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Abstract

Within the past decade, neural networks have become the state-of-
the-art algorithms for many computer vision applications, utilizing
machine learning approaches to model the underlying complex data
analysis tasks. The proliferation of miniaturized and smart sensing
devices, exploiting neural networks in battery-powered wearables and
internet-of-things (IoT) applications, introduced the need for energy-
efficient machine learning hardware accelerators. These systems can
analyze data directly on board, so-called edge processing, enabling
to preserve privacy and reduce latency as well as processing energy,
compared to external data analysis using cloud computing.

This thesis investigates multiple optimization approaches to im-
prove the efficiency of edge processing devices and expand their range
of applications. It first provides an overview and quantitative compar-
ison of existing optimization techniques, illustrating their broad range,
from low-level hardware optimizations up to high-level algorithm co-
design and mapping improvements. We then evaluate edge processing
capabilities on high-speed cameras, enabling to reduce power con-
sumption by 3×, and provide a tool for automated mapping of trained
networks to ease the efficient implementation on cameras with pro-
grammable logic. We further propose an efficient memory alloca-
tion technique for convolutional neural network (CNN) accelerators,
enabling memory savings of up to 48.8% compared to traditional
mapping. To equip even tiny edge processing devices with machine
learning-based data analysis capabilities, the strict power constraints
imposed by their limited battery capacities must be fulfilled. Thus,
we present a new hardware accelerator architecture that supports
hierarchical processing, facilitating such sub-mW power budgets. Its
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vi ABSTRACT

dual-engine accelerator enables scalable performance, which is demon-
strated in multiple scenarios, reporting 0.41mW power consumption
for running face detection and recognition. Exploiting the manufac-
tured chip, we develop an end-to-end face recognition application on a
battery-less credit card-sized platform, demonstrating self-sustainable
machine learning edge processing using solar energy harvesting.



Zusammenfassung

Neuronale Netzwerke haben sich im vergangenen Jahrzehnt als die
leistungsstärksten Algorithmen für computergestützte Bildanalysen
etabliert. Maschinelles Lernen ermöglicht es dabei, diese komplexen
Analysen automatisch zu modellieren. Die schnelle Verbreitung von
miniaturisierten und intelligenten batteriebetriebenen Geräten, wel-
che Neuronale Netzwerke für Anwendungen in Wearables und dem
Internet der Dinge (IoT) benutzen, hat die Nachfrage nach energie-
effizienten Hardware-Beschleunigern stark erhöht. Diese ermöglichen
es, Daten direkt auf dem Gerät auszuwerten, sogenanntes Edge
Processing, und somit gleichzeitig die Privatsphäre zu schützen und
sowohl die Verarbeitungszeit als auch den Energiebedarf gegenüber
externer Berechnung in Cloud Servern zu reduzieren.

Diese Dissertation präsentiert eine Reihe von Optimierungs-
ansätzen, um die Effizienz von Edge Processing-Geräten zu verbes-
sern und dadurch deren Einsatzgebiet zu erweitern. Zuerst wird
eine Übersicht mit einem quantitativen Vergleich von existierenden
Methoden präsentiert, welche das breite Spektrum von Optimierun-
gen aufzeigt: Diese reichen von hardwarenahen Anpassungen bis zu
Verbesserungen durch koordinierte Hardware/Software-Entwicklung.
Wir evaluieren den Einsatz von Edge Processing in Hochgeschwindig-
keitskameras und zeigen auf, dass der Leistungsverbrauch dadurch um
das 3-fache gesenkt werden kann. Ausserdem entwickeln wir ein Pro-
gramm, welches die effiziente Implementierung von trainierten Netz-
werken in Kameras mit programmierbarer Logik automatisiert und
damit den Zugang für Laien erleichtert. Zudem präsentieren wir eine
effiziente Speicherverwaltungs-Methode für Hardware-Beschleuniger
von sogenannten Convolutional Neural Networks (CNNs), welche
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oft für Bildanalysen verwendet werden. Diese Methode erlaubt es,
den Speicherbedarf gegenüber herkömmlicher Speicherverwaltung um
bis zu 48.8% zu senken. Die Rechenleistung von miniaturisierten
Edge Processing-Geräten ist stark durch ihre Batteriekapazität ein-
geschränkt. Um dennoch Datenanalysen basierend auf maschinellem
Lernen in solche Geräte einbetten zu können, haben wir eine neue
Hardware-Beschleuniger-Architektur entwickelt. Diese ermöglicht ei-
ne hierarchische Berechnung der Algorithmen und kann dadurch
in Geräten mit einem Leistungsverbrauch von weniger als 1mW
eingesetzt werden. Der integrierte Zweikomponenten-Beschleuniger
erlaubt es, die Rechenleistung zu skalieren, was in verschiedenen
Szenarien demonstriert wird und es ermöglicht den Leistungsver-
brauch für die Berechnung von Gesichtsdetektierung und -erkennung
auf 0.41mW zu reduzieren. Zudem benutzen wir den entwickelten
Chip, um auf einer batterielosen und kreditkartengrossen Plattform
eine Gesichtserkennungs-Anwendung zu implementieren. Das Edge
Processing System wird dabei lediglich durch ein kleines Solarmo-
dul betrieben und demonstriert damit energieautarken Betrieb von
Neuronalen Netzwerken.
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Chapter 1

Introduction

Nearly ten years ago, neural networks (NNs) have surpassed human-
level performance in various image classification tasks like object recog-
nition [1] and face identification [2]. This generated a strong mo-
mentum for machine learning-based algorithms, leading to a wide-
spread proliferation in various fields, covering, among others, medical
image analysis [3], speech recognition [4], economic trend analysis,
autonomous driving, and face verification [5].

In contrast to labor-intensive manual algorithm development, re-
quiring expert knowledge of the field, machine learning (ML) enables
laymen to train accurate algorithms, given that sufficient training
data and user-friendly training frameworks are accessible [6]. The
availability of large, labeled, and public data sets, like ImageNet [7] or
Google’s speech command dataset [8], and effective training tools, like
Caffe [9] or TensorFlow [10], further boosted the research activities,
creating a positive feedback loop through a growing community that
further advocated the use of ML.

More recently, the ML trend has reached internet of things (IoT)
and edge platforms in the consumer electronics market, a multi-billion
USD business [11], related to extreme technology investments. IoT
devices are becoming smarter by leveraging ML capabilities onboard
the device, so-called edge processing. This helps better preserving
privacy by avoiding transmitting sensitive data through the Internet
[12], as it is required for server-based (cloud) processing. Additionally,
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2 CHAPTER 1. INTRODUCTION

this offers lower latency and power consumption because costly com-
munication activities can be reduced to a minimum. Thus, ML-based
edge processing devices are targeting more intelligence in a smaller
form factor with longer battery lifetimes, enabling a new era of smart
devices. Fig. 1.1 illustrates the power regions for cloud- to edge-
processing systems, indicating the extreme efficiency requirements
for operating complex ML tasks, as they are currently supported
by mobile platforms, within the mW-power region. While graphics
processing units (GPUs) cover the cloud-processing region, optimized
application-specific integrated circuits (ASICs) are usually employed
for the power-constrained mobile and edge domains.

Power consumption [W]
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Figure 1.1: Power and processing performance of ML hardware for
cloud to edge applications.

Neural Networks

Biological NNs had already been researched for multiple decades when
artificial NNs have gained attention [13], attempting to mimic the
underlying biological structures to develop powerful data analysis
algorithms. The simplest structures consist of neurons that receive in-
put activation signals ai,n through connections from (Nin) neighboring
neurons, which are weighed with a scaling factor wn,k, accumulated
and passed through an activation function fact, as shown in Equation
1.1. This results in a vector dot product a ·w, or a set of multiply and



3

accumulate (MAC) operations, which is often used with a rectified
linear (unit) (ReLU) as activation function.

ao,n = fact

(
Nin∑
k=1

ai,k · wn,k

)
| fact,ReLU (x) = max(0, x) (1.1)

To represent complex analysis functions, it became clear that thou-
sands of neurons with millions of connections were required, usu-
ally grouped into layers, that are only connected to their neighbors,
forming so-called multi-layer perceptrons [13], shown in Fig. 1.2 a).
The intermediate layers, connecting the input to the output layer,
extract features (thus, called feature maps), requiring large memories
to store their activations (features). Inter-layer connectivity differs
across layer-types and determines the computational effort as well
as the number of weight parameters: in fully-connected (FC) layers,
each neuron of a layer receives inputs from all neuron outputs in the
previous layer, while convolutional neural networks (CNNs) limit the
inputs to a small connected region on the previous layer and share
their weights with neighboring neurons, largely reducing the number
of connections and parameters. Fig. 1.2 b) visualizes the structure of
a generic CNN layer, as it is common for image processing, with an
input feature map in of size Xin · Yin ·Cin being convolved with Cout

kernels k of size Kx ·Ky ·Cin and thus resulting in an output feature
map out of size Xout · Yout · Cout. Thus, FC layers can be considered
a subset of CNNs, with kernel sizes equal to the input size.

∗
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Figure 1.2: Visualization of typical NN layer structures: a) multi-layer
perceptron, b) CNN.
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Many other layer configurations based on these simple ones have
been proposed in the following, introducing connections that allow
bypassing a set of layers in residual networks (ResNets) [14], adding
recurrent connections that enable to keep a state over time in re-
current neural networks (RNNs) [15], or various optimizations of the
underlying computations, like depth-wise separable convolutions in
MobileNets [16].

Because all networks rely on large feature maps and data-intensive
computations, their sudden success over the past decade can be par-
tially attributed to the appearance of powerful compute hardware
that enabled timely training iterations and low-latency inference for
exploring deeper and more complex networks, allowing to reach un-
precedented algorithmic accuracy.

Edge processing

As illustrated above, executing NNs is computation- and memory-
intensive, challenging the processing hardware. Storing data requires
large (and costly) chip area for instantiating memories or external
storage with significantly higher access energy. The ever increasing
network complexity, which mainly drives accuracy improvements, is
reflected in more arithmetic operations, demanding higher computa-
tional throughput to sustain the established algorithm inference rates
required by the applications.

Powerful GPUs and similar server-grade hardware provide highly
parallelized arithmetic, making them well suited for running large
networks at high throughput. This comes at the cost of high power
consumption and bulky dimensions, strongly limiting their deploy-
ment for miniaturized and energy-constrained edge devices. Cloud
processing provides large servers with virtually unlimited power bud-
gets, offering energy-intensive computation capabilities. To boost
the limited computational capacity of IoT devices, cloud-offloading
was proposed [17], transmitting the raw data through a communi-
cation network for processing in cloud servers. However, the high
power consumption of communication interfaces can often not be
supplied by battery-powered IoT devices, motivating edge computing
[18], processing and analyzing sensor input data directly on-board, at
the edge (of the network). Efficient hardware accelerators in ASICs
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have therefore been intensively investigated in various works [19–21].
However, the strict energy constraints of miniaturized smart devices
still limit the deployment of complex ML-based algorithms for such
systems, motivating further research towards efficient ML for low
power edge processing devices.

ML-based processing is expected to affect many aspects of our
daily life in the near future. Some sensory devices already implement
some degree of edge processing [22,23] or demonstrated the feasibility
of creating smart tiny sensing systems [24]. With more efficient ML
processing becoming available, a wider range of miniaturized smart
applications will emerge, striving for battery-less operation and per-
vasive intelligence.

1.1 Thesis Overview
This thesis investigates and demonstrates multiple techniques for en-
abling efficient ML inference processing in embedded systems at the
edge. It targets smart power-constrained devices, like IoT nodes,
smart sensors, and self-sustainable miniaturized processing platforms,
that analyze sensory data on board, limited by the power budget of
their small batteries or energy harvesting circuits. Motivated by the
data-intensive nature of image and video contents, already dominating
the worldwide Internet traffic with an estimated 82% share in 2020
[25], we focus on NN-based image analysis. The main challenges
discussed in this work are data handling techniques, efficient process-
ing architectures, and mapping strategies to enable machine learning
inference in low power edge processing devices. We investigate various
optimizations to lower the power consumption of ML applications,
striving towards tiny edge processing platforms with extended battery
lifetimes. Fig. 1.3 shows an overview of the covered topics along with
the chapter numbers and illustrates their impact on the edge ML
implementation flow.

Neural networks and other ML-related fields attracted a lot of
attention and consequently experienced a surge of related publications
discussing the field. The vast amounts of ML hardware architectures
and optimization approaches proposed in the literature ask for a struc-
tured overview that allows comparing ideas, removing redundancies,
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and identifying promising approaches to build on. To make research
efforts more efficient and target-oriented, Chapter 2 surveys the field
of low power NN accelerators and provides a quantitative compari-
son of proposed optimization techniques, targeting efficient edge pro-
cessing. It discusses hardware architectures, technological aspects,
dataflow structures, efficient data handling, and various computation
approaches. Reported optimization effects range from up to 10’000×
memory savings to 33× energy reductions, providing chip designers
an overview of design choices for implementing efficient low power NN
accelerators.

While video streams dominate the worldwide Internet traffic [25],
significant portions carry redundant data with low information con-
tent. In the example of simple video-based surveillance applications
for home intrusion detection, video data are streamed from private
households to processing systems that trigger an alarm if unautho-
rized people are detected. Considering the low information content,
the raw image data transmission from the camera could be replaced
by a single flag bit, indicating whether there is an intruder or not.
This would reduce the data traffic in the network and additionally
improve privacy, as cameras stream out images from private rooms
through a public network. Higher frame rates, as they are produced
by high-speed cameras in quality control systems, further aggravate
the problem by massively increasing the data bandwidth. Chapter 3
investigates the usage of binary neural networks (BNNs) to classify
images in real-time onboard a 20kFPS high-speed camera and only
transmit the resulting classifications, allowing to reduce the data-rate
by 980x. The BNN is instantiated on the camera’s field-programmable
gate array (FPGA) using high-level synthesis (HLS) tools, allowing
to efficiently implement binary MAC operations using programmable
(XNOR) logic. Compared to external image processing, the on-board
analysis reduces the energy per frame by 3×.

A follow-up work is discussed in Chapter 4, further simplifying
the NN deployment on FPGA-based cameras by extending the HLS
approach from the previous chapter to an automated end-to-end map-
ping framework that takes a trained network as input and generates
an efficient FPGA implementation for the camera. HLS provides
software developers with limited hardware design expertise a tool to
develop applications using high-level C++ language. Our end-to-end
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framework enables NN application-developers to directly map their
trained network onto the device for edge processing, further reducing
the required hardware knowledge of the users. To enable energy
and memory savings, arbitrary parameter and activation precision
are supported. Experimental results demonstrate the functionality of
the framework on various CNNs mapped to the FPGA-based camera,
reporting throughputs of up to 337GOPS. The automatic mapping is
reused in parts within the NN mapping flow for the ML system-on-chip
(SoC), presented in Chapter 6.

The large memory footprint required to map NNs on hardware
platforms can be observed on the memory-dominated chip floor-plan
in many ML accelerators. Excessive (memory) area directly translates
into additional manufacturing cost and increases the data access en-
ergy, which grows with the memory size and thus influences the overall
power consumption. Conversely, the network size (complexity) has a
strong influence on its algorithmic performance, generally enabling
higher accuracy for larger memory (network) sizes. In Chapter 5 we
describe a technique for more efficient memory utilization in CNN
accelerators with layer-wise processing, allowing to either reduce the
on-chip memory requirements for a given target network or to increase
the network size (complexity) for a fixed memory capacity. Evaluated
on multiple image processing networks, memory savings of up to
48.8%, compared to standard ping-pong buffering, are achieved. The
technique overlaps activation regions of neighboring layers, allowing
to overwrite input activations as soon as they are no longer needed,
reducing the overall activation memory needs. Through simple adap-
tions of the memory mapping for activations, this method can be
implemented in any programmable accelerator.

In Chapter 6 we present a hierarchical dual-engine ML SoC for
low power face analysis at the edge. The end-to-end processing chip
is implemented and tested on a 22nm process, achieving state-of-
the-art performance for running face detection and recognition at
0.41mW power consumption. Various sensor peripherals, coupled with
a 32-bit RISC-V microcontroller, offer flexible operation, while the
1.2MB on-chip static random-access memory (SRAM) provides suffi-
cient memory for face analysis applications, exploiting the CNN map-
ping technique from Chapter 5. To achieve a low power consumption,
it provides hierarchical processing capabilities using a dual-engine
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accelerator, supporting binary decision trees (BDTs) and CNNs. This
allows to implement simple (face) detection tasks on the dynamically
scalable BDT engine, which can then trigger the evaluation of a more
complex CNN (e.g. for face recognition). Combined, the SoC offers
to process complex CNNs while consuming very low power on average
through dynamic complexity scaling.

The low power edge processing capabilities of the presented ML
SoC are exploited in Chapter 7, demonstrating the feasibility of im-
plementing ML processing on tiny, self-sustainable, and battery-less
platforms. CNN-based user identification, running on the presented
ML SoC, is implemented on a credit card-sized platform with solar
energy harvesting, enabling self-sustaining operation at 1 frame-per-
second. Measurement results report the energy for each execution
phase, identifying dominant contributions that can be investigated in
future research.
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1.2 Contributions and Publications
As described above, this thesis investigates multiple aspects of effi-
cient ML implementation in edge processing devices, by 1) identify-
ing effective optimization techniques in the literature, 2) proposing
quantized implementations and improved mapping strategies, and 3)
providing specialized hardware blocks and system designs. The main
contributions to this research field are summarized below:

1. A quantitative survey of existing ML accelerator optimizations,
allowing to estimate their effects based on five key performance
indicators and thus ease the ML accelerator design process.

2. An optimized BNN implementation for FPGA-based edge pro-
cessing high-speed cameras, enabling early data reduction to
reduce communication interface requirements and improve la-
tency.

3. An automated end-to-end NN mapping framework that effi-
ciently implements a trained network on an FPGA-based edge
processing camera to simplify NN deployment for non-expert
users.

4. A method for improving memory utilization in CNN accelerators
which allows minimizing activation memory space.

5. A system-on-chip hardware architecture for hierarchical process-
ing of face analysis tasks using dual-engine BDT/CNN acceler-
ation to enable sub-mW edge processing.

6. A design and an evaluation of a solar-powered battery-less edge
ML platform, that demonstrates miniaturized and self-sustainable
end-to-end image processing.

The main content of the thesis has been published in the following
international conference and journal papers:

[26] P. Jokic, E. Azarkhish, R. Cattenoz, E. Turetken, L. Benini,
and S. Emery, ”A Sub-mW Dual-Engine ML Inference System-
on-Chip for Complete End-to-End Face-Analysis at the Edge,”
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in Proceedings of IEEE Symposium on VLSI Circuits, 2021.
Received the best demo paper award at the 2021 Symposia
on VLSI Technology and Circuits.

[27] P. Jokic, S. Emery, and L. Benini, ”Battery-Less Face Recogni-
tion at the Extreme Edge,” in Proceedings of the 19th IEEE In-
ternational New Circuits and Systems Conference (NEWCAS),
2021.
Received the best student paper award at the 2021 NEW-
CAS conference.

[28] P. Jokic, S. Emery, and L. Benini, ”Improving Memory Uti-
lization in Convolutional Neural Network Accelerators,” IEEE
Embedded Systems Letters (ESL), 2020.

[29] P. Jokic, E. Azarkhish, A. Bonetti, M. Pons, S. Emery, and
L. Benini, ”A Construction Kit for Efficient Low Power Neural
Network Accelerator Designs,” submitted to ACM Transactions
on Embedded Computing Systems, 2021.

[30] P. Jokic, S. Emery, and L. Benini, ”BinaryEye: A 20 kfps
Streaming Camera System on FPGA with Real-Time On-Device
Image Recognition Using Binary Neural Networks,” in Proceed-
ings of the 13th International Symposium on Industrial Embed-
ded Systems (SIES), 2018.

[31] P. Jokic, S. Emery, and L. Benini, ”NN2CAM: Automated
Neural Network Mapping for Multi-Precision Edge Processing
on FPGA-Based Cameras,” submitted to Microprocessors and
Microsystems: Embedded Hardware Design (MICPRO), 2021.

Further contributions were made in the field of smart sensing at the
edge but are not explicitly covered in this thesis. They originate from
work conducted prior to the thesis but have strongly influenced it and
are linked to the application domain of low power edge processing:

[32] P. Jokic, M. Magno, ”Powering smart wearable systems with
flexible solar energy harvesting,” in Proceedings of the IEEE In-
ternational Symposium on Circuits and Systems (ISCAS), 2017.
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[33] P. Jokic, G. Salvatore, M. Magno, L. Buthe, G. Troster, and L.
Benini, ”Self-Sustainable Smart Ring for Long Term Monitoring
of Blood Oxygenation,” in Proceedings of the IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), 2017.

[34] M. Magno, G. Salvatore, P. Jokic, and L. Benini, ”Self-Sustainable
Smart Ring for Long-Term Monitoring of Blood Oxygenation,”
IEEE Access, 2019.

[35] G. Salvatore, J. Sulzle and F. Dalla Valle, G. Cantarella, F.
Robotti, P. Jokic, S. Knobelspies, A. Daus, L. Buthe, L. Petti,
N. Kirchgessner, R. Hopf, M. Magno, and G. Troster, ”Biodegrad-
able and Highly Deformable Temperature Sensors for the Inter-
net of Things,” Advanced Functional Materials, 2017.





Chapter 2

Neural Network
Accelerator
Construction Kit

Implementing embedded NN processing at the edge requires efficient
hardware acceleration that combines high computational throughput
with low power consumption. Driven by the rapid evolution of net-
work architectures and their algorithmic features, accelerator designs
constantly have to be adapted to support the improved functionalities.
Hardware designers can refer to a myriad of accelerator implemen-
tations in the literature to evaluate and compare hardware design
choices. However, the sheer number of publications and their diverse
optimization directions hinder an effective assessment. Existing sur-
veys therefore provide an overview of these works but are often limited
to system-level and benchmark-specific performance metrics, making
it difficult to quantitatively compare the individual effects of each
utilized optimization technique. This complicates the evaluation of
optimizations for new accelerator designs, slowing-down the research
progress.

In contrast to previous surveys, this chapter provides a quantita-
tive overview of NN accelerator optimization approaches that have
been used in recent works and reports their individual effects on

13
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edge processing performance. The list of optimizations and their
quantitative effects are presented as a construction kit, allowing to
assess the design choices for each building block individually. Re-
ported optimizations range from up to 10’000× memory savings to
33× energy reductions, providing chip designers an overview of design
choices for implementing efficient low power NN accelerators.

2.1 Introduction
NNs allow algorithm developers to implement difficult-to-model tasks,
given that sufficient training data is available. However, the compu-
tational complexity of these networks is challenging the design of pro-
cessing hardware. Implemented in miniaturized and battery-powered
ML applications, they require high computational throughput while
being constrained to limited power budgets, rendering computing ef-
ficiency a key design objective for low power ML accelerators.

The rapid progress of ML algorithm research further challenges
designers to quickly adopt newly introduced network features, requir-
ing fast development times. While FC networks and CNNs, like the
well-known AlexNet [36], have dominated the field during the past
decade, ResNets [37], RNNs and derivations like dense CNNs [38]
have gained importance, claiming ever-improving algorithmic perfor-
mance. Edge processing is increasingly used in applications where
long battery lifetimes are mandatory, powering smart glasses with
object detection [39], face detection [40], or hand-gesture and speech
recognition [41]. Other applications employ it in smart cameras with
automatic acquisition using scene classification [42], smart doorbells
with face recognition [23], or tools that help blind people read texts
and recognize people [22], while many more could benefit from edge
ML in the future [24, 43]. An overview of ML applications that
are feasible on current hardware platforms is summarized in [44],
illustrating the challenge of the limited edge processing power budget
(<1W).

Existing ML accelerator chips cover the application domain from
ultra-low power (ULP) and low-complexity processing, implementing
18uW key-word spotting with 105kB on-chip memory [45], to high-
throughput server-grade acceleration, provided by chips like Google
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TPUv3 [46] or Graphcore IPU [47], consuming more than 100W. To
identify relevant edge ML accelerator designs among the vast num-
ber and diversity of publications proposing efficient implementations,
quantitative surveys are necessary. However, existing surveys often
only provide qualitative comparisons or benchmark implementations
on a system-level, obscuring the individual effects of each employed
optimization technique. Comparing these optimizations is essential
for motivating design choices during the development of new acceler-
ators, currently requiring time-consuming literature research.

This chapter summarizes and, for the first time, quantitatively
compares design optimizations of existing NN accelerators for tiny
(<10mW) and edge (<1W) processing applications. It is presented as
a construction kit, listing optimization options for each building block
along with their reported quantitative effects, enabling ASIC designers
to evaluate and assess optimizations for new implementations. Fig.
2.1 illustrates the covered building blocks on a generic end-to-end edge
processing system and localizes optimizations within the edge ML
design flow. The chapter is organized as follows: Section 2.2 presents
related surveys that complement this chapter. Section 2.3 introduces
basic notations used throughout the chapter, followed by an overview
of architectures in Section 2.4, technological optimizations in Section
2.5, dataflow optimizations in Section 2.6, data handling optimizations
in Section 2.7, computation optimizations in Section 2.8, and finally
the quantitative comparison of all relevant optimizations in Section
2.9.

2.2 Related Work

Various surveys have been conducted to summarize existing NN accel-
erator designs and implementations, explaining their techniques, and
comparing their system-level performance.

To keep track of the vast number of academic and industrial ML
hardware accelerators proposed every year, a periodically updated
online list [48] is provided, listing the main performance metrics for
each chip to compare them in terms of power, throughput, and com-
putational efficiency. A similar survey in paper form was presented
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Edge ML optimization techniques

M
a
p
-

p
in

g
H

a
rd

w
a
re

A
lg

o
. ML Training

SW/HW co-optimization

Dataset 

creation

Model 

design
Trained ML model

ML Mapping flow Compilation flow

Control/

application code

Compiled ML model Compiled code

ULP NN accelerator engineSensors • Application

• Power supply

Edge ML system

Covered in this work

Technology

ComputationsComputations

Data-handlingData-handling

(Sensor) Technology

Sensor

interface

Pre-

proc.

Image/Video

Audio

Movement

Medical

Arithmetic:

e.g. MAC

Data:

e.g. param.

D
a
ta

fl
o
w

Application

interface Application, e.g.

• Smart vision

• Keyword spotting

• Environment 

monitoring

• Bio-signal analysis

ControlControl

Edge ML tool-flow and components

Edge ML hardware

Sensor ULP NN accelerator engine

2.8: Computation opt.

• Opt. Convolutions

• Sparsity exploitation

• Data reuse

• HW/SW co-opt.

• Approx. Comp.

• Non-conv. arithm.

• Mixed signal arithm.

• Arithm. implement.

2.7: Data handling opt.

• Efficient memory

utilization

• Data compression

2.6: Dataflow/Control opt.

• Dataflow/Blocking

• Compiler

• Early data reduction

• Selective execution

2.5: Technology

• Process techno.

• Power managem.

• Memory techno.

2.4: Architectures

• Temporal

• Spatial

• In-memory 

computing

Figure 2.1: Overview of the edge ML tool flow with a summary of the
discussed hardware optimizations for NN accelerators (with related
section numbers of this chapter).

in 2019 [49] and updated in 2020 [20]. It lists the computational per-
formance and precision of academic research works and commercially
available devices. A survey from 2017 claims to cover the past 35
years of works in neuromorphic computing, listing more than 2600
references that accelerated the research field since the 1980s [50].
It covers models, learning approaches, and hardware ranging from
analog to digital implementations, covering programmable FPGAs
and custom ASICs.

