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Abstract
Energy-intensive production sites are often supplied with energy by on-site energy 
systems. Commonly, the scheduling of the systems is performed sequentially, start-
ing with the scheduling of the production system. Often, the on-site energy system 
is operated by a different company than the production system. In consequence, 
the production and the energy system schedule their operation towards misaligned 
objectives leading in general to suboptimal schedules for both systems. To reflect the 
independent optimization with misaligned objectives, the scheduling problem of the 
production system can be formulated as a bilevel problem. We formulate the bilevel 
problem with mixed-integer decision variables in the upper and the lower level, and 
propose an algorithm to solve this bilevel problem based on the deterministic and 
global algorithm by Djelassi, Glass and Mitsos (J Glob Optim 75:341–392, 2019. 
https://doi.org/10.1007/s10898-019-00764-3) for bilevel problems with coupling 
equality constraints. The algorithm works by discretizing the independent lower-
level variables. In the scheduling problem considered herein, the only coupling 
equality constraints are energy balances in the lower level. Since an intuitive dis-
tinction is missing between dependent and independent variables, we specialize the 
algorithm and add a procedure to identify independent variables to be discretized. 
Thereby, we preserve convergence guarantees. The performance of the algorithm is 
demonstrated in two case studies. In the case studies, the production system favors 
different technologies for the energy supply than the energy system. By solving the 
bilevel problem, the production system identifies an energy demand, which leads to 
minimal cost. Additionally, we demonstrate the benefits of solving the bilevel prob-
lem instead of solving the common integrated or sequential problem.

Keywords  Utility system · MILP · Decentralized energy system · Discretization 
points · Multi-energy system
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List of symbols

Variables
Bt,i,j	� Size of batch started on production unit (continuous)
Ėdemand
t,e

 	� Energy demand (continuous)
�	� Vector of operational states of energy conversion units (binary)
ot,u	� Operational state of energy conversion unit (binary)
U

gas

t 	� Gas consumption (continuous)
�̇	� Vector of power supplied by energy conversion units (continuous)
Vt,s 	� Stored product (continuous)
V̇t,u,e	� Power supplied by energy conversion unit (continuous)
V̇aux
t,u,e

	� Power supplied by energy conversion unit in auxiliary problem 
(continuous)

V̇D
k,t,u,e

 	� Power supplied by energy conversion unit in discretization point k 
(continuous)

ΔV̇e	� Change in energy supply by energy conversion units (continuous)
�	� Joint upper-level variables
Wt,i,j	� Batch start on production unit (binary)
� 	� Upper-level continuous variables
� 	� Upper-level binary variables
�min/max
t,u

	� Identification for energy conversion unit is at minimal/maximal 
operational limit (binary)

�zero
t,u

	� Identification for energy conversion unit is idle (binary)
�free
t,u

	� Identification for energy conversion unit is operated between 
operational limits (binary)

�
obj

k,t
	� Identification for the discretization point is valid (binary)

� lower
k,t,f

	� Identification for power is lower than operational limit (binary)
�
upper

k,t,f
	� Identification for power is higher than operational limit (binary)

Parameters
�PS	� Matrix of parameters of the production system
au	� Parameter to model energy conversion units connecting energy 

forms
�PS	� Vector of parameters of the production system
bu	� Parameter to model energy conversion units connecting energy 

forms
�L,ES,o

T	� Cost vector from operational states of energy conversion units for 
the lower level

�L,ES,V
T 	� Cost vector from supplied power for the lower level

�U,ES,o
T	� Cost vector from operational states of energy conversion units for 

the upper level
�U,ES,V

T	� Cost vector from supplied power for the upper level
�PS

T	� Cost vector for upper-level variables
f
l,Discr. Point

k,t
 	� Lower level’s objective resulting from a discretization point

fl,LLP
t

	� Objective function value from the lower-level problem
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Mfree	� Number of allowed free energy conversion units
Mmax/min

e
	� Large parameter for big-M reformulation depending on energy 

form
Mobj	� Large parameter for big-M reformulation on the lower-level objec-

tive function
M

lower/upper

k,t,f
	� Big-M to fulfill energy balance in discretization point

OCstor
s

 	� Cost of storing product
pCHP,prod	� Subsidies for on-site consumed electricity from combined-heat-

and-power engines
pCHP,sell	� Subsidies for electricity sold to the grid from combined-heat-and-

power engines
pel,buy	� Electricity price for purchase
pel
ES∕grid

	� Electricity price paid by the production system to the energy 
system/grid

pel,sell 	� Electricity price for selling
pheat	� Price for heat
pgas	� Price for gas
Δt	� Length of time step
V̇

min/max

u,e
	� Minimal/maximal load of energy conversion unit u

�u	� Optimality tolerance

Sets and elements
u ∈ dfree

k,f
	� Free energy conversion units in discretization point k

e ∈ E	� Energy forms
i ∈ I	� Tasks
j ∈ J	� Production equipment
k ∈ K	� Discretization points
s ∈ S	� Products
t ∈ T 	� Time steps
u ∈ U	� Energy conversion units
(u, e1, e2) ∈ C 	� Energy conversion units connecting energy forms
u ∈ Dmax/min

k
	� Energy conversion units at maximal/minimal operational limit in 

discretization point k
u ∈ Dzero

k
	� Idle energy conversion units in discretization point k

u ∈ DBoiler	� Boilers
u ∈ DCHP	� Combined-heat-and-power engines
u ∈ DGrid	� Grids

1  Introduction

Scheduling of production systems is an active research field and important for 
almost all kinds of industries (Harjunkoski et al. 2014; Castro et al. 2018). Recently, 
research in scheduling increasingly focuses on energy aspects (Gahm et al. 2016), 
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where new challenges arise from more volatile electricity prices and more energy 
supply from renewable energy sources (Merkert et al. 2015; Mitsos et al. 2018).

Large energy-intensive production systems are often supplied by on-site energy 
systems. Still, the on-site energy system is commonly not considered during the 
scheduling of the production system. Scheduling of production and energy systems 
is commonly performed sequentially: First, the production system is scheduled, 
and, second, the energy system is scheduled for the fixed energy demand. The fixed 
energy demand during energy system optimization can result in unnecessarily high 
energy cost because the production system does not account for the performance 
of the energy system. Integrated scheduling of production and energy system can 
reduce total cost. Agha et  al. (2010) consider integrated scheduling of production 
and energy systems for operation. Leenders et al. (2020) extend the integrated sched-
uling of production and energy systems by the provision of control reserve, whereas 
Leenders et  al. (2019b) also consider the synthesis of both systems. Thereby, the 
integrated scheduling assumes that the production system has full control over the 
energy system as well as complete information of the energy systems optimization 
problem.

However, in practice, systems are often operated by different companies. Thus, 
distributed optimization is performed. For this purpose, Allman and Zhang (2020) 
propose a solution algorithm to coordinate the optimization between different com-
panies, i.e., an industrial process and its customers. The proposed algorithm consid-
ers that the different systems do not share their internal optimization problems with 
the other systems. The algorithm uses the method of Alternating Direction Method 
of Multipliers for distributed optimization (Boyd et al. 2010).

Wenzel et al. (2020) propose an algorithm to coordinate between different pro-
duction plants in a large production site. Shared resources couple the production 
plants. The algorithm iteratively coordinates between the systems to meet the net-
work balance of shared resources. The algorithm in Wenzel et al. (2020) is based 
on extensive earlier work of the authors, e.g., in Wenzel et al. (2016) an algorithm 
is proposed to adjust the prices for shared resources. Maxeiner and Engell (2020) 
compare different dual-based methods for the distributed optimization and apply the 
methods to a case study with coupled semi-batch reactors. The reactors are coupled 
by a maximum for the combined feed flow rate.

Distributed optimization is important to take confidential issues into account 
while optimizing large industrial sites. In practice, each system often optimizes to its 
own objective and the decisions are taken sequentially. In this case, the overall prob-
lem cannot be considered as a single-level problem but should rather be considered 
as a hierarchical problem. This class of problem can be modeled as a Stackelberg 
game where the leader decides first, and subsequently, the follower decides accord-
ing to the leader’s decision. Here, we consider a production site where the produc-
tion system (leader) decides first by optimizing its objective, and the energy system 
(follower) satisfies the resulting energy demand while optimizing its own objective.

In a prior contribution (Leenders et al. 2019a, 2021), we proposed a method to 
coordinate the scheduling of production and energy systems with different objec-
tives without requiring the subsystems to share their internal optimization prob-
lems. Since only incomplete information is shared, the method does not guarantee 
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to identify the optimal solution in terms of the leader’s objective. Also other authors 
solved Stackelberg games for energy systems with exchange of incomplete infor-
mation, e.g., between a utility company and customers (Maharjan et al. 2013; Soli-
man and Leon-Garcia 2014; Yu and Hong 2016). In contrast to our previous work, 
in this work, we let the production system consider the energy system’s response 
with complete information. Thus, we consider complete information as in the inte-
grated optimization but the production system does not have the full control over 
the energy system. Hence, we model the optimization problem as a bilevel prob-
lem with mixed-integer decision variables in the upper and lower level. The bilevel 
problem enables the identification of an optimal solution point for the production 
system in the given Stackelberg game situation. With the bilevel problem, we con-
sider the sequential decision making between energy and production systems which 
is the common way to schedule their operation (Agha et al. 2010; Zhao et al. 2014; 
Zulkafli and Kopanos 2016). As an alternative, one can think of setting up a contract 
for demand-side management between the systems. Depending on the design of the 
demand-side management contract, an integrated optimization or a bilevel optimi-
zation should be applied. If the demand-side management contract is designed so 
that the energy system cannot decide anything anymore on its own, an integrated 
optimization will provide the best solution. If the demand-side management contract 
allows for independent decisions of the energy system, the demand-side manage-
ment contract will result in additional constraints in the bilevel problem. Thus, a 
Stackelberg game remains, and the bilevel problem would provide the optimal solu-
tion for the production system.

In bilevel problems, misaligned optimization problems are considered by an 
upper level (leader) and a lower level (follower). This hierarchical structure is real-
ized by embedding the lower-level optimization problem in the constraints of the 
upper-level optimization problem.

To the best of our knowledge, this work is the first to model the scheduling of 
production and energy systems as a bilevel problem. In the bilevel problem, the pro-
duction system is considered as the upper level, and the energy system is the lower 
level. Here, we can model a bilevel problem since the production system has com-
plete information on the energy system. The assignment of production system to the 
upper level and energy system to the lower level is chosen, since we assume that the 
production system announces its schedule first, and subsequently, the energy system 
fulfills the energy demand resulting from the production schedule. This is the same 
order of decision making as in the sequential optimization, which is the most used in 
industry (Pablos et al. 2021). Compared to the sequential optimization, the produc-
tion system considers the sequential decision making in the bilevel optimization and 
benefits from this knowledge.

