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Abstract. Charcot-Marie-Tooth (CMT) disease serves as
the summary term for the most frequent forms of inher-
ited peripheral neuropathies that affect motor and sensory
nerves. In the last 12 years, 14 genes have been identified
that cause different CMT subforms. The genes found ini-
tially are predominantly responsible for demyelinating
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and dysmyelinating neuropathies. Genes affected in ax-
onal and rare forms of CMT have only recently been iden-
tified. In this review, we will focus on the currently
known genes that are associated with CMT syndromes
with regards to their genetics and function.

Key words. Myelin; peripheral nervous system; Schwann cell; neurodegeneration; Charcot-Marie-Tooth disease;
hereditary neuropathy; axon degeneration.

Introduction

Charcot-Marie-Tooth (CMT) disease is a major genetic
disease in clinical neurology with a prevalence of ap-
proximately 1 in 2500 [1]. Since the first descriptions by
Charcot, Marie and Tooth in 1886, the main clinical fea-
tures of this syndrome were defined as distal peroneal
weakness accompanied by muscular atrophy [2, 3]. More
than 100 years later, the classification of CMT syn-
dromes today has been revised and extended based on
clinical features, electrophysiological, histopathological
and genetic findings [4]. This development was mainly
guided by progress in clinical electrophysiology and later
by the advances in molecular genetics. In this review, we
will predominantly concentrate on the genetic and mole-
cular understanding of CMT. But first, we shall provide a
short overview of the manifestation and biological basis
of the disease.

* Corresponding author.

Classical clinical classification of CMT

The typical CMT patient is affected by slowly progressive
distal muscle weakness and atrophy that primarily affects
the small foot muscles, peroneal muscles and, often later,
those of the hands and forearms. Foot deformities, mostly
pes cavus and claw toes are common, leading to gait im-
pairments. Although the disease is usually progressive, it
rarely causes wheelchair dependence but considerably af-
fects the quality of life.
CMT is subdivided into demyelinating (CMT1) and ax-
onal (CMT2) forms according to clinical, electrophysio-
logical and histopathological features. CMT1 is charac-
terized by disease onset in the 1 or 2 decade of life, nerve
conduction velocities (NCVs) less than 38 m/s, and seg-
mental demyelination, remyelination and onion-bulb for-
mations in nerve biopsies (fig. 1). CMT2 is associated
with normal or near-normal NCVs, and nerve biopsies
show loss of myelinated axons [5]. A neuropathy is
called ‘axonal’ if the axon (or neuron) is affected by the
primary injury. If the primary insult occurs in the myeli-
nating Schwann cell, this is considered a ‘demyelinating



neuropathy’. This distinction is based on clinical and
pathological evidence. Progress in identifying the genes
responsible for CMT has now revealed, however, that
some of these disease genes are expressed by both cell
types, neurons and Schwann cells, making the deter-
mination of the primary defect often uncertain. Fur-
thermore, axon and Schwann cells interact intensively,
leading to secondary effects that might be difficult to
separate from cell-autonomous events [6]. Recent exper-
iments on myelinated axons in the CNS suggest that the
myelinating cell type may even appear morphologically
completely normal and still affect the associated axon
dramatically [7].
In the late sixties, Dyck and Lambert [8] presented an ini-
tial classification based on electrophysiological changes
in the peripheral nerves of CMT patients. Differentiating
hallmarks were NCVs, compound motor action potentials
(CMAPs), compound sensory action potentials (SNAPs),
and the patterns of inheritance. Furthermore, the term
‘hereditary motor and sensory neuropathy’ (HMSN) was
created as a synonym for CMT disease. Over time, diag-
nostic parameters for CMT were more and more influ-
enced by the increasing possibilities of molecular genet-
ics [4]. The first description of a defined genetic basis for
a given CMT subtype was discovered in 1991, when a
1.5-megabase-long, intrachromosomal duplication on the
short arm of chromosome 17 (17p11.2) was found to be
associated with the most common subtype CMT type 1A
(CMT1A) [9, 10]. Due to the fortuitous help of the analy-
sis of two spontaneous animal models for CMT, Trembler
(Tr; ([11] and Tr-J; [12]), the peripheral myelin protein 22
(PMP22) was identified as an excellent dosage-sensitive
candidate gene located on the CMT1A duplication
[13–16]. The final proof that PMP22 was indeed the re-
sponsible disease gene was provided a few years later us-
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ing transgenic rodents [17, 18]. This initial finding of a
myelin gene as the CMT1A disease gene sparked a flurry
of further investigations that led to the identification of
two other genes encoding myelin components, protein
zero (P0; MPZ) and connexin32 (Cx32; GJB1) as major
loci for demyelinating forms of CMT, collectively termed
CMT1 [19]. In the meantime, 14 genes have been found
that cause different forms of CMT. Based on these recent
genetic findings, a reevaluation of the existing classifica-
tion may be warranted. The clinical and pathological vari-
ability of CMT, however, even when the same gene is in-
volved, and the fact that mutations in different genes can
manifest as similar phenotypes, might argue differently.
A novel genetics-based categorization will be an impor-
tant additional help for the clinician, but it is not likely to
fully replace the traditional classification. Valuable fur-
ther information for a more integrated approach to this
problem will come from the detailed understanding of the
pathobiological basis of CMT syndromes. The key ques-
tion that needs to be answered is: How is the sequence of
events defined that leads from a particular genetic alter-
ation to biological effects that are deleterious to the
proper function of peripheral nerves (for reviews: [6,
19–22])? If we are able to find the answers to this ques-
tion, we will not only understand CMT disease but also
learn important lessons about the basic molecular cell bi-
ology of the development and maintenance of peripheral
motor and sensory nerves. 

