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A B S T R A C T

Natural intelligence has the ability to continuously learn from its envi-
ronment, an environment that is constantly changing and thus induces
uncertainties that need to be coped with to ensure survival. By contrast,
artificial intelligence (AI) commonly learns from data only once during a
particular training phase, and rarely explicitly represents or utilizes uncer-
tainties. In this thesis, we contribute towards improving AI in these regards
by designing and understanding neural network-based models that learn
continually and that explicitly represent several sources of uncertainty, with
the ultimate goal of obtaining models that are useful, reliable and practical.

We start by setting this research into a broader context and providing an
introduction to the fields of uncertainty estimation and continual learning.
This detailed review can constitute an entry point for those interested in
familiarizing themselves with these topics. After laying this foundation, we
dive into the specific question of how to learn a set of tasks continually
and present our approach for solving this problem based on a system of
neural networks. More specifically, we train a meta-network to generate
task-specific parameters for an inference model and show that, in this
setting, forgetting can be prevented using a simple regularization at the
meta-level. Due to the existence of task-specific solutions, the problem
arises of having to infer the task to which an unseen input belongs. We
investigate two major ways for solving this task-inference problem: (i) replay-
based and (ii) uncertainty-based. While replay-based task-inference exhibits
remarkable performance on simple benchmarks, our implementation of this
method relies on generative modelling, which becomes disproportionately
difficult with increased task complexity. Uncertainty-based task-inference,
on the other hand, does not rely on external models and scales more eas-
ily to complex scenarios. Because calibrating the uncertainties required
for task-inference is difficult, in practice, one often resorts to models that
should know what they don’t know. This can in theory be achieved through a
Bayesian treatment of model parameters. However, due to the difficulty in
interpreting the prior knowledge given to a neural network-based model,
it also becomes difficult to interpret what it is that the model knows not
to know. This realization has implications beyond continual learning, and
more generally affects how current machine learning models handle unseen
inputs. We discuss the intricacies associated with choosing prior knowledge
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in neural networks and show that common choices often lead to uncer-
tainties that do not intrinsically reflect certain desiderata such as detecting
unseen inputs that the model should not generalize to.

Overall, this thesis compactly summarizes and contributes to the ad-
vancement of two important topics in nowadays deep learning research,
uncertainty estimation and continual learning, while disclosing existing
challenges, evaluating novel approaches and identifying promising avenues
for future research.
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Z U S A M M E N FA S S U N G

Biologisch-entwickelte Intelligenz besitzt die Fähigkeit kontinuierlich von
ihrer Umgebung zu lernen. Diese Umgebung verändert sich ständing,
wodurch Unsicherheiten entstehen, die es zu beachten gilt um ein Überleben
sicherzustellen. Im Gegensatz dazu lernt künstliche Intelligenz (KI) meist
nur während einer gesonderten Trainingsphase von ausgewählten Daten
und ist selten entworfen um explizit Unsicherheiten zu repräsentieren oder
auszunutzen. Ziel dieser Arbeit ist es, KI in dieser Hinsicht zu verbessern,
indem wir neue Methoden mit verbesserter Leistungsfähigkeit präsentieren
und zum Verständnis existierender Methoden beitragen.

Zu Beginn dieser Thesis geben wir eine umfangreiche Einführung in
die Themen des Schätzens von Unsicherheiten und des lebenslangen Ler-
nens. Diese allgemeine Übersicht kann als Ausgangspunkt dienen, um
sich mit den entsprechen Themengebieten vertraut zu machen. Nach der
Einführung dieser Grundlagen werden wir uns explizit damit befassen,
wie eine Folge unterschiedlicher Aufgaben nacheinander von einer KI ge-
lernt werden kann. Unser Ansatz zu dieser Problemstellung basiert auf
einem System von verschachtelten neuronalen Netzwerken oder genauer:
wir trainieren ein Meta-Netzwerk um aufgaben-spezifische Parameter für
ein Inferenz-Netzwerk zu generieren. In dieser Konfiguration kann das
Problem des Vergessens auf vereinfachte Weise mittels einer Regularisierung
auf der Ebene der aufgaben-spezifischen Parameter angegangen werden.
Aufgrund der expliziten Betrachtung von aufgaben-spezifischen Lösungen,
muss für jede Eingabe ins Inferenz-Netzwerk zuerst die Identität einer
Aufgabe ermittelt werden. Wir untersuchen zwei verschiedene Ansätze
um die Aufgabe zu inferieren: (i) mittels expliziten Abrufens von Daten
aus vergangenen Aufgaben (replay-basiert), oder (ii) anhand von modellier-
ten Unsicherheiten (uncertainty-basiert). Für Problemstellungen in denen
die Komplexität der Eingabedaten gering ist, funktionieren replay-basierte
Methoden am besten. Allerdings erfordert unsere Implementation dieser
Methoden ein explizites Erlernen eines generativen Modells für Eingabe-
daten, was mit zunehmender Komplexität der Daten nur schwer möglich
ist. Im Gegensatz dazu benötigen uncertainty-basierte Methoden kein ex-
plizites generatives Modell und können daher auch für komplexere Daten
angewendet werden. Da es jedoch kompliziert ist, Unsicherheiten, die für
die Inferenz der Aufgaben-Identität von nöten sind, zu kalibrieren, werden
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in der Praxis häufig Modelle verwendet, die, einfach ausgedrückt, sich ihrer
Unwissenheit bewusst sind. Theoretisch können solche Modelle realisiert wer-
den indem Parameter probabilistisch mittels bayesscher Statistik behandelt
werden. Jedoch ist es schwierig das benötigte Vorwissen (A-priori Wissen)
mit dem das neuronale Netzwerk ausgestattet werden muss zu interpre-
tieren. Daher ist es oft nicht möglich zu verstehen welcher Unwissenheit
sich das Modell bewusst ist. Diese Erkenntnis hat Konsequenzen über die
Frage des lebenslangen Lernens hinaus und beeinflusst, zum Beispiel, wie
unbekannte Eingaben von dem System behandelt werden. Wir diskutieren
die Besonderheiten, die es zu Beachten gilt, wenn ein neuronales Netzwerk
mit Vorwissen ausgestattet wird und zeigen, dass herkömmliche Methoden
nicht die gewünschte Fähigkeit besitzen Eingaben zu erkennen, für die sie
nicht trainiert wurden.

Kurzgesagt befasst sich diese Arbeit mit zwei wichtigen ungelösten Pro-
blemen der künstlichen Intelligenz, dem lebenslangen Lernen und dem
Modellieren von Unsicherheiten. Durch die ausführliche Einführung dieser
Themen zeigen wir existierende Schwachstellen auf. Mit der anschließen-
den Präsentation unserer Beiträge zeigen wir wie diese Schwachstellen
durch unsere Lösungsvorschläge angegangen werden und heben zusätzlich
verbleibende Probleme sowie zukünftige Möglichkeiten hervor.
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1
I N T R O D U C T I O N

It would be better for us to have some doubts in an
honest pursuit of truth, than it would be for us to be
certain about something that was not true.

— Daniel Wallace

Can we formulate and pursue scientific questions that will allow us
to unlock some of the mysteries of the brain such that we can translate
them into technology? This is a fundamental question for every artificial
intelligence researcher whose intrinsic motivation is to understand the
essence of human intelligence rather than to just build useful systems that
automate processes. Unfortunately, the brain is overwhelmingly complex
and no agreed-upon recipe exists on how to study it best.

The initial approach for learning from the brain that I pursued in my
PhD was to (i) come up with a hypothesis, (ii) develop an experimental
paradigm for testing this hypothesis in an animal model (mice, in my
case), and (iii) use this hypothesis to develop theoretical algorithms that
ultimately improve performance on target applications. Yet, this complex,
interdisciplinary pipeline completely relies on the usefulness of the initially
declared hypothesis. If the motivation is to understand some of the core
elements that intuitively make up human intelligence, then defining a
hypothesis is like providing an answer to a question that has not been
sufficiently studied yet. For instance, we will outline in Chapter 4 that
the answer to the question "How to continually learn?" may have very
different answers based on what is understood when referring to "continual
learning". This realization, that forming a hypothesis first requires a better
understanding of what is the essence of intelligence, made me change
my approach to science. Thus, rather than hypothesizing how the brain
implements a vague property of what we consider intelligence, we can try
to formalize these properties and reason about possible ways in which they
could be implemented independent of biological constraints. This paradigm
describes what machine learning research is to me: a community effort that
tries to iteratively define more and more precisely what useful properties
of intelligence are, while coming up with many alternative algorithms of
how these properties can be realized, where better algorithms crystallize
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2 introduction

over time due to the competitive nature of the field. This reasoning defines
the spirit underlying this thesis, namely that only when a computational
feature of intelligence is sufficiently well defined, and multiple alternative
and well-performing algorithms for realizing it are known, can a useful
hypothesis be constructed on how this feature might emerge in the brain.

The computational features this thesis is concerned with are continual (or
lifelong) learning and uncertainty estimation. Those features would augment a
model with the desirable capabilities of updating the model’s knowledge
upon receiving new evidence and to be aware of the limitations of its own
knowledge when making predictions. Over the course of this thesis, we will
precisely define those intuitive notions and investigate ways of realizing
those features in artificial systems.

Before we dive into the formal treatment of these problems, we conclude
this introduction by motivating the research topics uncertainty estimation
(Sec. 1.1) and continual learning (Sec. 1.2). The rest of this thesis is struc-
tured as follows. In Chapter 2, we give a brief presentation of the general
background necessary to follow this thesis, before an in-depth discussion on
the main topics of uncertainty estimation (Chapter 3) and continual learning
(Chapter 4) is provided. The remaining chapters will present some of the
projects that I was working on during my PhD. In Chapter 5, we discuss
how continual learning can be addressed at a meta-level. A probabilistic
extension of this framework is then introduced in Chapter 6. In Chapter
7, we discuss difficulties that arise when employing Bayesian statistics to
neural networks in order to augment a model with the ability to know
what it does not know. Finally, we conclude this thesis with a discussion and
outlook in Chapter 8.

1.1 uncertainty estimation as a feature of intelligence

Uncertainty arises naturally in our world due to imperfect perception and
imperfect knowledge, but also due to the element of choice. Intelligence is
goal-oriented, ultimately driven to ensure survival, and there commonly
exist multiple ways that can be chosen to achieve the same goal (cf. Fig. 3.1).
Estimating such uncertainties properly is undoubtedly useful for decision
making [e. g., 1, 2], but how to do so in artificial systems remains a practical
challenge (cf. Chapters 3 and 7). The type of uncertainty that will be
discussed most in this thesis is the one arising due to imperfect knowledge
(cf. Sec. 3.1). As there is an intrinsic need to reduce uncertainty, information-
gathering or even curiosity can be seen as uncertainty-driven means to
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increase one’s knowledge, highlighting one of many useful aspects of
maintaining such uncertainty.

Uncertainties can be expressed via probabilities and, as knowledge is
subjective, also these probabilities will ultimately be subjective [3]. Bayesian
statistics allows us to formally represent such subjective beliefs in terms
of probability theory [4] and thus provides us with a principled tool to
equip models with the ability to know what they don’t know (cf. Sec. 3.2
and Sec. 3.3). While all our elaborations are rooted in taking a Bayesian
perspective, it remains an ongoing debate whether natural intelligence
approximates Bayesian statistics for capturing knowledge uncertainties
(e. g., see the work by Bowers & Davis [5] or by Marcus & Davis [6] and
Goodman et al. [7]). But apart from the discussion whether knowledge
uncertainties are represented in a principled or heuristical manner, it is, to
the best of our knowledge, uncontroversial to assume these uncertainties
are used in decision-making (e. g., see work by Jegminat et al. [2] for recent
evidence).1

In our work, we focus on a class of parametric models, called neural
networks (Sec. 2.2). In Chapter 3, we will see how the lack of knowledge
can, at least partially, be captured within predictive uncertainties by an
explicit treatment of parameter uncertainty. In biological neural systems,
uncertainty over synaptic weights might play a similar role, e. g., Ref. [10].
Ignoring parameter uncertainty when estimating the parameters of a model
can have detrimental consequences in all fields of science (e. g., by confi-
dently overestimating the amount of intelligent life in the universe [11]).
Yet, most modern deep learning approaches use a single parameter esti-
mate for making predictions. One reason for this is surely computational
convenience. Another reason, however, is the questionable usefulness of un-
certainty estimates stemming from a naive application of Bayesian statistics.

There are two main challenges intrinsic to Bayesian deep learning. The
first is the need to resort to approximate inference (cf. Sec. 3.5), which
can yield vastly different uncertainty estimates in practice (cf. Chapter 6).
Approximate inference also makes it additionally challenging to assess the
validity of the chosen prior knowledge, which is the second main challenge.
This is important since knowing what we don’t know ultimately depends
on both, the observed data and the knowledge that was available a priori
(cf. Sec. 3.3). While natural intelligence might have evolved to possess useful
prior knowledge, we will see in Chapter 7 how difficult it currently is to

1 Also in deep learning, knowledge uncertainties can be represented heuristically, e.g., through
deep ensembles [8], which have no known mathematically-derived Bayesian interpretation in
their original formulation [9].



4 introduction

encode meaningful prior knowledge into neural networks. We will discuss
these challenges in Chapters 3 and 7, but also emphasize that scientific
progress can overcome them to increase the trustworthiness associated with
the "black-box" of deep learning (cf. Sec. 3.6).

1.2 artificial systems that can continually learn

The second aspect of intelligence on which this thesis focuses is continual
learning. Commonly, a neural network’s parameters are trained and then
frozen before deployment. This is in stark contrast to how biological agents
learn, which can lifelong adapt to their changing environment (even though
there might be periods of increased plasticity [12]). It is natural and eco-
nomical to ask how artificial systems can be equipped with the same trait,
as neural network training is costly and improvements that could be made
by incorporating new data should ideally not require a complete retraining.

It is long known that a naive incorporation of new data leads to interfer-
ence with existing knowledge [13, 14]. These observations have famously
sparked interest in interpreting the role of the hippocampus for memory for-
mation in the brain [15, 16] as a means to allow continual learning without
interference (cf. Sec. 4.1.1). Complementary to this, there is increasing evi-
dence that the brain uses specialized mechanisms to prevent forgetting [17],
and some of these mechanisms can also be considered as the inspiration
behind continual learning algorithms for neural networks [18].

In addition to that, Bayesian statistics, which we discussed in the previous
section as a means to capture knowledge uncertainty, prescribes how to
optimally incorporate new data (cf. Sec. 4.1.2). Even though this optimal
approach lacks strong evidence of practical feasibility in parametric mod-
els that require approximate inference (cf. Sec. 4.1.2.1), Bayesian statistics
can also inspire other approaches to continual learning (e. g., our method
proposed in Chapter 6), that yield state-of-the-art performances.

We will provide a detailed introduction into this topic in Chapter 4,
including our own nomenclature of current methods and an alternative to
the common perspective on the problem formulation. We will then present
our own methods for continual learning in Chapters 5 and 6.



2
B A C K G R O U N D

In this chapter, we introduce the statistical framework for learning that
we consider in this thesis. After having built an understanding of what it
means to learn from data, we will present neural networks which are the
predominant machine learning model studied in the following chapters.

2.1 supervised learning and the data-generating process

In this section, we define the problem of "learning" and reduce it to the
problem of "function approximation". For learning to be targeted, we first
need to introduce the concept of a data-generating process that will provide
us with observations. Those observations will guide our learning algorithm
to infer certain properties of the data-generating process. Overall, the goal
of learning from observations, i.e., to "train" a system, is that we can mimic
useful aspects of the data-generating process. For instance, assume our
goal is to learn how to steer a car [e. g., 19], where observations are tuples
(ximage, yangle) of simultaneous recordings of an image ximage from the
car’s front camera and a steering angle yangle taken from the car’s bus
system. Assume these observations are generated by recording a human’s
driving behavior. The goal of learning would now be to mimic the human
driving and thus to train a system that upon receiving an "unseen" front
camera image ximage (assuming this is the same input that is perceived by
the human driver) can predict the steering angle that would be chosen by
the human driver. The word "unseen" is the crucial factor that distinguishes
learning from memorization. A car’s front camera will likely never record
the same image twice, which makes it necessary to deduce a rule from the
given observations that is general enough to capture the driver’s behavior.
We now formally introduce those basic concepts as necessary in the context
of this thesis. However, this section does not provide a complete coverage
of machine learning paradigms nor does it serve as a proper introduction
into statistical learning theory. Please refer to, e.g., the work by Hastie,
Tibshirani & Friedman [20] for more details.

5



6 background

2.1.1 Data generation from a probabilistic perspective

In most cases, we are interested in learning a relationship between inputs
x and outputs y as in the steering angle prediction example above. If not
mentioned otherwise, we assume that inputs are real-valued x ∈ X ⊆ Rnin .
For outputs, we distinguish two different learning problems based on
whether they are discrete or continuous.

Definition 1 Learning to predict outputs y ∈ Y which are continuous Y ⊆ Rnout

is called a regression problem. If outputs are categorical Y = {1, . . . , K}, the
problem is called a K-way classification.

We take a probabilistic view on the world and assume that the generation
of data can always be explained by the use of probability distributions.
Specifically, we assume an input distribution P(X = x) from which input
observations are sampled from. Sometimes, we also want to approximate
this distribution explicitly in terms of its probability density function p(x).
Note, that in this case we additionally need to assume that the input
distribution has a tractable density function. For the sake of readability, we
will generally not distinguish in our notation between a distribution and its
corresponding probability density function.

To define a proper joint that observations can be sampled from, we also
need a conditional p(y | x). Later, we will see that learning in the context
of this thesis often refers to approximating the conditional p(y | x), which
is why we always assume that the induced probability mass (or density)
function is well defined within the support of p(x).

Definition 2 The data-generating process is defined via a joint p(x)p(y | x).
This joint is unknown to the learning algorithm and is generally referred to as
ground-truth. We assume access to observations via a dataset

D := {(x(n),y(n))}N
n=1

i.i.d.∼ p(x)p(y | x) . (2.1)

This setting, where we have access to ground-truth tuples of inputs x and
outputs y defines a machine learning paradigm called supervised learning.

In our initial example, observations are recorded from a human driving
experience, and thus consecutive observations are autocorrelated. From
this perspective, the assumption in Def. 2, that a dataset represents an
i.i.d. sample of the data-generating process might seem unrealistic. Indeed,
this assumption represents a major hurdle in many practical learning sce-
narios and often requires careful data curation. When discussing continual
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learning in Chapter 4 we will encounter scenarios where this assumption
is violated such that learning algorithms need to be developed that can
operate in a less restrictive setting. For now, however, we assume this
assumption to be satisfied.

2.1.2 Learning as conditional density estimation

In the previous subsection, we have seen that observations stem from a joint
p(x)p(y | x) which represents the data-generating process. We introduced
the goal of learning from these observations as to being able to mimic useful
aspects of this data-generating process, a notion that we can now formalize.

Definition 3 Using D to capture p(x) is called generative modelling, and
using D to capture p(y | x) is called discriminative modelling.

The above definition is purposely vague in using the term "capture".
It might be that the goal of learning is to capture a statistic from the
underlying distribution such as the mean of p(y | x), or to attain the ability
of generating new sample points that appear to be sampled from p(x).
In the course of this thesis, we will encounter many context-dependent
desiderata that will define what aspect of p(x)p(y | x) we would like to
capture. However, we will ubiquitously encounter the concept of maximum
likelihood training, especially in the context of learning a discriminative
model. To introduce this concept, we first have to explain the meaning of a
likelihood function and its corresponding hypothesis class.

Assume our goal is to approximate p(x) (or p(y | x)) using a family
of distributions p(x | v) (or p(y | w,x)) parametrized by v ∈ V (or
w ∈ W).1 We purposely choose a notation where we treat the distributional
parameters as random variables that we condition on. The reason for
choosing such notation will become clear in Sec. 3.2 when we apply Bayesian
statistics to this framework. For now, one can consider parameters simply
as a chosen constant, e.g., p(x;v) (or p(y | x;w)).

The chosen family of distributions (e.g., p(x | v)) is what we refer to
as model. An instance of this model (in this case, an explicit density (or
mass) function) defined by an individual parametrization is called hypothesis.
The space of all hypotheses induced by the parameter space V (or W) is
called hypothesis space. If there is no hypothesis in this space that faithfully

1 Note, that we overload notation, and p(·) or p(· | ·) may refer to different density functions
based on the variable names used as arguments.
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resembles the ground-truth, we say the model is misspecified. We briefly
discuss model misspecification in Sec. 2.1.3.

To choose a hypothesis from this hypothesis space that best resembles the
data, we need a fitness or cost function that allows us to compare hypotheses.
Specifically, for every hypothesis (indexed by a specific parametrization),
we want a scalar function Lgen : V → R (or Ldis :W → R) that achieves its
lowest value for the hypothesis that is considered best under some chosen
criterion. Let’s look at an example for such criterion.

Example 1 – Maximum likelihood training of a generative model. Let’s
assume our goal is to find the parameters v for our model p(x | v) that best
approximate the ground-truth p(x) using the dataset D. If we define an approxi-
mation error in terms of the forward Kullback-Leibler (KL) divergence, we get the
following expression:

KL (p(x); p(x | v)) = −H{p(x)} −Ep(x) [log p(x | v)] (2.2)

Since the entropy H{p(x)} is constant, we can minimize the KL by mini-
mizing the cross-entropy, which can be approximated via Monte-Carlo using the
i.i.d. dataset D:

−Ep(x) [log p(x | v)] ≈ − 1
N

N

∑
n=1

log p(x(n) | v) (2.3)

This allows us to write down a tractable optimization objective, assuming density
evaluation under the chosen model p(x | v) is tractable:

arg min
v
−

N

∑
n=1

log p(x(n) | v) = arg max
v

N

∏
n=1

p(x(n) | v) (2.4)

The RHS of Eq. 2.4 can be interpreted as maximizing the likelihood of the
observed data. For this reason, the function Lgen(v) := −∑N

n=1 log p(x(n) | v) is
called the negative log-likelihood loss.

Now, the focus of this work lies on discriminative modelling. Luckily, an
analogous maximum likelihood criterion as in Example 1 can be derived
for learning the parameters w of p(y | w,x)

Ep(x) [KL (p(y | x); p(y | w,x))] = const.−Ep(x)p(y|x) [log p(y | w,x)]
(2.5)
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Again, we can use the dataset D to obtain a Monte-Carlo estimate of
Eq. 2.5, which for discriminative models leads to the following negative
log-likelihood (NLL) loss:

Ldis(w) := −
N

∑
n=1

log p(y(n) | w,x(n)) (2.6)

This loss function is commonly used in supervised learning, even though
it might be known under different names depending on the model choice
p(y | w,x) as we will outline below. Note, that minimizing this loss
corresponds to performing maximum likelihood estimation (MLE) wMLE =
arg maxw −Ldis(w).

Viewing the objective in Eq. 2.6 as an approximation to minimizing the
expected KL-divergence in Eq. 2.5 gives rise to the interpretation of (super-
vised) learning just being conditional density estimation. When looking at
how we define a model p(y | w,x) in practice, we can further reduce the
notion of (supervised) learning as function approximation as illustrated in
the following examples.

Example 2 – Mean-squared error loss. Let’s consider a univariate regression
problem, i.e., y ∈ R. Furthermore, we assume that the model p(y | w,x) represents
the family of Gaussian distributions with x-dependent mean and fixed variance:
p(y | w,x) = N

(
y; f (x;w), σ2). Thus, the goal of learning is to estimate the

parameters w of a function f : X ×W → R using the NLL loss

− 1
N

N

∑
n=1

log p(y(n) | w,x(n)) = const. +
1
N

N

∑
n=1

(
y(n) − f (x(n);w)

)2

2σ2 (2.7)

Given that we assume the variance σ2 to be fixed, we can connect maximum
likelihood estimation with the commonly used mean-squared error loss:

wMLE = arg min
w

1
N

N

∑
n=1

(
y(n) − f (x(n);w)

)2
(2.8)

Example 3 – Cross-entropy loss. Consider a K-way classification problem such
that p(y | x) is a categorical distribution. We represent the model’s probability
mass function for a given x and w via a vector p(x;w) with entries pk(x;w) ≡
p(k | w,x). This vector can be obtained via normalization of the outputs of a
real-valued function f : X ×W → RK, for instance, by using a softmax function
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pk(x;w) = exp ( f (x;w)k) / ∑k′ exp ( f (x;w)k′). Hence, we again aim to learn
the parameters of a function by minimizing the NLL loss:

− 1
N

N

∑
n=1

log p(y(n) | w,x(n)) = − 1
N

N

∑
n=1

log py(n)(x
(n);w) (2.9)

As the NLL loss is just a numerical approximation to the expected cross en-
tropy Ep(x) [H{p(y | x), p(y | w,x)}], this loss is commonly referred to as
cross-entropy loss in the context of classification tasks. When using a softmax
for normalization, the loss can be written as:

wMLE = arg min
w
− 1

N

N

∑
n=1

(
f (x(n);w)yn − log ∑

k
exp

(
f (x(n);w)k

))
(2.10)

The Examples 2 and 3 provide the base for almost all discriminative
learning scenarios that will be encountered in this thesis. In Sec. 2.2 we will
define how to choose a class of parametrized functions and how learning,
i.e., loss optimization, can take place in practice.

Note, that even (or especially) if optimization is perfect, the estimate
wMLE obtained from the statistical sample D is not necessarily resembling
the ground-truth due to an approximation error for finite-sample sizes
when moving from Eq. 2.5 to Eq. 2.6. Specifically, the solutions to the
following two optimization problems might be different:

w(∗) := arg min
w

Ep(x) [KL (p(y | x); p(y | w,x))] and (2.11)

w(MLE) := arg min
w
−

N

∑
n=1

log p(y(n) | w,x(n)) (2.12)

Ideally, we want the two hypotheses p(y | w(∗),x) and p(y | w(MLE),x)
to be similar. Whether this goal, which is commonly referred to as good
generalization, can be achieved depends on a number of factors such as (i)
the quality and size of the dataset D, (ii) the complexity of the hypothesis
space and (iii) the optimization criterion and algorithm. In practice, one
can foster generalization through the use of an additional validation set

Dval i.i.d.∼ p(x)p(y | x), and test for generalization capabilities using an

additional test set Dtest i.i.d.∼ p(x)p(y | x) that has not influenced the process
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of choosing a hypothesis. Please refer to the work by Mohri, Rostamizadeh
& Talwalkar [21] for a more detailed introduction into this topic.

Once an estimate ŵ (e.g., ŵ ≡ w(MLE)) of the parameters is obtained, we
can use the hypothesis p(y | ŵ,x∗) to make predictions on unseen inputs
x∗. An obvious choice for making predictions would be to sample from
the hypothesis y∗ ∼ p(y | ŵ,x∗). In practice, the most likely prediction
y∗ ≡ arg maxy p(y | ŵ,x∗) is typically chosen. In Example 2, y∗ would
thus correspond to the mean f (x∗; ŵ).

2.1.3 On model misspecification and axiomatic beliefs

Figure 2.1: Figure adapted from [1],
showing the hypothesis space H as in-
duced by a simple or expressive function
approximator (FA). For categorical distri-
butions (a), the richness of H depends
mostly on function approximation capa-
bilities. For continuous distributions (b),
it also depends on the chosen distribu-
tional family.

To conclude this introductory sec-
tion to machine learning, we dis-
cuss some of the practical pitfalls
that are intrinsic to the described
framework for supervised learning.
The previous sections stated a lot
of assumptions to arrive at a sys-
tem that allows making predictions
on unseen input data by mimick-
ing some unknown data-generative
process. The consequences of some
of these assumptions are well stud-
ied and anticipated. Other assump-
tions, like the i.i.d.-ness of the ob-
served dataset, are actively being
studied (cf. Chapter. 4). The core be-
lief, however, is the declared exis-
tence of a data-generating process
p(x)p(y | x) (Def. 2). Apart from
the philosophical question whether
the world can be described in terms
of probability theory, this assump-
tion might be trivially violated as a result of how the data was collected.
For instance, consider the introductory example of mimicking a human’s
steering response upon receiving the car’s front camera image. The human
driver obviously does not receive the actual front camera image as input,
and moreover might use auxiliary information (e.g., coming from the side
mirrors) to predict a steering angle. Thus, the input x might not contain
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enough information to reliably predict y, a limitation intrinsic to the data
that cannot be corrected for, independent of any modelling assumption that
determines the assumed relation between these two variables.2

Nevertheless, in this thesis, we will never question the existence of some
ground-truth p(y | x) that can be learned from the observed data. Fur-
thermore, in the following chapters, and except mentioned otherwise, we
assume the model to be well chosen, meaning that there is a hypothesis
in our hypothesis space that matches the ground-truth, i.e., there exists
a w(∗) ∈ W such that Ep(x)

[
KL
(

p(y | x); p(y | w(∗),x)
)]

= 0 (see our
remarks on model uncertainty in Sec. 3.1). We study the consequences of
model misspecification in the context of neural networks (which are in-
troduced in Sec. 2.2) in [1]. To provide the reader with an intuition for
this topic, we quickly discuss how modelling assumptions determine the
hypothesis space and provide an example that illustrates how predictions
can be agnostic to model misspecification.

Fig. 2.1 sketches the space F of all imaginable hypotheses (e.g., all possi-
ble conditional density functions). We saw in Example 3 that all categorical
distributions can be realized (to arbitrary precision) by normalizing a real-
valued vector, which can be the output of an x-dependent function f (x;w).
Hence, to what extent F is covered by our hypothesis space H with such
model only depends on the richness of the function space from which
f (x;w) can be selected (Fig. 2.1a), noting that, for instance, neural net-
works are universal function approximators in the non-parametric limit [23,
24]. This is fundamentally different from the model described in Example 2,
where only the mean of a Gaussian distribution is learnt via an x-dependent
function f (x;w). Hence, no matter how rich the function space is from
which we can draw, p(y | w,x) will always be Gaussian. This is a strong as-
sumption when modelling real world data, and can have detrimental effects
on uncertainty estimation [1]. However, if we understand the consequences
of such wrong modelling assumptions, we might prefer working with a
misspecified model rather than searching an ever bigger hypothesis space,
as illustrated by the following example.

Example 4 – Model misspecification in regression. Let’s again consider the
model from Example 2, p(y | w,x) = N

(
y; f (x;w), σ2), while using the

following optimization problem to mimic the data-generative process [e.g., 25]:

2 The driver’s state (e.g., tiredness) also influences the steering behavior. However, this affects
the stationarity assumption on p(y | x), which is a modelling choice that in principle can be
taken into consideration [22]. Another example is sensor degradation, which might cause p(x)
to be non-stationary.
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w(∗) := arg min
w

Ep(x)

[
KL
(

p(y | x);N
(

y; f (x;w), σ2
))]

(2.13)

= arg min
w

Ep(x)p(y|x)

[
const. +

1
2σ2 (y− f (x;w))2

]
(2.14)

= arg min
w

Ep(x)p(y|x)

[
y2 − 2y f (x;w) + f (x;w)2

]
(2.15)

= arg min
w

Ep(x)

[
Var {p(y | x)}︸ ︷︷ ︸

const.

+
(

Ep(y|x)[y]− f (x;w)
)2
]

(2.16)

The above calculation shows that the optimum is uniquely attained if the learned
mean f (x;w) matches the ground-truth’s mean Ep(y|x)[y] almost everywhere. In
Sec. 2.1.1, we discussed taking the mean f (x;w) as our prediction, since it’s the
most likely realization if the Gaussian model assumption is correct. However, even
if this model assumption is knowingly incorrect, using an estimate of the ground-
truth’s mean Ep(y|x)[y] as prediction might be reasonable for certain applications.
Thus, following the philosophy of George Box, this example illustrates that even
wrong models may be useful.

2.2 neural networks and gradient-based optimization

The previous section presented the learning framework considered in this
thesis. We showed that (supervised) learning in this framework can essen-
tially be understood as function approximation. Specifically, the goal is to
estimate the parameters w of a function f (x;w) from a dataset D, such
that f (x;w) induces a predictive distribution p(y | w,x) that resembles
the data generating process p(y | x) for x ∼ p(x) (cf. Def. 2).

However, we haven’t discussed yet how a function approximator can be
designed and how its parameters can be estimated from data. This will be
the goal of this section, focusing on a specific class of function approxima-
tors, called neural networks. These are hierarchical models which due to
modern compute capabilities can be rather deep, which has proven prac-
tically relevant and has made deep neural networks in combination with
efficient gradient-based optimization the main driver behind the advent
of what is called deep learning. See the work by Goodfellow, Bengio &
Courville [26] for a thorough introduction into the topics of this section.

As the name indicates, (artificial) neural networks are machine learning
models which are loosely inspired by the brain, and were first investigated
by McCulloch & Pitts [27]. Most modern neural networks use as elemen-
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tary computational unit an abstract model of a biological neuron, called
perceptron [28]. The transfer function of this model can be described as
y = Θ

[
b + ∑

dim(x)
i=1 wixi

]
, where Θ[·] denotes the Heaviside step function

and {b, w1, . . . , wdim(x)} are learnable parameters. The biological analogy
goes as follows, wi represent synaptic weights which are used to integrate
dentritic inputs xi. If the input is strong3 enough such that the integra-
tion exceeds the threshold −b, the neuron will fire. There are many other
abstract models that try to more faithfully capture the complexity of a
biological neuron, e. g., by describing a dynamical system rather than a
function such as in the leaky integrate-and-fire model [29]. However, we
will see that the perceptron constitutes a sufficient computational unit to
construct a powerful function approximator.