The resulting bilevel problem is characterized by a nonconvex lower-level prob-
lem. For this class of bilevel problems, solution algorithms are available for: non-
linear bilevel programming problems (NLBP) (Mitsos et al. 2008; Tsoukalas et al. 
2009a, b; Wiesemann et  al. 2013; Kleniati and Adjiman 2014a, b), mixed-integer 
non-linear bilevel programming problems (MINLBP) (Mitsos 2010; Djelassi et al. 
2019), and mixed-integer linear bilevel programming problems (MILBP) (Zeng and 
An 2014; Hemmati and Smith 2016; Fischetti et al. 2016; Yue et al. 2019).
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In literature, others looked at scheduling based on a bilevel problem. Avraami-
dou and Pistikopoulos (2019) proposed an algorithm based on multi-parametric pro-
gramming to solve a MILBP. In their case study, the authors design and schedule a 
process with two production stages for three products. Yokoyama et al. (2019) solve 
a MILBP between a central power energy system and a distributed co-generation 
system. The problem is solved by an algorithm that uses a Karush-Kuhn-Tucker 
reformulation. Kostarelou and Kozanidis (2021) propose a heuristic solution algo-
rithm to solve a MILBP for the optimal price-bidding in day-ahead electricity mar-
kets. In the MILBP, the upper level is the electricity producer and the lower level 
is a electricity consumer. The heuristic solution algorithm is compared to an exact 
solution algorithm and shows less computational requirements. Recently, Wogrin 
et al. (2020) present a review on applications of bilevel optimization in energy and 
electricity markets. As a challenge for further research, the authors identify lower-
level problems including unit-commitment constraints with binary variables.

The production system considered in this paper results in a MILBP with coupling 
equality constraints, where the lower-level problem has unit commitment constraints 
with binary variables, i.e., binary variables if a unit is idle or running and binary 
variables for modeling part-load performance. For its solution, we build on our pre-
vious work (Djelassi et al. 2019) that provides an extension of the methods in Mit-
sos et al. (2008) and Mitsos (2010). The extension allows the presence of coupling 
equality constraints. We use our previously proposed algorithm since this algorithm 
precedes other algorithms, which allowed us to collect lots of experience with this 
algorithm. From this experience and the performance in applications of industrial-
scale problems, we expect a good performance of the algorithm. Furthermore, 
the original algorithm can solve bilevel problems involving non-linearities. In the 
algorithm proposed in this paper, we could model non-linearities in the upper-level 
problem.

The algorithms from our previous work (Mitsos et al. 2008; Mitsos 2010) solve 
bilevel programs by successively approximating the response of the lower-level pro-
gram by a discretization of the lower-level feasible set. In Djelassi et al. (2019), we 
cope with the presence of coupling equality constraints by separating the lower-level 
variables into independent and dependent variables. Then, the independent variables 
are discretized as per the original algorithms, while the dependent variables are rep-
resented as variables which are fixed by the coupling equality constraints.

On the one hand, the bilevel problem of production system scheduling with an 
energy system as follower is a special case to the one considered in Djelassi et al. 
(2019), which allows us to skip certain subproblems of the algorithm. On the other 
hand, in Djelassi et al. (2019) we assume a known set of dependent lower-level vari-
ables, which are fixed uniquely by the coupling equality constraints. In our case, 
this assumption is violated in the sense that there exists no fixed set of dependent 
variables but rather a known number of dependent variables. For this purpose, we 
propose a procedure that determines the set of dependent variables. The choice of 
the dependent variable changes based on the energy system’s optimal solution. The 
identification of the dependent variables is part of an augmented algorithm.

This paper is organized as follows. In Sect. 2, we present the bilevel problem to 
be solved, i.e., scheduling of production and energy system. In Sect. 3, the algorithm 
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is presented as well as the optimization problems used in the algorithm. In Sect. 4, 
we apply the algorithm to two case studies. The case studies are based on the pro-
duction scheduling example from Kondili et al. (1993) and the energy system model 
from Voll et al. (2013) and are extended to a bilevel problem. With the case studies, 
we present the performance of the algorithm, and demonstrate the merits to solve 
bilevel problems instead of integrated and sequential optimization problems. For 
comparison, we also apply the method from Leenders et al. (2019a) for incomplete 
information exchange to the case studies. In Sect. 5, conclusions are presented.

2 � Bilevel problem for scheduling production and energy systems

In this section, first, we introduce the bilevel problem to be solved, i.e., scheduling 
of production and energy systems. Second, we analyze the properties of the lower-
level problem. With the properties, we devise a method for generating discretization 
points.

2.1 � Formulation of the bilevel problem

The bilevel problem considers scheduling the production system in the upper level 
and scheduling the energy system in the lower level. The decision variables of the 
upper level, i.e., production systems, are the continuous variables � ∈ ℝ

nx and the 
binary variables � ∈ {0, 1}ny . � includes the energy demand Ėdemand

t,e
 in each time 

step t and for each energy form e. We denote the joint upper-level variables as 
� ∶= (�, �) . The decision variables of the lower level, i.e., energy system, have the 
same notation as it is common in energy system modeling and are the power sup-
plied by the energy conversion units �̇� ∈ ℝ

nV and the operational state of the energy 
conversion units �� ∈ {0, 1}no . As it is the common notation in bilevel modeling, the 
decision variables of the lower level are written with a prime symbol ′ . For the rep-
resentation of the lower-level variables in the upper-level problem, the prime symbol 
′ is omitted. The mixed-integer linear bilevel problem (MILBP) considered in this 
paper has the following form:

(1)min
�,�̇,�,Ėdemand

t,e

f u(�, �̇, �) = �PS
T
� + �U,ES,V

T
�̇ + �U,ES,o

T
�

(2)s.t. �PS� ≤ �PS

(3)(�̇, �) ∈ argmin
�̇�,��

f l(�̇�, ��) = �L,ES,V
T
�̇� + �L,ES,o

T
��

(4)s.t.
∑

u∈U

V̇
�

t,u,e
= Ėdemand

t,e
,∀t ∈ T , e ∈ E
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The upper-level optimization problem (scheduling of the production system) is pre-
sented in Eqs. (1) and (2) and the lower-level optimization problem (scheduling of 
energy system) in Eqs. (3)–(6).

The upper-level objective f u(�, �̇, �) considers production cost �PST� and energy 
cost to be paid by the production system �U,ES,VT

�̇ + �U,ES,o
T
� . The vectors �PST , 

�U,ES,V
T and �U,ES,oT describe the cost depending on the upper- and lower-level vari-

ables. � are the upper-level variables, and thus, the variables of the production sys-
tem. �̇ and � represent the lower-level variables in the upper level. Constraints of the 
upper level consider the production recipe, task duration, etc. Here, we model the 
production system as a mixed-integer linear problem and summarize the constraints 
in matrix form with �PS and �PS as parameters of the production system. In the case 
study, we model the production system as a batch production system and use the 
State-Task-Network formulation (Kondili et al. 1993). However, also other models 
of the production system could be used in the upper level.

The lower-level objective f l(�̇�, ��) considers cost of the energy system �L,ES,VT
�̇′ 

+�L,ES,o
T
�� to supply the production system with energy. �L,ES,VT and �L,ES,oT are vec-

tors for the cost depending on the lower-level variables. The lower-level constraints 
consider energy balances, part-load performance, the operational limits of energy 
conversion units etc. �̇′ is a vector of the power V̇ ′

t,u,e
 of energy form e provided by 

energy conversion unit u in time step t. �′ is a vector of the operational state o′
t,u

 of 
energy conversion unit u in time step t. o′

t,u
 is a binary variable and equals 1 if energy 

conversion unit u is operated in time step t. �̇′ and �′ are the decision variables of the 
energy system.

The coupling equality constraints between lower and upper level, i.e., energy bal-
ances, are stated separately (Eq. (4)). In the coupling equality constraints, variables 
of the upper level are the energy demands of the production system Ėdemand

t,e
 for each 

energy form e in time step t. To clarify that this is an upper level decision variable, 
we also write Ėdemand

t,e
 under the min operator, even if it is an entry of the vector � . 

Variables of the lower level in the coupling equality constraints are the power V̇ ′
t,u,e

 
of energy form e provided by energy conversion unit u in time step t.

In general, the behavior of energy conversion units is nonlinear, e.g., by a vari-
able efficiency (Goderbauer et al. 2016). As it is common in energy system mod-
eling, we linearize this nonlinear unit behavior by piecewise-affine linear functions 
(Voll et al. 2013). For an easier separation into dependent and independent variables 
in the proposed algorithm (c.f. Sect. 3.2), we model each segment of the piecewise-
affine linear function as a separate energy conversion unit. Their operational states 
are connected via constraints. In the case study, we use the energy system model 
from Voll et al. (2013). However, also other energy system models could be used 
in the lower-level problem. Still, the part-load performance needs to be modeled by 
piecewise-affine functions, and all equations need to be linear as we assume this in 
our proof (Sect. 2.2 and Appendix B).

(5)V̇
−

t,u,e
(o�

t,u
) ≤ V̇ �

t,u,e
≤ V̇

+

t,u,e
(o�

t,u
),∀t ∈ T , u ∈ U, e ∈ E

(6)au ⋅ o
�
t,u

= bu ⋅ V̇
�
t,u,e1

− V̇ �
t,u,e2

,∀t ∈ T , (u, e1, e2) ∈ C
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Here, all inequality constraints of the lower level are reformulated as parametric 
upper and lower bounds of the entries of �̇′ . Thereby, V̇−

t,u,e
(o�

t,u
) and V̇+

t,u,e
(o�

t,u
) are 

affine linear functions (Eq. (5)). In Eq. (6), the connection between two energy forms 
is modeled. These connections appear only for specific energy conversion units, e.g., 
combined-heat-and-power engines which supply electricity and heat simultaneously. 
These energy conversion units u with the corresponding two energy forms e1 and 
e2 are summarized in the set C. au and bu are parameters to describe the connection 
between the energy forms.

2.2 � Properties of the lower‑level problem

The purpose of the energy system model (lower-level problem) is to identify optimal 
schedules with a medium time resolution, e.g., one hour. Thus, we neglect dynam-
ics such as ramping constraints. Furthermore, we model an energy system without 
storage. Hence, no constraints to connect time steps need to be considered within 
the energy system model. Still, the algorithm is suitable to consider storage units, 
ramping constraints, and other constraints that connect time steps. For this purpose, 
the discretization points introduced later need to be defined for a specific energy-
demand curve and not for single energy demands. We expect that this extension 
would result in increased computational times.

In this paper, the lower-level decisions at one time step are independent of the 
decisions at all other time steps. Therefore and by linearity of the lower-level objec-
tive, the lower-level problem can be decomposed in a lower-level problem for each 
time step. The optimization problem of the lower level for a single time step t is:

The decision variables of the lower level are the output power of the energy conver-
sion units �̇t and the operational state of the energy conversion units �t.

In Sect.  3, we present the algorithm to solve the bilevel problem from 
Eqs. (1)–(6). In the algorithm, we use the property that there always exists an opti-
mal solution of the lower-level problem where all except one energy conversion unit 
per energy form e are operated at one of their operational limits, which we prove in 
the following two Propositions.

Proposition 1  Let the lower-level problem be given for a single energy form e and 
one time step t as

(7)min
�̇t ,�t

f l
t
(�̇t, �t) = �L,ES,V

t

T
�̇t + �L,ES,o

t

T
�t

(8)s.t.
∑

u∈U

V̇t,u,e = Ėdemand
t,e

,∀e ∈ E

(9)V̇
−

t,u,e
(ot,u) ≤ V̇t,u,e ≤ V̇

+

t,u,e
(ot,u),∀u ∈ U, e ∈ E

(10)au ⋅ ot,u = bu ⋅ V̇t,u,e1
− V̇t,u,e2

,∀(u, e1, e2) ∈ C.
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Therein, �̇t,e is the vector of power supplied by the energy conversion units and �t is 
the vector of the operational state of each energy conversion unit. Note that the con-
straints to connect the energy forms (Eq. (10)) are omitted because only one energy 
form is considered.

