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Abstract. Entangled two-quantum states may be a sensitive probe for a loss of quantum coherence due to
apparent violations of quantum mechanics, e.g. as caused by gravitation. We show that there exists a modest
experiment sensitive to any one of the nine phenomenological parameters which describe decoherence in
the neutral kaon system.

Gravitation might influence the coherence of wave func-
tions and thereby create transitions from pure states to
mixed states [1]. This could appear as a violation of quan-
tum mechanics (QMV). Suitably entangled neutral kaons
can serve to detect decoherence. The kaon is a two-state
system which is described by a 2×2 density matrix. Its time
development has, in general, 16 real parameters. Quantum
mechanics (QM) requires nine of them to vanish [2].

This work describes the principle of an exploratory
measurement, using entangled neutral kaons, that has a
selective sensitivity to all of these nine parameters.

It has been shown before that there exists a set of
experiments to determine all of them [3] at the level of ex-
pectations of some models of quantum gravity [2, 4]. The
measurement discussed here is experimentally relatively
modest. It exploits the existence of non-linear inequali-
ties that generally guarantee positive probabilities, first
applied to the decoherent kaon system in [5].

The general subject of decoherence in the neutral kaon
system has been treated before with restricted decoherence
parameter sets [2, 4–10]. As our approach and also the
approximation method differ from the ones in the neutral
kaon literature, we give some general introduction.

The quantum-mechanical time evolution of a neutral K
meson is given by the four (complex) elements U ij(t) (i, j =
1, 2), of the (non-singular) matrix U(t), with respect to
the basis (KK̄), of the form Ψ(t) = U(t)Ψ(0). Ψ has two
components, the amplitude for the meson to be a kaon,
and the amplitude to be an antikaon, and it represents
a pure state. The density matrix ρ(t), which, in general,
describes a mixed state, evolves like ΨΨ+, i.e. as

ρ(t) = U(t)ρ(0)U+(t) , t ≥ 0. (1)

The form of this equation grants the conservation of
(i) the rank, and
(ii) the positivity of ρ(t).

Property (i) makes a pure state (which is characterized
by rank (ρ(0)) = 1) to stay pure, and (ii) avoids the oc-
currence of negative values for probabilities. For the traces
we require
(iii) tr(ρ(t > 0)) ≤ tr(ρ(0)) ≤ 1 to avoid values for proba-
bilities to exceed one. Due to the decay of the K meson,
U(t) is not unitary.

In order to derive a parameterization of ρ ≡ ρ(t) which
will enable one to separate the effects of QM and QMV,
we represent 2 × 2 matrices as linear combinations of the
Pauli matrices σµ, µ = 0, . . . , 3 (with σ0 = unit matrix)
with real coefficients Rµ: ρ = Rµσµ.

We note that the determinant is |ρ| = RµRµ ≡ R0R0−
R1R1−R2R2−R3R3. Denoting ρ0 ≡ ρ(0) and ρ0 = Rµ

0σµ,
we see that (1) induces RµRµ = ‖U‖2Rµ

0R0µ, i.e. a multi-
ple of a Lorentz transformation [3] R = Λ(t)R0 between the
four-vectors R ≡ (Rµ) and R0 ≡ (Rµ

0 ). (We note in passing
that we make use of the homomorphism of the unimodular
group SL(2, C) onto the proper Lorentz group.) ‖U‖ is the
absolute value of det(U). As pure states are characterized
by RµRµ = 0 (R light-like), the Lorentz transformation
lets pure states stay pure.