Genes mutated in CMT

For a complete and updated list of CMT genes, CMT loci
and mutations, consult: http://molgen-www.uia.ac.be/
CMTMutations/

Figure 1. Histopathological comparison of a normal human sural nerve and a nerve from a CMT1A patient. Arrows indicate normally
myelinated fibers; asterisks denote axons on a nerve cross-section. Open arrowheads point to onion-bulb formations consisting of super-
numerary Schwann cells that surround concentrically a demyelinated axon in the diseased state. A ‘+’ sign indicates a partially remyeli-
nated axon (the pictures are a kind gift from Dr Steven S. Scherer, University of Pennsylvania).



Demyelinating forms of CMT

Peripheral myelin protein 22 (PMP22)
PMP22 was the first gene to be identified in the patho-
genesis of the development of CMT [11–16]. Nelis and
co-workers showed that the heterozygous duplication of
PMP22 is by far the most frequent mutation in CMT [23].
The reciprocal event to the duplication, the deletion of the
same fragment on chromosome 17p11.2 containing
PMP22, causes a neuropathy which is characterized by an
increase in vulnerability to pressure trauma resulting in
temporary nerve palsies [24]. This neuropathy, called
hereditary neuropathy with liability to pressure palsies
(HNPP), is associated with focal hypermyelination
(tomacula). In general the clinical phenotype of HNPP is
not progressive, although CMT-like symptoms may occa-
sionally develop with age [25–27]. Some point- and
frame-shifting mutations in PMP22, most likely causing
functional null alleles, have also been identified in HNPP
pedigrees [28, 29]. 
Most patients carrying the heterozygous CMT1A dupli-
cation show the classical demyelinating phenotype with
reduced NCV below 38 m/s, associated with rather ho-
mogeneous myelin defects [30, 31]. Histopathologically,
the typical changes in myelin fibers are demyelination,
thin myelin sheaths and onion-bulb formation [32] 
(fig. 1). Axonal damage was thought to be rare and pre-
dominantly secondary to long-lasting deymelination. Ex-
tended electrophysiological studies revealed, however,
that the clinical degree of handicap is correlated with ax-
onal atrophy and loss, as indicated by the reduction of
CMAP and SNAP, but not with reduced NCV [33–35].
Homozygous CMT1A duplications cause very severe
dysmyelinating phenotypes [9, 36, 37].
Besides gene duplications and deletions, a number of
point mutations in PMP22 have been described [38].
Some of them appear to be heterozygous null alleles and
lead to HNPP, as described above. Very few mutations are
recessively inherited [39, 40]. The vast majority, however,
are associated with membrane-associated domains of the
PMP22 protein and are dominantly inherited. In general,
this last group of mutations causes a more severe CMT1
phenotype than duplication, and some have been classi-
fied as Déjérine-Sottas syndrome (DSS) [41, 42].
How does this pletora of mutations affect PMP22 and
cause the different phenotypes? The answer to this intrigu-
ing question is far from clear, but appropriate animal mod-
els mimicking the different genetic situations have been
generated. They will help to shed light on this interesting
problem [43]. This includes Pmp22 null mice [44–46],
mice and rats carrying additional copies of the PMP22
gene [17, 18, 47–49], mice with an internal Pmp22 dele-
tion [50] and Pmp22 point mutations [11, 12, 51, 52].
Clearly, the key to understanding the disease phenotypes
is knowledge of the detailed function of the PMP22 pro-