Sze et al. [19] provide a thorough survey on efficient processing
of deep neural networks (DNNs), covering historic aspects, common
layer types, training frameworks, and popular datasets, extending
their previous work [51]. The sections on hardware platforms and
energy efficient dataflows are motivated in their preceding work [52],
proposing edge processing for extracting meaningful information to
reduce the extreme amount of data produced by the ever-increasing
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number of sensors in connected devices. A similar summary is pre-
sented in [53] and a more FPGA-focused one in [54]. Another well-
structured and exhaustive survey on DNN acceleration is presented
in [21], covering existing hardware acceleration approaches includ-
ing software optimizations, and a chapter on the security of DNN
approaches and their benchmarking. Survey [55] presents a broad
overview of the ML field, focusing on big data, training techniques,
and applications. A similarly broad view, additionally covering the
transition from modeling biological NNs to implementing artificial
NNs in hardware is presented in [56], focusing on novel memories
and their use-cases in the field.

In the survey of [57], various ML accelerators and processing blocks
are presented and compared to their research group’s own works.
They list neuromorphic processors, including spiking NN engines,
ranging from fully digital to fully analog computations, and discuss
possible future directions. Survey [58] also discusses the architectures
of selected DNN accelerators and explains their working principles
and supported network architectures.

Surveys [12, 59] present an extended view on edge intelligence,
covering pure edge processing and combinations with cloud processing.
They discuss related optimization strategies, namely compression and
early model exit.

While the listed related works give an excellent overview of existing
ML accelerators and optimization techniques, none of them attempted
to quantitatively compare used optimization approaches, as covered in
this chapter, allowing designers to evaluate and assess optimizations
for new implementations. This chapter focuses on (deep) NN infer-
ence, noting that the field of ML is much broader, containing other
approaches like support vector machines, decision trees, and many
others.

2.3 Construction Kit Foreword
ML accelerators often combine multiple optimization techniques, as
shown in Table 2.1, summarizing a selection of relevant accelerator
chips from the past six years. This complicates the assessment of
individual optimizations as their effects are obscured by system-level
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Table 2.1: Selected ML accelerator chips from the last 6 years

Work
(Year)

Optimizations Throughput
[GOPS]

Efficiency
[TOPS/W]

ShiDianNao
(2015) [60]

Local data reuse 194 (16b) 0.606

EIE
(2016) [61]

Sparsity, weight sharing,
compression, zero skipping

102 (16b)
(∼3’000*)

0.17 (5.0*)

Envision
(2017) [62]

Multi-precision, DVFAS,
body biasing

76 (4b) 10

Eyeriss
(2017) [63]

Local data reuse, zero
compression, zero skipping

84 (16b) 0.166

YodaNN
(2018) [64]

Bin. weights, standard-cell
mem., voltage scaling

1’500 (1b w., 12b
a.)

1,1

UNPU
(2018) [65]

Multi-precision, LUT-based
bit-serial MAC (1-16b)

346/7372 (16/1b
w., 16b a.)

3.1/50.6

Eyeriss v2
(2019) [66]

Local data reuse, sparsity,
compressed computing

202 (8b) 0.963

*including skipped operations

benchmarking. Thus, we only add individual optimizations to our
comparison and only if sufficient quantitative information is reported.
We further focus on five performance indicators, namely 1) energy/
power, 2) area (cost), 3) memory size, 4) computational throughput,
and 5) impact on algorithmic accuracy. In the following sections, we
briefly discuss the importance of a system-level view for meaningful
optimization evaluations and introduce some basic performance indi-
cators and notations that are used throughout the chapter.

2.3.1 System-Level View

Edge ML devices process sensory data onboard, communicating with
sensors (and memories) for subsequent analysis in an ML engine. Re-
gardless of this fact, publications on low-power ML accelerator designs
often neglect the impact of such off-chip communication on system-
level power consumption and performance. Analyzing system-level
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power-breakdown helps identifying power-dominating sub-systems, al-
lowing to optimize them based on the Pareto principle. Fig. 2.2
shows the power breakdown of four mobile system implementations:
two smartphone analyses were taken from a smartphone battery usage
review [67], showing dominating communication power, while two IoT
nodes were evaluated in a visual presence detection system [68] and an
always-on face recognition system [69], reporting dominating sensor
and processing power. While core optimizations would only enable
marginal system improvements in the first three systems, the fourth
example shows a typical edge ML IoT node with processing-dominated
power distribution, enabling significant system improvements through
core optimizations.
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Figure 2.2: Power break-down of mobile/edge systems (smartphones
[67], presence detection IoT node [68], and face recognition IoT node
[69]).

2.3.2 Meaningful Performance Indicators and Met-
rics

To identify useful optimization strategies, relevant performance indi-
cators and benchmarks must be chosen. Parameter quantization, for
example, can easily reduce memory size but also heavily impacts the
accuracy [70, 71]. Similarly, the throughput is subject to large varia-
tions across different workloads as pointed out in [49], reporting 20×
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lower throughput than stated in the datasheet. Thus, application-
relevant benchmarks are indispensable. For a fair cross-device com-
parison, standard ML benchmarks have been created for smartphones
[72], for general-purpose devices (MLPerf) [73], and are now adopted
to edge devices (TinyMLPerf) [74]. This is similar to microcontroller
benchmarks (e.g. CoreMark [75]). Roofline models [76] are used to
visualize the architectural boundaries of a system’s operating points,
namely the memory bandwidth and the peak computational through-
put, as illustrated in Fig. 2.3. Depending on the operating point,
the system operates in a memory- or a computation-bound region.
NN accelerator performance metrics are often limited to the peak
throughput, in tera operations per second (TOPS), and the compu-
tational power efficiency (TOPS/W). Fig. 2.4 illustrates that these
metrics can be misleading in edge applications, operating in the low
power region where extrapolating the efficiency becomes inaccurate
(idle power).

2.3.3 Neural Network Notations

This chapter uses the previously introduced notation for NN layer
dimensions, specifying input activations in (Xin · Yin · Cin), output
activations out (Xout · Yout ·Cout), and Cout kernels k containing Kx ·
Ky ·Cin parameters. Additionally, we note that other layer types can
be described using the same notation: e.g. ResNets have additional
bypass inputs inby of the same dimension as in and are added point-
wise. Depth-wise separable CNNs split kernels in the Cin dimension,
yielding Cout = Cin, avoiding cross-channel links.

2.4 Hardware Architectures

Two main architectural concepts are used in today’s NN accelerators
[51]: temporal and spatial architectures. This chapter discusses them
and adds emerging in-memory computing as a third architecture,
offering a distinct data flow.
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Figure 2.3: Roofline plot showing two operating points, constrained by
the available memory bandwidth and the computational throughput.

Throughput

[TOPS]

Power

[W]

TOPS/W

1

realistic

Peak TOPS

Idle power

Figure 2.4: NN processing throughput versus power consumption.

2.4.1 Temporal Architecture

Temporal architectures comprise, among others, the widespread cen-
tral processing units (CPUs) and GPUs, featuring a central control
unit that schedules tasks and distributes computations across arith-
metic logic units (ALUs). Data is moved from the memory to the ALU
and back, offering a high parallelization potential using single instruc-
tion, multi-data (SIMD) instructions for vector processing. This is
based on the traditional Von Neuman architecture [77], characterized
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through a generic single instruction, single data (SISD) processing
scheme that stores both instructions and data in the memory. It
typically features a control unit that reads instructions and data from
the memory, an ALU to perform the operations, and a data bus to
communicate across blocks and through a peripheral interface. Multi-
issue processors [78], e.g. super-scalar processors, extend this concept
by enabling multiple parallel operations through a single instruction,
reducing the control overhead, to increase the operational intensity
(see Fig. 2.3).

2.4.2 Spatial Architecture
In contrast to temporal architectures, spatial architectures allow their
arithmetic units, often called processing elements (PEs), to move
data between neighboring PEs, allowing to reduce memory accesses
by employing local buffers. Systolic arrays are pipelined 2D spatial
architectures that enable data reuse across neighboring PEs. This can
be exploited for implementing efficient general matrix multiplication
(GEMM) through contraction (“systole” in old Greek) of computa-
tions, reusing results from adjacent nodes, and thus minimizing mem-
ory accesses. This is exploited in many prominent accelerators like
Google TPU [79] and Eyeriss [80]. Replacing single-PE systolic arrays
with tensor-PEs, each one computing an entire matrix multiplication
per cycle, further allows reducing area and power in a 16nm process by
2.1× and 1.4×, respectively [81]. Increased intra-PE data reuse and
fewer pipeline buffer registers enable this improvement but require
efficient load distribution to avoid low PE utilization. SCALE-Sim
[82] provides a simulation tool to evaluate such design parameters,
comparing different dataflows and arrays.

2.4.3 In-Memory Computing
The motivation behind in-memory computing, or compute-in-memory
(CIM), is the data-intensive nature of NN inference, requiring high
memory bandwidths which result in memory-dominated performance
[83], the so-called memory wall [84]. To mitigate this, computations
can be directly performed in the memory, where high data access rates
are available at a much lower power cost. While the computational
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efficiency can be largely increased with this approach, it increases
the overhead in the memory and limits the flexibility. Combined
with analog memory types, the efficiency can be further improved by
computing directly in the analog domain. Analog CIM computes ma-
trix multiplications by breaking them down into vector dot products
[85], multiplying analog input voltages (activations) with non-volatile
memory (NVM) cell conductances (weights) and accumulating the
resulting column current (MAC result). Special design considerations
to achieve high accuracy inference along with high computational
efficiency are discussed in [83]. SRAM-based CIM is presented in [86],
using a 55nm 8T 3.8kb SRAM macro with support for 1-4b input
activation and 1-5b weights. The 130nm circuit in [87] demonstrates
simple down-sampled MNIST computations, reporting 13× system
energy reduction for 1b weight and 5b activation precision compared
to a traditional (out-of-memory) computation. CIM integrated into
the analog SRAM periphery is evaluated in [88] on a simulated 65nm
process, reporting 4.9× system energy efficiency and 2.4× throughput
improvement compared to digital processing. A 384kb SRAM-based
8b precision CIM in 28nm [89] is demonstrated to have 28% area
overhead compared to a pure SRAM array while achieving up to
22.75TOPS/W throughput. NVM-based CIM implementations are
summarized in [85]. Their previous survey [90] provides a compre-
hensive list of the utilized emerging NVMs, illustrating that NVMs
can increase bit density and reduce leakage compared to SRAM and
possibly store multiple bits per cell. In [91] an MRAM-based 54×108
CIM crossbar is presented in a 180nm process (MRAM on top of
complementary metal-oxide-semiconductor (CMOS) circuit). Over-
lifetime variations of up to 4.2% and device-to-device variations of
4.5% have been reported, requiring special considerations (e.g. [92]).
Among many other RRAM works, a 1Mb multibit CIM on a 55nm
process [93] and a 128×64b CIM array [94] on a 90nm process are
presented. NVM-based CIM is an active field of research with various
directions, for example 3D CIM architectures [95], reporting up to
28.6× higher energy efficiency compared to 2D chips. A CIM bench-
marking tool [96] further reports advantages of NVM- over SRAM-
based CIM implementations in a 32nm process, while 7nm SRAM
CIM still outperforms any NVM-based work in throughput and both
area and energy efficiency. Note that also DRAM has been used
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for CIM [97], however, targeting high-performance server applications
which goes beyond the scope of this chapter.

2.5 Technology
Integrated circuits (ICs) for NN accelerators are strongly influenced
by the underlying semiconductor technology. This chapter introduces
common process technologies and related power optimization tech-
niques, followed by an overview of memories, which are often linked
to process technologies.

2.5.1 Semiconductor Process Technology
Annual improvements in semiconductor manufacturing technology have
been a major driving force in the chip industry as indicated by (the
now saturating) Moore’s law [98, 99], empirically predicting the dou-
bling of component density on chips every 1-2 years. However, the
smaller process nodes increased the static power consumption, re-
sulting in the end of Dennard scaling [100]. This related heuristic
scaling trend factor describes the annual shrinking of the minimum
feature size in silicon chips and related power savings, culminating in
the so-called power wall [101], limiting process improvements because
the increased power density has approached the physical limits of
silicon-based circuits over the past few years. This process scaling
enables significant power reductions [102], as it yields lower supply
voltages and smaller switching capacitances. However, improved pro-
cess technologies are often linked to a significant cost increase and
might not support all features of older technologies (e.g. special
memory types, photodiodes, etc.). Multi-die solutions can mitigate
this problem, exploiting the properties of multiple processes across
the dies, each one optimized for a specific target like reduced cost,
specialized memory support, or high logic density [24,103]. Combining
multi-process solutions with 3D die stacking additionally provides
short communication paths and increased densities, as shown in the 8-
die-stacked NN accelerator with 96MB of memory [104]. The following
sub-sections give a brief introduction of the main semiconductor pro-
cess technologies used today as they will be referred to throughout the
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chapter. We limit the scope to CMOS technology, which dominates
digital designs and refer the interested reader to the annual IEEE
white paper on future directions of semiconductor technologies (e.g.
the 2020 update [105]) for a look into possible future directions.

Bulk

Bulk technology is based on standard silicon wafers and mainly evolves
through spatial scaling. However, these annual scaling improvements
are slowing down due to increasing difficulties with electrostatic and
short-channel effects [106]. Deeply depleted channel (DDC) technol-
ogy improves bulk technology by introducing multiple vertical dop-
ing regions in the channel, forming a threshold setting region and a
bias-controllable screening region [107]. This enables reduced supply
voltages, low leakage, low process variation as well as improved body
biasing characteristics, allowing to dynamically adjust the threshold
voltage of the transistor.

FinFET

The introduction of 3D gates in so-called FinFETs improved on the
performance of bulk CMOS by enabling lower supply voltages, and
thus reduced power consumption, as shown for 22nm tri-gate Fin-
FET [106] and later 14nm FinFET [108]. However, the improved
performance comes at a higher production cost due to the complex
3-dimensional structures, requiring more fabrication masks than the
bulk technology [109–111].

FD-SOI

Fully depleted silicon-on-insulator (FD-SOI) technology employs very
thin insulating layers in the substrate of the transistors, reducing
leakage. In [110] a 22nm FD-SOI technology is presented, achieving on
par power and performance efficiency compared to 16/14nm FinFET
technology while being lower cost due to the use of planar processes,
requiring fewer masks. Thus, FD-SOI is more suitable for low-end
mobile and IoT applications where cost is an important factor. A
detailed comparison between FD-SOI and FinFET is provided in [109],
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reporting superior performance of FinFETs in terms of power, de-
lay, and density, for which FD-SOI can compensate through body-
biasing. Body biasing allows to dynamically adjust the threshold
voltage, boosting speed with a forward body bias or reducing leakage
using reverse body biasing (higher threshold).

Specialized Processes

Recent advances in materials and manufacturing technologies have en-
abled the integration of novel memory technologies (both volatile and
non-volatile) close to the processing logic. They offer advantageous
characteristics that go beyond transistor density scaling. However,
most of them require special process technologies, making them more
difficult to integrate within the widely available processes. More
details on novel memories can be found in Section 2.5.3.

2.5.2 Power Management
The power consumption of ICs [101] can be decomposed into dynamic
and static power. Dynamic power is described in Equation 2.1, taking
the circuit switching operations into account. Variable U is the supply
voltage, C the switching capacitance, α the switching activity and f
the frequency of the circuit. Static power, often also called leakage
power, is described in Equation 2.2, reflecting the current consumption
Ileak when no switching takes place.

Pdynamic ∼
1
2 · U

2 · C · α · f (2.1)

Pstatic ∼ U · Ileak (2.2)
Based on these equations, various optimizations have been pro-

posed to reduce the overall power consumption, using the supply
voltage and the frequency as control knobs. The most prominent
techniques are listed in the following section, namely sub- and near-
threshold operation, adaptive body biasing (ABB), and dynamic volt-
age and frequency scaling (DVFS). If the application permits, duty
cycling (pausing the operations to reduce the switching activity α) and
power gating (to reduce static current Ileak) can be used to further
reduce the power consumption.
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Sub- and Near-Threshold Operation

Sub- and near-threshold operation exploits the supply voltage knob,
operating transistors below or close to their threshold voltage, respec-
tively, to reduce power consumption [112]. This enables to reduce
dynamic power quadratically and static power linearly, as shown in
Equations 2.1 and 2.2. However, these savings come at the cost of
slower transistor operation, limiting the application frequency. In
embedded IoT applications, energy is usually more important than
power consumption, as it directly determines the lifetime of the bat-
tery. Thus, the minimum energy point (MEP) is identified for each
application by adjusting the supply voltage such that the total energy
for a specific workload is minimal. Sub- and near-threshold operation
extends the supported supply voltage range, reaching the MEP for a
large set of workload scenarios. Lowering the voltage implies higher
sensitivity to process variations, which must be carefully evaluated
during the design phase to ensure robustness under all operating
conditions. Special layout considerations and compensation tech-
niques (see ABB and DVFS) can reduce the effects. The 180nm
sub-threshold standard cell library developed in [112] demonstrates an
extended 0.4-1.0V supply voltage, reducing power by 5× compared to
a standard low power library at 1.0V. Their follow-up work presents
1kb sub-threshold SRAM [113] and a 32b microcontroller [114] design,
achieving 0.84-3.2nW (3.8x) power scalability for 0.27-0.6V voltage
scaling and 7× power scalability for 0.37-1.8V voltage scaling, respec-
tively.

ABB

ABB [115] adjusts the bias voltage of the transistor body to control
its threshold voltage, influencing its speed and power consumption (as
discussed above). FD-SOI and DDC can fully exploit body biasing,
while the effect in bulk technology largely depends on the design
parameters. Adapting the body bias to the operating point enables to
reduce the adverse effect of sub-threshold operation on timing across
process and temperature variations (e.g. worst-case corner distance
from 21× to 0.2× [116]). This allows to implement a wide range of
timing-clean operating points from fast to slow and low power. Note
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that increasing the speed through a strong forward body bias also
increases the leakage. Publications on ABB report 30× frequency and
20× leakage scaling on a RISC microcontroller core and SRAM [115].

DVFS

Dynamic voltage, frequency, (and accuracy) scaling (DVF(A)S) allows
to trade-off speed against power consumption through supply volt-
age scaling. The basic principle was already evaluated in the 1990s,
allowing CPUs to lower the frequency and voltage for low-intensity
tasks, reporting power reductions of 1.05-4× [117], and 9.2× [118].
DVAS [119] extends the principle to dynamic accuracy scaling through
adjustable arithmetic bit-widths, allowing for lower supply voltages
due to shortened critical paths. Demonstrated on a simulated 40nm
16bit array multiplier, DVAS achieves 11.7× energy reduction for
scaling down to 8b precision, noting that the critical path length is
reduced by 40%. Pipelined architectures require bypassable pipeline
registers to evenly distribute the path length reductions, adding area
and energy overhead. On a 16b multiplier, 11.1× energy reduction
is reported for 8b operation at 8% energy overhead. Envision [62]
combines accuracy scaling with DVFS on a 28nm process, running at
constant throughput while scaling precision from 1 · 16b operations to
4 · 4b operations at a quarter of the 16b frequency. Combined with
body biasing to reduce leakage at low frequencies, power is reduced
by 25x.

2.5.3 Memory
Data handling is dominating today’s accelerator power consumption
and area, requiring careful selection of the memory type and the
access strategies. Memory access energy is subject to large variations
across memory types and sizes, as summarized for a standard 45nm
SRAM [102, 120] in Table 2.2. DRAM is reported to have 200×
higher access energy than a small 8kB SRAM (for 64b word width)
[102]. Fig. 2.5 shows an overview of the existing memory types,
distinguishing storage (e.g. non-volatile hard disk) and memory (e.g.
RAM) due to their significant difference in access times, density, and
power consumption [121]. Systems with long idle/sleep phases might
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not be dominated by access power but (idle) leakage power. In that
case, rare accesses to (power-intensive) non-volatile memories could
be cheaper than retaining data over a long period of time, constantly
consuming leakage power.

Memory Storage

Volatile

Hard disk

Magnetic tape

Non-volatile

SRAM

Embedded DRAM

Flash

DRAM

SCM

FeRAM

PCM

MRAM

STTRAM

FeFET

FTJ

Figure 2.5: Overview of memory technologies.

The range of available memory technologies is rapidly increasing,
being an active area of research. A recent overview of novel memories
used in neuromorphic computing [122] notes that the memory tech-
nologies mostly differ in their writing speed, while the reading process
is dominated by the sensing circuit interfacing the memory cells.
Survey [121] provides an overview of recent non-volatile memories,
focusing on PCM, STTRAM, RRAM, and FeFET. We summarize the
working principles and extend it with the dominantly used SRAM and
standard cell memories as well as quantitative optimization results
from the literature.

PCM

Phase change memory (PCM) [121] is based on the heat-induced
reversible phase transition of chalcogenides. It can switch between the
low-resistance crystalline phase and the high-resistance amorphous
phase, implementing a bipolar switch. The relatively large switching
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Table 2.2: Energy per memory access in 45nm SRAM

Size(kB) Access energy per 16b word [pJ]
64b 128b 256b 512b

1 1.2 0.93 0.69 0.57
2 1.54 1.37 0.91 0.68
4 2.11 1.68 1.34 0.9
8 3.19 2.71 2.21 1.33
16 4.36 3.57 2.66 2.19
32 5.82 4.8 3.52 2.64
64 8.1 7.51 5.79 4.67
128 11.66 11.5 8.46 6.15
256 15.6 15.51 13.09 8.99
512 23.37 23.24 17.93 15.76
1024 36.32 32.81 28.88 25.22

current requires powerful access circuits, dominating the size. Speed
is limited by the transition from amorphous to crystalline phase while
the reverse process dominates the power consumption. Endurance and
speed are estimated around 1G cycles and <100ns, respectively [121].
TSMC presents a 1Mb PCM memory array in 40nm [123], reporting
300uA write current at 100ns write speed, achieving >200k cycles
endurance.

STTRAM

Spin-transfer-torque RAM (STTRAM) [121] is based on a magnetic
tunnel junction (MTJ) with two ferromagnetic layers separated by an
ultra-thin tunnel oxide layer. It uses the spin-transfer torque of spin-
polarized electrons to change the resistance of the memory element,
enabling non-volatile states. The access circuit dominates its size
due to the relatively high writing currents but is still smaller than
SRAM. STTRAM is demonstrated on 7-8Mb arrays (industrialized
1Gb cluster [124]) in 22-28nm [125, 126], reporting densities up to
10.6Mb/mm2 and write endurances of >1M-10G cycles.
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RRAM

Resistive RAM (RRAM) [121] stores information by modulating the
resistance of a metal oxide and is therefore often called a memristor.
A similar approach is conductive-bridge RAM (CBRAM), that forms
a conductive metallic bridge in the on-state and interrupts it for the
off-state. Endurances of 1M-1G cycles have been reported. However,
there are tradeoffs between speed, power, and endurance. Various
RRAM implementations in 14-40nm have been shown [93, 127–130],
reporting 0.9-244.8Mb/mm2 density at supply voltages down to 0.7V
for 1Mb-32Gb sizes.

FeFET

Ferroelectric FET (FeFET) [121] employs a ferroelectric gate dielec-
tricum that allows changing the resistance of a FET in a non-volatile
fashion. This principle is similar to the Flash technology, which uses
a floating gate instead. While the power consumption is low due
to the low leakage through the gate oxide, the switching speed is
high (∼20ns). However, its endurance is relatively low, at 10k-100k
cycles. Its similarity with standard CMOS transistors makes FeFET
compatible with many standard processes. In [131], a 10Mb FeFET
memory array is implemented in a 22nm process, reporting 200k cycles
endurance at 2.5-4.5V supply voltage. Their previous work [132]
presents a 64×64b array in the same 22nm process and compares
it to a 6T SRAM array of the same size, reporting 74x lower static
power and >5.3× lower area for FeFET cells (without peripherals).
Writing is 10× more energy-intensive and 10× slower while reading
costs 1.6× more energy but is 1.5× faster. A similar, but less mature,
type of ferroelectric memory is ferroelectric tunnel junction (FTJ).
The tunneling resistance of its ferroelectric layer between two metal
electrodes can be adjusted through ferroelectric polarization reversal
[121].

SRAM

Static random-access memory (SRAM) is the most often used on-
chip memory as it can be easily implemented along with digital cir-
cuits. It features higher memory density than standard-cell memory
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as foundries use “layout pushed rules” to optimize SRAM bit-cell area
beyond standard layout rules. Standard SRAM bit-cells use 6 tran-
sistors (6T), but many larger cell structures have been proposed for
power reductions. For low leakage operation, a 7-transistor SRAM is
presented in [24], reducing area by 18% and 50% compared to standard
low leakage 8- and 10-transistor designs, respectively, while achieving
similar performance and leakage power. Power optimizations using
non-uniform memory hierarchy in SRAM are presented in a 40nm NN
accelerator [133], allowing up to 60% power savings when accessing
the smallest instead of the largest level (32× smaller memory). The
67.5kB memory is split into 4 levels (1.5, 6, 12, and 48kB). SRAM
access energy is shown to increase nearly linearly with the memory
size above 100kB [120] as shown in Table 2.2. Low leakage SRAM
sleep-mode retention is presented on a 55nm process [134], reporting
26× lower retention power for a 16kB memory. Leakage is reduced by
optimizing the design rules (increasing area by 2.7x) and the process
corner. An additional sleep controller with a charge pump for the
retention voltage allows to power-gate the rest of the chip. Leakage is
also reduced in [103], using 180nm low leakage 10T SRAM along with
a 65nm 8T SRAM for dense scratchpad memory. The low-leakage
memory consumes 4242× less standby power while being 11.3× larger
in area. To optimize the data access for 2D structures like in CNNs, a
transpose SRAM has been proposed [135], allowing to selectively read
a row vector or a column vector of data in parallel, reducing power
consumption by 47%.

SCM

Standard-cell memory (SCM) is implemented directly in digital logic
using flip-flops or latches. This allows exploiting voltage scaling ca-
pabilities and avoids dependencies on vendor-specific memory gener-
ators. A dedicated placement strategy for SCM (instead of standard
logic place-and-route (P&R)) is presented in [136], reporting area and
power savings on a 28nm process. Their experiments on 256b-32kb
SCM macros show area reductions of >35% compared to standard
P&R with an access energy reduction of up to 65% for reading and
50% for writing. SCM macro sizes of up to 1kb are shown to be
smaller than SRAM, but already 2-3× larger for 4kb macros (larger
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area of D-latch cell compared to 6T SRAM bit-cell starts dominating).
A BNN accelerator [137] with a hybrid memory consisting of 456kB
SRAM and 8kB SCM demonstrates power savings of SCM compared
to SRAM. It reduces the supply voltage to 0.4V when SCM is used,
while SRAM requires 0.6V, leading to 3× energy savings in 22nm
post-layout measurements.

DRAM

Dynamic RAM (DRAM) is a volatile high-density memory that stores
information as a capacitor charge, which is periodically refreshed.
DRAM is usually not compatible with standard logic processes, requir-
ing separate DRAM dies. However, the hybrid memory cube (HMC)
architecture [138] proposes high-density DRAM access to standard
logic processes through 3D stacking of DRAM dies on top of a logic
die using through-silicon vias. HMC is implemented in TETRIS [139],
providing DRAM access to a 45nm processing die. 3D DRAM is shown
to consume 3.5-4.2× more energy compared to on-chip 256kB SRAM,
but 1.5× less than a planar baseline DRAM at 4.1× higher through-
put. Embedded DRAM (eDRAM) [140] is a CMOS-compatible deriva-
tive of DRAM, targeting high-density volatile memory. A 4-transistor
8kb eDRAM array is presented in 28nm [140], reporting 17% lower
area and 23% lower static power consumption compared to 6T SRAM
at equal voltage. The same author also evaluates a 2T design [141],
showing slightly lower retention power than low power SRAM cells
but 2.5-3.8× lower size for a simulated 28nm 4kb array.

Flash

Flash memory [142] dominates NVM technology on the market, being
embedded in most commercial chips where data retention during off-
state is required. It can be implemented using standard logic process
flows by adding a few additional masking layers, e.g. 3 extra masks
on a 65nm process [143].
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2.6 Dataflow and Control Optimizations
NNs have a relatively simple structure, but their efficient implementa-
tion on hardware accelerators often complicates the dataflow. Efficient
parallelization requires smart workload distribution among processing
elements while ensuring coherent algorithmic functionality. Thus, this
chapter discusses algorithm blocking optimizations, efficient schedul-
ing, selective execution, and early data reduction.