For this problem, there exists an optimal solution in which at most one energy 
conversion unit is not operated at one of its operating limits. More precisely, let 
Problem (11) be feasible and let (�∗

t
, �̇∗

t,e
) be globally optimal in Problem (11). Then, 

there exists a solution (�∗
t
, ̃̇�t,e ) that is also globally optimal in Problem (11) and for 

which there exists at most one u ∈ U such that

Proof  Consider the case that (�∗
t
, �̇∗

t,e
) is given such that for zero or one u ∈ U the 

following equation hold:

Then, the result is proven immediately with ̃̇�t,e = �̇∗
t,e

.
Now consider instead that u1, u2 ∈ U, u1 ≠ u2 be given such that

and

Then, it follows from construction of Eq. (11) that all elements of the set

are feasible in Eq. (11). �̇∗
t,e

 is an optimal solution of an linear program on a facet of 
the feasible set. Accordingly, all points on that facet (points in M) are optimal in Eq. 
(11).

The point (�∗
t
, ̃̇�t,e) with ̃̇Vt,u,e = V̇∗

t,u,e
,∀u ∈ U ⧵ {u1, u2} and

(11)

min
�̇t,e,�t

f l
t,e
(�̇t,e, �t) = �L,ES,V

t,e

T
�̇t,e + �L,ES,o

t

T
�t

s.t.
∑

u∈U

V̇t,u,e = Ėdemand
t,e

V̇
−

t,u,e
(ot,u) ≤ V̇t,u,e ≤ V̇

+

t,u,e
(ot,u),∀u ∈ U

(12)V̇
−

t,u,e
(�∗

t
) < ̃̇Vt,u,e < V̇

+

t,u,e
(�∗

t
).

(13)V̇
−

t,u,e
(�∗

t
) < V̇∗

t,u,e
< V̇

+

t,u,e
(�∗

t
).

(14)V̇
−

t,u,e
(�∗

t
) < V̇∗

t,u,e
< V̇

+

t,u,e
(�∗

t
), ∀u ∈ {u1, u2}

(15)V̇∗
t,u,e

= V̇
−

t,u,e
(�∗

t
) ∨ V̇∗

t,u,e
= V̇

+

t,u,e
(�∗

t
), ∀u ∈ U ⧵ {u1, u2}.

(16)

M = {(�∗
t
, �̇t,e)|V̇t,u,e = V̇∗

t,u,e
,∀u ∈ U ⧵ {u1, u2}

∧ V̇
−

t,u,e
(�∗

t
) ≤ V̇t,u,e ≤ V̇

+

t,u,e
(�∗

t
),∀u ∈ {u1, u2}

∧ V̇t,u=u1,e
+ V̇t,u=u2,e

= V̇∗
t,u=u1,e

+ V̇∗
t,u=u2,e

}
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lies within M and satisfies either ̃̇Vt,u=u1,e
= V̇+

t,u=u1,e
(�∗

t
) or ̃̇Vt,u=u2,e

= V̇−
t,u=u2,e

(�∗
t
) , 

proving the desired property. Note that in an optimal solution where two energy con-
version units are not operated at their operational limits the cost factors cL,ES,Vt,u,e  for 
these energy conversion units are equal. Otherwise, a change in the supplied power 
by the energy conversion units could result in a lower objective function value.

Finally, if there are more than two u ∈ U with V̇−

t,u,e
(�∗

t
) < V̇∗

t,u,e
< V̇

+

t,u,e
(�∗

t
) , the 

above construction can be applied successively until the same result is reached. 	�  ◻

We proved that there exists a solution for which only one energy conversion unit 
is not operated at one of its operational limits if there is only one form of energy 
e. More generally, in Appendix B, we show that the number of energy conversion 
units not operated at one of their operational limits can be reduced to the number of 
energy forms or below.

3 � Algorithm to solve the bilevel problem

In Sects. 3.1–3.3, we first present the algorithm and second, in Sect. 3.4, we present 
the optimization problems considered in the algorithm, i.e., lower-bounding prob-
lem, lower-level problem, and auxiliary problem.

3.1 � Algorithm

The proposed algorithm is based our algorithm from Djelassi et al. (2019). In Dje-
lassi et al. (2019) we use discretization points from optimal lower-level solutions for 
representing the lower-level objective in the upper-level problem. We assume that 
the lower-level variables are split into sets of dependent and independent variables. 
These sets are treated then differently in the discretization: independent variables are 
fixed and dependent variables are determined by the equality constraints.

In the bilevel problem in this paper, the choices for dependent and independent 
variables change for each discretization point. In the previous section and in the 
appendix, we proved that there are at most as many energy conversion units not 
operated at their operational limits as there are energy forms e considered. Thus, 
we can always set the power of the energy conversion units not operated at their 
operational limits as the dependent variables. The power supply by the energy con-
version units operated at their operational limits are then the independent variables. 
Hence, there are at most as many dependent variables in an optimal solution point 
of the lower-level problem as energy forms are supplied by the energy system (c.f. 
Sect. 2.2).

(17)
̃̇Vt,u=u1,e

= V̇∗
t,u=u1,e

+min{V̇+
t,u=u1,e

(�∗
t
) − V̇∗

t,u=u1,e
, V̇∗

t,u=u2,e
− V̇−

t,u=u2,e
(�∗

t
)}

̃̇Vt,u=u2,e
= V̇∗

t,u=u2,e
−min{V̇+

t,u=u1,e
(�∗

t
) − V̇∗

t,u=u1,e
, V̇∗

t,u=u2,e
− V̇−

t,u=u2,e
(�∗

t
)}



510	 L. Leenders et al.

1 3

We use these properties to identify discretization points from lower-level solu-
tions, which means we identify independent and dependent variables. Thereby, the 
algorithm can solve the mixed-integer linear bilevel problem of production and 
energy system scheduling stated in Sect. 2.1.

In the following Sect. 3.2, we introduce the discretization points used in the algo-
rithm. Afterward, we present the steps of the algorithm in Sect. 3.3.

3.2 � Discretization points

A discretization point defines the independent and dependent variables for an 
optimal lower-level solution. Therein, the independent variables are fixed and the 
dependent variables are determined by the equality constraints. Discretization points 
are used to represent optimal lower-level solutions in the upper-level problem.

In the bilevel problem of scheduling production and energy systems, the energy 
balances are the only coupling constraints between the upper- and the lower-level 
problem. The energy balance is given in Eq. (4) and repeated here:

The energy demands Ėdemand
t,e

 are the upper-level variables in the energy balance and 
the powers V̇t,u,e provided by each energy conversion unit u are the lower-level vari-
ables. Thus, the only variable from the upper-level problem in the lower-level prob-
lem are the energy demands Ėdemand

t,e
 . Since discretization points are used to define 

optimal lower-level solutions in the upper level, discretization points are defined for 
given energy demands Ėdemand

t,e
 . Thus, discretization points indicate the power sup-

plied by each energy conversion unit if a particular energy demand occurs.
In Sect. 2.2 and Appendix B, we proved that there exists an optimal solution in 

which the number of energy conversion units not operated at one of their operational 
limits is less or equal to the number of energy forms e considered. We identify this 
optimal solution in the auxiliary problem (Sect. 3.4.3). This optimal solution is only 
valid for a specific energy demand. However, suppose we vary this energy demand, 
keep the power of the energy conversion units operated at their operational limits 
fixed, and compensate for the variation by adjusting the power of the energy conver-
sion units not operated at their operational limits. In that case, the solution is still 
feasible until an energy conversion unit exceeds its operational limits. In this range 
of validity, the lower-level objective function value identified by the discretization 
point provides a lower-level feasible solution and, therefore, an upper bound of the 
lower-level objective function. Still, within the range of validity of a discretization 
point, another discretization point can give a tighter upper bound. We call the energy 
conversion units not operated at their operational limits free energy conversion units. 
These units define the dependent variables. The energy conversion units operated at 

(18)
∑

u∈U

V̇t,u,e = Ėdemand
t,e

,∀t ∈ T , e ∈ E.
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their operational limits are named discretized energy conversion units and are the 
independent variables. For discretized energy conversion units, the operation is fixed 
in the discretization point k. These energy conversion units are either idle (index-set: 
Dzero

k
 ) or operated at their minimal or maximal load (index-sets: Dmin

k
 and Dmax

k
 ). 

Thus, the energy V̇D
k,t,u=d,e

 supplied by these discretized energy conversion units is 
fixed in the discretization point k:

Here, V̇min

u,e
 and V̇max

u,e
 are the minimal and maximal load of energy conversion unit u, 

respectively.
For each discretization point k, time point t, and energy form e, the power of one 

energy conversion unit u is not fixed, and thus, is free. These free energy conversion 
units are summarized by the set dfree

k,f
 . The index f counts the free energy conversion 

units for each discretization point k.
To fulfill each energy demand, the power of the free energy conversion units 

V̇D

k,t,u=dfree
k,f

,e
 is not limited. This unlimited power can lead to power values V̇D

k,t,u=dfree
k,f

,e
 

outside the operational limits of the free energy conversion unit. Outside the opera-
tional limits, the upper bound on the lower-level objective function is not considered 
anymore (c.f. Appendix A, Eq. (22) and Eq. (23)).

3.3 � Steps of the algorithm

Algorithm 1 solves the MILBP by a lower-bounding problem, lower-level problem 
and auxiliary problem. The lower-bounding problem is a finite (discretization-based) 
relaxation of the MILBP. The lower-level problem is solved for fixed upper-level 
variables. The lower-level optimal solution is used to evaluate the upper-level objec-
tive to generate an upper bound. This upper bound is valid in our case since there are 
no upper-level constraints depending on the lower-level variables. Bilevel optimal-
ity of the upper-bounding solution is assessed based on the lower bound provided 
by the lower-bounding problem. In an auxiliary problem, discretization points are 
identified from the solutions of the lower-level problem. The algorithm repeatedly 
solves these problems while the lower-bounding problem is tightened by adding dis-
cretization points until the optimality tolerance �u between upper and lower bound is 
reached.

(19)V̇D
k,t,u=d,e

= 0, ∀k ∈ K, t ∈ T , d ∈ Dzero
k

, e ∈ E

(20)V̇D
k,t,u=d,e

= V̇
min

u=d,e
, ∀k ∈ K, t ∈ T , d ∈ Dmin

k
, e ∈ E

(21)V̇D
k,t,u=d,e

= V̇
max

u=d,e
, ∀k ∈ K, t ∈ T , d ∈ Dmax

k
, e ∈ E.



512	 L. Leenders et al.

1 3

Our algorithm exploits the structure of the lower-level problem. In the lower-level 
problem, all constraints are written for each time step and no constraint connect the 
time steps. The objective function only sums the cost of each time step. Thus, the 
lower-level problem can be decomposed into individual optimization problems for 
each time step t. Each of these individual optimization problems is parameterized 
only by its energy demand Ėdemand

t,e
 . The solution obtained at one time step con-

stitutes a valid discretization point for all time steps because discretization points 
are defined for energy demands in a single time step which can occur in multiple 
time steps. Thus, probably fewer iterations are needed to solve the bilevel problem. 
In general, the algorithm might also be suitable to consider constraints that con-
nect time steps in the lower-level constraints. In this case, each discretization point 
defines the lower-level solution for a specific energy-demand curve of the whole 
time horizon.