Invariance with respect to time translation R(t + h) =
Λ(h)R(t) requires Λ(t)=eTt, where T =(Tµν)=T 0014×4+
L , and where L is an element of the Lie algebra of the
Lorentz transformations, and thus satisfies

gLg = −LT , (2)

g is a 4 × 4 matrix with g00 = −g11 = −g22 = −g33 =
1, gαβ = 0 for α �= β; ()T is the transpose of (). We will
explicitly use

L =




0 N1 N2 N3

N1 0 −I3 I2

N2 I3 0 −I1

N3 −I2 I1 0


 ≈




0 −γ 0 0
−γ 0 0 0
0 0 0 ω

0 0 −ω 0


 . (3)
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The last term in (3) anticipates the empirical result
that, for neutral kaons, the values of the parameters N1

and I1 are dominating those of the other ones.
(As a side remark we mention that short calculations

(not presented here) reveal the physical significance of the
parameters T 00, N i, and Ii as follows: Denoting γ = −N1

and ω = −I1, ω is the angular frequency of the strangeness
oscillation between K and K̄, and T 00 ± γ are the decay
rates of the CP eigenstates (K ± K̄)/21/2. CP violation
is expressed by I2 and N2.)

A violation of the quantum-mechanical time develop-
ment (QMV) is obtained by the use of the most general
4 × 4 matrix for T :

T = T 0014×4 + L + X, (4)

with

X =




0 S1 S2 S3

−S1 −J1 D3 D2

−S2 D3 −J2 D1

−S3 D2 D1 −J3




≡




0 x4 x5 x6

−x4 −x1 −x7 −x8

−x5 −x7 −x2 −x9

−x6 −x8 −x9 −x3


 , (5)

which satisfies
gXg = +XT. (6)

When X �= (0), T of (4) is no more the generator of
a transformation which leaves RµRµ = 0 invariant, and
thus pure states become mixed ones. It is the different
signs in (2) and (6) that will prove to be crucial for the
experimental distinction of effects of QMV from those of
QM.

For the probability of a single neutral kaon with the
density matrix ρ0 = Rµ

0σµ at time t = 0 to become a
neutral kaon with the density matrix ρf = Rµ

f σµ at time
t, we obtain

W (t) = tr(ρfρ(t)) = 2Rµ
f

(
eTt

)µν
Rν

0 ≡ 2RT
f

(
eTt

)
R0.

(7)
W (t) in (7) is understood as the probability that a measur-
ing device whose sensitivity is characterized by the matrix
ρf , would respond to a kaon presented in the state ρ(t).
The last term in (7) expresses the one before in 4×4-matrix

notation. RT
f =

(
Rµ

f

)T
and R0 = (Rν

0) are 4-component
arrays.

A pair of K mesons in a general (mixed) state is de-
scribed by a positive semidefinite 4 × 4 density matrix
ρ(t1, t2) with respect to the basis

(
KK, KK̄, K̄K, K̄K̄

)
,

and it is assumed to evolve like ρ(t1) ⊗ ρ(t2) [11]. (With
the two times t1, t2 we anticipate that later measurements
on the individual particles will generally be performed at
different times t1, t2.) If we develop the 4 × 4 density ma-
trices in terms of the products (σµ ⊗ σν) with coefficients
Rµν ≡ Rµν(t1, t2), Rµν

0 ≡ Rµν(0, 0), as follows:

ρ(t1, t2) = Rµν (σµ ⊗ σν) , (8)

we obtain

Rµν =
(
eTt1

)µα
Rαβ

0

(
eTt2

)νβ
. (9)

The probability to detect the state with the density matrix
ρf = Rµν

f (σµ ⊗ σν) is

W (t1, t2) = tr(ρfρ(t1, t2)) = 4Rµν
f Rµν

= 4Rµν
f

(
eTt1

)µα
Rαβ

0

(
eTt2

)νβ

= 4Rµν
f

(
e(L+X)t1

)µα

Rαβ
0

(
g e(−L+X)t2g

)βν

× exp
(
T 00(t1 + t2)

)

≡ 4Tr
(
RT

f e(L+X)t1R0 g e(−L+X)t2g
)

× exp
(
T 00(t1 + t2)

)
. (10)

The last equation in (10) expresses the one before by 4×4
matrices. The elements of R0 and Rf , e.g., are respectively,
Rαβ

0 and Rνµ
f . Tr acts on their superscripts.