For the sake of learning, we replace the perceptron’s Heaviside with a
nonlinear function that provides useful information to a gradient-based
optimization algorithm, e. g., a sigmoidal. This function is called activa-
tion function σ(·) as it nonlinearly computes the output activations of
the neuron. We now use the perceptron to build networks consisting of
individual layers. Let x(l−1) and y(l) denote the input and output of the
l-th layer, for l ∈ {0, . . . , L} with x ≡ x(0) and y ≡ y(L). We can define
a so called fully-connected layer by stacking n(l) perceptron units that in
parallel process the input x(l−1), which can be written in matrix form as:4

y(l) = σ
(

W(l)x(l−1) + b(l)
)

(2.17)

where W(l) ∈ Rn(l)×n(l−1)
and b(l) ∈ Rn(l)

are the synaptic weights and
biases of layer l, and σ(·) is applied elementwise. The activations y(l) of
intermediate layers 0 < l < L are not part of the network’s output and
therefore called hidden. A network consisting only of fully-connected layers
is called a multi-layer perceptron (MLP). There are many other neural net-
work architectures, most notably are convolutional neural networks [CNN,
30], which have a translational invariance to local input patches and are the
predominant model used in computer vision tasks. Just like MLPs, these
networks are called feed-forward, as the computational graph is directed
from inputs to outputs. Network architectures with recurrent connections
for processing sequential data are called recurrent neural networks [RNN
31, 32]. RNNs are approximations to dynamical systems and can be thought

3 Note, that in practice Dale’s principle is violated and synaptic weights wi can have positive
and negative signs. Thus, "strong" inputs are those that have high cosine similarity with the
synaptic weight vector.

4 The nonlinearity σ(·) is often skipped in the output layer y(L).
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of as inducing a predictive distribution per timestep conditioned on past
and current inputs [33].

In this thesis, we focus on feed-forward architectures. For mathematical
convenience, we stack all the network’s parameters {W(l), b(l)}L

l=1 into a
single vector w. This allows us to describe the network’s computation as a
function y(L) = f (x(0);w), e. g., via recursive application of Eq. 2.17. Thus,
by modifying the parameters w we can represent different functions. But
how rich is the induced function space? Cybenko [23] and Hornik [24]
famously showed that a single hidden-layer MLP (L = 2) can arbitrarily
well approximate any continuous function if the network is sufficiently
wide (i. e., n(1) is sufficiently large) and if σ(·) is not a polynomial. While
the proof of this universal function approximation theorem is not constructive,
in the sense, that it does not say how wide one has to make a neural network
in practice for this property to hold, the empirical success of (deep) neural
networks justifies their use as powerful function approximators.

2.2.1 Efficient gradient-computation for layer-wise architecture via the chain rule

Let’s say our goal is to minimize the NLL loss Ldis(w) (Eq. 2.6) using
a hypothesis space induced by fixed modelling choices and a "trainable"
neural network f (x;w) (see, for instance, Eq. 2.8 or Eq. 2.10 for example
loss instantiations). Assuming network parameters w are the only learnable
component in this model, we can find the best hypothesis via the optimiza-
tion problem arg minw Ldis(w). In practice, this optimization problem is
almost exclusively solved via gradient descent using the chain rule:

∂Ldis(w)

∂y(l)
=

∂Ldis(w)

∂y(L)
∂ f (x;w)

∂y(l)
=

∂Ldis(w)

∂y(L)
∂y(L)

∂y(L−1)
. . .

∂y(l+1)

∂y(l)
(2.18)

The row vector δ
(l)
y := ∂Ldis(w)

∂y(l)
is called the backpropagated error, and

can be recursively computed via a single backward pass through the net-

work δ
(l)
y = δ

(l+1)
y

∂y(l+1)

∂y(l)
for l < L. Upon receiving the backpropagated

error, each layer can compute weight updates locally (and in parallel), e. g.:

∂Ldis(w)

∂W(l)
ij

= δ
(l)
y

∂y(l)

∂W(l)
ij

(2.19)

This algorithm for computing the gradient of the loss with respect to
parameters w is called backpropagation and was introduced to the field
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by Rumelhart, Hinton & Williams [34]. How those derivatives are used to
compute the actual weight update ∆w varies in practice. In the simplest

case, one uses gradient descent ∆w ≡ −η
∂Ldis(w)

∂w with learning rate η,
or its stochastic version where the loss function is evaluated on random
subsets of D at each iteration.

2.3 context-dependent generation of network parameters

In the previous section, we directly optimized the weights w of the neural
network f (x;w). These parameters w induce one hypothesis that we can
use for making predictions. In this section, we learn how one can represent
multiple hypotheses via an auxiliary neural network.

To motivate why this might be useful, let’s again consider the steering
angle prediction task introduced in Sec. 2.1. Steering angles depend on the
car model (e. g., due to varying turning radii). Thus, if a car manufacturer
wants to develop a neural network-based steering angle predictor for its
entire fleet, it has to take relevant differences between car models into
account.5 Let the car model be encoded in the context vector e ∈ E . Now,
one simple solution would be to train independent networks w(e) on
model-specific datasets D(e). This approach has two problems. The first
one arises if the number of car models is large, in which case storing all
these networks might become a concern. These large memory requirements
seem intuitively unnecessary, given that all learned hypotheses essentially
solve an almost identical task, i. e., steering angle prediction. This is directly
linked to the second concern, that training independent networks might be
unnecessarily data-hungry. Note, that each dataset D(e) has to encompass
the richness of all real-world driving scenarios. To overcome these two
problems, we could simply condition a single neural network on e by
providing e as additional input, e. g., we train a network f̃ (x̃; w̃) with
x̃ := (x, e) on a dataset

{(
(x, e),y

)
| (x,y) ∈ D(e) for e ∈ E

}
. Now there

is only one model w̃ to be stored and transfer of knowledge between tasks
can take place when learning to approximate some assumed ground-truth
p(y | x, e). This knowledge transfer is likely to result in a more efficient use
of the available data. However, the training of independent models also had
benefits compared to this approach. For instance, one could easily train a
predictor for a new car model enew. The conditioned network f̃

(
(x, e); w̃

)
makes such incorporation difficult and essentially requires training from

5 For the sake of illustration, we ignore that in practice steering angles can be preprocessed to
be independent of a car’s geometry.
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scratch using the datasets of all models E ∪ {enew}. Now, is there a trade-off
solution in which we hierarchically disentangle e and x, while allowing
transfer of knowledge and efficient memory use? For this, and several other
purposes, hypernetworks have been introduced.

The term hypernetwork was only recently coined by Ha, Dai & Le [35],
and generally refers to the following idea:

Definition 4 A hypernetwork h : E ×Ψ→W is a neural network h(e; ψ) with
inputs e ∈ E and parameters ψ ∈ Ψ, that generates the parameters w of another
neural network f

(
x; h(e; ψ)

)
.

Ha, Dai & Le [35] portrayed multiple intriguing use-cases of hypernet-
works. Most notably, they showed that with smart architectural choices,
h(e; ψ) can be used to store a compressed representation of w. In this thesis,
hypernetworks will mostly be employed in a compressive regime such that
dim(e) + dim(ψ) < dim(w).

The idea of using a network to generate another network’s weights is,
however, much older than the term "hypernetwork" and, for instance, was
already used in the work by Schmidhuber [36]. Nowadays, hypernetworks
have been successfully applied to many ML research fields, including
meta-learning [e. g., 37], continual learning [e. g., 33, 38–40], uncertainty
modelling [e. g., 41–44] and many more.6

Coming back to our example, how can hypernetworks help when learn-
ing steering angle predictors for different car models e? The compressed
storage of all networks w(e) within a single hypernetwork solves the mem-
ory issue. Furthermore, having to find shared representations within h(e; ψ)
facilitates knowledge transfer between tasks. This can be easily seen by
realizing that this nested setup f

(
x; h(e; ψ)

)
is essentially a special real-

ization of the e-conditioned network f̃
(
(x, e); w̃

)
in which case trainable

parameters are w̃ ≡ ψ. But this special case allows overcoming some of
the drawbacks f̃

(
(x, e); w̃

)
generally has. For instance, we will show in

Chapter 5 that it is now much easier to incorporate a new car model enew
into the hypernetwork. There are also considerable efficiency gains when
deploying the trained main networks without a hypernetwork, as individ-
ual car models e do not need to recompute w(e) = h(e; ψ) for making
predictions on incoming x via f (x;w(e)).

This example illustrates the usefulness of hypernetworks for learning
multiple tasks. But, as we will discuss in the next chapter, there are argu-

6 To further facilitate research on hypernetworks, we developed a Python package that makes it
easy to explore ideas surrounding this topic: https://github.com/chrhenning/hypnettorch

https://github.com/chrhenning/hypnettorch
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ments that suggest that reliability and robustness can be improved also
for a single task if multiple hypotheses are maintained (e. g., by inferring
different estimates of the parameters w from the finite dataset D). In this
context, hypernetworks will play an important role by allowing to model
complex distributions over the parameter spaceW .



3
U N C E RTA I N T Y E S T I M AT I O N

In the previous chapter, we recapitulated the basics of the statistical frame-
work used to describe learning in neural networks. We have seen that
learning essentially amounts to estimating the parameters w of a model
p(y | w,x) via the dataset D in order to capture useful properties of some
assumed ground-truth p(y | x) for x ∼ p(x). Assuming a model1 and
using a finite sample D for parameter estimation is, however, troublesome
as we will outline in this chapter.

As in Chapter 2, we use the example of steering angle prediction to convey
concepts. Consider that such system has been trained on a dataset that
does not cover snowy weather conditions. So, what will the trained model
predict under such weather conditions? In principle, there are arbitrary
many conditional distributions that agree with the observed dataset but
lead to varying predictions in such novel situations. Since the data does not
explicitly tell us how to behave there, the hypothesis space and the learning
algorithm for choosing a hypothesis must be set up in a way that ensures
"common sense" extrapolations. This desideratum seems impossible to
fulfill by human modellers when the model is defined via a neural network.
Furthermore, the neural network yields a predictive distribution p(y | w,x)
for any x ∈ Rnin , independent on whether x falls in the support of p(x)
(or even the subspace X ⊆ Rnin on which p(x) is defined on). This leads
to the absurd situation that we can show a picture of an elephant (or just
static noise) to the network, and it will make a steering angle prediction.

Ideally, we face these challenges by augmenting the learning framework
from Chapter 2 to obtain models that know what they don’t know. When
discussing this desideratum, we would like to first disentangle two concepts
that are too often mixed.2 First, there might be a knowledge gap that can
be solved by seeing more data (as in the case of snowy weather conditions).
Second, the system might receive inputs that are not applicable to the task
at hand. Note, that the ground-truth p(y | x) is only well defined within the
support of p(x). Thus, in the case of steering angle prediction, we would like
to distinguish between facing novel traffic situations and having to predict

1 Which means: defining an hypothesis space (cf. Fig. 2.1).
2 We will discuss in Chapter 7 whether both subproblems can be tackled with the same

formalism.
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steering angles when seeing an elephant. Why is this distinction important?
In the former case, it is meaningful to ask whether we can extrapolate
learned knowledge to novel inputs (recall, that we distinguished learning
from memorization by the ability to predict on unseen inputs in Sec. 2.1).
In the latter case, it is not meaningful to generalize to unseen inputs, and
indeed might be dangerous if a car makes predictions for nonsensical
inputs. But as long as we do not know the support of p(x), distinguishing
between the two scenarios from finite observations D alone is practically
impossible.3 It is yet constructive to bear this distinction in mind, when
assessing the solutions for uncertainty estimation discussed in this chapter.

Before we try to provide an answer for the question of how to obtain
models that know what they don’t know, we start by introducing a precise
vocabulary that allows us to talk about uncertainty.

3.1 types of uncertainty

Uncertainty can be understood as the degree to which we are unable to
say the following statement is true: "y ∈ Y is the unique prediction for
the input x". Later in this chapter, we can be much more precise about the
meaning of the term uncertainty and how it can be quantified. To do so,
we first need to decide how uncertainty can be modelled. In this regard, it
will prove useful if we further disentangle separate aspects of uncertainty,
which is the goal of this section.

The main distinction we are going to make when talking about uncer-
tainties will be the one commonly made between reducible and irreducible
uncertainties [45, 46].

Definition 5 Aleatoric uncertainty (latin: aleator – gambler) is irreducible un-
certainty as it is the uncertainty intrinsic to the data-generating process p(y | x).

Recall, that according to Def. 2, we believe in the existence of a ground-
truth (cf. Sec. 2.1.3). Even if our model p(y | w,x) matches this ground-truth
perfectly, predictions will be uncertain as long as p(y | x) is not a Dirac
distribution.

This uncertainty arises if x does not contain enough information for
predicting y. For instance, a blurry image might not allow to uniquely
determine an object class. However, aleatoric uncertainty should not simply

3 While generative modelling is difficult or often infeasible, it is worth noting that it does not
require labeled data. For instance, reconsidering the example from Sec. 2.3, the support of
p(x) can be estimated using the inputs from all datasets of different car models D(e).
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be reduced to sensory limitations (or even sensory noise). For instance,
Fig. 3.1 depicts a driving scenario where the current lane splits into two.
Thus, the driver has to make a decision (e. g., by following a navigation
system). The input camera image x, however, does not tell us how to make
such decision, causing a bimodal distribution over possible steering angles
p(y | x). Ideally, the dataset D is rich enough and contains many similar
situations, where half of the time the driver chooses to go left and the other
half chooses to go right. Thus, the ambiguity of such situations could be
captured when learning a model from D.

Figure 3.1: Figure adapted from Ref. [1].
Current input x from the front camera
(bottom) shows a lane splitting scenario.
This causes the ground-truth predictive
distribution p(y | x) to be bimodal, which
cannot be captured by a Gaussian model
p(y | w,x).

At this point, the discussion on
model misspecification in Sec. 2.1.3
becomes crucial. In Example 4

we considered a model p(y |
w,x) = N

(
y; f (x;w), σ2). In this

case, the uncertainty is independent
of the input x (we assume a ho-
moscedastic noise model) and pre-
set by the hyperparameter σ. As
shown in Eq. 2.13, if |D| → ∞
we recover the ground-truth mean
f (x;w) = Ep(y|x)[y].4 Unfortu-
nately, capturing the ground-truth
mean in Fig. 3.1 results in the fa-
tal decision of crashing the car in
between the two lanes.

Thus, the ability to properly cap-
ture aleatoric uncertainty depends
on the modelling choices [1], but
also on how well we capture the
ground-truth with the hypothesis
chosen from the model. The NLL
(Eq. 2.6) is a proper scoring rule [47]
and allows us to compare hypothe-
ses in terms of how well they are
calibrated towards the ground-truth.5 In particular, we can estimate
Ep(x)

[
KL
(

p(y | x); p(y | w,x)
)]

(up to constants) by using:

4 Assuming f (x;w) is a universal function approximator.
5 There are many other commonly used ways of measuring calibration [48, 49].
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NLLval(w) := − ∑
(x,y)∈Dval

log p(y | w,x) (3.1)

The dataset Dval denotes a validation set to control for overfitting. We
say p(y | w(1),x) is better calibrated than p(y | w(2),x) if NLLval(w(1)) <
NLLval(w(2)). Thus, by measuring calibration we can implicitly compare
which hypothesis better captures aleatoric uncertainty. It is worth pointing
out, that calibration as well as aleatoric uncertainties are concepts that
are bound to the support of p(x) where the ground-truth p(y | x) is
well-defined.

We described aleatoric uncertainty as irreducible uncertainty, but that
we can learn to capture from data. On the other hand, there is uncertainty
arising due to limited knowledge:

Definition 6 Epistemic uncertainty (greek: episteme – knowledge) is reducible
uncertainty, that arises due to the fact that we only have access to finite data from
which we aim to infer the ground-truth p(y | x).

Figure 3.2: Figure adapted from
Ref. Hüllermeier & Waegeman
[46]. Epistemic uncertainty en-
compasses model and approxima-
tion uncertainty.

Epistemic uncertainty encompasses two
separate aspects [46]: model uncertainty and
approximation uncertainty (Fig. 3.2). Approx-
imation uncertainty tells us how sure we
are that the hypothesis h found via D is
identical to the hypothesis h(∗), i. e., the
one closest to the ground-truth p(y | x)
within our hypothesis space H. For in-
stance, h could be the maximum likelihood
solution (minimum of Eq. 2.6) and h(∗) =
arg minh∈H Ep(x)

[
KL
(

p(y | x); h
)]

(see
Eq. 2.5). As knowledge increases |D| → ∞,
the two objectives (Eq. 2.5 and Eq. 2.6) have
the same minimum, and approximation un-
certainty can vanish under the assumption
of perfect optimization.

Model uncertainty, on the other hand, is
the uncertainty about whether the hypoth-
esis class H includes the ground truth. Hence, it is related to the concept
of model misspecification (cf. Sec. 2.1.3). We have seen above, that we can
use the NLL to compare hypotheses. We can also use it to compare hy-
potheses across different hypothesis spaces. Again, as knowledge increases
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|D| → ∞, we can compare the NLL of the maximum likelihood solutions
from different hypothesis spaces. If the considered hypothesis spaces cover
the space of all hypotheses F , then this procedure will lead to vanishing
model uncertainty.

In this thesis, and in line with most of the recent literature [46], we
ignore model uncertainty, such that our epistemic uncertainty estimates
only capture approximation uncertainty. As a result, and also in line with
most of the literature on Bayesian deep learning, we often use the term
epistemic uncertainty synonymously to approximation uncertainty. We
study the pitfalls of such ignorance in Ref. [1].6 As most realistic benchmarks
considered in this thesis are classification benchmarks, we hope that by the
use of neural networks the hypothesis space is rather versatile as depicted
in Fig. 2.1a, and that the consequences of ignoring model uncertainty
are minor. However we stress that, even for the development of tools for
estimating approximation uncertainty, assumptions have to be made in the
rest of this chapter. And while these tools may contribute to robust and
reliable uncertainty estimates in safety-critical application, they are not by
themselves sufficient. Hence, they are only intended to increase (and not
accomplish) trustworthiness.

3.2 capturing epistemic uncertainty

There’s only one way of doing physics but there seems
to be at least two ways to do statistics, and they don’t
always give the same answers.

— Bradley Efron

In the previous section, we saw that if our model is appropriately chosen,
aleatoric uncertainty can already be captured. Thus, in a sense, a sufficiently
well calibrated model knows what it can’t know. However, how sure can we
be that we capture the ground-truth sufficiently well when only seeing
limited observations D? To capture this type of uncertainty as well, we need
to augment the model with the ability to know what it doesn’t know.

Let w(∗) ∈ W denote the parameters of the unknown hypothesis from
our hypothesis class that is closest to the ground-truth. Our goal is thus
to estimate w(∗) to achieve best calibration within our hypothesis class.
Since the ground-truth is unknown to us apart from observations D, we
discussed in Sec. 2.1.1 to use the MLE wMLE as an estimate of w(∗). But how

6 For instance, if we observe vanishing approximation uncertainty in Example 4, we could only
be sure that the ground-truth’s mean is properly captured, but not the ground-truth itself.
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good is this estimate? This is a statistical question, thus an answer should
be provided by the field of statistics. Unfortunately, there are two schools of
statistics that can be queried for an answer: classical (or frequentist) statis-
tics and Bayesian statistics [50]. Yet, the deep learning literature seems to
focus almost exclusively on Bayesian approaches for uncertainty estimation.
This is probably because frequentist approaches to represent uncertainty
over parameters (e. g., confidence intervals) are not easily translatable to
predictive uncertainties, as they do not consider a joint probabilistic model
as we will outline below.

Figure 3.3: Hypotheses that agree with
the dataset D. The mean of the ground-
truth p(y | x) cannot be determined
with certainty from the few observed data
points, especially in regions where no data
has been seen at all.

Before we delve into the details
of Bayesian statistics, let’s build an
intuition of what we seek to ac-
complish. In the work by Ghahra-
mani [51] it reads "learning can
be thought of as inferring plau-
sible hypotheses to explain ob-
served data".7 This nicely summa-
rizes how we want to capture epis-
temic (approximation) uncertainty.
Essentially, instead of committing
to a single hypothesis, we aim
at maintaining all hypotheses that
agree with the data D as illustrated
in Fig. 3.3. Therefore, we can natu-
rally detect for which unseen inputs
x we should abstain from making
predictions by looking at the dis-
agreement between individual hypotheses. But how can we realize this
conceptual idea in practice?

Let’s revisit the fundamental assumption from Def. 2 once more. We
assume there is a ground-truth conditional p(y | x) and when having
a well-specified model, we are interested in finding the parameters w(∗)

that induce a hypothesis identical to the ground-truth. Note, that x, y are
random variables that have a frequentist probabilistic interpretation, as we
can repeatedly sample from the joint p(y | x)p(x) to compute probabilities
as frequencies (e. g., by collecting more data via a human driver).8 The

7 We replaced the original word "models" with "hypotheses" in this quote to match our termi-
nology.

8 This view is not shared by Levin, Tishby & Solla [52]. Indeed, considering the frequentist
definition of probabilities by Cox [3], it may be questionable whether one can assume that
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parameters w, however, have no such interpretation, as there is only one
ground-truth hypothesis in reality and no repeatable experiment can be
made for drawing w.

w

y(n)x(n)

N

Figure 3.4: Probabilistic graphical model
considered when applying Bayesian statis-
tics to supervised learning.

In Bayesian statistics, probabili-
ties can also represent subjective
beliefs, and thus uncertainty re-
flects a lack of knowledge. To ap-
ply Bayesian statistics to our model,
we incorporate the parameters w
as random variable into a graphical
model as illustrated in Fig. 3.4 [53].9

Now, we need to specify an ad-
ditional distribution p(w), the so-
called prior distribution. As ex-
plained above, p(w) does not re-
ally exist (there is only one ground-
truth w(∗)) and thus we have to
choose a distribution that we use as prior. Such choice, if not uniform,10 will
induce a weighting in the hypothesis space such that some hypotheses are
a priori more likely to have generated the data than others. This weighting
can be considered our subjective beliefs about how the data was generated.
It is an ongoing debate whether prior distributions can be chosen in a truly
objective manner [4, 55].

The graphical model in Fig. 3.4 allows us to define a joint distribution
over y and w induced at a point x using the likelihood p(y | w,x) and
prior p(w). Note, that the input x is not a random variable in Fig. 3.4 such
that the model only prescribes a distribution over y at an observed x.11 As
the complete training set D is comprised in the graphical model of Fig. 3.4
and data points are conditionally independent of w, we can consider the
overall likelihood of parameters w as:

p(D | w) :=
N

∏
n=1

p(y(n) | w,x(n)) (3.2)

"indefinite repetitions" of natural images can occur. However, in our opinion, not subscribing to
a frequentist interpretation of these probabilities questions the validity of Def. 2 (cf. Sec. 2.1.3).

9 Formal and (or) philosophical arguments that justify the Bayesian approach can be found in
the works by Jaynes [4] and Bruinsma, Foong & Turner [54].

10 Note, that a uniform distribution in weight space does not necessarily correspond to a uniform
distribution over hypotheses [4].

11 Hence, a more precise notation would be p(y | w;x), which we omit for consistency.
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Using Bayes’ rule, we can now construct a distribution over all plausible
hypotheses that explain the observed data, which is called the posterior
parameter distribution:

p(w | D) = p(D | w)p(w)

p(D) (3.3)

The marginal likelihood p(D) = Ep(w)[p(D | w)], also called model
evidence, is a quantity that can be used for model selection. Note, that
our notation hides the modelling choices M that define the hypothesis
space and the prior-induced weighting of hypotheses. Assuming no prior
preference for one of the two modelsM1 andM2, we can compare the cor-
responding marginal likelihoods, p(D | M1) and p(D | M2), for selecting
a hypothesis space. Since this criterion prefers a simple hypothesis space if
the contained hypotheses explain the data well (hypotheses are associated
with high likelihood values), it is sometimes referred to as Bayesian Occam’s
razor [56, 57]. We will not make use of model comparisons in this thesis
and thus suppressM from our notation.

The posterior p(w | D) shrinks the set of all hypotheses induced by
the prior p(w) to those that explain the data well (have high likelihood
values). Indeed, the hypotheses depicted in Fig. 3.3 are samples from an
actual posterior distribution. Interestingly, the prior influence weakens with
growing dataset size:

log p(w | D) = const. + log p(w) +
N

∑
n=1

log p(y(n) | w,x(n)) (3.4)

Thus, the Bayesian formalism is biased but can be consistent and thus
overcome incorrect subjective prior beliefs as N → ∞ (assuming the prior
has full support.).12 The Bernstein-von-Mises theorem studies this case
(under certain conditions), showing that the posterior asymptotically con-
centrates around the MLE [59]. Simply put, once there is no knowledge
uncertainty left because we have seen everything, the posterior collapses to
the MLE [60].13 This is a quite desirable property, given that the MLE in
this limit represents the hypothesis that minimizes the KL-divergence to
the ground-truth p(y | x) (Sec. 2.1).

12 See work by Diaconis & Freedman [58] on a discussion where Bayes estimates can be inconsis-
tent.

13 Recall, that under model misspecification the MLE is not the ground-truth (cf. Example 4 and
the work by Owhadi, Scovel & Sullivan [25]).
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(a) (b)

Figure 3.5: (a) Hypotheses that correspond to MLE solutions by fitting the data
points perfectly. (b) Hypotheses that represent MAP (and MLE) solutions in the
infinite data limit (|D| → ∞), when assuming that the support of the ground-truth
p(x) is restricted to the domain between the vertical dashed lines.

In the case of finite data, however, the so-called maximum-a-posteriori
(MAP) estimate is generally different from the MLE:

wMAP := arg max
w

p(w | D) = arg min
w

[
− log p(D | w)− log p(w)

]
(3.5)

Thus, the MAP is influenced by prior knowledge. Note, that the first
term on the LHS in Eq. 3.5 is just the NLL (Eq. 2.6), while the second term
can be seen as a regularizer punishing hypotheses that do not conform to
prior beliefs. For instance, if a zero-mean Gaussian prior with unit variance
is chosen, then the second term simply becomes an L2 regularization
− log p(w) = const. + 1

2‖w‖2
2.

Remark 1 – On the uniqueness of the MAP. It is worth pointing out that nei-
ther the MLEwMLE nor the MAPwMAP are necessarily unique. Ifw parametrizes
a neural network, then the corresponding hypothesis has trivially no unique
parametrization due to permutation invariances. But also the hypothesis induced
by w does not have to be unique. Fig. 3.5a shows several MLE solutions corre-
sponding to zero mean-squared error loss (see Example 2). If these hypotheses also
have the same density value under the prior p(w), they can additionally be MAP
solutions.14 Furthermore, even in the infinite-data regime the MLE/MAP does not
have to be unique if the support of p(x) is bounded as shown in Fig. 3.5b. However,

14 In certain situations, the posterior can be shown to be unimodal with unique MAP. For
instance, in the conjugate setting of Gaussian process regression [61], which also applies to
neural networks in the infinite-width limit [62].
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w

y(n)x(n)

N

y∗x∗

Figure 3.6: Extension of the probabilistic graphical model in Fig. 3.4 to incorporate
an unseen test input x∗.

in this case, the MLE/MAP solutions all match the ground-truth p(y | x) where
it is well defined.

The MAP is our best estimate of the ground-truth’s parametersw(∗) when
incorporating prior knowledge. But the MAP still corresponds to a single
hypothesis and thus making predictions with the MAP-induced hypothesis
does not allow us to represent epistemic uncertainties (cf. Fig. 3.3).

However, incorporating the parametersw into the graphical model allows
us to do probabilistic inference. In particular, for any unseen input x∗, we
marginalize the parameters w from the joint distribution p(y,w | D,x∗) =
p(w | D)p(y | w,x∗) conditioned on the dataset D (cf. Fig. 3.6). This
procedure yields the posterior predictive distribution:

p(y | D,x∗) = Ep(w|D)
[
p(y | w,x∗)

]
(3.6)

This quantity is also called the Bayesian model average (BMA).15 Note,
that the posterior predictive reflects aleatoric and epistemic uncertainty. If
we have seen enough data for the input x∗ such that all posterior hypotheses
p(y | w,x∗) for w ∼ p(w | D) are identical, then also the posterior
predictive p(y | D,x∗) will be identical to these individual hypotheses (this
is the case within the dashed lines of Fig. 3.5b). In this case, the posterior
predictive only reflects aleatoric uncertainty. If, however, the individual
hypotheses yield widely different predictive distributions p(y | w,x∗) for
w ∼ p(w | D), then the posterior predictive will be more uncertain than
individual hypotheses. This increased uncertainty corresponds to epistemic
(approximation) uncertainty. We will discuss in Sec. 3.4 how epistemic
uncertainty can be quantified.

15 In our terminology (cf. Chapter 2), it should rather be called Bayesian hypotheses average.
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To summarize, we have seen in this section that Bayesian statistics can be
used to model parameter uncertainty, and that this parameter uncertainty
naturally translates into predictive uncertainty via Eq. 3.6.

More precisely, parameter uncertainty arises from the posterior parameter
distribution p(w | D), which captures all plausible hypotheses given the
observed data D and prior knowledge. Predictive disagreement between
these hypotheses allows us to reflect predictive uncertainties that arise due
to missing knowledge about which hypothesis to choose. This epistemic (or,
more precisely, approximation) uncertainty vanishes everywhere where we
observe sufficient data and where prior knowledge (in terms of choosing a
hypothesis space and a prior distribution) tells us we can generalize.

3.3 interpreting predictive uncertainties

(Thanks to Francesco D’Angelo for helpful discussions on the content of this section.)

Epistemic uncertainties are difficult to interpret in practice as they heavily
depend on prior knowledge, which in modern deep learning applications is
chosen rather arbitrarily. To illustrate this point and emphasize that care has
to be taken when interpreting uncertainties, we walk through the example
depicted in Fig. 3.7 in this section.

Here, D is composed of atmospheric CO2 concentrations recorded be-
tween 1958 and 2002, and we choose the same simple regression model
p(y | w,x) = N

(
y; f (x;w), σ2) as in Example 2 for constructing a like-

lihood function p(D | w) (cf. Eq. 3.2). Given that this model assumes
a homoscedastic noise model, we cannot learn to capture x-dependent
aleatoric uncertainties (cf. Sec. 3.1). Moreover, as discussed in Example 4,
this modelling choice ultimately attempts to estimate the ground-truth’s
mean f (x;w) ≈ Ep(y|x)[y]. Hence, uncertainties stemming from the poste-
rior p(w | D) should reflect our missing knowledge about which w induces
the ground-truth’s mean via f (x;w). However, how much knowledge is
missing depends on how much knowledge we put in a priori, as illustrated
in Fig. 3.7.

In Fig. 3.7a, the prior is chosen such that mean functions f (x;w) are
more likely under the prior if the corresponding function values follow
the mean and variance of the CO2 concentrations observed in D.16 Thus,
the prior knowledge we enter into the model is not very informative about
the intrinsic structure of the data. As a result, the predictive posterior

16 This is already a more careful prior construction than common choices (e. g., see Sec. 3.5)
which are often made out of mathematical convenience [64, 65].
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(a) uninformative prior (b) informative prior

Figure 3.7: The depicted dataset D from Ref. [63] contains atmospheric CO2
concentrations collected at the Mauna Loa Observatory in Hawaii until 2002 (ver-
tical bar). The blue line depicts the mean of the posterior predictive distribution
p(y | D,x), and the shaded blue areas depict the first, second and third standard
deviation of p(y | D,x). The figure highlights that different choices of prior
knowledge can completely alter the predictive distribution including predictive
uncertainties, especially where no data has been seen. (a) A rather uninformative
prior has been chosen that roughly aligns with the mean and variance of the data.
(b) A highly-engineered prior was used (see Sec. 5.4.3 in Ref. [61]).

p(y | D,x) can only give reasonably confident predictions in the domain
where data has been seen, but becomes highly uncertain when predicting
future CO2 concentrations. In a sense, the model objectively fulfills the
desideratum that it knows what it does not know.

On the other hand, a highly engineered prior is used to obtain the
posterior predictive distribution depicted in Fig. 3.7b. In this case, the prior
encodes expert knowledge about seasonal fluctuations, a long-term rising
trend, etc. Now, the model can give somewhat confident predictions on
how CO2 concentrations will evolve beyond 2002. Note, that the model still
knows what it does not know, it just has a priori more (subjective) knowledge
available, which allows it to generalize past data to future predictions.

This example provides multiple interesting discussion points, that we
now disentangle and look at in more detail. We should start by realizing
that there is not much to learn for our model from this data. In Sec. 2.1.3
we discussed that the statistical learning framework introduced in Chapter
2 only makes intuitive sense if x contains information relevant for pre-
dicting y. The atmospheric CO2 concentration, however, does not causally
depend on a point in time. Thus, the model cannot learn from the data how
atmospheric CO2 concentrations physically evolve and can only emulate
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intelligent behavior based on the provided prior knowledge. Below, we try
to clarify this statement.

For this example, we could easily construct a ground-truth pfake(x)pfake(y |
x) that would produce a dataset similar to D. The model does not know
our abstract interpretations of x as time and y as CO2 concentrations. So,
it might as well attempt to learn any noisy function pfake(y | x) within
the support of pfake(x) that may emit D (e. g., compare Remark 1 on the
uniqueness of the MLE). If the hypothesis space is rich (as for the prior
in Fig. 3.7a), many hypotheses may explain the data, which causes noisy
predictions in the interpolation regime (between years 1958 and 2002). By
contrast, the prior chosen in Fig. 3.7b allows to locate hypotheses that give
relatively consistent (and thus confident) predictions in the same period.
Whether the posterior in Fig. 3.7b actually generalizes better in this period
than the one in Fig. 3.7a, can only be tested with a separate validation
set (e. g., cf. Eq. 3.1). If it generalizes worse, the encoded subjective prior
knowledge is trivially incorrect. Thus, it would be a fallacy to believe
that confident predictions under a Bayesian model are always trustworthy,
especially if the prior is chosen arbitrarily. We stress this point, as such
discussion or warning is often missing in the introductions of the Bayesian
deep learning literature when praising the benefits of capturing epistemic
uncertainty. Indeed, and as further discussed in Chapter 7, encoding prior
knowledge in parametric models such as neural networks via p(w) is not
straightforward [66], and thus p(w) is often chosen arbitrarily. Further-
more, in such complex parametric models, prior knowledge is shaped by
inductive biases that are not well understood [67].