2.6.1 Dataflow and Blocking
NNs accelerators have optimized memory allocation and access pat-
terns for efficient computation, splitting a task into smaller blocks
that fit on the available resources. The utilized blocking (scheduling)
strategy impacts the data access order and thus possible data reuse
within the computation blocks. Higher reuse can reduce the number
of memory accesses, decreasing the total power consumption [120].

Layer-Wise Processing

Traditionally, NNs are processed layer-by-layer, also called layer-wise
or layer-first approach. This enables the reuse of layer parameters
(e.g. convolution weights), as they are repeatedly used across the
layer. However, this also implies that at least one complete layer is
always buffered in memory.

Depth-First Processing

The increasing size of feature maps (e.g. higher resolution images)
requires large activation buffers to be allocated for layer-wise process-
ing. However, networks can be processed in a “depth-first” streaming
fashion instead [144], allowing each layer to buffer only a minimum
set of input activations that are needed for computing the next set
of output activations. Up to 200× memory bandwidth reduction
or alternatively up to 10’000× memory space reduction is reported
for this approach. In a follow-up work [145] depth-first processing is
implemented on an FPGA and benchmarked on five models reporting
throughput increase of 0.91-1.27× and memory bandwidth reduction
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of 3.9-81x. A similar work on “fused layers” [146] observes that each
output of a convolution layer only depends on a small region of input
values. Tracking these dependencies back through multiple layers
results in a pyramid-shaped region. The paper proposes to compute
the entire pyramid until the final output while only storing the com-
puted intermediate features instead of buffering each complete. The
additional cost for buffering intermediate results locally is traded-off
against external memory accesses, achieving up to 95% reduction in
off-chip memory traffic for running VGGNet-E.

Loop Ordering and Optimization

NNs can generally be described using nested loops, with the outermost
one looping through the layers of the network. The ordering of these
loops influences the possible parallelisms and the required memory
size. To process larger networks on limited on-chip memory resources,
loop tiling is used: the workload of each layer can be split into overlap-
ping tiles, which are processed sequentially. Parallelization and data
reuse can be increased by unrolling parts of the sequential loops and
thus parallelizing their computations. Unrolling the entire kernel com-
putation is shown in [147], achieving unprecedented power efficiency
at the cost of a larger area and limited layer size support. Various
tools have been proposed to optimize loop ordering [120, 148–150],
improving energy efficiency and memory size.

2.6.2 Compiler
Compilers and NN mapping tools translate the algorithmic represen-
tation of a trained network into machine code that is executed on
the processing hardware as shown in Fig. 2.1. They can optimize
dataflow strategies as listed in Section 2.6.1. Commonly implemented
microcontrollers provide specialized libraries to make NN processing
more efficient. For example, ARM provides the CMSIS-NN library
for its Cortex-M microcontrollers [151], supporting CNN, FC, and
pooling layers, as well as 8b or 16b fixed point precision. Evaluated
on a network running the CIFAR-10 task, a 4.6× improvement in
throughput and 4.9× in energy efficiency is reported, compared to
a digital signal processor (DSP)-functions-limited baseline code. A
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biomedical signal analysis application [152] reports energy savings of
41.6% for enabling 8 core processing instead of single-core, noting that
the overhead of multi-core execution is fully compensated by efficiency
improvements above a certain throughput. Block and memory power
gating shows 16.8% energy savings but must be traded off against
restart time and related energy and storage implication.

2.6.3 Early Data Reduction
The high cost of data access during NN inference motivated to reduce
the data flow from the sensor, condensing information early and thus
minimizing costly data transfers. One approach is to process the first
layer(s) of a NN in the sensor itself. In [153] diffraction gratings
above the pixels are used to optically detect Gabor filter-like patterns,
as they are often found in the first layer of NNs. Evaluated on
the MNIST and CIFAR-10 tasks, sensor communication bandwidth
reductions of 10× are reported, with moderate accuracy impacts of
-0.1% and -4.6%, respectively. However, the first layer of the em-
ployed LeNet-5 only accounts for 3.8% of all operations, rendering
the computation reduction negligible. Another study implements the
first CNN layer in the optical domain using a controllable (grayscale)
mask [154]. All filters (output channels) are displayed in the same
plane, allowing the image sensor behind to capture all convolution
results in parallel, forwarding them to the last layers implemented
in the digital domain. Evaluated on MNIST and EMNIST tasks,
operation reductions of 250× and 460× are reported while accuracy
drops by 0.4% and 1.7%, respectively. The analog nature of most
sensor signals requires analog-to-digital converters (ADCs) which can
be exploited by implementing matrix multiplication directly in the
ADC [155]. An algorithmic reformulation is shown to implement
a simple classification task using boosted linear classifiers, embed-
ded in a single matrix transformation. The matrix multiplication
is implemented in the feedback path of the SAR ADC, reporting
13× and 29× energy savings compared to a support-vector machine
(SVM)-based implementation with similar accuracy for ECG arrhyth-
mia detection and 160x120 pixel gender classification tasks. RedEye
[156] implements an image sensor with analog on-die CNN processing
capabilities on a simulated 180nm process. It uses SAR ADCs and
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tunable capacitors to implement weighted summation to mimic MAC
operations, reporting 73% system energy reductions for running the
first 1-5layers of an 8bit GoogleNet on the ImageNet task. Early data
reduction is also implemented in distributed computing [157, 158],
splitting the DNN computation across the edge and the cloud to
reduce costly data communications, latency and preserve privacy by
keeping raw data at the edge. Furthermore, application-specific early
data reduction mechanisms exist: visual attention [39] is shown to
reduce the object recognition workload in smart glasses by limiting
the analyzed region to the detected eye-gaze direction.

2.6.4 Selective Execution and Early Abortion

This section presents techniques to dynamically adapt the network
complexity to the input, enabling “simple” inputs to be analyzed with
a fraction of the network capacity without decreasing the accuracy for
complex ones. Average latency and power consumption can thus be
reduced if simple inputs dominate the execution. Fig. 2.6 illustrates
the techniques, covering a) hierarchically scalable effort [62, 159], b)
early exiting [160,161], and c) selective execution [162].

Hierarchically Scalable Effort

Identifying early exits during training enables 2-6× latency reduction
on MNIST and CIFAR-10 tasks [159]. A scalable-effort approach
[163] proposes to use a chain of networks with increasing complexity,
allowing simple inputs to complete processing with smaller networks
than more complex ones. Evaluated on various classification tasks,
they achieve 1.2-9.8× average reduction of operations per benchmark.
The Envision NN accelerator [62] demonstrates this on a face recog-
nition task, hierarchically increasing the network complexity, starting
with a 12MOP network for presence detection (6.4mW, active 98% of
the time), followed by a network recognizing the owner, a set of 10
identities, 100 identities, and finally 5760 different identities (77mW,
0.01% of time).
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Early Exiting

Adding special output classifiers after every few layers allows terminat-
ing a NN execution early if classifiers report high confidence [160]. The
trained network is analyzed after each layer to estimate a gain metric,
quantifying the ratio between the reduced number of operations and
increased overhead due to the added classifier. Benchmarked on two
6- and 8-layer networks with 1 and 2 early exits, respectively, 1.73×
and 1.91× reduction in number of operations are reported at iso
accuracy. The same technique is used in the 12-class keyword spotting
accelerator [161], reporting 69% of the inputs exiting early, reducing
the average power consumption by 22% compared to always executing
the complete network.

Selective Execution

Selective execution [162] enables different execution paths that can
be selected depending on the input provided: an embedded selector
network decides which branch to execute, providing less complex net-
work branches for simpler inputs to reduce the average number of
computations.

Network 1 Network 2 Network 3

Input

Result
Start? Start?

Input X layers Y layers Z layers

Y’ layers Z’ layers

Result

Exit? Exit?

Input X layers Selector

Network 2

Network 1

Select Result

b)

a)

c)

Figure 2.6: Selective execution and early exiting approaches: a)
scalable-effort execution, b) early exiting, and c) selective execution.
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2.7 Data Handling Optimizations
The data-intensive nature of NNs challenges the memories and related
access energy efficiencies. In many systems, more than 50% of the to-
tal power consumption is related to memories and data handling [102].
This chapter discusses optimizations for efficient memory utilization
and compression, reducing the amount of data to be accessed. Related
sections cover the efficient reuse of data across computation elements
(Section 2.8.3) and the reduction of data through computational op-
timizations (Section 2.8).

2.7.1 Efficient Memory Utilization
Efficient memory utilization reduces the required memory space, sav-
ing power, chip area, and thus IC cost. The traditionally used buffer-
ing scheme for layer-wise NN processing is often called ping-pong
buffering [149], following a double buffing approach to allow simulta-
neous reading of input activations and writing to output activations.
It maps the activations of subsequent layers to two disjunctive memory
regions, which must therefore allocate at least the maximum sum of
any two subsequent layers. By allowing the activation memory regions
to overlap during layer-wise processing, memory savings of up to 50%
compared to standard ping-pong double buffering can be achieved [28].
The extent of savings depends on the layer dimensions and increases
for large layers with small kernel sizes.

2.7.2 Data Compression
Compression reduces the memory footprint of data content and can be
adopted in NN accelerator designs. Run-length compression (RLC) of
zero values is used in Eyeriss [63] to reduce the memory footprint and
bandwidth. It encodes the number of zero entries in 5b, followed by
the next non-zero value, reporting 1.2-1.9× reduced memory accesses
for AlexNet. Eyeriss v2 [66] uses a “compressed sparse column format”
for both weights and activations, allowing to skip sparse operations
directly in the compressed form, reducing memory bandwidth and
energy. Compared to RLC, it simplifies addressing of sliding window
striding. Loss-less Huffman coding [164], is shown to reduce weight
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memory by 20-30%. It employs variable-length codewords, provid-
ing smaller bit-widths for more common values, reducing the overall
memory. An edge ML Huffman-coding direct memory access (DMA)
is shown to reduce data bandwidth by up to 5.8× [62]. Weight sharing
is used in [164], replacing weights with table indices, referencing a
limited number of physically stored values. The upper bound of
memory savings is defined by the weight bit-width Nwidth,w and the
number of table entries Nvalues as shown in Equation 2.3. The 45nm
accelerator EIE [61] reports 8× energy savings through weight sharing
(4b indices referring to 16 16b weight values).

Nweightshare,max = Nwidth,w/log2Nvalues (2.3)

2.8 Computation Optimizations
NNs contain millions of MAC operations, requiring fast and efficient
accelerator designs. This chapter discusses computation optimizations
ranging from operation reductions (optimized convolution operations,
sparsity, or data reuse) to arithmetic simplifications (quantization,
approximate computing, energy-quality scaling, or non-conventional
arithmetic) and circuit optimizations (mixed-signal arithmetic, non-
conventional arithmetic).

2.8.1 Optimized Convolution Implementations
The dominance of convolution operations in many network archi-
tectures [165,166] motivated optimized convolution implementations,
aiming for similar algorithmic behavior while reducing computational
complexity and resources.

Separable Convolutions

Separable convolutions are based on a separable filter approximation,
splitting higher dimensional kernels (e.g. a kx · ky 2D convolution)
into multiple lower-dimensional ones (e.g. 2 1D convolutions of kx · 1
and 1 · ky), significantly reducing the number of operations. A 2D
approach is used in [135], replacing a 5 · 5 convolution layer with a
horizontal and a vertical 5 · 1 and 1 · 5 layer, reducing the number
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of operations by 4x. Evaluated on an LFW face recognition NN, the
total number of operations is reduced by 1.7x, while accuracy was
decreased by 1%. To optimize parallel data access for the vertical
direction, a transpose SRAM (T-SRAM) is proposed, enabling both
row and column vector readout, reducing power by 47%. Depth-wise
separable convolutions (DSC) separate the kernel only in the depth
dimension, convolving inputs in the spatial directions, followed by a
pointwise (across depth) convolution that combines the filtered inputs
to an output. In contrast to standard convolutions that combine the
filtering and output generation, DSCs enable memory savings and
reduce MAC operations. MobileNets [16] use such DSCs, reporting
computation and parameter size reductions according to Equation
2.4. Evaluated for the ImageNet task, parameters can be reduced by
7× while the number of MAC operations is reduced by 8.5× at an
accuracy drop of just 1%.

reduction = 1
cout

+ 1
kx · ky

(2.4)

Frequency Domain Computation of CNN (FDC)

Transforming a convolution operation into the Fourier domain results
in a point-wise multiplication as shown in Equation 2.5 [167]. This
property can be exploited to reduce the number of operations for
computing CNNs. While the forward and backward transformations,
using fast Fourier transformation (FFT), increase the computational
effort and memory needs, the operation count can be significantly
reduced for large input and kernel sizes, achieving 1.75-5.3× faster
computation at iso-accuracy for 3x3 and 11x11 kernels in experiments
on various layer sizes [167]. However, this method requires large
memories for the FFT and the subsequent matrix multiplication. A
recent study [168] builds on the FFT-based approach, additionally
exploiting tiling, result-reuse, and symmetry of real-valued FFTs,
roughly cutting the number of operations and Fourier outputs in half.
It demonstrates 0.96-1.74× increase in throughput compared to the
pure FFT-base approach on 9x9-3x3 kernel sizes.

f ∗ g = F−1{F{f} · F{g}} (2.5)
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Winograd Algorithm

For highly parallelized convolution computations, the sliding window
operation can be flattened to convert it into a large point-wise matrix
multiplication. The overlapping windows create significant redun-
dancy with neighboring data, allowing to combine certain kernel-
weights offline, which reduces the number of multiplications at the
cost of more additions [166]. This so-called Winograd convolution
achieves 1.48-2.26 speedup for computing 3x3 convolutions.

Strassen Algorithm

Large matrix multiplications, as used in NNs with large kernels, can be
efficiently computed using the recursive Strassen algorithm, reducing
the number of operations [169]. Evaluated on AlexNet, operations are
reduced by 47%: while the dominating 3x3 and 5x5 convolutions are
reduced in terms of operations, the 11x11 convolution in the first layer
suffers from an increase of 18% compared to standard multiplication.

2.8.2 Sparsity Exploitation and Pruning
Le Cun et al. [170] observed more than 3 decades ago that a sig-
nificant number (75%) of NN parameters can be removed without
affecting its algorithmic accuracy. A recent exhaustive survey [171]
provides explanations to this phenomenon and estimates 10-100×
model size reduction for various networks. It focuses on sparsifica-
tion methods that set parts of a network to zero (pruning), while
keeping its complexity constant. They reduce a network’s size to its
minimum required complexity by creating a (too) high dimensional
representation to improve the training, knowing that the network can
be reduced again through pruning. Previous works, report weight
sparsity ratios of up to 99.996% for a LeNet-5 network with 99.3%
accuracy on the MNIST task [172]. We refer the interested reader
to the literature for more details on the main reduction techniques:
model down-sizing through neural architecture search [173], oper-
ator factorization [174], quantization (Section 2.8.4)), compression
(Section 2.7.2), parameter sharing [175], and sparsification [171]. A
survey on hardware acceleration of compressed models can be found
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in [176]. To create more sparse models, a 3-step approach is proposed
[177], first learning the importance of each connection, then dropping
low-weight ones, and finally fine-tuning the training. Evaluated on
AlexNet and VGG16 running the ImageNet task, they report 9×
and 13× parameter reduction at iso-accuracy. Energy-aware pruning
[178] optimizes the pruning strategy to achieve a minimum energy
cost. Observing that layers that are pruned in an early stage, tend
to have larger sparsity, they start pruning energy-intensive layers
first, estimating their cost based on the number of computations and
memory accesses. Evaluated on AlexNet running the ImageNet task,
reports 3.7× energy reduction and 11× weight reduction at <1%
accuracy drop. Envision [62] exploits sparsity by skipping sparse
memory accesses and MAC operations using a sparsity map (1b entries
per value). It reports 1.6× system energy saving for 30-60% activation
sparsity. Similarly, NullHop [179] exploits sparsity by skipping sparse
computations using a sparsity map combined with non-zero value
list compression, achieving up to 3.68× throughput increase in 28nm
synthesis results. Zero-value skipping logic using a zero-free neuron
array format is evaluated on a 65nm accelerator [180], reporting 1.37×
average throughput increase for various networks at the cost of 25%
memory increase (for zero sparsity). A special form of temporal
sparsity is proposed in CBinfer [181].

2.8.3 Data Reuse
Memory data that is used multiple times within a short period of time
can be buffered in a local cache memory to allow cheaper and faster
access. Special focus is set on data that has been fetched from energy-
expensive external memory. Three main structures of such data reuse
have been studied extensively [51] and are summarized below, namely
row-stationary (RS), weight stationary (WS), and output stationary
(OS) approaches. While a WS setup minimizes movements of weights,
as it is used in CIM architectures, OS keeps the partial sums for
computing each output feature local, and RS approaches combine
weight and activation data reuse. Eyeriss [63, 80] implements an RS
approach to maximize on-chip data reuse and reduce costly external
memory accesses. The 65nm chip can buffer one activations row
(up to 224 16b values) and one weight row (up to 12 16b values),
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increasing energy efficiency by 1.4-2.5x. A weight stationary approach
is presented in [182], reducing the weight memory accesses by moving
activations along cached weights during convolution computations.
OS processing is used in ShiDianNao [60], computing one output per
processing element in its 8x8 array (64 outputs of the same output
channel). This avoids moving partial sums to the memory and allows
sharing inputs with neighboring PEs, reducing the memory band-
width by up to 10x. Compared to their prior work DianNao [183],
featuring no local data reuse, it allows to reduce power consumption
by more than 1.66x, while increasing throughput by 1.87x. Another
output stationary approach is used in Hyperdrive [184], keeping the
feature maps stored entirely on-chip and streaming in weights. This is
motivated by the use of binary weights, consuming 16× less memory
bandwidth than the 16b float activations. Eyeriss v2 [66] implements
a flexible network-on-chip (NoC) that can be reconfigured into 4 main
reuse modes, enabling high activation and weight reuse in convolution
layers while the dense layer mode can maximize activations broadcast
because weights cannot be reused. Evaluated on MobileNet, they
report a throughput increase of 5.6x. Temporal data reuse is proposed
in CBinfer [181], demonstrating that CNN-based CV applications with
a static field of view can reuse large portions of each CNN layer
and only compute those features that changed over time. They first
detect changes in the input, generating a temporal sparsity map to
update the connected output features for which the inputs exceed a
calibrated threshold and buffer the new feature map. Evaluated on a
5-layer CNN for 10-class scene segmentation, this achieves an average
speed-up of 8.6x.

2.8.4 Hardware/Software Co-Optimization
A recent publication proposes less artificial intelligence [185], suggest-
ing that today’s networks are too high dimensional and thus prone
to overfitting limited datasets, providing some intuition why high
sparsity and quantization are viable optimization strategies. Today’s
NN algorithms exploit this observation, being developed with the
challenges of resource-constrained edge ML hardware in mind. Thus,
optimized algorithms like MobileNets [16] or SqueezeNets [186], re-
ducing complexity through separable convolutions and kernel size
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minimization, have been introduced. These co-optimization strategies
are covered in this section.

Complexity Scaling

The growing number of network architectures created a large design
space, shifting the design strategies from hand-crafted architectures
to (semi) automatic neural architecture search (NAS), identifying
optimal trade-offs between design constraints like accuracy and com-
putational complexity. Frameworks like adaDeep [187] provide multi-
dimensional model selection strategies to find the optimal model scal-
ing strategies for a specific model and use-case. Dynamic complexity
scaling is proposed by once-for-all networks [188], which are trained
once but can then be deployed in various down-scaled complexities (in
depth, width, kernel size, and resolution) without re-training. This
allows deploying them on platforms ranging from high-performance
cloud servers to low-power edge devices, with low accuracy degrada-
tions for the reduced-size versions.

Energy-Quality-Scaling

Energy-quality (EQ) scalable systems [189] introduce a quality metric
that describes a network’s complexity. This allows identifying the
knobs for power-scaling through (acceptable) quality degradations.
The presented framework for EQ-scalable systems and EQ architec-
tures [189] helps identifying applications where sensing and/or pro-
cessing quality degradation is acceptable, for example in noise-resilient
applications like computer vision. The list of quality knobs for dy-
namically adjusting EQ scaling encompasses arithmetic precision, bit
error rates, sampling rates, algorithmic complexity, and more. Follow-
up works exploit this concept for implementing ULP voice activity
detection [190] or always-on computer vision system [191]. Voice
activity detection is shown to support EQ scaling [190], achieving
3.5× lower energy for 2% accuracy degradation using decision trees
on a 28nm chip. Joint voltage and EQ scaling applied to a tradi-
tional computer vision task [191] is shown to achieve 3× lower energy
through EQ scaling and 3.4× lower energy through VDD scaling on
a 40nm process.
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Quantization and Reduced Precision

NNs can tolerate significant parameter and activation quantization
with negligible effects on accuracy [70]. To reduce the effect of re-
duced precision, quantization-aware training techniques are used (e.g.
straight-through estimators [192]) to keep the model derivable for
back-propagation. Quantization works especially well in networks
that are limited in training data, while the accuracy degradation in-
creases for smaller (complexity-limited) networks, which cannot com-
pensate for the loss of information [193]. Lowering precision reduces
memory size, simplifies computational arithmetic, and lowers the power
consumption, which also motivated Google to add 8bit support in
their TPUs [79]. The viability of fully binary NNs (BNNs) [194],
limiting activation and weight precision to 1bit, finally demonstrates
the full range of quantization possibilities. BNNs have considerable
accuracy degradations but allow to process multiplications using sim-
ple XNOR logic, reducing area and power needs. Survey [71] provides
an in-depth analysis of quantization schemes with a special section on
sub-8bit quantization and a short overview of quantization-optimized
hardware. Weight sharing is another form of quantization, limiting
the number of supported values, as discussed in Section 2.7.2. Energy
and area savings of reduced precision arithmetic have motivated quan-
tization optimizations. The energy for additions and multiplications
are evaluated on a 45nm process [102], reporting 14× and 20× MAC
energy reduction for 8b int compared to 32b int and 32b float, respec-
tively, as summarized in Table 2.3. A 45nm overview [195] reports
power and area increase with bit-width for adders (linear increase) and
multipliers (quadratic increase), as shown in Table 2.4. Comparing
a MAC-combination, total area and power are reduced by 13× and
10.8x, respectively, for 32b to 8b, and by 3.6× and 3.6x, respectively,
for 16b to 8b. Similarly, this was shown on multipliers for a 65nm
process [183] as illustrated in Table 2.5.

The 65nm accelerator in [183], achieves 6.1× reduction in area and
7.33× in power consumption for implementing 16b fixed-point mul-
tipliers instead of baseline 32b floating-point arithmetic while main-
taining comparable accuracy. Envision [62] exploits 1-16b dynamic
precision scaling combined with DVFS, reporting reductions in energy
per MAC operation (relative to 16b) of >5× for 8b and >50× for 4b
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Table 2.3: 45nm MAC energy per operation for different precision

Precision Int8 Int32 Float16 Float32
Addition energy [pJ] 0.03 0.1 0.4 0.9
Multiplication energy [pJ] 0.2 3.1 1.1 3.7
Total energy/MAC [pJ] 0.23 3.2 1.5 4.6

Table 2.4: 45nm adders and multipliers for different precision

Precision Int8 Int16 Int32

Adder Area [µm2] 212 322 1117
Power [µW ] 753 2235 4819

Multiplier Area [µm2] 1038 4209 15126
Power [µW ] 2830 10816 34034

Table 2.5: 65nm multipliers for different precision

Precision Int16 Float32

Multiplier Area [µm2] 1309 7998
Power [µW ] 577 4230
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precision using sub-word parallel computations in a 28nm process.
UNPU [196] employs non-linear quantization support by replacing
16b multipliers by 2x4-bit lookup tables, indexing 16 16b activations
and 16 16b weights, with the result of each combination stored in
the table. They report 79% power reduction and 93% lower latency
while the area is reduced by 1.3× compared to instantiating a 16b
multiplier. A review on scalable precision MAC architectures [197]
compares recent 2-8b scalable implementations, discussing spatial and
temporal MAC architectures and benchmarking them on a 28nm pro-
cess using a data-gated 8b-input MAC as a baseline. Throughput is
roughly increased quadratically for cutting precision by a factor of 2,
reaching up to 14.5× for 2b precision. Area is increased 1.1-4.4× for
parallel precision-scalable designs while bit-serial implementations can
reduce the area by up to 40%. The overhead for scalability-support
increases the energy per operation in full precision modes by up to
52% for single-level, up to 94% for dual-level scalability, and up to
14× for multi-cycle bit-serial MACs. The energy per operation only
reduces linearly with precision in the baseline but decreases supra-
linearly for the scalable MACs, achieving up to 4× lower energy at
2b precision (overhead compensated at 6-4b precision for parallel and
at 2b for bit-serial MACs). An XNOR-based 22nm BNN acceler-
ator [137] exploits the reduced precision by utilizing SCM instead
of SRAM, enabling lower power consumption. Similarly, the 65nm
binary-weight (12b activation) CNN accelerator YodaNN [64], reports
improved performance using voltage-scalable SCM. Combining binary
weights (instead of 12b) with SCM (replacing SRAM) allows them
to reduce the power by 11.6x. Cross-layer bit-width optimization
[198], shows more than 20% parameter size reduction compared to ho-
mogeneous bit-width fixed-point quantization at iso-accuracy on the
CIFAR-10 task. Furthermore, knowledge distillation can be used for
low-precision quantization [199], improving the accuracy of a highly
quantized model using “distilled” knowledge from a larger (higher
precision) teacher network during training.

2.8.5 Approximate Computing
Approximate computing trades power consumption, speed, and area
off against arithmetic accuracy [200]. Approximation approaches are
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either based on voltage over-scaling (VOS) below the technology’s
threshold voltage or on functional modifications ranging from algorithm-
to circuit-level [201]. It differs from energy-quality-scaling (Section
2.8.4), due to its circuit-based scaling approach. A 2020 survey [202]
on approximate computing for DNNs reports power, delay, and area
numbers from synthesized approximate adders, multipliers, and di-
viders using a 28nm process at 1V. It reports up to 69% energy savings
(power-delay product) for an image sharpening task while for JPEC
compression only 20% savings are achieved. An earlier survey [201]
reports an approximate integer data format and related arithmetic
operation implementations in 45nm [195], limiting values and compu-
tation precisions to a dynamically selected range of most significant
non-zero bits. This achieves 55-65% power reduction compared to
accurate computations at <0.5% accuracy drop in KNN and SVM
tasks. Approximate computing using 2- and 3-bit adder designs [203]
reports further power and accuracy improvements. VOS introduces
bit errors due to missed timing constraints and other unwanted effects
but reduces power consumption as shown on a 28nm CNN accelerator
[204]. Reducing the SRAM voltage from nominal 1.0V to 0.51V
enables 3.12× memory and 2.13× system power reduction for running
a 9-layer fully binary CNN at <1% accuracy drop. They report
stronger effects on accuracy from weight errors than from activation
errors, enabling further activation memory voltage scaling.

2.8.6 Non-Conventional Arithmetic

To further optimize NN computations, non-conventional computer
arithmetic has been surveyed [205], comparing currently used CMOS
technology and alternative emerging technologies for implementing
computer arithmetic. Also alternative number systems are evaluated,
for example, a logarithmic system on a 65nm process [206], showing
3× higher energy per addition compared to floating-point, but 1.5×
lower for multiplications, 17× lower for divisions, and 38× lower for
square root computations.
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Spiking Arithmetic

Biological neurons in the human brain function with spike-based sig-
naling and computing, inspiring researchers to rethink the traditional
level-based arithmetic in ICs [207]. Neuromorphic spiking arithmetic
is employed in IBM’s 28nm TrueNorth [208], implementing a total of
1 million digital spiking neurons, and Intel Loihi [209], implementing
131k neurons in a 14nm process. Due to the significantly different
computing paradigm, which cannot be directly compared with other
optimization approaches, we refer the reader to the specific literature
for more details [207,210,211].