The difference of the relative signs of L and X in the
two exponentials in (10) is the empirical consequence of
the different signs in (2) and (6).

Equations (9) and (10) do not any more grant the posi-
tivity of ρ(t1 , t2) and of W (t1 , t2) unless the generalization
from QM to QMV, i.e. the introduction of decoherence,
is realized in a very specific (and, as will be seen, in an
astonishingly simple) way in (1), which in turn leads to
restrictions for the values of the parameters X.

Such restrictions are not existent within QM.
We may write (1) as ρ(t) = Φ(ρ(0)), t ≥ 0, where

Φ(•) is the linear map which describes the single parti-
cle evolution. It has been emphasized that the positiv-
ity of this map does not grant the positivity of the two-
particle quantities ρ(t1, t2) and W (t1, t2), but that the
complete positivity of Φ(•) is sufficient [12]. Based on a
specific example we can see that complete positivity is
also a necessary condition. Consider the neutral kaon pair
state Ψ+ = (KK + K̄K̄)/

√
2, which is produced in pp̄

annihilation, and which is, at time t = 0, described by

ρ(0, 0) = 1/2Eik ⊗ Eik = 1/2




1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


 ,

where the matrices Eik (i, k = 1, 2), have elements
(Eik)mn = δimδkn. In order to calculate probabilities re-
lated to measurements of particle 1 at time t = 0 and of
particle 2 at time t2, we need

ρ(0, t2) = 1/2Eik ⊗ Φ(Eik) = 1/2




Φ

(
1 0
0 0

)
Φ

(
0 1
0 0

)

Φ

(
0 0
1 0

)
Φ

(
0 0
0 1

)


 .
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As this state does occur in the laboratory, ρ(0, t2) has to
be a positive matrix.

According to [13], Theorem 2, the positivity of Eik ⊗
Φ(Eik) is just the condition, necessary and sufficient, for
the linear map Φ(•) to be completely positive, i.e. to be
of the form Φ(•) = Ui • U+

i , with four 2 × 2 matrices Ui,
suitably normalized. Equation (1), generalized to QMV,
becomes

ρ(t) = Φ(ρ(0)) = Ui(t)ρ(0)U+
i (t) . (11)

Developing Ui(t) = Uµ
i σµ (Uµ

i complex), we now find

Tµν = aαβtr
(
σµσασνσβ

)
/2 (12)

with aαβ = d/dt(Uα
i Uβ∗

i )t=0 = aβα∗. With the initial con-
dition Uα

i (0)Uβ∗
i (0) = δα0δβ0, α, β = 0 , . . . , 3, the

submatrix (amn), m, n = 1, . . . , 3 is seen to be positive
(semidefinite). We note the following relations: N i =
2 Re a0i and Ii = 2 Im a0i, J i = 2(ajj + akk) (no sum
jj, kk), and Di = 2 Re ajk, Si = 2 Im ajk, ijk is an even
permutation of 123. Besides the requirement det((amn)) ≥
0, which constitutes a cubic inequality for the J i, Di, Si,
(13) to (15) grant the positivity of (amn):

(
Di

)2
+

(
Si

)2 ≤ (
(J i)2 − (Jj − Jk)2

)
/4 , (13)

J i ≥ 0 ∀i = 1, . . . , 3 , (14)

J i ≤ Jj + Jk (15)

(ijk is a permutation of 123). A special case of (13) (which
reminds one of the classical moments of inertia) has been
given before [5, 14].

About the matrix X we note the following. If any one
of the three diagonal elements, J i, vanishes, then the other
two ones are equal, and all off-diagonal elements, Di and
Si, vanish, and if any two of the three diagonal elements,
J i, vanish, then all elements of X vanish.

