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Abstract. A modular computational framework is presented for the identification of friction parameters
in metal machining applications. Numerical simulation of such processes using mesh-based techniques
(usually) necessitates the cumbersome re-meshing procedures and is hard to parallelize. Therefore, the
present framework synthesizes the advantages of mesh-free methods with GPU parallel computing, of-
fering an efficient tool for the optimization procedures in thermo-mechanical modeling of cutting prob-
lems. The proposed approach employs an inverse method to determine the unknown coefficients of a
temperature-dependent friction model in high-speed metal cutting. Good agreement between our numer-
ical results and experimental data is found, providing both quantitative and qualitative assessments.

1 INTRODUCTION

Today’s manufacturing techniques demand precise and efficient modeling of the metal cutting process.
One of the most challenging tasks in the development of numerical cutting models is the formulation of
contact loads, where friction remains the most dominant phenomenon. In metal cutting operations, the
simplest approach for modeling of friction is to consider Coulomb’s law as

| f fric|= µ| f cont| (1)

with a constant coefficient µ over the whole chip-tool interface (see, the secondary shear zone of Fig. 1
shown in orange). Despite being a good approximation in many problems, the friction model of form
(1) with a constant µ at severe contact conditions seems far from realistic [1]. The presence of such
conditions in metal cutting is inescapable.

Friction models more sophisticated than the linear Coulomb law (1) exist in the literature, e.g., [3].
Another extension of Coulomb’s law is a temperature-dependent model by Moufki et al. [4]. This is a
particularly interesting one since the friction conditions at the tool-chip interface are greatly influenced
by temperature. The present work considers a temperature-dependent coefficient µ(T ) of friction similar
to the thermal softening of the material constitutive model and follows the same approach offered by [4].
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Figure 1: Sketch of a cutting geometry and the main shear zones.

That is,

| f fric|= µ0

[
1−
(

T −Tr

Tm−Tr

)q]
︸ ︷︷ ︸

µ(T )

| f cont| (2)

where T is the contact temperature, Tr the reference or room temperature, Tm the melting point, and
µ0 and q are the unknown constants. Although the form expressed in (2) is clearly an enhancement to
(1), it should be mentioned that the complexity and diversity of contact conditions in cutting processes
are such that a single friction model cannot be applied to all material and cutting conditions. Historical
development of friction models in metal machining is reviewed by Childs [5], where he also investigates
the nature of the friction contact between chip and tool.

As mentioned, the coefficients µ0 and q in (2) are unknown and need to be determined for the desired
system. Previous studies have shown that inverse fitting methods combined with finite element analysis
(FEA) can be utilized for this purpose. The efforts by [6] and [7] are relevant to this type of method-
ology. On the other hand, however, mesh-free particle methods feature two characteristics which are
advantageous for parameter identification:

• These methods are highly efficient for modeling of metal cutting since they are intrinsically capable
of handling large deformations.

• Compared with FEA, particle-based simulations are easier to parallelize.

Therefore, a numerical framework based on the smoothed particle hydrodynamics (SPH) method [8, 9]
is developed in this work to identify a new friction model in meshfree cutting simulations. SPH has been
widely used in many other fields of applications, e.g., [10], [11] and [12].

A review of the technical literature reveals that SPH is rapidly gaining recognition as an adept tool in
the numerical modeling of manufacturing processes. Some recent publications include the use of SPH
in high-speed cutting simulations [13], the thermal simulation of a simplified laser drilling problem [14],
and a multi-resolution SPH framework for orthogonal chipping by [15]. More interestingly, the concept
of parallel programming on the Graphics Processing Unit (GPU) has been introduced to the current SPH
cutting models. For example, a GPU-accelerated code developed by [16] and 3D single grain cutting
simulations by [16]. One area where GPU-accelerated codes can be of particular interest and efficiency
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is the parameter identification problems with inverse fitting methods. Except for a very recent effort by
Afrasiabi et al. [2], the adaptation of SPH cutting models to this field of application seems unexplored.