The algorithm terminates in finite time because there is a finite number of pos-
sible discretization points. The number is finite because there is a maximum number 
of combinations of free energy conversion units and discretized energy conversion 
units. In the worst case, an enumeration of all the discretization points would be nec-
essary. However, in our applications of the algorithm, we observe that the algorithm 
does much better in practice and only needs a few iterations.

3.4 � Subproblems of the algorithm

In this section, we present the optimization problems considered in the algorithm: 
lower-bounding problem, lower-level problem and auxiliary problem. To make the 
explanation more specific, we present the algorithm for the supply of two energy 
forms e, i.e., heat and electricity. These energy forms are assumed to be supplied by 
boilers, combined-heat-and-power engines, and electricity grids.
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3.4.1 � Lower‑bounding problem (LBD)

The lower-bounding problem is the upper-level optimization problem (production 
system) while considering the constraints of the lower-level problem (energy sys-
tem) and the lower-level objective by discretization points.

In the 1st iteration and, thus, without discretization points, the lower-bounding 
problem is composed from Eqs. (1), (2), (4), (5) and (6). Thus, in the 1st iteration, 
the lower-bounding problem corresponds to the integrated scheduling, where the 
production system has full control over the energy system.

After the 1st iteration, the optimal solutions of lower-level problems are consid-
ered by discretization points K. A discretization point represents the optimal solu-
tion of the lower-level problem for a particular energy demand. The lower level’s 
objective resulting from a discretization point fl,Discr. Point

k,t
 is an upper bound on the 

lower-level objective f l,LBDt  in the discretizaion points range of validity (Sect. 3.2). 
We model this upper bound by a big-M formulation:

The objective function value is only constrained if the binary variable �obj
k,t

 equals 1. 
�
obj

k,t
 equals 1 if the power of the free energy-conversion units is within the range of 

validity of the discretization point. Note that for a specific energy demand multiple 
discretization points can give an upper bound on the objective function.

The binary variables � lower
k,t,f

 and �upper
k,t,f

 identify if the power of the free energy con-
version unit V̇D

k,t,u=dfree
k,f

,e
 is lower or higher than the operational limits. Thus, Eq. (23) 

ensures that the upper bound on the objective function in Eq. (22) is used if the 
power of the free energy conversion units is within their operational limits:

In Appendix A, equations are stated to identify if the power of the free energy con-
version units is within the operational limits.

3.4.2 � Lower‑level problem (LLP)

The lower-level problem is the operation optimization of the energy system for a 
given energy demand. The lower-level problem can be solved independently for 
each time step t because there are no constraints that connect time steps in the lower-
level. The lower-level problem was already stated in Eqs. (7)-(10). Compared to the 
algorithm in Djelassi et  al. (2019), here we do not have to evaluate in the upper-
bounding problem if the lower-level solution is feasible for the upper level. The 
evaluation is not necessary, since there are no lower-level variables in the constraints 
of the upper level. Hence, we can directly use the lower-level problem solutions to 
evaluate the upper-level objective.

(22)f l,LBD
t

≤ f
l,Discr. Point

k,t
+Mobj

⋅ (1 − �
obj

k,t
),∀k ∈ K, t ∈ T .

(23)
∑

f∈{1,2}

(�
upper

k,t,f
+ � lower

k,t,f
) + �

obj

k,t
≥ 1,∀k ∈ K, t ∈ T .
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3.4.3 � Auxiliary problem

The auxiliary problem identifies the discretization points from each lower-level 
solution. In discretization points, as few as possible energy conversion units are not 
operated at their operational limits. Thus, the objective of the auxiliary problem is 
to minimize the number of free energy conversion units (units that are not operated 
at their operational limits) while retaining the objective of the lower-level solution. 
The auxiliary problem considers the constraints of the lower-level problem. Because 
no constraints connecting time steps are considered in the lower-level problem, an 
auxiliary problem can be solved for each time step.

For each energy conversion unit, we define the 4 binary variables �min
t,u

 , �max
t,u

 , �zero
t,u

 
and �free

t,u
 . �min

t,u
 and �max

t,u
 identify if the energy conversion unit is operated at its mini-

mal or maximal operational limit, respectively. �zero
t,u

 identifies if the energy conver-
sion unit is idle. �free

t,u
 identifies if the energy conversion unit is operated between its 

operational limits.
The objective function of the auxiliary problem

is the minimization of the number of free energy conversion units in time step t.
In the constraints, the objective function value of the lower-level problem cal-

culated with the variables of the auxiliary problem f l,auxt  needs to be equal or lower 
than the objective function value from the lower-level problem fl,LLP

t
:

The constraints of the lower-level problem need to hold in the auxiliary problem 
(Eqs. (8)–(10)). Additional constraints define the 4 binary variables �min

t,u
 , �max

t,u
 , �zero

t,u
 

and �free
t,u

.
An energy conversion unit u is either operated at its operational limits, operated 

between its operational limits (free), or idle. Thus, for the sum of the binary vari-
ables we can state:

As stated at the beginning of Sect.  3.4, we show the equations to identify the 
energy conversion units at their operational limits for electricity grids, boilers and 
combined-heat-and-power engines. Electricity grids are an example of energy con-
version units without an operational limit. Boilers and combined-heat-and-power 
engines are examples for energy conversion units with upper and lower operational 
limits. Combined-heat-and-power engines are also an example for energy conver-
sion units connecting two energy forms.

We model two electricity grids, one for the supply with electricity and one for 
the feed-in of electricity into the grid. For the electricity grids, the 4 binary vari-
ables are defined in the following: The electricity grids have no upper operational 

(24)min
�̇aux

t ,�auxt

∑

u∈U

𝛼free
t,u

(25)f l,aux
t

≤ fl,LLP
t

.

(26)�min
t,u

+ �max
t,u

+ �zero
t,u

+ �free
t,u

= 1,∀u ∈ U.
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limits and zero is the lower operational limit of the electricity grids. Thus, �max
t,u

 
and �zero

t,u
 are defined to be zero:

DGrid is a set containing all electricity grids.
We identify if the electricity grid is at the lower operational limit ( �min

t,u
= 1 ) 

by:

Mmax
e=el

 is a sufficiently large number such that the electricity demand from the elec-
tricity grid or the electricity supply to the electricity grid never exceeds this number. 
Thus, a electricity grid is identified as the free energy conversion unit for electricity 
( �free

t,u
= 1) if the power V̇aux

t,u,e=el
 is greater than 0.

The constraints to define the 4 binary variables for boilers and combined-heat-
and-power engines are given in the following: heat and electricity outputs are 
connected for a combined-heat-and-power engine. Thus, if a combined-heat-and-
power engine is operated at its operational limit in heat supply, also the opera-
tional limit in the electricity supply is reached. Consequently, we identify if a 
combined-heat-and-power engine is operated at its operational limit only for one 
energy form, i.e., heat. We identify if the power of a combined-heat-and-power 
engine or a boiler is at its lower operational limit by:

If �min
t,u

 equals 0, the supplied power V̇aux
t,u,e=heat

 needs to be lower or equal than the 
heat supply in maximal load V̇max

u,e=heat
 . If �min

t,u
 equals 1, the supplied power V̇aux

t,u,e=heat
 

needs to be lower or equal than the heat supply in minimal part-load V̇min

u,e=heat
 . Since 

the other constraints require that if a unit is operated the supplied power is greater 
or equal than the minimal part-load, the unit is operated at its minimal operational 
limit. DCHP and DBoiler are sets with all combined-heat-and-power engine and boil-
ers, respectively.

If a combined-heat-and-power engine or a boiler is operated at its upper opera-
tional limit V̇max

u,e=heat
 is identified by:

A similar explanation as for Eq. (30) applies for the upper operational limit.
Whether a combined-heat-and-power engine or a boiler is idle is identified by 

checking if the power is within the upper and lower operational limit:

(27)�max
t,u

= 0,∀u ∈ DGrid

(28)�zero
t,u

= 0,∀u ∈ DGrid.

(29)V̇aux
t,u,e=el

≤ (1 − 𝛼min
t,u

) ⋅Mmax
e=el

,∀u ∈ DGrid.

(30)V̇aux
t,u,e=heat

≤ V̇
max

u,e=heat
− 𝛼min

t,u
⋅ (V̇

max

u,e=heat
− V̇

min

u,e=heat
),∀u ∈ DCHP ∪ DBoiler.

(31)V̇aux
t,u,e=heat

≥ V̇
max

u,e=heat
⋅ 𝛼max

t,u
,∀u ∈ DCHP ∪ DBoiler.

(32)V̇aux
t,u,e=heat

≥ (1 − 𝛼zero
t,u

) ⋅ V̇
min

u,e=heat
,∀u ∈ DCHP ∪ DBoiler
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Thus, if the heat supply V̇aux
t,u,e=heat

 is between the operational limits, the binary vari-
ables �min

t,u
 , �max

t,u
 and �zero

t,u
 are zero and Eq. (26) sets �free

t,u
 to 1. In this case, the corre-

sponding unit is identified as a free energy conversion unit for heat.

3.4.4 � Integration of auxiliary problem in lower‑level problem

It should be mentioned that the auxiliary problem can also be integrated into the 
lower-level problem if the number of free energy conversion units is known. For this 
purpose, the following constraints should be added:

Again, �free
t,u

 identifies if an energy conversion unit u is not operated at its operational 
limits ( �free

t,u
=1). The sum over �free

t,u
 is constrained by the number of allowed free 

energy conversion units Mfree . For the considered energy system in this paper, the 
energy system can supply 2 energy forms, and the maximum number of free energy 
conversion units Mfree is 2 (c.f. Sect. 2.2).

In this paper, we use the auxiliary problem and present a more general formula-
tion in which an identification of the number of free energy conversion units is not 
necessary.

4 � Case studies

The algorithm is applied to solve the bilevel problem for scheduling production and 
energy system to two case studies. The production system is modeled based on the 
State-Task-Network formulation for batch production systems (Kondili et al. 1993). 
The production system in the case studies is based on the case study from Kondili 
et al. (1993) (Fig. 1). In both case studies, we use the same energy system model 
from Voll et al. (2013). The models of both systems are described in detail in our 
previous publication (Leenders et al. 2019a).

In the two case studies, the energy systems differ: in the first case study (CHP 
subsidies), we consider: 3 boilers ( 4MW , 1.5MW , 0.5MW ) and 1 combined-heat-
and-power engine ( 3.5MW ) which are connected to the electricity grid and the gas 
grid. In the second case study (Grid alternative), we consider: 3 boilers ( 4MW , 
1.5MW , 0.5MW ) and 2 combined-heat-and-power engines ( 1.5MW , 1.5MW ) 
which are connected to the electricity grid and the gas grid. The big-M parame-
ters in Eqs. (22) and (29) cannot be calculated exactly. Thus, the values need to be 
defined big enough to properly model the reformulation as well as small enough to 
prevent bad numerical behavior. In the case studies, we didn’t experience any bad 
behavior from the choice of our big-M parameters.

(33)V̇aux
t,u,e=heat

≤ (1 − 𝛼zero
t,u

) ⋅ V̇
max

u,e=heat
,∀u ∈ DCHP ∪ DBoiler.

(34)
∑

u∈U

�free
t,u

≤ Mfree,∀t ∈ T .
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For both case studies, we compare the bilevel optimization with three other 
optimization approaches: integrated optimization, sequential optimization and the 
method for incomplete information exchange from Leenders et  al. (2019a). In the 
method from Leenders et  al. (2019a), the energy system responds approximated 
demand-dependent energy cost to the production system. The production system 
uses this information as basis for optimization. Thereby, the production system takes 
the misaligned objectives into account.

