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INFINITE WIDTH (FINITE DEPTH) NEURAL NETWORKS

BENEFIT FROM MULTI-TASK LEARNING UNLIKE SHALLOW

GAUSSIAN PROCESSES – AN EXACT QUANTITATIVE

MACROSCOPIC CHARACTERIZATION

JAKOB HEISS, JOSEF TEICHMANN AND HANNA WUTTE

Abstract. We prove in this paper that optimizing wide ReLU neural net-
works (NNs) with at least one hidden layer using ℓ2-regularization on the

parameters enforces multi-task learning due to representation-learning – also

in the limit of width to infinity. This is in contrast to multiple other results in
the literature, in which idealized settings are assumed and where wide (ReLU)-

NNs loose their ability to benefit from multi-task learning in the infinite width

limit. We deduce the ability of multi-task learning from proving an exact
quantitative macroscopic characterization of the learned NN in an appropriate

function space.

1. Introduction

One key difference of deep learning models, such as deep neural networks (NNs),
in contrast to shallow learning models, such as Gaussian Processes (GPs)1, is that
deep learning methods are capable of benefiting from multi-task learning. Multi-
task learning [5] is highly connected to representation learning, feature learning,
metric learning and wiring (see section 4). Deep NNs with multi-dimensional output
use the same weights in all hidden layers and only the last layer contains different
weights for different outputs (or tasks). In various applications, training with high-
dimensional output has outperformed separate training of the individuals tasks
[5, 19, 7, 21, 3]. Especially if the available data for some tasks is limited, these
tasks greatly benefit from the other tasks.2

Due to the success of deep NNs, there is high interest in studying their gen-
eralization behavior (macroscopically3 in function space). In the case of infinite
width neural networks [12, 14, 13] have shown in specific settings that deep NNs
are equivalent to shallow GPs which cannot benefit from multi-task learning. They

The authors gratefully acknowledge the support from ETH-foundation. We are very thank-
ful for numerous helpful discussions, feedback and code-implementations – especially to Alexis

Stockinger.
1Within this paper “GPs” always refer to shallow GPs where a prior GP always has a fixed

kernel that is not learned from the data. The GPs considered in [12, 14, 13] have completely
independent outputs. (In theory it would be possible to define a prior GP with fixed kernel
where the outputs are correlated, if one already has a prior belief that the outputs have a positive

or negative correlation, but this is not considered true multi-task learning: It does not include

representation-learning and with GPs one cannot express any dependence of outputs without an
asymmetric prior belief in a certain sign of the correlation of the outputs.)

2This paper is still work in progress. We are aware that references might be incomplete. Please
do contact us in case.

3We refer to the specific regularization structure on function space as macroscopic behavior.
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are aware of this problem and [14] suggests to define a specific prior for the weights
to circumvent this problem. [17, 24] in contrast suggest to use infinite depth NNs,
with a fixed ratio of width and depth to circumvent it.

In this paper we prove that neural networks optimized under ℓ2-regularization
can already benefit from multi-task learning due to representation learning. Fur-
thermore, we give an exact quantitative macroscopic characterization of the (gen-
eralization) behaviour in this setting. This can be seen as the infinite width limit
on function space of maximum a posterioris (MAPs) on parameter space of Gauss-
ian Bayesian neural networks (BNNs) in contrast to the MAP of an infinite width
limit of a Gaussian BNN. Note that exchanging the order of the MAP-operator,
the limit-operator, and when to change from parameter space to function space is
crucial (see section 2.1) for this analysis. Moreover, we briefly discuss that infinite
width NNs trained with gradient descent without explicit regularization can also
benefit from multi-task learning because of implicit regularization when one does
not use the scaling suggested by neural tangent kernel (NTK) theory by Jacot et al.
[12]. Seemingly small differences in the setting how NNs are trained can therefore
lead to very different generalization behavior.

