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Abstract

Electric vehicles (EV) are a key ingredient in the process of decarbonising

the transportation sector and mitigating the rate of climate change. After a

halting start, their introduction has taken off in many developed countries

mostly thanks to public support. Nevertheless, EVs entail a set of new

challenges and potential hindrances that can hamper or severely slow down

their diffusion. Examples range from the possibly critical impact on local

electric grids to the discouragement caused by the limited driving range.

Confronting these aspects requires investigations in complementary specia-

lised fields but a common fundamental prerequisite is a deep understan-

ding of EVs mobility patterns. On one side, EVs interact with the energy

sector at an unprecedented timescale for road transport, and assessing po-

tential risks necessitates meticulous modelling of intra-day movements of

passenger cars. On the other side, the range limitation of EVs calls for a

comprehension of the varying range requirements of drivers along the year

in order to quantify the actual amount of discomfort to be borne.

This thesis presents a comprehensive model to flexibly simulate EV mo-

bility at any opportune timescale. The starting point are household travel

surveys collected by national statistical offices due to their generally ade-

quate resolution of intra-day mobility and their representative sample size.

After a characterisation of the car patterns captured by these surveys, few

solutions to some of the typical limitations of these datasets are presented.

The modelling effort is then dedicated to the adaptation of these patterns

to the simulation of EVs, with a special focus on the charging behaviour of

EV drivers. Finally, a methodology to construct plausible annual profiles

from the short-term data available in travel surveys is provided.

Both the simulation of intra-day EV mobility and the construction of an-

nual profiles compare favourably with empirical reference data. Regarding

the former, uncontrolled charging loads detected in four EV field tests are

used as validation proxy due to their pivotal role as an interface between

EVs and the energy sector. The validation particularly highlights that a
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simple stochastic function, where the decision to charge depends on the

EV state of charge, can capture the charging behaviour observed in diffe-

rent contexts. Annual driving profiles are instead assessed in terms of the

resulting annual mileage distribution and its conformity with the empiri-

cally observed curves. The most accurate annual profiles are constructed by

clustering the raw mobility information into 5–10 groups according to the

self-reported car annual mileages and by then sampling from each group

about 4–12 distinctive weeks of mobility (repeated to form one year).

Illustrative applications of the model are then provided with a special fo-

cus on the electrification potential of EVs considering different charging

scenarios and the variety of usage profiles in the fleet. Increasing the range

of BEVs to 350 km clearly supports the replacement of conventional cars.

But further range increases achieve only mild results. Effective measures

to unlock more potential include either installing charging stations at any

location where the car may get parked or, more decisively, providing BEV

drivers with alternatives for the few very long trips of the year. These al-

ternatives could be fast en-route chargers, the rental of hybrid vehicles or

the usage of public modes of transport.

Finally, given the recent surge in alternative mobility models, the benefits

of integrating EVs with car-sharing schemes are also assessed. The analysis

shows that the bigger the car-sharing community, the larger the reductions

in the number of vehicles and total battery capacity. Urban environments

are thus the most suitable thanks to their high population density. Ho-

wever, the largest benefits are unlocked if only the least driving people in

the surrounding area give up their private cars and join the EV-sharing

community. Additionally, the remarkable decrease in required battery ca-

pacity indicates that EVs benefit from car-sharing to a greater extent than

conventional cars.
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Sintesi

Le automobili elettriche sono una componente fondamentale del processo

di decarbonizzazione del settore dei trasporti e di mitigazione del cambia-

mento climatico. Dopo un inizio incerto, la diffusione di questa tipologia

di veicolo è decollata in molti paesi industrializzati soprattutto grazie a

supporti a livello statale. Ciononostante le auto elettriche comportano una

serie di nuove sfide e difficoltà che possono ostacolare o severamente ral-

lentare la loro diffusione. Tali difficoltà spaziano dal potenziale impatto

critico sulle reti locali di distribuzione elettrica allo scoraggiamento dovuto

alla limitata autonomia dei veicoli elettrici.

Affrontare queste tematiche richiede indagini in campi specialistici com-

plementari, anche se un prerequisito comune fondamentale è una profonda

comprensione delle modalità di utilizzo delle auto elettriche. Da un lato

i veicoli elettrici interagiscono col settore energetico con una istantaneità

inedita per il trasporto su gomma: valutarne potenziali rischi richiede una

meticolosa modellazione dei singoli movimenti giornalieri delle automobili.

Dall’altro, la ridotta autonomia delle auto elettriche richiede una com-

prensione del variabile fabbisogno degli automobilisti durante l’anno cos̀ı

da stimare l’effettivo disagio causato da tale limitazione.

Il presente elaborato propone un modello articolato atto a simulare la mo-

bilità delle auto elettriche in qualunque richiesta scala temporale. Il punto

di partenza è costituito dalle indagini sulla mobilità dei cittadini effettuate

da uffici statistici nazionali, scelte in funzione della loro adeguata risoluzio-

ne dei movimenti giornalieri e delle significative dimensioni dei campioni

di popolazione. Dopo una prima caratterizzazione della mobilità osservata

in queste indagini, si è proceduto a proporre soluzioni a tipiche problema-

tiche ad esse relative. Successivamente la ricerca si è diretta ad adattare

e organizzare le informazioni emerse da queste indagini al fine di simulare

la mobilità di veicoli elettrici, dando particolare attenzione alla frequenza

con cui gli automobilisti effettuano le ricariche.

Sia la simulazione dei movimenti giornalieri che la costruzione di profi-
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li annuali rispecchiano fedelmente le rilevazioni empiriche. I movimenti

giornalieri sono validati da un confronto della domanda incontrollata di

elettricità delle auto elettriche con le misurazioni ottenute da quattro test

sul campo; la domanda di elettricità è stata scelta in quanto cruciale inter-

faccia tra le auto elettriche e il settore energetico. La validazione mostra

in particolare che una semplice funzione stocastica, dove la decisione di

ricaricare l’auto dipende dal livello di carica, permette di catturare le atti-

tudini di ricarica osservate in contesti diversi. I profili di mobilità annuali

sono stati invece validati sulla base della risultante distribuzione di chilo-

metraggio e della conformità di quest’ultima con le distribuzioni osservate

empiricamente. I profili annuali più accurati sono ottenuti dividendo i dati

originali sulla mobilità in 5–10 gruppi secondo il chilometraggio annuo ri-

portato dagli utenti e successivamente estraendo da ogni gruppo circa 4–12

settimane distinte di mobilità (da ripetere fino a formare un anno).

Vengono successivamente presentate alcune applicazioni del modello, rivol-

gendo particolare attenzione all’idoneità dei veicoli elettrici a soddisfare le

necessità degli automobilisti e considerando vari scenari di infrastruttura

di ricarica e gli eterogenei casi d’uso delle auto. Aumentare l’autonomia

delle auto elettriche fino a 350 km porta a chiari vantaggi in termini di

sostituzione delle auto tradizionali. Ulteriori incrementi dell’autonomia

portano però solo a lievi benefici. Misure efficaci per raggiungere più fasce

della popolazione includono l’installazione di colonnine di ricarica presso

ogni possibile parcheggio o, ancora meglio, la disponibilità per gli autisti di

alternative alle auto elettriche per i pochi viaggi lunghi dell’anno. Alcune

alternative potrebbero essere l’accesso a ricariche rapide lungo il tragitto,

il noleggio di auto ibride o l’utilizzo dei trasporti pubblici.

Infine, vista la recente diffusione di sistemi di mobilità alternativa, si con-

siderano anche i possibili benefici nell’adottare auto elettriche in servizi di

car-sharing. L’analisi dimostra che più grande è la comunità di car-sharing,

maggiori possono essere le riduzioni del numero di veicoli e del fabbisogno

di batterie. I contesti urbani sono quindi i più favorevoli grazie alla lo-

ro alta densità di popolazione. Tuttavia, i maggiori benefici si ottengono

se solamente le persone che guidano di meno rinunciano all’auto privata

per iscriversi al servizio di car-sharing. In aggiunta, la notevole riduzio-

ne nel fabbisogno di batterie indica che le auto elettriche beneficiano del

car-sharing in maniera maggiore delle auto tradizionali.
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Chapter 1

Introduction

1.1 Motivation

The battle against climate change is pressing, and countermeasures must be

deployed at a higher rate than ever before. CO2 emissions are the main con-

tributor to the problem and only recently they seem to have stabilised [1].

Nevertheless, annual emissions in line with the 2018–2020 period would ex-

haust by 2028 the global carbon budget required not to exceed 1.5°C above

pre-industrial levels with a 66% probability [2]. These estimates include

the 7% drop in CO2 emissions projected for 2020 due to the COVID-19

pandemic [3].

CO2 emissions mostly stem from the combustion of fossil fuels in the energy

sector. The detailed breakdown of Fig. 1.1 shows that all economic sectors

contribute to these emissions and thus must put forward drastic mitigation

strategies.

Passenger cars lead the transport sector with 11% of total CO2 emissions

and have long been a target of decarbonisation measures. These include

technological advancements such as hybridisation and lightweighting or

behavioural adjustments like mode shift and car sharing. But the most

relied-upon solution are electric light-duty vehicles (EVs): this technology

combines high maturity levels with the possibility to entirely abate local

pollutants and CO2 emissions [4, 5]. CO2 may still be emitted at elec-

tricity generation sites, but the very high powertrain efficiency of EVs can

compensate even mildly dirty electricity mixes. Fig. 1.2 shows that pure

battery electric vehicles (BEV) entail the lowest well-to-wheel (WTW) CO2

emissions for grid CO2 intensities lower than 500 gCO2/kWh [6]1. How-

1For distances shorter than 50 km plug-in hybrid electric vehicles (PHEV) can run entirely on elec-
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Figure 1.1: Distribution by sector of global CO2 emissions from fossil fuel combustion

in 2017.

ever, BEVs suffer also from range limitations and Fig. 1.2 shows that cur-

rent battery technology does not allow to fit into cars batteries that cover

distances larger than 370 km. The lateral histograms show that most Eu-

ropean electricity is generated below the 500 gCO2/kWh tipping point and

that daily trips extremely rarely exceed the driving range of BEVs. From

a techno-environmental point of view, BEVs and PHEVs seem to be the

best option to decarbonise private passenger transportation.

This is why EVs have increasingly received both private and public financial

support and today they are one of the few mitigation strategies which are

judged on track to meet the 1.5°C target from the Paris Agreement [7]. This

progress is also confirmed by the substantial penetration of EV models in

some developed countries [8].

Yet, this recent success has long been delayed and keeps being threatened

by some technical and cultural hindrances. First, EVs introduce an inter-

action with the energy sector at a timescale that is unprecedented for road

transportation. Contrary to conventional cars, EVs require their “fuel”

to be instantaneously generated and transported over long distances as

soon as it is demanded. Only trains entail a similar phenomenon, but

their scheduled and coordinated movements make the electricity demand

tricity and manage to outperform BEVs thanks to their lighter weight. In a nutshell, direct electrification
is the best solution for any distance shorter than 370 km.
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Figure 1.2: Powertrain technology that minimises the specific well-to-wheel (WTW)

CO2 emissions [gCO2/km] for a given daily distance (y-axis) and CO2 intensity of the

grid (x-axis) without en-route charging [6]. The histogram at the top depicts the dis-

tribution of European electricity mixes (weighted with the total generated electricity)

[9]; the histogram on the right shows the distribution of daily car distances recorded in

Switzerland [10] and Great Britain [11] (weighted with the respective populations). See

nomenclature for a description of the acronyms.

much more predictable. The uncontrolled demand for electricity from EVs

may damage the local distribution grid or compete with other consumption

sectors for the limited transmission capacity. Furthermore, this additional

electricity may be supplied by only a part of the generation assets con-

nected to the grid. That is, the actual x-coordinate of Fig. 1.2 to be used

for environmental assessment may differ from the national average and can

even depend on the time of charging. To address these points a detailed

knowledge of EV usage is required, where the timing and energy flows

involved with every movement or charging event are adequately known.