Hyperdimensional Computing

Hyperdimensional computing is another brain-inspired computing ap-
proach that encodes information in very high-dimensional binary vec-
tors with thousands of entries, called hypervectors. The similarity of
information contained in hypervectors is encoded in a distance metric,
making them robust against bit errors and thus suitable for VOS.
Tasks like image recognition are performed by comparing the distance
of an input vector (e.g. features of an image) with a known reference
vector. We refer to the specific literature [205, 212] for more details
as this goes beyond scope of this chapter.

Quantum computing

While still being in its infancy, quantum computing [213] promises
extremely powerful computing capabilities, enabling unprecedented
throughputs which could allow further acceleration of NN computa-
tions in the future.

2.8.7 Mixed Signal Arithmetic
The analog nature of most sensor signals and power advantages of
computing in the analog domain motivated mixed signal arithmetic
for computing DNN [214, 215]. Survey [57] compares a set of analog
DNN accelerator architectures, reporting 40-80% lower area, as well
as 70% and 40% reduced power compared to digital implementations
for 130nm and 65nm designs, respectively. This shows that analog
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circuits do not scale equally well with reduced process nodes as their
digital counterparts. Other properties, like the intrinsic computation
parallelism from Kirchhoff’s law, can compensate for this reduced
advantage in smaller node sizes.

Analog implementations usually require peripheral circuits that
can diminish analog computation advantages at increasing design ef-
forts, as illustrated in [216, 217], implementing the same accelerator
in a 28nm process but using analog or digital MAC-accumulation
circuits, respectively. Evaluated on a fully binary CIFAR-10 network
at iso-accuracy, the energy per inference dropped from 14.4uJ (digital)
down to 3.79uJ (analog), which is a system-level energy improve-
ment of 3.8x, while the energy for the underlying MAC computation
dropped by nearly 12.9× (>3× more). The 28nm analog-domain
computations (8b dot product) are presented in [218], reporting nearly
75% energy spent on ADC and control logic.

Bong et al. [219] implement a hierarchical analog-digital hybrid
binary decision tree engine on a 65nm image sensor, running 60% of
the algorithm in the analog domain, reducing the inference energy by
39% compared to digital computation.

A 130nm 32x32 analog MAC array multiplying a DAC-converted
vector with a 32x32 matrix is presented in [220]. Compared to a
multi-core processor baseline, power and area are reduced by 71%
and 43%, increasing throughput by 10.3x.

The CIM approaches discussed in Section 2.4.3 exploit the ad-
vantages of mixed signal processing, keeping the data in memory
to avoid losses from data movements and digitalization losses. An
RRAM-based analog crossbar [221], compares performance to equiv-
alent implementations with digital RRAM-usage and SRAM-based
memory. It reports 270× energy and 540× latency improvements over
digital RRAM, and 430× energy and 34× latency improvements over
SRAM implementations, showing latency issues for digital RRAM.

2.8.8 Arithmetic Implementations
NN training is usually executed with 32bit floating point precision,
which can be significantly lowered during inference. Each layer has a
specific sensitivity to quantization and can thus be implemented with
adapted (minimal) bit-widths [222]. Selecting the arithmetic precision
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and the data types allows to optimize implementations, increasing
throughput and energy efficiency (as shown in Section 2.8.4). Moti-
vated by the finding that the required precision varies across DNN
layers [222], a 65nm bit-serial DNN engine is implemented based on
the 16bit DaDianNao architecture [223]. Evaluated on 9 common
DNNs with per-layer-minimized precision, it reports 1.2x-4.76× (2.0×
on average) increased energy efficiency at iso-accuracy compared to
the baseline accelerator. Variable-precision bit-serial MAC can also
be implemented using look-up tables [65], reporting energy savings of
23%, 27%, 41% and 54% with respect to standard fixed-point MAC
for 16-, 8-, 4-, and 1-bit weight precision, respectively (16b activation).
A similar, Booth-Wallace multiplier-based multi-precision implemen-
tation was shown in [62], supporting 16b multiplications, that can be
split into 4·4b multiplications.

2.9 Quantitative Comparison
This section summarizes the quantitative effects of the discussed edge
ML accelerator optimizations. Table 2.6 - Table 2.8 list each op-
timization approach with a brief description of the implementation
setup that was used to demonstrate the effect in the referenced pub-
lication. Five performance indicators quantify each technique: the
memory usage impacts the (often dominating) energy for data han-
dling, the throughput determines the processing latency, the chip area
directly impacts manufacturing cost, and the power/energy reductions
translate into longer battery lifetimes. However, optimizations might
influence the algorithmic accuracy, which is therefore listed in the fifth
impact column. While most works either do not influence the accu-
racy or report their optimization performance at iso-accuracy levels,
some approaches significantly deteriorate algorithmic performance.
Reduced accuracy must be carefully traded-off against performance
improvements of the optimization, which might be complicated by
non-comparable benchmarks used across different publications.

Architectural optimizations (Section 2.4) report up to 13× power
savings with increased throughput using CIM. Note that currently,
most implementations only support small networks. Power manage-
ment (Section 2.5.2) allows for significant leakage and dynamic power
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reductions, but negatively impacts the throughput due to the reduced
operating frequency. Optimizing the memory offers reduced access
energy and mainly lower static power while affecting the required area.
Optimized placement and low-leakage SRAM types allow trading area
off against power. Various dataflow and data handling options (Sec-
tions 2.6-2.7) offer improved throughput or reduced memory require-
ments (up to 10’000× lower size). Computation improvements (Sec-
tion 2.8) report higher throughput and efficiency using quantization
but must be traded off against accuracy deteriorations.

As an example, the designer of a new edge ML accelerator, requir-
ing to run low-complexity ML tasks at very low power consumption,
could identify DVFAS [62] in Table 2.6 as useful optimization, re-
porting 25× power reduction at constant throughput. The reported
accuracy impact must be considered but might be acceptable for
simple tasks. To further improve the power consumption, SCM can be
chosen instead of standard SRAM, adding another 2-3× reduction in
(memory) power consumption [137]. If the selected network tolerates
sparsity, the approaches exploiting weight and activation sparsity from
Table 2.7 might be another option to drastically decrease the power
further. However, replacing digital processing with a mixed-signal
implementation from Table 2.8 has lower expected power gains and
probably comes at the cost of an increased area, as reported in the
literature [216].

2.10 Conclusion
This chapter presented a quantitative survey of design optimization
strategies for low power NN accelerators. It evaluated each approach
based on five key performance indicators, namely memory reduction,
throughput increase, area reduction, power savings, and algorith-
mic impact. The compiled list of optimizations allows comparing
these quantitative performance measures across all other approaches,
enabling accelerator designers to estimate their impact during the
design process. Reported optimizations range from 10’000× memory
reduction to 33× energy savings, and illustrate the wide range of
proposed optimization techniques.
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Table 2.6: Overview of optimization strategies
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only
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Table 2.7: Overview of optimization strategies
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UHD-res. networks: e.g.
SRGAN: 19’633×1,
MobileNetV2: >20x1

Limits
number of
supported
layers

Depth-first
instead of
layer-wise
processing

On-
chip:0.8×,
Ext.: 20×

(0.94x) - Beneficial
(less ext.
memory)

- [146]
2016

VGGNet-E on FPGA AlexNet:
only 28%
ext.
reduc.

Early data
reduction: opt.
conv. in 1st
layer

2.5–10×
(MNIST/
EMNIST)

250-460×
MNIST/
EMNIST)2

- Linked to
through-
put

-0.4%
/-1.7%
(MNIST/
EMNIST)

[154]
2020

Optical convolution used in
first layer in front of 4 dense
layers on MNIST and
EMNIST task

Only
works on
first
layer.

Early data
reduction:
analog
in-sensor proc.
of 1st conv.
layers

- - - 73% sys.,
85%
sens.,
45% proc.

Detrimen-
tal

[156]
2016

Simulated 180nm SAR ADCs
and tunable capacitors
running first 1-5layers of 8b
GoogleNet ConvNet

Add
hierarchically
scalable effort

Detrimen-
tal (more
nets)3

Beneficial - ∼10× - [62]
2017

28nm DNN accelerator
running 12MOP – 30.8GOP
networks

Add
hierarchically
scalable effort

Detrimen-
tal (more
nets)3

1.2-9.8×
(avg.)

- Linked to
through-
put

- [163]
2015

Hier. scaled SVM, NN, and
dec. tree on MNIST and
other tasks

Overhead
for
difficult
inputs

Introduce
early exit for
conditional
execution

Detrimen-
tal (new
layers)3

1.73-
1.91×

- Linked to
through-
put

Slightly
increased

[160]
2016

6- and 8-layer NN for MNIST
task with 1 and 2 early exits

Introduce
early exit for
conditional
execution

Detrimen-
tal (new
layers)3

- - 1.22× Slightly
reduced

[161]
2020

12-class Google speech
command task with early exit
on 22nm acc.

D
a
ta

h
a
n
d
li
n
g

(S
e
c.

2
.7

)

Efficient CNN
memory
mapping

Up to 2× - - (with
memory)

- - [28]
2020

Act. (total) memory
reduction e.g. DMCNN-VD:
48.8% (48.2%)

Compression
using Huffman
coding

1.2-1-3×
for
weights

- - (with
memory)

- - [164]
2016

Encode weights using
Huffman coding in AlexNet
and VGG16

Compression
using Huffman
coding

Up to
5.8×

- - (with
memory)

- - [62]
2017

28nm DNN accelerator
running face recognition
CNNs

Compression
using RLC
coding

1.2-1.9× - - (with
memory)

- - [63]
2016

65nm process running
AlexNet

Weight sharing <4× for
weights

- - 8× Similar [61]
2016

45nm accelerator with weight
sharing (16 entries of 16b
values)

C
o
m

p
u
ta

ti
o
n

(S
e
c.

2
.8

.1
)

Replace CNN
with
depth-wise
sep. conv.

>7× 8.5× Linked to
memory

- 1% [16]
2017

MobileNet vs. pure CNN on
ImageNet task

Separable
convolution
instead of 5x5
(1x5, 5x1)

Beneficial
(less
param.)

4× (1.7×
on total
network)

- - -1% [135]
2018

5-layer CNN for LFW face
recog. with sep. conv. vs.
normal conv.

FFT-based
convolution

Detrimen-
tal (more
buffer)3

1.75-5.3× - (with
memory)

Linked to
through-
put

- (iso-
accuracy)

[167]
2014

Computing 3x3 – 11x11 CNN
kernels via FFT vs.
conventional

Smaller
kernels
profit less

Opti.
FFT-conv.:
fine-grained
FFT

Beneficial 0.93-
1.74×

- Linked to
through-
put

- [168]
2020

Fine-grained FFT-based conv.
vs. pure FFT conv. (9x9–3x3
kernels)

Use Winograd
fast
convolution

- 1.48-
2.26×

- - Negligible
normally

[166]
2016

Winograd 3x3 convolution on
VGG E network (batch size
64-1)

Accuracy
drop for
large
kern.

Use Strassen
algo. for
matrix mult.
in CNNs

- 24-47% - - - [169]
2014

Strassen algo. on AlexNet
conv. layers 2-5 (5x5, 3x3) on
CPU

More eff.
for large
matrix

C
o
m

p
u
ta

ti
o
n

(S
e
c.

2
.8

.2
)

Sparsity
exploitation +
pruning

9-13× for
weights

Beneficial - - - (iso-
accuracy)

[177]
2015

Network pruning on AlexNet
and VGG16 for ImageNet

Sparsity
exploit.: skip
memory access
+ MAC op.

- Beneficial - 1.6× - [62]
2017

28nm DNN accelerator with
1b sparsitiy map (16b
activations)

Assumes
30-60%
sparsity

Sparsity
exploit.
energy-aware
pruning

11×
weights

unknown - (with
memory)

3.7× <1% [178]
2017

AlexNet on ImageNet task

Skipping
sparse
operations

Beneficial
(sparsity)

3.68× - - Impacted
(quanti-
zation)

[179]
2019

28nm CNN acc. with sparsity
map and NZVL compression

Simulation
only

Add zero-value
skipping logic

Beneficial
(1.25×
more)

1.37× Similar
(adds
logic)

Beneficial - [180]
2016

65nm acc. with zero-skipping
logic and zero-free data
encoding

1 at equal memory bandwidth (lower for lower memory bandwidths) 2with respect to largest network with similar performance
3higher memory usage due to increased number of networks and layers to be executed or larger data to be buffered
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Table 2.8: Overview of optimization strategies
Field
(Sec.)

Optimization
approach

Reported impact Reference work RemarksMemory
usage re-
duction

Through-
put
increase

Area re-
duction

Power/
energy
reduc-
tion

Algori-
thmic

Work
(Year)

Implementation
performance

C
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m

p
u
ta

ti
o
n

(S
e
c.

2
.8

.3
)

Add data
reuse:
row-stationary
processing

Detrimen-
tal (local
mem.)3

Beneficial Detrimen-
tal

1-4-2.5× - [63]
2017

65nm 168 PE row-stationary
accelerator running AlexNet

Data in
SRAM
and ext.
DRAM

Add data
reuse: output
stationary

Detrimen-
tal (local
mem.)3

1.87× 0.3×
(5.5×
larger)

1.66× - [60]
2015

65nm 64PE OS acc, with vs.
without reuse on various
CNNs

Savings
depend
on
network

Add data
reuse: NoC for
flexible reuse
modes

Detrimen-
tal (local
mem.)3

5.6× Detrimen-
tal

1.8× - [66]
2019

65nm NN accelerator with
192 PEs running MobileNet

Data reuse:
change-based
temporal
sparsity

Detrimen-
tal (local
mem.)3

8.6× - (with
memory)

- - [181]
2017

On 5-layer CNN for 10-class
scene segmentation

Entire
net stored
in
memory

C
o
m

p
u
ta

ti
o
n

(S
e
c.

2
.8

.4
)

Reduce
precision
int32/float32
to int8

Beneficial Unknown Unknown 14×
(int32),
20×
(float32)

Impacted [102]
2014

45nm arithmetic compared

Reduce
precision
int32/int16 to
int8

Beneficial Unknown 13×
(int32),
3.6×
(int16)

10.8×
(int32),
3.6×
(int16)

Impacted [195]
2017

45nm arithmetic compared

Reduced
precision
(16b→8/4b)

Up to 4× Up to 4× - >5× (16b
->8b),
>50×
(16b→4b)

Accuracy
impacted

[62]
2017

28nm acc. with sub-word
parallel 1-16b MAC precision

Replace 16b
multiplier with
4bx4b LUT

- 14.3× 1.3× 4.7× Impacted
(quanti-
zation)

[196]
2019

65nm acc running ImageNet
task (quantized vs. 32b
baseline)

LUT: 256
pre-comp.
16b
results

Replace MAC
with scalable
precision MAC
(8b→8/4/2b)

- Up to
14.5×
(2b)

>0.22×
par.),
<1.4×
(ser.)

up to 4×
(2b)

Accuracy
impacted

[197]
2019

28nm scalable prec. MAC
designs (parallel and serial)
vs. 8b MAC

2-14×
power
overhead
@ 8b

Reduce weight
precision
12b→1b,
replace
SRAM→SCM

Weights:
12×

similar 1.2× 11.6× Impacted [64]
2018

Binary weight accelerator in
65nm with SCM

Energy-quality
scaling

- - - 3.5× 2%
reduction

[190]
2020

Voice activity detection using
decision trees on 28nm chip

Energy-quality
scaling: using
det. thresh.,
feature/mem.
size

- - - 3× Negligible [191]
2020

40nm image feature detection

C
o
m

p
u
ta

ti
o
n

(S
e
c.

2
.8

.5
)

Approx.
computing

- - Beneficial 20%-69%
(pow.
delay
product)

Accuracy
impacted

[202]
2020

28nm approx. mult./adders
run. image sharpening, JPEG
compr.

Approx.
computing

- - Beneficial 55%
(KNN)-
65%
(SVM)

Accuracy
impacted

[195]
2017

45nm approx. comp. engine
vs. accurate 32bit
implementation

Approx.
computing:
SRAM VOS

- 0.095×
(10.5×
slower)

- 3.12× Impacted
(<1%
lower)

[204]
2018

28nm fully binary CNN acc.
running 9-layer CNN

C
o
m

p
u
ta

ti
o
n

(S
e
c.

2
.8

.7
)

Replace digital
with
mixed-signal
arithmetic

- 1.58× 0.31×
(3.2×
larger)

3.8×
(system),
12.9×
(MAC)

- (iso-
accuracy)

[216]
2018

28nm fully binary CNN acc.
with analog MAC vs. digital
[191]

Analog
periph.
reduce
gain >3×

Replace float
arithmetic
with log.

- unknown unknown 0.33, 1.5,
17× (add,
mult, div)

[206]
2016

65nm logarithmic arithmetic
system vs. conventional float

Replace digital
with
mixed-signal
arithmetic

- - - 1.39× Impacted [219]
2017

65nm mixed analog/digital
comp. vs. pure digital face
detection

60% of
algo. in
analog
domain

Replace digital
with
mixed-signal
arithmetic

- 10.3× 1.7× 3.4×
power

- [220]
2011

130nm 32x32 analog MAC
array for matrix-vector
multiplication

Input/
output in
digital
domain

Replace dig.
SRAM MAC
with analog
RRAM- CIM

- 34× 11× 430× Deterio-
rate
signifi-
cantly

[221]
2018

Simulated accelerator design
in 16nm, running MNIST task

C
o
m

p
u
ta

ti
o
n

(S
e
c.

2
.8

.8
)

Replace digital
with
mixed-signal
arithmetic

Beneficial 1.3-5.3 0.95× 1.2-4.76×
(2.0×
average)

- (at iso-
accuracy)

[222]
2017

65nm var. perc. bit-serial
acc. vs. 16b baseline

Evaluated
on 9
common
DNNs

Replace MAC
with var. prec.
LUT-based
bit-serial MAC

- - - 1.23-
1.54×
(16b-1b
weight)

- [65]
2019

65nm NN acc. with var.
precision MAC vs. fixed 16b
MAC

Activa-
tions: 16b

3higher memory usage due to increased number of networks and layers to be executed or larger data to be buffered



Chapter 3

FPGA-Based Binary
Neural Network
Implementation

Streaming high-speed cameras pose a major challenge to distributed
cyber-physical and IoT systems, because large data volumes need to
be transferred under stringent real-time constraints. The previously
introduced edge processing concept can mitigate this data flood by
extracting relevant information from acquired image data directly on-
device with low latency.

This chapter presents the advantages of edge processing on an
FPGA-based 20kFPS streaming camera system, which can classify
regions of interest (ROI) within a frame using a BNN. Executed
in real-time streaming mode, the classification enables substantial
data reductions and related energy savings. BNNs are shown to
enable energy-efficient image classifications for on-device processing.
Demonstrated in a case study with a simple real-time BNN classifier,
our system achieves 19.28 us latency at 0.52 W power consumption
and reduces the data transfer by 980×. We compare external image
processing with this result, showing 3× energy savings, and discuss
the used HDL/HLS design flow for efficient BNN implementation.
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3.1 Introduction
Communication-intensive applications like video surveillance and com-
puter vision-driven automation are largely limited by the bandwidth
of their communication interfaces. The emergence of IoT concepts,
which aim at connecting large numbers of devices and allowing them
to communicate with each other, further exacerbates the problem by
increasing the number of data streams. The reason for still trans-
ferring unprocessed data from peripheral devices to computers and
servers mainly lies in the higher computational capacities of these
cloud computing resources. Some tasks though, especially in com-
puter vision applications, require low latency and feature high data
volumes that cannot be sustained on standard communication links.

Edge processing [18] is an alternative to moving the data process-
ing part of a system closer to the source or the edge of a network. This
allows large data volumes to be processed, and relevant information
to be extracted, before being transmitted over communication links.
Additionally, this approach decreases latency, which is important for
real-time tasks [224]. Looking at the use case of a streaming camera,
edge processing means that sampled images are analyzed directly
onboard the device. Beside image or video compression algorithms,
also image classifiers based on NNs can be used for this task [225]:
The hundreds (or even thousands) of pixel values in each image can
then be reduced to less than a dozen bytes, containing the image class.

As a motivating example, consider a 1 megapixel camera with
10-bit resolution streaming out a video at 2kFPS. Such a device
continuously generates 26.2 Gbit/s of data. Neither a current Wi-
Fi interface, achieving throughputs of up to 1.7Gbit/s [226], nor a
state-of-the-art wired USB 3.1 communication link, with a claimed
theoretical bandwidth of 10 Gbit/s, is capable of supporting such raw
data rates. With on-board 1000-class image recognition, like it used in
ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) based
on the ImageNet dataset [7], the data stream could be reduced to 20
kbit/s (10 bits per frame), allowing many cameras to be transmitting
data simultaneously.

NNs, or more precisely CNNs [227], are often used algorithms for
such image recognition tasks. But because of their computational
complexity, NNs are most frequently processed on powerful servers
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in the cloud, requiring the images to be uploaded through a commu-
nication network. As previously shown, this is not feasible for high-
speed cameras and therefore requires local image classification. On
size and power-limited devices, mobile GPUs and specialized image
processing chips can run image analysis at low frame rates but do not
sustain high-speed image classification [228]. The recently introduced
BNNs though, significantly reduce the computational complexity of
networks, reaching high frame rates when implemented on FPGAs
[228].

Increasingly larger and more complex NN architectures are being
proposed for accurate image classifiers, which sometimes even surpass
human performance in some image recognition tasks [1]. Deep Neural
Networks (DNNs) shifted the trend from shallow networks with very
few layers to deeper ones with tens or up to hundreds of layers [36,
37, 229] which need to be stored on external dynamic random-access
memory (DRAM) due to their large size. Internal on-chip memory
would be much faster and more power-efficient but usually does not
support the size of such larger DNNs.

Thus, classifying images with a NN is a computationally inten-
sive task with a substantial memory footprint, challenging the used
hardware architectures. High-performance CPUs, GPUs, and FPGAs
with fast DRAM memory are often used architectures for computing
large size networks but consume vast amounts of power [230]. One of
the main performance limitations in these systems is the extensive
external DRAM memory access [231], often referred to as “mem-
ory bottleneck”. In many real-time applications, this memory access
dominates the power consumption [61], which is a big challenge for
energy-constrained mobile systems.

To mitigate the memory and power limitations, different approaches
have been proposed. On one hand, application-specific hardware is
being developed, providing energy-efficient processing elements [61].
On the other hand, quantized networks are tackling the problem by
reducing the size of the network through parameter quantization [232].
Thus, parameters can be represented with lower precision numbers,
reducing both the required storage space as well as the bit widths of
computational elements. The recently introduced BNNs exploit this
advantage by limiting weights and activations to 1-bit values [232,233].
These modifications substantially lower the hardware requirements



60 CHAPTER 3. FPGA-BASED BNN

compared to standard 32-bit architectures: Memory needs are reduced
by 32× and the dominating MAC operations can be simplified to
logic XNOR operations with appended bit-counting [233]. Simpler
computations increase the throughput as each operation consumes
less time, while lower memory needs allow parameters to be stored
on-chip, reducing external memory accesses. Thus, the low memory
footprint directly reduces the problematic effects of memory bottle-
necks. Summarized, BNNs provide higher computational efficiencies
and thus enable low-power ML applications.

While CPUs and GPUs were designed to efficiently process 32-bit
arithmetic operations, their instruction sets do not natively support
low-precision arithmetic [228]. FPGAs and ASICs can handle such op-
erations more efficiently as they provide arbitrary bit widths for arith-
metic and logic operations (such as XNOR). Moreover, the reduced
size of learned weights in BNNs allow meaningful networks to be fully
stored on internal block RAM (BRAM), avoiding expensive external
DRAM transfers [228], as it would be required for standalone CPUs.
BNNs implemented on FPGAs are therefore fast and power-efficient
solutions for on-board processing. ASICs have similar advantages as
FPGAs and can even be designed more efficiently but are in most cases
not affordable due to their time-intensive and very costly manufactur-
ing, while being less flexible than FPGAs. However, one of the main
drawbacks of FPGAs is the time-intensive firmware development in
HDL. Therefore FPGA manufacturers introduced HLS tools, which al-
low faster coding in higher-level languages with automatic compilation
into HDL code [234]. This step substantially reduces the development
time and adds efficient throughput optimization capabilities to the
design process.

This chapter presents a complete implementation of a real-time
image recognition system integrated in an FPGA-based 20kFPS high-
speed camera. To the best of our knowledge, this is the first such
system, capable of processing all data on-board at full frame rate for
performing BNN-based image recognition. We demonstrate that even
for multi-kFPS cameras, a completely configurable engine for image
acquisition, ROI extraction, and BNN inference can be implemented
on a single FPGA while achieving low power consumption and sat-
isfying the high frame-rate requirements. The real-time performance
enables edge processing, enormously reducing the communication data
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traffic and ensuring privacy as raw images do not leave the device.
We present a complete case study of the deployment of our engine on
a real high-speed camera. Experiments demonstrate 980× on-board
data reduction, leading to 3× energy savings compared to raw data
streaming, showing the applicability of BNNs for edge processing in
high-speed camera applications. The rest of this chapter is organized
as follows. Section 3.2 discusses related work and in Section 3.3 we
present the implemented system as well as our case study. Experi-
mental results are presented in Section 3.4.

3.2 Related Work
The motivation of edge processing is well described by Shi et al. [18],
illustrating the vast amounts of data being produced by IoT nodes,
making efficient on-board processing inevitable. Their overview of
edge processing applications suggests performing video analytics close
to the data source, as we propose in this chapter. Ananthanarayanan
et al. [224] elaborate on large-scale video analytics in huge networks
and conclude that real-time video processing might even be “the
killer application” for edge processing. Soro et al. [225] provided
an extensive survey of the challenges in such visual sensor networks
in 2009, already naming resource constraints as the biggest problem
for large camera networks. One of the discussed solutions is again
on-board video processing. This proposal is supported by Mohan et
al. [233], estimating the number of cameras in the world to reach 13
billion by 2030 and thus pushing the video traffic portion in relation
to the overall internet traffic to more than 83% in 2020.

The problem of large data bandwidths gets worse for high frame
rates and further increases if multiple high-speed cameras are to be
used in a network, as for example Noda et al. describe in their vehicle-
tracking application [235]. By extracting position features from sam-
pled images and only transmitting this information, they manage to
transmit 1kFPS video streams from multiple cameras through a simple
Ethernet link. Stevanovic et al. show that on-board image processing
is further useful for low-latency applications, like image-based trigger-
ing for high-speed X-ray imaging [236]. Their image analysis extracts
features that are used to self-trigger video acquisitions, making it
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possible to record activities with a very low latency, which external
processing cannot support due to long transmission delays.

In many vision applications, traditional image compression tech-
niques are used for data reduction [226]. They are based on efficient
representations of the contained information or the exploitation of
limitations in human visual perception. Embedded image compression
for high-speed image sensing is presented by Mosqueron et al. [237]
but only reaches compression ratios of 1:30, which is much smaller
than what can be achieved with image classification. Nevertheless,
traditional compression could be used as an orthogonal optimization,
for pre-processing the data in order to keep the classifier as simple as
possible.

For more complex real-time image recognition tasks, NN-based
inference engines have been presented. Cavigelli et al. [238] show
real-time scene labeling based on CNNs, achieving state-of-the-art
performance on an embedded GPU. In their more recent work [181]
they additionally exploit frame-to-frame redundancies in static cam-
era settings, which further improve their power efficiency. Also, BNNs
have been shown to perform real-time image recognition, as Mazare
et al. [239] present in their object-orientation analysis system, based
on a small BNN, implemented on an FPGA. Fast CNN-based object
trackers, such as YOLOv2 [240], manage to reach a few tens of frames
per second on embedded GPUs. However, all listed approaches reach
frame rates that are orders of magnitude too low for high-speed cam-
eras, producing tens of kilo-frames per second.