2. Setting & Notation

We consider fully connected, shallow NNs (i.e., NNs with one hidden layer) with
ReLU activation and deep “stacked” NNs that are obtained by concatenating such
shallow neural networks. We denote a fully connected, shallow neural network as a
“stack”. A fully connected, deep, stacked neural network NN θ is then given as a
concatenation of stacks and an element-wise activation function σ̃ (not necessarily
ReLU as for the hidden layers of a stack),

(1) NN θ := ℓ−1 ◦ NN#stacks
θ(#stacks)

◦ σ̃ ◦ NN#stacks−1
θ(#stacks−1)

◦ · · · ◦ σ̃ ◦ NN 1
θ(1)

,

where ℓ−1 is a final activation function (e.g. identity or soft-max which corresponds to a

the inverse of a link function in classical statistics) and σ̃ is any Lipschitz-continous activa-
tions function. Throughout the paper, we focus on stacks as in Definition 2.1, see
Appendix A for results on different stacks.

Definition 2.1 (Deep Stacked Neural Network). A deep stacked neural network is

defined as in (1) with stacks NN j
θ(j)

: Rdj−1 → Rdj s.t.

(2) ∀x ∈ Rdj−1 : NN j
θ(j)

(x) =

nj∑
k=1

w
(j)
k max

(
0, bk

(j) + v
(j)
k x

)
+ c(j) ,

with4

• number of hidden neurons nj ∈ N in the j-th stack, not necessarily equal
dimensions din = d0, . . . , dj , . . . , d#stacks = dout ∈ N that we call bottleneck
dimensions and ReLU activation function,

• weights v
(j)
k ∈ Rdj−1 , w

(j)
k ∈ Rdj , k = 1, . . . , nj and

• biases c(j) ∈ Rdj , b
(j)
k ∈ R, k = 1, . . . , nj .

4One could include an additional bias c ∈ R to the last layer too. However in the limit n → ∞
this last-layer bias c does not change the behavior of the trained network-functions RNwT or

RN ∗,λ̃. In Figure 8f this last layer bias c was included in the training.
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• Weights and biases are collected in θ =
(
θ(j)

)
j∈{1,...,#stacks} with

θ(j) := (v(j), b(j), w(j), c(j)) ∈ Θj := Rnj×dj−1 × Rnj × Rdj×nj × Rdj .

ReLU
(n1)

ReLU
(n2)

σ̃
(d1)

σ̃
(d2)

Input
(d0)

ReLU
(n3)

Output
ℓ−1

(d3)

Figure 1. Schematic representation of a Deep Stacked NN from
Definition 2.1 with #stacks = 3 stacks, where we show the activa-
tion functions and the dimensions of the layers of this feed forward
NN.

Within this paper, we assume a quadratic training loss

(3) L
(
f̂
)
:=

N∑
i=1

∥∥∥f̂(xtrain
i )− ytrain

i

∥∥∥2
2

for simplicity, but actually most of the results would remain true under milder
assumptions on L : W 1 → R allowing most losses that are typically used in practice
and even losses used in applications beyond classical supervised learning. 5

5W 1 denotes the space of weakly differentiable functions. Almost all results here hold anal-

ogously for most other supervised learning losses for finite number of training data points (e.g.
cross-entropy loss or ℓ1-loss). For the results, where we let the width of all hidden layers go to
infinity (i.e. dj → ∞ for all j ∈ {1, . . . ,#stacks− 1} and nj → ∞ for all j ∈ {1, . . . ,#stacks})it
is important tho assume a finite number of training points N . However, we believe that most of
the results where we keep the dimension of every second hidden layer dj finite also hold for more

general losses that only have to fulfill similar assumptions as in [9]. These general types of losses
can also be used in applications beyond classical supervised learning settings (e.g. [8]). We will
formulate precise assumptions on the loss in a future update of this paper.
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In this paper we focus on understanding deep stacked ReLU NNs (Definition 2.1)
optimized with ℓ2-regularization (weight decay), i.e.,

(4) NN θ∗λ with θ∗,λ ∈ argmin
θ

(
L (NN θ) + λ ∥θ∥22

)
,

for the case of large numbers of nj for j = 1 . . . ,#stacks. First, we formulate the
theory for networks where the widths of every second layer stays finite (i.e. dj ∈ N
stay fixed) by letting only the width of the other layers go to infinity (i.e. nj → ∞).
Then, we also derive the theory for the case where the width of every hidden layer
goes to infinity (i.e. nj , dj → ∞).