Accurate description of car mobility can help addressing another criti-
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cism commonly made to BEVs, that is their relatively short driving range.

The horizontal histogram of Fig. 1.2 already suggests that users rarely

drive distances unfulfillable by averagely sized BEVs. However, on one

side single-day performances may overlook the long-term mobility needs of

drivers and misrepresent the battery preferences of potential buyers. On

the other side, opportunity charging during the day could soften the battery

requirements of BEV drivers. These uncertainties call for a comprehensive

description of EV mobility that can capture both intra-day details and

multi-day fluctuations.

Other important criticisms made to EVs involve their high upfront price

and the controversial sustainability of the battery manufacturing process.

While these subjects deserve dedicated analyses and are already being

successfully tackled [12, 13, 14, 15], detailed knowledge on car mobility

can provide further useful insights. This is particularly the case when

entirely different mobility concepts, such as car-sharing, are introduced as

partial solutions to those problems [16, 17].

All these needs for a detailed picture of EV mobility conflict with their rel-

atively low diffusion in worldwide fleets. The current standard way for gov-

ernments and institutions to acquire reliable knowledge regarding people’s

mobility is through household travel surveys (HTS), inquiries regularly

carried out by many countries on the mobility patterns of their citizens.

Until EVs have profoundly entered some national fleet stocks, these HTSs

will essentially describe the usage of internal combustion engine vehicles

(ICEV). This travelling information, albeit abundant and statistically rep-

resentative, might thus misrepresent the future usage of EVs.

Accurate information on EV mobility can be obtained from EV trials, i.e.

field tests where participants are given EVs and all their movements and

charging events are thoroughly tracked. The drawback of EV trials is that

they are usually limited in size and are necessarily bound to the socio-

geographic context where they take place.

A way out of the impasse can come from a comparison of the results ob-

tained from an EV simulation platform based on HTSs and the empirical

measurements of EV trials. This thesis fulfils this objective by using as

benchmark the hourly electricity demand triggered by charging EVs. Such

a validated model can then be employed to confidently address some of the

aforementioned drawbacks of EVs.
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1.2 Thesis structure

HTS
Results & Applications

Mobility demand
model

EV charging 
model

Validation

Validation

Chapter 2 Chapter 3 Chapters 4 & 5

Figure 1.3: Schematic organisation of this thesis.

The thesis is organised as depicted in Fig. 1.3. Chapter 2 presents the

methodology used to build an EV simulation platform based on traditional

HTSs. On one side, this includes the understanding and cleaning of the

information included in HTSs; on the other, it requires the modelling of

multi-day mobility and of EV energy flows, from charging to propulsion.

Chapter 3 then presents the validation of the two main introduced mod-

els. The multi-day model is used to build annual mobility profiles and

the resulting distribution of yearly mileages is compared against empiri-

cal observations. The EV charging model is employed to construct hourly

load profiles from charging EVs and these are compared against the loads

measured in EV field tests. The chosen basis for comparison allows the

assessment of the whole simulation chain, from the timing of cars usage to

the energy consumption of EVs. The favourable outcome of the validation

conclusively proves that even traditional HTSs can adequately capture the

mobility behaviour of EVs.

The model so validated is then employed in Chapter 4 to address some

of the aforementioned EV hindrances. Particular focus is given to the

electrification potential of BEVs when accounting for the variety of mobility

needs of individual drivers on a yearly timescale. A brief discussion on the

actual CO2 content of the electricity fed to BEVs is also proposed, in order

to assess whether future mixes won’t exceed the tipping point shown in

Fig. 1.2.
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Given the recent uptake of alternative mobility models such as car-sharing

and autonomous driving, it is important to assess how these disruptions

would interact with the parallel expansion of EVs. Therefore, chapter 5

proposes an exploratory investigation of the benefits of EV-sharing sys-

tems. The results suggest that such mobility models could effectively con-

tribute to addressing issues such as the economical access to EV mobility

or the demand for large quantities of battery storage.

This thesis aims to demonstrate the adequacy of HTS-based EV models

and hence corroborate the pivotal role of EVs in decarbonising private

mobility. It further aspires to provide useful insights for future research on

the most recent developments of EVs and passenger transportation.



Chapter 2

Methodology

This chapter introduces the approaches used to describe the mobility of

passenger cars in general and of EVs in particular. Private mobility arises

from the balance of multiple necessities, which confront the utility of reach-

ing the destination against the time, cost and discomfort of travelling. The

creation of entirely synthetic mobility data has thus been seldom attempted

[18] and the vast majority of research relies on some form of recorded move-

ments.

Household travel surveys (HTS) are among the datasets most commonly

used thanks to their favourable characteristics. They are surveys regularly

carried out in many countries worldwide which track every movement of

a large sample of the population for one or multiple days. The samples

are statistically significant and the surveys allow to draw conclusions for

both the entire country and specific socio-demographic groups. These data

are also usually accessible by research institutes, since they are generally

collected by governmental institutions for the public interest.

HTSs are relatively accurate pictures of today ’s mobility, but lack any

flexibility or specificity. HTSs do not inform about the specific usage of

EVs or the utilisation factor of shared cars. These phenomena might take

place in the survey but do not reach the significance threshold necessary to

elaborate useful conclusions. Scientists thus employ modelling techniques

to shape HTSs for their specific needs.

Section 2.1 provides an overview of the typologies and applications of HTS-

based models in literature. The chapter then describes the approaches

employed in this thesis to characterize firstly the demand for passenger

car mobility (Section 2.2) and then the specific energy demand from EVs

(Section 2.3).
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2.1 HTS-based EV models in literature

HTSs have been extensively employed to investigate potential challenges

posed by the quick introduction of EVs. The following literature focuses on

studies that have employed HTS to model charging profiles (CP), that is

the hourly load demand generated by one or multiple EVs being charged.

CPs play the important role of interface between EVs and the energy sector.

Depending on the system scale, CPs may impact the performance of the

local distribution grid, as well as the national transmission grid or the

generation of electricity. The goal of EV modellers is to estimate realistic

CPs so that downstream simulations can evaluate the impact of EVs on

any relevant asset.

CPs from raw HTS

[19, 20] build CPs from the American HTS and compare the load shape

for different socio-spatial groups. [21] derives CPs from the Swiss HTS and

then proceeds to assess their impact on the distribution grid substations.

[22, 23] provide more comparative analyses by building CPs from differ-

ent European HTSs and conclude that, although some differences between

countries exist, the biggest impact comes from assumptions on charging

opportunity and behaviour. These aspects are thoroughly investigated in

Section 3.1.4 while testing the model developed in this thesis.

Modelling mobility behaviour

Several researchers choose to describe the variable nature of private mobil-

ity through a stochastic formulation of their models. [24] derives CPs from

the American HTS and then randomly samples some of those CPs from a

selected pool of drivers. But the majority of works incorporates stochastic-

ity by firstly deconstructing the HTS into its elementary variables — such

as travelling times or mileage driven — and then restructuring the gath-

ered information to obtain CPs. [25, 26] extract univariate distributions

of driven distances and parking times and sample from these the indi-

vidual charging events. [27, 28] recognise the importance of maintaining

the interdependent structure linking those quantities and build charging

events by conditionally sampling the necessary variables. [29, 30] model

the multivariate nature of mobility by employing copula functions: [29]
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then performs a Monte Carlo simulation to reproduce individual driving,

and consequently charging, events; [30] additionally shows the effectiveness

of using queueing theory to model the lag between arrival time distribution

and CPs. [31] preserves the interdependency between travelling times and

trip lengths by training artificial neural networks on the American HTS.

The trained model is then used by a local aggregator to forecast EV travel

behaviour and minimize the total cost of charging. Finally, some studies

use the disaggregated information of HTSs to build new synthetic daily

schedules before computing the CPs; to account for the interdependence

of the fundamental variables [32] employs a Naive Bayes while [33, 34, 35]

opt for Markov-chain simulations.

Modelling charging behaviour

The derivation of CPs from a daily driving schedule — synthetic or ex-

tracted from a HTS — requires modelling the charging decision process of

EV drivers. Most studies impose a constant number of recharges per day

[36] or assume that EVs will be charged at every possible opportunity [37].

A more elaborate approach is proposed in [24, 22], where a time-dependent

probability to charge is introduced. Similarly, [38] uses the journey number

of the day as proxy for the location of the vehicle, hence of its probabil-

ity to charge. Other studies model charging behaviour as a function of the

battery’s state of charge (SOC): [29, 36, 39, 40] use fixed thresholds of SOC

below which drivers always decide to charge their EVs, while [33] designs

a charging probability that follows a logistic function over the car SOC.

Finally, [41] proposes an advanced charging decision scheme that combines

some of the above criteria with the cost of charging and the maximum

rechargeable energy.

Validation of simulated CPs

Simulation models require a validation of their outputs to gain legitimacy.

Most literature has focused on synthesising stochastic driving patterns and

has accordingly prioritized validating the resulting travel behaviour against

the original HTSs [30, 32, 33, 38]. While this verification is important,

there is evidence that charging behaviour of EVs is as big a source of un-

certainty as the mobility behaviour itself [42]. Since CPs result from both

phenomena, they are a suitable candidate to validate the entire modelling
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procedure. However, few works effectively present a comparison between

CPs measured in a public EV trial and CPs built from a HTS.

In [25] CPs measured in a large British EV trial [43] are compared with

CPs built either from the raw data of the trial itself or from the British

HTS. The comparison predictably favours the CPs built from the trial

itself, but also the HTS performs well, for instance by returning the same

peak demand. However, the authors’ focus on the trial did not allow for a

refined modelling of the HTS, and few adaptations would have improved

the HTS’s score. [24] validates CPs obtained from the American HTS

against a small demonstration project in Austin, Texas. The quality of the

comparison is remarkable although they employ normalised CPs and thus

cannot assess the peak demand accuracy.

Research gap

Any model aiming at describing EV mobility should undergo a validation

that captures both the simulation of car movements and the modelling

of EV characteristics. While CPs can serve this purpose, no thorough

validation process of HTS-based CPs has been performed in literature. In

Chapter 3 CPs generated from HTSs are compared against the empirical

loads measured in 4 different EV trials.

The advantage of assessing the whole EV driving and charging chain is

that the validated model can be employed for purposes other than the

construction of CPs. Chapters 4 and 5 include illustrative applications

such as the sizing of BEV battery capacities.

2.2 Mobility demand

This first methodological section details the construction of car usage pro-

files from raw HTSs. The outcome of this process solely reflects the mo-

bility demand of drivers and disregards any characteristic of the cars such

as weight or powertrain. These factors will be considered in the energy

calculations of Section 2.3.

Nevertheless, grounding the car mobility demand on existing HTSs im-

plies assuming a conventional powertrain on most vehicles, as entailed by

the current composition of worldwide fleets. Whether the derived demand

properly reflects also the usage of EVs is one of the fundamental objec-
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tions to all HTS-based EV models. While some studies observe that range

anxiety may impact the driving routine of EV users [44, 45, 46, 47], others

find this alteration not to be particularly significant, especially after longer

driving experience [48, 49, 50, 51]. The successful validation of Chapter

3 decisively endorses the legitimacy of HTS-based EV models, especially

when the objective is the construction of CPs.

In this thesis HTSs are taken as is and no disassembling-resampling of

their information is performed: the quality and abundance of their data

is usually satisfactory without the need to synthesize artificial trips. The

modelling efforts of this thesis thus focus on attenuating peculiar short-

comings of HTSs:

• the bias and inaccuracies introduced by respondents when filling out

the surveys (in Section 2.2.2);

• the potential misrepresentation of car mobility when tracking per-

sonal movements (in Section 2.2.3);

• the lack of multi-day mobility: the vast majority of HTSs track a

single day, with the important exception of the UK [52] (in Section

2.2.4).

Before discussing these steps, the next section briefly introduces the HTSs

used in this thesis.

2.2.1 Household travel surveys

Two HTSs are used as a basis for this thesis:

• the Mikrozensus Mobilität und Verkehr (MZMV) from Switzerland

[10];

• the National Travel Survey (NTS) from the UK [11].