We recall that the integrated optimization of production and energy system opti-
mizes both systems to the objective of the production system (upper-level objective). 
For the production system, the integrated optimization is the ideal benchmark lead-
ing to the lowest cost, since, the energy system is operated in favor of the production 
system.

The sequential optimization is the most common optimization approach. In the 
sequential optimization, the production system is first minimized to the production 
cost. Therein, the production system has no information on the energy system. Thus, 
just the upper-level problem is solved. The result is the production schedule and the 
energy demand. Subsequently, the energy system is optimized to the objective of 
the energy system. The energy demand is given by the previous production system 
optimization.

If we consider the situation of the production system as the leader and the energy 
system as the follower, both the integrated and the sequential optimization yield sub-
optimal solutions for the production system. The solutions are suboptimal because 
the response of the energy system is too optimistic or not anticipated, respectively. 
Although the solution of the integrated optimization promises the lowest costs for 
the production system, the energy system would follow its objective instead of the 
objective of the production system. To model this behavior, we fix the solution of 

Fig. 1   Production system of the case studies. The production system is a batch production system and 
based on the example of Kondili et al. (1993). The illustration is adapted from Leenders et al. (2019b). 
The circles represent the states of the products. Thus, S1, S2, and S3 are raw materials, and S7 and S10 
are final products. The rectangles represent the tasks. As additional information, the form of the energy 
demand as well as the equipment that can be used to perform the task is given. The numbers beside the 
arrows give the production and consumption fraction of the tasks. E: Equipment; S: State; El.: Electricity
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the integrated optimization for the production system (upper level) variables and 
optimize subsequently the energy system (lower level). The cost increase for the 
production system is called regret since it expresses the excess costs that arise if a 
cooperative energy system is wrongly assumed. In contrast, the bilevel formulation 
assumes an independent energy system. Thus, the solution of the bilevel formulation 
provides the minimal realizable cost.

The algorithm and the benchmarks are executed on an Intel(R) Xeon(R) CPU 
E5-1660 v3 with 3 GHz running on openSUSE Tumbleweed with Kernelversion 
4.17.13. The algorithm is implemented and the subproblems are written in C++ 
based on an early version of libALE (Djelassi and Mitsos 2019). The algorithm 
works in interaction with GAMS such that the subproblems are automatically for-
mulated with their input data as GAMS code. The subproblems are then solved 
with GAMS 25.1.3 (GAMS Development 2018) using CPLEX 12.8.0.0 (IBM Cor-
poration 2017) applying 8 threads. The sequential optimization and the integrated 
optimization problems are also formulated in GAMS 25.1.3 (GAMS Development 
2018) and solved with CPLEX 12.8.0.0 (IBM Corporation 2017) applying 8 threads. 
The time limit for all optimization problems is set to 1000 s , working memory is 
set to 30 GB, and the allowed absolute gap is 10−3 . The optimality tolerance of the 
upper-level objective function �u is set to 0.01. We choose such tight tolerances, 
since the optimization problems are solved fast and, thereby, we can identify the 
exact benefits of the bilevel solution compared to the common sequential and inte-
grated optimization.

4.1 � CHP subsidies

In this case study, the energy system gets subsidies for electricity produced by the 
combined-heat-and-power engines, as it is the case, e.g., in Germany. The subsidies 
are not forwarded to the production system resulting in misaligned objectives. In 
Sect. 4.1.1, we describe the detailed setup and objectives. In Sect. 4.1.2, we present 
and discuss the results of the case study.

4.1.1 � Formulation

In the bilevel problem for CHP subsidies, the production system is scheduled in the 
upper-level problem for minimizing its production and energy cost. In the lower-
level problem, the operation of the energy system is optimized. In the lower-level 
problem, the binary variables are: for each energy conversion unit and time step, a 
binary variable to decide if the energy conversion unit is operated, and a binary vari-
able that allows to only buy electricity from the grid or either sell electricity to the 
grid at the same time.
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The energy system gets subsidies for electricity produced by the combined-heat-
and-power engines, but the subsidies are not forwarded to the production system. 
The amount of subsidies are the German subsidies paid for combined-heat-and-
power engine with a capacity over 2MW . The subsidies and energy prices are pro-
vided in Table 1. The prices for energy from the grid are not equal in the case stud-
ies to distinguish the case studies further.

In the following, we present the detailed formulation of the objective functions: 
The objective function of the production system f u is the production cost �PST� and 
the energy cost to be paid by the production system ( �U,ES,VT

�̇ + �U,ES,o
T
�):

The production cost �PST� consider fix cost OCfix

i,j
 and variable cost OCvar

i,j
 for run-

ning task i on production unit j. Wt,i,j is a binary variable and equals 1 only in time 
step t when task i started on production unit j. Bt,i,j equals the batch size only in time 
step t when task i started on production unit j. Furthermore, variable cost OCstor

s
 is 

considered for storing amount Vt,s of product s in time step t.
The energy cost �U,ES,VT

�̇ + �U,ES,o
T
� considers cost for purchasing gas, purchas-

ing electricity, and revenues for selling electricity. The cost for electricity results 
from purchasing electricity Vt,u=gridbuy,e=el for a price of pel,buy . The revenues from 
selling electricity result from selling electricity Vt,u=gridsell,e=el for a price of pel,sell . 
The cost for gas results from purchasing gas Ugas

t  for the price of pgas . The amount of 
consumed gas is calculated by an affine function depending on V̇t,u,e=heat and ot,u . For 
the cost to be paid to the energy system, a profit margin of the energy system could 
be added. Here, we assume only a profit margin for the energy system by subsidies 
for running combined-heat-and-power engines.

The objective function of the energy system is the cost to be paid by the energy 
system:

(35)

f u(�, �̇, �) = �PS
T
� + �U,ES,V

T
�̇ + �U,ES,o

T
�

=
∑

t∈T

Δt ⋅
∑

j∈J

∑

i∈I

t∑

t�=t−Δti,j

(
Wt�,i,j ⋅ OC

fix

i,j
+ Bt�,i,j ⋅ OC

var
i,j

)

+
∑

t∈T

Δt ⋅
∑

s∈S

Vt,s ⋅ OC
stor
s

+
∑

t∈T

Δt ⋅
(
pgas ⋅ U

gas

t + pel,buy ⋅ Vt,u=gridbuy,e=el − pel,sell ⋅ Vt,u=gridsell,e=el

)
.

Table 1   Energy cost and subsidies of case study CHP subsidies. pCHP,sell and pCHP,prod are subsidies for 
electricity from combined-heat-and-power engines sold to the grid or consumed on-site, respectively. pgas 
is the gas price. pel,buy and pel,sell is the electricity price for purchase and selling, respectively

Energy pCHP,sell pCHP,prod pgas pel,buy pel,sell

Prices or subsidies /(€/kWh) 0.031 0.018 0.05 0.04 0.035
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These cost result from purchasing gas and electricity, revenues for selling electric-
ity, and subsidies for running combined-heat-and-power engines. The cost for gas 
is again calculated by the amount of gas Ugas

t  and the price of gas pgas . The cost 
for electricity is calculated by the bought electricity Vt,u=gridbuy,e=el and the price for 
electricity pel,buy . The revenues for selling electricity result from selling electricity 
Vt,u=gridsell,e=el for a price of pel,sell . The revenues for selling electricity are increased 
by the subsidies pCHP,sell for electricity produced by the combined-heat-and-power 
engines. Further subsidies pCHP,prod are gathered for electricity produced by the 
combined-heat-and-power engines and not sold to the grid.

The case study CHP subsidies considers a time horizon of 12 h. Each time step 
has the same length Δt of 1 h. In the last time step of the time horizon, the produc-
tion system has supply 56 t of S7 and 108 t of S10. The parameters for equipment 
size, storage size, and operational cost of the production system are the same as in 
Leenders et  al. (2019a). The parameters of the energy conversion units are taken 
from Voll et al. (2013).

4.1.2 � Results

The optimal bilevel solution ( f u,bilvl = 4936 €) saves 3.3% of the cost for the produc-
tion system compared to the sequential optimization ( f u,seq = 5106 €, c.f. Figure 2). 
The method from Leenders et  al. (2019a) results in f u,inc.inf . = 5077 € cost for the 
production system and saves 0.6% compared to the sequential optimization. The 
integrated optimization results in even lower cost ( f u,int = 4637 €) than the bilevel 
optimization and saves 9.2% compared to sequential optimization. However, as 
mentioned previously, the integrated optimization assumes full cooperation of the 
energy system, which is not given in this case study. If we subsequently optimize the 
energy system to calculate the regret, the cost for the energy system decreases, but 
cost increases for the production system ( f u,corr.int = 5117€). The cost increase for 
the production system (regret) is 9.4% . The regret results in even higher cost for the 
production system than in the sequential optimization ( 0.2% ). Thus, the bilevel opti-
mization provides the minimal, realizable cost for the production system (Fig. 2).

The substantial cost benefits arise in the integrated optimization because the 
combined-heat-and-power engines are not operated (c.f. Fig. 3). Thus, no heat and 
electricity are supplied by the combined-heat-and-power engines and instead by 
the boilers and the electricity grid. Electricity from the electricity grid is cheaper 
for the production system, but for the energy system, the subsidies make the 

(36)

f l(�̇, �) = �L,ES,V
T
�̇ + �L,ES,o

T
�

=
∑

t∈T

Δt ⋅

[
pgas ⋅ U

gas

t + pel,buy ⋅ Vt,u=gridbuy,e=el

−
(
pel,sell + pCHP,sell

)
⋅ Vt,u=gridsell,e=el

− pCHP,prod ⋅
(
Ėdemand
t,e=el

− Vt,u=gridbuy,e=el

)]
.
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combined-heat-and-power engines more beneficial. Thus, the production system 
favors that the energy system supplies electricity from the grid and the energy sys-
tem favors to supply the electricity by the combined-heat-and-power engines. In the 
sequential optimization, 45.9% of the electricity is covered by the combined-heat-
and-power engines. In hours where the energy system can produce more electricity 
than demanded, the energy system sells additional electricity to the grid.

In the bilevel optimization, 20.1% of the electricity demand is covered by com-
bined-heat-and-power engines because the energy system significantly benefits 
when using combined-heat-and-power engines. The production system chooses a 
demand profile which results in low supply of electricity by the combined-heat-and-
power engines due to the relatively high cost of electricity covered by combined-
heat-and-power engines.

The subproblems of the bilevel algorithm, the method from Leenders et  al. 
(2019a), the integrated optimization, and the sequential optimization are solved 
within the time limit and, thus, are solved to the predefined gap.