Implementing reduced precision NNs for image recognition tasks
has been proposed in many recent papers. This field of research mainly
started to expand after Courbariaux et al. [232,237] successfully pre-
sented BNNs achieving near state-of-the-art accuracy in image recog-
nition tasks. Since then, different approaches for improving quantized
NNs have been published. Nurvitadhi et al. evaluate the applicability
of BNNs on different hardware architectures, namely FPGA, CPU,
GPU and ASIC [228]. On FPGAs, BNNs can be implemented in
on-chip RAM while other architectures require external DRAM access,
consuming 172× more energy than the floating-point multiplication
of the fetched number [228]. For networks with many memory ac-
cesses, DRAM dominates the power consumption and thus creates a
big disadvantage. Their results confirm the superior performance on
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FPGA and ASIC implementations. Nevertheless, quantized NNs have
also been optimized on mobile CPU architectures [241], improving
the inference time compared to a full-precision implementation by
more than 3x. Many FPGA implementations have been presented
[230, 233, 234, 242–244], showing highly energy-efficient performance
reaching continuous computational efficiencies of 400GOPS/W and
more, as shown by Umuroglu et al. [233]. Baskin et al. [244] present a
BNN implementation that scales better for larger networks, allowing
more complex systems to be implemented on FPGAs. Other work
focuses more on multi-bit quantization, like ternary NNs [245], which
achieve slightly higher accuracies than BNNs at the cost of higher
computational and memory costs. The trade-off between accuracy
and network quantization has inspired Mishra et al. [246] to propose
wider networks for compensating accuracy loss due to quantization.
By operating in the region between the two extremes, namely BNNs
and full-precision networks, they can balance accuracy versus compu-
tational cost.

3.3 Implementation on FPGA-Based High-
Speed Camera

In this section, we discuss the proposed FPGA-based BinaryEye stream-
ing camera with on-board image recognition. Instead of streaming all
information through the communication interface, BinaryEye reduces
the time and energy-intensive data communications by introducing
(on-device) edge processing. Classifying an image reduces the data
volume from hundreds of bytes, representing each pixel value, to a
single classification result. Our camera was originally designed as a
streaming system, buffering sampled images in DRAM and transfer-
ring them through a USB interface. This version serves as a reference
for experimentally benchmarking our proposed on-board processing
implementation. Due to the low computational requirements and the
small memory footprint of BNNs, we were able to implement edge pro-
cessing within the existing FPGA and without using power-intensive
DRAM. Fig. 3.1 shows the main building blocks of the system archi-
tecture. The data flow starts at the image sensor, where pixels are
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streamed out as soon as an image gets triggered by the camera control
block (through a USB command). A line buffer sorts the pixels and
forwards complete lines. In the original streaming application, all
data is directly transferred to the USB interface (indicated with a
dotted line in Fig. 3.1). Because the USB interface might not be
able to extract the image data at the speed they are being produced,
a DRAM image buffer is necessary. BinaryEye instead extracts the
relevant pixels from the line buffer and binarizes the reconstructed
image as soon as all lines are available. Binarization of the image is
necessary for binary-input classifiers and needs to be processed online.
Thus, we implemented a thresholding function for quantization, which
suffices for simple applications: If a pixel is darker than a certain
threshold, it is labeled black, otherwise, it is set to white, mapping
it to the background. The threshold value continuously needs to be
adapted to varying illumination levels, which was achieved by using
the average pixel value as a threshold. Fig. 3.2 shows examples of
sampled images and their respective binarized representations. As
soon as an image finishes the binarization step, the BNN classifier
is triggered. Upon completing a classification, the result is buffered
and transferred via USB. All camera-specific functions, like trigger-
scheduling or image sensor configuration, are implemented inside the
camera control block. The proposed design offers simple extension
possibilities to extract multiple ROIs and process them at the same
time by instantiating multiple parallel classifier paths (if the FPGA
resources allow it). To present the feasibility in a case study, we
implemented and tested a handwritten digit classifier (based on the
MNIST dataset), connected to the output stream of the high-speed
image sensor. Such a setup could for example be used in a mail
sorting system, where handwritten digits on postcards or letters need
to be analyzed at a very high speed. Recognized numbers can be
combined to postcodes which in turn tell the system where a certain
card needs to be directed. Due to the required high throughput
for handling thousands of letters per hour, the letters need to move
through the system at the highest possible speed, making high-speed
image processing inevitable. Especially the processing latency plays a
crucial role as the output (e.g., the postcode) is required for controlling
the letter-distribution mechanism, which needs to keep up with the
pace of the conveyor belt. Transmitting the same image data to a
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Figure 3.1: System overview showing the data flow. Path a) presents
the implemented version with an on-board classifier. Path b) directly
transfers images to USB.

centralized classification engine would increase the latency and thus
limit the maximum throughput. The implemented system therefore
recognizes handwritten digits presented to the camera onboard the
device and outputs the classification results. In our demonstration we
used an ROI in the top right corner of the receptive field, measuring
32×32 pixels, which is the smallest camera-ROI possible for extracting
28×28 pixel images (as required for benchmarking with the MNIST
dataset). Each raw 28×28 pixel image contains 784 pixels with a
resolution of 10 bits each, summing up to 980 bytes of data. Image
classification enables to represent the image using a single byte for
encoding the class information, resulting in a data compression ratio
of 980:1. The 10 different classes in a handwritten digit classifier could
even be encoded with 4 bits, increasing the compression ratio by 2x.
In contrast, the precision of the pixels could only be reduced if the
lighting conditions are well matched with the exposure time of the
camera. This would require an additional control circuit, increasing
the system overhead.



66 CHAPTER 3. FPGA-BASED BNN

3.3.1 High-Speed Camera System
The presented camera system integrates a custom-made 1 mega-pixel
high-speed image sensor. It features a global shutter, allowing smear-
free image acquisition of up to 20,000 grayscale frames per second (at
a 32×32 pixel resolution). In order to transfer image data at such
a high speed, the sensor is directly connected to FPGA peripherals
making parallel data readouts of the 10 bit pixel values possible. An
integrated ROI functionality enables the camera to process and output
a limited region of the whole 1280×1024 pixel image. This reduces
the data volume to be transferred, making faster frame rates possible
and decreasing the peripheral power consumption. Fig. 3.3 shows the
whole system, integrated into a device consisting of the image sensor,
power supplies, a USB 2.0 communication interface, and an FPGA,
containing the firmware. A Xilinx Kintex-7 XC7K325 FPGA with
326,080 logic cells and 16 Mbit block RAM is implemented in this
system.

3.3.2 BNN Image Classifier
As discussed in Section 3.2, different BNN architectures have been
proposed to implement image classifiers in FPGAs. Our work does not
focus on the BNN classifier itself but its integration in an edge process-
ing system. Thus, we chose to employ an existing handwritten digit
classifier for demonstrating our edge processing system. Umuroglu et
al. presented a framework for efficiently mapping BNNs on FPGAs
(FINN) by converting the required computations into FPGA-friendly
operations [233,242]. They made an implementation of this framework
publicly available1, providing HLS code for reproducing a number
of example classifiers on a Xilinx PYNQ board. Even though they
targeted an ARM-based Zynq platform, we found their published
results very promising for adapting it to a pure-FPGA implementation
(the processor only interfaces the classifier). Thus, we based our
case study implementation on their MNIST classifier “LFC max”,
which is a fully-binarized three-layer FC network with 1024 neurons
per layer. Its input is a binary 28×28 pixel image and it outputs
a 10-bit result, each bit representing one of the ten possible digits.

1https://github.com/Xilinx/BNN-PYNQ
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Figure 3.2: Examples of 28x28 pixel images from the camera (top
row) and after binarization (bottom row).

Figure 3.3: Image of the presented camera system with a mounted
objective.

All network parameters are stored in on-board BRAM, avoiding any
external memory access. The provided FINN example is based on
a Xilinx Vivado HLS project, which compiles the MNIST classifier,
written in C++, into HDL code for the FPGA logic and software
code for running the processor. We extracted the compiled HDL
code, implementing the BNN, and designed the needed interfaces for
embedding the classifier into the existing FPGA camera firmware.
As depicted in Fig. 3.1, all network parameters can be loaded via
USB through a control interface. This allows network parameter
updates to be easily transferred without having to re-program the
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device or even changing the HDL code. For the final integration, all
HDL components, including the compiled classifier, can be synthesized
in Xilinx Vivado and loaded onto the FPGA. This design concept
makes the classifier easily replaceable without having to write HDL
code and thus takes the quickly evolving nature of (neural) network
architectures into account. All that needs to be done for updating
the network is compiling the new classifier, replacing the old one
in the HDL project, and synthesizing the new implementation, as
depicted in Fig. 3.4. Which networks are possible to be implemented
on the FPGA mainly depends on the available memory size and the
number of logic cells on the FPGA. Our implementation only utilized
around one quarter of the available BRAM resources as shown in
Table 3.1. According to the resource utilizations presented in the
FINN paper, we could also fit their convolutional CIFAR-10 and
SVHN classifiers. In fact, much larger BNNs could be implemented on
the used FPGA, implementing more demanding tasks for other edge
processing applications.

3.4 Experiments and Results
To evaluate the proposed BinaryEye system on the example of the im-
plemented MNIST case study, we compare its performance with other
quantized MNIST implementations. Moreover, we present the power-
advantages and the latency benefits of on-board image recognition for
edge processing. As this work does not focus on the NN itself, but
mainly on its implementation for building a streaming edge processing
node, classification accuracy plays a secondary role. But we would
like to emphasize that even though full-precision networks are often
performing slightly better in the benchmarks than their binarized
versions, BNNs have been shown to achieve comparable results at
much lower computational costs. This is not limited to simple datasets
like MNIST, but also applies to more complex networks as for example
CIFAR-10 object recognition [232, 233]. Table 3.3 summarizes the
performance of state-of-the-art (SoA) MNIST BNN classifiers [230,
233]. For this benchmark, the accuracy measured in this work is less
than 1.5% below the highest reported classification rate of 99.79%
(using a full-precision network) [247]. Because our classifier network
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Table 3.1: Resource utilization of the FPGA

Implementation Resource utilization
LUT FF BRAM

Original camera 48k (24%) 81k (20%) 14 (3%)
BinaryEye 88k (43%) 115k (28%) 124 (28%)

BNN classifier

BNN classifier
implementation

Vivado HLS

Camera 
implementation

BNN classifier
implementation

Vivado

(C++)

(VHDL)

FPGA

(Bitstream)

Figure 3.4: Design-flow for implementing a high-level-coded BNN
(C++) on the camera FPGA using HLS. Updating the BNN only re-
quires the design to be re-compiled in Vivado HLS and re-synthesized
in Vivado.

is an exact reproduction of the FINN implementation by Umuroglu et
al. [233], the accuracy of our system is identical to their benchmark
performance. But unlike their purely computational implementation
of the BNN, our system receives real-world data from an image sensor.
Therefore BinaryEye is limited by the camera speed of 20kFPS, while
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their fastest classifier implementation reaches 1,561kFPS at 2.44 µs
latency. Apart from the lower input frame rate due to the camera,
we also clocked the classifier at a lower speed, namely 100 MHz,
which is sufficient and more power-efficient for 20kFPS classifica-
tions. They clocked the classifier at 200 MHz and thus consumed
more than 16× more power. Additionally, we did not use any of
the speed optimizations available for this classifier, namely pipelining
or adaptions of the network folding parameters to available FPGA
resources, which further increased our inference time to 18.49 us.
While such optimizations would significantly improve the inference
speed due to a higher degree of parallelism, they would negatively
impact the power consumption and are therefore not implemented.
Our inference time allows 2 ROIs to be classified within the period of
a frame, while 78 ROIs per frame would be possible by optimizing
the implementation to the published 1,561 kFPS version. Based
on the current resource utilization, we expect this version to also
be feasible on our FPGA, but at the cost of the mentioned power
disadvantages. The unutilized FPGA resources could also be used to
instantiate multiple classifiers in parallel, each one for different ROI
selections. This would theoretically multiply the image throughput
by the number of parallel classification-lines. We expect 3 parallel
classification lines to fit inside our FPGA, making a total of 6 ROI
classifications possible at 20kFPS.

With a 4× larger network than ours, Liang et al. [230] show a com-
parable accuracy on the MNIST benchmark but consume considerably
more power. For this small network, their computational performance
is still lower than what Umuroglu et al. [233] report, but achieves
almost 4× higher values on the CIFAR-10 benchmark, making it
promising for larger networks. Alemdar et al. [248] achieve similar
performance by using a ternary FC network, reaching only slightly
lower accuracies but more than 20× higher frame rates. By further
reducing the classification accuracy they even achieve a lower power
consumption than we present in this work. Compared to our reference
classifier from the FINN paper [233], their maximum frame rates are
almost 6× lower, making FINN more promising for possible frame
rate improvements in the camera. In terms of power consumption,
our 20kFPS implementation consumes slightly less than Umuroglu
et al. [233] measured on their 12.2kFPS classifier. Even though our
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frame rate is higher, the powerful ARM processors on their Zynq
FPGA cause some extra consumption. We avoid this by implementing
the complete system on FPGA without any processor. In order to
quantify the energy savings of edge processing, we compare the power
consumption of BinaryEye with the consumption of a pure stream-
ing implementation, which directly transmits all images without any
pre-processing (the original camera implementation). Therefore we
synthesized the FPGA firmware once with the embedded classifier
and once without it (see the dotted path in Fig. 3.1). By evaluating
both implementations on the same camera hardware for the task of
recording a limited number of 10,000 images at 20kFPS, the energy
savings could be determined. The power consumption was measured
during the image acquisition and classification phase as well as during
the data transfer period. Table 3.2 summarizes the results and shows
that edge processing reduces the energy consumption for the given
task by a factor of more than 3x. This can be explained by the 980×
reduction of the data volume and the associated data transfer time.
Although the additional classifier functionalities on BinaryEye are
slightly increasing the power consumption compared to the original
system, the savings in transmission time still reduce the total energy
consumption. This reduction ratio does not depend on the number of
recorded images as the energy consumption of each implementation
linearly depends on the number of images, making the ratio a constant.
Apart from this improvement, it needs to be noted that the system
without a classifier could not support continuous image streaming at
this frame rate. The image transfer time (1.24 s) is longer than the ac-
quisition time (0.5 s), causing the image buffer to overflow eventually.
A faster data interface (e.g. USB 3.1) would reduce the transfer time
but still consume more power and possibly limit the maximum frame-
rate. Additionally, the pure streaming implementation outsources the
processing power to an external device. This portion could be included
in the calculation and would further increase the power consumption.
While the reduced power consumption of the edge processing system
might not be a big advantage in stationary implementations, its low
latency is of paramount importance for real-time applications. The
short latency of BinaryEye allows the system to react to an input
image within 19.28 µs. If the image gets processed externally, the la-
tency becomes the sum of the transfer time to the external processing
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Table 3.2: Comparison between image-streaming and on-board image
classification (this work)

Measurement (10k images) Original BinaryEye
Image acquisition: average power [W] 13.26 13.78
Image acquisition: time [s] 0.5 0.5
Data transfer: power [W] 11.96 12.22
Data transfer: time [s] 1.24 0.00024
Data volume to be transferred [kB] 9,800 10
Total energy (acquisition + transfer) [Ws] 21.46 6.89
Relative energy consumption 100% 32%

unit, the actual processing time, and the communication time back
to the device. From the time measurements in the original camera
implementation, it can be estimated that transferring an image to a
computer amounts to 124 µs. The same time will be required to send it
back to the camera. If, for example, the detection of a certain object
has to trigger a video acquisition sequence, at least 248 us latency
need to be taken into account. This makes BinaryEye at least 12×
faster than the camera with external image processing, even without
taking the external processing time into account. In applications like
mail sorting, the reduced latency would allow letters to be processed
quicker as the sorting mechanism would get its directing command
faster, increasing the throughput of the machine.

3.5 Conclusion
Binarized neural networks for image classification offer significant
computational benefits and memory savings compared to full-precision
implementations of the same network. This chapter presented a high-
speed streaming camera with real-time on-board classification for edge
processing, demonstrating these advantages on a real system. On-
board processing of the image, as opposed to external (cloud) com-
puting, enabled the camera to reduce the transmission data and thus
achieved high frame rates in streaming mode without congesting its
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communication interface. The pure FPGA implementation made it
possible to efficiently exploit the simplified computations as well as
the low memory footprint of BNNs, allowing the whole network to be
stored in power-efficient on-chip BRAM.

Our system achieved real-time image recognition at 20kFPS with
19.28 us latency. The implemented case study of a hand-written digit
classifier demonstrated near-state-of-the-art accuracy at 0.52 W power
consumption. Classifying images on-board the camera reduced the
data volume to be transmitted by 980x, enabling power saving of 3×
compared to full-data streaming. Freeing capacity on the commu-
nication channel additionally enabled multiple other cameras to be
attached to the same network, making applications with interacting
high-speed cameras possible. These results indicated that BNNs could
help edge processing to be implemented in other FPGA-based sys-
tems. This is supported by various works that evaluate BNNs for more
complex classifiers and report comparable accuracies as their full-
precision counterparts (e.g., CIFAR-10 classifier [230, 233]), making
BNN-based classifiers a promising solution for many other applica-
tions that go beyond the presented case study.

The configurability with high-level programming tools, like Vivado
HLS, simplifies the deployment of FPGAs and their adaption to more
complex applications. Combined with the benefits from efficient han-
dling of BNNs, FPGAs were shown to offer simple implementations
of edge processing systems.



Chapter 4

Automated Neural
Network Mapping on
FPGA-Based Cameras

The FPGA-based camera in Chapter 3 demonstrated low latency and
yet highly configurable edge processing capabilities, advocating the
advantages of processing NNs on FPGA platforms. While HLS tools
simplify the hardware design process, the mapping of trained networks
still requires expert knowledge for implementing the dataflow and
correctly allocating data in the memory.

To further streamline the implementation process, this chapter
presents an automated deployment framework for DNN acceleration
at the edge on FPGA-based cameras. The tool automatically con-
verts an arbitrary-sized and quantized trained network into an ef-
ficient streaming-processing DNN accelerator block that is instan-
tiated within a generic adapter block in the FPGA. In contrast to
prior work, the accelerator is purely built from programmable logic
and thus also supports end-to-end processing on FPGAs without on-
chip microprocessors. Its automatic translation from trained Caffe
networks supports arbitrary layer-wise fixed-point precision for both
weights and activations, an efficient XNOR implementation for fully
binary layers, as well as a balancing mechanism for effective resource

75
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allocation. To demonstrate the performance of the system we em-
ploy this tool to implement two CNN edge processing networks on
an FPGA-based high-speed camera with various precision settings,
showing computational throughputs of up to 337GOPS in low-latency
streaming mode (no batching), running entirely on the camera.

4.1 Introduction
A wide range of deep NNs are being used for detecting and classify-
ing objects [249] in imaging applications but also serve many other
domains that go far beyond the field of computer vision. The list of
different network architectures is nearly as long as the number of appli-
cations itself, each one optimized for its specific purpose, the hardware
it is running on, the available power, and the required computational
throughput. For efficiently deploying each specific NN, a diverse set of
strategies has been followed, such that some networks rely on accurate
high-precision computations while others are optimized for fast, but
lower-precision, arithmetic [250]. Thus, it is crucial that the embedded
processing hardware and its mapping tool are flexible and support the
optimal parameter options as well as a developer-friendly deployment.

DNNs consist of billions of multiply-and-accumulate (MAC) opera-
tions that must be computed at low latency to meet the throughput re-
quirements of the machine learning (ML) inference application. While
such a workload is usually too demanding for general-purpose CPUs,
the highly parallelized architectures of GPUs offer sufficient compu-
tational throughput for processing small- to medium-sized networks
in real-time [251]. Thus, most of today’s ML frameworks for training
and inference natively support GPUs for accelerating their processing.
Cloud computing solutions are employed in some compute-intensive
use-cases, outsourcing the large and power-hungry processing engines
to servers with virtually unlimited resources. While this provides
mobile systems with access to cheap and powerful computational re-
sources, it introduces energy-intensive (raw) data communications
between the device and the cloud, adding significant latency to the
processing.

However, for applications like (image-based) video self-triggering,
low processing latency is crucial as it was shown in [252, 253]. These
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implementations achieve low-latency video triggering through simple
on-board image comparison or temporal change detection but could
benefit from more sophisticated ML-based triggering algorithms. Us-
ing on-board algorithm processing capabilities at the edge (of the
connected network), so-called edge processing, low latency can be
achieved while avoiding power-intensive communications with the cloud.
Additionally, edge processing mitigates privacy concerns that might
arise for transferring (sensitive) data through a (public) network.

The general-purpose architectures of CPUs and GPUs enable the
user to quickly adapt to new NN topologies, which might require novel
data types, connection types, and differ in their layer dimensions.
However, each specific network can be implemented more efficiently
using ASICs, which can avoid unnecessary overhead, implementing
only those hardware resources that are required for a specific target
application. This minimizes both the memory footprint and the power
consumption for processing the network, making them suitable for
edge processing on low-power and low-cost devices. Based on the fast
evolution of NNs over the past few years and the long development
time for ASICs, we note that the SoA network types might already
have significantly changed by the time the ASIC arrives on the market.

The resulting need for more flexible hardware accelerators opened
the door for FPGA-based devices, providing highly configurable hard-
ware blocks that can quickly be reconfigured to optimize the alloca-
tion of computational resources to new network architectures. The
complex development flow of FPGAs using HDL can be streamlined
with HLS tools like Xilinx Vivado HLS [254]. A range of domain-
specific NN mapping tools have further been presented to simplify
the implementation of trained NNs on FPGA-based devices, support-
ing features like parameter quantization and computation scheduling.
However, these tools often rely on vendor-specific hardware blocks and
are limited to a subset of the available FPGA chips (or series), as they
require hard CPU cores integrated within the FPGA fabric [250,255].
Other tools are restricted in their supported dimensions (e.g. 3x3
convolutions only [256]) or the supported numerical precision (e.g.
binary precision only [250] or floating-point only [255]). Additionally,
most of these tools rely on batching to achieve high utilization at the
expense of latency.
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This chapter presents NN2CAM, a flexible and automated frame-
work for mapping NNs as highly parallelized low-latency, streaming
implementations onto pure-logic FPGA-based camera platforms for
edge processing. Our target platform is a FastEye [257] high-speed
camera, shown in Fig. 4.1. The tool automatically extracts the
network architecture and its parameters from a trained network, sup-
porting layer-wise configurable fixed-point precisions for weights and
activations with an efficient XNOR-implementation for fully binary
layers. Each network is implemented as a streaming architecture,
reducing the memory needs and enabling parallel computations on all
layers simultaneously. A resource-balancing technique ensures that
the available processing hardware resources are effectively distributed
among the layers to maximize the throughput. In Section 4.2 we sum-
marize quantized networks and their processing approaches. Section
4.3 provides an overview of existing SoA frameworks for mapping
networks onto FPGAs and in Section 4.4 we present our proposed
framework. The implemented streaming architecture is described
in section 4.5, followed by experimental results demonstrating the
performance on the high-speed camera platform in Section 4.6.

4.2 Background
Neural networks exist in many forms, differing in their dimensions,
layer types, and data precisions, which can be optimized for each
specific application. To deploy a NN onto a hardware platform, the
mapping tool must understand these abstract parameters and be able
to create an (efficient) mapping between the network description and
the available hardware resources. In the following subsections, we
summarize the relevant terminology and principles for interpreting
and mapping NN models.

4.2.1 Quantized Neural Networks
As shown in the previous Chapter, BNNs provide beneficial properties
for efficient hardware implementation, reducing the memory and the
logic resources compared to full-precision arithmetic. However, the
precision requirements of activation and parameter values can differ
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NN2CAM (this work): Automated NN mapping
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Figure 4.1: Overview of the NN2CAM framework, mapping a trained
CNN model onto a smart FPGA-based camera.

across various applications and even across different layers within a
single network. While most of the powerful general-purpose process-
ing devices operate with 32 bit floating-point numbers to accurately
represent a wide range of values, power- and size-restricted platforms
are often limited to smaller and fixed-point precisions ranging from
16 bit down to 1 bit values. The BNNs in Chapter 3 show up to 32×
lower memory requirements, while the arithmetic operations require
much smaller hardware resources and the related power per operation
can be significantly improved [102]. Section 2.8.4 further elaborates on
the hardware effects of various quantization levels, reporting substan-
tial benefits also for intermediate sub-8bit quantization levels, which
motivates supporting these precisions in our work.

Quantizing NNs to smaller precisions requires careful mapping as
quantization errors can quickly propagate through deep networks, ac-
cumulating to significant sources of accuracy deteriorations. Research
in this field has shown that aggressive quantization can be achieved
with negligible impact on accuracy if quantization-aware training is
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employed [258, 259]. Such resiliency to quantization errors has been
shown for low bit precisions ranging from a few bits [193] down to
binary representations [194].

4.2.2 Streaming versus Layer-Wise Processing

Due to the layered structure of NNs, layers can be computed sequen-
tially, or layer-wise, always completing one layer before starting the
next one, as shown in Fig. 4.2 a). Once a layer is finished, the
memory of its input layer is no longer needed and can be overwritten
(freeing that memory space). This has the advantage that only a
maximum of two subsequent activation layers must be kept in memory
instead of all of them [28], reducing the memory needs. However,
computation parallelism is limited to a single layer. In contrast,
streaming processing, also called depth-first execution [144], computes
a small region of each layer in parallel, only buffering small fractions
of the layers in memory. Parallelization of computations can thus
be extended to many layers and the required activation memory can
largely be reduced as only a small portion of each layer must be stored
at any point in time. This principle is depicted in Fig. 4.2 b), showing
the entire layer (activations) with dashed lines and the part that is
stored in memory with solid lines. Each layer continuously buffers
incoming activations computed by its preceding layer and processes
them as soon as a complete kernel-sized window is available. Data
that is no longer needed in following sliding window positions can
be overwritten, making the buffer a first-in first-out (FIFO) block.
The results from each convolution are streamed out to the next layer,
operating in the same FIFO manner.

4.3 Related Work

Existing frameworks allow to map specific types of neural networks
onto FPGA platforms, configuring optimized hardware accelerators
for the networks. These tools are specialized for a certain field of
application and thus only support a specific set of features. FPGA-
based NN accelerators have been surveyed in various works, listing
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Figure 4.2: Visualization of layer-wise CNN processing (a) and
comparison with streaming implementation (b). The grey box marks
the window position that is currently being computed (convolved with
the kernel) while the striped box indicates data that is buffered in
memory.

their optimization strategies and implementations [54,260,261]. Table
4.1 provides a summary of current SoA frameworks.

Caffeine [262] is one of the first frameworks that presented ac-
celerating the inference of networks using FPGAs, executing com-
putations offloaded from a connected host PC. The software library
compiles layer settings and parameters that are then synthesized using
the Xilinx SDAccel tool and loaded onto the FPGA, computing the
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assigned network portions layer-by-layer. A similar implementation,
but with a pre-synthesized accelerator that can be configured during
run-time, is shown in [262], implementing 3x3 convolution layers using
the Winograd algorithm. DLAU [255] is another early NN accelerator
architecture for FPGAs, implementing matrix multiplication, addi-
tion, and activation completely in logic with three pipelined processing
blocks for tile-wise processing. An on-board CPU configures the
processing block with parameters and feeds the tiled matrix data.
Their 32 MAC units demonstrate a speed-up of 36.1× compared to
a 2.3 GHz Intel Core2 processor for computing an FC network at
200MHz.