In this work, SPH is adapted to accurately resolve thermal and mechanical fields in a metal cutting
process which involves the large deformation, separation, heating, and chip formation of Ti6Al4V work
material. The present framework synthesizes previously established SPH schemes from disparate fields
for spatial discretizations while supplementing them with a GPU implementation for parallel computing.
The speedup gained by this GPU parallelization enables very short evaluation cycles required for iterative
simulations and inverse fitting. As a result, unknown parameters of a new friction model expressed in
(2) are determined and an enhancement to the current SPH cutting models is proposed. Validation of the
methodology is undertaken by presenting a comparison of the predicted forces to a cutting experiment.

2 GOVERNING EQUATIONS

In the previous section, the geometry of a metal cutting process was illustrated in Fig. 1. To describe
the motion of a continuum in an updated Lagrangian frame, the field equations need to be evolved
simultaneously. The mechanical and thermal equations to be solved and coupled are outlined.

• Mechanical

dρ

dt
=−ρ∇ · v (3)

dv
dt

=
1
ρ

∇ ·σ+
1
m

b (4)

dr
dt

= v (5)

where ρ is the density, m the mass, v the velocity, σ the Cauchy stress tensor, b the body forces,
and r the position vector.

• Thermal

dT
dt

=
k

ρcp
∇

2T +
Q

ρcp
(6)

in which k is the heat conductivity assuming an isotropic heat conduction, cp the specific isobaric
heat capacity, and the heat source Q for the metal cutting application is considered as

Q = χ

(
σy ˙̄εpl

)
︸ ︷︷ ︸

plastic heat

+η

(
ρ | f fric| · |vrel|

m

)
︸ ︷︷ ︸

frictional heat

(7)

where χ and η are dimensionless parameters between 0 and 1, specifying how much of the plastic
and frictional work is converted to heat. In (7), the term σy represents the yield stress and ˙̄εpl

indicates the plastic strain rate, while the formulation of | f fric| was given in (2). The boundary
conditions of (6) are imposed by considering a constant room temperature on fixed surfaces and
perfect isolation (i.e., adiabatic heating) elsewhere.

3



M. Afrasiabi et al.

In order to close the thermal-mechanical equations listed from (3) to (6), the strength values of the
deforming material (i.e., Ti6Al4V here) still need to be expressed and evolved. By definition, the in-
stantaneous value of strength at which a metallic material starts to plastically deform, i.e., flowing of
the metal, is referred to as flow stress. Generally speaking, the flow stress σy is mainly dependent upon
strain, strain rate, and temperature. A common choice is the Johnson-Cook law [27] that accounts for
these three effects and is chosen to calculate the flow stress of Ti6Al4V in this work. It reads

σ
JC
y =

[
A+B(ε̄pl)n

][
1+C ln

(
˙̄εpl

˙̄εpl
0

)][
1−

(
T −Tr

Tm−Tr

)m]
(8)

where ε̄pl is the equivalent plastic strain, and the material parameters A = 862 MPa, B = 331 MPa,
C = 0.01, m = 0.8, and n = 0.35 are used for the simulations of this paper. These values have been used
by numerous researchers in the field for a similar application, e.g., [2, 16, 27].

3 COMPUTATIONAL FRAMEWORK

To enable inverse identification of friction parameters, a batch file of the unknown constants in (2) is
first created. This file contains different values of the µ0 –q sets and is given as input to the software.
When the simulation is complete, an optimization algorithm is performed at the post-processing stage
to determine the optimum combination of µ0 –q for minimum error. Since this procedure needs to be
carried out iteratively, it is crucial to minimize the runtime of the solver as much as possible. For the
present cutting problems, we propose a robust computational framework that can tackle this issue on two
fronts. Firstly, SPH is used for spatial discretizations as a truly mesh-free method with great potential
for parallelization. Secondly, the computation cycles are accelerated by implementing the code to run
entirely on a GPU. The following sub-sections discuss these two remarks considerations in more detail.