2.1. Connection to BNNs. 6 The solution θ∗,λ of eq. (4) is the MAP on param-
eter space of a Gaussian BNN, when the ratio of Gaussian i.i.d. data noise variance
and the variance of the Gaussian i.i.d. prior of parameters is λ.

In this paper we study the limit in function space of NN θ∗λ as the number of
hidden neurons goes to infinity. We even show that resulting function NN θ∗λ =
limn→∞ NN θ∗λ already reaches the limit when nj > N for all j ∈ {1, . . . ,#stacks}.
From this we derive that arbitrarily wide NN θ∗λ can benefit from multi-task learn-
ing by representation-learning unlike shallow GPs (even if nj ≫ N and even a single
hidden layer is sufficient, i.e. #stacks ≥ 1). This might sound surprising at the first
moment, since an insufficient summary of [14] could be vaguely formulated as “In-
finitely wide Gaussian BNNs are equivalent to shallow GPs” and the MAP7 of a
GP is not capable of benefiting from multi-task learning or representation learning,
because of the fixed data-independent kernel. The solution to this paradox is that
exchanging the order of the MAP-operator8 and the limn→∞-operator9 and if the
MAP is calculated on parameter space or function space vastly changes the behav-
ior of the obtained function: Neal [14] shows that the prior of a very wide BNN
is similar to a GP. But Neal [14] never claims that the MAP of a very wide BNN
is close to the MAP of the corresponding GP. We show that that if one actually
calculates the MAP NN θ∗λ = limn→∞ NN θ∗λ of a sufficiently wide BNN as given
in eq. (4) is typically not close at all to the MAP of the corresponding GP. We
think this result is important since the gradient descend-based algorithms typically
used in practice aim to approximate eq. (4).

3. Main Theorem: Characterizing the learned function limn→∞ NN θ∗λ

The goal of this section is to formulate limn→∞ NN θ∗λ as the solution of an
optimization problem of the form

(5) f∗,λ ∈ argmin
f

(L (f) + λP (f))

to better understand how the solution of (4) behaves in function space in the case
of many hidden neurons.

6In section 2.1 we actually assume for multiple statements that L is the squared loss as given

in eq. (3), while outside section 2.1 most results hold for more general losses too.
7The MAP of a GP is always interpreted in a Cameron-Martin sense [4] in this paper which is

equivalent to taking point-wisely the MAP of the point-wise marginals.
8The MAP-operator maps a prior and the observed data to the max a posteriori (MAP).
9We use limn→∞ as a short notation for lim(n1,...,n#stacks)→(∞,...,∞).

https://en.wikipedia.org/w/index.php?title=Independent_and_identically_distributed_random_variables&oldid=910267759
https://en.wikipedia.org/w/index.php?title=Independent_and_identically_distributed_random_variables&oldid=910267759
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The form of the P -functional depends on the architecture of the network:

(6) P (f) = inf
(h1,...h#stacks), s.t.

f=ℓ−1◦h#stacks◦···◦σ̃◦h1

(P1(h1) + P2(h2) + · · ·+ P#stacks(h#stacks)) ,

where Pj is given for each stack as10

(7) Pj(hj) := min
φ∈T , c∈Rdj s.t.

hj=
∫
S
dj−1−1 φs(⟨s,·⟩) ds+c

∫
Sdj−1−1

∫
R

∥∥∥φs(r)
′′
∥∥∥
2

g(r)
dr ds+ ∥c∥22

 ,

where

T :=

{
φ ∈ C2(R,Rdj )S

dj−1−1

∣∣∣∣∀s ∈ Sd−1 : lim
r→−∞

φs(r) = 0 and lim
r→−∞

∂

∂r
φs(r) = 0

}
handles a boundary condition, Sd−1 denotes the (d − 1)-dimensional unit sphere
and we have a weighing function g(r) = 1√

r2+1
.