The Swiss HTS: MZMV

The Swiss HTS has primarily been chosen due to the multiple collabora-

tions with Swiss stakeholders during the development of this thesis. This

comes from the intrinsic interfacial nature of CPs, which should ideally

be generated from a HTS that is consistent with the context of the down-

stream simulations they are applied to.
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Additionally, MZMV is a highly detailed HTS with rich intra-day travelling

information and a large sample of participants. MZMV is carried out every

5 years and this thesis employs the results from the latest survey in 2015,

which tracked the movements of 57,090 people, i.e. about 0.7% of the Swiss

population [53]. Each person is drawn from a different household. The

dataset assigns to each participant a calibrated weighting factor that allows

to draw statistically significant conclusions not only for the entire country

but also for specific socio-geographic groups [54]. Temporal information

comes with a 1-minute resolution, which is valuable to model the dynamic

CPs from various EV patterns.

According to [52], any HTS that aims at accurately investigating EVs-

infrastructure interactions should possess the following features:

• data collected as trip diaries;

• data disaggregation to the individual level (not household or com-

munity);

• survey of a full week;

• details on socio-economic identity of individuals;

• details on duration and place of parking;

• details on size and age of vehicles;

• segmentation in rural and urban areas;

• geographic coverage of the entire country.

MZMV fulfils most of the above requirements with the sole drawback of

missing weekly travelling information. The value of this knowledge and

potential remedies for its absence are discussed in Section 2.2.4.

The British HTS: NTS

NTS is the only HTS analysed by [52] which fulfils all the above require-

ments, including tracking the movements of participants for an entire week.

The sample size is smaller than MZMV, about 7500 households per edition,

but every member of the household is interviewed and the survey is carried

out every year. NTS included the whole Great Britain until 2012 and then
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focused only on England. Nevertheless, methodology and weights of NTS

are adjusted so that multiple editions can legitimately be employed in the

same analysis.

Although all years 2002–2017 were available, only the editions from 2009

were finally employed in this work. This choice is justified by the observed

decrease in average mileages of household cars [55], which makes older

surveys obsolete for modelling current and future usage of vehicles. The

reduction is particularly steep until 2009, when it mildly attenuates.

NTS distinguishes between households that provide only general informa-

tion about members and vehicles owned (interview sample) and households

that supply a fully detailed travelling schedule (diary sample, subset of the

former). Given the objective to construct intra-day car usage profiles, only

the data reported in the diary sample were considered1.

2.2.2 HTS entries corrections

Most of the fields in HTSs are directly filled in with the respondents’ an-

swers and as such may be altered by human perception and forgetfulness.

Particularly critical for the technical analyses are the reported times and

distances.

Reported times

Participants tend to round travelling times to the hour, half hour and

quarter hour. Only few authors have acknowledged the problem and have

proposed solutions to offset this distortion [24, 56, 57]. A simple approach

to realistically disperse these times is proposed in Algorithm 1.

GCD computes the greatest common divisor and ti,dep, ti,arr are the vectors

of departure and arrival times for the ith daily car trip. The method as-

sumes that every respondent has an inner time resolution and thus reports

travelling times rounded to that resolution (line 2 in Algorithm 1). The

share of participants with a given time resolution for the case of MZMV

is plotted with × in Fig. 2.1. Departure and arrival times are shown sep-

arately since the latter come with much finer precision. The likely reason

for this behaviour is that respondents think more in terms of trip duration

and tend to add this to the departure time to estimate the arrival time.

1The diary sample includes on average 90% of all interviewed households.
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Algorithm 1 Shift of departure and arrival times.
1: for i in trips do

2: resolutionraw = GCD (ti,dep)

3: for k in [60, 30, 15, 10, 5, 1] do

4: if resolutionraw mod k = 0 then

5: resolution = k

6: exit for loop

7: end if

8: end for

9: shiftmax = min (ti,dep[1 : end]− ti,arr[0 : end− 1])

10: shiftmax = min (shiftmax, resolution/2)

11: sample X ∼ U (−1, 1)

12: shift = truncate (X · shiftmax)

13:
(
tnewi,dep, t

new
i,arr

)
= (ti,dep, ti,arr) + shift

14: end for

Overall, about 80% of respondents report departure times with a resolution

of 5 minutes or coarser. According to this approach, the actual trips may

have occurred at any moment falling within the respondents’ time resolu-

tion around the reported times. More diversity can thus be introduced by

randomly shifting travelling times within their time resolution (lines 11,

12). It is also reasonable to assume that respondents tend to round only to

5, 10, 15, 30 and 60 minutes and the set of possible resolutions is accord-

ingly reduced (e.g. trips with apparent resolutions of 20 or 90 minutes are

assigned resolutions of 10 or 30 minutes respectively; lines 3− 8). In order

to maintain the original logistic structure of the trips, all daily movements

of each trip are shifted by the same amount (line 13) and no shifted stage

should overlap with the non-shifted neighbouring stages (lines 9, 10). The

resulting time resolutions of trips are depicted with • in Fig. 2.1. Both

distributions steadily improve, and arrival times exhibit time resolutions

finer than 6 minutes for more than 80% of trips. This is crucially important

to obtain sparse parking times, hence smoother CPs.

Reported distances

Since the correct estimation of travelling distances is of paramount impor-

tance for taking any meaningful action, most statistical offices have taken
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Figure 2.1: Probability mass function of the time resolutions used by respondents while

reporting travelling times. Time resolutions belonging to less than 1% of respondents are

not shown for clarity. Clear peaks at 1, 5, 15 and 30 minutes are visible for both departure

and arrival times.

countermeasures. Regarding the two analysed countries:

• since 2010 MZMV performs a routing process that maps each respon-

dent’s movement to the plausible itinerary on the Swiss transporta-

tion network [58];

• NTS provides, beyond the manually reported daily movements:

◦ the total weekly mileage of each household-owned vehicle as

indicated by the on-board odometer;

◦ a weighting factor W5xhh to offset the observed reduction of

trips reported along the surveyed week, regardless of the week-

day on which it began [59]2.

While MZMV directly provides the corrected distances, NTS does not make

a presumptive use of the additional information, letting the end user apply

2W5xhh is so labelled since it represents the trip weight W5 excluding the household weight (either
W2 or W3 depending on the sample under consideration). In other words, it is the general weight of
trips during any surveyed week irrespective of the interviewed household.
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the appropriate corrections.

Therefore, in this work NTS is preprocessed by firstly applying W5xhh to

adjust the distances recorded on each day within a reported week, increas-

ing the average mileage by 5%. The resulting weekly distances come still

short of the values measured by the odometer, due to the omissions of

car stages that may not or should not be reported to NTS, such as when

the car is driven by a non-household member, when transporting goods

in course of work, or when commercially escorting passengers [59]. The

average gap amounts to 7.4% and a second uniform scaling factor of 1.074

is thus applied to all recorded movements.

2.2.3 Car mobility characterisation

Both HTSs asked participants to list all vehicles available to the household

(regardless of the ownership) and to indicate for every driving stage which

car has effectively been used. With this car identifier, it is possible to link

together all stages performed by the same vehicle and to obtain the daily

driving schedule from the car’s point of view.

The procedure is straightforward but the accuracy of the resulting sched-

ule depends on a HTS feature overlooked by [52]: whether all household

members have taken part in the survey. Cars are often shared by members

of the same household and interviewing a single person does not ensure an

accurate picture of the cars’ usage. This aspect does not fundamentally

impede the generation of CPs and that is why [52] has not included it in

their indispensable list. Nor are the aggregated statistics on car mobility

significantly impacted. The simple example of Fig. 2.2 better illustrates

the impact of interviewing a single member per household.

Fig. 2.2 presents the mobility patterns of 6 households (HH): on the y-axis

are the cars owned, on the x-axis the household members (all adults with a

driving license) and in the cells are the km driven on a day by the x-person

with the y-car (− if none). Any movements with other means of transport

are neglected for simplicity. Let’s assume that the 6 households represent

the entire population. Household members surveyed are circled in green,

together with their mobility. To make sure that the sampling procedure is

correct and representative, HHs 4–6 are copies of HHs 1–3, with the other

person being selected for the HTS.

Firstly, the personal mobility by car is evaluated. The real average daily
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Figure 2.2: Imaginary community of 6 households, each depicted by a table with a

column per member (all adults with driving license) and a row per car owned. The cells

of the table indicate the daily distance driven by the x-person with the y-car. The people

surveyed in the HTS are circled in green.

distance by car per person dperson and the estimate d̂person by the HTS are:

dperson =
20 + 10 + 30 + 20 + 10 + 30

12
= 10 km/p (2.1)

d̂person =
20 + 10 + 30

6
= 10 km/p (2.2)

Therefore, if the sampling procedure is correct, the estimated personal

mobility matches the actual one. Let’s now consider car mobility. The real

average daily distance per car dcar is:

dcar =
30 + 30 + 30 + 30

8
= 15 km/car (2.3)

However, the survey has never tracked cars, but only people. To estimate

the average car distance researchers can either rely on all detected cars or

on only the used ones:

d̂car all =
20 + 30 + 10

8
= 7.5 km/car (2.4)

d̂car used =
20 + 30 + 10

3
= 20 km/car (2.5)

These estimates are wrong as they miss both the actual distance of cars

when driven (dcar used = 30 km/car) and the relative frequency fused of
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driving days (fused = 1/2, f̂used = 3/8). Both these estimates should be

corrected to improve the description of mobility from the car’s point of

view.

A HTS like the British NTS that interviews all household members does

not face these issues as all car movements are necessarily tracked. Such

a HTS might still miss stages where the car is driven by a non-household

member, but these situations are significantly limited. In the case of NTS

at least the distances of these and other exceptions can be accounted for

with the reported car weekly mileages and the correction factor of 1.074.

The next sections provide steps to refine the estimates of d̂car used and f̂used

in HTSs that do not interview all household members, such as in MZMV.

Improve distance of cars when driven

An excellent solution to account for stages where the car is driven by a

person other than the HTS respondent is provided in [60]. The authors

use socio-demographic information about the other driving-license-holders

of the same household to sample new car stages entirely. This approach

still requires a wealth of information about the other household members

— albeit not a travelling schedule — and this may not be possible for most

HTS, as in the case of MZMV.

However, MZMV reports also all the stages where the interviewed house-

hold member was a car passenger. If that car was also driven by the

surveyed person on the same day, these passenger stages can be added to

the overall car movements of the day. This approach can offset some of the

cars performance of HHs 1 and 4 in Fig. 2.2 missed by the survey, thus

increasing d̂car used towards dcar used.

The distribution of daily distances of active cars recorded in MZMV is

shown in Fig. 2.3. The histogram exhibits, on a logarithmic scale, the

typical quasi-log-normal distribution of car mileages observed in literature

[61, 62, 63]. The inclusion of passenger stages to the cars’ mileage slightly

shifts the distribution to the right, i.e. towards longer trips. Specifically,

both the median and average daily distances increase by 4%, resulting in

d̂car used = 48.7 km.
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Figure 2.3: PDF of daily distances driven by car. The logarithmic scale on the x-axis

makes the distributions look approximately Gaussian given their quasi-log-normal natural

shape.

Improve frequency of driving days

Even from a HTS with a single household member surveyed it is possible

to estimate the average car distance d̂car if the total number of adults and

cars in the population is known. In the example of Fig. 2.2 this means:

d̂car = 10 km/car · 12 people

8 cars
= 15 km/car (2.6)

which matches the actual value from Eq. 2.3. This approach relies on a

key difference between the HTS sample and the entire population: while

the former is an open system where the detected cars may be driven by

individuals outside the sample, the whole country can be reasonably con-

sidered a close system where the mobility by car of all residents has to be

performed by all the cars registered in that country. Scaling the mobility

performance to the national level enables the change of point of view from

people to cars that at the sample level is impossible.