Let’s reconsider the more intriguing case of forecasting CO2 concentra-
tions beyond 2002. The support of the training data ends here, and so, this
is a case of out-of-distribution generalization [68].17 As the data does not
speak for itself in this future period, such generalization has to emerge
from prior knowledge.18 The predictive posterior in Fig. 3.7a reflects that
no evidence has been seen past 2002, and thus generalization to future CO2
concentrations is not possible. In a sense, this posterior reflects knowledge
that has mostly been taken from the data since the prior is "not" informative
of the data-generating process. As these priors can be seen desirable for
complex problems where prior knowledge cannot easily be formalized,

17 In out-of-distribution generalization, test inputs come from a different distribution ptest(x)
than train inputs p(x).

18 To fully appreciate this remark, it is important to recall that there is no reason to believe that a
deeper understanding of the nature of the underlying task can emerge from the data. In this
example, this can trivially not happen as CO2 concentration are not causally related to time.
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we study their existence in the context of neural networks extensively in
Chapter 7. On the other hand, the prior used to obtain the posterior in
Fig. 3.7b is desirable in the sense that it is more data efficient at least if prior
knowledge is correct and good generalization is obtained with little data.
However, it should be noted that out-of-distribution generalization cannot
be tested in this case, as no validation set on future data can be collected.

In summary, this section emphasizes that predictive uncertainties that
originate from a Bayesian treatment have only subjective meaning and need
to be interpreted with care. This is especially relevant for high-dimensional
data where it is difficult to formally encode and verify prior knowledge.
While the content of this section might at first sight demotivate the Bayesian
approach to learning, one should bear in mind that the learning approach
presented in Chapter 2 suffers from the same shortcomings. Finding a single
hypothesis that generalizes well via loss minimization also depends on prior
knowledge (in terms of a well chosen hypothesis space and inductive biases
intrinsic to the optimization procedure).19 However, a single hypothesis
has no means to reflect any epistemic uncertainties. Expressed in a succinct
manner, we prefer the Bayesian approach because something is better than
nothing.

3.4 quantifying epistemic uncertainty

(The content of this section originates from joint work with Francesco D’Angelo and Maria R. Cervera

and can be found in SM D of Ref. [1].)

As outlined in Sec. 3.1, epistemic uncertainty consists of model and ap-
proximation uncertainty [46], and we only capture the latter by using the
Bayesian approach to learning (cf. Sec. 3.2). Thus, quantifying the epis-
temic uncertainty considered by us amounts to quantifying the predictive
uncertainty induced by the posterior parameter distribution p(w | D)

Epistemic uncertainty is fundamental to the Bayesian formulation. Nev-
ertheless, there seems to be no generally accepted agreement on how this
type of uncertainty can be quantified in an input-dependent way.

A common way of quantifying uncertainty is to consider the variance or
entropy of the posterior predictive distribution p(y | D,x). However, the
posterior predictive distribution does not allow for a disentanglement of

19 This remark can also be understood as an implication of the famous "no free lunch theorem" [69,
70]. Mentioning this theorem, we, however, want to express that we do believe in prior
knowledge generally useful for real-world tasks as argued for by Rao, Gordon & Spears [71],
and as, in our opinion, witnessed by the success of modern deep learning algorithms.
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epistemic and aleatoric uncertainty and should therefore not be used as a
measure of the former (cf. Sec. 3.2).

To overcome this limitation, we consider possible ways of quantification
that are based on the intuition that insufficient knowledge about how to
treat an input x∗ is reflected by the fact that the predictive distributions
of individual hypotheses p(y | w,x∗) from the posterior parameter distri-
bution p(w | D) disagree (cf. Fig. 3.3). Thus, we aim to measure model
disagreement.20

In the context of neural networks, models are usually defined as in
Examples 2 and 3, where a function f (x;w) outputs the parameters ν
of a distribution p(y | w,x) ≡ p

(
y | f (x;w)

)
. For instance, in Example

2, ν is the mean of a Gaussian with constant variance. Whenever the
mapping between these parameters ν = f (x;w) ∈ RNν and the predictive
distribution p(y | w,x) is injective,21 the aforementioned disagreement can
be easily measured as the average variance across the parameter vector ν:

U epis
V (x) =

1
Nν

Nν

∑
i=1

Varp(w|D)[νi] (3.7)

More directly, model disagreement can be quantified via the use of
a divergence, measuring the average discrepancy between the posterior
predictive p(y | D,x) and individual hypotheses p(y | w,x) drawn from
the posterior p(w | D):

U epis
D (x) = Ep(w|D) [D (p(y | w,x) || p(y | D,x))] (3.8)

Here, D(· || ·) is a statistical divergence. For instance, in Ref. [1] we
consider the KL divergence and the Wasserstein distance. If U epis

D (x) = 0,
then all hypotheses captured by p(w | D) agree on how to make predictions
at location x.

Note, that in contrast to U epis
V (x), epistemic uncertainty estimates U epis

D (x)
can be compared even between different model choices.

Being able to quantify epistemic uncertainty allows us to detect whether
we know how to handle an input x. Taking the considerations of Sec. 3.3
into account (correct prior knowledge encoded in p(w)) and assuming
no model misspecification [1], we can trust a model with low epistemic
uncertainty for an input x to faithfully mimic the ground-truth p(y | x).

20 In our terminology, the name hypotheses disagreement would be more suitable.
21 If there can be parametrizations ν1 6= ν2 that induce the same distribution over p(y | ν), model

disagreement cannot reliably be computed from disagreeing parametrizations ν. See our work
in Ref. [1] for details.
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3.5 bayesian deep learning

As mentioned in Sec. 2.2, in most cases we implement the function f (x;w)
as a neural network. Therefore, we now explain how Bayesian statistics
can be applied to neural networks. In this context, when treating the
network’s parameters w probabilistically, one usually speaks of Bayesian
neural networks (BNNs). These have first been introduced by Tishby, Levin
& Solla [72] and MacKay [73] and are nowadays widely studied in all fields
of deep learning research.

Unfortunately, Bayesian inference in neural networks is intractable in
all but the simplest cases.22 Therefore, approximations are necessary. In
this section, we will briefly review the most commonly used strategies to
implement BNNs.

Ultimately, we are interested in the posterior predictive distribution
p(y | D,x) from Eq. 3.6, which is obtained by averaging the predictive
distributions of individual hypotheses drawn from the posterior parameter
distribution p(w | D). We can approximate this integration via Monte-Carlo

using parameter sample points w(1), . . . ,w(M) i.i.d.∼ p(w | D):

p(y | D,x) = Ep(w|D)
[
p(y | w,x)

]
≈ 1

M

M

∑
m=1

p(y | w(m),x) (3.9)

While such Monte-Carlo integration is de facto the standard way of
approximating p(y | D,x) [67], there are many different ways of obtaining
sample points w(1), . . . ,w(M) from the posterior parameter distribution. In
Sec. 3.5.1 and Sec. 3.5.2, we will discuss methods for finding a distribution
that approximates the true posterior parameter distribution. This way,
we can use the approximate posterior to obtain an arbitrary number of
sample points for the Monte-Carlo integration above. Alternatively, a direct
sampling strategy is discussed in Sec. 3.5.3, which asymptotically yields
sample points from the true posterior parameter distribution.

3.5.1 Variational inference

In this section, we explain how variational inference (VI) can be applied to
obtain an approximate posterior. For a detailed introduction to VI see work

22 For instance, a linear neural network, reparametrized to have no hidden layers, with Gaussian
prior can be seen as a Gaussian linear system [74], and the posterior predictive distribution
has a closed-form solution.
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by Blei, Kucukelbir & McAuliffe [75]. In VI, probabilistic inference is turned
into optimization. More precisely, rather than computing the posterior
parameter distribution p(w | D) via Eq. 3.3, we use optimization to find
the parameters θ of a distribution q(w; θ) which is closest to p(w | D).23 In
our case, "closest" will be defined in the sense of the reverse KL-divergence
KL
(
q(w; θ); p(w | D)

)
, which allows us to derive a tractable optimization

criterion as outlined below. This type of VI is the one most often found
in the Bayesian deep learning literature (e. g., see works by Graves [76]
and Blundell et al. [77] for early applications), and will be our method of
choice in Chapter 6. However, other choices of divergences or distances are
possible [e. g., 78].

A tractable optimization criterion can be derived as follows:

log p(D) = Eq(w;θ) [log p(D)] (3.10)

= Eq(w;θ)

[
log
(

p(D) q(w; θ)

q(w; θ)

p(w | D)
p(w | D)

)]
(3.11)

= Eq(w;θ)

[
log
(

p(w,D)
q(w; θ)

q(w; θ)

p(w | D)

)]
(3.12)

= Eq(w;θ)

[
log

p(w,D)
q(w; θ)

]
︸ ︷︷ ︸

:=ELBO

+KL (q(w; θ); p(w | D)) (3.13)

The first term on the LHS is called evidence lower-bound (ELBO).24

By realizing that the model evidence log p(D) is constant in our case
(cf. Sec. 3.2) and that the KL is non-negative, we see that by maximizing the
ELBO we minimize the KL-divergence from p(w | D) to q(w; θ):

KL (q(w; θ); p(w | D))︸ ︷︷ ︸
≥0

= const.− ELBO (3.14)

The fact that the ELBO can yield a tractable optimization criterion can be
seen as follows:

ELBO = Eq(w;θ)

[
log

p(w)p(D | w)

q(w; θ)

]
(3.15)

= Eq(w;θ) [log p(D | w)]−KL (q(w; θ); p(w)) (3.16)

23 In the coming chapters, we interchangeably use the notations qθ(w) := q(w; θ) to denote a
distribution over w parametrized by θ.

24 In statistical physics, the negative ELBO is also called variational free energy.
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Thus, maximizing the ELBO corresponds to maximizing the expected
log-likelihood of the data D while staying close to the prior. Or in other
words, we seek to find θ that simultaneously minimizes the expected NLL
and the KL-divergence from p(w) to q(w; θ):

θ(∗) = arg min
θ

Eq(w;θ)

[
−

N

∑
n=1

log p(y(n) | w,x(n))

]
+ KL (q(w; θ); p(w))

(3.17)
Importantly, the above optimization criterion does not contain the in-

tractable posterior p(w | D).25

Figure 3.8: This figure illustrates
variational inference. It depicts
an optimization trajectory from
θ(init) to θ(∗), where θ(∗) induces
the family member closest to the
posterior.

The expected value in the first term of
the above optimization problem is often
approximated via Monte-Carlo by using
the reparametrization trick [79]. Note, if the
optimization problem would only consist
of this first term, we would seek to find a
q(w; θ) that allocates all its mass around
MLE solutions.

The second term, on the other hand,
pushes the approximate posterior q(w; θ)
to be close to the prior p(w). This term can
be problematic in practice when seeking a
tractable optimization criterion. To under-
stand why, let’s briefly discuss the choice
of q(w; θ).

The distribution q(w; θ) is taken from a
family of distributions Q which is implic-
itly defined by the parameter space θ ∈ Θ.
This family is called variational family.
Variational inference can thus be under-
stood as picking the distribution q(w; θ(∗))
within this family that is closest to p(w | D). This process is illustrated in
Fig. 3.8. Intriguingly, there is a trade-off between the expressiveness of the
variational family and the ease of optimization. Ideally, we would like to

25 Note, the optimization problem in Eq. 3.17 is conceptually different from the one in, for
instance, Eq. 2.6, which justifies why parameter uncertainty for the estimation of θ(∗) is
not considered. The optimum of Eq. 3.17 represents the q(w; θ) closest to p(w | D) (in the
KL-sense). The optimum of Eq. 2.6 represents the MLE, which is only a surrogate for the
ground-truth parameters that we cannot estimate with certainty from the finite sample D.
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choose Q to contain p(w | D). If it is unknown how to choose such family,
it may be intuitively preferable to choose Q as large as possible. However,
in practice, Q is often chosen to obtain a tractable optimization criterion
(Eq. 3.17). Moreover, also the prior p(w) is often chosen out of convenience
with respect to Eq. 3.17 rather than to reflect meaningful prior knowledge
(cf. Sec. 3.3).

For instance, if both q(w; θ) and p(w) are Gaussian, the second term
in Eq. 3.17 has a closed-form expression. Note, that in order to max-
imize the ELBO via gradient-based optimization (also called black-box
variational inference [80]), we need to obtain an estimate of the gradient
∇θKL (q(w; θ); p(w)). In the case of two Gaussian distributions, this gra-
dient can be computed analytically [e. g., 77]. More expressive variational
families might require approximations to this gradient [e. g., 81, 82]. In
Chapter 6, we will explore a variety of variational families and empirically
observe, that simpler variational families often yield better performance
when the underlying task complexity increases, most likely due to ease of
optimization.26

3.5.2 Laplace approximation

(Thanks to Maria R. Cervera for helpful discussions on the content of this section.)

A Laplace approximation q(w; θ) is a Gaussian approximation of the
posterior obtained via a second-order Taylor expansion around a MAP
solution [73].

In particular, our approximate posterior is of the form:

q(w; θ) ≡ N (w; µLA, ΣLA) (3.18)

where θ = {µLA, ΣLA}.
The first step in computing a Laplace approximation consists of finding a

MAP estimate wMAP according to Eq. 3.5. The MAP determines the mean
µLA ≡ wMAP of our approximation and the covariance matrix is computed
via a second-order Taylor expansion around the MAP:

log p(w | D) ≈ const. +
1
2
(w−wMAP)T Hlog p(w|D)

∣∣∣
w=wMAP

(w−wMAP)

(3.19)

26 Such statements should be taken with care, as one cannot compare to results obtained under
exact Bayesian inference. In other words, "better" is a qualitative statement regarding test set
performance, and is not tantamount to improved approximate inference.
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Here, Hlog p(w|D) denotes the Hessian∇w∇T
w log p(w | D). Note, that the

first-order term is zero around the MAP (extremum of function log p(w |
D)).

Eq. 3.19 resembles the log-probability density function of a multivariate

Gaussian distribution if (ΣLA)−1 ≡ −Hlog p(w|D)

∣∣∣
w=wMAP

. However, how

to compute the Hessian of the log-posterior?
First, we should realize that the Hessian can be written as:

Hlog p(w|D) = Hlog p(D|w) + Hlog p(w) (3.20)

We assume that the Hessian of the prior can be computed in closed-
form. For the sake of simplicity, we take p(w) = N (w; 0, σ2

prior I) such

that log p(w) = const.− 1
2σ2

prior
‖w‖2

2. Noting that ∇w∇T
w‖w‖2

2 = 2I we get

Hlog p(w) = − 1
σ2

prior
I.27

Furthermore, we can write the Hessian of the log-likelihood as:

Hlog p(D|w) =
N

∑
n=1

Hlog p(y(n) |w,x(n)) (3.21)

If p(y | w,x) is defined via a neural network, computing these Hessian
terms might be computationally infeasible. Therefore, further approxima-
tions are commonly employed. To understand these, we should first observe
that the term (1/N)Hlog p(D|w) can be seen as a Monte-Carlo estimate of
Ep(x)p(y|x)[Hlog p(y|w,x)]. This observation will become useful below.

First, let’s recall that via simple calculations one can show that:

Ep(y|w,x)[Hlog p(y|w,x)] = (3.22)

−Ep(y|w,x)[∇w log p(y | w,x)∇w log p(y | w,x)T ]︸ ︷︷ ︸
:=F

(3.23)

The matrix F is the Fisher information matrix. If for every training input
x(n) we sample a prediction via the model ỹ(n) ∼ p(y | w,x(n)), we can
also obtain a Monte-Carlo estimate of the expected Fisher information
matrix:

27 Note, that we again choose the prior out of mathematical convenience and not to reflect
meaningful prior knowledge according to Sec. 3.3.
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Ep(x)p(y|w,x)[Hlog p(y|w,x)] = −Ep(x)[F] (3.24)

≈ − 1
N

N

∑
n=1
∇w log p(ỹ(n) | w,x(n))∇w log p(ỹ(n) | w,x(n))T (3.25)

Now, if we assume that at the MAP the predictive distribution p(y |
wMAP,x) closely resembles the ground-truth p(y | x), we can approximate
the expected Fisher using actual data targets y(n) from D rather than those
obtained from the model ỹ(n).28 This approximation of the expected Fisher
is called the empirical Fisher:

Femp :=
1
N

N

∑
n=1
∇w log p(y(n) | w,x(n))∇w log p(y(n) | w,x(n))T (3.26)

≈ Ep(x)[F] (3.27)

Note, that this approximation is not strictly necessary, as we usually
can sample targets ỹ(n) from the model. However, we anyway need the
assumption that p(y | wMAP,x) is close to p(y | x) within the support of
p(x) again to build the following chain of connections:

−Femp ≈ −Ep(x)[F] = Ep(x)p(y|wMAP,x)[Hlog p(y|wMAP,x)] (3.28)

(!)
≈ Ep(x)p(y|x)[Hlog p(y|wMAP,x)] ≈

1
N

Hlog p(D|w) (3.29)

The crucial approximation, marked with (!), allows us to build a connec-
tion between the Hessian of the log-likelihood Hlog p(D|w) and the Fisher.
Thus, we can approximate the Hessian only via first-order gradient infor-
mation. The above series of approximations allows us to write the negative
precision matrix as follows:

28 Note, that this is somehow a weird assumption given that we motivated Bayesian statistics by
stating that a single parametrization obtained from the limited data is probably not capturing
the ground-truth p(y | x) well. We, unfortunately, are not aware of any good justification. On
the contrary, approximating the Fisher this way has been shown to not capture second-order
information well [83].
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Hlog p(w|D)

∣∣∣
w=wMAP

≈ −NEp(x)[F]−
1

σ2
prior

I (3.30)

≈ −NFemp − 1
σ2

prior
I (3.31)

where the Fisher F and the empirical Fisher Femp are computed using the
gradient of the model evaluated at the MAP: ∇w log p(y | w,x)

∣∣
w=wMAP .

Hence, we can write:

q(w; θ) = N

w;wMAP,

[
NFemp +

1
σ2

prior
I

]−1
 (3.32)

In practice, a further approximation is often employed by only con-
sidering the diagonal of the (empirical) Fisher matrix [e. g., 84], or other
simplifying structures that avoid storing a dense matrix [e. g., 85].

3.5.3 Markov chain Monte Carlo

In the previous two subsections we discussed ways for obtaining an ap-
proximate posterior q(w; θ) ≈ p(w | D). However, as mentioned earlier,
we are mainly interested in q(w; θ) for obtaining sample points that allow
Monte-Carlo integration as in Eq. 3.9.

In this section, we will briefly introduce a framework for obtaining
w(1), . . . ,w(M) sample points which asymptotically can be considered as
being sampled from p(w | D). This framework is called Markov chain Monte
Carlo (MCMC) [for an introduction, see 86]. In this case, a Markov chain is
simulated whose stationary distribution is set to be the posterior p(w | D).

Here, we consider the parameters w to be the states of the chain, and
use the conditional π(w(t) | w(t−1)) to define the likelihood of moving
from state w(t−1) to state w(t). A sufficient condition for showing that a
stationary distribution π(w(t)) exists, is by showing that the chain fulfills
the detailed balance criterion:

π(w(t−1))π(w(t) | w(t−1)) = π(w(t))π(w(t−1) | w(t)) (3.33)

Our goal will be to construct the chain such that π(w(t)) ≡ p(w(t) | D).
Furthermore, we split the likelihood of moving from one state to another
into two parts:
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π(w(t) | w(t−1)) = πQ(w(t) | w(t−1))πT(w(t) | w(t−1)) (3.34)

The distribution πQ(w(t) | w(t−1)) is called the proposal distribution, and
used to propose a new state wprop ∼ πQ(wprop | w(t−1)). This new state
is accepted (w(t) ≡ wprop) or rejected (w(t) ≡ w(t−1)) with the transition
probability πT(wprop | w(t−1)).

Using detailed balance, we see that:

πT(w(t) | w(t−1))

πT(w(t−1) | w(t))
=

p(w(t) | D)
p(w(t−1) | D)

πQ(w(t−1) | w(t))

πQ(w(t) | w(t−1))
(3.35)

This is fulfilled by the Metropolis criterion [87, 88]:

πT(w(t) | w(t−1)) = min

[
1,

p(w(t) | D)
p(w(t−1) | D)

πQ(w(t−1) | w(t))

πQ(w(t) | w(t−1))

]
(3.36)

Note, if we choose the proposal to be symmetric, the Metropolis criterion
can be computed by evaluating the posterior ratio. Luckily, the intractable
model evidence p(D) cancels out in this ratio leaving:

p(w(t) | D)
p(w(t−1) | D)

=
p(D | w(t))p(w(t))

p(D | w(t−1))p(w(t−1))
(3.37)

Thus, for computing the Metropolis criterion we need to be able to
evaluate the likelihood and prior.

Algorithm 1: Metropolis-Hastings algorithm

Propose new state wprop ∼ πQ(wprop | w(t−1));
Compute transition probability: πT(wprop | w(t−1)) via Eq. 3.36;
Sample u ∼ U(0, 1) uniformly;
if u ≤ πT(wprop | w(t−1)) then

w(t) ← wprop ; // accept

else
w(t) ← w(t−1) ; // reject

end

The complete algorithm for simulating the chain is sketched in Alg. 1.
A simple example of a proposal would be a Gaussian πQ(w(t) | w(t−1)) =
N (w(t);w(t−1), Σ) with fixed covariance matrix Σ. Such instantiation is
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called random walk MCMC, because new states are chosen randomly in the
vicinity of w(t−1) which typically causes either a high rejection rate by the
Metropolis criterion (Eq. 3.36) or slow exploration of the state space if new
proposals are too close to previous ones.

Technically, the proposal has to be chosen such that the chain is ergodic,
by showing it is irreducible and aperiodic [for details see 89]. If that is the
case, the stationary distribution obtained after convergence is unique, and
due to the construction above, it corresponds to the posterior.

As the stationary distribution is only obtained once the chain converged,
the sample points obtained at the beginning are often discarded (burn-in).

To avoid the above mentioned random walk behavior, the proposal distri-
bution can, for instance, incorporate gradient information∇wp(D | w)p(w)
for generating a proposal state. The most prominent algorithm along these
lines is arguably Hamiltonian Monte Carlo [HMC 90, 91]. HMC is often
considered the best available method for performing approximate inference
in terms of obtaining high-fidelity sample points from the true posterior.
For this reason, we will use this method in Chapter 7 when investigating
the uncertainty properties of the true posterior. However, plain HMC is of
little practical relevance due to its computational cost (even though modern
compute allows its application to computer vision problems [92]). This cost
mainly arises when computing p(D | w) for the Metropolis criterion which
requires processing the full dataset at every step of the chain. To overcome
this limitation, stochastic MCMC versions have been developed in recent
years [e. g., 93, 94].

In summary, MCMC methods provide a compelling way of obtaining
sample points from the real posterior. To apply these algorithms, conver-
gence of the chain needs to be ensured and the chain needs to be run
long enough such that autocorrelations between sample points are diluted
enough to justify the use snapshot sample points from the chain for a
Monte-Carlo integration as in Eq. 3.9. By contrast, the aforementioned
methods for obtaining an approximate posterior q(w; θ) allow to directly
obtain an i.i.d. sample. However, it is in practice difficult to tell how much
such sample resembles one that was obtained from p(w | D).

3.6 closing remarks on uncertainty estimation

In this chapter, we discussed how a model can know what it does not know.
In Sec. 3.1 we divided uncertainty into aleatoric uncertainty, which is
intrinsic to the data-generating process, and epistemic uncertainty, that can



3.6 closing remarks on uncertainty estimation 43

be reduced by seeing more data and choosing the model properly (note,
that model selection can be guided by the data; Sec. 3.2). We then decided
to only capture part of the epistemic uncertainty, namely approximation
uncertainty, by using Bayesian statistics (cf. Sec. 3.1 and Sec. 3.2). This led to
the somewhat absurd situation that knowing what we don’t know is measured
relative to subjective prior knowledge (cf. Sec. 3.3). This prior knowledge
encompasses all our modelling choices (including the weight prior p(w)),
and there is no uncertainty associated with it (unless model uncertainty
is considered too [46]). Furthermore, we saw in Sec. 3.5 that approximate
inference is necessary, and that such methods often require us to choose
prior knowledge out of mathematical (or computational) convenience.

All these complex considerations may lead to the premature conclusion
that Bayesian statistics is of little use given the complexity of the problems
tackled with deep learning approaches. However, it should be stressed that
the field of Bayesian deep learning is a relatively young field of research, and
while the tools that are being developed may often be of little practical use
yet [e. g., 49], they are a necessary step to facilitate further innovation and
progress in the field. As mentioned in Sec. 3.3, it is important to bear in mind
that the learning approach presented in Chapter 2 suffers just as well from
arbitrarily29 chosen prior knowledge, with the difference that no uncertainty
about remaining degrees of freedom is quantified. Research on how to
understand (often implicitly) encoded prior knowledge in neural networks
and how to encode useful prior knowledge is currently in progress [e. g.,
66, 95]. At the same time, methods for improved approximate inference
are constantly being developed. Furthermore, there are other theoretical
benefits that come out of a Bayesian treatment as we will discuss in the
next chapter. Overall, we are excited about the future prospects of the
field, while trying to be careful with our formulations, for instance, by
abstaining from recommending current Bayesian deep learning approaches
for safety-critical applications.

29 "Arbitrary" is an exaggeration given that deep learning research is application-oriented and
model selection by researchers acts like a genetic algorithm, where only the fittest survive.





4
C O N T I N UA L L E A R N I N G

So far, we studied learning problems where we were given access to a
prerecorded dataset D from which we should infer how to make predictions
y on unseen inputs x. In this classic view of Machine Learning, there is a
training phase and a subsequent testing phase. The model is learnt via D
during the training phase and is subsequently used for making predictions.
However, once the training phase has been completed, no new evidence
can be incorporated. This is in stark contrast to our intuitive understanding
of learning as a lifelong process. In fact, the ability to continually learn
becomes desirable whenever an existing model could be improved by
new data. For instance, if new driving data from rare weather conditions
becomes available or a novel street sign should be incorporated into an
object classifier. Therefore, we devote this chapter to define the problem of
Continual Learning (CL, see the work by Parisi et al. [96] for a review) and
discuss different strategies to approach it.

Before diving into the problem, it is valid to ask, whether we could just
retrain the model on all past and new data whenever we encounter new
data (i. e., repeat the full training phase). In many cases, this is a viable
approach, but one that is arguably wasteful regarding an efficient use of
resources. Modern AI applications, such as large language models [e. g.,
97], can require considerable compute resources for training which are
associated with high energy demands and immense financial budgets [98].
Thus, avoiding to repeat training phases from scratch may lead to ecological
and economic benefits, and may make applications available to a wider
audience. In other cases, past data may not even be available anymore for
training due to storage costs or storage location, or due to privacy concerns.
Thus, in such scenarios CL algorithms are necessary for improving models.
Unfortunately, state-of-the-art approaches to CL are not competitive to
simple retraining on many real-world applications [40, 99]. This chapter
should shed some light on why CL is such a difficult problem. Before doing
so, let’s try to build an intuition for why CL is not naturally possible in the
learning framework studied thus far.

In Def. 2 we required the dataset D to be an i.i.d. sample of the ground-
truth p(x)p(y | x). This allowed us to form an unbiased consistent esti-
mator of a gradient that minimizes a divergence from members of our

45
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hypothesis class to the ground-truth (e. g., via Eq. 2.6).1 Moreover, popular
algorithms such as SGD are theoretically justified through the use of in-
dependent (small) i.i.d. samples from the ground-truth p(x)p(y | x) [100].
These i.i.d. assumptions are heavily violated in CL scenarios as we will
see later, which leads to an effect called catastrophic interference or forget-
ting [13, 16]. More precisely, using plain gradient-updates for encoding new
evidence into an existing network will interfere with the existing knowl-
edge, since this knowledge is encoded in a distributed manner across all
the network’s parameters w and not protected from being overwritten.

For these reasons, many algorithms have been developed that attempt
to overcome forgetting. However, to avoid trivial solutions, a problem defi-
nition for CL needs to respect the notion of knowledge transfer [101]. In
particular, we want to improve performance on previously learned skills
by seeing new evidence (called backward transfer) while being able to
learn new concepts faster or more in a data-efficient way (i. e., exploiting
existing knowledge, called forward transfer) [102]. Simply speaking, we are
interested in algorithms for training neural networks continually without
suffering from forgetting while facilitating knowledge transfer. The com-
mon scenario investigated in the literature is the consecutive learning of a
sequence of tasks as we will outline in Sec. 4.1. However, in the author’s
opinion, the focus on this type of CL can be explained by the initially in-
troduced benchmarks, which caused the development of new benchmarks
that are consistent with old ones, thus largely restricting CL research to the
notion of learning a series of distinct tasks. To potentially better address the
intuitive notion of lifelong learning, we propose an alternative type of CL
in Sec. 4.2, which might lead to more practical relevance of CL algorithms
in the future.

4.1 continually learning a sequence of tasks

In this section, we consider task-focused CL, i. e., CL problems with a se-
quence of tasks which should be learned one after the other with a single
model. Each task is represented by a dataset D(t) for t = 1, . . . , T and is

associated with its own data-generating process D(t) i.i.d.∼ p(t)(x)p(t)(y | x).
During learning, access is only granted to one dataset D(t) at a time, with-
out access to past or future data, and the goal of learning is to obtain a

1 Due to the focus on neural network research, we exclusively consider gradient-based optimiza-
tion (cf. Sec. 2.2.1).
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Figure 4.1: A typical CL benchmark called SplitMNIST [103]. The benchmark
consists of 5 binary classification problems. Shown are two example inputs per
task drawn from p(t)(x). Different CL scenarios consider different target spaces.
In CL1 and CL3 the output space Y =

⋃
t Y (t) has ten elements, while in CL2 it has

only two Y = {0, 1}. However, CL1 learners differ from CL3 by having access to
the task identity during inference. See main text for details.

model that exhibits good performance on all tasks seen so far (we will be
more specific below).

The literature on CL is vast and there are many variants of this framework.
For instance, whether sample points in D(t) can only be used once for
forming weight updates (often referred to as online CL [99]) or whether
tasks can be reoccurring. While all these considerations are important in
practice, we attempt to form a clear and general overview over CL in this
section, rather than striving to cover all variations found in the literature.

To gain a better understanding we start with an example benchmark
and introduce some basic terminology that may prove useful later on. In
Fig. 4.1 we illustrate the SplitMNIST benchmark, which is constructed from
the popular MNIST dataset [30]. MNIST is a 10-way classification problem,
containing 60K training examples of handwritten digits 0− 9. SplitMNIST is
constructed by splitting this dataset into five binary classification problems
as illustrated in Fig. 4.1. The overall goal to be achieved by learning these five
tasks depends on the considered CL scenario. Most commonly, the following
three scenarios are distinguished [104–106]: task-incremental learning (or
CL1), domain-incremental learning (or CL2) and class-incremental learning (or
CL3).

In CL1, the task-identity of an input x is always available during infer-
ence, and can be seen as an additional input to the model. In the case of
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SplitMNIST, this means that five consecutive binary decision problems have
to be learned (e. g., each with the class labels {0, 1}), but the availability of
the task identity allows assigning each input x to one out of ten classes.
Thus, the model maps to the output space Y = {0, . . . , 9}. How the con-
ditioning on the task-identity is implemented may vary in practice [e. g.,
33], but is most often performed via a so-called multi-head setup. In this
case, the neural network has a separate output layer (or head) per task.
Therefore, the network’s parameters are split into shared and task-specific
parameters [40], and continual learning only has to occur in the shared
body (i. e., preventing forgetting and facilitating transfer). This CL scenario
is often considered the simplest one. Indeed, CL algorithms usually achieve
best performance when being tested under CL1. However, especially in
recurrent neural networks, the problem of catastrophic interference is still
prominent for modern CL approaches even under CL1 evaluation. Here,
the requirement of maintaining a working memory in the neural activity
causes a particular fragility with respect to parameter changes as we study
in Ref. [33]. Yet, for feed-forward networks, the other two CL scenarios are
meanwhile of broader interest.

In CL2 and CL3 the task-identity is not provided as an input to the
model during inference. In CL2 the output spaces among tasks are assumed
to be identical: Y (s) = Y (t) for s 6= t. Thus, in the case of SplitMNIST,
the overall output space is Y = {0, 1}, and hence the final model still
performs a binary classification but on all 10 digits (0, 2, 4, 6, 8 vs. 1, 3, 5, 7, 9
or even vs. odd). In general, task switches in CL2 simply refer to changes
in the input distribution (tasks cover different "input domains"). A more
intuitive example might be the following: Let the problem to be solved
be the distinction between handwritten digits 0 and 1, and let each task
represent examples obtained from a different human. After having seen
all tasks, we want to be able to distinguish handwritten zeros and ones,
but we do not seek to identify the human (task-identity) that drew the
current input. CL2 is often called single head (as opposed to multi-head), as
all tasks use the same output layer. In our opinion, and as illustrated with
the SplitMNIST example, common CL benchmarks do not make intuitive
sense when applied to CL2, which is why CL2 is often just considered as
an intermediate difficulty level between CL1 and CL3.2 However, CL2 could
also be more naturally understood as being able to incorporate new data
for improving existing skills, an aspect we later discuss.