The sequential optimization and integrated optimization are solved each within 
2 s . The method from Leenders et al. (2019a) solves the problem in 23 s . The pro-
posed algorithm solves the bilevel optimization problem in 262 s and needs 4 iter-
ations. The lower-level problem and the auxiliary problem are always solved well 
below 1 s . The solution time of the lower-bounding problem increases with each 
iteration with < 1 s , 12 s , 72 s and 178 s . The solution time increases since discre-
tization points are added in each iteration. The algorithm identifies 13 discretization 
points in total. From the first iteration, 7 discretization points are identified, from 
the second iteration, 5 additional discretization points are identified, and finally in 
the third iteration, 1 additional discretization point is identified. With these 13 dis-
cretization points in the fourth iteration, the lower-bounding problem reaches the 
same result as the evaluation of the lower-level solution in the upper-level objective 
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differ. In the integrated optimization, the cost of the production system is minimized in a single-level 
optimization. The cost of regret is added after a subsequent optimization of the energy system. In the 
sequential optimization, first, the production system is optimized without considering energy cost. Sub-
sequently, the energy system is optimized. The method from Leenders et  al. (2019a) uses incomplete 
information and reduces the cost slightly (Incomplete inf.)
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and the algorithm terminates with the optimal bilevel solution. As expected, the 
cost resulting from the lower-bounding problem (LBD) increase in each iteration 
(Fig. 4), because in each iteration we add tightening constraints by the discretization 
points. No such trend exists for the optimal solution of the sum of the cost from the 
lower-bounding problem and the additional cost from evaluation of the lower-level 
solution in the upper-level objective. Similar to the integrated optimization, these 
additional cost are named regret because they also arise from a subsequent optimiza-
tion of the energy system. Since the lowest cost can only be reached by the optimal 
solution of the bilevel problem, the cost from the lower-bounding problem and the 
regret are never lower than the optimal solution of the bilevel problem (Fig. 4).
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Fig. 3   Heat demand in the case study CHP subsidies. The heat demands are plotted for: a bilevel optimi-
zation b integrated optimization, and c sequential optimization
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4.2 � Grid alternative

In this case study, the energy system is only connected to the gas grid. Thus, the 
energy system provides heat and electricity, while it provides electricity only by 
combined-heat-and-power engines. The production system can buy additional elec-
tricity directly from the electricity grid. First, we describe the detailed setup and the 
objectives (Sect. 4.2.1). Second, we present the results (Sect. 4.2.2).

4.2.1 � Formulation

In the bilevel problem of Grid alternative, the production system is scheduled in the 
upper level to minimize its production and energy cost. The energy system is sched-
uled in the lower level. In the lower-level problem, we have the binary variables as 
in the case study CHP subsidies (Sect. 4.1.1).

In this case study, the production system pays a predefined price for heat and elec-
tricity to the energy system. Additionally, the production system is directly connected 
to the grid and can purchase electricity from the grid. Thus, the energy system has to 
cover the heat demand but not the electricity demand. The energy prices are given in 
Table 2.

The objective function of the upper level (production system) is f u(�, �̇, �) and 
considers production cost �PST� and energy cost ( �U,ES,VT

�̇ + �U,ES,o
T
� ) to be paid by 

the production system.:

The production cost �PST� is the same as in CHP subsidies (Eq. (35)). The energy 
cost �U,ES,VT

�̇ + �U,ES,o
T
� consider cost for purchasing heat and electricity from the 

energy system as well as cost for electricity purchased directly from the grid. The 
cost for heat is calculated by the heat demand Edemand

t,e=heat
 and the price for heat pheat . 

The cost for electricity from the energy system is calculated by the price for electric-
ity from the energy system pel

ES
 and the difference of electricity demand Edemand

t,e=el
 and 

electricity already bought from the grid Vt,u=gridbuy,e=el . The cost for electricity from 
the grid is calculated by the price for electricity from the grid pel

grid
 and the amount 

of electricity bought from the grid Vt,u=gridbuy,e=el.

(37)

f u(�, �̇, �) =�PS
T
� + �U,ES,V

T
�̇ + �U,ES,o

T
�

=�PS
T
� +

∑

t∈T

Δt ⋅
[
pheat ⋅ Edemand

t,e=heat

+ pel
ES

⋅

(
Edemand
t,e=el

− Vt,u=gridbuy,e=el

)
+ pel

grid
⋅ Vt,u=gridbuy,e=el

]
.

Table 2   Energy price of case study Grid alternative. pheat and pel
ES

 are the prices for heat and electricity to 
be paid by the production system to the energy system, respectively. pel

grid
 is the price for the production 

system for electricity from the grid. pgas is the gas price and pel,sell is the electricity price for the energy 
system

Energy pheat pel
ES

pel
grid

pgas pel,sell

Price /(€/kWh) 0.07 0.05 0.2 0.06 0.04
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The objective function of the lower level (energy system) is to maximize the profit 
(equal to minimization of negative profit). The profit of the energy system PL,ES consid-
ers revenues from selling heat and electricity to the production system, cost for pur-
chasing gas and revenues for selling electricity to the grid:

The revenues from heat are calculated by the heat demand Edemand
t,e=heat

 and the price for 
heat pheat . The revenues from selling electricity to the production system are calcu-
lated by the price for electricity pel

ES
 and the difference between electricity demand 

Edemand
t,e=el

 and electricity already bought from the grid Vt,u=gridbuy,e=el . The cost of pur-
chasing gas results from purchasing amount of gas Ugas

t  to run the energy conversion 
units and the price for gas pgas . The amount of consumed gas is calculated by an 
affine function depending on V̇t,u,e=heat and ot,u . The revenues from selling electricity 
result from selling amount of electricity Vt,u=gridbuy,e=el for a price of pel,sell.

In the last time step of the time horizon, the production system has supply the 
same amount as in the case study CHP subsidies, i.e., 56 t of S7 and 108 t of S10. 
All other parameters are the same as in CHP subsidies.

4.2.2 � Results

Again, the bilevel optimization provides the minimal realizable cost for the pro-
duction system ( f u,bilvl = 6689€). The bilevel optimization saves 3.2% compared 
to sequential optimization ( f u,seq = 6910 €, Fig.  5). In this case study, the method 
from Leenders et  al. (2019a) reaches the same cost ( f u,inc.inf . = 6689 €) as the 

(38)

f l(�̇, �) =�L,ES,V
T
�̇ + �L,ES,o

T
� = −PL,ES

= −
∑

t∈T

Δt ⋅
[
pheat ⋅ Edemand

t,e=heat
+ pel

ES
⋅

(
Edemand
t,e=el

− Vt,u=gridbuy,e=el

)

− pgas ⋅ U
gas

t + pel,sell ⋅ Vt,u=gridsell,e=el

]
.

Fig. 5   In the case study grid alternative, cost from the bilevel and alternative optimization approaches 
differ. In the integrated optimization, the cost of the production system is minimized in a single-level 
optimization. The cost of regret is added after a subsequent optimization of the energy system. In the 
sequential optimization, first, the production system is optimized without considering energy cost. Sub-
sequently, the energy system is optimized. In this case study, the method from Leenders et al. (2019a) 
using incomplete information reaches the cost from the bilevel optimization (Incomplete inf.)
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bilevel optimization. Still, as shown in the previous case study CHP subsidies, 
the identification of the bilevel solution is not guaranteed. The integrated optimi-
zation ( f u,int = 5170 €) would result in 25.2% cost savings for the production sys-
tem compared to the sequential optimization. As in CHP subsidies, the integrated 
optimization results in the best objective for the production system, but the solu-
tion from the integrated optimization is again not applicable in practice. The cost for 
the integrated optimization is increased after a subsequent lower-level optimization 
( f u,corr.int = 6989€). The regret is 26.3% and consequently, the cost for the produc-
tion system is even 1.1% higher than from the sequential optimization.

The cost benefits by the integrated optimization arise from energy supply by 
the combined-heat-and-power engines (c.f. Fig.  6). The combined-heat-and-
power engines are operated such that electricity demand is totally supplied by the 
combined-heat-and-power engines, because, in this case study, electricity from 
the energy system is cheaper than electricity from the grid for the production 
system. In the sequential optimization and in the bilevel optimization, only 4% 
and 4.8% of electricity demand is covered by combined-heat-and-power engines 
respectively. This low coverage of electricity by the combined-heat-and-power 
engines is caused because the energy system does not prefer to use combined-
heat-and-power engines to cover the electricity demand. This difference in the 
use of the combined-heat-and-power engines results in the large cost differences 
between the integrated optimization and the other approaches.

The sequential and integrated optimizations are solved within 2 s . The method 
from Leenders et al. (2019a) solves the problem within 30 s . The proposed algo-
rithm solves the bilevel optimization problem in 153 s and needs 3 iterations. The 
lower-level problem and the auxiliary problem are always solved well below 1 s . 
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Fig. 6   Heat demand in the case study grid alternative. The heat demands are plotted for: a bilevel optimi-
zation b integrated optimization, and c sequential optimization



526	 L. Leenders et al.

1 3

The solution time of the lower-bounding problem increases with each iteration 
with < 1 s , 84 s and 68 s . The algorithm identifies 7 discretization points. Thus, 
fewer discretization points than time steps are needed, meaning that some dis-
cretization points are valid and used for multiple time steps. In the first iteration, 
4 discretization points are identified, and in the second iteration, 3 discretization 
points are identified. The algorithm terminates in the third iteration and the opti-
mal solution of the bilevel problem is identified.

As expected, the cost resulting from the lower-bounding problem increase in 
each iteration (Fig. 7) and the cost resulting from the evaluation of the lower-level 
solution in the upper-level objective does not show a trend.

The case studies show that the proposed algorithm solves the bilevel problem 
efficiently with only a few iterations. Furthermore, the identified bilevel solution 
considers the misaligned objectives of production and energy system and if com-
plete information on the energy system is available, the bilevel solution allows for 
the best solution in practical application.

5 � Conclusions

The scheduling of production systems with on-site energy systems is commonly 
performed sequentially. An integrated optimization of both systems to an overall 
objective seems beneficial, but often, in practice, both systems have conflicting 
objectives. Bilevel optimization problems consider conflicting objectives between 
decision-makers, i.e., a leader and a follower, and thus, lead to a more realistic 
modeling.

In this paper, we formulate a bilevel problem for production and energy system 
scheduling. To solve this bilevel problem, we select the relevant parts from the 
algorithm in Djelassi et al. (2019) and add a procedure to identify dependent and 
independent variables. Thereby, we can solve the bilevel problem of production 
and energy system scheduling.
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Fig. 7   Total cost for the production system in the case study grid alternative from the lower-bounding 
problem (LBD) and from the evaluation of the lower-level solution in the upper-level objective (regret). 
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The algorithm iteratively solves the bilevel problem, while 3 optimization 
problems are solved in each iteration: lower-bounding problem, lower-level prob-
lem, and auxiliary problem. In the lower-bounding problem, discretization points 
bound the lower-level objective function by solutions from the lower-level prob-
lem in previous iterations.

The algorithm is successfully applied to two case studies based on literature 
examples for scheduling a production system and an energy system. The solution 
of the bilevel problem reaches cost savings of 3.3% and 3.2% compared to the 
sequential optimization, and 3.5% and 4.3% compared to an integrated optimiza-
tion including regret. Furthermore, cost savings are realized compared to a previ-
ous method from the authors based on incomplete information exchange.

Thus, on the one hand, the proposed algorithm solves the bilevel problem. On the 
other hand, the solution of the bilevel problem provides the best realizable solution 
for scheduling a production system which is supplied by an on-site energy systems.

Appendix A

Additional constraints of the discretization points in the lower‑bounding problem

In this section, we provide the additional constraints of discretization points in the 
lower-bounding problem. By these additional constraints, we identify if the discre-
tization point is valid, i.e., if the free energy conversion units are operated within 
their operational bounds.