3.1 SPH Formalism & Discrete Equations

SPH is an interpolation method. It defines the physical field at discrete points called particles. These
Lagrangian particles move with the material velocity and carry the system variables such as mass, density,
pressure, stress tensor, and temperature. Using SPH, a field function f at point/particle i is calculated by
a weighted interpolation of all points/particles j inside the support domain of i as

〈 fi〉 ≈∑
j

f j Wi j Vj (9)

with Vj = m j/ρ j and Wi j =Wh(ri− r j,h) being a smooth kernel function, in which h denotes the radius
of its support domain also known as the smoothing length of W . A list of common choices for W can
be found in [18], from which the cubic B-spline is chosen for this paper. To solve the partial differen-
tial equations (PDEs) given in (3)–(6), the first and second derivatives of the physical fields also need
to be discretized. According to [20, 21], the subtractive and additive forms of SPH are employed to
approximate the gradient of f as

〈∇ fi〉 ≈∑
j
( f j− fi)∇Wi j Vj (10)

〈∇ fi〉 ≈ ρi ∑
j

(
fi

ρ2
i
+

f j

ρ2
j

)
∇Wi j m j (11)
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As for the Laplace operator, an adaptation of the Brookshaw scheme [22] is considered. It benefits from
a simple correction to the original SPH form and is expressed by

〈∇2 fi〉 ≈∑
j

2
[(

fi− f j

|ri j|

)
ei j ·∇Wi j

]
Vj (12)

where ei j = ri j/|ri j| is a unit vector in the inter-particle direction. A broad array of other meshfree
schemes for discretizing the Laplace operator can be found in [23]. Using (12) guarantees the conserva-
tion of energy to the precision of the time-stepping algorithm, which is a key advantage of this scheme.
Now, the governing PDEs can be discretized in space using the meshfree schemes presented from (10)
to (12). The SPH approximations of (3), (4), and (6) are summarized in the following.〈dρi

dt

〉
≈−ρi ∑

j
(v j− vi) ·∇Wi j Vj (13)

〈dvi

dt

〉
≈∑

j

σ
i

ρ2
i
+

σ
j

ρ2
j
+Πi jI +Λ

i j︸ ︷︷ ︸
stabilizers

 ·∇Wi j m j +
bi

mi
(14)

〈dTi

dt

〉
≈ k

ρcp
∑

j
2
[(

Ti−Tj

|ri j|

)
ei j ·∇Wi j

]
Vj +

Qi

ρcp
(15)

where Π and Λ are the artificial viscosity term [24] and the artificial stress tensor [25] with the parameters
taken similarly to [16, 2]. After solving these equations for each particle, it is left to evolve the variables
and update the physical system. To do so, we move the particles with a smoothed velocity instead of the
actual material velocity. That is, a modification term is added to the material velocity leading to〈dri

dt

〉
≈ vi +β∑

j

m j

ρi +ρ j
(v j− vi)Wi j︸ ︷︷ ︸

X-SPH modification

(16)

where β is a tuning parameter taken as 0.3 according to [16, 2]. This smoothing scheme was suggested
by Monaghan [26] and is referred to as the X-SPH correction. In the last step, the boundary conditions
are imposed and the ordinary differential equations (ODEs) from (13) to (16) are discretized in time
using an explicit second-order leapfrog stepping. The time step ∆t follows the Courant–Friedrichs–Lewy
criterion. Regarding the implementation procedure of this time integration scheme for SPH models,
please consider [26] and [19].

3.2 Parallel Computing & GPU Implementation

High-performance and parallel computing techniques are rapidly gaining interest in academia and in-
dustry because they offer the possibility to solve large problems in science and engineering. As pointed
out at the beginning of this section, the second consideration for boosting the computational efficiency
in this work is the speedup gained by GPU programming. Nevertheless, the literature review in Section
1 implies that GPU-accelerated SPH codes in manufacturing simulations are currently in their nuclei
stage. The inverse identification problem in this work is ideally suited to GPU-accelerated SPH codes
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due to the abundance of computational cores on a single GPU. In what follows, we briefly describe some
important remarks about the present GPU implementation.

Read
input data

Construct 
neighbor 

list

Compute particle interaction Update the system

• Kernel approximation

• Spatial discretization

• Solve PDEs

• Move particles 
(time discretization)

• Update BCs
(mech. & therm.)