tein. This polypeptide comprises 160 amino acids and is
membrane associated [53]. It is most abundant in peri-
pheral nerves, and mainly expressed by myelinating
Schwann cells [54–56]. PMP22 plays a crucial role in the
development and maintenance of compact myelin, as is
well established by the disease phenotypes of CMT1A
and HNPP patients as well as animal models [38]. Addi-
tional in vitro data suggest that PMP22 may regulate cell
proliferation [57–59], cell death [59–61], cell differenti-
ation [61–64] and membrane traffic [65]. Furthermore, a
function of PMP22 as a constituent of intercellular junc-
tions in epithelia has been suggested [66]. The signifi-
cance of the latter finding in the etiology of CMT, al-
though intriguing, remains to be elucidated. Such a func-
tion might rather be related to the fact that PMP22 is also
expressed outside of the nervous system [55], shows dis-
tant similarities to the tight junction components of the
claudin protein family [67] and belongs to the closely re-
lated PMP22/EMP gene family [68].
How do altered levels of PMP22 produce their pheno-
types in HNPP and CMT1A? It has been suggested that
PMP22 is part of a stoichiometric complex with P0, the
major adhesion protein of peripheral myelin and evidence
for direct interaction of the two proteins has been pre-
sented [69] but is also debated [70]. However, the possi-
bility that a reduced PMP22/P0 ratio (in HNPP) or the op-
posite situation (in CMT1A) may affect myelin stability
remains an interesting hypothesis. Alternatively, or in ad-
dition, Schwann cell proliferation and differentiation
might be affected [71, 72]. Importantly, from the point of
developing future treatment, the effects of PMP22 over-
expression in Schwann cells in a CMT1A animal model
appear to be reversible, at least with regard to myelination
[73]. Whether neuronal deficiencies that correlate with
the disease-associated handicaps can also be reversed re-
mains open [6, 33–35, 74, 75].
How do dominant PMP22 point mutations cause the dis-
ease? At least some of them appear to produce a gain-of-
abnormal function, since most PMP22 point mutations in
human and animal models have more severe phenotypes
compared with HNPP and heterozygous PMP22 knock-
out mice. One disesease mechanism has been elucidated
in that some PMP22 mutant proteins are retained intra-
cellularly, in the endoplasmic reticulum (ER) and/or the
intermediate compartment [38, 61, 64, 69, 76–80]. In ad-
dition, the mutant proteins encoded by the Tr (G150D)
and Tr-J alleles (L16P) aggregate abnormally in trans-
fected fibroblasts [70], although such aggregates have
been suggested to be even protective in PMP22 point mu-
tation-based peripheral neuropathies [52]. Since PMP22
forms dimers and multimers, mutant PMP22 retained in
the ER and/or intermediate compartment may prevent the
efficient transport of wild-type PMP22 to the cell mem-
brane in the form of a classical dominant-negative effect
[38, 70, 80]. However, genetic evidence shows that at
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least the Tr mutation causes also a toxic gain of function
in the absence of wild-type PMP22. Heterozygous Tr
mice have a more pronounced phenotype than heterozy-
gous PMP22 knockout mice (and HNPP patients with a
heterozygous PMP22 deletion). In addition, mice carry-
ing a PMP22 null allele and the Tr allele as a compound
heterozygote display a much worse neuropathy than het-
erozygous or homozygous PMP22 knockout animals
[46]. 
How could a toxic gain of function be generated by im-
paired PMP22 trafficking? In analogy to the involvement
of the unfolded protein response in modulation of disease
severity in Pelizaeus-Merzbacher disease due to prote-
olipid protein mutations [81], accumulation of mutant
PMP22 may trigger a similar effect. However, there is no
experimental evidence to support such a mechanism. An-
other ER chaperone, calnexin, may be involved by getting
sequestered away by mutant PMP22 and contributing to
the resulting neuropathy [77]. Furthermore, inefficient
proteasome function could be toxic to the cell and may
add to the potential disease mechanism [82, 83]. Finally,
PMP22 accumulates in lysosomes of (de)myelinating
Schwann cells of Tr-J mice, potentially related to a role of
the endosomal/lysosomal degradation pathway in the
pathogenesis of demyelination [79, 82, 83]. This is of spe-
cial interest considering that a lyosomal protein of un-
known function, LITAF/SIMPLE, was recently identified
as being mutated in the dominant demyelinating CMT1C
disease [84].