Neither the solutions NN θ∗λ to eq. (4) nor the solutions f∗,λ to eq. (5) have
to be unique. But even in cases where they are not unique the set of solutions to
eq. (4) converges to the set of solutions to eq. (5) as n → ∞.

Theorem 3.1. Using the definitions from Sections 2 and 3, it holds that for a
sufficiently large11 number of neurons n > N every solution NN θ∗λ to eq. (4) is a
solution to eq. (5) too, i.e.,

NN θ∗λ ∈ argmin
f∈W 1

(L (f) + λP (f)) .

10As we need to apply Pj on functions hj ̸∈ C2, we always use the symbol Pj

for its lower semi-continuous continuation, i.e., Pj : W 1 → R ∪ {∞}, f 7→ Pj(f) :=

limε→0+ inf f̃∈C2:∥f̃−f∥
W1,1<ε Pj(f̃), where we use the symbol “Pj” on the right-hand-side

of this equation for the functional on the space of twice continuously differentiable functions

C2 and on the left-hand-side we use the same symbol for its continuation to the space of once
weakly differential functions W 1. Alternatively one could replace C2 by W 1 in the definition

of T and interpret the formula
∫
R

∥∥∥φs(r)
′′∥∥∥

2
g(r)

dr as a symbol for Ig (φs(r)), where Ig : W 1 →
R ∪ {∞}, f 7→ Ig(f) := limε→0+ inf f̃∈C2:∥f̃−f∥

W1,1<ε Ĩg(f̃) is the lower semi-continuous con-

tinuation of Ĩg : C2 → R ∪ {∞}, f 7→ Ĩg(f) :=
∫
R

∥∥∥f(r)′′∥∥∥
2

g(r)
dr. (This is actually a continuation,

because of [2].) This results for example in
∫
R

∥∥∥∥∥wk max

(
0,

〈
vk,

vk
∥vk∥2

r

〉
+bk

)′′∥∥∥∥∥
2

g(r)
dr =

∥vk∥2∥wk∥2
g

(
−bk

∥vk∥2

) .

Equation (5) could be formulated more precisely as f∗,λ ∈ argminf∈W1 (L (f) + λP (f)).
11n > N is a short notation for ∀j ∈ {1, . . . ,#stacks} : nj > N . Note that for a more general

loss L that does not only depend the values of f on finitely many training data points as described

in footnote 5, even for arbitrarily large n ≫ N , it can happen that NN θ∗λ is not exactly in the
set of solutions of eq. (5). Nonetheless, in this case we will prove in a future version of this paper
that NN θ∗λ gets arbitrarily close to the set of solutions of eq. (5) as n → ∞ similarly to eq. (8)

in the other direction.
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Furthermore, it holds that for every compact K ⊂ Rdin , ∀ϵ ∈ R>0 :12

(8) ∀f∗,λ ∈ argmin
f∈W 1

(L (f) + λP (f)) : ∃ñ ∈ N#stacks : ∀n > ñ :

∃θ∗,λ ∈ argmin
θ

(
L (NN θ) + λ ∥θ∥22

)
:
∥∥f∗,λ −NN θ∗λ

∥∥
W 1,∞(K)

< ϵ

Proof. We will add a detailed proof in a future version of the paper. Similar theo-
rems for shallow NNs with one-dimensional output have already been presented in
concurrent and previous work, such as [6, 15, 16, 20, 23, 9, 11]. □

To some extent one can also understand the limit dj → ∞ for j ∈ {1, . . . ,#stacks− 1}
if one wants to let the width of all hidden layers go to infinity.

Corollary 3.2. Let σ̃ be ReLU or linear, let n > N and dj > N , then there exists

θ∗,λ ∈ argminθ

(
L (NN θ) + λ ∥θ∥22

)
such that the function NN θ∗λ can also be rep-

resented by a network with dj = N+1 and NN θ∗λ ∈ argminf∈W 1 (L (f) + λP (f)),
where dj = N + 1 can be used in the definition of P .