For ρ(t) to satisfy also tr(ρ(t > 0)) ≤ tr(ρ(0)) ≤ 1
demands the additional conditions

T 00 ≤ 0, (16)
(
T 00)2 ≥ (

N1 + S1)2
+

(
N2 + S2)2

+
(
N3 + S3)2

. (17)

To summarize, (3), (4), (5), (7) and (10) with the condi-
tions (13)–(17), and with det((amn)) ≥ 0, describe a time
evolution where ρ(t) has the properties (ii) and (iii) but
not necessarily (i). ρ(t) may thus be “quantum-mechanics
violating” as it allows for transitions from pure states to
mixed states, depending on the nine parameters J i, Di,
and Si in the matrix X. The six parameters N i and Ii in
the generating Lorentz matrix L do not violate quantum
mechanics. They preserve the purity of states. The Ii also
preserve tr(ρ(t)), the N i do not.

Equation (17) is an analogue to the well-known rela-
tion (derived in [15]) which limits the size of symmetry
violations in terms of the measured eigenvalues of (Tµν).
(We mention the crude estimates: T 00 ≈ −(γS + γL)/2
and N1 ≈ (γL − γS)/2 . Since γS 
 γL, empirically, (17)

leaves only little room for the values of the other symmetry-
violating parameters, N i, Si.)

To further separate QMV and QM terms, we apply [16,
17]

e(L+X)t = eLteD(t,−L,X) = eD(t,L,X)eLt, (18)

with

D(t, L, X) ≡
t∫

0

dτeLτXe−Lτ = −D(−t, −L, X), (19)

to (10):

W (t1, t2)

= 4Tr
(
eLt1R0 g e−Lt2eD(t2,L,X)g RT

f eD(t1,L,X)
)

× exp
(
T 00(t1 + t2)

)
. (20)

Equation (20) summarizes the measurements of the 16
parameters of the KK̄ pair. It is the general expression
for the frequency of occurrence for the two particles to be
detected in the final state ρ(t1, t2), which have originally
been prepared in the state ρ(0, 0).

For practical evaluations of W (t1 , t2) we use the ap-
proximation for L indicated in (3), and we obtain

eLt =
(
σ0 cosh(γt) − σ1 sinh(γt) (0)

(0) σ0 cos(ωt) + iσ2 sin(ωt)

)
.

Since, apart from T 00, γ, and ω, all the other parameters
are small, we thus include them in X. The values of the
elements of eD(t,L,X), for t

>∼ |1/T 00|, will then always be
small, and we may set

eD ≈ 1 + D + . . . + (1/n!)Dn. (21)

As D is a linear function of the small parameters xk,D=
xkDk, with Dk ≡(∂/∂xk)D(t, L, X) = D(t, L, Xk), (21)
includes all terms including the nth order in xk. We have
set X = xkXk, where Xk may be read off from (5).

Explicit general expressions for W (t1 , t2) are long, but
may now be readily calculated to any order. A selection
has been given before [8,18] for restricted parameter sets.

For the measurement to be discussed the following con-
siderations are of relevance.

Pairs of kaons in the exact (pure, entangled) “strange-
ness-singlet” state Ψ− = (KK̄ − K̄K)/

√
2 are copiously

available in the laboratory. Their density matrix is [11]
ρ(0, 0) = (σµ ⊗ σµ)/4, and thus Rαβ

0 = gαβ/4. As this is
a Lorentz-invariant tensor, its quantum-mechanical time
development (X = 0) for equal times t1 = t2 = t, yields
Rµν = c gµν , where c is a numerical factor. Apart from the
decay this state is thus invariant with time. (An analogon
to this property is the fact that a pair of particles of spin
1/2, in the singlet state, does not precess in an external
magnetic field [22].)