For the case of Switzerland the Federal Statistical Office recommends to

use the number of adults for scaling from MZMV to the entire population
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[64]. The figures for Switzerland thus become:

d̂adult = 22.1 km/adult (2.7)

d̂car = 22.1 km/adult · 6,755,656 adults

4,458,069 cars
= 33.4 km/car (2.8)

With d̂car and d̂car used it is possible to estimate the average driving fre-

quency f̂used:

f̂used =
d̂car

d̂car used

=
33.4

48.7
= 68.6% (2.9)

This means that on any given day approximately a car every three is not

driven or, equivalently, an average car is not driven every three days.

Summary car mobility statistics

The key statistics for car mobility in Great Britain directly stem from

NTS as preprocessed in Section 2.2.2. The final figures for Switzerland

and Great Britain are provided in Table 2.1.

MZMV (CH) NTS (GB)
Average daily distance [km]...

...per person by car as a driver d̂person 19.4 15.6

...per adult by car as a driver d̂adult 22.1 19.7

...per car d̂car 33.4 31.9

...per car when driven d̂car used 48.7 48.4

Average car usage frequency f̂used 68.6% 65.8%

Table 2.1: Key car mobility statistics extracted from MZMV for Switzerland and from

NTS for Great Britain.

Beyond these aggregated statistics, the above preprocessing steps return

the detailed intra-day schedule of driven cars. Fig. 2.4 shows the distribu-

tion of Swiss active cars between locations and road on an average day of

the year. The distributions for different days of the week are available in

Section A.1 of the appendix.

The portion of actively mobile cars is depicted by the Road and High-

way shares and is almost always lower than 10%: EVs have in principle

plenty of time to charge while being parked. The human bias in the re-

ported departure times is still slightly visible in the Road segment, but
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Figure 2.4: Locations and activities of cars in Switzerland during an average day of the

year. Only cars which are used at least once during the day are shown.

more aggressive shifting procedures of Section 2.2.2 would jeopardize the

original information; moreover, the CPs-relevant arrival times exhibit an

adequately smooth behaviour.

Rush hour is reached at the end of the working schedule, between 5 p.m.

and 6 p.m., and it is followed by a quick increase of vehicles parked at

Home: these concurrent events might trigger a considerable demand for

electricity at home. The other major opportunity for EV charging is at

Work, where the share of vehicles parked in the mornings and afternoons

reaches 40% on working days (see Section A.1). However, the morning

commute to work exhibits even more synchronised behaviour than the af-

ternoon one and it could trigger, when not managed, an increasingly de-

manding load. The Public share clusters together all undefined locations,

while the Public Transport Station portion represents the times when the

driver transfers from car to public transport. Finally, opportunity charging

at leisure sites like Food & Drink and Sport Facility may be helpful, but

might not dramatically affect EVs’ range requirements or their impact on

the grid.

2.2.4 Multi-day mobility

This section deals with the construction of car usage profiles lasting mul-

tiple days. Most HTSs provide single mobility days but, depending on the

application, there might be a need for weekly or even annual profiles. The-
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oretically, multiple single days could be randomly concatenated to obtain

the desired time range. Despite the simplicity, this approach can already

deliver acceptable results under certain conditions. The reason comes from

the characteristic PDFs of car mobility depicted in Fig. 2.5.

Figure 2.5: PDF of distances driven by a British car on an average day (blue), week

(orange), and year (green). All distances have been annualised to allow for comparison.

The high bars at 0 indicate the share of cars which do not travel on a given time frame.

The three histograms show the PDFs of daily, weekly and yearly mileage for

GB, all annualised so to be plotted on the same x-axis. Daily and weekly

PDFs come from NTS while the annual data come from the “Motoring

and vehicle Ownership Trends in the UK” project (MOT) [65, 66], which

analysed the mileage readings from about 28 million cars collected during

annual inspections that all British vehicles must undertake.

The high bars at 0 indicate the share of cars which do not drive in the given

time period. As observed in Table 2.1, about 34.2% of British cars are not

used on any given day, but the share drops to 9.3% when considering an

entire week. Very rarely are cars not driven for a whole year.

Importantly, the three annualised PDFs share the same mean of 11640
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km/y.3 This follows naturally from the construction of the PDFs, but im-

plies that, with a sample large enough, any concatenation criterion would

return the correct average of the target time period. For instance, when

sampling multiple single days to obtain one full year the two extreme cases

are 1) no random selection but reproduction of the same mobility day for

365 days or 2) purely random selection from the entire pool of one-day pro-

files. When repeating many times, technique 1) would exactly return the

blue PDF of annualised daily profiles, while approach 2) would produce

an extremely tight distribution around the mean. Neither PDF would be

realistic or close to the target green distribution, but both distributions

would have the correct mean. If the target application is strongly focused

on mean values, these artificial and inaccurate annual profiles may be ade-

quate. The same reasoning applies to any concatenation between different

time spans.

The most obvious application of this simplified technique is the derivation

of the total annual car performance of a country. Researchers aggregate

the one-day results from the local HTS, scale it up to the entire population

and multiply the final result with 365 [64]. The final figure is assumed to

correctly describe the national annual car performance, which is in fact

only a central value. Exactly because this is one of the main purposes of

HTSs, these are designed so that the mean of annualised recorded one-day

data closely aligns with the unknown annual mean. This explains the need

of HTSs to take place on multiple days of the year: a HTS recorded on

a single day might still be representative for the population, but would

not be representative (i.e. match the mean) for the distribution of annual

profiles.

An accurate PDF of weekly or annual profiles is required when the ap-

plication uses the variance of the data, beyond the central value. This

is particularly the case when each car usage profile interacts with other

elements of the system before any aggregation occurs.

When a realistic PDF is required, the concatenation of single mobility

days (or weeks) must adhere to some conformity criteria. On one side

mobility varies on a day-to-day basis following the temporal patterns of

human activities. On the other side car usage heavily depends on the

driver profile. Coherent mobility profiles can thus be constructed by firstly

3The annual mileages from the MOT project return a mean 2% higher than NTS. This is acceptable
considering the different sources, years and selection criteria of the studies.
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Figure 2.6: Average daily car distance on any (d̂car) or on an active day (d̂car used) and

average car usage frequency (f̂used) by day of the week (a, c) or month of the year (b, d).

clustering HTS records into homogeneous groups and then by sampling

multiple days (or weeks) from the same group.

Clustering: temporal characterisation of mobility

Human activities are organized around two main time frames: the week

and the year. To assess the impact of these structures Fig. 2.6 presents the

key car mobility statistics of Table 2.1 (d̂car, d̂car used, f̂used) for different

days of the week and different months of the year.

The two countries display very similar patterns. On an average week, all

key statistics stay approximately constant on weekdays (Monday to Fri-

day) but the car usage frequency markedly drops on the weekend. This

results in a slight decrease in average car distance in both countries, despite

longer journeys in CH. In both nations Friday exhibits the highest aver-

age distance, probably due to the combination of professional and leisure

mobility.
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Annual mobility displays less distinctive patterns. Winter statistics are

marginally lower than in Summer and August is characterized by fewer

longer journeys. Nevertheless, the overall “signal-to-noise” ratio is less

pronounced than the weekly case.

These observations agree with common research findings on weekly charac-

terisation of car usage [67, 68, 69, 70]. Therefore, only weekly variability is

taken into account to construct multi-day profiles. This modelling choice

implies that:

• the one-day records of MZMV (or other single-day HTSs) are firstly

grouped by the day of the week the survey took place; the concate-

nation then considers, beyond other socio-economical criteria from

the next section, the logical sequence of days in the week.

• The already weekly records of NTS are kept consolidated; since an-

nual variability is disregarded, the sampling of multi-day profiles from

NTS does not require any temporal grouping.

Clustering: socio-economical characterisation of mobility

Separate categories of society use the car in different ways but each per-

son will likely maintain a consistent mobility behaviour in the target time

frame. There is a multitude of criteria that can be employed to cluster HTS

data and the final selection necessarily depends on the features available in

the HTS and in the purpose of the concatenated profiles. The only general

requirement is ensuring a representative size of the groups, as individual

records may suffer from sampling errors. For instance, MZMV authors

warn about the reliability of estimates based on fewer than 50 observa-

tions. Considering that records are split within each group by day of the

week, the minimum group size becomes about 50× 7 = 350 HTS records.

Since no optimal grouping strategy exists, in the following only the most

relevant and exemplary grouping approaches are described.

1. The simplest approach excludes any form of grouping beyond the day of

the week. Analogously to the initial discussion of the section, this straight-

forward method is useful when the application is only concerned with cen-

tral values but wants to retain the differences between days of the week.

When weekly profiles are already available as in NTS, this method implies

no grouping of any kind.
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Figure 2.7: PDF of annual car mileage reported by respondents of MZMV and NTS.

Despite the different units, both x-axes span the same mileage interval. A tendency to

round to multiples of 2000 or 5000 can be observed in both surveys, regardless of the

distance unit employed.

2. A typical application of EV models is the design of optimal charging

strategies. If a study focuses on the allocation of charge between home and

workplace, a reasonable consistency in commuting distances is desirable.

In this case a suitable grouping strategy should consider the working status

of drivers and their average home-to-workplace distance.

3. If the goal is the reproduction of the annual mileage PDF of Fig. 2.5,

the best grouping variable is the cars’ annual mileage itself as reported by

HTS participants. This variable is usually very approximately estimated

by participant and is subject to large rounding errors. The PDFs of self-

reported annual mileages for MZMV and NTS are shown in Fig. 2.7 and

are quite dissimilar from the empirical PDF of Fig. 2.5. Despite the

discrepancy, self-reported annual mileages can create very homogeneous

groups and the subsequent sampling allows the closest approximation to

Fig. 2.5 (see Section 3.1.3).

4. While approach 2. overlooks the annual PDF, method 3. may lump

together inconsistent daily (or weekly) profiles. For a more universal ap-

proach it could be recommended to employ a hybrid technique, e.g. by

grouping HTS records by working status and reported annual car mileage

(see Section 4.1).

5. Another frequent application is the generation of mobility data for a

synthetic population. In these cases daily and annual car usages are to be

estimated solely based on socio-economical characteristics of the popula-
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tion. Beyond the driver’s working status, also sex and age are shown to

play an important role in characterizing the mobility behaviour.

HTS clustering cheat sheet. Tables 2.2 and 2.3 list the effect size

between the reported annual car mileages and various features of MZMV

and NTS. Effect size generally indicates any measure of the correlation

or association between variables. Since some features are numerical and

other nominal two different measures have been adopted. The Pearson

correlation coefficient r is used to measure the linear correlation between

annual mileage and any numerical feature. It ranges from 0 (no correlation)

to 1 (perfect correlation) and comes with a sign indicating the direction of

the correlation. The coefficient ratio η measures the association between

annual mileage and any nominal (i.e. categorical) variable. It ranges from 0

(no difference between categories) to 1 (no difference within each category)

and has no sign since nominal variables cannot be ordered.

The two measures can be cautiously compared since they share many traits:

• both squares r2 and η2 indicate the share of variance in annual

mileage explained by the independent variable;

• η equals the |r| between the mean annual mileages of every category

and the raw annual mileages;

• binary variables can be treated in either way and give the same score.

These measures provide a first-order approximation of the statistical power

of some typical variables to explain the annual mileage of cars. They do

not consider causality, cross-correlations or the complex structures linking

the data. The selection of clustering variables requires more sophisticated

analyses and tools suited to the available data, e.g. Cramer’s V for nominal

variables and decision tree classifier for numerical ones [71]. Additionally,

the scores are based on samples of the population and the reported annual

mileage is quite imprecise. Nevertheless, Tables 2.2 and 2.3 can serve

as first point of contact before undertaking more thorough investigations.

For interpretation, in social sciences the strength of the relationship is

considered low for |r| = 0.1, medium for |r| = 0.3 and large for |r| = 0.5

[72].