Proof. The proof follows from Theorem 3.1 and [18]. □

Corollary 3.2 implies that one could formulate a functional P with dj = N +
1 ∀j ∈ {1, . . . ,#stacks} such that argminf (L (f) + λP (f)) can at least cover some
of the solutions NN θ∗λ of wide NNs, where all layers can be arbitrarily much wider
than N (e.g. n → ∞ and dj → ∞ ∀j ∈ {1, . . . ,#stacks}).
Remark 3.3 (No regularization on biases). If one does not regularize the biases but
only the weights, one obtains

(9) Pj(hj) := min
φ∈T , c∈Rdj s.t.

hj=
∫
S
dj−1−1 φs(⟨s,·⟩) ds+c

(∫
Sdj−1−1

∫
R

∥∥∥φs(r)
′′
∥∥∥
2
dr ds

)
,where

one can either keep the definition of T or redefine it as

T :=

{
φ ∈ C2(R,Rdj )S

dj−1−1

∣∣∣∣∀s ∈ Sd−1 : lim
r→−∞

∂

∂r
φs(r) = 0

}
.

In this case, if dj = 1, [16] provides a simpler reformulation of Pj from eq. (9), i.e,
(10)

Pj(hj) := min

φ∈C2(R,Rdj )S
dj−1−1

, c∈Rdj s.t.
hj=

∫
S
dj−1−1 φs(⟨s,·⟩) ds+c

(∫
S
dj−1−1

max

(∫
R

∣∣∣∣φs(r)
′′
∣∣∣∣ dr,

∣∣∣∣ lim
r→−∞

φs(r)
′
+ lim

r→+∞
φs(r)

′
∣∣∣∣) ds

)
,

(where the spheres could also be replaced by half-spheres without changing the func-
tional Pj). Equation (10) can be particularly intuitively interpreted as a generalized
additive model (GAM), where first, instead of only using finitely many directions
(e1, . . . , edj ) all possible directions s are used, second, instead of the typical smooth-

ing spline regularization
∫
R

∥∥∥φs(r)
′′
∥∥∥2
2
dr a L1-regularization

∫
R

∥∥∥φs(r)
′′
∥∥∥
2
dr is ap-

plied and third, the first derivative additionally gets regularized. Equation (7) be-
haves qualitatively similar, but also the zeroth derivative gets slightly regularized

12Theorem 3.1 holds for every fixed number #stacks ∈ N and for every fixed Lipschitz-continous

activation function σ̃ in-between the stacks (the hidden layers within each stack always have ReLU-

activation functions. Moreover, n > ñ is understood component-wise. On the first sight, it looks
as if n does not appear after “∀n > ñ”, but recall that when we write NN θ this always refers to

a network with nj neurons in the corresponding layers.

https://en.wikipedia.org/w/index.php?title=Sobolev_space&oldid=910223537


WIDE NNS BENEFIT FROM MULTI-TASK LEARNING UNLIKE GPS – A QUANTITATIVE MACROSCOPIC CHARACTERIZATION 7

and the second derivative gets penalized more strongly far away from zero than
close to zero. We don’t think that the regularization eq. (7) is more desirable than
eq. (10), but even if one does not regularize the biases, the obtained functions will in
practice have some qualitative aspects of eq. (7), since gradient descent initialized
close to zero implicitly regularizes the bias too.

Remark 3.4 (Random hidden layers [11]). Comparing eq. (7) to [11], where the
first-layer weights and biases v and b are not trained but chosen randomly, one can

see that the main difference is that the integrand

∥∥∥φs(r)
′′∥∥∥

2

g(r) replaced the integrand∥∥∥φs(r)
′′∥∥∥2

2

g(r) , i.e., the integrand in eq. (7) takes the square root of the numerator

and also the weighting function g does not depend on the distribution of v and b
anymore (since v and b are trainable now too). If one still sampled v(j) and b(j)

randomly without training them, one could plug in [11, P g
◦ ] for Pj in eq. (6). See

[11] for some intuition on how P -functionals relate to classical statistical models
(GAMs).