The introduction of BNNs in 2016 [194], enabled MAC computa-
tions to be implemented with simple logic, as demonstrated in the
FINN framework [250]. Combined with a streaming architecture,
their experiments reported unprecedented throughputs thanks to the
highly parallelizable logic implementation of binary MAC operations
and the small memory footprint of their weights, allowing to map
the entire network in on-chip memory. Additionally, FINN provides
a standalone processing platform as the on-chip CPU core of the
utilized Zynq FPGA is used for control purposes. The initial work
consists of three pre-defined networks and a simple compiler that
generates HLS code for synthesis using the Xilinx Vivado HLS tool.
Recently, significant extensions to the training and quantization-flow
of the compiler [263] as well as extensions to other network types were
published. A similar HLS approach is taken in PipeCNN [264], using
Altera’s (now Intel) OpenCL flow for high-level synthesis to implement
their layer-wise accelerator. Angel-Eye [265] is another framework
targeting Zynq-based implementations of CNNs. Their framework
consists of a Caffe-compatible layer-wise quantizer to generate fixed-
point weights, focusing on 8 bit representations, and a compiler that
maps the entire network as a standalone engine onto the CPU and the
FPGA logic of a Zynq SoC. The CPU controls the FPGA-based CNN
accelerator, feeding it with input data as well as with instructions.
Another OpenCL-based framework is presented in [266] and their
follow-up work [267], reporting a CNN mapping flow for 16 bit fixed
point implementations on FPGAs using a latency-driven optimization
strategy.
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The automated CNN mapping toolchain MALOC [268] imple-
ments the entire network on the chip as a pipelined implementa-
tion. To enable larger networks, for which intermediate layers can-
not be buffered simultaneously, it employs a tiling mechanism that
determines which parts of each intermediate layer shall be buffered.
Another framework with an automated mapping toolchain is pre-
sented in [165], exploiting the efficient implementation of convolution
computations using FFT and Winograd transformations. These two
implementations report performance for batch processing to keep the
utilization in their computation blocks high. Because this is not
possible for single-frame operation, where inter-layer dependencies
can stall subsequent layer processing, the performance is expected
to significantly decrease for single-frame operation, as it was shown in
the performance of [250].

Xilinx’ Vitis AI tool provides a deep learning processing unit (DPU)
[269], which is an accelerator engine for the Xilinx Zynq platforms,
allowing to choose from 8 pre-configured (pre-placed-and-routed) ar-
chitectures with varying degrees of parallelism. It contains a compiler
that maps the network to an efficient instruction set and performs data
reuse optimization as well as instruction scheduling. Additionally, it
provides an optimizer tool that enables model compression. Vitis
AI is part of Xilinx’ unified development environment that combines
high-level synthesis with multi-processor support and a set of APIs.

NEURAghe [270] is a hardware/software framework for Zynq plat-
forms, exploiting a tight interaction between network-optimized soft-
ware, running on the hard CPU, and a 16 bit fixed point accelerator
implemented on the programmable logic. Another recent work [271]
implements a dedicated CNN accelerator for YOLOv2 object detectors
using Intel’s OpenCL FPGA framework. This accelerator achieves
unprecedented throughputs, but only supports 8 bit implementations
of YOLO and no other networks. Tridgell et al. [272] follow a net-
work unrolling approach for ternary networks and additionally exploit
sparsity in convolutional layers (using the knowledge of zero weights
in the kernels), achieving up to 2.5TOPS. Due to the unrolling of
the network, a high degree of parallelization is achieved but also
extreme numbers of FPGA resources are required, which is why it
was implemented on a cloud AWS platform and only tested on small
input images. A similar unrolling strategy was used in LogicNets [273],
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encoding the entire network using look-up tables (LUTs). Using a new
network co-design strategy they can keep the resource utilization low
and thus achieve throughputs of more than 8TOPS on very small
low-precision networks. This is unfortunately limited to specialized
applications with very small network sizes like they are used in data
communication analytics.

Based on the performance and the flexibility of the supported
network topologies, [165, 250, 269] can be considered the state-of-the-
art quantized neural network mapping frameworks for FPGA-based
hardware acceleration. While some of the other frameworks report
up to 3× higher (best in class) throughput results, they are limited
in their flexibility in terms of supported quantization levels and sup-
ported networks.

Despite the variety of existing frameworks, none of them support
the target FastEye camera edge processing use case, requiring flexible
and automated NN mapping onto pure-logic FPGA platforms for
standalone end-to-end processing, supporting arbitrary-sized CNNs to
enable a wide range of applications. While [262,262] are designed for
Caffe-acceleration on PCs and [262] only supports 3x3 convolutions,
all other Xilinx-FPGA-compatible frameworks are limited to Zynq
platforms with CPU cores, do not feature standalone processing and
only cover limited ranges of precision options. Our work supports the
required features for the FastEye camera while achieving 337.8GOPS,
which is comparable to the highest reported performance among the
state-of-the-art frameworks.

4.4 Neural Network Mapping Framework
Deploying a trained NN onto an FPGA platform for on-board infer-
ence requires system developers to cross multiple layers of abstraction,
from a high-level network description down to a low-level hardware
design. Machine learning training tools, like Caffe [9], encode the
trained network in a set of files containing the architecture description
and the learned parameters. These files form the basis for translating
the NN into a representation that can be synthesized for the target
FPGA platform. This section describes our NN2CAM framework that
automatically maps a trained Caffe-formatted image analysis CNN on
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an FPGA-based camera using a streaming processing architecture as
shown in Fig. 4.3. Starting from the trained network, the architecture
gets extracted using Python scripts, determining all dimensions and
layer settings as well as extracting and annotating the trained pa-
rameters. After mapping the layer operations to HW-implementable
functions (e.g. convolution operation) and allocating the required HW
resources to efficiently compute the network, the resulting (high-level)
representation gets compiled into a hardware description. From there,
the usual FPGA synthesis tools are used to synthesize the system
to a bitstream. Our target system is a FastEye high-speed camera,
in which the CNN-based image analysis block is instantiated by the
proposed framework, automatically mapping arbitrary CNN to it.
However, the mapping flow is generic and can be used for other
applications where similar DNN-based image processing on the edge
is required.

Trained network

Layer types, dimensions Parameters

Scaling, quantizing
according to HW

Configured HW 
functions

A: Network extraction

B: Mapping to HW functions

C: Allocating HW resources

(HLS-compliant) HW 
description

Parameter file
(Loadable format)

D: HLS compilation to HDL

FPGA bitstream

HW synthesis

Network HW block (HDL)System HW blocks (HDL)

e.g. Caffe

Python 
script

Vivado HLS

Vivado

Figure 4.3: Framework tool-flow from trained network description to
bitstream.
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4.4.1 Network Extraction

Caffe represents its trained models with 1) a textual prototxt-format
file containing the architecture skeleton that describes each layer with
its type, dimensions, and connectivity as well as 2) a binary caffemodel-
format file that stores all learned parameters like weights and biases.
To convert the network into a framework-interpretable format, the
architecture description is first parsed, extracting all layer dimensions,
which then allows arranging the parameters into a mathematical ma-
trix representation. In this form, the network is essentially a series of
2-dimensional convolution operations on 3-dimensional matrices with
known convolution kernels.

4.4.2 Mapping to Hardware Functions

In the next step, the individual layers are mapped to the available
prototype hardware functions. Our tool currently supports the follow-
ing layer types: 1) FC layers, 2) CNN layers and 3) average-pooling
layers which are all implemented as high-level C++ functions that
are compatible with Xilinx Vivado HLS. All network components
like layer types, processing elements, and data handling mechanisms
are implemented in this generic C++ format within a set of library
files, enabling simple high-level extensions for future layer types. The
compilation script utilizes these functions and parametrizes them dur-
ing the instantiation. Most of these library functions are based on
the FINN framework [249], which targets implementing BNNs on
Xilinx Zynq FPGAs. As FINN focuses on BNNs, it does not directly
support arbitrary fixed-point precision networks nor implement input
activation padding or ReLU activation functions, such that some of
the libraries had to be extended. We list the main extensions to the
original FINN library:

• Extended with arbitrary fixed-point precision.

• Extended sliding window function with side padding and fixed-
point precision support.

• Added a function for ReLU activation support.
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• Extended MAC implementation with fixed-point precision sup-
port.

• Mapping tool: The FINN framework did not feature a mapping
tool but only supported a set of pre-configured networks.

Considering the processing of a CNN layer, input activations from
a sliding window position need to be multiplied and accumulated with
a learned weight kernel. The MAC operations of each window position
perform a dot product between the two matrices, which can be broken
down into a sequence of MAC operations. These matrix operations
are repeated for each window position on the input feature map. A
data path implementing these functions can thus be split into two
stages: 1) the sliding window generation that buffers the input data
to provide the correct input activations (window) and 2) the MAC
processing that performs the actual computation of the data. As
explained earlier, FC layers can be interpreted as a sub-set of CNN
layers where the kernel has the same size as the input layer, making
the sliding window operation needless. Average pooling layers are
also similar to CNN layers but work in a channel-wise manner with
a homogeneous weight kernel that averages over the input activations
of each input channel separately. To avoid multiplications, the input
activations can be summed up and the sum divided by the number
of kernel elements per channel. This framework assumes that the
parameters of the trained network have already been quantized during
training and thus directly converts extracted parameters to the fixed-
point precision that is specified in the model.

4.4.3 Allocating and Balancing Resources
Mapping the network to hardware-representable functions generates
a functionally complete representation. However, due to the arbitrary
size of each layer, the layer processing time can vary significantly
across the layers, creating an imbalanced data flow. This negatively
impacts the temporal processing element utilization in some layers,
leading to a low overall throughput because each layer in the streaming
architecture is waiting for data from its previous layer, stalling the
following ones if insufficient input activations are supplied. Thus,
the processing throughput needs to be balanced across all layers by
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allocating MAC processing units accordingly. Fig. 4.4 visualizes this
problem, comparing each layer’s processing workload in terms of MAC
operations per output to achieve a continuous data flow in all layers.
The assumed 3-layer network shows higher computational loads in the
first layers, decreasing towards the output.
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MAC
MAC
MAC
MAC
MAC

MAC

MAC
MAC
MAC

MAC
MAC
MAC

conv1 conv2 conv3

Available HW resources

MAC MAC MAC

HW resource allocator script

Figure 4.4: Computational hardware resource allocation to ensure a
continuous data processing stream across all layers.

The streaming architecture employed in this framework supports
two kinds of processing parallelism within each layer, which logically
arrange the assigned MAC units:

1. Output channel parallelism: Multiple output channels are being
processed at the same time, each one in a separate PE. Input
activations can thus be reused across all PEs and each PE in-
dependently accumulates the results of its multiplications. The
number of PEs is therefore limited by the number of output
channels in the layer. Additionally, each PE is independently
accessing parameters from the memory, requiring a dedicated
BRAM-macro instance per PE.

2. Input parallelism: Multiple input activations in each PE are
being processed in parallel. We refer to this as single instruction,
multiple data (SIMD) parallelism, as it was called in the FINN
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framework [250]. To simplify the implementation, the number
of parallel input computations (#SIMD) is restricted to integer
divisors of the number of elements in the kernel.

Because the available parallelism and the throughput needs are
highly network-dependent, it is necessary to balance the computa-
tional resources for each network individually, taking both the network
and the available resources into account. By distributing the avail-
able hardware resources of the FPGA to the layers according to the
balanced distribution of required throughput, the throughput can be
maximized. A balance on a specific layer is achieved when the time
for computing all output channels of a certain x/y position equals
the time for computing and buffering sufficient input activations to
execute the next sliding window position as depicted in Fig. 4.6.
We compute this balance by quantifying the average rate of input
activations, shown in Equation 4.1, required to compute the average
rate of output activations, shown in Equation 4.2. Computing the
ratio Ri of these rates for each layer i in Equation 4.3, allows to
determine the balanced distribution of MAC units across the layers.
This is achieved by ensuring that the input activation rate of each layer
matches the output activation rate of the previous one. Equation 4.4
formulates the resulting MAC distribution across layers DMAC by
computing the normalized product of all Ri for each of the layers.
From Equations 4.2 and 4.4 follows, that the number of MAC units
for a layer i can be found by multiplying the available number of
processing elements (e.g. DSPs) with DMAC (i). Binary MAC units
do not consume any DSP elements, making the search for the available
number of processing elements an iterative process that depends on
available logic elements.

inrate =
#in(sy rows)

t(1 output row)
= sy ·Xin · Cin

Xin
sx

(
Cout
#P E

· t(1 kernel)
#SIMD

) (4.1)

outrate =
#out(1 output pos.)

t(1 output pos.)
= #PE(

t(1 kernel)
#SIMD

) = #PE ·#SIMD

t(1 kernel)
(4.2)

Ri = outrate

inrate
= Cout

sy · sx · Cin
(4.3)
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DMAC(i) =
∏

k≤i
Rk∑

i

(∏
k≤i

Rk

) (4.4)

Our framework takes the number of available DSP resources as well
as the number of BRAM instances into account. Resources already
used by the hosting application (the image acquisition data path in
our camera application), are deducted prior to the distribution.

4.4.4 HLS Compilation to Hardware Representa-
tion

The last step of the mapping process consists of translating the in-
ternal high-level representation into a hardware description. This
framework first compiles the mapped network into an intermediate
C++-based high-level representation that is compatible with Xilinx
Vivado HLS. Thus, it can be automatically synthesized into HDL
using Vivado HLS, bypassing the otherwise necessary HDL know-
how. The synthesized block features two standard advanced extensible
interfaces (AXI4), allowing to automatically map the block using an
adapter that contains all utility functions to load the input image and
the parameters through the AXI interfaces. As shown in Fig. 4.7, this
includes an image preparation block, a parameter loading, and control
block, as well as a result buffering block. These utilities simplify the
instantiation of the accelerator in any FPGA design, only requiring
two interfaces: 1) an image line input and 2) a result (output layer)
interface.

4.5 Streaming Processing Architecture
This chapter describes the streaming processing architecture imple-
mented by the proposed framework. As shown in Section 4.2.2, stream-
ing architectures impose processing dependencies between activations
of neighboring layers. Each activation in a specific x/y-position of a
layer depends on activations from a limited (kernel-sized) input region
on its preceding layer as shown in Fig. 4.5. Thus, the output acti-
vation computation can only be completed once all input activations
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are available, implying that the following layer’s computations will be
stalled if the input activations are not computed fast enough. Fig.
4.6 a) visualizes this problem on an example CNN, showing that the
computations in the first convolution layer are stalling the processing
of the second layer. To efficiently process MAC operations in parallel
across all layers, a balanced distribution of MAC units among the
layers and pipelining between the layer computations is used, allowing
each layer to compute new activations while the following layer is still
busy processing the previous ones.

conv3
conv1

conv2

Figure 4.5: Visualization of connected regions across convolutional
layers of an example CNN. All convolutions have a stride of 1,
indicated with the two neighboring window positions (gray, striped).
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Figure 4.6: Layer-wise computation activities for different parallelism
options, indicating stalled computations.

This is achieved by using a systolic streaming architecture, instan-
tiating separated processing blocks for every network layer, allowing
layer-pipelining and layer-individual MAC parallelization. Through
careful balancing of the computation resources, MAC operations can
be efficiently parallelized across all layers, allowing each layer to inde-
pendently compute new activations, while the following layer is still
busy processing the previous ones. Summarized, the system features
two types of computational parallelism:

1. Intra-layer parallelism: Each layer processing block can par-
allelize its computations independently as discussed in Section
4.4.3. This allows the computational power to be optimized for
the layer dimensions and the input requirements of the following
layer, as shown for the first layer in Fig. 4.6 b).
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2. Inter-layer parallelism: Layer-pipelining allows each layer to
optimize its compute utilization by virtually removing the de-
pendency between layers through time-shifted processing, as
shown in Fig. 4.6 c).

Fig. 4.8 shows the block diagram of the accelerator block in which
the NN is instantiated by the framework. The input image from
the (camera) application is stored in a buffer that is accessible by
the accelerator. Two standard AXI4 ports communicate with the
accelerator, the first one accesses the data while the second one is
used for controlling and parameter loading, as shown in the system
diagram in Fig. 4.7.

Image data is directly accessed from the buffer and converted into a
data stream, passing through the network layers. Each layer contains
a FIFO that buffers data until they are requested by the subsequent
layer for processing and locally stores weights and biases. Parameters
are loaded through the control interface during the initialization of the
accelerator, while results from the last layer are streamed out through
the data interface and buffered in an accelerator-external result buffer.
Once the network inference is complete, the application can access
the results from this buffer and trigger the next execution. A more
detailed look into the block reveals the NN-specific mathematical op-
erations, namely the MAC units that multiply-and-accumulate inputs
with weights, and a sliding window input generator that generates
the correct input activation access pattern for 2D convolution. The
control block contains all necessary utilities and state machines for
controlling parameter loading and system state control. Intra-layer
parallelism is provided through the instantiation of multiple PEs,
allowing to process multiple output channels in parallel, reusing the
same input data. Each of these PEs can be configured to additionally
process multiple inputs of its kernel computation in a SIMD fashion,
fetching and processing multiple activations in parallel.

4.5.1 Sliding Window Generator
The sliding window generator implements the activation access pat-
tern for computing the 2-dimensional convolution in CNNs. It outputs
the activations of the kernel-sized input window, which is slid over
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the input feature map as illustrated in Fig. 4.2 a). For each window
position, the sequence of activations is synchronized with the sequence
of kernel weights in the parameter memory, such that the processing
block receives the corresponding activations and weights for perform-
ing the MAC operations. As the input window is only moved by a few
input elements in x or y direction (defined by the stride parameters
sx and sy), most of the window data is reused across neighboring
windows. To avoid transferring the same input data multiple times
between subsequent layers, a buffer is instantiated in the generator
block, storing all input activations needed for computing 2 output lines
(kernel height + vertical stride). This allows generating activations
for the subsequent computation of the first output line, while the
remaining buffer is continuously being filled, such that the next output
row can be started directly after the current row is completed. Figure
4.9 visualizes this concept.

Algorithmic view Buffer utilization Algorithmic view

Layer (n) Layer (n+1)

stream in

stream in

stream in

stream in

stream out

stream out

stream out

stream out

ti
m

e

Figure 4.9: Temporal evolution of activation buffer content across two
subsequent layers.
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4.5.2 Processing Element

The sliding window generator ensures an identical data ordering in
the input activation stream as in the kernel weight sequence within
the memory. This simplifies the task of the PEs to plain multiplica-
tion and accumulation of the incoming data in the order it arrives.
Solely the bias addition and the activation at the end of each kernel
computation is controlled within the PE, using a simple MAC counter.

The data flow of a layer is visualized in Fig. 4.10, showing the data
handling from the input activation stream, passing through the input
buffer of the sliding window data generation, the processing elements,
and finally ending up in the output stream that continues to the next
layer. All data streams are ordered channel-first, streaming all input
channels of an x/y position, before moving to the neighboring x/y
position in the x-direction. All PEs receive the same input activa-
tion data but compute them for a different output channel (output
channel parallelism). In every cycle, each PE computes #SIMD
input channels, such that computing a single output element requires
KERNELSIZE/#SIMD cycles (intra-kernel parallelism). If a layer
features more output channels than allocated PEs, all output channels
of an x/y-position are completed first, #PE at a time, before moving
to the next x/y-position on the output layer. This creates the correct
output data ordering again, allowing the next layer to be processed
in the same manner. Each PE’s parameter memory is mapped to
match this activations sequence with every logical memory address
containing #SIMD weights, making the weights of a single kernel to
appear in a sequence, followed by the next kernel to be processed by
the PE (Cout modulo #PE).

4.5.3 Precision

To exploit the reduced hardware requirements and power demands
of quantized networks, this work supports arbitrary activation and
weight precisions down to fully binary implementations for BNNs.
BNNs simplify the dominating multiply-accumulate (MAC) opera-
tions to plain XNOR logic with appended bit-counting (popcount)
[250]. This is highly advantageous for FPGAs as the memory needs
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are reduced and XNOR multipliers with popcount adders can be effi-
ciently implemented in logic, minimizing the use of limited hardware
resources like DSP blocks. Non-binary but low precision fixed-point
arithmetic still requires DSP blocks but can massively reduce the
memory requirements for FIFO buffers and parameter storage as well
as related glue logic.

The framework allows precision settings to be applied for each
layer separately, enabling networks with low precision feature ex-
traction in their first layers to be implemented along with higher
precision classifiers in their last layers. Support for higher precision
computations is often necessary for the first and last layers to achieve
sufficient accuracy in highly quantized networks [274]. Fixed-point
precision computations are synthesized into DSP-based computation
blocks, while fully binary computations are automatically mapped to
resource-saving XNOR implementations. Whenever a value is con-
verted into a fixed-point representation of different precision, e.g.
from a higher precision MAC result or from a binary (low precision)
input into a fixed-point activation, the fractional data are directly
quantized through truncation (with a saturation mechanism to ensure
that the minimum/maximum representable value is not exceeded).
This fixed-point data type is provided by Vivado HLS (type ap fixed).

4.5.4 Portability

The presented mapping framework can be used on a wide variety of
FPGA models, including the Kintex-7 FPGA on our target platform,
as family-specific resources like hard CPU cores are avoided. Most
other frameworks require such cores for control purposes, limiting
the FPGA selection to Zynq-based platforms (for Xilinx-compatible
tools).

Due to the use of vendor-specific HLS libraries, and thus also
intellectual property (IP) blocks, HLS-compiled blocks can only be
used across FPGAs of the same vendor. Other HLS tools have sim-
ilar design flows and could possibly be used in the same fashion as
presented here (e.g. Intel high-level synthesis compiler [275]).
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4.6 Experiments and Results
We evaluate the performance of our approach by employing the pro-
posed framework for implementing character detection and face de-
tection networks on our target platform, an FPGA-based FastEye
high-speed camera [257]. Table 4.2 reports the FPGA resource uti-
lization as well as the performance and the power consumption of our
experiments.

The FastEye platform features a 1 megapixel high-speed image
sensor that is directly connected to a Xilinx XC7K325 FPGA. Its
wide parallel interface to the sensor enables fast data extraction and
pixel sorting, preparing image data for transmission through a USB
interface. Fig. 4.7 shows the connections to the sensor and the USB
controller. A control block configures the image sensor and forwards
commands sent via USB to the other blocks. In the original camera
implementation, the acquired and sorted image data is directly sent
through the USB interface, allowing a host computer to access them.

The following sections describe the use-cases implemented with
the presented NN2CAM framework and report the FastEye FPGA
resource utilization as well as the measured power consumption. The
accelerator runs at 100MHz and reads the buffered image, cropped to
28x28 - 640x640 pixels, from a block random-access memory (RAM)
memory (128 BRAM blocks).

4.6.1 640x640 Pixel Optical Character Detection
and Recognition

Many industrial quality control applications require number and text
recognition to be performed to identify objects using various kinds
of labels. The position of these labels is usually variable, making it
necessary to analyze a larger field of view (e.g. 640x640 pixels) at
the frame rate required to keep up with the speed of conveyor belts
and other movements induced during manufacturing. More detailed
analyses (e.g. high accuracy network analysis with higher precision
arithmetic) can then be performed on identified regions of interest. Al-
ternative systems with cloud- or GPU-accelerated processing require
costly high-end infrastructure like high-speed video communications
and network connections.



102 CHAPTER 4. AUTOMATED NN MAPPING

Optical character recognition (OCR) based on the MNIST dataset,
containing small 28x28 pixel images of hand-written digits, is often
used as an example to show a basic functionality of a NN. However,
this dataset is not very useful for real-world applications, such that we
augment the dataset to account for illumination change and resilience
to background noise. Using this augmented MNIST-based OCR (M-
OCR) dataset, we train two 5-layer CNNs, similar to LeNet-5, for clas-
sifying digits within the acquired images as shown in Fig. 4.11. The
network output dimension is 1x1x11-78x78x11, for input dimensions
28x28-640x640, respectively, with each output channel representing
one of the 10 possible numbers or the undefined class. The CNN
is quantized to either 16 bits or to fully binary precision, while the
output layer is always 16 bit wide. Using the binary implementation,
the FPGA resource utilization is substantially reduced compared to
the 16 bit implementation of the same network, allowing to implement
a higher degree of parallelism, achieving 17-76× higher throughputs.
It must be noted that the large buffers for the input image and
the results already amount to 128 BRAM blocks, for the largest
resolution. This limits the maximum implementable parallelism in
the 16 bit implementation (higher parallelism requires more BRAM
blocks as each PE requires a separate BRAM), limiting the throughput
and thus keeping the latency higher. Fig. 4.12 illustrates this in a
comparison between throughput and image size. The throughput of
binary implementations increases with the image size as the latency
of small images is dominated by the filling of computing pipelines,
leading to a low compute utilization at the beginning. In contrast,
the throughput of 16 bit implementations rapidly drops to a low level
for image sizes above 28x28 as parallelism becomes limited by the
lack of available BRAM resources (consumed by the increasing FIFO
buffers). Reducing input and result buffers by directly feeding the
image data to the accelerator (without buffering it) could reduce this
limitation in the future.

4.6.2 640x640 Pixel Face Detection

To demonstrate that also more complex tasks, like multi-scale face
detection on 640x640 pixel images, can be implemented using this
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Figure 4.11: 640x640 pixel M-OCR edge processing on FastEye high-
speed camera.

system, we trained and mapped a 9-layer CNN, achieving 92.3% ac-
curacy on the FDDB benchmark, onto the camera. The network
is quantized to 16 bit activations and features binary weights in its
first 7 layers (the last 2 layers have 16 bit weights). Even though
its input size is equal to the large OCR network, the combination of
binary weight precision and a coarser detection granularity reduces
the required BRAM resources and enables frame rates of more than
40FPS.

4.6.3 Result Discussion
Even though our framework implements the complete end-to-end sys-
tem, it achieves comparable or higher throughput performance in
its binary use cases compared to the non-standalone prior work in
Table 4.1. The binary implementation of the first use case achieves
on-par throughput compared to FINN’s fully-binary CNN accelerator
[250] for batch size 1. Their experimental setup using stored test
images additionally allows frames to be processed in batch mode,
which enables 6× higher throughput due to better resource utilization.
In our real setup, where camera images must be processed frame-
by-frame, this operating mode is not possible. The same reduction
in throughput for single frame operation is expected for [165, 268],
while they additionally only support 16 bit fixed-point arithmetic.
However, these two frameworks achieve higher throughput for 16 bit
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Figure 4.12: Throughput for different image sizes and arithmetic
precisions.

implementations. Compared to the 8 bit precision implementations
[264, 265, 269], NN2CAM achieves 1.5-2.5× higher throughput for
binary implementations but up to 14× lower throughput for 16 bit
implementations. However, [264] only supports a set of predefined
networks, making it less flexible. While [262] achieves 3× higher
throughput than our 16 bit implementations, it is limited to 3x3
convolutions and does not support standalone operation. On the
lower end of the SoA performance comparison, [255,262] report peak
performances in the range of our lowest average performance but
more than 2 orders of magnitude lower than the fully-binary use cases
presented here.

4.7 Extensions and Limitations

The presented framework supports CNN and FC networks with ar-
bitrary precision and the standard ReLU activation. Due to the
HLS-based implementation, the library can be extended using high-
level C++ functions, which allow adding new activation functions or
layer types without having to write HDL code. The framework is
mainly constrained by the available resources of the target FPGA
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platform (e.g. available memory and number of DSP units), limiting
the maximum network size and throughput.

We envision the support for additional resource-efficient low-precision
arithmetic operators (e.g. for ternary weight MAC), that can be
implemented using similar resource-saving logic as for the presented
fully binary layers. Additionally, future versions could implement
residual layers and separable convolutions, allowing MobileNets to
be automatically mapped using this framework.

4.8 Conclusion
This chapter presented NN2CAM, an end-to-end framework for au-
tomatically mapping trained quantized neural networks onto FPGA-
based edge processing devices and reported experimental results on
an FPGA-based high-speed camera system. The experiments show-
cased its support for arbitrary fixed-point precisions with an effi-
cient XNOR-implementation for fully binary layers as well as a com-
putational resource balancing mechanism for effective parallelization
within each layer and across the entire network. Utilizing the proposed
framework for implementing a customized network architecture on the
camera simplifies the development process to compiling the trained
network into an IP block and instantiating it in the camera firmware.
In contrast to other implementations, this framework does not require
powerful CPU cores in the FPGA and can thus be implemented on a
wide range of FPGA platforms.