The results predictably show a strong correlation between performance

variables. In Table 2.3 the weekly mileage outperforms the daily distance,

substantiating the more informative contribution of weekly surveys. From
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Variable type Effect size Variable category

annual mileage numerical +1.000 performance
working status nominal 0.218 driver
distance to workplace (if working)* numerical +0.216 household
car age numerical −0.214 car
maximum permissible weight* numerical +0.212 location
fuel type nominal 0.211
job type (if working) nominal 0.211
employment type (if working) nominal 0.204
daily distance (if driven) numerical +0.204
kerb weight* numerical +0.199
driver age (binned) nominal 0.187
market segment nominal 0.169
driver age numerical −0.165
driver sex nominal 0.148
engine displacement (binned) nominal 0.143
household income numerical +0.121
engine power* numerical +0.117
highest qualification nominal 0.108
canton of residence nominal 0.102
marital status nominal 0.102
household structure nominal 0.093
household size* numerical +0.085
urban/rural area nominal 0.082
population density* numerical −0.079
commune typology/purpose* nominal 0.075
public transport quality* nominal 0.072
settlement size class nominal 0.071
engine displacement numerical +0.060
driver nationality nominal 0.046
tenancy type nominal 0.045
CO2 emissions numerical −0.041

Table 2.2: Effect size between annual car mileage and key features of MZMV (CH).

Effect size is measured with Pearson correlation coefficient r for numerical variables and

with correlation ratio η for nominal variables. Features with * are not available in NTS

(GB).

the general ranking of variable categories it can be inferred that mobility is

primarily induced by the driver’s needs and specifically by their profession4.

In order to fulfil these mobility requirements, the driver then purchases a

suitable car. This last decision seems particularly rational and pondered,

since car-related variables display the highest correlation with the driving

4Working status indicates whether the person is employed, unemployed or permanently inactive; job
type specifies whether the occupation is managerial, clerical, routine, etc. [73, 74]; employment type details
whether the person is an employer, an employee or a freelancer, and whether they have subordinates.
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Variable type Effect size Variable category

annual mileage numerical +1.000 performance
weekly mileage* numerical +0.528 driver
daily distance (if driven) numerical +0.336 household
privately/company owned* nominal 0.333 car
fuel type nominal 0.300 location
working status nominal 0.299 survey year
car age numerical −0.243
driver age (binned) nominal 0.226
engine displacement (binned) nominal 0.215
household income numerical +0.194
driver age numerical −0.187
job type (if working) nominal 0.180
engine displacement numerical +0.135
settlement size class nominal 0.130
household structure nominal 0.128
employment type (if working) nominal 0.128
driver sex nominal 0.127
marital status nominal 0.120
urban/rural area nominal 0.117
region of residence nominal 0.097
highest qualification nominal 0.092
accommodation/property type* nominal 0.055
market segment (2 segments) nominal 0.041
CO2 emissions numerical −0.040
survey year* numerical −0.034
country of residence* nominal 0.032
driver nationality nominal 0.026
tenancy type nominal 0.020

Table 2.3: Effect size between annual car mileage and key features of NTS (GB). Effect

size is measured with Pearson correlation coefficient r for numerical variables and with

correlation ratio η for nominal variables. Features with * are not available in MZMV

(CH).

performance.

Geographical and household variables seem to play a minor role, with the

exception of the household income, which is however likely correlated with

the driver’s occupation. Interestingly, survey year exhibits a mild negative

correlation with the annual mileage reported in NTS, confirming that car

mileages have been slowly dropping in recent years.

All numerical variables have also been tested in a “binned” version, to

check whether a nominal association can capture patterns hidden to the

linear correlation. The only features displaying a significant difference are

driver age and engine displacement since in both cases the annual mileage
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picks in the middle of the range and drops on the far ends.

Sampling

The procedure finally features the random sampling of the clustered days

(or weeks) until the desired time span is achieved. When the usage of cars

is perfectly known as in the NTS case the sampling pool includes the days

when the car is not driven. Annual profiles built from randomly sampling

NTS weeks would thus automatically include inactive days.

This is not the case for MZMV and other HTSs which do not track the full

usage of cars. Distances and activities recorded on driven days (eventually

corrected as in Section 2.2.3) can be used but no information is available on

actual non-usage of individual cars. The sampling procedure thus employs

the mean driving frequency derived in Section 2.2.3. Given the weekly

pattern of mobility, the driving frequencies displayed in Fig. 2.6a for every

day of the week are specifically used. Therefore, in the sampling procedure

a random number is firstly drawn to determine whether the car is used on

a specific day; then, if successful, a random daily profile from the corre-

sponding day-of-week and socio-economical group is drawn and added to

the concatenated profile.

A further refinement may consider the varying driving frequency between

socio-economical categories. The approach employed in Section 2.2.3 to

derive Fig. 2.6a cannot be applied in this case, since the national number

of cars belonging to a specific socio-economical category is unlikely known

and the average car distance d̂car cannot be estimated with Eq. 2.8. Al-

ternatively, the individual daily driven distances d̂car used can be compared

to the reported annual mileage to estimate the car usage frequency. While

this method is weak at an individual level (as suggested by the modest

Pearson’s r in Table 2.2), it gains robustness when applied to large socio-

economical categories. Driving frequencies so obtained can then be crossed

with the weekly frequencies of Fig. 2.6a to obtain the specific likelihood

of a car belonging to a definite group to be driven on a given day. Tests

have shown that this driving frequency refinement can be successfully em-

ployed with few socio-economical categories (e.g. up to 5 groups defined

by average mileage or working status) but it becomes rather unstable with

an increasing number of categories.

Finally, the sampling procedure must take into account the weighting fac-

tors reported in the HTSs, so that each entry is drawn with a probability
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proportional to its actual frequency in society (as estimated by the national

statistical offices).

2.3 Energy module

This second part of the methodology converts the car usage patterns de-

veloped in the former section into energy demand profiles. While the car

pattern may apply to any powertrain, the following discussion focuses on

EVs, comprising both pure battery-electric vehicles (BEV) and plug-in hy-

brid electric vehicles (PHEV). The derivation of grid electricity demand

requires two sequential steps:

1. computation of the specific electricity consumption at the battery

outlet of EVs [kWh/km] (Section 2.3.1);

2. modelling the charging strategy of EVs, including energy losses (Sec-

tion 2.3.2).

These two aspects as well as the car usage behaviour are three separate

components which can be modelled and employed independently of one

another. This thesis proposes a model for each aspect, but their lean

interfaces allow for an easy integration of individual components within

alternative frameworks.

Regarding the car energy consumption this work heavily relies on the model

developed by Lukas Küng in his dissertation [75]. Section 2.3.1 summarizes

the main features used in this thesis and few additional adaptations. The

charging behaviour of EVs is developed in Section 2.3.2 with the main

focus on plug-and-charge schemes.

2.3.1 Energy consumption

The electricity consumption at the battery outlet per unit distance cbatt

is computed in [75] based on the physical properties of the car and of the

journey performed. The calculation unfolds in the following steps.

Wheel energy demand. First, the specific wheel energy demand cwheel is

obtained by integrating the force equation along the velocity and altitude

profiles undertaken by the vehicle. This estimation is affected by the car

weight, its rolling and aerodynamic resistances, and the detailed slope of



32 Chapter 2 Methodology

the road. The resulting cwheel accurately captures the wheel energy demand

for that specific car usage. Unfortunately this calculation requires a wealth

of data often unavailable.

Additionally, in [75] a reduced model to estimate cwheel starting from fewer

inputs is provided. In this second approach the force equation is integrated

along the Worldwide harmonized Light-duty vehicles Test Cycle (WLTC)

Class 3 to obtain a nominal cWLTC
wheel . Only weight and resistances of the car

still play a role in this calculation. The real-world cwheel is then obtained

by applying two amplification factors based on mean velocity and mean

slope of the specific journey [76].

Electricity consumption at the battery. The specific electricity con-

sumption at the battery outlet cbatt is obtained from cwheel by accounting

for the powertrain efficiency. L. Küng modelled the conversion losses of ev-

ery powertrain with empirically-derived Willans-lines, which linearly relate

the mean wheel energy demand to the mean fuel (or electricity) consump-

tion [6]. Additionally, cbatt is affected by the non-propulsive loads due to

thermal management of car and other auxiliary loads. In the case of EVs,

the power demand from non-propulsive loads is modelled as a function of

the mean journey temperature and is directly added to the outputs of the

Willans-lines.

The overall procedure returns a car- and journey-specific cbatt from the

mean temperature, slope and velocity of the journey. Yet, also this infor-

mation might be not readily available or the involved level of detail might

exceed the requirements of the application. Therefore, L. Küng finally

provides a lumped real-world factor based on the average temperatures,

slopes and velocities observed in MZMV 2015 [76]. This factor embodies

the various impacts of actual journeys and can be applied to derive from a

car-specific nominal cWLTC
batt the corresponding car-specific real-world cbatt.

This lumped real-world factor is found to be 1.28 for both BEVs and

PHEVs in charge depleting mode [76].

All three levels of complexity can be coupled with the upstream car usage

profiles and the downstream EV-charging model. However, the simplest

lumped approach allows to focus on the impact of car properties such as the

weight rather than on the actual characteristics of every individual jour-

ney. Since the main purposes of this thesis include sizing BEV batteries,

it is considered relevant to detail the feedback of the battery weight on the

energy consumption. The resolution of the above-derived car usage profiles
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in terms of plain distances between stops is thus considered sufficient and

no further characterisation of each journey is required. In short, this thesis

employs the single factor approach, with the specific electricity consump-

tion cbatt obtained from the car-specific cWLTC
batt and a constant real-world

factor of 1.28.

Impact of car weight on energy consumption

Fig. 2.8 shows the specific electricity consumption cbatt returned by the

model for a BEV with varying battery size and kerb weight5. All other car

parameters are kept constant and equal to the default values suggested in

[6]6.

Figure 2.8: Specific electricity consumption cbatt at the battery outlet of a BEV with

varying weight. For a given vehicle class, different battery sizes entail different weights,

hence energy consumptions. Location of bottom x-axis refers to a mid-size BEV pinned

at 1628 kg – 40 kWh. Future higher energy densities of EV batteries will shift the bottom

x-axis towards the left, with everything else staying constant.

The relationship between weight and battery size depicted on the x-axis is

exactly linear and is determined by the following battery properties:

• battery cell energy density: 0.225 kWhbatt/kgcell [6]

5Kerb weight defined according to the EU standard, hence including the driver.
6These default values are calibrated around the average Swiss vehicle and lie between the compact

and mid-size segments.
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• battery cell mass share: 0.7 kgcell/kgbatt [6]

The reference point used in Fig. 2.8 to pin this relation is a mid-size BEV

with 40 kWh and a weight of 1628 kg7. Compact or large BEVs would

entail a different weight — hence energy consumption — for the same

battery size. Depending on the application, the characteristic distribution

of vehicles sizes in the fleet can be taken into account and used to accurately

model the energy consumption of the fleet. For instance, this is considered

in the computation of the charging profiles in Section 3.1.

The relationship between energy consumption and weight also turns out to

be approximately linear, with the constant real-world factor proportionally

scaling the electricity consumption. Depending on the battery installed,

the electricity consumption of the same vehicle model may vary by ±15%.

The above specifications of EV batteries reflect the technological state of

the art at the time of writing. However, the increasing sales of EVs and

the large investments in battery manufacturing and research are rapidly

improving the technical properties of EV batteries. Section A.2 presents an

overview of current and future estimates of battery energy densities, with

the remarkable growth foreseen in the next decades. This means that the

same energy content will be provided by smaller batteries and that BEVs

in the same market segment and with the same battery capacity will weigh

less. Therefore, while the cbatt–kerb weight relation won’t be affected by

this progress, the cbatt–battery capacity relationship will. In other words,

future lighter batteries will shift the bottom x-axis on battery sizes of Fig.

2.8 to the left, with everything else staying constant.

There are technological innovations that may directly affect the cbatt–kerb

weight relation, such as improvements on energy recuperation technologies

or the management of non-propulsive loads. However, there is general

agreement that battery innovation will be the most dramatic evolution

and the key technological enabler to widespread adoption of EVs [77].