4. Discussion (Deep Learning vs. Shallow GPs)

Already a single hidden layer is sufficient to read off representation learning and
multi-task learning from the P -functional of the previous section: In the case of
#stacks = 1, P = P1 from eq. (7) or (10) (depending on the regularization of the
biases). The square-root in the definition of the Euclidean norm ∥·∥2 that appears
in eqs. (7), (9) and (10) is responsible for the representation learning and multi-
task learning: If for example multiple outputs fk almost only change13 in certain

directions s ∈ Sdin−1, then
∥∥∥φs(r)

′′
∥∥∥
2
is much stronger for these directions s than

for others.
Thus, the marginal costs for second derivative of any other k̃th component of

φs(r) are much smaller for these directions s than for other directions, because of

the strict concavity of the square root-function. So the k̃th task can learn from
the other task which directions tend to be more important than other directions
and thus prefer functions fk̃ which mainly change in the directions where the other
tasks also change a lot. (Note that the architecture is still universal and thus is also
able to learn functions f where different components fk change in very different
directions if there is enough data evidence to do so.)

Already for one-dimensional input, the square-root can lead to multi-task learn-
ing: If some outputs fk have stronger second derivative |f ′′

k (x)| or even kinks at
some positions x, other outputs fk̃ will also prefer to have stronger second deriva-
tive or even kinks at these positions x. If one samples the first layer weights and
biases randomly and only train the second layer, the main difference in P is that
∥·∥2 would be replaced by ∥·∥22 and squaring the Euclidean norm cancels the square
root that connects the outputs to each other.

13We say that fk “changes” a lot in a direction s, when changing the input x in the direction
of s the output fk(x) changes a lot, possibly very non-linearly with very strong second derivative
in this direction s. We say that fk does almost not change in other directions when changing the

input in other directions has little influence on the output, i.e. the output in these other directions
is mostly linear and very flat (i.e. it has low first derivative and very low second derivative in
these directions).
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Without the square-root, learning a separate function fk for each task would
result exactly in the same functions fk as training them all together14, since∫ ∥∥∥f ′′

(x)
∥∥∥2
2
dx =

∫ dout∑
k=1

(
f

′′

k (x)
)2

dx =

dout∑
k=1

∫ (
f

′′

k (x)
)2

dx.

On the contrary, with the square-root this is obviously not the case, since∫ ∥∥∥f ′′
(x)

∥∥∥
2
dx =

∫
2

√√√√dout∑
k=1

(
f

′′
k (x)

)2
dx

is in general not equal to
∑dout

k=1

∫ ∣∣∣f ′′

k (x)
∣∣∣ dx.

Thus one can see that already a single hidden layer is sufficient to get the ef-
fect of multi-task learning for limn→∞ NN θ∗λ when NN θ∗λ are trained with ℓ2-
regularization. Note that for exactly the same NN-architecture the corresponding
limits discussed in [12, 14, 17, 24, 13] result in a GP-regression with absolutely no
multi-task learning benefits, where learning the tasks separately would result in
exactly the same functions as jointly learning them.

Increasing the number of stacks #stacks > 1 further strengthens the representa-
tion learning and multi-task learning effects, because not only does the square-root
in each Pj enforce multi-task learning for each hj , but all the functions hj for
j ∈ {1, . . . ,#stacks− 1} are shared by the all the tasks. So, H := σ̃ ◦ h#stacks−1 ◦
· · ·◦ σ̃◦h1 has to be learned to transform inputs x into a vector representation H(x)
that allows jointly for all functions (ℓ◦f)k to be nicely representable as h#stacks,k◦H
such that P#stacks(hj) is not too large. In Appendix B we visualize this multi-task
learning benefits on a simple example.