The two particles shall be observed by spatially sepa-
rated and independent devices whose sensitivities are de-
scribed by matrices ρ1 and ρ2. The measurement is thus
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represented by ρf = ρ1 ⊗ ρ2 = Rµ
1Rν

2(σµ ⊗ σν), with
Rµν

f = Rµ
1Rν

2 , or in matrix notation

Rf = R1R
T
2 (independent measurements). (22)

Insertion into (20) yields

W1(t1, t2)

= 4RT
1 eD(t1,L,X)eLt1R0 g e−Lt2eD(t2,L,X)g R2

× exp
(
T 00(t1 + t2)

)
. (23)

With the initial state Ψ−, and with R0 = g/4, (23) be-
comes

W2(t1, t2)

= RT
1 eD(t1,L,X)eL(t1−t2)eD(t2,L,X)gR2

× exp
(
T 00(t1 + t2)

)
. (24)

The probability to observe identical pure final states (ρ1 =
ρ2 = ρ, R1 = R2 = R = (Rµ)) at the same time (t1 = t2 =
t), of particles having originated from Ψ− is

W3(t, t) = RTe2D(t,L,X) g R exp
(
2T 00t

)
, (25)

or, up to first order,

W4 ≈ 2xkRTD(t, L, Xk) g R exp
(
2T 00t

)
. (26)

Equation (26) together with the constraints (13)–(15), of-
fer the possibility for a simplified exploratory experiment
to find out whether any one of the xk differs from zero.

The experiment consists of two measurements of the
type W4: the probabilities for the state Ψ− to develop into
the pair KK or to develop into the pair K̄K̄, designated
as W (KK) or W

(
K̄K̄

)
, respectively. Inserting RKK =

(1/2)(1 0 0 1) and RK̄K̄ = (1/2)(1 0 0 − 1) into (26) we
obtain linear combinations of the µν-elements of Dk,Dµν

k .
Explicitly, we find (up to first order in xk)

W
(
KK or K̄K̄

)
= xk exp

(
2T 00t

)
(27)

× (
D00

k ∓ D03
k ± D30

k − D33
k

)
and note the simplicity of the combination

W+ ≡ W (KK) + W
(
K̄K̄

)
= 2xk exp

(
2T 00t

) (
D00

k − D33
k

) ≡ xkfk(t). (28)

We now show, by explicit calculation, that any combination
of non-vanishing parameters x1 to x9 , which satisfy (13)–
(15), creates a signal in the observable W+.

In

W+ = xkfk(t) = x1f1(t) + x2f2(t) + x3f3(t)

+x4f4(t) + x9f9(t),

the functions

f1(t) = 1/4 exp
(
2T 00t

)
(−2γt + sinh(2γt))/γ,

f2(t) = 1/4 exp
(
2T 00t

)
(2ωt − sin(2ωt))/ω,

f3(t) = 1/4 exp
(
2T 00t

)
(2ωt + sin(2ωt))/ω,

f4(t) = exp
(
2T 00t

)
(sinh(γt))2/γ

and

f9(t) = − exp
(
2T 00t

)
(sin(ωt))2/ω

are seen to be independent from each other. A measure-
ment over a suitable interval of t can thus only show a
vanishing W+, if x1 to x4 and x9 vanish. Then, due to
(13)–(15), all the values of x1 to x9 have to vanish.

The experiment consists in the production of entan-
gled KK̄ pairs in the strangeness-singlet state Ψ−, readily
available in φ decays [19] or in antiproton annihilations in
hydrogen under suitable conditions [20], and in the sub-
sequent observation of their semileptonic decays, which,
due to the validity of the ∆S = ∆Q rule [21], indicate
the kaons’ strangenesses just before they decayed. Useful
events are those with similar decay times. By a proper
choice of the events, W+ can then be evaluated.

In summary we have described the principle of a mea-
surement of a quantity, W+, sensitive to decoherence pro-
cesses in the time evolution of the two-particle system of
separated, entangled K and K̄, in vacuum. Such processes
are QM-forbidden, CPT violating, but allowed in certain
models of quantum gravity. From our phenomenological
viewpoint there exist nine experimentally distinguishable
manifestations of transitions from pure states to mixed
states. If W+ is found not to vanish, then two of these, at
least, have to arise in reality.

Acknowledgements. The author is indebted to M. Fidecaro and
R. Floreanini for enlightening comments.
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