P0, MPZ
In 1981, the first genetic linkage data suggested a gene
located on chromosome 1 to be associated with an auto-
somal dominant demyelinating CMT syndrome [85].
This was classified later as CMT1B [5], and the muta-
tions responsible were found in MPZ [86–89]. P0/MPZ is
a major PNS myelin component that belongs to the im-
munoglobulin superfamily [90] and plays a major role in
compaction of the myelin sheath as a homophilic adhe-
sion protein [91–95]. Structural analysis of the P0 extra-
cellular domain suggests that four molecules form a
tetramer in cis that interacts homophilically in trans with
tetramers in the opposing membrane [96, 97]. Similar to
mutations in PMP22, the clinical, electrophysiological
and histopathological findings turned out to be heteroge-
neous for MPZ mutations [89]. These range from autoso-
mal dominant CMT1B to severe forms classified as DSS.
Furthermore, the same mutation can cause different de-
grees of disease severity in different patients [98]. Close
to a hundred MPZ mutations have been described up to
now. The main phenotype is a demyelinating neuropathy
that is clinically and by electrophysiological means indis-
tinguishable from CMT1A. Less frequently, patients are
very severely affected [5, 89]. As expected from the func-

tion of P0, transfection studies in cultured cells revealed
that some CMT1B mutations in the P0 extracellular do-
main [99] and cytoplasmic mutants of a protein kinase C
(PKC) phosphorylation site [100] reduced adhesion. The
latter finding is particularly interesting since it may imply
that loss of P0 signaling function (which is largely un-
known) is part of the disease mechanism.
A second set of dominant mutations in MPZ is associated
with CMT2 [98, 101–106]. The mechanism of how these
mutations in a gene that is exclusively expressed by
Schwann cells but not neurons are causing axonal neu-
ropathy is unclear. The answer to this question will re-
quire the construction of precise mouse models mimick-
ing these mutations, and their detailed analysis. Such ef-
forts have begun, and they have revealed potential
mutation-specific effects [94, 107, 108]. However, fur-
ther refinements are needed before more definitive state-
ments can be made.

Lipopolysaccharide-induced tumor necrosis factor aa
factor LITAF/SIMPLE
Mutations in LITAF/SIMPLE cause the dominant inher-
ited demyelinating CMT1C disease [84]. In the three
families described so far, the phenotype cannot be distin-
guished from other forms of CMT1. Little is known about
the biological function of LITAF/SIMPLE. The corre-
sponding messenger RNA (mRNA) is found in the sciatic
nerve, but in contrast to the other genes causing CMT1,
its expression level is not altered after nerve injury. Orig-
inally described as a transcription factor involved in tu-
mor necrosis factor a (TNF-a) gene regulation (hence the
name; [109]), further analysis indicates that LITAF/SIM-
PLE encodes a small integral membrane protein of lyso-
somes/late endosomes [110]. It has been speculated that
altered lysosomal function and protein degradation may
have an impact on myelin development and maintenance
based on upregulation of this pathway in Tr-J [79]. If cor-
rect, mutated LITAF/SIMPLE may exert its effect in a
similar way [84].

Early growth response gene (EGR2/Krox20)
Based on theoretical considerations, transcriptional regu-
lators of the myelin-associated CMT genes are likely can-
didates to cause CMT1-like phenotypes [111]. Indeed,
mutations in SOX10, a key regulator of myelin genes,
lead to syndromes including peripheral neuropathies
[112–114]. Similarly, several dominant mutations in the
zinc-finger transcription factor EGR2/Krox20 have been
found in patients suffering from severe forms of demyeli-
nating CMT (CMT1D and DSS) [115, 116]. An addi-
tional mutation results in the syndrome congenital 
hypomyelination (CH; [116]), which shows absence of
peripheral nervous system (PNS) myelin from birth.
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EGR2/Krox20 is a zinc-finger transcription factor with a
crucial role in the regulation of PNS myelination, since
Krox20-deficient mice show a complete lack of myelin
(amyelination) [117]. Overexpression of EGR2/Krox20
in Schwann cells strongly increased the expression of
MPZ, PMP22, GJB1/Cx32, periaxin (PRX) and other
myelin-related genes [118]. Furthermore, EGR2/Krox20
can activate the MPZ promoter in cotransfected Schwann
cells [119]. EGR2/Krox20 mutations are likely to act
through gain of function, since heterozygous Krox20-null
mice are not affected. Some of the mutant proteins show
reduced DNA binding and transactivation in in vitro as-
says [120], and a dominant-negative effect on myelin
gene expression has been suggested [118]. The pathogen-
esis seems to consist of a combination of (partial) loss-of-
function and gain-of-abnormal-function mechanisms that
require further clarification.
One recessive mutation in the R1 domain of EGR2/
Krox20 preventing interactions with the NAB corepres-
sor has been classified as CMT4E [116]. It probably re-
sults in the deregulation of EGR2 by increasing its activ-
ity on myelin genes. The recessive nature of this mutation
may be due to a threshold effect in which increased levels
of expression of a target gene have to be reached for caus-
ing a phenotype [120]. This hypothesis appears plausible
in the context of the dosage sensitivity of the PMP22 [17,
18] and P0 [107] genes. 

