok
V0268 250.0 0.12 330.6 1.5 253.5 1.8 33.3 3.2 ok
V0269 250.0 0.12 334.6 1.8 262.0 2.2 38.3 2.8 ok
V0271 50.0 0.18 566.4 8.5 521.5 9.9 36.6 2.6 ok
V0272 50.0 0.18 569.1 8.6 527.6 12.9 38.7 2.7 ok
V0273 50.0 0.18 572.7 8.9 536.3 13.1 36.0 2.9 ok
V0274 50.0 0.22 678.0 7.3 614.7 12.0 38.5 2.4 ok
V0275 50.0 0.22 678.0 9.8 615.2 12.3 37.6 2.5 ok
V0276 50.0 0.22 679.5 13.3 612.1 24.7 40.1 1.9 short
V0277 200.0 0.02 84.4 1.8 83.5 2.3 38.2 2.3 questionable
V0278 200.0 0.02 81.1 1.1 80.3 1.1 40.1 2.6 ok
V0279 200.0 0.02 79.8 1.0 77.9 1.3 36.2 3.6 ok
V0280 200.0 0.06 213.6 1.9 220.6 3.3 38.8 2.6 short
V0281 200.0 0.06 213.1 1.4 218.9 2.4 38.9 2.3 short
V0282 200.0 0.06 215.6 1.4 224.1 2.6 38.8 3.0 short
V0283 200.0 0.1 307.6 2.5 275.4 4.3 35.9 2.8 short
V0284 200.0 0.1 308.3 2.3 272.1 3.6 37.1 3.6 short
V0285 200.0 0.1 310.3 3.0 279.7 4.3 37.9 2.3 short
V0286 450.0 0.02 86.5 1.2 91.1 0.6 40.0 2.7 short
V0287 450.0 0.02 86.5 1.2 92.9 0.9 41.1 2.3 short
V0288 450.0 0.02 86.2 1.5 92.9 1.6 40.6 2.3 short
V0289 450.0 0.06 193.1 2.6 167.8 1.9 38.0 2.4 short
V0290 450.0 0.06 196.0 3.6 173.7 2.1 40.3 2.2 short
V0291 450.0 0.06 190.1 2.1 162.1 1.8 34.4 3.6 short
V0292 450.0 0.1 265.1 3.2 183.9 2.9 41.8 2.1 ok
V0293 450.0 0.1 263.6 2.2 180.2 1.2 37.5 2.8 ok
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Test vc f Fc µFc Ff µFf rn µrn Status
[m/min] [mm] [N] [N] [N] [N] [µm] [µm]

V0294 450.0 0.1 261.6 3.6 178.5 3.8 37.4 2.1 ok
V0295 50.0 0.2 644.5 4.6 611.4 6.9 34.3 3.5 ok
V0296 50.0 0.2 643.6 4.6 608.4 6.1 37.7 2.7 ok
V0297 50.0 0.2 642.6 14.5 596.9 23.9 38.3 2.5 ok
V0298 500.0 0.1 259.6 1.9 169.5 2.6 37.2 3.8 ok
V0299 500.0 0.1 259.4 2.5 173.2 3.6 40.2 3.4 ok
V0300 500.0 0.1 260.3 1.5 174.6 2.3 42.0 2.4 ok

Table 11.2: Experimental results Ck45 orthogonal cutting tests
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