2 Converting a 10-way classification dataset to a binary decision problem in such ad hoc manner
seems odd.
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Lastly, CL3 or class-incremental learning3 allows the output space Y to
grow with new tasks, but without requiring access to task-identities during
inference (in contrast to CL1). Thus, in the case of SplitMNIST, a CL3 learner
is able to perform a full 10-way classification after having seen data from
five binary classification problems. Here, the output layer is sometimes
referred to as growing-head as new neurons need to be added to the output
layer to accommodate new classes. This makes CL3 particularly challenging
in classification as networks usually use a normalization over output units
(e. g., a softmax). Thus, output weights for previously observed classes
might need to be drastically re-tuned if the number of neurons over which
the normalization is performed changes.4 However, there are ways to
define a likelihood function for classification without requiring an explicit
normalisation [e. g., 107, 108]. Finally, we should note that when classes
are allowed to reoccur across different tasks, then CL3 encompasses CL2.
In particular, new evidence can be incorporated to improve existing skills
while new skills (in the form of new classes) can be learnt.

In summary, the three CL scenarios for SplitMNIST are as follows:

• CL1: Given task-identity, discriminate: {0} vs. {1} or {2} vs. {3} or
{4} vs. {5} or {6} vs. {7} or {8} vs. {9}

• CL2: Discriminate: {0, 2, 4, 6, 8} vs. {1, 3, 5, 7, 9}

• CL3: Discriminate all vs. all: {0} vs. {1} vs. {2} vs. {3} vs. {4} vs. {5}
vs. {6} vs. {7} vs. {8} vs. {9}

In practice, these distinctions are useful and we will see in Chapters 5 and
6 that CL methods exhibit considerate performance differences depending
on the CL setting. However, it is crucial to note that the three learning
scenarios above differ in the problem being solved by the "final" model. For
instance, in CL3-SplitMNIST the final problem is MNIST (digit recognition),
in CL2-SplitMNIST it is odd vs. even and in CL1-SplitMNIST it is a binary
classification upon receiving a tuple consisting of an image and a task-
identifier as input. In the rest of this discussion, we thus move away from
the CL1/CL2/CL3 distinction and focus instead on finding CL algorithms
based on the "final" problem p(y | x) to be solved.

Let’s consider that the final problem of interest is approximating p(y | x)
using a discriminative model p(y | x,w). This could be, for instance, the

3 The name already indicates that most CL benchmarks are classification problems.
4 Starting with a huge output layer with many unused units does not trivially solve the problem,

as the softmax pushes the weights of unused units to negative infinity [40].
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problem of classifying MNIST digits as belonging to one of the ten possible
classes. According to Def. 2, we assume the existence of a data-generating
process p(x)p(y | x) from which the dataset is sampled (i.e., MNIST). In
(task-focused) CL, however, we do not have direct access to an i.i.d. dataset
from p(x)p(y | x) for learning, and instead assume that the data-generating
process is split into tasks as follows:

p(x)p(y | x) =
T

∑
t=1

γt p(t)(x)p(t)(y | x)
T

∑
t=1

γt = 1 ; γt ≥ 0 (4.1)

where learning has to occur sequentially on datasetsD(t) i.i.d.∼ p(t)(x)p(t)(y |
x). The weighting factor γt can in the simplest case be assumed to be uni-
form γt = 1/T. Using this decomposition, learning a discriminative model
p(y | w,x) amounts to approximating:

p(y | x) = ∑T
t=1 γt p(t)(x)p(t)(y | x)

p(x)
=

T

∑
t=1

γt p(t)(x)
p(x)

p(t)(y | x) (4.2)

There are several strategies that can be followed for finding a suitable
w. The standard nomenclature for CL algorithms is a division into three
categories [96]: (i) replay-based CL, where stored or generated data from
previous tasks is replayed during learning, (ii) regularization-based CL, where
weight-updates are constrained for protecting existing knowledge, and (iii)
dynamic architectures, where the network architecture dynamically grows to
account for the storage of new knowledge.

In the following subsections, we will present our own nomenclature of
CL algorithms which is directly focused on different ways to approach
Eq. 4.2. We will summarize those approaches in Sec. 4.1.5.

Remark 2 Sometimes, learning from a non-stationary distribution [22] is also
referred to as continual learning [e. g., 109, 110]. A typical example is a changing
input distribution due to sensor degradation. In such cases, the focus is not on
overcoming forgetting but on quick adaption and thus transfer learning. Therefore,
it should not be confused with the continual learning studied in this thesis, where
some unknown but stationary p(x)p(y | x) is assumed, but in contrast to Def. 2
no access to an i.i.d. dataset is granted.
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4.1.1 Replay-based CL

Replay-based approaches train the model p(y | w,x) on current data D(t)

mixed with replayed data D̃(s)
replay from previous tasks s < t. Thus, the

overall data available for training at task t is D̃(1)
replay ∪ · · · ∪ D̃

(t−1)
replay ∪D

(t).
There are two major types of replay that have to be distinguished, based

on whether methods store or generate replay data. In the former case, the
replayed datasets are stored subsets of the original data D̃(s)

replay ⊆ D
(s). This

approach is often called experience replay [111] and many methods have
been explored for selecting a coreset of data points to be stored [e. g., 112,
113]. These coresets D̃(s)

replay are typically much smaller than the original
datasets, which causes an imbalance when naively computing gradient
updates, and requires a proper rescaling of loss terms (e. g., see Sec. 5

in [113]). Furthermore, as a heuristic to prevent overfitting on the coreset
data, often only input data x from the coresets is used in combination with
targets computed via a checkpointed model p(y | w(t−1),x). Here, w(t−1)

denotes the network parameters checkpointed after completing training on
the previous task. The goal is that while training w on D(t), the predictive
distributions for inputs from D̃(s)

replay for s < t stay close to the ones that

were obtained with p(y | w(t−1),x) (e. g., by using techniques such as
knowledge distillation [114]).

Another option is so-called pseudo-replay or generative replay. Here,
generative models (cf. Sec. 2.1.2) p(x | v(s)) that approximate p(s)(x) are
learned via D(s) while learning on task s. When learning task t > s, replay
data can be obtained via the stored generative model D̃(s)

replay ∼ p(x | v(s)).
To avoid having a separate generative model per task, traditional approaches
continually retrain a single generative model p(x | v(1:s)) on a mixture of
current data D(s) and replayed data from p(x | v(1:s−1)) [e. g., 104, 115].
During learning of task t > s, data replayed from p(x | v(1:t−1)) can
be labelled via the checkpointed model p(y | w(t−1),x). However, as we
demonstrate in Ref. [39], this approach leads to a recursive amplification of
approximation errors for long task sequences, which is why we propose
storing task-specific parameters v(s) of the generative model p(x | v(s))
via a shared hypernetwork (cf. Chapter 5). Interestingly, there are also
approaches that replay internal representations from the neural network
(i. e., neural activities) rather than just input data [e. g., 106].
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It is worth pointing out that in generative replay, the problem of continual
learning is essentially shifted to the generative model, while the discrimi-
nator is trained on pseudo-data from all tasks. In Ref. [116], we propose a
novel idea that allows generative replay via the uncertainty landscape of the
posterior predictive distribution p(y | D,x), and thus without the need of
an external generative model (cf. Chapter 7). However, all these approaches
rely on explicit generative modelling in order to learn a discriminative
model. For this reason, the performance of such CL algorithms heavily
depends on the complexity of the input data x, and performance declines
rapidly for more difficult benchmarks [33, 106].

We finish our exposition on replay-methods with a remark on empirical
performance. Currently, experience replay methods as described above
perform substantially worse than a model trained from scratch only on
coresets

⋃T
t=1 D̃

(t)
replay [e. g., see 99]. Note, that training a model only on core-

sets is equivalent to normal i.i.d. training (no CL) but with a much smaller
dataset than D ≡ ⋃T

t=1D(t). By contrast, the model trained continually via
experience replay had access to all data from D, but not in an i.i.d. manner.
Thus, we can draw two conclusions from this result. First, a continually
trained model via experience replay can exhibit worse performance than one
trained from scratch on the stored coresets, indicating that our current way
of incorporating coresets into weight updates is harmful. Second, empirical
findings in current ML research do not support the hypothesis that the
hippocampus uses experience replay to facilitate continual learning in the
neocortex (this hypothesis is a simple instantiation of the complementary
learning systems theory [15, 16, 96]).

4.1.2 The Bayesian recursive update

We introduced the Bayesian approach to learning in Chapter 3 in the context
of uncertainty estimation. In this section, we discover another fundamental
advantage of such probabilistic treatment. In particular, Bayes’ rule can be
applied recursively to incorporate new data, and thus continual learning
is naturally included in the Bayesian framework. In the context of task-
focused CL, the posterior of task t can be formed by using the posterior of
the previous task p(w | D(1:t−1)) as prior in Bayes’ rule:
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p(w | D(1:t)) =
p(D(t) | w)p(D(1:t−1) | w)p(w)

p(D(1:t))
(4.3)

=
p(D(t) | w)p(w | D(1:t−1))

p(D(t) | D(1:t−1))
(4.4)

We used the conditional independence of the data in the above derivation
(cf. Fig. 3.4). The conditional p(D(t) | D(1:t−1)) is constant with respect to
w and we can write the recursive Bayesian update in this simplified form:

p(w | D(1:t)) ∝ p(D(t) | w)p(w | D(1:t−1)) (4.5)

As mentioned in Sec. 3.5, Bayesian inference in neural networks is in-
tractable and approximations are necessary. Let qθ(1:t)(w) be the approxi-
mate posterior p(w | D(1:t)) after having learned t tasks. It thus appears
natural to facilitate continual learning via the same recursive rule:

qθ(1:t)(w) ∝ p(D(t) | w)qθ(1:t−1)(w) (4.6)

Note, that only the current data D(t) enters Eq. 4.6, and all previously
acquired knowledge enters via the "prior" qθ(1:t−1)(w). Thus, prevention of
forgetting is essentially facilitated via the prior, which is why Farquhar &
Gal [117] termed CL methods based on Eq. 4.6 as prior-focused. We will
comment in Sec. 4.1.2.1 on the pitfalls of this naive substitution of real
posterior with approximate posteriors.

Note that prior-focused methods are instantiations of Bayesian CL meth-
ods, which are inspired by the Bayesian recursive update. However, while
Eq. 4.5 naturally implies CL, Bayesian-inspired CL methods can also be
attained via different means (cf. Chapter 6). For instance, replay-methods
have a Bayesian interpretation by combating forgetting via the likelihood as
opposed to the prior [117]. Therefore, prior-focused methods should only
be seen as a subclass of Bayesian CL.

In Sec. 3.5.1 and Sec. 3.5.2 we introduced variational inference (VI) and
the Laplace approximation to perform approximate inference with neural
networks. Both of these methods have been used to construct prior-focused
CL methods [e. g., 84, 85, 102, 118–121]. We will quickly outline how these
two approximate inference methods can be instantiated for CL.

The arguably most well known prior-focused CL adaption of the Laplace
approximation (Sec. 3.5.2) is elastic weight consolidation [EWC 84, 102, 118].5

5 The original EWC algorithm from Kirkpatrick et al. [118] deviates mathematically from its
Bayesian motivation (see the note by Huszár [84]). This was later corrected by Schwarz et al.
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Here, the posterior of the previous task is approximated by a Gaussian
qθ(1:t−1)(w) whose parameters are comprised in θ. To apply prior-focused
learning, we consider qθ(1:t−1)(w) as prior with qθ(1:0)(w) ≡ p(w) and form
the Laplace approximation of task t by first finding the MAP:

w(1:t) = arg min
w
− log p(D(t) | w)︸ ︷︷ ︸

NLL

− log qθ(1:t−1)(w)︸ ︷︷ ︸
CL regularizer

(4.7)

We will come back to the precise form of the regularizer below. After
learning w(1:t), we can consider a second-order Taylor expansion to form
a Gaussian approximation (cf. Sec. 3.5.2). In particular, the negative preci-
sion matrix is taken as the sum of Hessians Hlog p(D(t) |w) + Hlog q

θ(1:t−1) (w),
and Hlog p(D(t) |w) is further approximated by the empirical Fisher matrix

−N(t)Femp,(t). If we assume the prior to be p(w) = N (w; 0, σ2
prior I) and

carry out the complete recursion we recover the following precision matrix
for qθ(1:t)(w):

(
Σ(1:t)

)−1
=

1
σ2

prior
I +

t

∑
s=1

N(s)Femp,(s) (4.8)

In EWC, Femp,(t) is further assumed to be diagonal.6 Thus, as a sum of
diagonal matrices, the approximate posterior has a diagonal covariance
matrix. The regularization term in Eq. 4.7 thus becomes a simple quadratic
regularization term:

const. +
1
2

dim(w)

∑
p=1

(
1

σ2
prior

+
t−1

∑
s=1

N(s)Femp,(s)
p,p

)
︸ ︷︷ ︸

:=$
(1:t−1)
p

(wp − w(1:t−1)
p )2 (4.9)

where w(1:0) corresponds to the prior’s mean (w(1:0) ≡ 0). Note, that the
precision $

(1:t−1)
p can be seen as an importance weight, determining how rigid

individual parameters wp are. Note that even though this regularization is
inspired by Eq. 4.5, the number of approximations that entered its derivation

[102] and termed online EWC. For brevity, we refer to online EWC simply as EWC in this
thesis.

6 Note, that it is infeasible to maintain the full quadratic matrix Femp,(t) for modern network
architectures, where w has usually millions (or even hundreds of billions [97]) of parameters.
A block-diagonal approximation has been investigated by Ritter, Botev & Barber [85].
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may call for an interpretation of Eq. 4.9 as a heuristic approach to CL
(e. g., a similar heuristic is proposed by Zenke, Poole & Ganguli [103]).
Such heuristic interpretation of Eq. 4.9 suggests that weak precision values
facilitate the integration of new knowledge and strong precision values
protect previously acquired knowledge. The trade-off between these two
desiderata is in general referred to as the plasticity-stability dilemma [96].
To allow more control over this trade-off, a regularization strength β is
introduced in practice:

− log p(D(t) | w) +
β

2

dim(w)

∑
p=1

$
(1:t−1)
p (wp − w(1:t−1)

p )2 (4.10)

In summary, EWC uses optimization to obtain w(1:t) which requires
maximum likelihood training with an added quadratic penalty to mitigate
forgetting. After obtaining w(1:t), the diagonal elements of the (empirical)
Fisher are computed for updating precision elements $

(1:t)
p . In total, EWC’s

CL regularizer requires the storing of 2 dim(w) elements, i. e., the previous
posterior’s mean w(1:t−1) and precision vector $(1:t−1). The derivation of
this algorithm when using a mixture of task-specific and shared parameters
(e. g., CL1) can be found in the SM of our work in Ref. [40].

A second group of CL methods inspired by the recursive Bayesian update
(Eq. 4.6) use variational inference (Sec. 3.5.1). In this case, the negative ELBO
has to be minimized:

θ(1:t) = arg min
θ

Eqθ(w) [− log p(D | w)] + KL
(
qθ(w); qθ(1:t−1)(w)

)
(4.11)

An instantiation of this idea for a variational family of Gaussian distribu-
tions with diagonal covariance matrix has been proposed by Nguyen et al.
[119].7 In particular, they adapted an algorithm, named Bayes-by-Backprop
[BbB 77], to the CL setting. Since both the currently learned posterior
approximation and the prior are Gaussian, the KL term (the so-called prior-
matching term) can be evaluated analytically. The prior-matching can again
be seen as a regularization to prevent forgetting. The reparametrization
trick is used to allow a gradient-based optimization of an MC estimate of
the expected NLL:

Eqθ(w) [log p(D | w)] = EN (z;0,I) [p(D | w = µ + σ� z)] (4.12)

7 Nguyen et al. [119] actually combined this idea with a mathematical sound incorporation of
coresets, which we ignore here for the sake of presentation.
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(a) unimodal (b) multimodal (c) task similarity

Figure 4.2: High density regions of the first and second task’s posterior. The
overlap regions illustrate admissible solutions for both tasks p(w | D(1:2)), and
the approximate posterior qθ(1:2) (w) obtained via a prior-focused method should
be contained in these overlap regions. The family of distributions considered for
finding qθ(1:2) (w) is one of the factors that influence CL performance. If qθ(1:2) (w)
is unimodal (a), as in EWC, only one overlap region is covered and an upcoming
third tasks might not share solutions with this one. Multimodal approximations
(b) are, on the other hand, difficult to scale (cf. Chapter 6). Another factor that
influences CL performance is task similarity (c), as smaller regions of overlap
shrink the prior qθ(1:2) (w) of an upcoming third task.

where θ = {µ, σ}.
Nguyen et al. [119] call this algorithm variational continual learning (VCL).

In Chapter 6, we will see examples of using variational inference for CL
with more expressive variational families.

Interestingly, VCL is theoretically much more flexible than prior-focused
learning based on the Laplace approximation due to the flexibility in choos-
ing the variational family. However, due to increased optimization com-
plexity (or increased difficulty in estimating the ELBO), simpler variational
families are empirically preferable for complex problems [40]. Moreover,
Eq. 4.11 is in practice more difficult to optimize than Eq. 4.10, which ex-
plains why a simple method such as EWC remains a compelling choice for
prior-focused learning [33, 40].

4.1.2.1 Recursive amplification of approximation errors

(Thanks to Maria R. Cervera with whom the content of this section was developed in joint discussions.)

The Bayesian recursive update (Eq. 4.5) illustrates how the Bayesian
framework allows a mathematical sound integration of new evidence. This
is a striking observation, as the posterior p(w | D(1:t)) is invariant to
the order in which the data is observed. More specifically, under exact
Bayesian inference, it does not matter whether we see all data at once
or whether we see it continually. However, prior-focused methods often
perform poorly in practice compared to other CL methods (at least in
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(a) 1st ordering (b) 1st ordering (c) 2nd ordering

Figure 4.3: Task order influences the solutions found with prior-focused methods.
In this illustration, all high density regions of the orange task have an overlap
with the green task but not vice versa. Thus, if the orange task is seen first (a),
a region of overlap can be found within the prior qθ(1) (w) (b). However, if the
green task is seen first (c), there might be no admissible solutions for the orange
task contained in the prior qθ(1) (w).

challenging scenarios) [40]. How can this discrepancy be understood given
the theoretical optimality for knowledge integration via Eq. 4.5? The reason
lies in the ad-hoc replacement of true posteriors with approximate posteriors
when jumping from Eq. 4.5 to Eq. 4.6. The recursive nature of Eq. 4.6 causes
a recursive amplification of approximation errors as we will intuitively
illustrate in this section.

There is a multitude of factors that contribute to the poor performance of-
ten observed with prior-focused methods as we illustrate in Figs. 4.2, 4.3 and
4.4. If we would train i.i.d. on all tasks (no CL), e. g., via the optimization
criterion in Eq. 3.5, we could easily identify solutions that work well on all
tasks, ignoring those that only perform well on a subset of tasks. However,
during CL (as studied in this section) we do not know the nature of upcom-
ing tasks, and therefore have to always consider all solutions that perform
well on tasks seen so far as being relevant for future ones. By its nature,
approximate inference is (almost surely) erroneous, and thus potentially not
capturing all solutions for seen tasks. For instance, consider Fig. 4.2a. Here,
the chosen family of distributions for approximation are Gaussians with
diagonal covariance matrix as illustrated by the axis-aligned ellipse (e. g.,
EWC). The posteriors of the first two tasks have multiple regions of overlap
(multiple regions of weight configurations that perform well on both tasks).
The approximate posterior qθ(1:2)(w), however, only covers one of these
regions (Fig. 4.2b). The posterior of an upcoming third task p(w | D(3))
might overlap with p(w | D(1:2)) but not with qθ(1:2)(w). As a consequence,
the third task could not be learned. By contrast, if all data would have been
available at once, it would have been rather easy to form an approximate
posterior that accommodates all three tasks. Thus, while the Bayesian re-
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(a) untempered prior (b) tempered prior (c) forgetting

Figure 4.4: Tempering is a common strategy to increase plasticity of prior-focused
methods but may lead to graceful forgetting [e. g., 40, 121]. The prior qθ(1) (w) in (a)
has no region of overlap with the upcoming task. Tempering this prior via the
inverse temperature β can create overlap regions with task 2 (b). However, this
artificial broadening of the prior causes non-admissible solutions for task 1 to
be considered admissible. As a consequence, the approximate posterior qθ(1:2) (w)
formed via the tempered prior ∝ qθ(1) (w)β is not fully contained in an orange
region (c). Thus, qθ(1:2) (w) suffers from forgetting as sampled solutions may not
perform well on previous tasks.

cursive update (Eq. 4.5) does not distinguish between simultaneous and
continual learning, applying approximate inference to the simultaneous or
continual learning setting may lead to vastly different results. Better meth-
ods for approximate inference may mitigate (but not abolish) such effects
(Fig. 4.2b), however, current empirical evidence suggests that theoretically
more expressive approximations suffer disproportionately from scalability
(cf. Chapter 6).

There are many other interplaying factors, such as task similarity (Fig. 4.2c)
or task ordering (Fig. 4.3). As a result, heuristics (such as tempering, Fig. 4.4)
have to be put in place to ensure an acceptable trade-off between stability
and plasticity (cf. Eq. 4.10). The combination of these factors explains why
prior-focused methods suffer in practice from rigidity and/or forgetting.

In summary, there is an unfortunate discrepancy between empirical
results obtained from prior-focused methods and theoretical expectations
cast by the Bayesian recursive update. This discrepancy can be intuitively
understood as a result of the recursive amplification of errors arising due to
the use of approximate inference. Therewith, prior-focused methods present
a strong case for being cautious about the use of approximate inference,
as predictions can vary drastically compared to performing inference via
the true posterior. Interestingly, the fact that prior-focused methods often
perform worse than other CL methods, that are not derived from Eq. 4.5,
indicates that current ML research does not align with the simple hypothesis
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that the brain integrates new knowledge by approximating the Bayesian
recursive update [5].

4.1.3 Task-specific solutions and explicit task-inference

So far, we have discussed replay-based methods and prior-focused methods
for tackling CL. In this section, we take a closer look at Eq. 4.2 and make
a further assumption to derive algorithms that empirically often excel
compared to the first two classes of algorithms that we encountered so far.

We start by noting that task-specific discriminative models p(t)(y | x) can
be learned in the usual manner (cf. Chapter 2) using the i.i.d. datasets D(t).

Thus, to evaluate Eq. 4.2, only the seemingly challenging factor γt p(t)(x)
p(x)

needs to be estimated.
To overcome this hurdle, we introduce another assumption. Namely, we

assume that the support of input distributions for distinct tasks are disjoint:

supp{p(s)(x)} ∩ supp{p(t)(x)} = ∅ for s 6= t (4.13)

This is a strong assumption, but one that appears reasonable for common
CL benchmarks (e. g., such as SplitMNIST; Fig. 4.1).

Under this assumption, the factor p(t)(x)
p(x) evaluates to 1 if x ∈ supp{p(t)(x)}

and 0 otherwise, which induces the problem of task-inference for an un-
seen input x.

Task-inference means that, in order to make predictions via a task-specific
model p(t)(y | x), one first has to determine the task-identity t of an input
x. If a CL1 scenario is considered, task-identity is provided and no task-
inference is necessary, so continual learning is solved by learning task-
specific models p(t)(y | x) while preventing forgetting and facilitating
transfer (e. g., by using progressive neural networks [122]).

Note, that the problem of task-inference is a classification problem, which
has to be solved in a continual manner. However, task-inference is arguably
a simpler discriminative problem than directly approximating p(y | x)
according to Eq. 4.2. Thus, the CL approach considered in this section
is a hierarchical approach with two stages, where the first stage is task
identification and the second one is the problem of continually learning task-
specific models p(t)(y | x) where each can be learned via an i.i.d. dataset.

These two stages can be considered somewhat independent and thus
different solutions can be considered for either of them. For instance, contin-
ually learning task-specific p(t)(y | x) can be achieved by training separate
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neural network modules (no interference with previous knowledge) which
are laterally connected to previous ones to facilitate forward transfer [122].
In Chapters 5 and 6 we will use hypernetworks to realize a conceptually
similar approach without the need of a growing architecture.

Similarly, task-inference can be approached in many ways [e. g., 39, 40,
123]. We will discuss replay- and uncertainty-based task-inference (as well
as a combination of these two) in Chapters 5 and 6. To give a simple
example, replay-based task-inference can be realized by training a separate
classifier for task-identification continually using replay-techniques from
Sec. 4.1.1.

To sum up, the CL approach presented in this section relies on an addi-
tional assumption (Eq. 4.13), namely that task-identity can be unequivocally
inferred from inputs. This assumption allows to disentangle the CL prob-
lem into two subproblems, each of which is arguably simpler than the one
induced by Eq. 4.2. More specifically, continual learning of task-specific
models p(t)(y | x) can be viewed as a CL1 problem. Task-identification, on
the other hand, can be viewed as a CL3 problem, but for an overall simpler
discriminative problem than the target p(y | x). Combining these two
stages can be seen as solving an overall CL3 (or CL2) problem (cf. Chapter
5).

4.1.4 CL via conditional generative models

In Chapter 3, we saw that Bayes’ rule is the foundation for developing
Bayesian statistics, which we utilized to develop CL algorithms in Sec. 4.1.2.
In this section, we see another useful application of Bayes’ rule for deriving
CL algorithms.

Recently, the concept of generative classifiers was introduced to continual
learning by van de Ven, Li & Tolias [124], which consider a classification
problem p(y | x) in which one class at a time is continually learned. We
first review this idea from van de Ven, Li & Tolias [124] before applying it
in general to task-focused CL.

Let Y = {1, . . . , K}. We can generally write the classification p(y | x) as
follows by using Bayes’ rule:

p(y | x) = p(x | y)p(y)
∑y′∈Y p(x | y′)p(y′)

(4.14)

where p(x | y) is a class-conditioned generative model. We assume that
all data corresponding to a class is presented at once. Therefore, we can
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learn a separate generative model per class p(x | v(y)) with parameters v(y)

without the need for a continual learning algorithm. In addition, we can
assume p(y) to be uniform, which results in:

p(y | x) = p(x | v(y))
∑y′∈Y p(x | v(y′))

(4.15)

This idea can be generalized to tackle Eq. 4.2. Indeed, what we present in
the following can be viewed as a generalization of the approach proposed
by Lee et al. [125] (e. g., see Eq. 7 in [125]).

Consider learning task-specific generative models p(x | v(t)) to capture
p(t)(x) alongside with task-specific discriminative models to approximate

p(t)(y | x). This allows us to estimate the challenging factor γt p(t)(x)
p(x) from

Eq. 4.2 by assuming γt =
N(t)

N or simply γt = 1/T. In particular, we can
approximate Eq. 4.2 as:

p(y | x) = ∑T
t=1 γt p(t)(x)p(t)(y | x)

p(x)
(4.16)

≈ ∑T
t=1

N(t)

N p(x | v(t))p(y | w(t),x)

∑T
t=1

N(t)

N p(x | v(t))
(4.17)

Here, we make the simplifying assumption that task-specific models
have separate parametrizations, i. e., v(t) and w(t). In practice, however,
generative and/or discriminative models can be employed that use shared
as well as task-specific components. For instance, in Chapter 5 we will see
how hypernetworks can be used to represent task-specific generative or
discriminative models via a single shared meta-model.

Importantly, the generative models learned via this approach must be
able to provide explicit density estimates. In comparison, the generative
models required for generative replay in Sec. 4.1.1 only need to be able
to provide sample points. Explicit density estimation on real-world tasks,
such as natural images, is a challenging problem [126]. While the results
obtained by van de Ven, Li & Tolias [124] and Lee et al. [125] are promising,
further empirical validation is necessary to determine the scalability of this
approach.
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4.1.5 Summary on task-focused CL

We have categorized continual learning approaches in four different types,
which are (i) replay-based methods (Sec. 4.1.1), (ii) prior-focused methods
(Sec. 4.1.2), (iii) task-specific discriminators with explicit task-inference
(Sec. 4.1.3) and (iv) task-specific discriminators and generators (Sec. 4.1.4).
Not every CL method can be exclusively assigned to one of these categories.
For instance, context-dependent gating [127] uses task-specific binary masks
to select subnetworks and thus clearly belongs to category (iii). However,
as these random subnetworks can be overlapping, they additionally use a
regularization approach (e. g., EWC) to mitigate forgetting, such that the
overall approach can be seen as a mixture of methods from categories (ii)
and (iii). Furthermore, our categorization might not be seen as complete.
For instance, even though heuristically motivated regularization approaches
such as synaptic intelligence [103] and memory aware synapses [128] are
somewhat theoretically related to EWC [129], it is unclear whether it is
justified to see them as prior-focused methods, and thus as incarnations of
the Bayesian recursive update. Despite these technical nuances, we consider
our categorization as a constructive way of presenting the current state of
research in continual learning.

Note, that for presenting categories (iii) and (iv) we strongly relied on
the notion of tasks. The Bayesian recursive update, on the other hand, does
technically not rely on the existence of well-defined tasks; an important
insight that we will revisit in Sec. 4.2. However, most prior-focused methods
are constructed in a way that tasks are necessary for computational feasibil-
ity. Also replay-methods do not strictly depend on the existence of tasks.
Since in generative replay a generative model needs to be trained, access to
(pseudo) i.i.d. input data is necessary (cf. Sec. 4.1.1) and thus the notion of
tasks is beneficial (cf. Chapter 5). Coreset methods, on the other hand, are
somewhat special and, to the best of our knowledge, not well understood.
As we have seen in Sec. 4.1.1, they are outperformed by trivial baselines
that have access to much less data but form proper i.i.d. updates [99]. Recall
that using i.i.d. data allows, for instance via the NLL (Eq. 2.6), to form an
unbiased consistent estimate of the gradient to minimize a divergence from
the model to the ground-truth. By contrast, it is unclear what is optimized
by a gradient estimate that is formed by using data from the current task
plus a small stored subset of previously seen data points. Therefore, we
currently see coreset methods as heuristically-motivated approach to CL,
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and expect future research to provide a more formal understanding of their
inner workings.

Lastly, we would like to stress again that category (iii) required an addi-
tional assumption (Eq. 4.13), which is, however, reasonable for common CL
benchmarks. As CL algorithms from this category are the ones generally
performing best (cf. Chapter 6), we hypothesize that the concentration
on a more precisely defined subproblem is beneficial. Yet, CL algorithms
do not appear to be practically relevant yet and we therefore argue that
the problem of CL has to be split into more clearly defined subproblems,
which allow the development of specialized but high-performing (and thus
relevant) algorithms. In the next section, we will outline an example of such
subproblem.

4.2 learning from autocorrelated sample points

(Thanks to Maria R. Cervera and Alexander Meulemans for constructive feedback on this section.)

In Sec. 4.1, we discussed task-focused CL, which is the type of CL most
commonly studied in the literature as reflected by standard benchmarks
(such as SplitMNIST, Fig. 4.1). However, is it also the most natural type of
CL to study? To approach this question, let’s reconsider the introductory
example of Chapter 2, i. e., steering angle prediction. Here, the dataset D
is generated by recording a human driver such that consecutive sample
points are auto-correlated. Once a sufficient amount of driving experience
was recorded, the dataset can be shuffled and approximately considered
an i.i.d. sample. Thus, a model p(y | w,x) can be trained on D using the
statistical learning framework from Chapter 2. If the model needs to be
improved, more data has to be collected and mixed with D for retraining.

This process seems unnatural. Instead, we would like to formulate the
learning problem in a way, that the feedforward model p(y | w,x) is trained
in an online manner while receiving autocorrelated sample points just like
the human driver.

Experience replay is in principle applicable to this scenario and found
successful adaptations in the past for removing autocorrelations [e. g., 130].
But as we discussed in the previous section, experience replay (or coresets)
does not excel in continual learning (at least not for moderate sizes of the
replay buffer).

Also, the Bayesian recursive update (Eq. 4.5) is applicable to this scenario,
and we could recursively approximate the posterior over all data seen
so far for each incoming data point [e. g., 131]. However, the recursive
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application of approximate inference leads to poor performance in practice
(cf. Sec. 4.1.2.1), and applying this recursion to every incoming data point
rather than to individual tasks can only worsen this effect.

The other CL approaches discussed in Sec. 4.1 are not applicable, since
there is no apparent notion of tasks.

Note, that both experience replay and the Bayesian recursive update are
agnostic to the specific type of autocorrelations being observed. More pre-
cisely, while we are not aware of a mathematical justification of experience
replay (cf. Sec. 4.1.5), the Bayesian recursive update is completely generic
and applicable to essentially any type of data stream.

However, for the problem at hand, we do not require such powerful
algorithm as the incoming data stream of front-camera images follows
very specific dynamics. To make this idea more concrete, let’s reconsider,
as an example, MCMC methods as discussed in Sec. 3.5.3 but applied
to inputs x rather than to parameters w. In particular, let’s consider a
chain π(x(t) | x(t−1)) constructed such that the stationary distribution is
the distribution of front-camera images p(x). As discussed in Sec. 3.5.3,
consecutive sample points x(t−1),x(t),x(t+1) are autocorrelated. Assuming
π(x(t) | x(t−1)) is fixed and given (or learned separately), can we use it to
construct a π-specific CL algorithm for learning a feedforward model p(y |
w,x) from tuples . . . , (x(t−1),y(t−1)), (x(t),y(t)), . . . with autocorrelated
inputs according to π(x(t) | x(t−1))?