Our edge processing experiments implemented on the camera show
computational throughputs of up to 337GOPS, which is SoA perfor-
mance for single-frame inference, and provide the flexibility of running
networks at various arithmetic precisions on the example of implemen-
tations with fully binary, 16 bit, and mixed precisions.



Chapter 5

Improving Memory
Utilization for
Convolutional Neural
Network Accelerators

While the accuracy of convolutional neural networks has achieved vast
improvements by introducing larger and deeper network architectures,
the memory footprint for storing their parameters and activations has
significantly increased. This trend especially challenges power- and
resource-limited accelerator designs, which are often restricted to store
all network data in on-chip memory to avoid interfacing energy-hungry
external memories. Maximizing the network size that fits on a given
accelerator thus requires maximizing its memory utilization.

While the traditionally used ping-pong buffering technique is map-
ping subsequent activation layers to disjunctive memory regions, we
propose a mapping method that allows these regions to overlap and
thus utilize the memory more efficiently. This chapter presents the
mathematical model to compute the maximum activations memory
overlap, and thus the lower bound of on-chip memory needed, to
perform layer-wise processing of convolutional neural networks on
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memory-limited accelerators. Our experiments with various real-world
object detector networks show that the proposed mapping technique
can decrease the activations memory by up to 32.9%, reducing the
overall memory for the entire network by up to 23.9% compared to
traditional ping-pong buffering. For higher resolution de-noising net-
works, we achieve activation memory savings of 48.8%. Additionally,
we implement a face detector network on an FPGA-based camera to
validate these memory savings on a complete end-to-end system.

5.1 Introduction

Performing inference with a CNN is a highly data-intensive task in
which input activations, starting with an input image, get convolved
with kernels consisting of learned weights, summed up with bias pa-
rameters and fed through an activation function. The layered struc-
ture of CNNs allows them to be processed sequentially, layer by layer.
This is beneficial in terms of memory requirements because a max-
imum of only two subsequent activation layers, as opposed to all of
them, have to be stored at any point in time: the inputs from the
preceding layer are needed to be convolved with the kernels, while the
results of these computations (output activations) must be buffered to
serve as inputs for processing the following layer. Because consecutive
layers output their results alternatingly into one of two activation
memory sections this pattern is called ping-pong processing. The
network parameters (weights and biases) are reused at every inference
of the network and should thus be kept in local memory to avoid
costly data reloading from external memory. To succeed in storing
all network data on-chip for layer-wise CNN processing, the memory
must be large enough to store the constant parameters and the largest
pair of successive input and output activations as shown in Fig. 5.1
(a). With the traditionally used ping-pong buffering technique these
activations are alternatingly mapped to disjunctive memory regions,
such that the worst-case pair of activations amounts to the maxi-
mum sum of any two subsequent layers [149]. For CNN accelerators
on resource-limited platforms, like FPGAs [276, 277], this constraint
largely limits the maximum network size that can be processed.
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Figure 5.1: Memory allocation of the traditional (a) and the proposed
(b) activations mapping approach, visualizing the introduced overlap.

On-chip SRAMs dominate today’s CNN accelerator designs (e.g.
around 1 mm2 for 1 MB in 22 nm technology [278]). Reducing
memory size will therefore clearly reduce chip area and thus largely
influence the chip cost. Additionally, large memories increase the
static power consumption due to leakage, and also their energy-per-
access is heavily impacted by size, surpassing the energy consumed
by the processing of the fetched data by a factor of more than 25×
[102, 120]. Thus, it is essential to minimize the on-chip memory size
to the targeted networks’ needs.

The following sections present our CNN memory mapping method
that allows activation regions of subsequent layers to overlap, as shown
in Fig. 5.1 (b), and thus utilize the memory more efficiently than
the traditionally used ping-pong buffering technique. It consists of a
mathematical model for computing the maximum overlap and thus
its lower bound of on-chip memory needed to perform layer-wise pro-
cessing of convolutional neural networks. This is especially attractive
for newer networks where the memory is dominated by activations.
The resulting memory size can be used to determine the minimum
memory requirements for a new accelerator design or to optimize a
given network to efficiently utilize the memory resources of an existing
accelerator. Our experiments show activation memory savings of
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up to 32.9% for real-world object detector CNNs and up to 48.8%
for high-resolution de-noising CNNs when compared to traditional
ping-pong buffering.

5.2 Improving CNN Memory Utilization
The traditional ping-pong mapping of activations ensures that the
outputs of a layer do not overwrite any of its input activations, because
they might still be needed for pending computations. But allocating
two separate regions for this reason is too pessimistic, unnecessarily
restricting the allowed network size, keeping the memory utilization
low, and thus the power consumption as well as cost high. In the
following sections, we show how the data access pattern of CNNs can
be exploited to improve the memory utilization of accelerators.

5.2.1 CNN Data Access Pattern
To determine the memory requirements for computing an entire CNN
inference, we need to understand the data access pattern of this pro-
cess in detail. Fig. 5.2 visualizes the computational structure of a
CNN layer, convolving an input feature map in (of size Xin ·Yin ·Cin)
with a weight kernel k (Cout kernels of size Kx ·Ky · Cin), producing
an output feature map out (of size Xout ·Yout ·Cout). To convolve the
whole input feature map, input activations are accessed in a sliding
window operation, moving the kernel-sized window across the x/y
plane. This operation can be represented with the 6 nested loops
shown in Algorithm 1. The window moves in strides of sx and sy in
x- and y-direction, respectively. Inputs can be padded with Px and
Py zero-pixels on each side in x- and y-direction.

Input data are stored in memory in the depth-first order: all Cin

input channels of an input pixel are followed by all entries of the
neighboring input pixels in the x-direction. At the end of a row, the
following rows in the y-direction are appended. This simplifies the
addressing scheme and keeps the number of cycles between data reuses
low by following the window pattern. Minimizing this so-called reuse
distance [148] is important as it allows a specific memory entry to be
overwritten as soon as possible, freeing space for new data. Because
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output feature maps will serve as inputs in the next layer, they must
have the same memory order as the input feature maps.

∗
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Figure 5.2: Visualization of the 2D convolution operation in a CNN
layer with relevant dimensions of the input and output activations as
well as the kernel.

Algorithm 1 Computation loops of a CNN layer i (omitting the
accumulation reset, the input padding and the activation function at
the end of each cout loop)

1: for all yout in 0 to Yout(i) do
2: for all xout in 0 to Xout(i) do
3: for all cout in 0 to Cout(i) do
4: for all ky in 0 to Ky(i) do
5: for all kx in 0 to Kx(i) do
6: for all cin in 0 to Cin(i) do
7: yin = yout · sy(i)− Py(i);
8: xin = xout · sx(i)− Px(i);
9: out(yout, xout, cout) += . . .

10: in(yin + ky, xin + kx, cin) · k(ky, kx, cin, cout);
11: end for
12: end for
13: end for
14: end for
15: end for
16: end for
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5.2.2 Model for Optimized Memory Utilization

To optimize the memory utilization in CNN processors we propose
a memory mapping method that allows activation memory regions
of consecutive layers to be overlapping. Fig. 5.2 shows a simplified
memory map that compares the traditional memory allocation (a)
with our proposed approach (b). While (a) is keeping each layer’s
activations in separate disjunctive regions, (b) allows the activation
regions to be partially overlapping, resulting in large memory savings.

If two subsequent layers have overlapping memory regions, the
allocation method must avoid that output activations are overwriting
data from the preceding layer that is still needed for pending compu-
tations. This constraint can be ensured by (negatively) offsetting the
output write pointer in such a way, that the input reading pointer will
never be reached during the computation of any layer in the network.
This concept is depicted in Fig. 5.3. At the beginning of each layer
computation (here denoted as t=0), the distance between the input
activations read pointer pr and the output activations write pointer
pw, is set to an optimized offset. As the sliding window for computing
the convolution operation moves on, pointer pw writes results and
increments in direction of pr. Pointer pr moves accordingly on the
input activations region, away from pw. The underlying idea of this
memory mapping is the locality of the convolution operation: the
activations for each window position are only read from a small,
connected region of the input layer which itself is slid over the inputs
in a continuous fashion. Because the corresponding memory data is
ordered in the same way as they appear in this sliding operation, most
parts of the processed input data will never be used again and can
thus be overwritten by resulting output activations.

The maximum overlap of the two activation regions is found by
mathematically describing the pointer positions and optimizing their
relative offset distance at the beginning of each layer such that the
total memory is minimal while constraining the write pointer to be
smaller than the read pointer, avoiding any overwriting of still needed
data. To meet this constraint, both pointer positions must be known
for every point in time. They can be calculated from their starting
points and velocities, derived from the network characteristics. We
model the pointer positions (addresses) as a function of time, assuming
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one MAC operation per clock cycle (t) and that activation data is
stored in the depth-first order described above. The sliding window
follows this pattern and only moves on once all outputs for a certain
window position are computed.

Equation 5.1 represents the velocity of pointer pw, which advances
1 position per calculation of a single kernel convolution (or Cin ·Kx ·Ky

MAC operations). The address only increments once the full kernel
is computed, which can be mathematically represented by rounding
down the integral of its speed over time as shown in Equation 5.2.
The formula for pr takes the padding of the input layer, stride width,
and the behavior during sliding window movements into account. It
is sufficient to look at the lowest address of the input window (which
would collide with pw at the earliest), simplifying the formula of its
average velocity to Equation 5.3. In the resulting pr Equation 5.4, the
y-direction stride is implemented with rounding operations, causing
the pointer to skip some rows when moving in the y-direction. The
minimum memory Mmin,ln required for mapping the activations of
two subsequent CNN layers to the memory can then be determined
from Equation 5.2 and 5.4, as shown in Equation 5.5. It is given by
the sum of the input activations space Mln

and the minimum offset
difference (pr0 − pw0) for which pr(t) is larger than pw(t) throughout
the entire computation of a layer ln (during the interval Tln

). From
Equation 5.5, the lower bound of activations memory required for
computing the entire CNN, Mmin, can be derived by finding the
minimum memory size that supports all layers of the network, as
shown in Equation 5.6.

vpw = 1
Cin ·Kx ·Ky

(5.1)

pw(t) = bvpw · tc+ pw0 (5.2)

vpr = sx · Cin

Cout · (Cin ·Kx ·Ky) + . . .

+ (sy − 1) · Cin ·Xin(⌊ 2·Px+Xin−Kx
sx

⌋
+ 1
)
· Cout · (Cin ·Kx ·Ky)

(5.3)

pr(t) = max(0,
⌊

1
Cout · (Cin ·Kx ·Ky) · t

⌋
· (sx · Cin) + . . .
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+

⌊
1(⌊ 2·Px+Xin−Kx

sx

⌋
+ 1
)
· Cout · (Cin ·Kx ·Ky)

· t

⌋
· . . .

·((sy − 1) · Cin ·Xin)− Cin ·Xin · Py − . . .

−

⌈
1(⌊ 2·Px+Xin−Kx

sx

⌋
+ 1
)
· Cout · (Cin ·Kx ·Ky)

· t

⌉
· . . .

·max(0,
((⌊2 · Px +Xin −Kx

sx

⌋
+ 1
)
· sx −Xin

)
· . . .

·(sx · Cin))) + pr0 (5.4)
Mmin,ln = minpr(t)>pw(t)|t∈Tln

(Mln + (pr0 − pw0)) | . . .

Tln =
[
0,
(⌊2 · Px +Xin −Kx

sx

⌋
+ 1
)
· . . .

·
(⌊

2 · Py + Yin −Ky

sy

⌋
+ 1
)
· Cout − 1

]
(5.5)

Mmin = maxln∈L (Mmin,ln ) (5.6)

The worst-case scenario for memories in layer-wise CNN accel-
erators is a network with two maximum-sized layers back-to-back,
requiring an activations buffer of twice the maximum layer size when
using the traditional ping-pong buffering. For the same scenario, our
method can reduce the memory needs by almost 50% if each input
pixel creates equally many output pixels, keeping pointers at a con-
stant short offset. This represents the theoretical upper savings limit
of the proposed technique. Our model assumes one datum per memory
word but can be easily transferred to multiple data entries per word
by linearly scaling down the speed of each pointer accordingly. To
support residual layers, Mln must additionally include the activations
of the parallel bypass connections.

5.3 Experiments and Results
We evaluate the memory savings of the presented method on four
real-world CNNs: 9-layer DLIB face detector [279], 12-layer YOLO lite
[280], 20-layer DMCNN-VD 3x3 [281] and 12-layer MobileNetv2 [14].
The first three have an input resolution of 640x640, while the input
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Figure 5.3: Simplified memory map with current pointer positions
at two different points in time. The left figures show the current
position of the sliding window while the right figures visualize the
memory content (including window data).

of MobileNetv2 is 224x224x3. Table 5.1 presents the memory savings
of our proposed method compared to traditional ping-pong buffer-
ing. Our approach is saving between 19.6% and 48.8% of activations
memory in the evaluated networks, achieving total memory savings
(including parameters) of 6.2% to 48.2%. The lowest overall savings
are found in MobileNetv2, where parameters dominate the memory
due to the deep architecture and the small image size. It must be
noted that we compute MobileNetv2 in a strictly layer-wise manner,
while [14] suggests that operations of some intermediate layers could
be concatenated without buffering the respective layers entirely. Many
recent networks feature small kernels and larger images, increasing
the dominance of activations in memory and thus memory savings.
This can be seen in the 20-layer DMCNN-VD with small 3x3 kernels,
yielding 48.2% total memory savings. We note that our technique
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still offers significant (32.9%) activation memory savings for smaller
networks, such as DLIB.

To validate the memory savings in a real application, we employ
our method for implementing a DLIB face detector CNN [279] on a
configurable FastEye camera [257]. This hosts a 1-megapixel image
sensor and a Xilinx XC7K325T FPGA. We extend the existing data-
path, implementing the sensor readout and a USB interface, with a
simple CNN processing state machine and a BRAM consisting of 36
kbit blocks for parameters and activations. The image from the sensor
gets cropped to 640x640 pixels and stored on the BRAM. Triggered
by the image, the state machine processes the network layer-wise as
described in Algorithm 1. Without any processing optimizations, the
maximum CNN inference rate is 0.5 frames per second at 100 MHz
clock frequency. Weights and activations are quantized to 16 bits. The
output of the last CNN layer gets transferred via USB to a computer
for post-processing of the resulting bounding boxes. Two different
system configurations are implemented, a) with the standard ping-
pong mapping, and b) with our proposed memory mapping technique,
differing only in the BRAM size and the address generation. Both
FPGA implementations successfully perform on-camera face detection
on acquired images. Table 5.2 states the utilization report of the initial
FPGA firmware and the two CNN-extended versions. Comparing the
resources added to the initial camera firmware, the proposed memory
mapping (b) shows memory savings of 23% and power savings of 20%
with respect to the standard memory allocation (a). The number
of used flip-flops (FFs), LUTs, and DSPs in the FPGA rests almost
constant. This confirms the theoretical savings (23.9%), differing by
only 0.9%, which is due to the limited block granularity of the memory
macro.

Fig. 5.4 illustrates the optimal pointer positions for the DLIB
CNN. In layer 0 (a), the read pointer is around 4× faster than the
write pointer due to its input-to-output activations compression ratio
of 4×. Thus, the read/write pointers are the closest at the beginning
of the layer computation. The opposite applies to layer 1 (b), where
the output is 4× larger than the input, making the pointers approach
towards the end. The jumps in layer 4 are due to the vertical stride of
this layer, jumping over some input rows for each output row. Another
feature that can be seen in these plots is the influence of the padding
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Table 5.1: Results of the evaluated networks

CNN network Mem. savings:
activations only
(total network)Network name Parameters

[#words]
Activations [#words]

Standard This work
DLIB face det. [279] 229.8k 614.4k 412.2k 32.9% (23.9%)
YOLO Lite [280] 443.0k 16.4M 13.1M 19.9% (18.7%)
MobileNetv2 [14] 3.3M 1.5M 1.2M 19.6% (6.2%)
DMCNN-VD [281] 668.2k 53.7M 27.5M 48.8% (48.2%)

Table 5.2: FPGA utilization report and power measurements of the
camera

LUT FF DSP BRAM Power
Cam only 28.6k (14%) 82.4k (20%) 8 (1%) 12 (3%) 12.61 W
a) Cam + CNN 52.9k (26%) 98.3k (24%) 13 (2%) 428 (96%) 13.20 W
b) Cam + CNN 52.5k (26%) 98.3k (24%) 13 (2%) 332 (75%) 13.08 W
Savings: b vs. a 2% 0% 0% 23% 20%

and the kernels: while the write pointer continuously increases, the
input pointer waits during padding (because the padding pixels are
not stored in the memory) and lags behind (same input window is
read multiple times for each output position).

5.4 Related Work
Stoutchinin et al. [148] present an optimal model search approach that
outputs optimized CNN loop order, tiling, and buffer size parameters
to reduce access to external memories. They achieve memory band-
width reductions of up to 14× compared to previous implementations.
Yang et al. [120] propose an analytical approach to model data locality
in CNNs to find the optimal blocking strategy that maximizes the
energy efficiency of an accelerator. Other works like [149] focus on
optimizing data movements between internal and external memory
while using traditional ping-pong buffering for on-chip memory. These



118 CHAPTER 5. IMPROVING MEMORY UTILIZATION

approaches either do not consider cases with all activations stored
on-chip or base their models on the inefficient ping-pong buffering. In
contrast, we provide a more efficient activations mapping that can be
used on any platform and only requires the adaption of the addressing
scheme. While we focus on standard convolutions, networks with
separable convolutions [14] allow intermediate layers to be stored only
partially, reducing the memory footprint of intermediate layers with
many channels.

5.4.1 Conclusion
This work presented the mathematical model of the lower memory
bound for buffering activations in layer-wise convolutional neural net-
work accelerators using overlapping activation regions. We show that
the mapping method derived from this model can utilize the memory
more efficiently than the standard ping-pong buffering method. This
allows reducing the required on-chip memory size of new accelerator
designs or to map larger networks to existing resource-limited imple-
mentations. Experimental results on real-world CNNs show that the
activations memory space can be reduced by up to 48.8% and the
overall network memory needs by up to 48.2%.
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Chapter 6

Dual-Engine Machine
Learning Inference
System-on-Chip for
Sub-mW Face-Analysis
at the Edge

Always-on ML applications are increasingly deployed to strictly size
and energy-constrained smart IoT platforms, requiring high compu-
tational efficiency in the sub-mW power domain. Many applications
do not require the full complexity of the algorithms to be always
active and can therefore be computed hierarchically with increasing
computational complexity [62]. This allows complementing purely
computation-based optimizations, adding complexity-scaling approa-
ches as an orthogonal optimization strategy.

This chapter presents an SoC that enables hierarchical processing
of face analysis tasks under multiple sub-mW operating scenarios
using two tightly coupled ML accelerators, as shown in Fig. 6.1.
A dynamically scalable BDT engine enables ultra-low power face de-
tection (FD), allowing to trigger a more complex analysis using a

121
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multi-precision CNN engine for subsequent face recognition (FR). The
22nm SoC can therefore dynamically trade-off image analysis depth,
FPS, accuracy, and power consumption. It implements complete
end-to-end edge processing, enabling always-on FD and FR within the
tight 1mW power budget of a 55mm diameter indoor solar panel. The
SoC achieves >2× improvement in energy efficiency at iso-accuracy
and iso-FPS over SoA systems.
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Figure 6.1: Smart vision system for ULP face analysis at the edge
using dual-accelerator SoC.

6.1 Introduction
ML models are computation and memory-intensive algorithms. To
run them on miniaturized IoT platforms with limited battery capacity,
energy-efficient processing engines are required, ensuring long battery
lifetimes. State-of-the-art edge processing designs achieve this by re-
stricting their flexibility to either 1) efficient, but application-limited,
accelerator types [219] or 2) minimal on-chip memory size (<500kB)
[62,68,282]. These restrictions confine their scope to simple use-cases
with a static trade-off between power consumption and inference rate
(FPS).
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In contrast, the performance of this SoC can be dynamically adap-
ted to different application requirements as shown in Fig. 6.2, ranging
from low power BDT-based FD to CNN-based FR. The BDT-based
FD is scalable through 4 orthogonal parameters: 1) in-plane rotation,
2) supported range of face sizes, 3) detection granularity, and 4) clas-
sifier depth. CNNs only allow such scaling during training time (e.g.
adjusting the network complexity to a specified range of supported
rotation angles). The hierarchical approach exploits the BDT as an
always-on engine, while the more power-hungry CNN is only triggered
when needed. Both steps could be combined in a single algorithm that
is evaluated for every frame, but we exploit the causality of the task,
knowing that face recognition is only meaningful if there is a face to
be evaluated.
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Figure 6.2: Multi-scenario face analysis illustrating power/complexity
scalability of ML SoC.

Contributions: This work has been a joint effort of myself, Erfan
Azarkhish, Regis Cattenoz, and Engin Turetken with inputs from
Luca Benini and Stephane Emery. My contributions have been fo-
cused on the CNN accelerator architecture as well as the system
and application design, whereas Engin Turetken has focused on the
BDT accelerator, Erfan Azarkhish has contributed to the system and



124 CHAPTER 6. MACHINE LEARNING SOC

back-end implementation, and Regis Cattenoz has helped with the
peripherals.

6.2 System-on-Chip
Fig. 6.3 shows the architecture of the ML SoC, comprising two
accelerators, a 32-bit RISC-V microcontroller core, and peripherals
to directly interface external sensors. The Octo-SPI interface pro-
vides up to 180MB/sec transfer rate, reducing pin toggling power
by 41- 92% with respect to single-line SPI. Two word-interleaved
multi-bank SRAM memories, L1 (64kB, 16 banks) and L2 (1MB,
8 banks), distribute sequential accesses over the banks, and provide
uniform addressing with power-gating options for simple applications.
Interconnection trees with pseudo-least-recently granted arbitration
provide fair access to master and slave ports. The two accelerators
share their memory ports in a time-multiplexed fashion, enabling them
to directly access L1 and L2.

Embedded in a smart vision system, as shown at the top of Fig.
6.3, the SoC provides an automatic booting process that allows copy-
ing memory content from an external non-volatile memory (through
single-line SPI) to its on-chip SRAM. This allows loading execution
code and ML parameters after startup, avoiding further external com-
ponents to program the system. Images from a connected sensor can
directly be loaded through DMA transfers into the memory, from
where the accelerators can access it for analysis. The SoC is controlled
by the 39.8kGE RISC-V core, which achieves 3.2 CoreMark/MHz
at 2.23µW/MHz. It provides the flexibility to implement complete
application functions, including data pre- and post-processing using
direct access to the SRAM memories, enabling standalone end-to-end
processing with a single chip.

6.3 BDT and CNN Machine Learning Ac-
celerators

The dual-engine ML accelerator contains the BDT and CNN engines,
which can run independently but share the memory interface using a
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ML.

multiplexer. In the following sub-sections, we present the architecture
of each accelerator.

6.3.1 Binary Decision Tree Accelerator
Fig. 6.4 shows the BDT accelerator, implementing 8 threads of an
AdaBoost-based [283] hierarchical classifier, composed of 416 cascaded
weak classifiers (WCs), using nested hardware loops in finite-state
machines (FSMs). The RISC-V core computes a list of bounding box
(BB) windows to be evaluated for a given window scale and orientation
and offloads them to the BDT engine. The scheduler distributes the
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BBs across the execution units and aggregates the results. For each
BB, the same classifier cascade is traversed. As soon as a negative
classification is registered, the tree is aborted, reducing the execution
time for simple scenes. Two WC execution modes are available, as
shown in Fig. 6.4: the COMPACT and the LUT-based FAST mode
(13% more memory, but 41% fewer execution cycles required). A
configurable depth-threshold allows dynamically changing from FAST
to COMPACT scheme, trading-off latency versus memory needs.
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Figure 6.4: BDT accelerator block (left) with programmable FSMs to
dynamically trade-off performance and power versus accuracy. The
depicted decision tree (right) illustrates the cascade of weak classifiers
to be traversed for analyzing a selected window on the input image.

6.3.2 Convolutional Neural Network Accelerator
The architecture of the multi-precision layer-wise CNN accelerator is
shown in Fig. 6.5. For each layer, it configures its blocks according to
layer definitions, read from a pre-compiled linked list in the memory,
allowing to implement arbitrary CNNs. The control FSM requests
data through 8 independent and pipelined memory interfaces. Four
programmable address generators determine what data (activation,
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weight, bias, or scaling factor) to read and where to write back the
results, allowing to generate the sliding window pattern of the con-
volution. The FIFO registers decouple memory access from the 8
(output-stationary) PEs, which perform 16 parallel 16bit fixed-point
multiply-accumulate operations per cycle. Their weight precision is
configurable to 16bit or 1bit, supporting CNNs with variable per-layer
quantization. Input activations are shared across the PEs, enabling
up to 8× activation data reuse, and thus reducing memory accesses.
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Figure 6.5: Multi-precision CNN accelerator block with 8 memory
ports and 8 processing elements containing a total of 16 parallel
1/16bit weight MAC units.

6.4 Scalable Dual-Accelerator Operation
Fig. 6.6 shows the ML processing scalability, reaching a ratio of up
to 1’142’000× minimum-to-maximum FD/FR inference energy. The
BDT enables 1900× and 21× execution time scaling by adapting the
minimum window size (30 to 320pixel) and the maximum rotation
angle (360° to 30°), respectively, as shown in Fig. 6.7. Lowering
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the CNN weight precision from 16bit to 1bit, reduces energy per
operation by 61% and memory needs by up to 83%, as shown in
Fig. 6.8. However, data access energy dominates (65-70%) both
accelerators. Fig. 6.9 further illustrates the operating points of the
BDT and the CNN engine for different configurations. While both
the BDT execution and the 16bit CNN inference are memory-bound
due to their data-intensive characteristics, the binary-weight CNN
mode can largely reduce its memory needs, rendering it computation-
bound. This enables the CNN to achieve 0.32-1.07 TOPS/W efficiency
including memory power.
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6.5 Implementation Results
The SoC is characterized in multiple sub-mW application scenarios
using an in-house 320x320 pixel image sensor [284]. Measurement
results are summarized in Table 6.1, reporting the power consump-
tion along with the activity and complexity settings of the BDT and
CNN engines. The executed FD BDT achieves 98% accuracy at
<6% false-positive rate on the FDDB benchmark, triggering upon
detection a 6-layer (212MOP) 1bit weight CNN for FR, achieving
96% on the LFW dataset [285]. This 22nm CMOS SoC runs up
to 180MHz@0.65V (220MHz@0.65V with 0.8V forward body biasing
(FBB)). It achieves a measured peak computational throughput of
1.44GOPS and 5.76GOPS for BDT and CNN inference, respectively.
Its main characteristics are summarized in Table 6.3. Fig. 6.10 show
the manufactured 3.4mm2 chip with an overlay of the main blocks.

Combining both accelerators offers algorithms dynamic power scal-
ing options, achieving 0.41mW at 1 FPS FD and FR, totaling 0.64mW
for the smart vision system, which is >2× improvement in energy
efficiency over SoA systems (see Table 6.2) at iso-accuracy and iso-FPS
[219]. The test board used for the measurements is depicted in Fig.
6.11. It features the ULP image sensor, a 2MB Flash memory for au-
tomatic booting, as well as communication interfaces for programming
and debugging.