Gap junction protein beta 1 (GJB1/Cx32)
Mutations affecting GJB1 cause CMT1X. Linked to the
X-chromosome and thus inherited without male-to-male
transmission, this is the second most common form of de-
myelinating CMT, accounting for 10–15% of all cases.
CMT1X is considered to be an X-linked dominant trait
because it affects female carriers with variable clinical in-
volvement due to random X-chromosome inactivation
[121]. Males are uniformly affected, and the clinical man-
ifestations are indistinguishable from those in patients
with CMT1A or CMT1B. In comparison to CMT1A and
CMT1B biopsies, less demyelination and remyelination
and more axonal degeneration/regeneration are observed
in CMT1X [122–124]. 
More than 200 mutations have been found in GJB1 since
the original CMT1X gene was identified [125]. Despite
this genetic heterogeneity, the disease severity caused by
GJB1 mutations is similar in affected men [122, 126,
127]. Notably in contrast to the other CMT1 genes, some
particular GJB1 mutations show signs of central nervous
system (CNS) involvement [128–131].
GJB1/Cx32 is a four-transmembrane protein of the con-
nexin family, components of gap junctions that permit the
exchange of small signaling molecules across the mem-
branes of cells. In PNS nerves, Cx32 is found in incisures
and paranodal loops of myelinating Schwann cells [132].

It has been suggested that Cx32 may form gap junctions
between adjacent layers of the myelin sheath to establish
a short radial pathway, and convincing experimental evi-
dence has been obtained [133]. However, the pathway and
rate of diffusion of 5,6-carboxyfluorescein in Gjb1
knockout mice were not altered compared with wild-type
mice. Since other connexins such as Cx29 (human homo-
logue, Cx31.3) are also present in inscisures [134, 135],
they may partially substitute for the lack of Cx32. One
would then hypothesize that unknown peculiar features of
Cx32-containing channels are the basis for more specific
disruptions of the radial pathway by GJB1/Gjb1 muta-
tions that cause demyelination in humans and mice 
[121, 136].
The consequences of the molecular alterations of
CMT1X-associated Cx32 mutants have been analyzed by
expression studies in heterologous cells in culture and
Xenopus oocytes [137]. These experiments revealed that
many mutants are not able to form functional channels.
Others build up channels but with altered biophysical
characteristics. As also observed for PMP22 mutant pro-
teins, a number of altered Cx32 proteins show defects in
intracellular trafficking [138]. Some are completely
blocked in the ER. Others reach the cell membrane but
with an increased accumulation in the Golgi apparatus
when compared with wild-type Cx32. The detailed func-
tional consequences of these findings remain to be deter-
mined and appear to be complex [139, 140]. In particular,
the situation has to be assessed in myelinating Schwann
cells, since it is likely to differ considerably from the set-
tings in cultured nonmyelinating cells [141].
Some Cx32 mutants may have additional toxic gain-of-
function effects, in particular when associated with un-
usually severe phenotypes. Since connexins assemble
into hexamers, dominant-negative affects appear likely.
Cx32 mutants, however, cannot interact with themselves
since GJB1 is subject to X-chromosome inactivation
[121]. They may interact, however, with other connexins
expressed by myelinating Schwann cells (or if CNS ab-
normalities have been observed, with connexins ex-
pressed by cells in the CNS).

Ganglioside-induced differentiation-associated
protein-1 (GDAP1)
Mutations in GDAP1 are associated with a severe reces-
sive form of CMT termed CMT4A [142–146]. Patients
have strongly reduced NCV with a clinical onset early in
childhood, often progressing to strong clinical impair-
ment. On nerve biopsies, severe hypomyelination, basal
lamina onion bulbs (possibly indicating Schwann cell
death) and loss of large myelinated axons are observed. In
contrast, a second set of GDAP1 mutations shows a re-
cessive CMT2-like phenotype with normal NCV and loss
of myelinated fibers without signs of demyelination. Vo-
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cal cord paresis was noted as additional feature [146]. Re-
cent data suggest that patients carrying mutations in
GDAP1 can exhibit a definitive demyelinating neuropa-
thy, an axonal form or an intermediate peripheral neu-
ropathy with both features [147, 148].
GDAP1 encodes a protein with two predicted transmem-
brane domains and a glutathione S-transferase domain.
The gene was originally identified due to its high expres-
sion in differentiated Neuro2a cells induced by GD3 syn-
thase overexpression and in retinoic acid-induced neural-
differentiated mouse embryonic carcinoma P19 cells
[149]. GDAP1 is expressed in the brain and in peripheral
nerve [146], but no data are yet available at cellular reso-
lution. One might only speculate at this time whether cell-
automomous or non-cell-autonomous mechanisms re-
lated to specific GDAP1 mutations are responsible for the
observed peculiar Schwann cell and/or axonal pheno-
types. The glutathione S-transferase domain indicates
some function of GDAP1 in detoxification and protection
against reactive oxygen species. Such processes are im-
plicated in motor neuron death in amyotrophic lateral
sclerosis and other neurodegenerative diseases [150].
Similar mechanisms are also likely to be involved in
Schwann cell death in diabetic neuropathies. Thus, the
function of GDAP1 might be a key element in defining
potential common disease mechanisms of various neu-
ropathies.