Let τ be a trajectory of length T sampled via π(x(t) | x(t−1)), i. e., τ[t] =
x(t) and x(t) ∼ π(x | τ[t− 1]). In conventional supervised learning the goal
is to minimize the true risk, for instance, by using the negative log-likelihood
as cost function as discussed in Chapter 2:

R := Ep(x,y)[− log p(y | w,x)] (4.18)

= −
∫
x

p(x)Ep(y|x)[log p(y | w,x)] dx (4.19)

The true risk can be approximated via Monte-Carlo using and i.i.d. dataset

D i.i.d.∼ p(x,y), which leads to the so-called empirical risk

Remp := − 1
N

N

∑
n=1

log p(yn | w,xn) (4.20)

Moreover, gradients of the empirical risk are unbiased estimates of the
gradient of the true risk and are consistent with respect to a growing dataset
size.



4.3 closing remarks on continual learning 65

In our setting, however, it might be constructive to consider another
quantity that represents the true risk, that we call evolving risk

Revolve
π := lim

T→∞

1
T

T

∑
t=1

Ep(y|τ[t])[− log p(y | w, τ[t])]→ R (4.21)

where we use the fact that p(x) is the stationary distribution of the chain.
Thus, minimizing Revolve

π is equivalent to minimizing the true risk R.
However, to accomplish the goal of this section, gradient estimates would
need to be formed by approximating a local version of the evolving risk:

Revolve
π,∆t :=

1
∆t

t2

∑
t=t1

Ep(y|τ[t])[− log p(y | w, τ[t])] (4.22)

≈ − 1
∆t

t2

∑
t=t1

log p(y(t) | w, τ[t]) with y(t) i.i.d.∼ p(y | x) (4.23)

with ∆t = t2 − t1 + 1.
Note, that gradients from such estimate are still unbiased if ∆t = 1 (mini-

batch of size 1). However, the gradient noise cannot be described as white
noise as it would be the case for stochastic gradient descent [132], and thus
cannot be assumed to cancel out in expectation for consecutive gradient
steps (at consecutive time points). Therefore, parameter updates should be
informed about the dynamics π(x(t) | x(t−1)).

We unfortunately have no analytic solution to such problem yet, but
consider it an important and interesting future direction. Note, that con-
sidering the dynamics π(x(t) | x(t−1)) as fixed is reasonable for real-world
agents, and biological systems might have evolved learning rules that are
optimized for learning from autocorrelated sample points. Moreover, even
without an analytically derived update rule for learning in this setting,
modern ML tools from the field of meta-learning [133] could be used to
learn how to continually learn as already explored in other settings [134].

4.3 closing remarks on continual learning

We discussed the current state of CL research in this chapter, emphasizing
that most research efforts are concentrated on task-focused CL (i. e., setups
with a discrete set of tasks to be learned one after the other, cf. Sec. 4.1).
This will also be the CL setting under consideration in Chapters 5 and 6. We
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already mentioned, and will confirm later, that more specialized algorithms
(e. g., specialized to task-focused CL) often perform better than generic
alternatives (e. g., based on the Bayesian recursive update). Moreover, we
have seen that many approaches to CL rely on explicit generative modelling
or Bayesian inference. These considerations lead to the conclusion that the
current CL literature focuses on a too generic problem, which does not
allow for (computationally) simple and effective solutions. Therefore, we
proposed a potential subcategory for continual learning research in Sec. 4.2,
which is inspired by the way how biological agents learn continually within
their environment, i. e., by learning from autocorrelated sample points.
Focusing on more strictly constrained subproblems will hopefully lead to
the development of algorithms that are effective and scalable enough to
become relevant for real-world applications. In the end, there is a natural
desire for continual learning as efficiency requires us to find ways of
incorporating new evidence without retraining, and we hope that the
contributions of this chapter can contribute in achieving this goal.



5
C O N T I N UA L L E A R N I N G V I A H Y P E R N E T W O R K S

This chapter’s content is taken from a publication in the Proceedings of the Interna-
tional Conference on Learning Representations (2020) and can be found online in
an extended form. The original publication is authored by: Johannes von Oswald?,
Christian Henning?, João Sacramento? and Benjamin F. Grewe [39].

? These authors contributed equally.

As discussed in Chapter 4, neural networks suffer from catastrophic
forgetting when they are sequentially trained on multiple tasks. To over-
come this problem, we present in this chapter an approach based on task-
conditioned hypernetworks, i.e., networks that generate the weights of a
target model based on task identity. Continual learning (CL) is less difficult
for this class of models thanks to a simple key feature: instead of recalling
the input-output relations of all previously seen data, task-conditioned
hypernetworks only require rehearsing task-specific weight realizations,
which can be maintained in memory using a simple regularizer. Besides
achieving state-of-the-art performance on standard CL benchmarks, ad-
ditional experiments on long task sequences reveal that task-conditioned
hypernetworks display a very large capacity to retain previous memories.
Notably, such long memory lifetimes are achieved in a compressive regime,
when the number of trainable hypernetwork weights is comparable or
smaller than target network size. We provide insight into the structure of
low-dimensional task embedding spaces (the input space of the hypernet-
work) and show that task-conditioned hypernetworks demonstrate transfer
learning. Finally, forward information transfer is further supported by em-
pirical results on a challenging CL benchmark based on the CIFAR-10/100

image datasets.

5.1 introduction

We use the same notation as in the previous chapters where f (x;w) denotes
a neural network and tasks are represented by a sequence of datasets D(1),
. . . , D(T), with ‖D(1)‖ = N(t).

Here, we propose a method that addresses the continual learning problem
as explained in Sec. 4.1.3. In particular, we propose addressing catastrophic
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forgetting at the meta level: instead of directly attempting to retain f (x;w)
for previous tasks, we fix the outputs of a metamodel h(e; ψ) termed task-
conditioned hypernetwork which maps a task embedding e to weightsw. Now,
a single point has to be memorized per task. To motivate such approach,
we perform a thought experiment: we assume that we are allowed to store
all inputs {x(t,n) | t ∈ [1 . . . T], n ∈ [1 . . . N(t)]} seen so far, and to use
these data to compute model outputs corresponding to w(T−1). In this
idealized setting, one can avoid forgetting by simply mixing data from
the current task with data from the past, {(x(s,n), ŷ(s,n)) | s ∈ [1 . . . T −
1], n ∈ [1 . . . N(s)]} ∪ {(x(T,n),y(T,n)) | n ∈ [1 . . . N(T)]}, where ŷ(s,n) refers
to the synthetic targets generated using the model itself f (x(s,n),w(T−1)).
Hence, by training to retain previously acquired input-output mappings,
one can obtain a sequential algorithm in principle as powerful as multi-task
learning. Multi-task learning, where all tasks are learned simultaneously,
can be seen as a CL upper-bound. The strategy described above has been
termed rehearsal [135]. However, storing previous task data violates our
CL desiderata.

Therefore, we introduce a change in perspective and move from the
challenge of maintaining individual input-output data points to the problem
of maintaining sets of parameters {w(t)}, without explicitly storing them.
To achieve this, we train the metamodel parameters ψ analogous to the
above outlined learning scheme, where synthetic targets now correspond to
weight configurations that are suitable for previous tasks. This exchanges
the storage of an entire dataset by a single low-dimensional task descriptor,
yielding a massive memory saving in all but the simplest of tasks. Despite
relying on regularization, our approach is a conceptual departure from
previous algorithms based on regularization in weight [e.g., 103, 118] or
activation space [e.g., 136].

Our experimental results show that task-conditioned hypernetworks do
not suffer from catastrophic forgetting on a set of standard CL benchmarks.
Remarkably, they are capable of retaining memories with practically no
decrease in performance, when presented with very long sequences of
tasks. Thanks to the expressive power of neural networks, task-conditioned
hypernetworks exploit task-to-task similarities and transfer information
forward in time to future tasks. Finally, the task-conditional metamodelling
perspective that we put forth is generic, as it does not depend on the
specifics of the target network architecture. We exploit this key principle
and show that the very same metamodelling framework extends to, and
can improve, an important class of CL methods known as generative replay
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Figure 5.1: Task-conditioned hypernetworks for continual learning. Com-
monly, the parameters of a neural network are directly adjusted from data
to solve a task. Here, a weight generator termed hypernetwork is learned instead.
Hypernetworks map embedding vectors to weights, which parameterize a target
neural network. In a continual learning scenario, a set of task-specific embed-
dings is learned via backpropagation. Embedding vectors provide task-dependent
context and bias the hypernetwork to particular solutions.

methods, which are current state-of-the-art performers in many practical
problems [104, 115, 137].

5.2 model

5.2.1 Task-conditioned hypernetworks

hypernetworks parameterize target models . The centerpiece
of our approach to continual learning is the hypernetwork, Fig. 5.1. Instead
of learning the parameters w of a particular function f directly (the target
model), we learn the parameters ψ of a metamodel. The output of such meta-
model, the hypernetwork, is w. Hypernetworks can therefore be thought
of as weight generators, which were originally introduced to dynamically
parameterize models in a compressed form [35, 36, 138, 139].

continual learning with hypernetwork output regulariza-
tion. One approach to avoid catastrophic forgetting is to store data from
previous tasks and corresponding model outputs, and then fix such outputs.
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This can be achieved using an output regularizer of the following form,
where past outputs play the role of pseudo-targets [135, 140, 141]:

Loutput =
T−1

∑
t=1

N(t)

∑
n=1
‖ f (x(t,n),w∗)− f (x(t,n),w)‖2, (5.1)

In the equation above, w∗ is the set of parameters before attempting to
learn task T, and f is the learner. This approach, however, requires storing
and iterating over previous data, a process that is known as rehearsing. This
is potentially expensive memory-wise and not strictly online learning. A
possible workaround is to generate the pseudo-targets by evaluating f on
random patterns [135] or on the current task dataset [140]. However, this
does not necessarily fix the behavior of the function f in the regions of
interest.

Hypernetworks sidestep this problem naturally. In target network weight
space, a single point (i.e., one set of weights) has to be fixed per task. This
can be efficiently achieved with task-conditioned hypernetworks, by fixing
the hypernetwork output on the appropriate task embedding.

Similar to Benjamin, Rolnick & Kording [141], we use a two-step opti-
mization procedure to introduce memory-preserving hypernetwork output
constraints. First, we compute a candidate change ∆ψ which minimizes the
current task loss L(T)task = Ltask(ψ, e(T),D(T)) with respect to ψ. The candi-
date ∆ψ is obtained with an optimizer of choice [we use Adam throughout;
142]. The actual parameter change is then computed by minimizing the
following total loss:

Ltotal = Ltask(ψ, e(T),D(T)) + Loutput(ψ
∗, ψ, ∆ψ, {e(t)}) (5.2)

= Ltask(ψ, e(T),D(T)) +
β

T − 1

T−1

∑
t=1
‖h(e(t); ψ∗)− h(e(t), ψ + ∆ψ))‖2

(5.3)

where ψ∗ is the set of hypernetwork parameters before attempting to learn
task T, ∆ψ is considered fixed and β is a hyperparameter that controls
the strength of the regularizer. In SM D of Ref. [39], we run a sensitivity
analysis on β and experiment with a more efficient stochastic regularizer
where the averaging is performed over a random subset of past tasks.

More computationally-intensive algorithms that involve a full inner-loop
refinement, or use second-order gradient information by backpropagating
through ∆ψ could be applied. However, we found empirically that our one-
step correction worked well. Exploratory hyperparameter scans revealed
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that the inclusion of the lookahead ∆ψ in Eq. 5.3 brought a minor increase
in performance, even when computed with a cheap one-step procedure.
Note that unlike in Eq. 5.1, the memory-preserving term Loutput does not
depend on past data. Memory of previous tasks enters only through the
collection of task embeddings {e(t)}T−1

t=1 .

learned task embeddings . Task embeddings are differentiable de-
terministic parameters that can be learned, just like ψ. At every learning
step of our algorithm, we also update the current task embedding e(T) to
minimize the task loss L(T)task. After learning the task, the final embedding is
saved and added to the collection {e(t)}.

5.2.2 Model compression with chunked hypernetworks

Figure 5.2: Model compression.
A smaller, chunked hypernet-
work can be used iteratively, pro-
ducing a chunk of target net-
work weights at a time (e.g., one
layer at a time). Chunked hy-
pernetworks can achieve model
compression: the effective num-
ber of trainable parameters can be
smaller than the number of target
network weights.

chunking . In a straightforward imple-
mentation, a hypernetwork produces the
entire set of weights of a target neural net-
work. For modern deep neural networks,
this is a very high-dimensional output.
However, hypernetworks can be invoked
iteratively, filling in only part of the target
model at each step, in chunks [35, 42]. This
strategy allows applying smaller hypernet-
works that are reusable. Interestingly, with
chunked hypernetworks it is possible to
solve tasks in a compressive regime, where
the number of learned parameters (those
of the hypernetwork) is effectively smaller
than the number of target network param-
eters.

chunk embeddings and network

partitioning . Reapplying the same
hypernetwork multiple times introduces
weight sharing across partitions of the tar-
get network, which is usually not desir-
able. To allow for a flexible parameteriza-
tion of the target network, we introduce
a set C = {c(i)}Nc

i=1 of chunk embeddings,
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which are used as an additional input to the hypernetwork, Fig. 5.2. Thus,
the full set of target network parameters w = [h(e, c(1)), . . . , h(e, c(Nc))] is
produced by iteration over C, keeping the task embedding e fixed. This
way, the hypernetwork can produce distinct weights for each chunk. Fur-
thermore, chunk embeddings, just like task embeddings, are ordinary
deterministic parameters that we learn via backpropagation. For simplicity,
we use a shared set of chunk embeddings for all tasks and we do not
explore special target network partitioning strategies.

How flexible is our approach? Chunked neural networks can in prin-
ciple approximate any target weight configuration arbitrarily well. For
completeness, we state this formally in SM E of Ref. [39].

5.2.3 Context-free inference: unknown task identity

determining which task to solve from input data . Our hyper-
network requires a task embedding input to generate target model weights.
In certain CL applications, an appropriate embedding can be immediately
selected as task identity is unambiguous, or can be readily inferred from
contextual clues. In other cases, knowledge of the task at hand is not
explicitly available during inference. In the following, we show that our
metamodelling framework generalizes to such situations. In particular, we
consider the problem of inferring which task to solve from a given input
pattern, a noted benchmark challenge [105, 143]. Below, we explore two
different strategies that leverage task-conditioned hypernetworks in this CL
setting.

task-dependent predictive uncertainty. Neural network models
are increasingly reliable in signalling novelty and appropriately handling
out-of-distribution data. For categorical target distributions, the network
ideally produces a flat, high entropy output for unseen data and, conversely,
a peaked, low-entropy response for in-distribution data [144, 145]. This
suggests a first, simple method for task inference (HNET+ENT). Given
an input pattern for which task identity is unknown, we pick the task
embedding which yields lowest predictive uncertainty, as quantified by
output distribution entropy. While this method relies on accurate novelty
detection, which is in itself a far from solved research problem, it is other-
wise straightforward to implement and no additional learning or model is
required to infer task identity.
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hypernetwork-protected synthetic replay. When a generative
model is available, catastrophic forgetting can be circumvented by mixing
current task data with replayed past synthetic data [for recent work see
115, 137]. Besides protecting the generative model itself, synthetic data
can protect another model of interest, for example, another discriminative
model as we discussed in Sec. 4.1.1. This conceptually simple strategy is in
practice often performing best if the input data is easy to model, e. g., on
MNIST-derived benchmarks [105]. Inspired by these successes, we explore
augmenting our system with a replay network, here a standard variational
autoencoder [VAE; 79] (but see SM F in Ref. [39] for experiments with a
generative adversarial network [146].

Synthetic replay is a strong, but not perfect, CL mechanism as the gener-
ative model is subject to drift, and errors tend to accumulate and amplify
with time. Here, we build upon the following key observation: just like the
target network, the generator of the replay model can be specified by a
hypernetwork. This allows protecting it with the output regularizer, Eq. 5.3,
rather than with the model’s own replay data, as done in related work.
Thus, in this combined approach, both synthetic replay and task-conditional
metamodelling act in tandem to reduce forgetting.

We explore hypernetwork-protected replay in two distinct setups. First,
we consider a minimalist architecture (HNET+R), where only the replay
model, and not the target classifier, is parameterized by a hypernetwork.
Here, forgetting in the target network is obviated by mixing current data
with synthetic data. Synthetic target output values for previous tasks are
generated using a soft targets method, i.e., by simply evaluating the target
function before learning the new task on synthetic input data. Second
(HNET+TIR), we introduce an auxiliary task inference classifier, protected
using synthetic replay data and trained to predict task identity from input
patterns. This architecture requires additional modelling, but it is likely
to work well when tasks are strongly dissimilar. Furthermore, the task
inference subsystem can be readily applied to process more general forms
of contextual information, beyond the current input pattern. We provide
additional details, including network architectures and the loss functions
that are optimized, in SM B and SM C of Ref. [39].
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5.3 results

We evaluate our method on a set of standard image classification bench-
marks on the MNIST, CIFAR-10 and CIFAR-100 public datasets1. Our main
aims are to (1) study the memory retention capabilities of task-conditioned
hypernetworks across three continual learning settings, and (2) investigate
information transfer across tasks that are learned sequentially.

continual learning scenarios . In our experiments we consider
the three different CL scenarios from van de Ven & Tolias [105] that we
introduced in Sec. 4.1. To briefly reiterate them: In CL1, the task identity
is given to the system. This is arguably the standard sequential learning
scenario (at least at the time of publication), and the one we consider unless
noted otherwise. In CL2, task identity is unknown to the system, but it does
not need to be explicitly determined. A target network with a fixed head is
required to solve multiple tasks. In CL3, task identity has to be explicitly
inferred. It has been argued that this scenario is the most natural, and the
one that tends to be harder for neural networks [105, 143].

experimental details . Aiming at comparability, for the experiments
on the MNIST dataset we model the target network as a fully-connected
network and set all hyperparameters after van de Ven & Tolias [105], who
recently reviewed and compared a large set of CL algorithms. For our
CIFAR experiments, we opt for a ResNet-32 target neural network [147]
to assess the scalability of our method. A summary description of the
architectures and particular hyperparameter choices, as well as additional
experimental details, is provided in SM C of Ref. [39]. We emphasize that,
on all our experiments, the number of hypernetwork parameters is always
smaller or equal than the number of parameters of the models we compare
with.

nonlinear regression toy problem . To illustrate our approach,
we first consider a simple nonlinear regression problem, where the function
to be approximated is scalar-valued, Fig. 5.3. Here, a sequence of poly-
nomial functions of increasing degree has to be inferred from noisy data.
This motivates the continual learning problem: when learning each task in
succession by modifying ψ with the memory-preserving regularizer turned
off (β = 0, see Eq. 5.3) the network learns the last task but forgets previ-

1 Source code is available under https://github.com/chrhenning/hypercl.

https://github.com/chrhenning/hypercl


5.3 results 75

−2.5 0.0 2.5
x

−1
0
1

y

1D regression (hnet. reg.)

(a)

−2.5 0.0 2.5
x

−1
0
1

y

1D regression (non-CL)

(b)

−2.5 0.0 2.5
x

−1
0
1

y

1D regression (fine-tuning)

(c)

Figure 5.3: 1D nonlinear regression. (a) Task-conditioned hypernetworks with
output regularization can easily model a sequence of polynomials of increasing
degree, while learning in a continual fashion. (b) The solution found by a target
network which is trained directly on all tasks simultaneously is similar. (c) Fine-
tuning, i.e., learning sequentially, leads to forgetting of past tasks. Dashed lines
depict ground truth, markers show model predictions.

ous ones, Fig. 5.3c. The regularizer protects old solutions, Fig. 5.3a, and
performance is comparable to an offline non-continual learner, Fig. 5.3b.

permuted mnist benchmark . Next, we study the permuted MNIST
benchmark [148]. This problem is set as follows. First, the learner is pre-
sented with the full MNIST dataset. Subsequently, novel tasks are obtained
by applying a random permutation to the input image pixels. This process
can be repeated to yield a long task sequence, with a typical length of T = 10
tasks. Given the low similarity of the generated tasks, permuted MNIST is
well suited to study the memory capacity of a continual learner. For T = 10,
we find that task-conditioned hypernetworks are state-of-the-art on CL1,
Table 5.1. Interestingly, inferring tasks through the predictive distribution
entropy (HNET+ENT) works well on the permuted MNIST benchmark.
Despite the simplicity of the method, both synaptic intelligence [SI; 103]
and online elastic weight consolidation [EWC; 102] are overperformed on
CL3 by a large margin (SI results are reported in Table 1 in Ref. [39]). When
complemented with generative replay methods, task-conditioned hypernet-
works (HNET+TIR and HNET+R) are the best performers on all three CL
scenarios.

Performance differences become larger in the long sequence limit, Fig. 5.4a.
For longer task sequences (T = 100), SI and DGR+distill [104, 115] degrade
gracefully, while the regularization strength of online EWC prevents the
method from achieving high accuracy (see Fig. A6 in Ref. [39] for a hyperpa-
rameter search on related work). Notably, task-conditioned hypernetworks
show minimal memory decay and find high performance solutions. Be-



76 continual learning via hypernetworks

1 50 100
Task t

25

50

75

100

A
cc

ur
ac

y
[%

]

96.78%
95.66%

PermutedMNIST-100

hnet SI DGR+distill Online EWC

(a)

0.0 0.5 1.0
Compression ratio

40

60

80

100

A
cc

ur
ac

y
[%

]

Compression-performance trade-off

during final

(b)

Figure 5.4: Experiments on the permuted MNIST benchmark. (a) Final test set
classification accuracy on the t-th task after learning one hundred permutations
(PermutedMNIST-100). Task-conditioned hypernetworks (hnet, in red) achieve
very large memory lifetimes on the permuted MNIST benchmark. Synaptic intel-
ligence [SI, in blue; 103], online EWC [in orange; 102] and deep generative replay
[DGR+distill, in green; 104, 115] methods are shown for comparison. Memory
retention in SI and DGR+distill degrade gracefully, whereas EWC suffers from
rigidity and can never reach very high accuracy, even though memories persist

for the entire experiment duration. (b) Compression ratio dim(ψ)+∑t dim(e(t))
dim(w)

ver-
sus task-averaged test set accuracy after learning all tasks (labelled ‘final’, in
red) and immediately after learning a task (labelled ‘during’, in purple) for the
PermutedMNIST-10 benchmark. Hypernetworks allow for model compression
and perform well even when the number of target model parameters exceeds their
own. Performance decays nonlinearly: accuracies stay approximately constant for
a wide range of compression ratios below unity. Hyperparameters were tuned
once for compression ratio ≈ 1 and were then used for all compression ratios.
Shaded areas denote STD (a) resp. SEM (b) across 5 random seeds.
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EWC DGR HNET+ENT HNET+TIR HNET+R

P10-CL1 95.96
±0.06

97.51
±0.01

97.57
±0.02

97.57
±0.02 97.87±0.01

P10-CL2 94.42
±0.13

97.35
±0.02

92.80
±0.15

97.58
±0.02 97.60±0.01

P10-CL3 33.88
±0.49

96.38
±0.03

91.75
±0.21

97.59
±0.01 97.76±0.01

S-CL1 99.12
±0.11

99.61
±0.02

99.79
±0.01

99.79
±0.01 99.83±0.01

S-CL2 64.32
±1.90

96.83
±0.20

87.01
±0.47

94.43
±0.28 98.00±0.03

S-CL3 19.96
±0.07

91.79
±0.32

69.48
±0.80

89.59
±0.59 95.30±0.13

Table 5.1: Task-averaged test accuracy (± SEM, n = 20) on the permuted (‘P10’)
and split (‘S’) MNIST experiments. In the table, EWC refers to online EWC
and DGR refers to DGR+distill [results reproduced from 105]. We tested three
hypernetwork-based models: for HNET+ENT (HNET alone for CL1), we inferred
task identity based on the entropy of the predictive distribution; for HNET+TIR,
we trained a hypernetwork-protected recognition-replay network (based on a
VAE, cf. Fig. A1 in Ref. [39]) to infer the task from input patterns; for HNET+R
the main classifier was trained by mixing current task data with synthetic data
generated from a hypernetwork-protected VAE.

cause the hypernetwork operates in a compressive regime (see Fig. 5.4b and
Fig. A7 in Ref. [39] for an exploration of compression ratios), our results do
not naively rely on an increase in the number of parameters. Rather, they
suggest that previous methods are not yet capable of making full use of
target model capacity in a CL setting. We report a set of extended results on
this benchmark in SM D of Ref. [39], including a study of CL2/3 (T = 100),
where HNET+TIR strongly outperforms the related work.

split mnist benchmark . Split MNIST is another popular CL bench-
mark, designed to introduce task overlap (cf. Fig. 4.1). In this problem,
the various digits are sequentially paired and used to form five binary
classification tasks. Here, we find that task-conditioned hypernetworks are
the best overall performers. In particular, HNET+R improves the previous
state-of-the-art method DGR+distill on both CL2 and CL3, almost saturat-
ing the CL2 upper bound for replay models (see SM D in Ref. [39]). Since
HNET+R is essentially hypernetwork-protected DGR, these results demon-
strate the generality of task-conditioned hypernetworks as effective memory
protectors. To further support this, in SM F in Ref. [39] we show that our
replay models (we experiment with both a VAE and a GAN) can learn in
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Figure 5.5: Two-dimensional task embedding space for the split MNIST
benchmark. Color-coded test set classification accuracies after learning the five
splits, shown as the embedding vector components are varied. Markers denote
the position of final task embeddings. (a) High classification performance with
virtually no forgetting is achieved even when e-space is low-dimensional. The
model shows information transfer in embedding space: the first task is solved
in a large volume that includes embeddings for subsequently learned tasks. (b)
Competition in embedding space: the last task occupies a finite high performance
region, with graceful degradation away from the embedding vector. Previously
learned task embeddings still lead to moderate, above-chance performance.

a class-incremental manner the full MNIST dataset. Finally, HNET+ENT
again outperforms EWC, without any generative modelling.

On the split MNIST problem, tasks overlap and therefore continual learn-
ers can transfer information across tasks. To analyze such effects, we study
task-conditioned hypernetworks with two-dimensional task embedding
spaces, which can be easily visualized. Despite learning happening continu-
ally, we find that the algorithm converges to a hypernetwork configuration
that can produce target model parameters that simultaneously solve old
and new tasks, Fig. 5.5, given the appropriate task embedding.

split cifar-10/100 benchmark . Finally, we study a more challeng-
ing benchmark, where the learner is first asked to solve the full CIFAR-10

classification task and is then presented with sets of ten classes from the
CIFAR-100 dataset. We perform experiments both with a high-performance
ResNet-32 target network architecture (Fig. 5.6) and with a shallower
model (see Fig. A3 in Ref. [39]) that we exactly reproduced from pre-
vious work [103]. Remarkably, on the ResNet-32 model, we find that
task-conditioned hypernetworks essentially eliminate altogether forget-
ting. Furthermore, forward information transfer takes place; knowledge
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Figure 5.6: Split CIFAR-10/100 CL benchmark. Test set accuracies (mean ±
STD, n = 5) on the entire CIFAR-10 dataset and subsequent CIFAR-100 splits
of ten classes. Our hypernetwork-protected ResNet-32 displays virtually no
forgetting; final averaged performance (hnet, in red) matches the immediate
one (hnet-during, in blue). Furthermore, information is transferred across tasks,
as performance is higher than when training each task from scratch (purple).
Disabling our regularizer leads to strong forgetting (in yellow).

from previous tasks allows the network to find better solutions than when
learning each task individually from initial conditions. Interestingly, for-
ward transfer is stronger on the shallow model experiments, where we
otherwise find that our method performs comparably to SI.

5.4 discussion

bayesian accounts of continual learning . According to the
standard Bayesian CL perspective, a posterior parameter distribution is re-
cursively updated using Bayes’ rule as tasks arrive [84, 118, 119]. While this
approach is theoretically sound, in practice, the approximate inference meth-
ods that are typically preferred can lead to stiff models, as a compromise
solution that suits all tasks has to be found within the mode determined
by the first task. Such restriction does not apply to hypernetworks, which
can in principle model complex multimodal distributions [41, 42, 44]. Thus,
rich, hypernetwork-modelled priors are one avenue of improvement for
Bayesian CL methods. Interestingly, task-conditioning offers an alternative
possibility: instead of consolidating every task onto a single distribution, a
shared task-conditioned hypernetwork could be leveraged to model a set
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of parameter posterior distributions. This conditional metamodel naturally
extends our framework to the Bayesian learning setting. Such approach will
likely benefit from additional flexibility, compared to conventional recursive
Bayesian updating. We will investigate this idea thoroughly in the next
chapter.

related approaches that rely on task-conditioning . Our
model fits within, and in certain ways generalizes, previous CL methods
that condition network computation on task descriptors. Task-conditioning
is commonly implemented using multiplicative masks at the level of mod-
ules [122, 149], neurons [127, 150] or weights [151]. Such methods work
best with large networks and come with a significant storage overhead,
which typically scales with the number of tasks. Our approach differs by
explicitly modelling the full parameter space using a metamodel, the hy-
pernetwork. Thanks to this metamodel, generalization in parameter and
task space is possible, and task-to-task dependencies can be exploited to
efficiently represent solutions and transfer present knowledge to future
problems. Interestingly, similar arguments have been drawn in work devel-
oped concurrently to ours [152], where task embedding spaces are further
explored in the context of few-shot learning. In the same vein, and like the
approach developed here, recent work in CL generates last-layer network
parameters as part of a pipeline to avoid catastrophic forgetting [153] or
distills parameters onto a contractive auto-encoding model [154].

positive backwards transfer . In its current form, the hypernet-
work output regularizer protects previously learned solutions from chang-
ing, such that only weak backwards transfer of information can occur. Given
the role of selective forgetting and refinement of past memories in achiev-
ing intelligent behavior [155, 156], investigating and improving backwards
transfer stands as an important direction for future research.

relevance to systems neuroscience . Uncovering the mechanisms
that support continual learning in both brains and artificial neural networks
is a long-standing question [13, 96, 157]. We close with a speculative systems
interpretation [158, 159] of our work as a model for modulatory top-down
signals in cortex. Task embeddings can be seen as low-dimensional context
switches, which determine the behavior of a modulatory system, the hyper-
network in our case. According to our model, the hypernetwork would in
turn regulate the activity of a target cortical network.
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As it stands, implementing a hypernetwork would entail dynamically
changing the entire connectivity of a target network, or cortical area. Such
a process seems difficult to conceive in the brain. However, this strict
literal interpretation can be relaxed. For example, a hypernetwork can
output lower-dimensional modulatory signals [160], instead of a full set
of weights. This interpretation is consistent with a growing body of work
which suggests the involvement of modulatory inputs in implementing
context- or task-dependent network mode-switching [127, 161–163].

5.5 conclusion

In this chapter, we introduced a novel neural network model, the task-
conditioned hypernetwork, that is well-suited for the CL problems dis-
cussed in Sec. 4.1. A task-conditioned hypernetwork is a metamodel that
learns to parameterize target functions, that are specified and identified in
a compressed form using a task embedding vector. Past tasks are kept in
memory using a hypernetwork output regularizer, which penalizes changes
in previously found target weight configurations. This approach is scalable
and generic, being applicable as a standalone CL method or in combina-
tion with generative replay. Our results are state-of-the-art on standard
benchmarks (at the time of publication) and suggest that task-conditioned
hypernetworks can achieve long memory lifetimes, as well as transfer
information to future tasks, two essential properties of a continual learner.

However, the use of generative replay in methods HNET+R and HNET+
TIR makes it cumbersome to scale these methods to complex real-world
tasks. By contrast, the method HNET+ENT does not rely on generative
modelling. We will therefore thoroughly explore this method in the next
chapter and propose a probabilistic extension the here presented task-
conditioned hypernetwork.





6
P O S T E R I O R - M E TA - R E P L AY F O R C O N T I N UA L
L E A R N I N G

This chapter’s content is taken from a publication in the Proceedings of the Confer-
ence on Neural Information Processing Systems (2021) and can be found online in
an extended form. The original publication is authored by: Christian Henning?,
Maria R. Cervera?, Francesco D’Angelo, Johannes von Oswald, Regina Traber,
Benjamin Ehret, Seijin Kobayashi, Benjamin F. Grewe and João Sacramento [40].

? These authors contributed equally.

We have seen in Sec. 4.1.2, that Bayesian learning directly applies to
continual learning, since recursive and one-off Bayesian updates yield the
same result. In practice, however, recursive updating often leads to poor
trade-off solutions across tasks because approximate inference is necessary
for most models of interest (cf. Sec. 4.1.2.1). In this chapter, we describe an
alternative Bayesian approach where task-conditioned parameter distribu-
tions are continually inferred from data. We offer a practical deep learning
implementation of our framework based on probabilistic task-conditioned
hypernetworks, an approach we term posterior meta-replay. Experiments on
standard benchmarks show that our probabilistic hypernetworks compress
sequences of posterior parameter distributions with virtually no forgetting.
We obtain considerable performance gains compared to existing Bayesian
CL methods, and identify task inference as our major limiting factor. This
limitation has several causes that are independent of the considered sequen-
tial setting, opening up new avenues for progress in CL.

6.1 introduction

As mentioned before, the advantages of a Bayesian approach for solving
the problem of sequentially learning tasks D(1), . . . ,D(T) are numerous and
include the ability to drop all i.i.d. assumptions across and within tasks in
a mathematically sound way, the ability to revisit tasks whenever new data
becomes available, and access to principled uncertainty estimates capturing
both data and parameter uncertainty (cf. Chapter 3). The predominant
Bayesian CL approach is based on the recursive Bayesian update and
called prior-focused learning [117], as explained in Sec. 4.1.2. In theory, this
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recursive update in Eq. 4.5 can always recover the posterior p(w | D(1:T)),
independently of how the data is presented. However, because proper
Bayesian inference is intractable, approximations are needed in practice,
which lead to errors that are recursively amplified. As a result, whether
solutions that are easily found in the i.i.d. setting can be obtained via
the approximate recursive update strongly depends on factors such as
task ordering, task similarity and the considered family of distributions
(see Sec. 4.1.2.1 for a discussion). These factors limit the effectiveness of
the recursive update and have a detrimental effect on the performance of
prior-focused methods, especially in CL settings where task-identity is not
provided.