CPU GPU
memory 
transfer

GPUCPU

Write
output data

CPU

GPU CPU
memory 
transfer

Figure 2: Flow diagram of the SPH code executed at each time step on a GPU.

Principally speaking, the GPU implementation in this work follows the procedure elaborated upon by
[29]. For this task, we utilize the CUDA platform created by NVIDIAr in 2007 [30]. To illustrate the
flow diagram of the SPH code implemented on a GPU, the main blocks executed at each time step are
shown in Fig. 2. As can be seen in this diagram, the computer program in this approach is run on the
GPU completely, using the CPU for I/O only. Parts of the program may, therefore, be slower than the
CPU but at the benefit of not having to copy data. Meanwhile, the organization of neighbor particles –
regarded as one of the most computationally expensive tasks in SPH codes – is handled by implementing
a spatial hashing algorithm with the cell-list data structure.

Table 1: Runtime in seconds taken from [2], recorded for a 2D cutting test using the present SPH code. The serial
CPU calculations are taken on Intelr CoreTM i5-4690 and the GPU code runs on Teslar P100. The floating-point
format in both calculations is double-precision.

Np CPU [sec] GPU [sec] Speedup

1,550 52.8 41.4 1.3
6,100 534.9 66.0 8.1
24,200 5639.7 141.8 39.8
96,400 49359.5 454.4 108.6

Discussing the runtime of the solver is not within the objectives of this article. Nonetheless, it is still
beneficial to throw some light on the speedup provided by GPU computing. The timing data in Table 1
are taken from [2], related to an orthogonal cutting simulation with SPH. This test case considers a 0.1
mm cut of a Ti6Al4V workpiece with a speed of 500 m/min. The CPU and GPU execution times of this
model are measured, where the workload in both cases is the same. One realizes from the runtime reports
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associated with Np = 96,400 that the GPU code runs almost 100x faster than the serial CPU program.
Note that the symbol Np indicates the total number of SPH particles, which is also equal to the number
of GPU threads here. Before closing this section, the GPU speedups are plotted versus the number of
threads in Fig. 3 to gain more insights.

2 4 6 8
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80
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ee

d
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Figure 3: Plot of speedup for a 2D metal cutting test using the present GPU-accelerated code.

4 RESULTS

In this section, a cutting experiment is simulated with SPH particles to determine the unknown coeffi-
cients of (2) through an optimization process. This metal cutting experiment is conducted at the speed
of vc = 318.5 m/min on a workpiece made of Ti6Al4V alloy. A full list of parameters used in the exper-
iment and simulation is provided in Table 2. The 5 Johnson-Cook constants are excluded from this table
since they were already given in Section 2. The height of the workpiece (i.e., ly = 0.3 mm) is discretized
by 41 particles with regular spacing. As for the software, an in-house code iwf-mfree-gpu-2d origi-
nally published and made public by [16] is utilized. This open-source SPH solver can be downloaded
from https://github.com/mroethli/mfree_iwf-ul_cut_gpu. The runtime data provided in Table
1 were also obtained using this software. Regarding the hardware, a Teslar P100 by Nvidia Corporation
hosts all GPU computations.
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Table 2: Experimental and numerical parameters for the cutting test.

Body Property Symbol Unit Value

Tool

Clearance angle α deg 7.0
Rake angle γ deg 0.0
Cutting edge radius rc mm 0.0028
Speed vc m min−1 318.5
Density ρ kg m−3 15,250
Heat conductivity k W m−1 K−1 88
Specific heat capacity cp J kg−1 K−1 292

Workpiece

Geometry lx× ly mm2 2.0×0.3
Depth of cut d mm 0.1
Length of cut lc mm 1.0
Density ρ kg m−3 4,430
Young’s modulus E GPa 110.0
Poisson ratio ν – 0.35
Heat conductivity k W m−1 K−1 7.3
Specific heat capacity cp J kg−1 K−1 553.0
Reference temperature Tr K 300
Melting temperature Tm K 1,878
Coeff. of plastic work into heat χ – 0.9
Coeff. of frictional work into heat η – 1.0