Myotubularin-related protein-2 (MTMR2)
Mutations affecting MTMR2 are the cause of a severe au-
tosomal recessive, demyelinating form of CMT that has
been named CMT4B1 [151, 152]. CMT4B1 has its clini-
cal onset in early childhood and leads progressively to
wheelchair dependence [153]. NCV is strongly reduced.
Nerve biopsies show a peculiar feature with the presence
of focally infolded and redundant loops of myelin sheets.
These characteristics suggest a primary insult to the
myelinating Schwann cell. MTMR2 is, however, also ex-
pressed by peripheral neurons [154, 155], and the contri-
bution of the different cell types remains to be determined. 
MTMR2 belongs to a family of myotubularin-related pro-
teins that is named after the founding member myotubu-
larin (MTM), the mutated culprit gene in X-linked my-
otubular myopathy [156]. MTMR2 contains a pleckstrin
homology-GRAM (glucosyltransferase, Rab-like GTPase
activator and myotubularin) domain, a phosphatase do-
main, a coiled-coil domain and a PDZ-binding motif
[156]. The membrane phospholipids phosphatidylinosi-
tol-3-phosphate [PI(3)P] and phosphatidylinositol-3,5-
phosphate [PI(3,5)P2] are dephosphorylated by MTM,
MTMR2, MTMR3 and MTMR6 [155, 157–160]. Since
phosphoinositides regulate intracellular membrane traf-
ficking [161], the demyelinating neuropathy CMT4B1
might be triggered by the malfunction of neural mem-

brane recycling, and/or endocytic or exocytotic processes,
and/or disturbed membrane-mediated transport pathways.
This may include autophagy, the process that targets cy-
tosolic proteins and organelles to lysosomes for hydro-
lase-mediated degradation [162]. If this pathway is indeed
disturbed, other proteins involved in the same process
might be good candidates for other forms of CMT. Altered
lysosomal function can cause demyelinating peripheral
neuropathies as revealed by mice deficient in the lysoso-
mal membrane protein LIMP-2/LGP85 [163]. In addition,
the disease mechanisms in CMT1C (LITAF/SIMPLE)
and possibly of some PMP22 point mutations [79] might
be related. Furthermore, recent observations that overex-
pression of PMP22 affects membrane trafficking and the
finding of vesicles resembling autophagic vacuoles in
PMP22 overexpressing cells might hint toward some kind
of functional connection [65, 77].
The known MTMR2 mutations show a complex pattern
[152, 154, 164], but loss of phosphatase activity appears
to be frequent [155].

Myotubularin-related protein-13/Set binding factor 2
(MTMR13/SBF2)
Based on the finding of mutations in MTMR2 in
CMT4B1, related genes that show similar pathological
features have been analyzed. As a result, mutations in
MTMR13/SBF2 have been identified in this recessive de-
myelinating CMT subtype [165, 166]. In one family, the
disease was also associated with glaucoma [166].
MTMR13/SBF2 encodes a homologue of MTMR2 but
without a functional phosphatase domain. Loss of phos-
phatase activity was previously shown to be associated
with disease-causing mutations of MTMR2 [155]. A po-
tential disease mechanism that would reconcile these
findings may be that the two MTMRs that cause CMT4B,
MTMR13/SBF2 as phospatase-inactive adaptor and
MTMR2 as catalytic subunit interact as a complex to-
gether to regulate the levels of PI(3), PI(5) and PI(3,5)
phosphatidylinositol and/or the subcellular localization
of the complex. Such a role for MTMR-like pseudophos-
phatases was proposed earlier [167]. Furthermore, at
least some monomeric myotubularins appear to be cat-
alytically inactive, and binding of substrate phospho-
inositides and the allosteric activator PI(5) triggers
oligomerization and activation [157]. How pseudophos-
phatases may affect this regulatory circuit is an exciting
open question. 
Crude expression analysis of MTMR13/SBF2 revealed
mRNA in multiple tissues, especially in brain, spinal cord
and sciatic nerve. Cellular resolution combined with
functional experiments in the protein-expressing cell
types will be required to elucidate the tantalizing cell bi-
ology of the CMT4B diseases. Such analyses will also
help to understand why the disease is affecting only pe-
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ripheral nerves or, in the case of the glaucoma-associated
mutation, also other cell types [166].