Figure 6.1: The proposed posterior meta-
replay framework learns task-specific pos-
teriors p(w | D(t)) via a single shared
meta-model, with task-specific point esti-
mates (e.g., MAP) being a limit case. In
this view, the modelled solution space is
not limited to admissible solutions that
lie in the overlap of all task-specific pos-
teriors. By contrast, prior-focused methods
learn a single posterior p(w | D(1:T)) re-
cursively and thus require the existence
of trade-off solutions between learned
and future tasks in the currently mod-
elled solution space. Shaded areas indi-
cate high density regions.

To overcome these limitations, we
propose in this chapter an alterna-
tive Bayesian approach to CL that
does not rely on the recursive up-
date to learn distinct tasks and in-
stead aims to learn task-specific pos-
teriors (Fig. 6.1, refer to SM F.1
in Ref. [40] for a detailed discus-
sion of the probabilistic graphical
model). In this view, finding trade-
off solutions across tasks is not re-
quired, and knowledge transfer can
be explicitly controlled for each task
via the prior, which is no longer
prescribed by the recursive update
and can thus be set freely. By in-
troducing probabilistic extensions
of the task-conditioned hypernet-
works introduced in Chapter 5, we
show how task-specific posteriors
can be learned with a single shared
meta-model, an approach we term
posterior meta-replay.

This approach introduces two
challenges: forgetting at the level of
the hypernetwork, and the need to know task identity to correctly condition
the hypernetwork. We empirically show that forgetting at the meta-level
can be prevented by using a simple regularizer that replays parameters of
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previous posteriors (in analogy to the regularization performed in Chapter
5). In task-agnostic inference settings, i. e., CL3 or class-incremental learning
as introduced in Sec. 4.1, the main hurdle therefore becomes task infer-
ence at test time. Here we focus on this task-agnostic setting, arguably the
most challenging but also the most natural CL scenario, since the obtained
models can be deployed just like those obtained via i.i.d. training (e.g.,
irrespective of the sequential training, the final model will be a classifier
across all classes). In order to explicitly infer task identity from unseen
inputs without resorting to generative models, we thoroughly study the
use of principled uncertainty that naturally arises in Bayesian models (i. e.,
an extension and generalization of the HNET+ENT baseline introduced in
Chapter 5). We show that results obtained in this task-agnostic setting with
our approach constitute a leap in performance compared to prior-focused
methods. Furthermore we show that limitations in task inference via predic-
tive uncertainty are not related to our CL solution, but depend instead on
the combination of approximate inference method, architecture, uncertainty
measure and prior. Finally, we investigate how task inference can be further
improved through several extensions.

We summarize our main contributions below:
• We describe a Bayesian CL framework where task-conditioned posterior

parameter distributions are continually learned and compressed in a
hypernetwork.

• In a series of synthetic and real-world CL benchmarks we show that our
task-conditioned hypernetworks exhibit essentially no forgetting, both
for explicitly parameterized and implicit posterior distributions, despite
using the parameter budget of a single model.

• Compared to prior-focused methods, our approach leads to a leap in
performance in task-agnostic inference while maintaining the theoretical
benefits of a Bayesian approach.

• Our approach scales to modern architectures such as ResNets, and re-
maining performance limitations are linked to uncertainty-based out-of-
distribution detection (cf. Chapter 7) but not to our CL solution.

• Finally, we show how prominent existing Bayesian CL methods such
as elastic weight consolidation can be dramatically improved in task-
agnostic settings by introducing a small set of task-specific parameters
and explicitly inferring the task.
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6.2 related work

continual learning . Most related to the content of this chapter is
our previous study (Ref. [39], presented in Chapter 5) that introduces task-
conditioned hypernetworks for CL, and already considers task inference
via predictive uncertainty in the deterministic case. Our framework can
be seen as a probabilistic extension of the method from Chapter 5, which
provides task-specific point estimates via a shared meta-model (cf. Sec. 6.3).
Follow-up work also achieves task inference via predictive uncertainty, e.g.,
Wortsman et al. [164] use it to select a learned binary mask per task that
modulates a random base network. Here we complement these studies by
thoroughly exploring task inference via several uncertainty measures, dis-
closing the factors that limit task inference and highlighting the importance
of parameter uncertainty.

A variety of methods tackling CL have been derived from a Bayesian
perspective. A prominent example are prior-focused methods [117], which
incorporate knowledge from past data via the prior and, in contrast to our
work, aim to find a shared posterior for all data (cf. Sec. 4.1.2). Examples
include (Online) EWC [102, 118] and VCL [119, 121]. Other methods like
CN-DPM [125] use Bayes’ rule for task inference on the joint p(x, c), where
c is a discrete condition such as task identity (cf. Sec. 4.1.4). An evident
downside of CN-DPM is the need for a separate generative and discrim-
inative model per condition. More generally, such an approach requires
meaningful density estimation in the input space, a requirement that is
challenging for modern ML problems [126].

Other Bayesian CL approaches consider instead task-specific posterior
parameter distributions. Lee et al. [165] learn separate task-specific Gaus-
sian posterior approximations which are merged into a single posterior
after all tasks have been seen. CBLN [166] also learns a separate Gaussian
posterior approximation per task but later tries to merge similar posteriors
in the induced Gaussian mixture model. Task inference is thus required and
achieved via predictive uncertainty, although for a more reliable estimation
all experiments consider batches of 200 samples that are assumed to belong
to the same task. Tuor, Wang & Leung [167] also learn a separate approxi-
mate posterior per task and use predictive uncertainty for task-boundary
detection and task inference. In contrast to these approaches, we learn all
task-specific posteriors via a single shared meta-model and remain agnostic
to the approximate inference method being used. A conceptually related
approach is MERLIN [168], which learns task-specific weight distributions
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by training an ensemble of models per task that is used as training set for a
task-conditioned variational autoencoder. Importantly, MERLIN requires a
fine-tuning stage at inference, such that every drawn model is fine-tuned on
stored coresets, i.e., a small set of samples withheld throughout training. By
contrast, our approach learns the parameters of an approximate Bayesian
posterior p(w | D(t)) per task t, and no fine-tuning of drawn models is
required.

bayesian neural networks . Because neural networks are expressive
enough to fit almost any data [169] and are often deployed in an over-
parametrized regime, it is implausible to expect that any single solution
obtained from limited data generalizes to the ground truth p(y | w,x) ≈
p(y | x) almost everywhere on p(x). By contrast, Bayesian statistics (in-
troduced in Chapter 3) considers a distribution over models, explicitly
handling uncertainty to acknowledge data insufficiencies. How Bayesian
statistics can can be applied to neural networks is discussed in Sec. 3.5.

While a deterministic discriminative model can only capture aleatoric
uncertainty, a Bayesian treatment allows to also capture epistemic uncertainty
by being uncertain about the model’s parameters (parameter uncertainty,
cf. Sec. 3.1). This proper treatment of uncertainty is of importance for
safety-critical applications, where intelligent systems are expected to know
what they don’t know (but see Sec. 3.3). However, due to the complexity
of modelling high-dimensional distributions at the scale of modern deep
learning and due to the difficulties of encoding prior knowledge into the
parameter space, BNNs still face severe scalability issues. Here, we employ
several approximations to the posterior based on variational inference
(cf. Sec. 3.5.1) from prior work, ranging from simple and scalable methods
with a mean-field variational family like Bayes-by-Backprop (BbB, [77]) to
methods with complex but rich variational families like the spectral Stein
gradient estimator [82]. For more details see Sec. 6.3 and SM C in Ref. [40].

6.3 methods

In this section we describe our posterior meta-replay framework (Fig. 6.2). We
start by introducing task-conditioned hypernetworks as a tool to continually
learn parameters of task-specific posteriors, each of which is learned using
variational inference (cf. Sec. 3.5.1 or SM C.1 in Ref. [40]). We then explain
how the framework can be instantiated for both simple, explicit posterior
approximations, and complex ones parametrized by an auxiliary network,
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Figure 6.2: Posterior meta-replay for CL. (a) The architecture consists of a main
network M that processes inputs x and generates predictions ŷ according to
a set of weights w generated by a weight generator (WG). The WG is a deter-
ministic function fWG(z;θ(t)) that transforms a base distribution p(z) into a
distribution over main network weights, where θ(t) are the parameters of the
approximate posterior qθ(t) (w). Crucially, θ(t) are task-specific, and generated by
a task-conditioned (TC) hypernetwork, which receives task embeddings e(t) as
input. The embeddings and the parameters ψ of the TC are learned continually
via a simple meta-replay regularizer (Eq. 6.1). (b) We refer to the approximate pos-
teriors as explicit if fWG is predefined. In Bayes-by-Backprop (BbB), for example,
the reparametrization trick transforms Gaussian noise into weight samples. (c)
More complex, implicit posterior approximations are parametrized by an aux-
iliary hypernetwork, which receives its task-conditioned parameters from the
TC, which now plays the role of a hyper-hypernetwork. The obtained posterior
approximations are more flexible and can, for example, capture multi-modality.

and describe how forgetting can be mitigated through the use of a meta-
regularizer. We next explain how predictive uncertainty, naturally arising
from a probabilistic view of learning, can be used to infer task identity
for both PosteriorReplay methods, and PriorFocused methods that use a
multihead output. Finally, we outline ways to boost task inference.

task-conditioned hypernetworks . Traditionally, hypernetworks [35,
36] are seen as neural networks that generate the weights w of a main net-
work M processing inputs as ŷ = fM(x;w) (cf. Sec. 2.3). Here, we consider
instead hypernetworks that learn to generate θ, the parameters of a distribu-
tion qθ(w) over main network weights. By taking low-dimensional task em-
beddings e(t) as inputs and computing θ(t) = fTC(e

(t);ψ), task-conditional
(TC) computation is possible. Sampling is realized by transforming a base
distribution p(z) via a weight generator (WG) fWG(z;θ(t)), whose choice
determines the family of distributions considered for the approximation
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(i.e., the variational family). In our framework, weights w ∼ qθ(t)(w) are
directly used for inference without requiring any fine-tuning.

Importantly, all learnable parameters are comprised in the TC system,
which can be designed to have less parameters than the main network,
i.e., dim(ψ) + ∑t dim(e(t)) < dim(w). Such constraint is vital to ensure
fairness when comparing different CL methods, and is enforced in all our
computer vision experiments. Additional details can be found in SM C.2 in
Ref. [40].

posterior-replay with explicit distributions . Different fami-
lies of distributions can be realized within our framework. In the special
case of a point estimate qθ(t)(w) = δ(w − θ(t)), the WG system can be
omitted altogether as it corresponds to the identity θ(t) = fWG(z;θ(t)).
This reduces our solution to the deterministic CL method introduced in
Chapter 5 (Ref. [39]), which we refer to as PosteriorReplay-Dirac in this
chapter. However, capturing parameter uncertainty is a key ingredient of
Bayesian statistics that is necessary for more robust task inference (cf. Sec.
6.4.2). We thus turn as a first step to explicit distributions qθ(t)(w), for which
the WG system samples according to a predefined function. We refer as
PosteriorReplay-Exp to finding a mean-field Gaussian approximation via
the BbB algorithm (see SM C.3.1 in Ref. [40]). In this case, θ(t) corresponds
to the set of means and variances that define a Gaussian for each weight,
which is directly generated by the TC. In SM C.3.2 in Ref. [40], we also
report results for another instance of explicit distribution.

posterior-replay with implicit distributions . Since the expres-
sivity of explicit distributions is limited, we also explore the more diverse
variational family of implicit distributions [146, 170]. These are parametrized
by a WG that now takes the form of an auxiliary neural network, making
the parameters θ(t) of the approximate posterior dependent on the chosen
WG architecture. This setting, referred to as PosteriorReplay-Imp, results
in a hierarchy of three networks: a TC network generates task-specific
parameters θ(t) for the approximate posterior, which is defined through
an arbitrary base distribution p(z) and the WG hypernetwork, which in
turn generates weights w for a main network M that processes the actual
inputs of the dataset D(t). Interestingly, the TC now plays the role of a
hyper-hypernetwork as it generates the weights of another hypernetwork (Fig.
6.2a and Fig. 6.2c).
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Variational inference commonly resorts to optimizing an objective consist-
ing of a data-dependent term and a prior-matching term KL(qθ(w); p(w))
(cf. Eq. 3.16). Estimating the prior-matching term when using implicit distri-
butions is not straightforward since we do not have analytic access to the
density nor the entropy of qθ(t)(w). To overcome this challenge, we resort to
the spectral Stein gradient estimator (SSGE, see SM C.4.2 of Ref. [40] or the
original work by Shi, Sun & Zhu [82]). This method is based on the insight
that direct access to the log-density is not required, but only to its gradient
with respect to w. Noticing that this quantity appears in Stein’s identity, the
authors consider a spectral decomposition of the term and use the Nyström
method to approximate the eigenfunctions. We test an alternative method
for dealing with implicit distributions in SM C.4.1 of Ref. [40] that is based
on estimating the log-density ratio.

As an additional challenge introduced by the use of implicit distributions,
the support of qθ(t)(w) is limited to a low-dimensional manifold when
using an inflating architecture for WG, causing the prior-matching term to be
ill-defined. To overcome this, we investigate the use of small noise pertur-
bations in WG outputs (see SM C.4.3 of Ref. [40] for details). Normalizing
flows [171] can also be utilized as WG architectures to gain analytic access
to qθ(t)(w), albeit at the cost of architectural constraints such as invertibility.

overcoming forgetting via meta-replay. Since all learnable pa-
rameters are part of the TC system, forgetting only needs to be addressed at
this meta-level. With Ltask the task-specific loss (e. g., the ELBO, cf. Eq. 4.11)
and D(·; ·) a divergence measure between distributions, the loss for task t
becomes:

L(t)(ψ, E ,D(t)) = Ltask(ψ, e(t),D(t)) + β ∑
t′<t

D
(
q
θ(t
′ ,∗)(w); q

θ(t
′)(w)

)
(6.1)

where E = {e(t′)}t
t′=1 is the set of task embeddings up to the current

task, β is the strength of the regularizer, θ(t
′) = fTC(e

(t′);ψ) depends on
the parameters ψ and e(t

′) to be learned, and θ(t
′ ,∗) = fTC(e

(t′ ,∗);ψ∗) are
the parameters of the posterior approximation obtained from a checkpoint
of the TC parameters before learning task t: {ψ∗} ∪ {e(t′ ,∗)}t′<t. The check-
pointed meta-model allows replaying posterior distributions from the past
and retaining them via divergence minimization as detailed below, hence
the name posterior meta-replay. Importantly, the loss on task t only depends
on the corresponding dataset D(t), but knowledge transfer across tasks is
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possible because task-specific models are learned through a shared meta-
model.1 Since the computation required to compute this regularizer linearly
scales with the number of tasks, we also explore stochastically regulariz-
ing on a subset of randomly selected tasks in each update (cf. SM D.3 of
Ref. [40]), and show that this does not impair performance. Notably, our
PosteriorReplay method does not incur in a significant increase of runtime
or memory usage (see SM F.2 of Ref. [40] for details).

The evaluation of Eq. 6.1 requires estimates of a divergence measure
to prevent changes in learned posterior approximations of past tasks. Be-
cause these are required at every loss evaluation and need to be cheap to
compute, we do not consider sample-based estimates but only estimates
that directly utilize posterior parameters. This goal is easy to achieve for
families of posterior approximations that possess an analytic expression
for a divergence measure (e.g., Gaussian distributions). More specifically,
for PosteriorReplay-Exp, we consider the forward KL, backward KL and
the 2-Wasserstein distance but did not observe that the specific choice of
divergence measure is crucial in practice (cf. SM C.3.1 and Table S14 of
Ref. [40]). In all other cases, approximations are required. Specifically, we
resort in our experiments to the use of an L2 regularizer at the output of
the TC network:

β ∑
t′<t
‖ fTC(e

(t′ ,∗),ψ∗)− fTC(e
(t′),ψ)‖2

2 (6.2)

Perhaps surprisingly, we observe that this crude regularization, reminis-
cent to the one used in the previous chapter (Eq. 5.3) for point estimates,
does not harm performance and leads to models that exhibit virtually no
forgetting. However, we discuss in SM F3 of Ref. [40] how this isotropic
regularization could be improved given that the KL is locally approximated
by a norm ‖·‖F induced by the Fisher information matrix F on qθ(w).

task inference . A system with task-specific solutions requires ac-
cess to task identity when processing unseen samples (cf. Sec. 5.2.3). In
our framework, this amounts to selecting the correct task embedding to
condition the TC. Although auxiliary systems can be used to infer task
identity (e.g., see Ref. [38] or HNET+TIR from the previous chapter), here
we exploit predictive uncertainty, assuming task identity can be inferred
from the input alone. For a task inference approach based on predictive

1 While this type of transfer is rather implicit, explicit knowledge transfer can be realized via
task-specific priors (cf. SM F.7 of Ref. [40]).
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uncertainty to work, the properties of the input data distribution p(t)(x)
need to be reflected in the uncertainty measure, i.e., uncertainty needs
to be low for in-distribution data and high for out-of-distribution (OOD)
data (we discuss this topic in detail in Chapter 7). Uncertainty-based task
inference with deterministic discriminative models only captures aleatoric
uncertainty, making its overall validity debatable. Indeed, aleatoric uncer-
tainty is only calibrated in-distribution and its OOD behavior is hard to
foresee (cf. Sec. 3.1). Instead, we argue that epistemic uncertainty arising
naturally in a Bayesian setting is crucial for robust uncertainty-based task
inference. In our case, epistemic uncertainty stems from the fact that the
posterior parameter distribution p(w | D(t)) in conjunction with the net-
work architecture induces a distribution over functions. If this distribution
captures a rich set of functions, a diversity of predictions on OOD data
can be expected even if those functions agree in-distribution (cf. Sec. 6.4.2).
Note, however, that inducing such diverse distribution over functions is not
straightforward with neural networks, and that more research is required
to justify uncertainty-based OOD detection as we will detail in Chapter 7.

We explore two different ways to quantify uncertainty for task inference.
In Ent the task t leading to the lowest entropy on the predictive poste-
rior p(y | D(t), x̃) is selected, where p(y | D(t), x̃) =

∫
w p(y | w, x̃)p(w |

D(t)) dw is approximated via Monte-Carlo with samples from qθ(t)(w).
This approach captures both aleatoric and epistemic uncertainty when used
in a probabilistic setting. In Agree the task leading to the highest agree-
ment in predictions across models drawn from qθ(t)(w) is selected. This
approach exclusively measures epistemic uncertainty and can therefore only
be estimated in a probabilistic setting (cf. Sec. 3.4). Although we generally
consider task inference for individual samples, we also explore batch-wise
(BW) task inference for batches of 100 samples that are assumed to belong
to the same task. Such approach drastically boosts task inference simply
due to a statistical accumulation effect when having above chance level task
inference for single inputs. Intuitively, BW corresponds to accumulating
evidence to decrease uncertainty (e.g., an agent looking at an object from
multiple perspectives). Further details can be found in SM C.6 of Ref. [40],
and using uncertainty for task-boundary detection when training without
explicit access to task identity is explored in SM D.8 of Ref. [40].

facilitating task inference through coresets . A key advan-
tage of Bayesian statistics is the ability to update models as new evidence
arrives. When continually learning a sequence of tasks, posteriors may
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for example undergo a post-hoc fine-tuning on stored coresets to mitigate
catastrophic forgetting of earlier tasks. Specifically, given a dataset split
D(t) \ C(t) ∪ C(t), one can perform a final update p(w | D(t)) ∝ p(w |
D(t) \ C(t))p(C(t) | w) using a stored coreset C(t) in conjunction with an
already learned posterior approximation for p(w | D(t) \ C(t)) that now acts
as a prior. Interestingly, access to coresets after training on all tasks can also
be exploited to facilitate task inference via predictive uncertainty. Here, we
explore this idea by encouraging task-specific models to produce uncertain
predictions for OOD samples (i.e., coresets from other tasks), an approach
that we denote CS (see SM C.7 of Ref. [40] for details), and in which we
store 100 inputs per task. Intriguingly, training on OOD inputs makes these
become in-distribution, and therefore renders model agreement (Agree)
inapplicable for task inference, which we empirically observe.

improving prior-focused cl . We investigate ways to improve Prior-
Focused methods, as introduced in Sec. 4.1, within our framework. First, we
endow them with implicit posterior approximations qθ(w) parametrized
by a WG hypernetwork, an approach we refer to as PriorFocused-Imp.
Because the posterior is shared across tasks, no TC system is required and
the parameters θ can be directly optimized via SSGE. Second, we enrich
PriorFocused methods with a small set of task-specific parameters that enable
uncertainty-based task inference for prior-focused methods too. Specifically,
the learned parameters w consist of a set of shared weights φ and a set
of task-specific output heads with weights {ξ(t)}T

t=1. This approach is in
contrast with how PriorFocused methods like Online EWC are commonly
deployed in task-agnostic inference settings, where the softmax output
grows as new tasks arrive (e.g., [106]). The use of a growing softmax causes
the model class parametrized by w to change over time, and therefore
violates the Bayesian assumption that the approximate posterior is obtained
from a model class containing the ground-truth model. We show that this
leads to limitations that can be overcome by a multihead approach. For
Online EWC, we refer to the growing softmax and multihead scenarios as
EWC-growing and EWC-multihead, respectively (cf. SM C.5.2 of Ref. [40]).
We also explore the prior-focused instantiation of BbB, known as VCL (cf.
SM C.5.1 of Ref. [40]).
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6.4 experiments

In this section, we start by illustrating the conceptual advantage of the
PosteriorReplay approach compared to PriorFocused methods, as well as the
importance of parameter uncertainty for robust task inference. We then
explore scalability to more challenging computer vision CL benchmarks.
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Figure 6.3: PriorFocused methods struggle to learn
three 1D polynomial regression tasks. (a) Differ-
ent colors represent the task-specific posterior ap-
proximations within the final PosteriorReplay-Exp
model. For unseen inputs x the posterior with the
lowest predictive uncertainty is chosen to make
predictions. (b) Predictive posterior using the fi-
nal approximation of p(w | D(1:3)), obtained via
PriorFocused-Imp. Shaded areas represent standard
deviation, and black dots training samples.

To assess forgetting, we
provide During scores, mea-
sured directly after train-
ing each task, and Final
scores, evaluated after train-
ing on all tasks. We consider
two different testing scenar-
ios: (1) either task-identity
is explicitly given (TGiven)
or (2) task-identity has to
be inferred (TInfer), e. g.,
via predictive uncertainty.
Unless explicitly mentioned,
task inference is performed
for each sample point in iso-
lation and is obtained us-
ing the Ent criterion (TInfer-
Final). Note, that one may
interpret TGiven-Final as CL1 and TInfer-Final as CL3, respectively (cf. 4.1).
Whenever the wrong task is inferred, the sample point is directly considered
as incorrectly classified. Supplementary results and controls are provided
in SM D of Ref. [40], and all experimental details can be found in SM E of
Ref. [40].2

6.4.1 Simple 1D regression illustrates the pitfalls of prior-focused learning

To illustrate conceptual differences between PosteriorReplay and PriorFocused
methods we study 1D regression, for which the predictive posterior can be
visualized. Each task-specific posterior obtained with PosteriorReplay-Exp
fits the training data well (Fig. 6.3a) and exhibits increasing uncertainty
when leaving the in-distribution domain, as desired for successful task

2 Source code for all experiments (including all baselines) is available at: https://github.com/
chrhenning/posterior_replay_cl.

https://github.com/chrhenning/posterior_replay_cl
https://github.com/chrhenning/posterior_replay_cl
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Final Acc TGiven TInfer (Ent) TInfer (Agree)

PR-Dirac 99.78 ± 0.21 44.90 ± 5.74 N/A

PR-Exp 100.0 ± 0.00 81.07 ± 6.78 90.02 ± 3.57

PR-Imp 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00

Table 6.1: 2D mode classification accuracies (Mean ± standard error of the mean
(SEM) in %, n = 10). Task identity is inferred via predictive uncertainty using an
entropy (Ent) or model agreement (Agree) criterion. PR denotes PosteriorReplay.

inference. Interestingly, when studying low-dimensional problems, we
generally found it easier to find viable hyperparameter configurations
for PosteriorReplay with implicit methods than with explicit ones. As we
do not consider a multihead for this problem, PriorFocused methods have
to fit a single posterior to all polynomials in a sequential manner and
struggle to find a good fit (Fig. 6.3b), independent of the type of posterior
approximation used. Results for other methods and an analysis of the
correlations and multi-modality that can be captured by implicit methods
in weight space can be found in SM D.1 of Ref. [40].

Because we use a mean squared error (MSE) loss, the likelihood is a
Gaussian with fixed variance (cf. Example 2) and all x-dependent uncer-
tainty originates from parameter uncertainty. We next consider classification
problems where both epistemic and aleatoric uncertainty can be explicitly
modelled.

6.4.2 Maintaining parameter uncertainty is crucial for robust task inference

To investigate the importance of parameter uncertainty, we consider a 2D
classification problem for which uncertainty can be visualized in- and out-
of-distribution. Classification tasks are of special interest as it is possible
to model arbitrary input-dependent discrete distributions, e.g. via a soft-
max at the outputs. This surprisingly often results in meaningful OOD
performance in high-dimensional benchmarks without any treatment of
parameter uncertainty [49].

Here, we consider a Gaussian mixture of two modes per task, each
mode being a different class (Fig. 6.4a). TInfer-Final (Agree), which is in-
dicative of the importance of epistemic uncertainty for OOD detection, is
the most robust measure for task inference in this experiment (Table 6.1).
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Figure 6.4: Parameter uncertainty is crucial for robust task inference. (a) Density
of input distribution p(x) across tasks. Dots represent training points, colors
task-affiliation and lines decision boundaries for each of the three consecutively
learned 2D binary classification tasks. (b) Entropy of predictive distribution
induced by the approximate posterior of task 2 learned via PosteriorReplay-Dirac.
(c) Same as (b) for PosteriorReplay-Imp.

PosteriorReplay-Dirac, which does not incorporate epistemic uncertainty, per-
forms poorly. Finally, implicit methods maintain an advantage over explicit
ones, presumably due to the increased flexibility in modelling the posterior,
but see Chapter 7 for the importance of the prior for OOD detection.

To better understand why differences between methods arise we pro-
vide uncertainty maps over the input space (Fig. 6.4). Consistent with
the observed low task inference accuracy, PosteriorReplay-Dirac displays
arbitrary uncertainty away from the training data (Fig. 6.4b). By contrast,
PosteriorReplay-Imp (Fig. 6.4c) approaches the desired behavior of displaying
high uncertainty away from the training data of the corresponding task. We
provide detailed analysis in SM D.2 of Ref. [40].

6.4.3 Multiple factors affect uncertainty-based task inference accuracy

To investigate the factors that affect uncertainty-based task inference, we
next consider SplitMNIST [103], which is an MNIST adaptation for CL by
splitting the ten digit classes into five binary classification tasks (cf. Fig. 4.1).
The results can be found in Table 6.2.

While all methods successfully prevent forgetting (i. e., Final scores are
maxed-out and close to the During accuracies, see SM D.3 in Ref. [40])
and achieve acceptable Final accuracies when task identity is provided,
large differences can be observed when the task needs to be inferred.
Methods with task-specific solutions outperform by a large margin Prior-
Focused approaches such as Online EWC, whose performance substantially
improves when using uncertainty-based task inference through a multi-
head. Despite superior performance of PosteriorReplay approaches, a gap
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TGiven-Final TInfer-Final

EWC-growing [105] N/A 19.96 ± 0.07

EWC-multihead 96.40 ± 0.62 47.67 ± 1.52

VCL-multihead 96.45 ± 0.13 58.84 ± 0.64

PR-Dirac 99.65 ± 0.01 70.88 ± 0.61

PR-Exp 99.72 ± 0.02 71.73 ± 0.87

PR-Imp 99.77 ± 0.01 71.91 ± 0.79

SP-Dirac 99.77 ± 0.01 70.39 ± 0.27

SP-Exp 99.81 ± 0.00 68.40 ± 0.23

PR-Exp-BW 99.72 ± 0.02 99.72 ± 0.02

PR-Exp-CS 98.50 ± 0.09 90.83 ± 0.24

DGR [105] N/A 91.79 ± 0.32

HNET+R [39] N/A 95.30 ± 0.13

PR-Dirac1
99.72 ± 0.01 63.41 ± 1.54

PR-Exp1
99.75 ± 0.01 70.07 ± 0.56

PR-Dirac2
99.87 ± 0.04 72.33 ± 2.75

PR-Exp2
99.20 ± 0.67 74.09 ± 1.38

Table 6.2: Accuracies of SplitMNIST experiments (Mean ± SEM in %, n = 10)
after learning all tasks when task identity is provided (TGiven-Final) and when
it needs to be inferred (TInfer-Final, based on the Ent criterion if explicit task-
inference is required). Results are shown for an MLP with two hidden layers of 400

neurons (MLP-400,400), an MLP-100,100
1 or a Lenet2. PR denotes PosteriorReplay

and SP SeparatePosteriors.
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in performance between task-inferred and task-given scenarios remains.
However, training separate posteriors that are not embedded in a hyper-
network (SeparatePosteriors) leads to similar results, showing that task
inference limitations are not linked to our solution. These limitations can
be surmounted by inferring the task on batches rather than single samples
(BW) or by using coresets to encourage high uncertainty for OOD data (CS),
which leads to performances comparable to generative-replay methods
which explicitly capture p(X) (i. e., HNET+R and DGR).

To better understand the factors that influence task inference, we con-
sider a variety of approximate inference methods and architectures. Since
epistemic uncertainty seems to play a vital role for task inference, the ap-
proximate inference method will likely affect TInfer performance (e. g., Exp
vs. Imp; in supplementary results). In addition, because diversity in func-
tion space enables uncertainty-based OOD detection and because different
architectures induce different priors in function space [67], one can expect
that prior and architecture play a key role as well, which we observe by
comparing the TInfer performance for different architectures. Additional
SplitMNIST results can be found in SM D.3 of Ref. [40], and results showing
scalability to sequences of up to 100 PermutedMNIST tasks can be found in
SM D.4 and D.5 of Ref. [40].

6.4.4 PosteriorReplay scales to natural image datasets

While BNNs are advocated because of their theoretical promises, prac-
titioners are often put off by scalability issues. Here we show that our
approach scales to natural images by considering SplitCIFAR-10 [172], a
dataset consisting of five tasks with two classes each. Results obtained with
a Resnet-32 [147] (Table 6.3) show performance gains in the task-agnostic
setting compared to recent methods like EBM [108], and to the PriorFocused
method VCL.

Furthermore, our results reveal considerable improvements through the
incorporation of epistemic uncertainty, as shown by differences between
PosteriorReplay-Exp and PosteriorReplay-Dirac.

Notably, PosteriorReplay-Exp-BW solves CIFAR-10 with a performance
comparable to a classifier trained on all data at once, with the caveat that
successive unseen samples are assumed to belong to the same task. In
contrast to low-dimensional problems, the implicit method PosteriorReplay-
Imp does not exhibit a competitive advantage, as it appears to suffer from
scalability issues. Other baselines and results for a WRN-28-10 can be found
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TGiven-During TGiven-Final TInfer-Final

VCL-multihead 95.78 ± 0.09 61.09 ± 0.54 15.97 ± 1.91

PR-Dirac 94.59 ± 0.10 93.77 ± 0.31 54.83 ± 0.79

PR-Exp 95.59 ± 0.08 95.43 ± 0.11 61.90 ± 0.66

PR-Imp 94.25 ± 0.07 92.83 ± 0.16 51.95 ± 0.53

PR-Exp-BW 95.59 ± 0.08 95.43 ± 0.11 92.94 ± 1.04

PR-Exp-CS 95.15 ± 0.11 92.48 ± 0.13 64.76 ± 0.34

EBM [108] N/A N/A 38.84 ± 1.08

Table 6.3: Accuracies of SplitCIFAR-10 experiments (Mean ± SEM in %, n = 10).
TInfer-Final is based on the Ent criterion if explicit task-inference is required and
PR denotes PosteriorReplay.

in SM D.6 of Ref. [40], and results showing that our framework scales to
the SplitCIFAR-100 benchmark can be found in SM D.7 of Ref. [40].

6.5 discussion

In this chapter we propose posterior meta-replay, a framework for continually
learning task-specific posterior approximations within a single shared meta-
model. In contrast to prior-focused methods based on a recursive Bayesian
update, our approach does not directly seek trade-off solutions across tasks.
This results in more flexibility for learning new tasks but introduces the
need to know task identity when processing unseen inputs.

Task Inference. Probabilistic inference on task identity can be achieved by
additionally considering inputs and task embeddings as random variables,
a strategy that would require task-conditioned generative models with
tractable density [125] (cf. Sec. 4.1.4). However, learning generative models
on high-dimensional data is a challenging problem and, even if tractable
densities are accessible, these do not currently reflect the underlying data-
generative process [126].3 To sidestep these limitations, we study the use
of predictive uncertainty for task inference [39] and show that an entropy-
based criterion works best for both deterministic and Bayesian models.