For every discretization point k and time step t, the heat demand Ėdemand
t,e=heat

 of the 
production system needs to be covered by the heat supply V̇D

k,t,u,e=heat
 of the energy 

conversion units:

The electricity demand Ėdemand
t,e=el

 needs to be covered by the electrical supply V̇D
k,t,u,e=el

 
of the energy conversion units:

The discretization points are defined in Sect. 3.2. In our case study, we considered 
two energy forms heat and electricity. In the energy system, we modeled boilers, 
combined-heat-and-power engines, and the electricity grid. Thus, we define opera-
tional limits for energy conversion units supplying heat and electricity. The opera-
tional limits for boilers and combined-heat-and-power engines are defined for the 
energy form heat. The heat and electricity supply of a combined-heat-and-power 
engine is connected. Thus, the operational limits of the electricity supply can be 
defined by the operational limit of the heat supply. To identify if the operational 
limits of the free energy conversion unit hold, big-M formulations are used in the 

(39)
∑

u∈U

V̇D
k,t,u,e=heat

= Ėdemand
t,e=heat

,∀k ∈ K, t ∈ T .

(40)
∑

u∈U

V̇D
k,t,u,e=el

= Ėdemand
t,e=el

,∀k ∈ K, t ∈ T .
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lower-bounding problem. For heat-supplying energy conversion units, the lower 
operational limit is identified by:

The binary variables � lower
k,t,f

 identify if the power of the free energy conversion unit 
V̇D

k,t,u=dfree
k,f

,e
 is lower than the minimal load V̇min

u=dfree
k,f

,e
 . The big-M parameter Mlower

k,t,f
 

needs to be chosen such that the heat balance can be fulfilled for every heat demand 
that can be supplied by the energy system.

Mlower
k,t,f

 is defined as the maximum heat Mmax
e=heat

 that can be supplied by the energy 
system reduced by the heat already supplied by the other energy conversion units 
V̇

D

k,t,u=d,e=heat
 and the minimal load of the free energy conversion unit V̇min

u=dfree
k,f

,e=heat
:

To identify if the upper operational limit holds for heat-supplying energy conversion 
units, the following equation is stated:

The binary variable �upper
k,t,f

 identifies if the power of the free energy conversion unit 
V̇D

k,t,u=dfree
k,f

,e
 is higher than the maximal load V̇max

u=dfree
k,f

,e
 . The big-M parameter Mupper

k,t,f
 

needs to be chosen such that the heat balance can be fulfilled for every heat demand 
that can be supplied by the energy system. Therefore, Mupper

k,t,f
 is defined as the mini-

mal heat that can be supplied by the energy system increased by the heat already 
supplied by the other energy conversion units, the maximal heat load of the largest 
combined-heat-and-power engine V̇max

e=heat
 and the maximal load of the free energy 

conversion unit V̇max

u=dfree
k,f

,e=heat
:

The parameter Mmin
e=heat

 is the minimal heat that can be supplied and is commonly 0.
The maximal heat load of the largest combined-heat-and-power engine V̇max

e=heat
 is 

required for the case a combined-heat-and-power engine unit is selected as free 
energy conversion unit for electricity. Thus, with the parameter Mupper

k,t,f
 , the heat 

(41)
V̇D

k,t,u=dfree
k,f

,e=heat
≤ V̇

min

u=dfree
k,f

,e=heat
+ (1 − 𝛽 lower

k,t,f
) ⋅Mlower

k,t,f
,

∀k ∈ {K|dfree
k,f

∈ DCHP ∪ DBoiler}, t ∈ T , f ∈ {1, 2}.

(42)
Mlower

k,t,f
=Mmax

e=heat
−

∑

d∈Dmin
k

∪Dmax
k

V̇
D

k,t,u=d,e=heat
− V̇

min

u=dfree
k,f

,e=heat
,

∀k ∈ {K|dfree
k,f

∈ DCHP ∪ DBoiler}, t ∈ T , f ∈ {1, 2}.

(43)
V̇D

k,t,u=dfree
k,f

,e=heat
≥ V̇

max

u=dfree
k,f

,e=heat
− (1 − 𝛽

upper

k,t,f
) ⋅M

upper

k,t,f
,

∀k ∈ {K|dfree
k,f

∈ DCHP ∪ DBoiler}, t ∈ T , f ∈ {1, 2}.

(44)

M
upper

k,t,f
= −Mmin

e=heat
+

∑

d∈Dmin
k

∪Dmax
k

V̇
D

k,t,u=d,e=heat
+ V̇

max

e=heat

+ V̇
max

u=dfree
k,f

,e=heat
,∀k ∈ {K|dfree

k,f
∈ DCHP ∪ DBoiler}, t ∈ T , f ∈ {1, 2}.
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power of the free energy conversion unit can be reduced such that the minimal heat 
supply can be reached in the heat balance.

In our model, we consider two types of electricity grids: electricity purchase and 
electricity sale. If an electricity grid is the free energy conversion unit, we also need 
to check if the operational limits hold. The lower operational limit of the electricity 
grids is 0. Whether the lower operational limit holds is identified by:

The big-M parameter Mmax
e=el

 is the maximum electricity that the production system 
could demand from the energy system. For the lower operational limit, Eq. (45) 
checks if V̇D

k,t,u=dfree
k,f

,e=el
 is non-negative.

The upper operational limit is never exceeded for electricity grids:

Appendix B

Extended proof for multiple energy forms

In this section, we extend the proof to multiple energy forms.

Proposition 2  Let the lower-level problem be given for multiple energy forms e and 
one time step t as

Therein, �̇t is the vector of power supplied by the energy conversion units u in all 
energy forms e ∈ E and �t is the vector of the operational state of each energy con-
version unit u.

For this problem, there exists an optimal solution in which the number of energy 
conversion units not operated at one of their operating limits is less or equal to the 
number of energy forms e considered. More precisely, let Problem (47) be feasible 
and let (�∗

t
, �̇∗

t,e
) be globally optimal in Problem (47). Then there exists a solution 

(�∗
t
, ̃̇�t,e ) that is also globally optimal in Problem (47) and for which there exists at 

most |E| elements u ∈ U such that

(45)
V̇D

k,t,u=dfree
k,f

,e=el
≤(1 − 𝛽 lower

k,t,f
) ⋅Mmax

e=el
,

∀k ∈ {K|dfree
k,f

∈ Dgrid}, t ∈ T , f ∈ {1, 2}.

(46)�
upper

k,t,f
= 0,∀k ∈ {K|dfree

k,f
∈ Dgrid}, t ∈ T , f ∈ {1, 2}.

(47)

min
�̇t ,�t

f l
t
(�̇t, �t) = �L,ES,V

t

T
�̇t + �L,ES,o

t

T
�t

s.t.
∑

u∈U

V̇t,u,e = Ėdemand
t,e

,∀e ∈ E

V̇
−

t,u,e
(ot,u) ≤ V̇t,u,e ≤ V̇

+

t,u,e
(ot,u),∀u ∈ U, e ∈ E

au ⋅ ot,u = bu ⋅ V̇t,u,e=e1
− V̇t,u,e=e2

,∀(u, e1, e2) ∈ C.



530	 L. Leenders et al.

1 3

Note that a connecting energy conversion unit possesses two power flows that are 
subject to operational limits. Nevertheless, each connecting energy conversion unit 
is only counted once for the purposes of this proposition.

Proof  Consider the case that (�∗
t
, �̇∗

t,e
) is given such that for at most |E| elements of 

u ∈ U the following equation holds:

Then, the result is proven immediately with ̃̇�t,e = �̇∗
t,e

.
In the following, we prove that if we consider two energy forms e1 and e2 , the 

maximum number of energy conversion units at their operational limits can be 
reduced to at maximum two in an optimal solution. This result can then be general-
ized to an arbitrary number of energy forms e if we iteratively consider two energy 
forms and reduce the number of the energy conversion units not at their operational 
limit to at maximum two.

For the case of the two energy forms e1 and e2 , energy conversion units can either 
output energy form e1 or e2 , or if they are a connecting energy conversion unit, they 
output both energy forms e1 and e2 . The energy forms e output by an energy conver-
sion unit u is given by the set Eu . Let u1, u2, u3 ∈ U, u1 ≠ u2 ≠ u3 be given such that

and

To prove Proposition 2, we distinguish 4 cases that can occur.

•	 Case 1: All three energy conversion units output a single energy form
•	 Case 2: One energy conversion unit is a connecting energy conversion unit and 

the other two energy conversion units output a single energy form
•	 Case 3: Two energy conversion units are a connecting energy conversion unit 

and the other energy conversion unit outputs only a single energy form
•	 Case 4: All three energy conversion units are connecting energy conversion units

In the following, we use the fact that if a connecting energy conversion unit reaches 
the operational limit in one energy form, also the operational limit in the other 
energy form is reached. Thus, the operational limits of a connecting energy conver-
sion unit u outputting energy forms e1 and e2 can be written in terms of the limits in 
one energy form using Eq. (10):

(48)V̇
−

t,u,e
(�∗

t
) < ̃̇Vt,u,e < V̇

+

t,u,e
(�∗

t
).

(49)V̇
−

t,u,e
(�∗

t
) < V̇∗

t,u,e
< V̇

+

t,u,e
(�∗

t
).

(50)V̇
−

t,u,e
(�∗

t
) < V̇∗

t,u,e
< V̇

+

t,u,e
(�∗

t
), ∀u ∈ {u1, u2, u3}, e ∈ Eu

(51)V̇∗
t,u,e

= V̇
−

t,u,e
(�∗

t
) ∨ V̇∗

t,u,e
= V̇

+

t,u,e
(�∗

t
), ∀u ∈ U ⧵ {u1, u2, u3}, e ∈ Eu.
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Hence, we only have to consider the operational limits in one energy form.
Now, we prove the Proposition 2 for the four cases:
Case 1
Since none of the energy conversion units u1, u2, u3 are a connecting energy con-

version unit, we can apply the procedure from the proof of Proposition 1 for the two 
energy conversion units producing the same energy form e. Thereby, the proof for 
this case is given.

Case 2
If the two energy conversion units that output a single energy form output the 

same energy form, we apply the procedure from Proposition 1. As a result, only two 
energy conversion units are not operated at their operational limits.

Otherwise, Energy conversion unit u1 outputs energy form e1 , energy conversion 
unit u2 is a connecting energy conversion unit outputting energy forms e1 and e2 , and 
energy conversion unit u3 outputs only energy form e2.

From construction of Eq. (47), it follows that all elements of the set

are feasible in Eq. (47). �̇∗
t,e

 is an optimal solution of an linear program on a facet of 
the feasible set. Accordingly, all points on that facet (points in M) are optimal in Eq. 
(47). Note that in the last equation of M the constant part au=u2 drops because it is 
written on the left and right side of the equation.