The energy consumption values obtained by the model for a given vehicle

type and battery size are suitable for forward simulations, where the mo-

bility and charging behaviour of pre-designed BEVs are simulated during

one or multiple days (see Section 2.4). If the objective is to design a BEV

that can fulfil a certain range, the feedback of the battery weight on the

7The estimate comes from applying the “intervention” approach developed in [6] to convert the mid-
size average Swiss vehicle to its equivalent BEV. The resulting weight – battery size couple aligns well
with the current mid-size BEV market, including VW e-Golf and Tesla Model 3.
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BEV consumption has to be taken into account.

Feedback of battery size on EV consumption

The battery capacity Ebatt that satisfies a range r is:

Ebatt =
r · cbatt

DoD
(2.10)

where DoD is the depth of discharge, i.e. the usable share of the battery

capacity, and is assumed constant at 0.8 [6, 12].

However, Fig. 2.8 shows that Ebatt through its weight affects the energy

consumption cbatt. The linear relationship exhibited by the plot can be

written as:

cbatt = c0
batt +

(
Ebatt − E0

batt

)
· ∂cbatt

∂Ebatt
(2.11)

where E0
batt and c0

batt refer to the reference vehicle used to pin the weight

– battery size relation.

Combining Eqs. 2.10 and 2.11 provides a general expression to determine

the gross battery capacity Ebatt needed to cover the full distance r without

en-route charging:

Ebatt =
c0

batt − E0
batt ·

∂cbatt
∂Ebatt

DoD
r −

∂cbatt
∂Ebatt

(2.12)

For the mid-size reference BEV used in Fig. 2.8 the key parameters are:

E0
batt = 40 kWh

c0
batt = 188 Wh/km

∂cbatt

∂Ebatt
= 0.3046

Wh/km

kWhbatt

and Eq. 2.12 becomes:

Ebatt [kWh] =
0.1759

0.8
r[km] − 0.3046 · 10−3

(2.13)

2.3.2 EV charging

For most applications there is a need to model not only the usage of EVs

but also their charging behaviour. This is particularly the case for the
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construction of CPs which are employed in Chapter 3 to validate HTS-

based EV models. There are two general typologies of charging processes:

• uncontrolled or plug-and-charge, where the EV starts charging as

soon as the EV is plugged in to a connector;

• managed or smart charging, where the charging process is externally

controlled by user settings, a local utility or a local aggregator to

maximise a certain utility function.

On one hand, there are “unlimited” ways to manage the charging process,

depending on the application and the point of view of the simulation. The

analyses and benefits of different management options are beyond the scope

of this thesis. Nevertheless, the EV driving and consumption profiles gen-

erated in the previous sections can be integrated in smart charging models

to pursue the desired research question. Examples of such applications are

presented in Chapter 4. The underlying assumption is that the charging

strategy does not affect the driving behaviour. Chapter 3 shows that this

assumption seems to hold for uncontrolled charging and smarter schemes

might also prove the same: the assurance not to experience mobility dis-

ruptions — e.g. finding the BEV battery totally depleted before a trip —

is a likely prerequisite for drivers to allow an external operator to control

the SOC of their EVs [48].

On the other hand, uncontrolled charging is more uniquely definable. It

is mostly a function of the EV’s SOC, the availability of charging sta-

tions, and the risk propensity of drivers. This makes uncontrolled charging

particularly reproducible and the resulting CPs easily comparable. Most

of the charging data currently available also comes from plug-and-charge

schemes [24, 25, 30, 38, 78]. Uncontrolled charging is thus the most suitable

candidate for the validation of HTS-based EV models and its modelling is

presented in the following.

Uncontrolled charging modelling

Plug-and-charge events are determined by the availability of charging sta-

tions on one side and by the decision to plug in the EV on the other.

Charging stations can be modelled with two parameters:

• their density, defined as the probability of finding an available charg-

ing point (also called Electric Vehicle Supply Equipment - EVSE)
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once the EV gets to a certain location. These probabilities can range

from 100% (where it is always possible to charge) to 0% (where there

are no connectors).

• the charging rate, i.e. the nominal charging power (kW), of potential

EVSEs at each location. This rate should also take into account

the limitations of the employed EVs, whose on-board charger may

constitute the actual bottle-neck of the charging process.

If a charging stations is available at the parking location, the decision to

charge is then up to the driver. For this two criteria are used:

• the stop must last long enough to make the charging seem sensible;

i.e. a minimum time threshold is set under which the driver would

not plug in the EV. This constraint is appropriate for modelling op-

portunity charging, where EVs park at their intended destinations

regardless of the availability of EVSEs. To model en-route fast charg-

ing this constraint should be removed, but also the driving routine

of EV users would slightly change as a result. For the purpose of the

validation, only opportunity charging at the intended destinations is

considered and the minimum parking duration threshold is set at 1

hour (values in literature range from 0 to 120 minutes [20, 33, 79]).

• the decision to charge then depends on the SOC of the vehicle. This

thesis employs a stochastic method which makes charging more likely,

albeit not necessary, for lower SOC. For PHEVs, a random number is

sampled from a normal distribution (X ∼ N (µ, σ)) and is compared

to the SOC of the vehicle; if SOCPHEV < X then the driver decides

to plug in and charge. A similar decision process applies to BEVs,

although the normal distribution is truncated on the lower tail so

that fully depleted BEVs are always charged. The difference between

the two cases is illustrated in Fig. 2.9. The normal distribution

parameters µ, σ are derived from empirical EV demonstrators in the

next section.

While these thresholds are conceived and calibrated for uncontrolled sit-

uations, they could be regarded as plugging-in decision criteria in smart

charging environments, determining whether the EV is actually connected

to the grid and can participate in management schemes.
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Figure 2.9: With blue dashes, PDFs of sampled SOC during the charging decision

process. With orange solid lines, the reverses of the cumulative distribution functions,

i.e. survival functions, which represent the probability of charging of an EV reaching the

station with a certain SOC. The BEV distribution on the left is truncated on the lower

tail so that the survival function starts from 1 and forces drivers to always charge a fully

depleted BEV. To the right, the survival function of PHEVs is non-truncated and starts

from a fraction of 1, allowing the possibility not to charge even when fully depleted. The

examples shown are computed for: SOCBEV ∼ N (0.6, 0.3) truncated between [0,+∞]

and SOCPHEV ∼ N (0.6, 0.6).

In plug-and-charge situations once the driver decides to plug in the EV

the charging process starts immediately at the power rate of the station;

the recharge terminates either when the car leaves the place or when the

battery is fully charged. Charging losses are modelled according to the

empirical Willans-line correlation found in [6]. The energy Estation supplied

by the station relates to the change in energy content of the battery ∆SOC

through the following linear equation:

Estation [kWh] = 1.1992 ·∆SOC [kWh] + 0.1896

Finally, pure uncontrolled charging assumes that no criticality is reached

neither in the local grid nor on the generation side. If this were not the case,

some form of control mechanism would likely occur. The EV demonstrators

used for comparison in Chapter 3 always present low EV penetration levels,

which are not a threat for existing distribution grids and do not necessitate

a control of the charging processes [21, 34, 80].
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Charging behaviour calibration

This section provides a detailed procedure to derive from empirical data

the normal distribution parameters µ, σ which characterise the charging

decision process. The estimates obtained from different EV trials compare

favourably with each other, providing credibility to the methodology and

results here proposed. The same procedure can in principle apply to both

BEVs and PHEVs, but BEVs are first addressed since PHEVs require

additional considerations.

BEV. The charging probability survival function can be derived with Al-

gorithm 2 and the graphical aid of Fig. 2.10. Provided the access to

the PDF of SOC before a charging event (line 1) and the PDF of SOC at

any charging opportunity (line 2), the charging probability function can be

obtained as the ratio between the two PDFs (line 4). The ratio is then nor-

malised to the peak (line 5) and set to 1 for all low SOCs (line 6) since the

maximum charging probability for a BEV is 100% and occurs at low SOCs.

The resulting function resembles an S curve, which can be parametrised

by fitting the survival function of a truncated normal distribution (lines 7,

8).

0% 25% 50% 75% 100%
BEV SOC

0.0

0.5

1.0

1.5

2.0
PDF of SOC before charging opportunity
PDF of SOC before charging event
Charging probability

Figure 2.10: Relation between characteristic PDFs and charging behaviour. The prob-

ability of charging at a given SOC (solid line) is the ratio between the times the BEV is

plugged in starting from that SOC (dashed line) and all the times the BEV has a charging

opportunity at that SOC (dotted line). The PDF of the latter is rescaled in the figure to

better visualise the ratio between the two SOC curves: thus its area is lower than 1.

The procedure is short, but the two input PDFs require fully detailed

records of SOCs at every charger-equipped stop, with or without a sub-
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Algorithm 2 Estimation of charging probability function from charac-
teristic PDFs of SOC.

1: get empirical PDF of SOC before charge, c

2: get [empirical] PDF of SOC at charging opportunity (if unavailable, at any stop), s

3: smooth c by fitting a normal PDF

4: get charging probability p = c/s

5: normalise p = p/max (p)

6: set p for SOC < SOCmax(p) = 1

7: fit p with survival function of truncated normal distribution

8: get µ, σ of resulting truncated normal distribution

sequent charge. While a simulation can provide this full insight, physical

trials may lack some information. The majority of EV trials only reports

the PDF of SOC at the beginning of a charge [42, 70, 81, 82]. The closest

examples in literature come from 2 Danish demonstrators carried out in the

framework of the Green eMotion project [83]. The report on consumers’ use

of EVs [84] publishes, for the demo regions DK1 and DK2, both the PDFs

of SOC before charge and the PDFs of SOC after a trip event, i.e. at any

stop. The latter may differ from the SOC PDF at any charging opportu-

nity, hence affecting the estimation of the charging threshold. In addition,

demo region DK2 involves a captive fleet composed by only 4 BEVs, while

demo region DK1 employs 10 BEVs whose use case is unknown. The re-

sulting estimates of charging behaviour are thus approximative and may

not properly reflect the attitude of private BEV users. The parameters

obtained when applying Algorithm 2 to these trials are indicated with �
in Fig. 2.11 and average µ = 0.69, σ = 0.15.

Algorithm 3 Iterative approach to derive charging behaviour function
from EV simulations.

1: set µin = 0.69, σin = 0.15

2: for i in [1 : N] do

3: run EV simulation with inputs µin, σin
4: extract PDF of SOC at charging opportunity s

5: run Algorithm 2 to get µout, σout
6: set µin = µout, σin = σout
7: end for

To refine the estimation some of the trials introduced in Section 3.1.1
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Figure 2.11: Mean µ and standard deviation σ of the threshold SOC below which

drivers connect their BEVs to the charger: approximations used in literature (×) and

obtained from the trials via Algorithms 2 and 3 (©, �). The weighted average of the

trials thresholds is chosen as default behaviour (F).

are employed8. These demonstrators tracked the SOC before a charging

event [70, 81, 82], but not at every charging opportunity9. However, the

latter information can be extracted from a simulation of those trials. The

details involved in the numerical reproduction of the EV trails are discussed

in Section 3.1.1. The only missing input to the simulation of the trials

would be the charging behaviour itself. The µ, σ parameters are thus

initiated with the Green eMotion estimates and then Algorithm 2 is applied

iteratively. The overall procedure is summarised in Algorithm 3.

After the first three iterations, the behavioural parameters for each trial

start converging towards similar values. The resulting µ and σ for every

iteration of each trial are shown with © in Fig. 2.11. The three simu-

lated EV trials exhibit lower charging thresholds than the Green eMotion

8Although the same trials are used for the calibration of charging behaviour and the validation of CPs,
the overall methodology does not become a self-fulfilling process. The information exchanged in the two
phases is entirely different: the calibration of charging behaviour employs the PDF of SOC before charging
events; the validation uses the measured charging loads. The two quantities are linked, but would not
be derivable from one another without a fully functional simulation model. Notably, CPs require timing
information that is missing from the PDF of SOC. Moreover, during the modelling the PDF of SOC
is reduced to a simple probability function before being used in the simulations. Nevertheless, the link
between charging behaviours and CPs of each trial is visible in the sensitivity analyses of Section 3.1.4,
where adjusting µ and σ towards the trial-specific values leads to better fitting CPs.