In a future version of this paper, we want to discuss in more detail the connec-
tions between multi-task learning, representation learning, feature learning, metric
learning, wiring, transfer learning, and [10, Desiderata D4]. In future work we also
want to write down how these results on different limits of infinitely wide NNs can
shed light on an open aspect of a paradox regarding the mysterious benefits of “cold
posteriors”15 in the context of Bayesian inference. We also want to discuss gradient
descend and implicit regularization in a future version of this paper.
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Appendix A. Network Architectures and their P-functionals

ReLU ℓ−1Input

Figure
2. Schematic
repre-
senta-
tion of a
Shallow
Neural
Net-
work

ReLU

ℓ−1Input

Figure
3. Schematic
repre-
senta-
tion of a
Shallow
Neural
Net-
work
with
a skip
connec-
tion

ReLU

ℓ−1Input

Linear

Figure
4. Schematic
repre-
senta-
tion of
One
Stack

ReLU ReLU

σ̃ σ̃

Input

ReLU

ℓ−1

Figure
5. Schematic rep-
resentation of a
simplified three-
stacked network

ReLU ReLU

σ̃ σ̃

Linear

Input

Linear

ReLU

ℓ−1

Linear

Figure
6. Schematic rep-
resentation of a
three-stacked net-
work which will be
studied in more de-
tail in the following
work
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In a future version of this paper we want to give P -functionals for these modi-
fications of the architecture, e.g. for architectures of the type of Figures 3 and 5,
one would get
(11)

Pj(hj) := min
φ∈T , c∈Rdj ,A∈Rdj−1×dj s.t.

hj=
∫
S
dj−1−1 φs(⟨s,·⟩) ds+c+A(·)

∫
Sdj−1−1

∫
R

∥∥∥φs(r)
′′
∥∥∥
2

g(r)
dr ds+ ∥c∥22 + ∥A∥22

 ,

where ∥A∥2 is the Frobenius norm of A and

T :=

{
φ ∈ C2(R,Rdj )S

dj−1−1

∣∣∣∣∀s ∈ Sd−1 : lim
r→−∞

φs(r) = 0 and lim
r→−∞

∂

∂r
φs(r) = 0.

}
For an architecture of the type of Figures 4 and 6 one gets:
(12)

Pj(hj) := min
φ∈T , c∈Rdj ,A∈Rdj−1×dj s.t.

hj=
∫
S
dj−1−1 φs(⟨s,·⟩) ds+c+A(·)

∫
Sdj−1−1

∫
R

∥∥∥φs(r)
′′
∥∥∥
2

g(r)
dr ds+ ∥c∥22 + ∥A∥Schatten1

 ,

where ∥A∥Schatten1 is the Schatten 1-norm (or Schatten–von-Neumann 1-norm) of
A, i.e., the sum of the absolut values of the singualar values of A.

Appendix B. Visualizing multi-task-learning

In this section we present a simple example, where the true function f has
dout = 7 outputs which are all periodic with the same periodicity and din = 1 input.
The knowledge that the outputs are periodic is not given to the network a priori and
we hope that the network with #stacks = 3, n ≫ N, d1 = d2 = 1, σ̃ = id, ℓ−1 = id
(witht he architecture from Figure 6) is able to find a periodic representation H
by itself, because this would be helpful for all 7 outputs. In the plots we show
NN j

θ(j)
instead of hj , since we have obtained θ from actually training a NN with

gradient descent (that can get stuck in local minima) for a a finite time instead
of calculating the perfect solution. In the following figure, we visualize what each
stack has learned:

ETH Zürich, D-Math, Rämistrasse 101, CH-8092 Zürich, Switzerland
Email address: jakob.heiss@math.ethz.ch, jteichma@math.ethz.ch, hanna.wutte@math.ethz.ch
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(a) First stack: NN 1
θ(1)

in green and its (dis-

tributional) second derivative
∑n1

i=1 v
(1)
i w

(1)
i δ

ξ
(1)
i

(visualized by yellow dots (ξ
(1)
i , v

(1)
i w

(1)
i )), where

ξ
(1)
i =

−b
(1)
i

v
(1)
i

and a smoothed version of it (yellow

line). The smooth second derivative was obtained

from a convolution using a Gaussian kernel. More-

over, the values of the terminal layer’s weights wk

at the respective kink positions ξk are given (red

dots).