A batch file including 25 variations of µ0 and q is first created, where the initial values of these two
unknowns are taken from µ0 = {0.1,0.43,0.77,1.1,1.43} and q = {0.5,2.0,3.5,5.0,6.5}. Now the SPH
cutting model is simulated 25 times using 25 different initial values for µ0 and q. In the next step, we
carry out a simple optimization process on predicted forces by calculating the relative error

δ♦=
|♦exp−♦sim|
♦exp (17)

for both cutting (i.e., ♦= Fc) and thrust (i.e., ♦= Ft) forces. The experimentally measured data for this
cutting test read Fc = 157.5 N/mm and Ft = 104.2 N/mm at the stationary zone. To minimize the errors
of Fc and Ft simultaneously, we propose to consider the term δF̂ =

√
(δFc)2 +(δFt)2 as the optimization

measure. The batch simulation results provide 25 sample points to reconstruct the δF̂ error function.
These values are then interpolated into the entire domain of parameters to create the original sampling of
the function. We chose a cubic spline interpolation in MATLAB using 50 additional query points in each
dimension. The choice of a cubic spline was made since a linear interpolation cannot return a global
minimum at off-sample points. This is an important issue as the µ0–q set resulting in the minimum error
might (and usually does) occur where no simulation data is available. Fig. 4 sums up the results of
this investigation by plotting the δF̂ error surface. The red point in this figure highlights the coordinates
µ0 = 0.81 and q = 5.03 at which the minimum error occurs, determining the unknown constants of µ(T )
in (2). Consequently, the friction coefficient is enhanced with a thermal dependency and obtained as

µ(T ) = 0.81

[
1−
(

T −Tr

Tm−Tr

)5.03
]

(18)
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This expression is plugged in (2) for calculating the friction force and yields δFc = 14% and δFt = 1.5%
for the optimized simulation. Forces computed by SPH reach the steady-state after almost 30% of the
simulation and compare very well with the experimental measurements. These conclusions are drawn
from the force evolution and bar-chart diagrams plotted in Fig. 5.
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Figure 4: Plot of the δF̂ error surface using 25 SPH simulations and a cubic spline interpolation. The minimum
error is found by choosing µ0 = 0.81 and q = 5.03 at the red point coordinates.
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Figure 5: Measured and simulated forces in orthogonal cutting of Ti6Al4V with vc = 318.5 m/min and rc = 28µm.

In the last step, the findings of inverse parameter identification are inserted into a high-resolution SPH
model using a total of approximately 152k particles. The plastic strain and temperature distributions
are displayed in Figs. 6 and 7. These pictures permit several interesting observations. Firstly, it is
understood that discretization has a significant impact on the SPH cutting models. Comparing the left
and right frames in Fig. 6 reveals that a high-resolution simulation is indeed necessary to capture the
shear bands located at the chip. Secondly, the temperature distribution in Fig. 7 demonstrates that the
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11k particles 152k particles

Figure 6: Distribution of plastic strain in the present SPH cutting simulations on the GPU.

11k particles 152k particles

Figure 7: Distribution of temperature in the present SPH cutting simulations on the GPU.

frictional contact zone between the tool and workpiece is the hottest area during the machining processes.
This shows why a temperature-dependent friction model is crucial to the thermomechanical analysis of
this problem. Thirdly, it can be seen that as time passes the generated heat diffuses from the hot shear
bands into the cold nearby regions in the chip.

5 CONCLUSIONS

An improvement to the SPH cutting simulations has been presented. The main contributions of this work
can be summarized:

- Modeling of friction in these numerical frameworks is enhanced by proposing a temperature-
dependent coefficient with two unknown constants.

- These two parameters are determined through an optimization procedure conducted on predicted
fores from 25 SPH simulations.

- To make the runtime manageable, we accelerate the computations by implementing the code on a
GPU. This allows one to solve the thermo-mechanical equations more efficiently.

It was shown in a preliminary study that a 100x speedup can be achieved by the present GPU implemen-
tation. The proposed simulation framework is thus suggested to be utilized for parameter identification
purposes in metal cutting. Incorporating the newly identified friction model into the current SPH solver,
one obtains accurate force prediction results compared to the experimental data.
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