3 Interestingly, a concurrent study by van de Ven, Li & Tolias [124] successfully trains class-
conditioned generative models, indicating that this approach could nevertheless be feasible to
tackle task inference.
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Nevertheless, we highlight that proper task inference requires epistemic
uncertainty (e. g., measured in terms of model disagreement, cf. Sec. 3.4).
Indeed, in-distribution sample points with high aleatoric uncertainty can
lead to high predictive entropy, causing them to be misclassified as OOD.
This does not pose a problem in highly-curated ML datasets where samples
with high aleatoric uncertainty are excluded [173], but drastically limits
the applicability of entropy-based uncertainty estimation in more practical
scenarios. For these reasons, we advocate for the use of Bayesian models
whose epistemic uncertainty can induce diversity in function space for
OOD inputs and enable more robust task inference.4

Limitations. Compared to methods performing deterministic inference,
the Bayesian model average incurs in significant computational overhead.
This overhead is reinforced when performing uncertainty-based task in-
ference, since each predictive posterior needs to be evaluated in parallel.
Moreover, despite strong performance gains compared to prior-focused ap-
proaches, we observe general limitations of such task inference procedure.
These could be overcome once a better understanding of how epistemic un-
certainty influences OOD behavior in neural networks is available (cf. Chap-
ter 7). In addition, our work builds on algorithms to perform variational
inference, and is therefore only applicable to problems where these can
be successfully deployed. Finally, all our experiments consist of a set of
clearly defined tasks within which i.i.d. samples are available. Although this
scenario is in line with most existing CL literature, it might be of limited
relevance for practical CL problems, and a focus on established benchmarks
adhering to these constraints could therefore misguide research on this area.
Indeed, a more natural CL problem might arise from the need to online
learn from a stream of autocorrelated samples (cf. Sec. 4.2). In this context,
it is important to note that unlike non-Bayesian CL methods, our approach
can utilize any type of online prior-focused method (such as FOO-VB [131])
to also learn within tasks in a non-i.i.d. manner. Therefore, as long as some
coarse split into tasks is meaningful, such hierarchical approach holds great
promise. However, it should be noted that any progress towards learning
from non-i.i.d. data opens the door to training algorithms from raw, un-
curated datasets, and could therefore counter some of the efforts that are
currently done to mitigate algorithmic bias.

4 Note, while also models with deterministic parameters may be well suited for OOD detection
(e.g., see work by Lakshminarayanan et al. [174], that utilizes a deterministic distance preserving
input-to-hidden mapping), these solutions are limited by the fact that the Bayesian recursive
update is not applicable and therefore parameters cannot be updated in a sound way when
learning continually.
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Conclusion. Taken together, our work shows that it is possible to continu-
ally learn an approximate posterior per task without an increased parameter
budget, and that task-agnostic inference can be achieved via predictive un-
certainty to obtain a Bayesian CL approach that is scalable to real-world
data.

In particular, we could improve upon the HNET+ENT baseline from
Chapter 5 (the only proposed baseline without the need for generative mod-
elling), and utilize the added Bayesian perspective to propose extensions
such as using coresets for explicitly improving task inference.

Since forgetting is not a prevalent issue in our experiments and task
inference limitations are not linked to our CL solution, progress in the field
of uncertainty-based OOD detection will automatically translate into further
improvements of our method. For this reason, we use the next chapter to
gain further insights into the problem of uncertainty-based OOD detection.





7
U N C E RTA I N T Y- B A S E D O U T- O F - D I S T R I B U T I O N
D E T E C T I O N R E Q U I R E S S U I TA B L E F U N C T I O N S PA C E
P R I O R S

This chapter’s content is taken from an online preprint authored by: Francesco
D’Angelo? and Christian Henning? [95].

? These authors contributed equally.

Better uncertainty-based out-of-distribution (OOD) detection can improve
task inference as studied in the previous chapters. But the OOD problem is
more general and as discussed in Chapter 3, the need to avoid confident
predictions on unfamiliar data sparks interest in this topic. It is widely
assumed that Bayesian neural networks (BNNs) are well suited for this task,
as the endowed epistemic uncertainty should lead to disagreement in pre-
dictions on outliers. In this chapter, we question this assumption and show
that proper Bayesian inference with function space priors induced by neural
networks does not necessarily lead to good OOD detection. To circumvent
the use of approximate inference, we start by studying the infinite-width
case, where Bayesian inference can be exact due to the correspondence
with Gaussian processes. Strikingly, the kernels induced under common
architectural choices lead to distributions over functions which cause pre-
dictive uncertainties that do not reflect the underlying data generating
process and are therefore unsuited for OOD detection. Importantly, we find
this OOD behavior to be consistent with the corresponding finite-width
networks. To overcome this limitation, useful function space properties can
also be encoded in the prior in weight space, however, this can currently
only be applied to a specified subset of the domain and thus does not
inherently extend to OOD data. Finally, we argue that a trade-off between
generalization and OOD capabilities might render the application of BNNs
for OOD detection undesirable in practice. Overall, our study discloses
fundamental problems when naively using BNNs for OOD detection and
opens interesting avenues for future research.
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7.1 introduction

One of the challenges that the modern machine learning community is
striving to tackle is the detection of unseen inputs for which predictions
should not be trusted. This problem is also known as out-of-distribution
(OOD) detection. The challenging nature of this task is partly rooted in the
fact that there is no universal mathematical definition that characterizes an
unseen input x∗ as OOD as discussed in Sec. 7.2. Without such a definition,
there is no foundation for deriving detection guarantees under verifiable
assumptions. In this work, we consider OOD points as points that are
unlikely under the distribution of the data p(x) and points that are outside
the support of p(x). Importantly, we do not claim to provide a meaningful
definition of OOD, but rather argue that the justification of an OOD method
can only be assessed theoretically once such a definition is provided. While
it appears natural to tackle the OOD detection problem from a generative
perspective by explicitly modelling p(x), this paper is solely concerned
with the question of how justified it is to deploy the predictive uncertainty
of a Bayesian neural network (BNN) for OOD detection.

Figure 7.1: (a) GP regression with an RBF ker-
nel illustrates uncertainty-based OOD detection.
The prior variance over function values is only
squeezed around training points, which leaves
epistemic uncertainty high in OOD regions. (b)
Conceptual illustration on why epistemic uncer-
tainty is not necessarily linked to OOD detection
(see main text for more details). Note, that the
ground-truth p(y | x) is only defined within the
support of p(x).

As recent developments
forecast an increasing in-
tegration of deep learning
methods into industrial ap-
plications, it becomes essen-
tial to provide the theoreti-
cal groundings that justify
the use of uncertainty for
OOD detection, a task that
is crucial for safety-critical
applications of AI and reli-
able prediction-making.

When BNNs are used
in supervised learning, the
dataset is composed of in-
puts x ∈ X and targets
y ∈ Y which are assumed
to be generated according

to some unknown process: D i.i.d.∼ p(x)p(y | x) (cf. Def. 2). The goal of
learning is to infer from D alone the distribution p(y | x) in order to make
predictions on unseen inputs x∗ (cf. Def. 3). In the case of deep learning, this
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problem is approached by choosing a neural network f (·;w) parametrized
by w, and predictions are made via the conditional p

(
y | f (x;w)

)
(also

called the likelihood of w for given x,y). Assuming that the induced class
of hypotheses contains some ŵ such that p

(
y | f (x; ŵ)

)
= p(y | x) almost

everywhere on the support of p(x), Bayesian statistics can be used to in-
fer plausible models p(w | D) under the observed data given some prior
knowledge p(w) (see Sec. 3.2 for an introduction). This parametric descrip-
tion together with the network implicitly induces a prior over functions
p(f ) [65, 175]. Believing in the validity of a subjective choice of prior [176],
Bayesian inference comes with a multitude of benefits as it is less suscep-
tible to overfitting, allows to incorporate new evidence without requiring
access to past data (cf. Sec. 4.5) and provides interpretable uncertainties
(but see Sec. 3.3).

The uncertainty captured by a BNN can be coarsely categorized into
aleatoric and epistemic uncertainty (cf. Sec. 3.1). Aleatoric uncertainty is
irreducible and intrinsic to the data p(y | x). On the other hand, a BNN
also models epistemic uncertainty by maintaining a distribution over pa-
rameters p(w | D).1 This distribution reflects the uncertainty about which
hypothesis explains the data and can be reduced by observing more data.
Arguably, aleatoric uncertainty is of little interest for detecting OOD inputs.
However, the recent advent of overparametrized models which further ex-
tend the hypothesis class, deceptively motivated the idea that the epistemic
uncertainty under a Bayesian framework might be intrinsically suitable
to detect unfamiliar inputs, and therewith implying, that BNNs can be
used for OOD detection. This conjecture is intuitively true if the following
assumption holds: the hypotheses captured by p(w | D) must agree on
their predictions for in-distribution samples but disagree for OOD sam-
ples (Fig. 7.1a). Certain Bayesian methods satisfy this assumption, e.g. a
Gaussian process regression with an RBF kernel (cf. Sec. 7.4). However,
the uncertainty induced by Bayesian inference does not in general give
rise to OOD capabilities. This can easily be verified by considering the
following thought experiment (Fig. 7.1b): Assume a model class with only
two hypotheses g(x) and h(x) such that g(x) 6= h(x) ∀x and data being
generated according to g(x) on a restricted domain. Once data is observed,
we can commit to the ground-truth hypothesis g(x) and thus lose epistemic
uncertainty in- and out-of-distribution alike. Finite-width neural networks,
by contrast, form a powerful class of models, and are often put into context

1 Note, that the Bayesian treatment of network parameters does not account for all types
of epistemic uncertainty such as the uncertainty stemming from model misspecification
(cf. Fig. 3.2, [46]). We, however, assume the model to be correctly specified.
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with universal function approximators [177]. But is this fact in combination
with Bayesian statistics enough to attribute them with good OOD capabili-
ties? The literature often seems to imply that a BNN is intrinsically good at
OOD detection. For instance, the use of OOD benchmarks when introduc-
ing new methods for approximate inference creates the false impression
that the true posterior is a good OOD detector [9, 41–44, 178, 179]. Our
work is meant to start a discussion among researchers about the properties
of OOD uncertainty of the exact Bayesian posterior of neural networks. To
initiate this, we contribute as follows:

• We emphasize the importance of the prior in function space for OOD
detection, which is induced by the choice of architecture (Sec. 7.4) and
weight space prior (Sec. 7.5).

• We empirically show that exact inference in infinite-width networks
under common architectural choices does not necessarily lead to desirable
OOD behavior, and that these observations are consistent with results
obtained via approximate inference in their finite-width counterparts.

• We furthermore study the OOD behavior in infinite-width networks by
analysing the properties of the induced kernels. Moreover, we discuss
desirable kernel features for OOD detection and show that also neural
networks can approximately carry these features.

• We emphasize that the choice of weight-space prior has a strong effect on
OOD performance, and that encoding desirable function space properties
within unknown OOD domains into such prior is challenging.

• We argue that there is a trade-off between good generalization and
having high uncertainty on OOD data. Indeed, improving generalization
by incorporating prior knowledge (which is usually encoded in an input-
domain agnostic manner) can negatively impact OOD uncertainties.

7.2 on the difficulty of defining out-of-distribution inputs

While the intuitive notion of OOD sample points (or outliers) is commonly
agreed upon, for instance as "an observation (or subset of observations)
which appears to be inconsistent with the remainder of that set of data" [180],
a mathematical formalization of the essence of an outlier is difficult (cf. SM
A.1) and requires subjective characterizations [181]. Often, methods for
outlier detection are designed based on an intuitive notion (see the work
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by Pimentel et al. [182] for a review), and therewith only implicitly de-
fine a method-specific definition of OOD points. This also accounts for
uncertainty-based OOD detection with neural networks, where a statistic of
the predictive distribution that quantifies uncertainty (e.g., the entropy) is
used to decide whether an input is considered OOD [144]. Commonly, the
parameters w of a neural network are trained using an objective derived
from Ep(x)

[
KL
(

p(y | x); p
(
y | f (x;w)

))]
(cf. Examples 2 and 3). There-

fore, these networks only have calibrated uncertainties in-distribution with
OOD uncertainties not being controlled for unless explicit training on OOD
data is performed [eg., 183]. The question this study is concerned with is
therefore: does the explicit treatment of parameter uncertainty via the posterior
parameter distribution p(w | D) elicit provably high uncertainty OOD?

Note, that we do not consider the problem of outlier detection within the
training set [181], but rather ask whether a deployed model is able to know
what it does not know.

7.3 background

In this section, we briefly introduce the concepts on which we base our
argumentation in the coming sections. We start by recapping BNNs, which
rely on approximate inference. We then discuss that in the non-parametric
limit and under a certain choice of prior, a BNN converges to a Gaussian
process, an alternative Bayesian inference framework where exact inference
is possible. The connection between BNNs and Gaussian processes will
later allow us to make interesting conjectures about OOD behavior. Finally,
we introduce generalization bounds from the PAC-Bayes framework, which
we will later use to argue that generalization and OOD detection can be
conflicting objectives.

7.3.1 Bayesian neural networks

An introduction into this topic is provided in Chapter 3. We briefly recap
the notation in this section.

In supervised deep learning, we typically construct a likelihood function
from the conditional density p (y | f (x;w)), parameterized by a neural
network f (x;w), and the training data D = {(x(n),y(n))}N

n=1. In BNNs,
this is used to form the posterior distribution of all likely network pa-
rameterizations: p(w | D) ∝ ∏N

n=1 p
(
y(n) | f (x(n);w)

)
p(w), where p(w)

is the prior distribution over weights. Crucially, when making a predic-
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tion with the Bayesian approach on a test point x∗, we do not only use
a single parameter configuration ŵ but we marginalize over the whole
posterior, thus taking all possible explanations of the data into account:
p(y∗ | D,x∗) =

∫
p(y∗ | f (x∗;w)) p(w | D)dw.

7.3.2 Gaussian process

Gaussian processes are established Bayesian machine learning models that,
despite their strong scalability limitations, can offer a powerful inference
framework. Formally [61]:

Definition 7 A Gaussian process (GP) is a collection of random variables, any
finite number of which have a joint Gaussian distribution.

Compared to parametric models, GPs have the advantage of perform-
ing inference directly in function space. A GP is defined by its mean m(x) =
E[ f (x)] and covariance C

(
f (x), f (x′)

)
= E

[(
f (x)−m(x)

)(
f (x′)−m(x′)

)]
.

The latter can be specified using a kernel function k : Rnin ×Rnin → R and
implies a prior distribution over functions, which due to the marginalization
properties of multivariate Gaussians can be consistently evaluated at any
set of given input locations, e.g.:

p(f | X) = N (0, K(X, X)) (7.1)

where K(X, X)ij = k(x(i),x(j)) is the kernel Gram matrix on the training
inputs X, f is the vector of function values at training locations and m(x)
has been chosen to be 0. When observing the training data, the prior is
reshaped to place more mass in the regions of functions that are more
likely to have generated them, and this knowledge is then used to make
predictions on unseen inputs X∗. In probabilistic terms, this operation
corresponds to conditioning the joint Gaussian prior: p(f∗ | X∗, X,f ). As
commonly exercised in neural network regression, we assume to not have
direct access to the function values but to noisy observations: y = f + ε
with ε ∼ N (0, σ2Inin). This assumption is formally equivalent to a Gaussian
likelihood p(y | f ) = N (y | f , σ2Inin) (but see Chapter 3 and our work in
Ref. [1] for a discussion on the pitfalls of this assumption). The conditional
distribution on the noisy observation can then be written as [61]:
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p(f∗ | X∗, X,y) =
∫

df p(f∗ | X∗, X,f )p(f | X,y) = N (f̄∗, C(f∗))

f̄∗ = K(X∗, X)[K(X, X) + σ2I]−1y

C(f∗) = K(X∗, X∗)− K(X∗, X)[K(X, X) + σ2I]−1K(X, X∗)

(7.2)

where p(f | X,y) = p(y|f )p(f |X))
p(D) with p(D) being the marginal likeli-

hood.

rbf kernel . A commonly used kernel function for GPs is the squared
exponential (RBF):

k(x,x′) = exp
(
− 1

2l2 ‖x− x
′‖2

2

)
, (7.3)

with the length scale l being a hyperparameter. It is important to notice
that the covariance between outputs is written exclusively as a function
of the distance between inputs. As a consequence, points that are close in
the Euclidean space have unitary covariance that decreases exponentially
with the distance. As we will see in Sec. 7.4, this feature has important
implications for OOD detection.

the relation of infinite-width bnns and gps . The connection
between neural networks and GPs has recently gained significant atten-
tion. Neal [62] showed that a 1-hidden layer BNN converges to a GP in
the infinite-width limit. More recently, the work by Lee et al. [184] and
de G. Matthews et al. [185] extended this result to deeper networks, called
neural network Gaussian processes (NNGP). Crucially, the kernel function of
the related GP strictly depends on the used activation function. To better
understand this connection we consider a fully connected network with
L layers l = 0, . . . , L with width Hl . For each input we use xl(x) to rep-
resent the post-activation with x0 = x and f l the pre-activation so that
f l
i (x) = bl−1

i + ∑
Hl−1
j=1 wl−1

ij xl−1
j with xl

j = h( f l
j ) and h(·) a point-wise activa-

tion function. Furthermore, the weights and biases are distributed according
to bl

j ∼ N (0, σ2
b ) and wl

ij ∼ N (0, σ2
w/Hl). Given the independence of the

weights and biases it follows that the post-activations are independent as
well. Hence, the central limit theorem can be applied, and for Hl−1 → ∞
we obtain f l(x) ∼ GP(0, Cl). The covariance Cl and therefore the prior
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over functions is specified by the kernel induced by the network architec-
ture [184]:

Cl(x,x′) =

kl(x,x′)︷ ︸︸ ︷
E
[

f l
i (x) f l

i (x
′)
]
−

=0︷ ︸︸ ︷
E[ f l

i (x)]E[ f l
i (x)]

= σ2
b + σ2

wE( f l−1
i (x), f l−1

i (x′))∼GP(0,Kl−1)

[
h
(

f l−1
i (x)

)
, h
(

f l−1
i (x′)

)]
(7.4)

with Kl being the 2× 2 covariance matrix formed by kl(·, ·) using x and
x′. For the input layer, where no activation function is applied, the kernel

is simply given by k0(x,x′) = σ2
b + σ2

w

(
xTx′

nin

)
. For the remaining layers,

instead, the kernel expression is determined by the non-linearity. Some
activation functions like sigmoid or hyperbolic tangent do not admit a
known analytical form and therefore require a Monte Carlo estimate of
Eq. 7.4 (cf. Fig. A.3). For others, Eq. 7.4 can be computed in closed form
[e.g., 175, 186–189]. We list some kernel functions that are important for
this study below, such as the one for ReLU networks [186]:

kl
ReLU(x,x′) = σ2

b +
σ2

w
2π

√
kl−1(x,x)kl−1(x′,x′)

·
(

sin θl−1
x,x′ + (π − θl−1

x,x′) cos θl−1
x,x′

)
θl
x,x′ = cos−1

(
kl(x,x′)√

kl(x,x)kl(x′,x′)

) (7.5)

Interestingly, for some non-linearities a kernel that carries similar proper-
ties as the RBF in Eq. 7.3 can be induced by neural networks. This is the
case for the cosine activation function which has the following closed form
solution in the single hidden layer case [189]:

k1
cos(x,x′) = σ2

b +
σ2

w
2

(
exp

(
−

σ2
w‖x− x′‖2

2
2d

)

+ exp

(
−

σ2
w‖x+ x′‖2

2
2d

− 2σ2
b

)) (7.6)

Similarly, also the exponential activation function as deployed in RBF
networks [190] leads to similar properties. This particular class of neural
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networks defines computational units as linear combinations of radial basis

functions f (x) = ∑H
j=1 wj exp

(
− 1

2σ2
g
‖x−µj‖2

)
+ b. These networks, in the

infinite-width case and when assuming a Gaussian prior over the centers
µj ∼ N (0, σ2

µI) and wj ∼ N (0, σ2
w), also converges to a Gaussian process

with an analytical kernel function:

k1
rbfnet(x,x′) = σ2

b + σ2
w

(
σe

σµ

)d

exp
(
− ‖x‖

2

2σ2
m

)
exp

(
− ‖x− x

′‖2

2σ2
s

)
· exp

(
− ‖x

′‖2

2σ2
m

) (7.7)

where 1/σ2
e = 2/σ2

g + 1/σ2
µ, σ2

s = 2σ2
g + σ4

g /σ2
µ and σ2

m = 2σ2
µ + σ2

g . The
equivalence with the RBF kernel is explicit in the limit σ2

µ → ∞ [175].

7.3.3 PAC-Bayes generalization bound

Considering the supervised learning framework introduced in Chapter
2, the PAC theory [191] establishes a probabilistic bound on the gener-
alization error of a given predictor. The theory is referred to as PAC-
Bayes [192, 193] when a prior distribution p is defined to incorporate
prior domain knowledge. Considering a distribution2 q on the hypothesis
h ∈ H and the space B(Y) of all conditional distributions p(y | h(x)),
we can define a loss function l : B(Y) × Y → R. This gives rise to the
empirical and true risk as RD(q) := 1

N ∑N
n=1 Eh∼q[l(p(y | h(x(n))),y(n))]

and R(q) := E(x? ,y?)∼p(x,y)Eh∼q[l(p(y | h(x?)),y?)], respectively, where
p(x,y) = p(x)p(y | x). Note that when q is the Bayesian posterior
as, for instance, in the GP case, predictions are made via the predic-
tive posterior and it is thus more natural to consider the Bayes risk:
RB(q) := E(x? ,y?)∼p(x,y)[l(Eh∼q[p(y | h(x?))],y?)]. It can be shown that
RB(q) ≤ 2R(q) for a quasi-convex loss [194, 195] and RB(q) ≤ R(q) for
a convex loss (using Jensen’s inequality). Therefore, a bound over R also
implies a bound over RB. The PAC bound gives a probabilistic upper bound
on the true risk R(q) in terms of the empirical risk RD(q) for a training set
D as formulated in the following theorem:

Theorem 1 (PAC-Bayes theorem [193, 196]) For any distribution p(x,y) over
X × Y and bounded loss l : B(Y)× Y → [0, 1], for any prior p on the hypoth-

2 Note that this distribution does not necessarily need to be the Bayesian posterior.
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esis space H and any q that is absolutely continuous with respect to p, for any
δ ∈ (0, 1] and β > 0 the following holds with probability at least 1− δ for a
training set D ∼ p(x,y) of cardinality N:

∀q : R(q) ≤ 1
1− e−β

[
1− exp

(
− βRD(q)−

1
N
(
KL(q; p) + log

1
δ

))]
.

(7.8)

For a fixed p, D, δ, minimizing Eq. 7.8 is equivalent to minimizing
NβRD(q) + KL(q; p). The requirement of a bounded loss function makes
the use of the mean-squared error, and thus the negative log-likelihood, not
applicable to this bound. Nevertheless, as long as the loss function measures
the quality of predictions, the bound in Eq. 7.8 can be used to assess the
generalization capabilities of a model. For this purpose, in our analysis we
use as a surrogate loss the following [195]: lexp(p(y | h),y) = 1− exp

[
−

(Ey [p(y|h)]−y)2

σ2
l

]
, where we chose the hyperparameter σ2

l = 1. Interestingly,

for small deviations we can take the first-order Taylor expansion and recover
the MSE lexp(Ey [p(y | h)],y, ) ≈ (Ey [p(y | h)]− y)2/σ2

l . This loss is quasi-
convex and a bound on R(q) below 0.5 thus induces a non-trivial bound
on RB(q). While it is generally non-trivial to compute the KL in function
space [197], the KL of a GP posterior from its prior has a closed-form
solution [195].

7.4 the architecture strongly influences ood uncertainties

In the previous section, we recalled the connection between BNNs and
GPs, namely that Bayesian inference in an infinite-width neural network
can be studied in the GP framework (assuming a proper choice of weight-
space prior). This connection allows studying how the kernels induced
by architectural choices shape the prior in function space, and how these
choices ultimately determine OOD behavior. In this section, we analyze
this OOD behavior for traditional as well as NNGP-induced kernels. To
minimize the impact of the approximations on our results, we exclusively
focus on conjugate settings, i.e., regression (see SM A.3.1 for classification
results). Furthermore, this choice of Gaussian likelihood induces a direct
correspondence between function values and outcomes up to noise corrup-
tions. Hence, prior knowledge about outcomes can be encoded in function
space through the choice of a meaningful function space prior.
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(a) 2-layer ReLU (∞) (b) 1-layer Cosine (∞) (c) 1-layer RBF net (∞)

(d) 2-layer ReLU (5) (e) 1-layer Cosine (100) (f) 1-layer RBF net (500)

Figure 7.2: Standard deviation σ(f∗) of the predictive posterior of BNNs. We
perform Bayesian inference on a mixture of two Gaussians dataset considering
different priors in function space induced by different architectural choices. The
problem is treated as regression task to allow exact inference in combination with
GPs (a, b, c). Predictive uncertainties for finite-width networks are obtained using
HMC (d, e, f).

(a) RBF Kernel (b) Periodic Kernel

Figure 7.3: Standard deviation σ(f∗) of
the predictive posterior using GPs with
common kernel functions. GP regres-
sion is performed on the same dataset
as in Fig. 7.2.

uncertainty quantification

for ood detection. Uncer-
tainty can be quantified in multiple
ways, but is often measured as the
entropy of the predictive posterior.
The predictive posterior, however,
captures both aleatoric and epis-
temic uncertainty, which does not al-
low a distinction between OOD and
ambiguous inputs [173]. While our
choice of likelihood does not permit
the modelling of input-dependent
uncertainty (Gaussian with fixed variance), a softmax classifier can capture
heteroscedastic aleatoric uncertainty arbitrarily well by outputting an input-
dependent categorical distribution.3 For this reason, uncertainty should be
quantified in a way that allows OOD detection to be based on epistemic
uncertainty only. The function space view of GPs naturally provides such
measure of epistemic uncertainty by considering the standard deviation of
the posterior over function values σ(f∗) ≡

√
diag (C(f∗)) (illustrated in

3 There are also expressive likelihood choices to capture heteroscedastic uncertainty for continu-
ous variables [e.g., 198].
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Fig. 7.1a). Such measure can be naturally translated to BNNs by looking at
the disagreement between network outputs when sampling from p(w | D).
Note that in classification tasks all models drawn from p(w | D) might
lead to a high-entropy softmax without disagreement, and therefore only
an uncertainty measure based on model disagreement prevents one from
misjudging ambiguous points as OOD. As OOD detection is the focus of
this paper, we always quantify uncertainty in terms of model disagreement
(see Sec. 3.4 for more details).

bayesian statistics and ood detection have no intrinsic con-
nection. As conceptually illustrated in Fig. 7.1b and demonstrated
using exact Bayesian inference in Fig. 7.3b, predictive uncertainties are
not necessarily reflective of p(x) (and thus not suited for OOD detection),
irrespective of how well the underlying task is solved.

gp regression with an rbf kernel . We next examine the predictive
posterior of a GP with squared exponential (RBF) kernel (Eq. 7.3). Fig. 7.3a
shows epistemic uncertainty as the standard deviation of p(f∗ | X∗, X,y).
We can notice that σ(f∗) nicely captures the data manifold and is thus
well suited for OOD detection. This behavior can be understood by con-
sidering Eq. 7.2 while noting that k(x,x′) = const if x = x′, and that
the variance of posterior function values can be written as σ2(f∗) =
k(x∗,x∗) − ∑n

i=1 βi(x∗)k(x∗,xi) (cf. SM A.2), where βi are dataset- and
input-dependent. The second term is reminiscent of using kernel density es-
timation (KDE) to approximate p(x), applying a Gaussian kernel, while the
first term is the (constant) prior variance. Hence, the link between Bayesian
inference and OOD detection can be made explicit, as the posterior variance
is inversely related to the input distribution.

Loosely speaking, in GP regression as in Eq. 7.2 and kernels where
the KDE analogy holds, epistemic uncertainty can roughly be described
as const − p(x).4 In this view, one starts with high (prior) uncertainty
everywhere, which is only reduced where data is observed. By contrast,
learning a normalized generative model (e.g., using normalizing flows [171])
often requires to start from an arbitrary probability distribution.

the ood behavior induced by nngp kernels . Fig. 7.2a illustrates
σ(f∗) for an infinite-width 2-layer ReLU network (see Fig. A.2 for other

4 Note, the KDE approximation of p(x) is likely to deteriorate massively if the dimensionality
of x increases.
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common architectural choices). It is already visually apparent, that in this
case the kernel is less suited for OOD detection compared to an RBF kernel.
Moreover, we cannot justify why OOD detection based on σ(f∗) would be
principled for this kernel as the KDE analogy does not hold. This is due to
two reasons: (1) the prior uncertainty k(x∗,x∗) is not constant (Fig. A.1), and
(2) we empirically do not observe that k(x,x′) can be related to a distance
measure (e. g., Fig. A.4). We therefore argue that more theoretical work
is necessary if one aims to justify uncertainty-based OOD detection with
common architectural choices from the perspective of NNGP kernels. On
this note, maintaining parameter uncertainty and being able to detect OOD
samples are often considered crucial requirements of systems deployed in
safety-critical applications. Given that Bayesian inference is not intrinsically
linked to OOD detection, care should be taken to precisely communicate
safety-relevant capabilities of BNNs to practitioners.

NN samples
Mean prediction
Training Data

(a) Width-aware prior

NN samples
Mean prediction
Training Data

(b) Standard prior

Figure 7.4: The importance of the
choice of weight prior p(w). Here, we
perform 1d regression using HMC with

either (a) a width-aware prior N (0, σ2
w

Hl
)

or (b) a standard prior N (0, σ2
w).

However, the NNGP perspective
also allows us to choose an archi-
tecture such that the BNN’s uncer-
tainty resembles the, for these prob-
lems, desirable OOD behavior of the
GP with RBF kernel described above.
In particular, the cosine (Eq. 7.6)
and RBF (Eq. 7.7) network induce
kernels that are related to the RBF
kernel. The last term in Eq. 7.6
quickly converges to zero for mod-
erate norms of x or x′ (or high σ2

b ),
which explains why the uncertainty
behavior of Fig. 7.2b is qualitatively
identical to Fig. 7.3a. In case of the RBF network, the RBF kernel is re-
covered if ‖x‖ and ‖x′‖ are small compared to σ2

m, explaining why the
uncertainty faints towards the boundaries of Fig. 7.2c. These examples show
that in the non-parametric limit and for (low-dimensional) regression tasks,
BNNs can be constructed such that uncertainty-based OOD detection can
be justified through mathematical argumentation. We next study whether
the observations made in the infinite-width limit are relevant for studying
finite-width neural networks.
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infinite-width uncertainty is consistent with the finite-
width uncertainty. For finite-width BNNs exact Bayesian inference
is intractable.

(a) GP with RBF Kernel

(b) Network with Ridgelet Prior

Figure 7.5: OOD chal-
lenges when encoding
function space properties
into weight space prior. (a)
Samples from a GP prior
p(f | X). (b) Samples from a
1-layer Tanh network (width:
3000) using the Ridgelet
prior [66] corresponding
to the GP in (a). Dotted
lines denote the domain XR
within which the Ridgelet
prior was matched to the
target GP.

To mitigate the effects of approximate infer-
ence we resort to Hamiltonian Monte Carlo
[HMC, 90, 91]. Fig. 7.2d to 7.2f show an esti-
mate of σ(f∗) for finite-width networks corre-
sponding to the non-parametric limits studied
above (illustrations with another dataset can be
found in Fig. A.5). Already for moderate layer
widths, the modelled uncertainty resembles
the one of the corresponding NNGP. Given this
close correspondence, we conjecture that the
tools available for the infinite-width case are
useful for designing architectural guidelines
that enhance OOD detection. We illustrated
this on low-dimensional problems by studying
desirable function space properties induced
by the RBF kernel, which can be translated to
BNN architectures.

7.5 the choice of weight space prior

matters for ood detection

For a neural network, the prior in function
space is induced by the architecture and the
prior in weight space [67].

In the previous section, we restricted our-
selves to a particular class of weight space
priors which allowed us to study the architec-
tural choices in the infinite-width limit. While,
in practice, a wide variety of weight space
prior choices might lead to good generalization
(with respect to test data from p(x)p(y | x),
e.g., cf. work by Izmailov et al. [92]), the uncertainty behavior that is induced
out-of-distribution might vary drastically. This is illustrated in Fig. 7.4,
where for the same network two different choices of p(w) lead to vastly
different predictive uncertainties despite the fact that both choices fit the
data well.
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RD(q) RB,D(q) KL(q, p) PAC log p(D) Test MSE

RBF 0.111
±.007

0.048
±.006

8.849
±.119

0.496
±.010 -27.595

±.549
0.029

±.016

ESS 0.094
±.006

0.055
±.006

6.143
±.096

0.419
±.008 -23.532

±.406
0.014

±.008

Table 7.1: Empirical risk RD(q), empirical version of the Bayes risk RB,D(q), KL
divergence, PAC bound (δ = 0.05, β = 2), log marginal likelihood and mean-
squared error (MSE) on a withheld test set for the examples shown in Fig. 7.6
(cf. Sec. 7.3.3).

In Sec. 7.4, we use the infinite-width limit to obtain a function space view
that allows to make interesting conjectures about predictive uncertainties
on OOD data. Recently, multiple studies suggested ways to either explicitly
encode function space properties into the weight space prior p(w) or to
use a function space prior when performing approximate inference in
neural networks [66, 199–201]. However, all these methods depend on the
specification of a set XR ⊆ X on which desired function space properties
will be enforced (Fig. 7.5). For instance, the Ridgelet prior proposed by
Matsubara, Oates & Briol [66] provides an asymptotically correct weight
space prior construction that induces a given GP prior. Thus, on XR this
method allows to meaningfully encode prior knowledge to guide Bayesian
inference. But, an a priori specification of a set XR which can be largely
covered by samples xR ∈ XR to ensure the desired prior specification on XR
is practically challenging, and conceptually related to the idea of training
on OOD data to calibrate respective uncertainties (cf. Sec. 7.2). Note, we
do not aim to phrase this OOD effect as a drawback of these methods, as
we do not consider Bayesian inference to be intrinsically related to OOD
detectors. It is, however, important to keep in mind that function space
properties deemed beneficial for OOD detection are not straightforward to
induce when working in weight space.