9The “Pecan Street” project does not provide information regarding the before-charge SOC PDF
either and could not be employed for the charging behaviour estimation.
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demonstrators (lower µ). The trials also predictably show more variable

behaviour (higher σ) since they involve private mobility, in contrast to the

captive fleets used in DK2 and probably in DK1. Overall, the 5 demonstra-

tors exhibit a linear trend between µ and σ, where lower mean thresholds

correspond to more scattered behaviours. This joint shift of µ and σ indi-

cates that the trials present more similar charging probabilities for loaded

batteries than for depleted ones. Fig. A.4 in the appendix confirms this

impression, as it shows that the S-curved charging probabilities of the dif-

ferent trials look more alike at high SOCs. This pattern may be due to the

different attitudes of people towards range anxiety, attitudes that emerge

especially for lower SOCs. Moreover, BEVs are more likely to stop with

a high SOC (trend of the dotted line in Fig. 2.10): this imbalance in the

amount of information between low and high SOCs can cause the higher

spread of charging probabilities for low SOCs. This empirical correlation

between µ and σ is exploited in the sensitivity analysis in Section 3.1.4

(see Fig. 3.6).

Fig. 2.11 also includes examples of BEV charging behaviours used in litera-

ture. All studies that employ a fixed charging threshold essentially assume

no behavioural variability, i.e. σ = 0. On the other hand, a purely ran-

dom charging threshold would entail σ → +∞ (out of scale in Fig. 2.11).

While the results of this methodology still manifest a little volatility, these

also prove that the introduced behavioural model can capture the charging

attitude of BEV drivers from different contexts and that their behaviours

converge towards similar values. A weighted average that considers the

higher trustworthiness of the simulated EV trials returns:

µBEV = 0.6 σBEV = 0.2

These two values, depicted with F in Fig. 2.11, are set as default BEV

charging behaviour for forward simulations aimed at building CPs, includ-

ing the validations of all trials in Chapter 3.

It is possible that future charging behaviour will differ from the ones ob-

served in the trials of Fig. 2.11. Two phenomena are likely to occur: BEV

will have larger batteries and drivers will have higher confidence about

the charging network and the range of their BEVs. The latter effect will

probably lead to a “rationalization” of charging decisions, leading simul-

taneously to lower µ and lower σ. The impact of larger BEV batteries is

harder to predict: if drivers react by maintain the same safety margin as
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of today (e.g. 5 kWh) the average charge will occur at lower relative SOC,

i.e. µ will drop; if drivers react by keeping a regular charging schedule at

the end of their trips (e.g. when returning home after work) the average

charge will occur at higher relative SOC, i.e. µ will increase.

PHEV. Charging behaviour of PHEVs could be estimated in a similar

way, but their hybrid operation introduces an additional degree of freedom.

Specifically, steps 5 and 6 of Algorithm 2 assume that a BEV driver would

always charge for depleted batteries; this does not hold true for PHEV

users, who can drive on liquid fuels after depletion of the battery. In

other words, while BEVs owners necessarily charge all the electricity they

consume, PHEVs drivers may indefinitely postpone charging while relying

on conventional propulsion. This additional degree of freedom can be fixed

by considering the utility factor (UF) of PHEVs or their average number

of recharges per day. However, the complexity of the resulting procedure

and the shortage of SOC distributions for PHEVs induce to the provisional

adoption of the same behavioural parameters as BEVs, hence:

µPHEV = 0.6 σPHEV = 0.2

These parameters are not supported by empirical evidence and serve mostly

to simulate PHEV charging behaviour in the few EV trials of Chapter 3

that have PHEVs in their fleets. This assumption is acceptable mostly

because those PHEVs have battery capacities comparable to the BEVs

used in the calibration of charging behaviour (see Table 3.1).

SOC initialisation

A common issue faced when modelling EV usage is the initialisation of SOC

at the beginning of the simulation. The chosen SOCs artificially affect the

charging behaviour of the first simulation days. If the overall simulation

covers a long time span (more than 10 days10) the impact of SOC initialisa-

tion is inconsequential. But for shorter simulations countermeasures must

be taken.

Particularly critical is the conservation of energy, meaning that the total

energy stored in batteries at the beginning and at the end of the simula-

10The sensitivity analysis in Section 3.1.4 shows that 4 random simulation days are enough to mitigate
the SOC initialisation bias. If a week is to be simulated, starting 3 days before the beginning of the week
is enough to ensure undisturbed charging behaviour from the first day of the week.
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tion should be comparable, otherwise the detected charging loads do not

account for all the electricity consumed by EVs. Researchers in [20] resolve

this issue by imposing the same SOC at the beginning and at the end of

the simulated day, but this strongly constrains the model.

The simplest alternative is the simulation of few auxiliary days before the

actual start of the simulation [29, 32, 38]. In section 3.1 this technique

is employed to simulate a single mobility day; the subsequent sensitivity

analysis shows that three preceding auxiliary days are sufficient to remove

the SOC initialisation bias.

2.4 Overarching simulation

The models presented in the previous sections can be combined to simulate

various EV situations and to answer different research questions. The

typical application in this thesis is to perform forward (or exploratory)

simulations as depicted in Fig. 2.12.

EV world

Charging scenario

Charging rate Chargers density

2.3 kW
95%

3.7 kW
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11 kW 15%
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0 2412

Charging management

Uncontrolled Smart

Utility function

Figure 2.12: Combination of the technological and behavioural models to perform for-

ward EV simulations. The design of EVs and charging stations is fixed and descriptive

information on their usage and interaction (such as CPs) can be extracted. The numbers

in the boxes are just provided as examples.

The car usage profiles derived in Section 2.2 are applied to an “EV world”

where cars are mostly electric and locations offer the possibility to charge

EVs. The fleet can be composed of different vehicles types and powertrains
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and the collective specifications form the powertrain scenario. Parking lo-

cations can be equipped at a varying degree (density) with charging con-

nectors with different power rates and the collective assumptions constitute

the charging scenario.

Then one or multiple mobility days can be simulated taking into account

charging management schemes and the plugging-in propensity of EV drivers.

The results extractable from forward simulations are descriptive and illus-

trate what happens in the system: the share of BEVs which can fulfil the

assigned mobility demand (Section 4.1), the UF of PHEVs, the electric

load borne by certain locations (Section 3.1), etc.

The same individual models can be employed for backward (or normative)

simulations, where a certain result or performance indicator is fixed and

the powertrain or charging setups that can achieve that result are sought.

This approach can serve to size the batteries required to fulfil a certain

share of mobility demand or to quantify the need for en-route charging.





Chapter 3

Validation

This chapter presents a validation of the two most innovative features of the

proposed methodology. On one side the reliability of traditional HTSs to

describe the micro-mobility of EVs is questioned. Section 3.1 thus presents

a comparison of the hourly charging loads derived from the constructed

model against the empirical loads measured in four different EV trials.

Section 3.2 then compares the annual mileage distributions obtained with

different clustering and sampling criteria against the distributions observed

in reality.

3.1 Uncontrolled charging loads

This validation used the simulation framework of Fig. 2.12 in a forward

fashion: all parameters settings are fixed, the simulation is run and the

charging profile are a-posteriori extracted and compared to the empirical

loads. This investigations unfolds in the following steps:

• section 3.1.1 introduces the real-world trials that form the basis of

the subsequent investigations;

• section 3.1.2 presents few methodological adaptations specific to the

trials to be simulated;

• section 3.1.3 performs a qualitative comparison between the simu-

lated and the empirical CPs;

• section 3.1.4 finally provides a quantitative sensitivity analysis of the

model’s parameters.
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3.1.1 EV trials

Four public EV trials are used for the validation:

• The “My Electric Avenue” Project (UK, 2013-15) [43, 25];

• The North East’s “Switch EV” electric vehicle trial (UK, 2010-15)

[85, 81];

• “The EV Project” from Nashville region (US, 2011-13) [86];

• The “Pecan Street” Smart Grid Demonstration Project (US, 2011-

13) [24].

The My Electric Avenue and Pecan Street trials have been chosen since

they constitute the bases for the few validation attempts found in literature

[24, 25]. The EV Project and Switch EV trials are included because they

report CPs by different location type (home, workplace, etc.) and can be

used for a finer and disaggregated validation of the model.

The original trial conditions are recreated in the simulation by solely op-

erating on the charging and powertrain scenarios of Fig. 2.12; all other

model settings are kept constant between trials. Table 3.1 summarises the

original trial information used to set up the simulation and the resulting

parameters settings. However, all the trials represent open systems, where

tracked EVs may charge at untracked charging points and vice versa. This

lack of control on the investigated system is one of the main reasons that

discourage researchers from pursuing this kind of validations. Nevertheless,

important conclusions can still be drawn even with these uncertainties.

In order to have access to fully post-processed analyses, only trials that

had published their results before this thesis’ evaluations could be consid-

ered. This is why all introduced demonstrators were carried out before

2016. This explains the rather small EV batteries and low charging rates

that characterise all trials. The proposed validation strictly applies only to

the tested conditions and the gathered insights may not apply to situations

with larger batteries or faster chargers. Nevertheless, the proposed anal-

ysis offers a first assessments of HTS employment for the development of

CPs and establishes a methodology to perform further analyses with more

up-to-date specifications. In addition, primary focus of these analyses is

opportunity charging at home or workplace, where longer parking times

are likely to make faster charging rates unnecessary for their cost.
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Trial EV fleet Powertrain scenario

My Electric Avenue [25] 221 Nissan Leaf with 24 kWh battery 100% BEVs with 25 kWh battery

Switch EV [87]
15 Nissan Leaf with 24 kWh battery 43% BEVs with 25 kWh battery
20 Peugeot iOn with 16 kWh battery 57% BEVs with 18 kWh battery
9 other

The EV Project [88]
656 Nissan Leaf with 24 kWh battery 93.5% BEVs with 25 kWh battery
54 Chevrolet Volt with 16 kWh battery 6.5% PHEVs with 13 kWh battery

Pecan Street [24]
8 BEVs 30% BEVs with 25 kWh battery
25 PHEVs (primarily Chevrolet Volt) 70% PHEVs with 13 kWh battery

Trial charging outlets installed Charging scenario0

My Electric Avenue [25, 70]
88 home charging outlets at 3.6 kW 100% stations at home at 3.6 kW
13 work charging outlets at 3.6 kW 43% stations at work at 3.6 kW

0% stations anywhere else

Switch EV [78, 80, 81]
91 home charging outlets at 2 kW 100% stations at home at 2 kW
268 public/work charging outlets at 2 kW 83% stations anywhere else at 2 kW
8 public/work charging outlets at 50 kW

The EV Project [69, 89, 90]
596 home charging outlets at 3.76 kW 100% stations at home at 3.76 kW
241 public charging outlets at 3.76 kW 11% stations anywhere else at 3.76 kW

Pecan Street [24]
monitored home charging outlets at 3.3 kW 100% stations at home at 3.3 kW
limited work/public charging infrastructure 0% stations anywhere else

Table 3.1: Configuration settings of EV trials.

0The percentages refer to the charging stations densities at each location and the sum may exceed 100%. The densities take into account the relative frequency
of different locations in the MZMV (home:work:non-home = 1:0.35:1.42) and are adjusted in order to obtain the same station shares as in the trial. For public
stations, 2.58 charging outlets per charging site are assumed [91, 92].
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The gradual introduction of faster chargers plays a crucial role in the de-

ployment and utilisation of fast en-route charging stations during long

trips, but it has smaller influence on everyday mobility, which combined

covers the most kilometres and hence constitutes the bulk of CPs.

3.1.2 Methodological adaptations

The trials involve mixed powertrain fleets characterised by rather small

batteries. The model has been thus adapted in order to accommodate

mixed fleets and to remove unlikely driving profiles. Fig. 3.1 shows how

this is accomplished during the execution of the simulation.