N-myc-downstream regulated gene 1 (NDRG1)
Mutations in NDRG1 are responsible for CMT4D (also
called HMSN-Lom; [168, 169]). This is a rare recessive
demyelinating syndrome that also includes hearing loss
and dysmorphic features caused by a protein-truncating
nonsense mutation. Onset of disease is early in life with
fast progression leading to severe handicaps. NDRG1 is
widely expressed, but its function is unknown [170, 171].
Recent computer-aided modeling suggests that NDRG1
belongs in the a/b hydrolase superfamily, but it is pre-
dicted not to be enzymatically active [172]. If it associ-
ates with other hydrolases, this may hint toward a func-
tion in degradation processes that have been implicated in
other types of demyelinating CMT. Alternatively,
NDRG1 might be involved in the cellular stress response
and the regulation of cell growth [173].

PRX
PRX was identified as a potential candidate for CMT
based on the phenotype of Prx-deficient mice [174].
These animals showed PNS myelin outfoldings (tomac-
ula, focal hypermyelination), followed by demyelination
similar to Pmp22-deficient mice, but with a delayed on-
set [45]. In addition, Prx-deficient mice displayed the
unique feature among myelin mutants of neuropathic
pain [174]. Prominent sensory impairments were also ob-
served in CMT4F patients carrying PRX mutations
[175–177]. Recessive mutations in PRX were initially
identified in patients presenting with a severe form of de-
myelinating DSS. However, PRX mutations can cause a
broad spectrum of demyelinating neuropathies [178].
PRX is a PDZ domain-containing protein that is exclu-
sively expressed by myelinating Schwann cells [179, 180].
In the adult myelinated fibers, PRX is connected to the dy-
stroglycan complex by dystrophin related protein-2 (DRP-
2) linking the basal lamina to the cytoskeleton of the
Schwann cell, thus allowing potential signal transduction
[181]. During development, PRX is found in the adaxonal
membrane of the myelinating Schwann cell and may have
some additional function [180]. Furthermore, an isoform
of PRX is targeted to the nucleus of embryonic Schwann
cells, suggesting that this protein can shuttle between the
nucleus and cortical signaling/adherence complexes [182].

Axonal forms of CMT

Kinesin1B (KIF1B)
A single mutation in the kinesin superfamily motor pro-
tein KIF1B has been identified up to now in dominant

CMT2A [183]. The mutant allele leads to loss of function
in the motor domain and indicates that defects in axonal
transport due to a mutated motor protein can be responsi-
ble for axonal peripheral neuropathy. Heterozygous
Kif1B null mice develop a peripheral neuropathy similar
to humans, supporting haploinsufficiency as the underly-
ing genetic mechanism [183]. It is currently debated,
however, which of the two isoforms generated by differ-
ential splicing of KIF1B, KIF1Ba and/or KIF1Bb, is de-
fective in CMT2A [183, 184].
The kinesin superfamily (KIF) motors are responsible for
microtubule-dependent transport of a variety of or-
ganelles and vesicles [185]. KIF1Ba mediates the trans-
port of mitochondria [186]. KIF1Bb associates with
synaptic vesicles containing synaptophysin, synaptotag-
min, and SV2 [183]. If, indeed, the transport of mito-
chondria is affected, the resulting phenotype may be
caused by a similar mechanism as suggested for neurofil-
ament mutations associated with CMT4E (see below;
[187]). In any case, motor and sensory neurons possess
very long axons and might be particularly sensitive to al-
tered transport of various loads. Such disturbed transport
mechanisms were suggested earlier to be a potential com-
mon denominator in several peripheral neuropathies,
since axonal impairment, also in demyelinting forms of
CMT, appears to start almost always distally and is asso-
ciated with defects in the cytoskeleton [21].

Small GTP-ase late endosomal protein gene 7 (RAB7)
CMT2B is characterized by marked distal muscle weak-
ness and wasting, high frequency of foot ulcers, and am-
putations of the toes due to recurrent infections [188–
190]. Two missense mutations have been found in RAB7
as the underlying genetic defect [191].
RAB7 encodes a member of the Rab family of ras-related
GTPases that are involved in intracellular membrane traf-
ficking [191]. RAB7 is widely expressed, but its function
in the nervous system remains to be determined. In par-
ticular, it will be an important task to elucidate why par-
ticular RAB7 mutations manifest themselves exclusively
in the peripheral nervous system.  