7.6 a trade-off between generalization and ood detection

An important desideratum that modelers attempt to achieve when applying
Bayesian statistics is good generalization through the incorporation of rele-
vant prior knowledge. Is this desideratum generally in conflict with having
high uncertainty on OOD data? In this section, we provide arguments
indicating that the answer to this question can be yes. Consider data with
known periodic structure inside the support of p(x) (Fig. 7.6).
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(a) GP with RBF Kernel (b) GP with ESS kernel

Figure 7.6: Generalization and OOD detection.
Mean and the first three standard deviations of
the predictive posterior for different function space
priors.

We can either choose to
ignore our prior knowledge
by selecting a GP prior with
RBF kernel (Fig. 7.6a), or
we explicitly incorporate do-
main knowledge using a
function space prior that al-
locates its mass on periodic
functions e.g. the exp-sine-
squared (ESS) kernel.5 In
the former case, we know
that OOD uncertainties will
be useful for OOD detection (Sec. 7.4). In the latter case, however, we see
that uncertainties do not reflect p(x). By contrast, the roles are reversed
when it comes to assessing generalization.

Here, the choice of a periodic kernel has clear benefits, as we can
see visually and by comparing, for instance, PAC-Bayes generalization
bounds (reviewed in Sec. 7.3.3) which can be tightened by minimizing
NβRD (p(f | D)) + KL (p(f | D); p(f )), where β is a hyperparameter and
RD (p(f | D)) denotes the empirical risk. As reported in Table 7.1, the
bound’s value for the ESS kernel is lower than the RBF. Interestingly, the
bound is minimized if both terms are minimized, and the second term
explicitly asks the posterior to remain close to the prior. Therefore, the
second term benefits from restricting the prior function space through the
incorporation of prior knowledge, counteracting the need of a rich function
space for inducing high OOD uncertainties (Fig. 7.1). Consistent with this,
we observe in Table 7.1 that for the ESS kernel the log marginal likelihood
log p(D), which is often considered as a model selection criterion [57], is
higher and the test error (on a withheld test set) is lower.

An orthogonal problem often considered in the literature is generalization
under dataset (or covariate) shift [49, 68, 202]. In this case, one deliberately
seeks to provide meaningful predictions on test data ptest(x) that might
not overlap in support with our training input distribution p(x). Therefore,
prior knowledge needs to explicitly encode how to obtain "generalization
on OOD data" as the data cannot speak for themselves. Such priors are
proposed by Izmailov et al. [202], but also Fig. 7.6b can be viewed as an
example of how prior encoding specifies how to generalize to OOD data.

5 Note, that such incorporation of prior knowledge is often done in a way that is agnostic to the
unknown support of p(x).
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7.7 on the practical validation of ood properties

(a) 1-layer ReLU (∞) (b) 1-layer Cosine (∞)

Figure 7.7: Sampling from regions of
low uncertainty. Here, we treat epistemic
uncertainty (measured as σ(f∗)) as an en-
ergy function and perform rejection sam-
pling (black dots). If uncertainty faithfully
captures p(x), these samples should re-
semble in-distribution data.

Relating the epistemic uncertainty
induced by a BNN to p(x) opens
up interesting new possibilities. As
we show in SM A.2, epistemic un-
certainty of a GP with RBF ker-
nel can be related to a KDE ap-
proximation of p(x). Therefore, one
may consider the epistemic uncer-
tainty as an energy function to cre-
ate a generative model from which
to sample from the input space
(Fig. 7.7). Moreover, this approach
may be used to empirically vali-
date the OOD capabilities of a BNN.
Indeed, OOD performance is com-
monly validated by selecting a specific set of known OOD datasets [92].
However, as the OOD space comprises everything except the in-distribution
data, it is infeasible to gain good coverage on high-dimensional data with
such testing approach. We therefore suggest a reverse approach that checks
the consistency in regions of certainty instead of uncertain ones by sam-
pling via the epistemic uncertainty. Indeed, if these samples and thus the
generative model based on uncertainty estimates are consistent with the
in-distribution data then a strong indication for trustworthiness is provided.

Additionally, a discrepancy measure [203, 204] can be used to compare
the generated samples and training data points and quantitatively assess
to which extent the epistemic uncertainty is related to p(x). Moreover, this
approach can open up new research opportunities. For instance, a continual
learner may use its uncertainty to generate its own replay data to combat
forgetting (cf. SM A.3.3).

7.8 conclusion

In this chapter, we challenge the common view that uncertainty-based
OOD detection with BNNs is intrinsically justified. Our arguments are
almost exclusively based on low-dimensional problems and cannot easily
be generalized to real-world problems, but our observations are consistent
with the fact that empirically BNNs are often only marginally superior
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in OOD detection compared to models that do not maintain epistemic
uncertainty [40, 49]. Overall, this work highlights fundamental limitations
of BNNs for OOD detection that are not solely explained by the use of
approximate inference.



8
D I S C U S S I O N

In this thesis, we research two aspects, uncertainty and continual learning,
that we assume to be cornerstones of natural intelligence, and are thus es-
sential to sustained progress in the field of artificial intelligence. As outlined
in Chapter 2, we restrict ourselves to supervised learning in feedforward
neural networks,1 a setup that is of increasing practical relevance in many
real-world applications [e. g., 19, 206].

However, as discussed in Chapter 3, the common practice of estimating a
single set of parameters from limited data for the purpose of approximating
an unknown data generative process fails to capture epistemic uncertainty,
i. e., the ability to know what we don’t know. Importantly, and as opposed
to memorization, learning requires prior knowledge [69], even if just in
the form of heuristically-evolved inductive biases [67]. A way to incorpo-
rate prior knowledge in a principled manner is through Bayesian statistics,
which allows the representation of uncertainties by treating learning as a
probabilistic inference problem (cf. Sec. 3.2), while still relying on modelling
assumptions that in practice can drastically alter the meaning of uncertain-
ties (as we discuss in Ref. [1]). Yet, applying this Bayesian framework to
neural networks is non-trivial for two major reasons. The first is the need to
resort to approximate inference (cf. Sec. 3.5), which can yield vastly different
results as shown in Chapter 6. The second is our current inability to for-
mulate and encode meaningful prior knowledge (cf. Chapter 7). Knowing
what we don’t know depends on what we know a priori, and thus despite
seeing the same evidence, two priors can yield predictive distributions that
perform vastly different in terms of generalization or uncertainty estimation
(cf. Sec. 3.3). Also humans exhibit different levels of self-confidence [207],
which may indicate that genetically and environmentally formed prior
knowledge shapes uncertainties. Yet, uncertainties are still considered to be
useful for biological agents in an ever changing world [208] and provide
an explicit incentive to gather information for uncertainty reduction [209].
Therefore, incorporating knowledge uncertainties may turn out useful for
artificial intelligence as well, even though more research to facilitate this
goal is needed.

1 But see our study on CL in RNNs in Ref. [33] and, for instance, the work by Fortunato, Blundell
& Vinyals [205] on how to perform approximate Bayesian inference in RNNs.

121



122 discussion

The second main topic of this thesis is continual or lifelong learning. In
biology, there is no training and subsequent testing phase. Instead, humans
can continually learn to adapt to their environment and to acquire new skills
without (catastrophically) forgetting existing ones. Unfortunately, standard
training procedures for neural networks, which are of immense practical
relevance nowadays [e. g. 97], do not allow for this ability (cf. Chapter 4).

After introducing and reviewing both main topics in Chapters 3 and 4, we
presented our hypernetwork-based method to continually learn a sequence
of tasks in Chapter 5. This method entangles task-specific solutions into
a single shared meta-model, the hypernetwork, and thus requires explicit
task-inference (cf. Sec. 4.1.3). This setup shifts the problem of continual
learning to the meta-level where forgetting can be explicitly addressed
via a simple regularization technique (cf. Eq. 5.3 and Eq. 6.1), which we
empirically demonstrated to be able to prevent forgetting successfully
even for long task sequences or challenging computer vision tasks [39,
40]. Task-inference, on the other hand, remains a challenging problem.
We propose replay-based task-inference as well as uncertainty-based task-
inference. Replay-based task-inference (e. g., HNET+TIR, Sec. 5.2.3) relies on
generative modelling, and excels on tasks such as SplitMNIST (cf. Fig. 4.1)
where a generative model is easy to obtain. However, apart from scalability
concerns, it is conceptually questionable whether generative modelling
should be employed for learning a discriminative model continually.

Therefore, we also studied uncertainty-based task-inference, which al-
ready yields substantial performance improvements compared to prior-
focused methods (cf. Sec. 4.1.2.1) when using uncalibrated out-of-distribution
(OOD) uncertainties of deterministic classifiers (cf. Table 5.1). Fortunately,
the hypernetwork-based approach from Chapter 5 can be extended to cap-
ture task-specific parameter uncertainty as we present in Chapter 6. This
probabilistic extension allows us to reflect epistemic uncertainties while
gaining more robust task-inference performance. While this approach is
computationally more expensive (as to be expected from an instantiation
of Bayesian neural networks, Sec. 3.5), it shows consistent performance
improvements and is equipped with multiple conceptual advances that
come with the Bayesian treatment, including the ability to integrate new
evidence within tasks in a mathematically sound way (cf. Eq. 4.5) as well as
the ability to specify task-specific prior knowledge for explicit knowledge
transfer. Yet, despite setting state-of-the-art performance on benchmarks
such as SplitCIFAR, task-inference proved to be a major bottleneck in this
framework (cf. Table 6.3). To understand the reasons for this, we studied
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uncertainty-based OOD detection in Chapter 7, which is required for a
naive use of uncertainties for task-inference.

Unfortunately, Bayesian neural networks often fall short of expectations
in their ability to detect OOD inputs (cf. Sec. 7.1). However, given the
arbitrariness of prior selection in Bayesian deep learning (cf. Sec. 3.5) as
well as the challenges arising due to the use of approximate inference
(e. g., cf. Sec. 4.1.2.1), it should not come as a surprise that uncertainties
do not reflect our intuitive desiderata.2 Even under exact inference, it is
currently unknown how to specify prior knowledge in real-world problems
such that posterior uncertainties reflect the data-generating process in the
sense that all OOD inputs are associated with high uncertainty (cf. Chapter
7). Furthermore, it remains to be discussed by the community whether
OOD detection should even be an important desideratum for Bayesian
discriminative models. We argue, that it may be preferable to focus on
finding priors that exhibit good generalization (including generalization to
OOD data, Sec. 7.6), and highlight that solely requiring good OOD detection
may be equivalent to generative modelling (cf. Sec. 7.7 and SM A.3.3). Note,
if OOD is defined as in Sec. 7.2, i. e., as inputs not sampled from p(x),
generative modelling can be employed directly for OOD detection [210,
211]. Also in this case, Bayesian statistics can be useful for dealing with
the intricacies associated with density estimation on high-dimensional
real-world data [212].

While boosting the performance of naive uncertainty-based task-inference,
as mainly studied in Chapter 6, might heavily depend on progress in prior
engineering, it should be stressed that the problem of task-inference is
conceptually simpler than the problem of out-of-distribution detection.
In particular, the coreset-based approach suggested in Sec. 6.3 allows to
explicitly calibrate uncertainties for task-inference without violating CL
desiderata. However, this approach relies on updating posteriors using
the recursive Bayesian update, which strongly suffers from the use of
approximate inference (cf. Sec. 4.1.2.1). Thus, in summary, progress in either
the engineering of prior distributions or the improvement of methods for
approximate inference will automatically translate into performance gains
for our suggested posterior meta-replay framework.

Overall, we provide a multitude of contributions to the respective fields of
deep learning research, ranging from (i) exploring methods for approximate
inference [44], over (ii) advancing continual learning [33, 39, 40], and (iii)
improving our understanding of the role of posterior-induced uncertainties

2 These desiderata might even be conflicting as outlined in Sec. 7.6.
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for OOD detection [95, 116], to (iv) assessing the role of model misspecifica-
tion in neural network regression [1]. These are important and still largely
unresolved challenges, but challenges that receive increasing research at-
tention and have seen steady progress in recent years. We thus look into
the future full of expectation and assume to see continuing progress that
ultimately leads to practical and trustworthy applications of AI.



A
S U P P L E M E N TA RY M AT E R I A L : U N C E RTA I N T Y- B A S E D
O U T - O F - D I S T R I B U T I O N D E T E C T I O N R E Q U I R E S
S U I TA B L E F U N C T I O N S PA C E P R I O R S

This chapter’s content is taken from an online preprint authored by: Francesco
D’Angelo? and Christian Henning? [95].

? These authors contributed equally.

a.1 what is an out-of-distribution input?

Pimentel et al. [182] reviews methods for outlier detection, putting them
coarsely into five categories: (1) probabilistic, (2) distance-based, (3) recon-
struction-based, (4) domain-based, and (5) information-theoretic. Our focus
lies on a probabilistic characterization of an OOD point, where a statistical
criterion allows to decide whether a given input is significantly different
from the observed training population. In this section, we discuss pitfalls
regarding obvious choices for such a criterion in order to highlight the
difficulties that arise when attempting to agree on a single (or application-
dependent) mathematical definition of outliers.

There are many possible definitions that could be considered for a point
to be OOD as we will outline below. Any of these definitions may change
the notion of OOD and will therefore affect how a BNN should be designed
such that predictive uncertainty adheres to the underlying OOD definition.
Considering a generative process p(x), the first question arising is regarding
the regions outside the support of p(x) or even the space outside the mani-
fold where samples x are defined on. For instance, assume the data to be
images embedded on a lower-dimensional manifold. Are points outside this
manifold clearly OOD, given that minor noise corruptions are likely to leave
the manifold? Even disregarding these topological issues solely focusing on
the density p(x), makes the distinction between in- and out-of-distribution
challenging. For instance, a threshold-criterion on the density might cause
samples in a zero probability region to be considered in-distribution [126].
To overcome such challenges, one may resort to concepts from information
theory, such as the notion of a typical set [53, 210]. Unfortunately, an OOD
criterion based on this notion would require looking at sets rather than
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individual points. We hope that this short outline highlights the challenges
regarding the definition of OOD, but also clarifies that a proper definition is
relevant when assessing OOD capabilities on high-dimensional data, where
a visual assessment as in Fig. 7.2 is not possible.

a.2 on the relation between gp regression and kernel den-
sity estimation

GP regression with an RBF kernel allows a direct understanding of the OOD
capabilities that a Bayesian posterior may possess, as the a priori uniform
epistemic uncertainty is reduced in direct correspondence to density of
p(x).

Below, we rewrite the variance of an input x∗ as defined in Eq. 7.2:

σ2(f∗) = k(x∗,x∗)−
n

∑
i=1

βi(x∗)k(x∗,xi) (A.1)

with βi(x∗) = ∑n
j=1
(
K(X, X) + σ2I

)−1
ij k(x∗,xj).

Note, that k(x∗,x∗) is a positive constant for an RBF kernel, and that
βi(x∗) ≥ 0. Furthermore, as the RBF kernel k(x∗,xj) behaves exponentially
inverse to the distance between x∗ and xj, βi(x∗) is approximately zero for
all x∗ that are far from all training points. In addition, a training point xi
can only decrease the prior variance if it is close to x∗. This analogy closely
resembles the philosophy of KDE, which becomes an exact generative
model in the limit of infinite data and bandwidth l → 0.

a.3 additional experiments and results

In this section, we report additional experiments and results.
Fig. A.1 shows the prior’s standard deviation over function values√
k(x∗,x∗) for several NNGP kernels. Note, a kernel that a priori treats lo-

cations x∗ differently might not be desirable for OOD detection as the data’s
influence on posterior uncertainties might be hard to interpret (cf. Sec. 7.4).

Fig. A.2 shows GP regression results with the GMM dataset (Sec. A.4)
for several NNGP kernels. The plots show that the underlying task can be
solved well with all considered architectures (as indicated by the predictive
mean f̄∗ that captures the ground-truth targets in-distribution), even though
the uncertainty behavior OOD is vastly different and not reflective of p(x).
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(a) 1-layer ReLU (b) 1-layer Erf (c) 1-layer Cosine

Figure A.1: NNGP kernel values
√

k(x∗,x∗) for various architectural choices.
Note, that the NNGP kernel value k(x∗,x∗) represents the prior variance of
function values under the induced GP prior at the location x∗ (cf. Eq. 7.1).
As emphasized in Sec. 7.4, k(x∗,x∗) is constant for an RBF kernel, which has
important implications for OOD detection, such as that a priori (before seeing
any data) all points are treated equally. This is not the case for the ReLU kernel,
which has an angular dependence and depends on the input norm (cf. Eq. 7.5
and its dependence on k0(x,x′)). The kernel induced by networks using an error
function (Erf) or a cosine as nonlinearity seems to be more desirable in this
respect (note the scale of the colorbars).

(a) f̄∗ – 1-layer ReLU (b) σ(f∗) – 1-layer ReLU (c) f̄∗ – 2-layer ReLU (d) σ(f∗) – 2-layer ReLU

(e) f̄∗ – 1-layer Tanh (f) σ(f∗) – 1-layer Tanh (g) f̄∗ – 2-layer Tanh (h) σ(f∗) – 2-layer Tanh

(i) f̄∗ – 1-layer Erf (j) σ(f∗) – 1-layer Erf (k) f̄∗ – 2-layer Erf (l) σ(f∗) – 2-layer Erf

Figure A.2: Mean f̄∗ and standard deviation σ(f∗) of the posterior p(f∗ |
X∗, X,y) for GP regression with NNGP kernels for various architectural choices,
such as number of layers or non-linearity. Note, that Tanh and Erf nonlinearities
are quite similar in shape, which is reflected in the similar predictive posterior that
is induced by these networks. We use the analytically known kernel expression
for the Erf kernel [175], and use MC sampling for the Tanh network (cf. Fig. A.3).
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Figure A.3: Monte Carlo error when estimating NNGP kernel values. Eq. 7.4
requires estimation whenever no analytic kernel expression is available (for
instance, when using a hyberbolic tangent nonlinearity as in Fig. A.2). Here, we
visualize the error caused by this approximation for ReLU and error function (erf)
networks when computing kernel values k(x∗,x∗). Eq. 7.4 requires a recursive
estimation of expected values, where we estimate each of them using N samples
(N ∈ [102, 103, 104, 105]). Note, that even small errors can cause eigenvalues of the
kernel matrix to become negative. However, with our chosen likelihood variance
of σ = 0.02 we experience no numerical instabilities during inference, and obtain
consistent results using either analytic or estimated (N = 105) kernel matrices.

Fig. A.3 (in combination with Fig. A.2) highlights that also approximated
kernel values can be used to study architectures with no known closed-form
solution for Eq. 7.4, as the posterior seems to be only marginally effected
by the MC estimation.

Fig. A.4 visualizes that NNGP kernels for common architectural choices
do not encode for Euclidean distances. Kernels that monotonically de-
crease with increasing distance are, however, important to apply the KDE
interpretation of SM A.2.

Finally, in Fig. A.5 we investigate a more challenging dataset with two
concentric rings. Note, that the center region as well as the region between
the two rings can be considered OOD (not included in the support of
p(x)). A good uncertainty-based OOD detector should therefore depict
high uncertainties in those regions, which is not the case for ReLU networks.
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Figure A.4: NNGP kernel values do not generally reflect Euclidean distances.
This figure shows kernel values k(xq,xp) plotted as a function of the Euclidean
distance ‖xq − xp‖2 (using pairs of training points from the two Gaussian mix-
tures dataset). As outlined in Sec. 7.4 and SM A.2, the interpretation of an RBF
kernel as Gaussian kernel that can be used in a KDE of p(x) is important to
justify implied OOD, at least for low-dimensional problems. Unfortunately, the
kernels induced by common architectures do not seem to be distance-aware and
are thus not useful for KDE.

(a) 2-layer ReLU (5) (b) 2-layer ReLU (100) (c) 2-layer ReLU (∞)

(d) RBF net (500) (e) σ(f∗) – RBF net (∞) (f) RBF kernel

Figure A.5: Standard deviation σ(f∗) of the predictive posterior. We perform
Bayesian inference on a dataset composed by two concentric rings (SM A.4)
comparing posterior uncertainties of GPs with NNGP kernels and an RBF kernel
with those obtained by finite-width neural networks. Only the function space
prior induced by an RBF kernel or RBF network causes epistemic uncertainties
that allow outlier detection in the center or in between the two circles. However,
the RBF network’s uncertainties decrease with increasing input norm, which can
be counteracted by further increasing σ2

µ (Sec. 7.3).
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a.3.1 2D classification

In this section, we consider the same dataset as in Fig 7.2 in a classification
setting instead of regression. In this setting, exact inference is intractable
even when using GPs and approximations are needed. In particular, we
study classification with the logistic likelihood function p(y | f (x;w)) =
s(−y f (x;w)) where s is the sigmoid function. We use HMC to sample from
the posterior distribution in the finite-width limit, using a standard normal
prior where the variance is inversely scaled by the hidden-layer’s width.
The results are reported in Fig A.6 for ReLU, cosine and RBF networks.

As clearly depicted in the plots, our findings regarding the importance
of the prior in function space can be extended also for the classification
case. Indeed, the uncertainty captured by the ReLU architecture appears un-
suitable for OOD detection given that the data distribution is not captured
and the disagreement is low also in regions of the 2D plane that do not
contain any training data points [also see 213, 214]. This pathology appears
in both cases: when the disagreement is considered over the functions
σ(f∗) or over the sigmoid outputs σ(s(f∗)). By contrast, also for this new
choice of likelihood, the cosine and RBF architecture exhibit uncertainty
that conveys similar useful properties for OOD detection as seen in the
regression example in Fig. 7.2. Despite this empirical correspondence, it is
important to note that the direct correspondence with the KDE technique
that justifies the usefulness of OOD properties of the RBF kernel in the case
of GP regression (see Sec. A.2) does not directly apply for classification.
Indeed in the latter, we do not have an analytical form of the posterior as
in Eq. 7.2 due to the non-Gaussianity of the logistic likelihood. Therefore
our observations can not be readily generalized outside the settings of our
experiments and further theoretical analysis are needed to assess whether
there is an analogous justification for settings that have no closed-form
solution.

a.3.2 SplitMNIST regression

In this section, we consider SplitMNIST tasks [103], which are binary
decision tasks where the original MNIST dataset is split into five tasks
(cf. Fig. 4.1). To perform exact inference via Gaussian Processes, we consider
each binary decision task as regression problem with labels -1/1. For
computational reasons, the training set of each task is reduced to 1000
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(a) σ(f∗) – 2-layer ReLU (b) σ(f∗) – 1-layer Cosine (c) σ(f∗) – 1-layer RBF

(d) σ(s(f∗)) – 2-layer ReLU (e) σ(s(f∗)) – 1-layer Cosine (f) σ(s(f∗)) – 1-layer RBF

(g) s(f∗) – 1-layer ReLU (h) s(f∗) – 1-layer Cosine (i) s(f∗) – 1-layer RBF

Figure A.6: Standard deviation over the logits f∗ and mean and standard
deviation over the sigmoid outputs s(f∗) for a 2D classification problem. We
perform approximate Bayesian inference with HMC for finite-width networks
on a mixture of two Gaussians dataset considering different priors in function
space induced by different architectural choices. The problem is now treated as
classification task using HMC to sample from the posterior. We show the standard
deviation σ(f∗) of logits f∗ in (a, b, c), the standard deviation σ(s(f∗)) of the
predicted probability for the input being in the positive class in (d, e, f), and the
corresponding mean s(f∗) (g, h, i). The ReLU network has 5 hidden units, the
cosine has 100 hidden units, and the RBF network has 500 hidden units.
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Acc. Train Acc. Test AUROC SM AUROC FM

RBF (l = 1) 100.0±.000
99.35

±.577 .849
±.077 .893

±.062

RBF (l = 5) 100.0±.000 99.45±.552 .892±.057 .979
±.010

RBF (l = 10) 100.0±.000
99.42

±.505 .884
±.060 .990

±.005

ReLU 1-layer 99.74
±.313

98.86
±1.01 .884

±.060 .995
±.002

ERF 1-layer 99.68
±.356

98.76
±1.11 .884

±.060 .996±.002

Cosine 1-layer 99.68
±.356

98.88
±.985 .880

±.062 .993
±.003

Table A.1: GP regression on SplitMNIST tasks. We perform GP regression on
a single SplitMNIST task using the kernels reported in the first column (entries
show mean and standard deviation when using different SplitMNIST tasks for
training). AUROC values are computed when considering the test data from all
remaining SplitMNIST tasks as OOD data (column SM), or by taking the test
data of FashionMNIST as OOD (column FM).

samples, but test sets remain at their original size. Results are reported in
Table A.1.

For the chosen length-scale parameters l, RBF kernels show best gener-
alization. Though, they don’t excel at OOD detection compared to other
kernel choices. In SM A.2, we discussed that epistemic uncertainties as
induced by the RBF kernel can be viewed as an approximation to p(x)
when the dataset size goes to infinity D → ∞, and the length-scale goes to
zero l → 0. As expected, such approximation to p(x) may deteriorate on
high-dimensional image data, presumably as the Euclidean distance does
not capture the geometry of the image manifold.

To gain a better intuition on why the RBF kernel does not excel in OOD
detection for image data, we visualize the uncertainty behavior in Fig. A.7.
The figure shows 2D linear subspaces of the 784D image space. These
subspaces are determined by three images (see caption for details). As
can be seen in Fig. A.7b and A.7e, a too small length-scale might cause
test points to be not included in the low-uncertainty regions. On the other
hand, if the length-scale is set too high, OOD points may fall inside low-
uncertainty regions. The situations depicted in the figure show that for
the given training set there is no trade-off length-scale l that prevents
such behavior (because some OOD points have less Euclidean distance
to training points than some test points). Using an RBF kernel with a
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(a) IND – f̄∗ (b) IND – σ(f∗) (c) IND

(d) OOD – f̄∗ (e) OOD – σ(f∗) (f) OOD

Figure A.7: 2D visualizations of the SplitMNIST posterior for a GP with RBF
kernel (l = 5). The plotted 2D linear subspaces are determined by 3 images
(colored dots, denoted a, b and c). In the upper row, the yellow dot represents
the in-distribution (IND) test sample with the highest uncertainty (see image c in
subplot (c)), while the two green dots are the (in-distribution) training samples
with smallest Euclidean distance to image c. In the lower row, the yellow dot
represents the OOD test image with lowest uncertainty (see image c in subplot
(f)). Again, the two green dots are the closest IND training samples. Image d is
in both cases a randomly chosen point on the 2D subspace. Subplots (a) and (d)
show the posterior mean σ(f∗), and subplots (b) and (e) the posterior’s standard
deviation σ(f∗). Subplots (c) and (f) show the images corresponding to the 4

highlighted points on the 2D subspaces.
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(a) Data from all tasks (b) Data from task 1 (c) Data from task 2 + replay

Figure A.8: Continual learning with uncertainty-based replay. As mentioned
in Sec. 7.7, if uncertainty should only be low on in-distribution data, a generative
model can be obtained by sampling from regions of low uncertainty. Here, we use
this idea to realize a replay-based continual learning algorithm [111] without the
need of storing data or maintaining a separate generative model. In this case, we
split a polynomial regression dataset into two tasks (denoted by the black vertical
bar). The posteriors in this figure are obtained via GP regression using an NNGP
kernel corresponding to a 1-layer Cosine network. (a) All data is seen at once
(no continual learning). (b) Only data of task 1 is seen to obtain the posterior.
The orange vertical lines denote input locations sampled from low uncertainty
regions via rejection sampling. Task 1’s posterior is then used to label those input
locations (orange dots). (c) The replay samples generated with the model of task
1 (orange dots) are used together with the training data of task 2 to obtain a
combined posterior over all tasks.

metric that encodes similarities in image space rather than using Euclidean
distance might overcome these problems.

a.3.3 Continual learning via uncertainty-based replay

In Sec. 7.7 we mention that the desideratum of having low uncertainty only
on in-distribution inputs opens the possibility of considering uncertainty
as an energy function from which we can sample. Thus, the uncertainty
landscape can be used to construct a generative model.

In this section, we use continual learning [96] to demonstrate this concep-
tual idea. In continual learning, a sequence of tasks D(1), . . . ,D(T) is learned
sequentially such that each task has to be learned without access to data
from past or future tasks (cf. Sec. 4.1). A common approach to continual
learning is via replay as introduced in Sec. 4.1.1. In this case, the current
task t is learned with the available training data D(t) as well as datasets
D̃(1), . . . , D̃(t−1) which are supposed to represent the data distributions of
the previous tasks. We have seen that D̃(s) can be constructed by either
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storing data [111] or by replaying (fake) data, which ideally makes use of a
generative model [e.g., 39, 115].

We consider this generative-replay scenario without the need of main-
taining a separate generative model. In Fig. A.8, we consider a regression
problem split into two tasks. Note, that learning a series of 1D regression
problems is challenging for most continual learning algorithms, especially
those relying on the recursive Bayesian update (cf. Sec. 4.1.2.1). By contrast,
generative-replay methods can solve this task with ease as the structure of
the data in such low-dimensional problem is easy to capture by a generative
model.

In our experiment, two tasks are created by splitting the dataset of a 1D
function into two parts as illustrated in Fig. A.8a. The left half is considered
the first task, and the right half the second task, respectively. The blue
posteriors shown in all three subpanels are obtained with a GP using the
NNGP kernel of a 1-layer Cosine network, which should exhibit OOD
properties similar to an RBF kernel (cf. Sec. 7.4). In Fig. A.8a, the posterior
is obtained using the combined datasets from both tasks (no continual
learning). In Fig. A.8b, the posterior is obtained using only the training
data of the first task. After this (first task’s) posterior is obtained, we can
use it to perform pseudo-replay as outlined below to generate D̃(1) which
can be mixed with the data of the second task D(2) to produce the posterior
in Fig. A.8c. The posterior in Fig. A.8c looks qualitatively similar to the one
in Fig. A.8a even though it has been obtained without direct access to the
first task’s training data D(1).

To generate D̃(1) while learning the second task, we need access to the pos-
terior of the first task. Note, the model from the previous task is often kept in
memory by continual learning algorithms, for instance, to use it for regular-
ization purposes [118] or to replay data with previously trained generative
models [115].1 We generate in-distribution input locations (denoted by or-
ange vertical bars in Fig. A.8b) via rejection sampling as in Fig. 7.7. For that,
we define epistemic uncertainty as an energy function E(x∗) ≡ σ

(
f∗(x∗)

)
and construct a Boltzmann distribution p̃(x∗) ∝ exp

(
− E(x∗)/T

)
, where

1 As we use a non-parametric model (a GP) which is represented by the training data D(1),
keeping the model in memory requires to store D(1) too, which is a violation of continual
learning desiderata. However, this is just a conceptual example. If the same experiment would
be performed via approximate inference in a parametric model (e.g., HMC on a corresponding
finite-width network), then the (approximate) posterior of the first task can be stored without
storing D(1). In the case exact inference can be performed, the Bayesian recursive update
yields a sufficient continual learning algorithm.
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we set the temperature T = 1.2 As uncertainty of the posterior of Fig. A.8b is
only low for in-distribution inputs, we can assume obtained input locations
are similar to those represented in D(1). To construct a dataset D̃(1), we use
the posterior of Fig. A.8b to sample predictions y∗ (orange dots in Fig. A.8b
and Fig. A.8c).

In summary, this section presents an example application that can arise if
the desideratum of high uncertainty on all OOD inputs (i.e., robust OOD de-
tection) is fulfilled by a Bayesian model. Whether BNNs can be constructed
to fulfill this desideratum on real-world data is, however, unclear at this
point.

a.4 experimental details

In this section, we report details on our implementation for the experiments
conducted in this work. In all two-dimensional experiments: the likelihood
is fixed to be Gaussian with variance 0.02. Unless noted otherwise, the prior
in weight space is always a width-aware centered Gaussian with σ2

w = 1.0
and σ2

b = 1.0 except for the experiments involving RBF networks where
we select σ2

w = 200.0. The RBF kernel bandwidth was fixed to 1.0 in all
corresponding experiments.

1d regression. We construct the 1D regression example (e.g., Fig 7.1a)
by defining p(x) uniformly within the ranges [1.0, 1.3], [3.5, 3.8] and [5.2, 5.5],
and p(y | x) as f (x) + ε with f (x) = 2 sin(x) + sin(

√
2x) + sin(

√
3x) and

ε ∼ N (0, 0.22). The training set has size 20.

periodic 1d regression (only fig . 7 .6). We construct this 1D re-
gression example by defining p(x) uniformly within the range [0.0, 12.5],
and p(y | x) as f (x) + ε with f (x) = sin(x) and ε ∼ N (0, 32). The training
set has size 30.

gaussian mixture . We created a two-dimensional mixture of two
Gaussians with means µ1 = (−2,−2), µ2 = (2, 2) and covariance Σ = 0.5 · I
and sampled 20 training data points.

2 Note, if E(x∗) ∝ − log p(x∗), then this process yields exact samples from the input distribution.
For instance, considering the limiting case of SM A.2 where σ

(
f∗(x∗)

)2 ≈ 1 − p(x∗), a

reasonable choice of energy could be E(x∗) ≡ − log
[
1− σ

(
f∗(x∗)

)2]
).
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two rings . We uniformly sampled 50 training data points from two
rings centred in (0, 0) with inner and outer radii Ri,1 = 3, Ro,1 = 4, Ri,2 =
8, Ro,2 = 9, respectively.

hmc . We use 5 parallel chains for 5000 steps with each constituting 50

leapfrog steps with stepsize 0.001 for width 5 and 0.0001 for width 100.
We considered a burn-in phase of 1000 steps and collected a total of 1000

samples.
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