6.6 Neural Network Mapping Flow
Algorithm developers can rely on a set of wide-spread NN tools, which
can be considered a de facto standard, for designing and training
networks. However, to map a trained network onto a processing
system and its accelerators, the network has to be translated into a
device-specific representation, which might require developers to un-
derstand the detailed working principle of the hardware and perform
a complicated memory mapping for each network architecture. We
avoid this by providing a tool-flow for automatically generating the
required on-chip memory content, which the CNN accelerator directly
accesses to execute the trained network. Fig. 6.12 illustrates the
mapping flow, starting from a trained network and resulting in an
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Table 6.3: Summary table of implemented ML SoC

System

Technology GF 22nm FDX
Die area 1.85mm × 1.85mm (3.42mm2)
Core area 1.42mm × 1.48mm (2.10mm2)
Total SRAM 1.2MB
Core supply voltage 0.65V
SRAM supply voltage 0.8V
I/O supply voltage 1.8V
Microprocessor RV32IMC (without divider)

3.2 CoreMark/MHz (-O3),
2.23µW/MHz

Programmable FLL range 125-265MHz
Frequency 180MHz (220MHz @ 0.8V forward

bias)

CNN

Supported layer types CNN, FC, Avg. pooling, ReLU
Weight precision 1/16 bit
Activation precision 16 bit
Bias/Scaling precision 16 bit
Peak throughput 5.12-5.76GOPS* @ 180MHz
Measured energy efficiency 0.32-1.07 TOPS/W*

BDT Arithmetic precision 32 bit
Peak throughput 1.44GOPS** @ 180MHz

*Each MAC computation is considered as 2 operations. The range
indicates the performance difference of the two precision options (1/16 bit
weights) and includes the memory access power. **Each BDT comparison
computation is considered a 1 operation.
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Figure 6.10: Die micrograph of the manufactured chip with an overlay
of the main blocks.

executable ELF file. For booting from an external Flash memory,
a BIN file can be exported alternatively. The architecture parsing
and parameter extraction steps, currently supporting Caffe networks,
are based on the work from Chapter 4. It automatically combines
convolutions, biasing, normalization, scaling, and activation layers
as they are computed as a single layer within the accelerator. The
microcontroller application and the generated memory for the NN are
then compiled through a standard RISC-V compilation flow.

6.7 Conclusion

This work presented a novel 22nm FDX ML inference architecture
for sub-mW face analysis applications at the edge. Its dual-engine
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setup with a flexible RISC-V microcontroller demonstrated hierarchi-
cal complexity scaling, running simple detection tasks on the dynam-
ically scalable low power BDT accelerator, while offering on-demand
CNN acceleration for more complex (recognition) tasks. Combined,
the SoC can run face detection and recognition at 0.41mW power
consumption, enabling a long battery lifetime for face analysis appli-
cations at the edge.

ULP image sensor with optics

ML SoC (this work)

USB interface for power supply and 
communications via FTDI chip (JTAG, UART, SPI)

2MB SPI Flash memory

Figure 6.11: Photograph of test and verification board with ULP
image sensor and external Flash memory.
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Chapter 7

Battery-Less Face
Recognition at the
Extreme Edge

ML-based face recognition systems are commonly used in mobile plat-
forms to assist the camera systems, unlock the device, or analyze the
facial expressions of its users. The computational complexity of the
underlying algorithms and the power consumption of the entire imag-
ing system largely limit the deployment to powerful mobile processing
systems with large rechargeable batteries. However, these computer
vision capabilities would also be useful in miniaturized wearables and
low-power IoT applications with stringent battery-size limitations.

In this chapter, we assess the feasibility of such a computer vision
edge processing system on a battery-less credit card-sized demonstra-
tor using an ultra-low power image sensor and the ML system-on-
chip presented in Chapter 6. The system achieves self-sustainable
operation using solar energy harvesting with a small on-board solar
cell. This enables continuous 1 frame-per-second battery-less imaging
and face recognition in indoor lighting conditions.

139
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7.1 Introduction
The majority of today’s ML applications are used in environments
with virtually unlimited power access (e.g. in a server). However,
battery-powered mobile platforms, commonly used in IoT applications
[17], are becoming smarter and thus interesting targets for imple-
menting ML algorithms. Mobile platforms employ ML in a rapidly
growing number of applications, supporting tasks like visual object
detection [249], audio key-word spotting [4], radio signal analysis
[286], and many others across a wide range of domains. Most of
these algorithms are based on small- to medium-sized NNs, requiring
processing systems with high computational throughput and large
memory resources. As shown in Chapter 1, the initial solution of of-
floading the computation to the cloud was replaced by edge computing
approaches [18], processing and analyzing sensor input data directly
on-board to reduce the power consumption and improve privacy.

Truly mobile applications, with battery lifetimes of more than a
month without recharging, require edge ML platforms with a sub-mW
power consumption. For instance, to enable a 1-month lifetime using
a CR2032 coin cell battery, the system power consumption must be
restricted to less than 1mW [287]. This energy limitation can be miti-
gated by employing on-board energy harvesting, constantly extracting
power from the environment. Various harvesting approaches have
been evaluated, exploiting solar [103], kinetic [288], vibration [289], or
even radio frequency power [290]. The source is continuously tracked
to extract the maximum available power, as shown in [291] and [292].
Mobile ML implementations for computer vision (CV) applications
have been shown in various previous works and industrial devices.
However, they all feature a very limited battery lifetime. Xiaomi’s
2-megapixel AI doorbell [23] features face identification and movement
detection with up to 60 days of operation using a large 3000mAh
secondary battery. The Google Clips camera [42] claims to recognize
people in an always-on operation, autonomously deciding when to
capture photos and of whom. Its battery allows only 3 hours of
operation. Orcam MyEye 2 [22] is a smart camera for blind people
that can recognize people and read text out loud. It features a 13
megapixel image sensor and a 350mAh secondary battery for up to
2 hours of operation. EdgeEye [293] presents an end-to-end people
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counting system using a 185MOP CNN. Image sampling and pro-
cessing consume 17.5mJ with an idle power consumption of 430uW.
In [135], a combination of a custom 320x240 pixel image sensor and a
CNN processing chip is used to perform face detection and recognition,
consuming an average of 0.62mW core power, however excluding the
power for image transfer and external components. The computation
and memory-intensive CV algorithms are challenging the tight power
budget of these battery-powered edge processing applications. Thus,
they either use low frame rates or accept short battery lifetimes. For
embedding real-time CNN-based user identification in a miniaturized
“extreme edge” application as illustrated in Fig. 7.1, both powerful
CNN processing capabilities and a long lifetime are required.

This work presents a credit card-sized battery-less computer vision
platform (Fig. 7.2) capable of performing edge computing for face
recognition using an on-board image sensor and a ULP ML SoC while
being powered solely by a small solar panel. With an average power
consumption of 0.68mW for acquiring images and running face recog-
nition at 1 FPS, 1klux indoor lighting provides sufficient harvesting
power to enable self-sustainable operation. The chapter is structured
as follows: Section 7.2 describes the system components, followed
by the description of the face recognition application in Section 7.3.
Experimental results, including power measurements, are reported in
Section 7.4.

Always-on face
recognition at 

1FPS

Display secret
code

Identified

Solar-powered (battery-less)

Figure 7.1: Credit card-sized identification using face recognition at
the edge.
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Figure 7.2: Photograph of the computer vision platform with its solar
panel (left), display (bottom right), and image sensor below the flat
optics (top right) in front of a credit card.

7.2 System Implementation
Fig. 7.3 shows the block diagram of the edge processing platform
including the communication interfaces between the sub-systems. It
consists of four functional blocks: a) Imaging, b) control and ML-
based image processing, c) displaying, as well as d) power management
and energy harvesting. The platform, illustrated in Fig. 7.2, is
implemented on a printed circuit board with the size of a credit
card (55x85mm). Solar harvesting and image processing can be well
combined as both operations require lit environments, where image
sensing is possible.

7.2.1 Image Acquisition
Operating on a limited power budget requires sufficient image quality
in every acquired frame. Iterative exposure time approximation by
sampling at different settings should therefore be avoided. Thus, we
use an ERGO320 image sensor [284], featuring a high dynamic range
of 120dB, enabling high contrast images under strong illumination
variations. A miniaturized lens with 2.8mm focal length enables a
slim demonstrator (<7mm thick) while providing a wide field-of-view
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Figure 7.3: System block diagram with power (dashed) and data
(solid) interfaces. USB-related circuits (green) are only active during
programming.

(107°). The sensor requires a 1.8V supply voltage and communicates
through a slave SPI interface.

7.2.2 Control and ML Processing
The heart of the system is our ML SoC, presented in Chapter 6, that
orchestrates the sub-systems and provides ML processing capabilities.
This work mainly utilizes its RISC-V microcontroller with various
sensor interfaces, the 1MB SRAM, and the efficient multi-precision
CNN accelerator, supporting 1bit and 16bit weights with 16bit acti-
vations. Its automatic booting option is used to start from an external
SPI memory, as shown in Fig. 7.3. The SoC directly interfaces
the image sensor, the display, and the Flash memory through SPI.
The non-volatile 2MB Flash memory (MX25R1635) can additionally
be accessed through USB (via a USB/SPI converter), allowing to
update the program code and the ML algorithm parameters from
a connected PC. Digital outputs are used to control multiple power
switches to power-gate unused sub-systems (image sensor, Flash mem-
ory, display), minimizing idle currents. The memory-intensive nature
of object detection CNNs, requiring millions of operations to be per-
formed for analyzing a single image [249], and the related energy
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required to process and move their data [102], strongly influenced
the system design. Especially accessing data from external memories
is very costly, as the energy for booting indicates, requiring system
optimizations to ensure minimal data movements. Therefore, we
selected an ML SoC that provides sufficient on-chip memory for face
recognition algorithms. Its CNN accelerator with 16 parallel MAC
units runs independently of the microcontroller and supports 16bit
and 1bit weights (layer-wise configurable), reducing the memory needs
for parameters by up to 16×.

The trained (and quantized using the method of [258]) network is
compiled in the SoC tool-flow (see Section 6.6), mapping all parame-
ters and layer settings to the on-chip SRAM, which is loaded from the
external Flash memory during the booting process. To start the CNN
execution, the microcontroller sets the start flag in the CNN register
and gets notified by an interrupt upon completion.

7.2.3 Display

A 152x152 pixel E2154CS electronic paper display (EPD) is used to
display application results. EPDs feature high contrast, making them
well readable even in bright outdoor environments. Other display
types, like LCD or LED matrix, require a continuous power supply
during operation, while EPDs retain the last image displayed and
only require power for updating the content. Fig. 7.4 shows the
measured power consumption for a display update. After powering
the EPD, its on-board controller is configured, and the new image
data is transferred via SPI (busy signal high). Then, the DC/DC
converter of the display is started, driving the busy signal low until the
power supply is stable. Upon sending the image update command, the
EPD starts its internal refresh process, updating the pixels, followed
by switching off the DC/DC converter again. The entire update
lasts 2625ms and requires 22.8mJ per image refresh. Comparable
low-power LCDs [294] consume up to 1000× less power but require
a constant power supply and a power-intensive backlight for similar
readability.
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7.2.4 Power Management and Energy Harvesting

We utilize a BQ25570 solar energy harvester to power the platform. It
performs maximum power point (MPP) tracking to efficiently operate
the solar cell at its light intensity-dependent MPP. The extracted
power is buffered in a capacitor (>3V) and output as a stable 1.8V
supply voltage. We use a miniaturized, 5.5mm high, 47mF super-cap
instead of a battery, allowing to bridge short energy peaks (e.g. for
booting from Flash memory). The buffered energy in the capacitor
can be estimated using the formula of the stored energy in Equation
7.1, resulting in 211.5mJ, which is roughly 10× more than a display
update requires.

E = 1
2 · C · U

2 = 1
2 · 47mF · (3V )2 = 211.5mJ (7.1)

The platform is powered by a flexible PowerFilm SP3-37 solar
panel but supports other panel types (>100mV, <400mW). Fig. 7.5
shows the characteristics of the employed panel under indoor and
outdoor lighting conditions, achieving a maximum output power of
1.05mW and 54.49mW, respectively.
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Figure 7.4: Measured EPD display power consumption during a
display update.
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Figure 7.5: SP3-37 characteristics for a) outdoor (20klux) and b)
indoor (1klux).

7.3 Computer Vision Application
We demonstrate end-to-end ML edge processing of an always-on face
recognition application using solar energy harvesting. The credit card-
sized application aims at identifying a specific user to display a secret
code (e.g. pin code of the card) upon positive recognition as shown in
Fig. 7.1. In the future, the code could be transmitted through RFID.

7.3.1 ML Algorithm
We employ a 6-layer CNN with binary weights for recognizing a face
on the input image. Table 7.1 shows its architecture, inspired by
[295], totaling 106MMAC operations and 392kB parameters. It takes
a 128x128 pixel gray-scale image as input and produces a 512-element
output vector using kernel sizes of 3x3-5x5 and 48-256 channels. The
face similarity is determined by the Euclidean distance between the
output vector and the previously determined reference vector of the
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Table 7.1: CNN architecture

Layer Input
size

Input
ch.

Output
ch.

Kernel
size

Stride #MAC Param.
[kB]

CONV1 128 1 48 5 2 4.9M 0.2
CONV2 64 48 96 3 2 42.5M 5.2
CONV3 32 96 128 3 2 28.3M 13.8
CONV4 16 128 256 3 2 18.9M 36.9
CONV5 8 256 256 3 2 9.4M 73.8
CONV6 4 256 512 4 4 2.1M 262.2
Total 106.1M 392.1

face to be identified. We define a positive identification as a distance
below a specific threshold. Evaluated on the LFW dataset [285], the
CNN achieves 96% accuracy in simulation. During layer-wise CNN
inference, all network parameters must be stored in memory along
with intermediate layer results. To minimize the memory required
for buffering activations, we employ the mapping strategy presented
in Chapter 5 ( [28]). Overlapping the memory space of each layer’s
input and output activations reduces the activation memory by 32.2%
with respect to standard double buffering as shown in Fig. 7.6.

0

200

400

600

800

CONV1 CONV2 CONV3 CONV4 CONV5 CONV6

Te
m

p
. a

ct
iv

at
io

n
s 

m
em

o
ry

 [
kB

]

Layer

Optimized Double buffering

Figure 7.6: Layer-wise activations memory space for evaluated
mapping strategies.
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7.3.2 Task Scheduling

Self-sustainable operation imposes two power constraints that must be
fulfilled at all times: 1) the average power of all executed operations
must be lower than the average harvested power and 2) any power
peak surpassing the average harvested power must be compensated
by the available capacitive load. The flow chart in Fig. 7.7 illustrates
the main operations of the application along with the independent
energy harvesting. Its timing ensures that both power constraints are
fulfilled. When the 1.8V supply voltage is stable, the harvester enables
the main power switch. This starts the power supplies and the 32kHz
clock generator while keeping the SoC reset during the oscillator
startup-time. Releasing the reset automatically starts the booting
process in the SoC, loading the program and CNN parameters into the
SRAM. The microcontroller then enables the internal 180MHz clock
and starts the application. Always-on face recognition is implemented
as periodic image sampling with subsequent CNN analysis. Each cycle
starts by triggering an image in the sensor through the 20MHz SPI
interface. A sensor interrupt starts the SPI image transfer to the SoC
SRAM via direct memory access. The CNN accelerator then processes
the network layer-by-layer starting from the down-scaled image. An
internal interrupt indicates the inference end, waking up the sleeping
microcontroller to analyze the output vector. If the face is identified,
the display is updated to show the code, followed by the idle screen,
after a 60 seconds delay, as shown in Fig. 7.1. Otherwise, the periodic
task restarts at 1 FPS.

7.4 Experiments and Results
We measure the solar harvesting and power consumption of the entire
system in all operation phases. Fig. 7.8 shows the breakdown of
energy per operation across the main sub-systems. Idle energy is mea-
sured over 1 second for reference. Image transfer and CNN processing
have a similar energy cost while acquiring an image is roughly 3×
cheaper. Booting from the Flash memory and updating the display are
very intensive, consuming 7.45mJ and 23.87mJ, respectively. The ML
SoC consumes 70% of the power during operation. Fig. 7.9 compares
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Figure 7.7: Operation flow chart with continuous solar energy
harvesting.

the harvested indoor solar power of 0.94mW (90% harvesting effi-
ciency) and the 0.68mW power consumption at 1 FPS, verifying self-
sustainable operation. Table 7.2 summarizes the operation phases,
highlighting the average power consumption. Note the theoretical
values for the operation at the maximum frame rates. Booting and
display updating exceed the average harvested power and thus are
duty-cycled by appending an idle state phase of 7.5 seconds and
24 seconds, respectively, resulting in an average power consumption
below the harvested power of 0.94mW. Outdoor lighting delivers>50×
higher harvesting power, which would allow maximum frame rates of
9.6 FPS with a static display and 0.4 FPS with per-frame display
update as shown in Table 7.2. However, this requires monitoring the
harvested energy and adapting the frame rate accordingly, which the
current version of the platform does not support.
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Table 7.2: Operation phases

Scenario Booting:
- boot
- 7.5s idle

Recognition:
- imaging
- CNN

Displaying:
- disp. update
- 24s idle

Recognition
(@ max FPS):
- imaging
- CNN

Recogn. & disp.
(@ max FPS):
- imaging
- CNN
- disp. update

FPS [1/s] N/A 1 N/A 9.6 0.4
Exec. time [ms] 8’365.3 1000.0 26’625.4 1’000.0 1’000.0
Idle time 89.7% 89.6% 90.1% 0% 0%
Av power [mW] 0.91 0.68 0.92 6.33 9.08
*Theoretical scenario to show maximum frame rates possible.

7.5 Conclusion
We presented a credit card-sized and battery-less platform for end-
to-end computer vision processing at the edge using solar energy
harvesting. The platform allows acquiring images with its on-board
image sensor and perform CNN-based face recognition at 1FPS while
consuming 0.68mW. This enables self-sustainable operation in indoor
lighting conditions and demonstrates the feasibility of implementing
miniaturized and battery-less ML applications at the extreme edge.





Chapter 8

Summary and
Conclusion

NN-based data analysis is no longer confined to powerful stationary
computers but increasingly deployed to miniaturized mobile and near-
sensor edge processing systems. The strict size constraints of such
systems result in limited battery capacities with tight power bud-
gets, requiring efficient hardware accelerators. To achieve maximum
performance, accelerator designs are optimized across multiple fields
ranging from improved circuit design to software optimizations.

In this thesis, we have presented multiple approaches to improve
the efficiency of NN processing at the edge to enable support for more
complex applications and further increase the battery lifetime, moving
towards self-sustainable operation. First, we have provided a survey of
existing NN accelerators and their optimization techniques, allowing
to quantitatively compare and trade-off their effects during the design
process (Chapter 2). This is increasingly important due to the myriad
of research papers published over the past decade, complicating an
objective evaluation. We have further investigated edge processing
on high-speed cameras (Chapter 3), demonstrating efficient BNN im-
plementations on reconfigurable FPGA platforms, and presented an
automated mapping tool to simplify deployment on FPGAs for non-
expert users (Chapter 4). The need for efficient memory utilization

153
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was reported in the FPGA implementations. Therefore, we have
developed a technique for improving the memory utilization in layer-
wise CNN accelerators, enabling memory savings through memory
mapping optimizations (Chapter 5). In Chapter 6 we have presented
a new system-on-chip architecture for low power edge ML using hierar-
chical dual-engine acceleration. We have further presented a battery-
less solar-powered platform that exploits the efficient system-on-chip
to demonstrate self-sustainable edge ML applications (Chapter 7).
We conclude that designing efficient edge ML systems requires opti-
mizations across all design levels, from hardware implementations to
efficient network co-design and mapping strategies.

8.1 Overview of the Main Results

This section summarizes the main results of the thesis:

Quantitative Survey of Optimization Techniques

The success of NN-based analysis has led to an explosion of publi-
cations in the ML accelerators field, making it difficult to maintain
a clear overview of proposed optimization approaches. Addition-
ally, many works combine multiple optimization techniques obfus-
cating their respective effects and thus complicating a fair compar-
ison. We have surveyed hundreds of research papers in the field
and extracted their employed optimization techniques to provide a
quantitative summary of existing optimizations and their effects. Each
approach is quantified using five key performance indicators, namely
memory usage reduction, throughput increase, area reduction, en-
ergy/power reduction, as well as accuracy impact. This enables to
trade-off improvements and disadvantages across various performance
indicators, allowing to estimate the effect of each approach during the
design process of new accelerator architectures. The survey describes
optimizations with performance improvements ranging from up to
10’000× memory reduction to 33× energy savings.
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Edge ML for FPGA-Based Cameras

To reduce the extreme output data rate generated by high-speed
cameras, we have investigated edge processing for FPGA-based cam-
eras, decreasing the communication bandwidth by 980× and system
energy per frame by 3× through on-board image analysis capabilities.
Processing images close to the sensor has been shown to enable new
applications like self-triggering, which would not be possible with
the communication latency imposed by external processing. Our
implementation has shown that high quantization levels down to fully
binary precision lead to significant power and memory savings, en-
abling complete on-chip edge processing.

Hardware Mapping

The computational efficiency of edge processing systems originates
from optimizations across various fields, including system control and
mapping approaches. Hardware mapping also forms the interface
between algorithm and hardware developers, making it especially chal-
lenging for FPGA implementations, where the hardware configuration
is an additional part of the mapping. Recent advances in high-level
synthesis tools have simplified FPGA hardware development, mak-
ing configurations accessible to software developers with no hardware
coding background. To further advocate edge ML for FPGA-based
cameras, we have provided an automated mapping framework that
translates a trained network into an efficient FPGA hardware imple-
mentation. It supports arbitrary layer and kernel dimensions, layer-
wise configurable fixed-point precision, and a throughput-balancing
mechanism to effectively distribute the available resources across the
layers. For fully-binary implementations, resource-efficient XNOR-
based arithmetic is instantiated.

We have further investigated the efficient memory mapping of
activations in layer-wise CNN processing, where they often dominate
the memory due to increasing input (image) sizes. Our proposed map-
ping technique improves the standard ping-pong buffering by allowing
neighboring activation regions to overlap, enabling memory savings of
up to 48.8%.
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Custom Hierarchical Dual-Engine ML ASIC

Face detection and recognition tasks are increasingly deployed to secu-
rity and retail customer analysis applications, where battery-powered
operation is required. We have presented an energy-efficient system-
on-chip that ensures a long battery lifetime for such face analysis
tasks. Its highly scalable dual-engine architecture can run simple
detections at very low power consumption using a binary decision
tree accelerator, which can trigger the more complex CNN accelerator
for detailed analyses. It features multiple optimization approaches
like multi-precision CNN support, dynamically scalable evaluation
complexity as well as end-to-end processing capabilities, enabling it
to run face detection and recognition at 0.41mW.

Towards Battery-Less Edge ML

The improving energy efficiency of edge ML accelerators have en-
abled the deployment of increasingly complex ML applications in
domains that have traditionally been restricted to very simple analyses
due to stringent battery lifetime requirements. By exploiting the
efficient edge processing capabilities of our presented ML ASIC, we
have demonstrated the feasibility of implementing battery-less face
identification on a new credit card-sized computer vision platform.
Its small solar panel enables self-sustainable operation under indoor
lighting conditions, running face recognition at 1 frame-per-second.

8.2 Outlook
This section discusses promising directions for future research in the
field of efficient NN inference at the edge.

Processing Closer to the (Sensor) Data

While NN inference accelerators have received a lot of attention over
the past years, system-level aspects like sensor communications have
often been neglected. In Chapter 7 we have shown the power break-
down of our implemented edge ML system, reporting a dominant
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power contribution from the sensor communications. This signif-
icantly decreases the impact of processing efficiency improvements
and thus requests for a system-level analysis to identify effective op-
timization potentials across the entire system. Early data reduction
approaches have shown that processing closer to the sensor can help
reducing data movements and related energy costs. Increasing the
ratio of processing performed on the sensor side additionally helps
reducing the memory size of connected processing chips and allows
them to remain in a low-power idle mode for a longer period of time.
Sensor-based pre-processing could identify useful data, only triggering
the processor for detailed analyses. However, sensors often rely on
larger process nodes, making them less suitable for implementing dig-
ital processing (low memory density, higher supply voltage). Various
chip stacking technologies have been proposed, allowing to tightly
connect multiple dies (manufactured in different process technologies),
allowing to move the digital processing closer to the data source.
Compute-in-memory techniques could further improve this approach,
possibly being integrated into the sensor memory for extreme edge
processing.

Flexibility for Efficiency

Hardware flexibility is a key factor for supporting a diverse set of
applications. It additionally allows adapting the analysis complexity
to the application’s current needs, which might change over time and
enable power savings during low-complexity phases. Various such
complexity scaling options have been discussed throughout the the-
sis, requiring the hardware to support various arithmetic precisions,
arbitrary network dimensions, or approximate computing options.
Another promising approach is event-based processing, adapting the
computational workload to the (temporal) input activity. Constant
input data result in reduced switching activities in the processing
hardware, leading to lower dynamic power consumption. This enables
to flexibly adapt the complexity to temporal information content.
Challenges in the training of such algorithms, especially for more com-
plex tasks, are still being investigated in this active field of research.
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Co-Design

We have shown that algorithmic network optimizations, like reducing
weight precision, enable significant memory and power savings in
hardware accelerators. Other algorithmic optimizations, with similar
hardware advantages in mind, have been proposed to trade off accu-
racy against energy efficiency. Such algorithm/hardware co-design is
highly application-dependent, making it time-consuming to find the
optimum trade-off for each use case.

NAS was recently proposed to find optimal network (and acceler-
ator) architectures for a specific task, evaluating a set of controllable
hyper-parameters based on target accuracy and complexity metrics
[187,296]. While some NAS frameworks already include simple (com-
putation) power estimates in their evaluation, detailed hardware im-
plementation models could be included in the search process, further
enabling to optimize data reuse, memory utilization, and hierarchi-
cal processing options. To enable flexible designs, the search can
be extended across multiple operating points with different precision
options and power management settings. The extreme hardware simu-
lation and benchmarking complexity currently limits such evaluations,
requiring more efficient simulation techniques to become available.

Recent research has identified that currently used networks are
generally too large, often overfitting to the training data [185], and
thus propose less artificial intelligence. Improved training techniques
are expected to help networks generalize better beyond the training
datasets, which could lead to smaller minimum required network com-
plexities, further improving the efficiency of edge ML applications.
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Appendix A

Notations and
Acronyms

Operators

� much less than
< less than
≤ less than or equal to
� much greater than
> greater than
≥ greater than or equal to
‖ · ‖ `2-norm or Euclidean norm, i.e.,

√∑n
i |xi|2 for x ∈ Cn

log2 base-2 logarithm
log10 base-10 logarithm
(·)−1 inverse function
d·e ceil: smallest integer value equal to or larger as argument
b·c floor: largest integer value equal to or smaller as argument
∈ is member of
∗ convolution operator
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a+ = b increment and assign: a← a+ b

Acronyms

ABB adaptive body biasing
ADC analog-to-digital converter
ALU arithmetic logic unit
ASIC application-specific integrated circuit

BB bounding box
BDT binary decision tree
BNN binary neural network
BRAM block RAM

CIM compute-in-memory
CMOS complementary metal-oxide-semiconductor
CNN convolutional neural network
CPU central processing unit

DMA direct memory access
DNN deep neural network
DSP digital signal processor

FC fully-connected
FD face detection
FF flip-flop
FIFO first-in first-out
FPGA field-programmable gate array
FPS frames-per-second
FR face recognition
FSM finite-state machine

GE gate equivalent (reference unit area of a two-input NAND
gate)
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GOPS billion operations per second (1 MAC is usually considered
as 2 operations)

GPU graphics processing unit

HDL hardware description language
HLS high-level synthesis

IC integrated circuit
IoT internet of things
IP intellectual property

KNN k-nearest neighbors algorithm

LUT look-up table

MAC multiply and accumulate
ML machine learning

NAS neural architecture search
NN neural network
NVM non-volatile memory

PE processing element

RAM random-access memory
ResNet residual network
RNN recurrent neural network

SAR successive approximation register
SoA state-of-the-art
SoC system-on-chip
SPI serial peripheral interface
SRAM static random-access memory
SVM support-vector machine
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ULP ultra-low power
USB universal serial bus

WC weak classifier
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