Lamin A/C (LMNA)
Recessive mutations affecting LMNA are the cause of the
axonal neuropathy CMT2B1 [192, 193]. The onset of this
CMT disease form is usually in the 2 decade with rapid
progression involving upper limbs and proximal muscles,
leading to severe handicaps. Motor NCVs are normal or
slightly slowed, and biopsies reveal a reduction of myeli-
nated axons and clusters of regenerated axons. Similar
pathological features have been observed in sciatic
nerves of Lmna-deficient mice [193]. Particular LMNA
mutations are associated with a number of other inherited
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diseases, including limb-girdle muscular dystrophy type
1B, autosomal dominant Emery-Dreifuss muscular dys-
trophy, dilated cardiomyopathy type 1A and autosomal
dominant partial lipodystrophy. This suggests the exis-
tence of distinct functional domains in lamin A/C that are
essential for different cell types.
LMNA encodes the nuclear components lamins A/C.
These proteins are thought to be the evolutionary progen-
itors of intermediate filament proteins of the cytoskeleton
and may have dual functions as building blocks as well as
transcriptional regulators [194]. Knowledge of the struc-
ture-function relationship of lamins A/C will undoubt-
edly provide the key to understanding how specific muta-
tions in LMNA lead to the observed multitude of genetic
diseases.

Neurofilament light chain (NEFL)
NEFL encodes an intermediate filament protein that is a
major cytoskeleton component of neurons. The first pa-
tients identified as carriers of dominant NEFL mutations
showed the clinical picture of axonal CMT with addi-
tional hyperkeratosis, classified as CMT2E with early on-
set and slightly reduced NCVs [195, 196]. Later, addi-
tional mutations were reported with significant slowing
of NCVs [197], some with the more severe DSS pheno-
type [198]. The nerve biopsy of one patient showed dys-
myelination, loss of myelinated fibers, onion bulbs and
clusters of regenerating axons. Thus, the phenotype of
NFEL mutations appears to be heterogeneous, with dif-
ferent degrees of severity of axonal neuropathy and/or oc-
casional features of severe demyelinating CMT [198].
NEFL is mainly expressed by neurons, although some ex-
pression has also been found in Schwann cells deprived
of axonal contact [199]. Nefl null mice do not develop a
CMT2-like neuropathy [200], but a point mutation that
disrupts the assembly of neurofilaments causes severe
peripheral neuropathy and massive motor neuron death in
transgenic mice [201]. Since CMT2E is autosomal dom-
inantly inherited, these data suggest that NEFL mutations
associated with CMT2E act by gain of function rather
than haploinsufficiency. This hypothesis is further sup-
ported by recent findings that some CMT2E-NEFL pro-
teins disrupt assembly and axonal transport of neurofila-
ments as well as mitochondria localization in various
transfected cells, including sensory neurons [187, 202,
203].

Closing remarks

Recent progress in the genetics of CMT has been re-
markable, and 14 genes have been described so far in the
pathogenetics of the different forms of the disease. For
some of the disease-causing proteins, we have a rather

clear picture about their function. For others, we are just
at the beginning of determining their role in myelinated
nerves. With regard to disease mechanisms, the crucial
interplay between neurons (axons) and myelinating
Schwann cells has turned into a prominent factor [6]. This
has become particularly obvious with the finding that the
disability in most if not all inherited neuropathies, axonal
and demyelinating forms, is correlated with axonal loss
[33, 35, 74, 204]. Myelin deficiency also leads to a de-
crease in axonal caliber, axonal transport, and affects
neurofilaments and microtubules [205]. However, the
signals that mediate this cell-to-cell communication are
largely unknown. Loss of trophic support by damaged
Schwann cells may contribute, and recent data suggest
that inflammation is involved [206]. 
Further work will focus on the identification of other
genes that can cause CMT. Modern molecular methods
are expected to lead to fast progress on this issue by high-
throughput transcriptomics [118, 207] and proteomics in
conjunction with simplified chromosomal mapping,
made possible due to the advances in the Human Genome
Project. Deciphering the exact role of the different mu-
tated CMT proteins in neurons and/or Schwann cells and
elucidating the underlying disease mechanisms will con-
tinue to be a formidable task. This will include elucida-
tion of the specific contributions of the affected proteins
in Schwann cells and/or neurons to the disease phenotype
(primary and secondary insults). On the cellular level,
aberrant regulation of intracellular transport of proteins
and lipids (membranes) in conjunction with altered intra-
cellular degradation mechanisms, together with impaired
axonal transport, have emerged as novel potentially im-
portant contributors to the various CMT phenotypes. 
Clinical neurologists, pathologists, geneticists, cell biolo-
gists and molecular biologists will be required to work
closely together to meet the challenge of understanding
CMT. This endeavor should not only bring us closer to the
development of potential treatment strategies, but we will
also learn important lessons about the biology of the pe-
ripheral nerve.
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