Following the idea of Eq. (17), we identify the change in the supplied power 
until one energy conversion unit reaches its operational limits. For convenience, we 
define this change in energy form e1 by:

With ΔV̇Case2

e=e1
 we can manipulate the supplied power by the energy conversion units 

such that the point (�∗
t
, ̃̇�t,e) with ̃̇Vt,u,e = V̇∗

t,u,e
,∀u ∈ U ⧵ {u1, u2, u3}, e ∈ Eu and

(52)
V̇

−

t,u,e=e1
(ot,u) ≤ V̇t,u,e=e1

≤ V̇
+

t,u,e=e1
(ot,u)

bu ⋅ V̇
−

t,u,e=e1
(ot,u) − au ≤ V̇t,u,e=e2

≤ bu ⋅ V̇
+

t,u,e=e1
(ot,u) − au

(53)

M = {(�∗
t
, �̇t,e)|V̇t,u,e = V̇∗

t,u,e
,∀u ∈ U ⧵ {u1, u2, u3}

∧ V̇
−

t,u,e=e1
(�∗

t
) ≤ V̇t,u,e=e1

≤ V̇
+

t,u,e=e1
(�∗

t
),∀u ∈ {u1, u2}

∧ V̇
−

t,u,e=e2
(�∗

t
) ≤ V̇t,u,e=e2

≤ V̇
+

t,u,e=e2
(�∗

t
),∀u ∈ {u3}

∧ au ⋅ o
∗
t,u

= bu ⋅ V̇t,u,e=e1
− V̇t,u,e=e2

,∀u ∈ {u2}

∧ V̇t,u=u1,e=e1
+ V̇t,u=u2,e=e1

= V̇∗
t,u=u1,e=e1

+ V̇∗
t,u=u2,e=e1

∧ bu=u2 ⋅ V̇t,u=u2,e=e1
+ V̇t,u=u3,e=e2

=

bu=u2 ⋅ V̇
∗
t,u=u2,e=e1

+ V̇∗
t,u=u3,e=e2

}

(54)

ΔV̇
Case2

e=e1
= min{V̇+

t,u=u1,e=e1
(�∗

t
) − V̇∗

t,u=u1,e=e1
,

V̇∗
t,u=u2,e=e1

− V̇−
t,u=u2,e=e1

(�∗
t
),

1

bu=u2

⋅ (V̇+
t,u=u3,e=e2

(�∗
t
) − V̇∗

t,u=u3,e=e2
)}
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lies within M and satisfies either ̃̇Vt,u=u1,e=e1
= V̇+

t,u=u1,e=e1
(�∗

t
) , 

̃̇Vt,u=u2,e=e1
= V̇−

t,u=u2,e=e1
(�∗

t
) or ̃̇Vt,u=u3,e=e2

= V̇+
t,u=u3,e=e2

(�∗
t
) , proving the desired prop-

erty. Then, only two energy conversion units are not operated at their operational 
limits.

Case 3
Energy conversion unit u1 outputs energy form e1 , u2 and u3 are connecting energy 

conversion units and output energy forms e1 and e2.
From construction of Eq. (47), it follows that all elements of the set

are feasible in Eq. (47). �̇∗
t,e

 is an optimal solution of an linear program on a facet 
of the feasible set. Accordingly, all points on that facet (points in M) are optimal in 
Eq. (47). Note that again in the last equation of M the constant parts au=u2 and au=u3 
are eliminated. Following the definition of Eq. (54), we define the change in energy 
form e1 until an energy conversion unit reaches its operational limits:

With ΔV̇Case3

e=e1
 , we can manipulate the supplied power by the energy conversion units 

such that the point (�∗
t
, ̃̇�t,e) with ̃̇Vt,u,e = V̇∗

t,u,e
,∀u ∈ U ⧵ {u1, u2, u3}, e ∈ Eu and

(55)

̃̇Vt,u=u1,e=e1
= V̇∗

t,u=u1,e=e1
+ ΔV̇

Case2

e=e1

̃̇Vt,u=u2,e=e1
= V̇∗

t,u=u2,e=e1
− ΔV̇

Case2

e=e1

̃̇Vt,u=u2,e=e2
= V̇∗

t,u=u2,e=e2
− bu=u2 ⋅ ΔV̇

Case2

e=e1

̃̇Vt,u=u3,e=e2
= V̇∗

t,u=u3,e=e2
+ bu=u2 ⋅ ΔV̇

Case2

e=e1

(56)

M = {(�∗
t
, �̇t,e)|V̇t,u,e = V̇∗

t,u,e
,∀u ∈ U ⧵ {u1, u2, u3}

∧ V̇
−

t,u,e=e1
(�∗

t
) ≤ V̇t,u,e=e1

≤ V̇
+

t,u,e=e1
(�∗

t
),∀u ∈ {u1, u2, u3}

∧ au ⋅ o
∗
t,u

= bu ⋅ V̇t,u,e=e1
− V̇t,u,e=e2

,∀u ∈ {u2, u3}

∧ V̇t,u=u1,e=e1
+ V̇t,u=u2,e=e1

+ V̇t,u=u3,e=e1
=

V̇∗
t,u=u1,e=e1

+ V̇∗
t,u=u2,e=e1

+ V̇∗
t,u=u3,e=e1

∧ bu=u2 ⋅ V̇t,u=u2,e=e1
+ bu=u3 ⋅ V̇t,u=u3,e=e1

=

bu=u2 ⋅ V̇
∗
t,u=u2,e=e1

+ bu=u3 ⋅ V̇
∗
t,u=u3,e=e1

}

(57)

ΔV̇
Case3

e=e1
= min{V̇+

t,u=u1,e=e1
(�∗

t
) − V̇∗

t,u=u1,e=e1
,

bu=u3 − bu=u2

bu=u3 ⋅ bu=u2

⋅ (V̇∗
t,u=u2,e=e2

− V̇−
t,u=u2,e=e2

(�∗
t
)),

bu=u3 − bu=u2

bu=u3 ⋅ bu=u2

⋅ (V̇+
t,u=u3,e=e2

(�∗
t
) − V̇∗

t,u=u3,e=e2
)}
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lies within M and satisfies either ̃̇Vt,u=u1,e=e1
= V̇+

t,u=u1,e=e1
(�∗

t
) , 

̃̇Vt,u=u2,e=e2
= V̇−

t,u=u2,e=e2
(�∗

t
) or ̃̇Vt,u=u3,e=e2

= V̇+
t,u=u3,e=e2

(�∗
t
) , proving the desired prop-

erty. Note that if bu=u2=bu=u3 , then u1 does not change its power supply.
With these changes in the supplied power, only two energy conversion units are 

not operated at their operational limits.
Case 4
This case only occurs if 3 connecting energy conversion units are not at their 

operational limits and do not have the same conversion factor bu . If at least 2 of the 3 
have the same conversion factor bu , the special case from Case 3 can be applied and 
only the two equal energy conversion units change their power supply.

Energy conversion unit u1 , u2 and u3 are connecting energy conversion units and 
output energy forms e1 and e2 . From construction of Eq. (47), it follows that all ele-
ments of the set

are feasible in Eq. (47). �̇∗
t,e

 is an optimal solution of an linear program on a facet 
of the feasible set. Accordingly, all points on that facet (points in M) are optimal in 
Eq. (47). Note that again in the last equation of M the constant parts au=u1 , au=u2 and 

(58)

̃̇Vt,u=u1,e=e1
= V̇∗

t,u=u1,e=e1
+ ΔV̇

Case3

e=e1

̃̇Vt,u=u2,e=e1
= V̇∗

t,u=u2,e=e1
−

bu=u3

bu=u3 − bu=u2

⋅ ΔV̇
Case3

e=e1

̃̇Vt,u=u3,e=e1
= V̇∗

t,u=u3,e=e1
+

bu=u2

bu=u3 − bu=u2

⋅ ΔV̇
Case3

e=e1

̃̇Vt,u=u2,e=e2
= V̇∗

t,u=u2,e=e2
−

bu=u2 ⋅ bu=u3

bu=u3 − bu=u2

⋅ ΔV̇
Case3

e=e1

̃̇Vt,u=u3,e=e2
= V̇∗

t,u=u3,e=e2
+

bu=u2 ⋅ bu=u3

bu=u3 − bu=u2

⋅ ΔV̇
Case3

e=e1

(59)

M = {(�∗
t
, �̇t,e)|V̇t,u,e = V̇∗

t,u,e
,∀u ∈ U ⧵ {u1, u2, u3}

∧ V̇
−

t,u,e=e1
(�∗

t
) ≤ V̇t,u,e=e1

≤ V̇
+

t,u,e=e1
(�∗

t
),∀u ∈ {u1, u2, u3}

∧ au ⋅ o
∗
t,u

= bu ⋅ V̇t,u,e=e1
− V̇t,u,e=e2

,∀u ∈ {u1, u2, u3}

∧ V̇t,u=u1,e=e1
+ V̇t,u=u2,e=e1

+ V̇t,u=u3,e=e1
=

V̇∗
t,u=u1,e=e1

+ V̇∗
t,u=u2,e=e1

+ V̇∗
t,u=u3,e=e1

∧ bu=u1 ⋅ V̇t,u=u1,e=e1
+ bu=u2 ⋅ V̇t,u=u2,e=e1

+ bu=u3 ⋅ V̇t,u=u3,e=e1
=

bu=u1 ⋅ V̇
∗
t,u=u1,e=e1

+ bu=u2 ⋅ V̇
∗
t,u=u2,e=e1

+ bu=u3 ⋅ V̇
∗
t,u=u3,e=e1

}
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au=u3 are shortened. Following the definition of the Eq. (54), we define the change in 
energy form e1 until an energy conversion unit reaches its operational limits:

With ΔV̇Case4

e=e1
 we can manipulate the supplied power by the energy conversion units 

such that the point (�∗
t
, ̃̇�t,e) with ̃̇Vt,u,e = V̇∗

t,u,e
,∀u ∈ U ⧵ {u1, u2, u3}, e ∈ Eu and

lies within M and satisfies either ̃̇Vt,u=u1,e=e1
= V̇+

t,u=u1,e=e1
(�∗

t
) , 

̃̇Vt,u=u2,e=e2
= V̇−

t,u=u2,e=e2
(�∗

t
) or ̃̇Vt,u=u3,e=e2

= V̇+
t,u=u3,e=e2

(�∗
t
) , proving the desired prop-

erty. With these changes in the supplied power, only two energy conversion units are 
not operated at their operational limits.

Finally, if there are more than three energy conversion units u ∈ U with 
V̇

−

t,u,e
(�∗

t
) < V̇∗

t,u,e
< V̇

+

t,u,e
(�∗

t
) , the above constructions can be applied successively to 

three energy conversion units until the same result is reached. 	�  ◻
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(60)

ΔV̇
Case4

e=e1
= min{V̇+

t,u=u1,e=e1
(�∗

t
) − V̇∗

t,u=u1,e=e1
,

bu=u2 − bu=u3

bu=u2 ⋅ (bu=u1 − bu=u3)
⋅ (V̇∗

t,u=u2,e=e2
− V̇−

t,u=u2,e=e2
(�∗

t
)),

bu=u2 − bu=u3

bu=u3 ⋅ (bu=u1 − bu=u2)
⋅ (V̇+

t,u=u3,e=e2
(�∗

t
) − V̇∗

t,u=u3,e=e2
)}

(61)

̃̇Vt,u=u1,e=e1
= V̇∗

t,u=u1,e=e1
+ ΔV̇

Case4

e=e1

̃̇Vt,u=u2,e=e1
= V̇∗

t,u=u2,e=e1
−

bu=u1 − bu=u3

bu=u2 − bu=u3

⋅ ΔV̇
Case4

e=e1

̃̇Vt,u=u3,e=e1
= V̇∗

t,u=u3,e=e1
+

bu=u1 − bu=u2

bu=u2 − bu=u3

⋅ ΔV̇
Case4

e=e1

̃̇Vt,u=u1,e=e2
= V̇∗

t,u=u1,e=e2
+ bu=u1 ⋅ ΔV̇

Case4

e=e1

̃̇Vt,u=u2,e=e2
= V̇∗

t,u=u2,e=e2
−

bu=u2 ⋅ (bu=u1 − bu=u3)

bu=u2 − bu=u3

⋅ ΔV̇
Case4

e=e1

̃̇Vt,u=u3,e=e2
= V̇∗

t,u=u3,e=e2
+

bu=u3 ⋅ (bu=u1 − bu=u2)

bu=u2 − bu=u3

⋅ ΔV̇
Case4

e=e1
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