(b) Second stack: NN 2
θ(2)

in green and

H := NN 2
θ(2)

◦ NN 1
θ(1)

in red and

the (distributional) second derivative h
′′
2 =∑n2

i=1 v
(2)
i w

(2)
i δ

ξ
(2)
i

(visualized by yellow dots

(ξ
(2)
i , v

(2)
i w

(2)
i )), where ξ

(2)
i =

−b
(2)
i

v
(2)
i

and a

smoothed version of it (yellow line). The smooth

second derivative was obtained from a convolution

using a Gaussian kernel. Moreover, the values of

the terminal layer’s weights wk at the respective

kink positions ξk are given (red dots).
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(a) First compo-
nent of third stack:
(NN 3

θ(3)
)
1

in green

and f̂1 := (NN θ)1 :=

(NN 3
θ(3)

)
1
◦NN 2

θ(2)
◦

NN 1
θ(1)

in red and

the training data
points (xtrain

i , ytrain
i,1 )

for i ∈ {1, . . . , N}
as black dots and the

(distributional) second

derivative NN 3
θ(3)

′′

1
is visualized as in the

previous plots.

(b) Second compo-
nent of third stack:
(NN 3

θ(3)
)
2

in green

and f̂2 := (NN θ)2 :=

(NN 3
θ(3)

)
2
◦NN 2

θ(2)
◦

NN 1
θ(1)

in red and

the training data
points (xtrain

i , ytrain
i,2 )

for i ∈ {1, . . . , N}
as black dots and the

(distributional) second

derivative NN 3
θ(3)

′′

2
is visualized as in the

previous plots.

(c) Third compo-
nent of third stack:
(NN 3

θ(3)
)
3

in green

and f̂3 := (NN θ)3 :=

(NN 3
θ(3)

)
3
◦NN 2

θ(2)
◦

NN 1
θ(1)

in red and

the training data
points (xtrain

i , ytrain
i,3 )

for i ∈ {1, . . . , N}
as black dots and the

(distributional) second

derivative NN 3
θ(3)

′′

3
is visualized as in the

previous plots.

(d) Fourth compo-
nent of third stack:
(NN 3

θ(3)
)
4

in green

and f̂4 := (NN θ)4 :=

(NN 3
θ(3)

)
4
◦NN 2

θ(2)
◦

NN 1
θ(1)

in red and

the training data
points (xtrain

i , ytrain
i,4 )

for i ∈ {1, . . . , N}
as black dots and the

(distributional) second

derivative NN 3
θ(3)

′′

4
is visualized as in the

previous plots.

(e) Fifth compo-
nent of third stack:
(NN 3

θ(3)
)
5

in green

and f̂5 := (NN θ)5 :=

(NN 3
θ(3)

)
5
◦NN 2

θ(2)
◦

NN 1
θ(1)

in red and

the training data
points (xtrain

i , ytrain
i,5 )

for i ∈ {1, . . . , N}
as black dots and the

(distributional) second

derivative NN 3
θ(3)

′′

5
is visualized as in the

previous plots.

(f) Sixth compo-
nent of third stack:
(NN 3

θ(3)
)
6

in green

and f̂6 := (NN θ)6 :=

(NN 3
θ(3)

)
6
◦NN 2

θ(2)
◦

NN 1
θ(1)

in red and

the training data
points (xtrain

i , ytrain
i,6 )

for i ∈ {1, . . . , N}
as black dots and the

(distributional) second

derivative NN 3
θ(3)

′′

6
is visualized as in the

previous plots.

(g) Seventh compo-
nent of third stack:
(NN 3

θ(3)
)
7

in green

and f̂7 := (NN θ)7 :=

(NN 3
θ(3)

)
7
◦NN 2

θ(2)
◦

NN 1
θ(1)

in red and

the training data
points (xtrain

i , ytrain
i,7 )

for i ∈ {1, . . . , N}
as black dots and the

(distributional) second

derivative NN 3
θ(3)

′′

7
is visualized as in the

previous plots.