PHEV
13 kWh

BEV
25 kWh

6.5%93.5%

Powertrain scenario

Chevrolet
Volt

Nissan
Leaf

54 656

Trial EV fleet

Day 1

BEV 25 kWh

PHEV 13 kWh

failed ICEV

Day 2

PHEV 13 kWh

BEV 25 kWh

Day 3

PHEV 13 kWh

ICEV

BEV 25 kWh

Day 4

PHEV 13 kWh

ICEV

BEV 25 kWh

Car usage profiles Charging profiles

Figure 3.1: Evolution of the powertrain mix from the input powertrain scenario to the

final distribution which is post-processed. The example shown results from the simulation

of The EV Project with default settings. The two types of random assignments are marked

by dice: the initial allocation in copper, and the iterative shuffling in cerulean.

Since all EV trials report only average CPs, there is no need for a dedi-

cated construction of multi-day profiles. The single-day profiles available

in MZMV are directly used as mobility basis in order to give a more gen-

eral applicability to the validation, since the weekly profiles from NTS are

rather an exception.

Firstly, the powertrains are randomly assigned to daily trips in proportion

to the shares specified in the powertrain scenario in Table 3.1. The first

simulation day starts with all EVs (BEVs and PHEVs) fully charged. At

the end of the first day (Day 1) all trips that could not be completed

with BEVs due to the limited range are removed from the EV simulation
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and are virtually assigned an ICEV for the next days. All completed trips

are instead assigned a new successful {powertrain, SOCend} pair from the

previous day: since the two sets have the same length this allocation is a

purely random sampling without replacement. A new mobility day is then

simulated and the whole process is repeated two more times. The fourth

simulated day (Day 4) is finally used for evaluation and analyses.

This process allows on one side to erase the SOC initialisation bias and on

the other to robustly remove all trips which might be unfeasible or implau-

sible considering BEV ranges, charging behaviour, and morning SOC.

The last simulation day is used for analyses and validation, but the power-

train mix on that day differs from the powertrain scenario due to all BEVs

that have been removed by the above selective algorithm. The powertrain

scenario should thus overestimate the BEV share compared to the target

EV trial if the last day is supposed to emulate the demonstrator’s fleet.

This explains the slightly larger BEVs shares in the powertrain scenarios

of Table 3.1 with respect to the trial EV fleets.

3.1.3 Qualitative comparison

This section presents for each trial the CPs obtained from the model, the

reference CPs observed in the field and, whenever possible, other simu-

lated CPs from literature. For each trial the y-axis unit indicating the

load “magnitude” follows the unit used to report the reference empirical

CP. Unfortunately, the 4 EV demonstrators publish their CPs in different

units (e.g. in kW or dimensionless) meaning that comparisons between

trials cannot be confidently made. The following discussion provides also

suggestions on the most adequate units to present numerical and empirical

CPs as a guideline for future research. CPs from multiple simulation runs

are shown so that the randomness built in the model can be appreciated.

My Electric Avenue (UK). Fig. 3.2 shows the CPs for the My Electric

Avenue demonstrator. Both reference profiles come from [25] with the

numerical CP obtained through Gaussian mixture models (GMM). The

reference profiles are reported in absolute power demand [kW] per EV,

but a deeper analysis of the original study suggests that EVs not charging

during a day are neglected from the analysis1. Therefore, all CPs plotted

1[25] does not report any non-charging EV in Fig. 1 and states that monitored EVs on average
consumed 12.63 kWh/day: this translates to about 60 km/day, that is almost twice the average daily
mileage of cars in England (see Table 2.1 and [93]).
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Figure 3.2: CPs for the My Electric Avenue trial. The CPs represent the average power

demand on a weekday for an EV that charges at least once.

in Fig. 3.2 represent the average power demand for a charging EV, i.e. an

EV that charges at least once during the day. All CPs are restricted to

working days (Monday–Friday), but may originate at any location (in the

default case, at home and workplace).

The CPs resulting from the proposed methodology slightly overshoot the

reference peak load, but they capture the general trend during the day.

The accuracy of these MZMV-based CPs is notably comparable to the

numerical CPs proposed by [25], which are however based on tracking data

of the same EVs that generated the empirical profiles. The local maximum

around 1 p.m. is caused by Swiss residents returning home for lunch break

or working part-time in the mornings (see Fig. 2.4). This can be explained

by the higher share of part-time workers in Switzerland compared to most

countries [94].

The stochasticity built in the model generates a multitude of slightly dif-

ferent CPs, which are depicted with various shades of orange in Fig. 3.2.

The gradual transition from red to yellow in the evening peak has opposite

direction compared to the morning local maximum (∼8 a.m.), revealing

that charging more at work helps to relieve the peak load at home (case

of the red CP). The tendency of the colours actually suggests that the

density of station at workplaces has been underestimated in the simulation
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and this illustrates the difficulty in translating the trials conditions into

the model. The consequent overestimation of the peak load may impact

the design of a local distribution grid with many EVs, but only if the total

electricity demand (including non-EV applications) is also increased.
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Figure 3.3: CPs for the Pecan Street trial. The CPs represent the normalised power

demand on a weekday for an EV charging at home.

Pecan Street (US). Fig. 3.3 presents the CPs for the Pecan Street

project. Also for this example both an empirical and a numerical refer-

ence CP are available from [24]. All CPs consider only working days and

home chargers. The authors of [24] propose a validation based on CPs nor-

malised to the peak. The result is that all CPs follow a close pattern and

distinguishing accurate simulations from deficient ones becomes a harder

task. The CPs here derived exhibit a local maximum at noon, which is also

mildly shown by the numerical profile of [24], but fail to capture the morn-

ing peak exhibited by both reference CPs. The empirical profile especially

manifests a sharp increase around 8 a.m., which is quite unexpected from

home chargers and may be due to some sort of control strategy. Such phe-

nomena cannot be recreated with plain plug-and-charge strategies, but this

small mismatch is not relevant for the goal of the validation. Finally, the

CP variability of the stochastic model is also reduced by the normalisation

process.

Switch EV (UK). Fig. 3.4 displays the CPs for the Switch EV trial for



54 Chapter 3 Validation

0%

4%

8%

12%
Home

0 6 12 18 24
0%

4%

8%

12%

16%

20%

Work

Switch EV measurements
Simulations - This study

0 6 12 18 24
0%

4%

8%

12%
Public

C
ha

rg
in

g 
di

st
rib

ut
io

n

Time of day [h]

Figure 3.4: CPs for the Switch EV trial at three different locations. All profiles are

normalised by total daily energy and they thus represent the probability of charging at

each hour. All CPs apply to an average day of the week.

three different charging locations: home, workplace and public spaces. The

empirical EV trials come from [78] and represent the charging distribution

during an average day, i.e. the probability that a car is being charged at

any hour. In other words, all CPs are normalised to the area beneath the

curves. Since MZMV deals mostly with individual mobility, the empirical

CPs triggered by individual users of the Switch EV trial are adopted for

the validation (Fig. 6–8 in [78]).

The comparison shows that the presented model manages to replicate all

empirical CPs, capturing the specific charging features of each location.

Home charging manifests the usual evening peak load already seen in My

Electric Avenue and Pecan Street trials. Switch EV’s peak is however

smoother since the less synchronised weekend patterns are also included.

On the other hand, work charging shows the highest relative peak load due

to the high simultaneity characterising morning commuters. Finally, public

chargers exhibit rather steady behaviour during all active hours. Overall,

the CPs generated by the present model slightly miss the reference peak
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loads, but the normalisation of the profiles impedes further evaluations.

Public CPs from the model manifest the biggest gaps from the reference

profile, especially during the night (9 p.m.–5 a.m.), but the higher noise

displayed also indicates the larger uncertainty surrounding this estimate.

In addition, starting from 11 p.m. the reference public CP displays a slow

night decay which resembles the domestic CP. This observation matches

the findings of [78] that some Switch EV participants had used public

stations also for night charging.
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Figure 3.5: CPs for The EV Project. All profiles illustrate the average daily power

supplied by a single EVSE (i.e. charging unit). Top plots refer to private home chargers,

while bottom ones to publicly accessible EVSEs (both at work or other locations). The

left CPs apply to working days and the right ones to the weekend.

The EV Project (US). Fig. 3.5 shows the CPs from The EV Project for

private homes and public spaces, while also differentiating weekdays from

weekends [88]2. CPs are presented in terms of average power demand per

charging unit3.

Public charging stations are more rarely used than domestic ones, and

2The EV Project involved many American cities and states; the profiles here used come from the 2013
results from the Nashville region.

3The empirical CPs are available from [88] as aggregated electricity demand through all charging
stations of the same type; with the number of charging units, i.e. EVSE, by type of Table 3.1 the average
empirical CP per charging unit could be derived.
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their average power demand is significantly smaller. This is confirmed by

the lower utilisation rate of public charging units compared to residential

ones reported in [69]. The simulated CPs reflect the general trends of

the reference profiles, although some differences exist. The peak loads

at residential EVSEs are particularly divergent, but the differences have

opposite sign on weekdays and weekends, signalling that these are not

due to a calibration error. Comparing the American HTSs [95] to MZMV

reveals that Swiss residents tend to drive shorter distances than Americans

on weekdays, but longer ones at weekends, as foreseeable from Fig. 2.6a.

This means that daily electricity demand of Swiss EVs is lower (and higher)

than American EVs on weekdays (on weekends). This fully explains the

opposite shifts observed for home charging, but also reveals the importance

of checking the comparability of different data sources before attempting a

validation. The investigations in [22, 23] endorse the comparability between

European countries, but this last comparison suggests that the same may

not hold true for combinations of more diverse regions.

The numerically simulated public CPs for weekdays nicely manifest the

same three local maxima as the reference CP, while the net scaling mis-

match points to a possible calibration error. As already mentioned, the

adjustment of the charging station density in public spaces is particularly

difficult for open systems like EV trials. Finally, the simulated public CPs

for the weekend match reasonably well the empirical profile from The EV

Project.

Summary

Overall, the qualitative validation is satisfactory as the general charging

trends in distinct locations and days are always well captured by the model.

Small differences arise, but they can mostly be explained by the usage of

different datasets or cumbersome reporting units.

3.1.4 Sensitivity analysis

This section explores how the simulation responds to changes in the in-

put parameters and how a departure from the trial conditions negatively

impacts the performance of the model.
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Metrics and nomenclature

To quantify both the magnitude of model adjustments and the discrepancy

from the empirical profiles, the coefficient of determination R2 is employed.

R2 assesses the accuracy of the numerical CP during the whole day while

still penalising a potential vertical mismatch in peak load.

Two types of parametric analyses are performed for each EV trial:

• a raw sensitivity analysis, where any quantitative input is adjusted

by ±10%;

• a set of exploratory scenarios, where particularly uncertain or evolv-

ing parameters are modified more considerably.

The former helps to identify which parameters influence the output the

most while the latter investigates quantities characterised by higher uncer-

tainty. For instance, vehicles energy consumption is slowly and measurably

improving, but the density of public stations is rarely well-known and is

evolving quickly in many countries [8].

The newly introduced charging behaviour is particularly uncharted and

deserves a deeper analysis. Fig. 3.6 summarises all explored scenarios in

terms of mean µ and standard deviation σ of the Gaussian SOC threshold.

In the raw sensitivity µ and σ are individually adjusted by ±10%. For

the exploratory scenarios the linear behavioural pattern observed in Fig.

2.11 is utilised. Specifically, a distinction is made between an “empirical

behaviour” that fits the thresholds observed in the trials, and an “alter-

native behaviour” opposed to it. Conceptually, the empirical behaviour

assumes that charging at high SOCs is well understood (as observed in

the trials) and it spans the possible charging attitudes at low SOCs. On

the other hand, the alternative behaviour assumes good agreement for low

SOCs (which was not observed in the trials) and explores different charg-

ing reactions at high SOCs. For each trend four differnt points are tested

(1–4 with empirical behaviour, A–D with alternative behaviour). The case

where EV drivers always charge regardless of the SOC is also included.

The specific charging probabilities for all these scenarios are presented in

detail in Section A.3.2.

Fig. 3.7 and 3.9 show the R2 results for both parametric analyses for all

trials. The red bars and lines indicate the scores of the default simulation

settings, while all other colours refer to a change in a single input setting
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Figure 3.6: Mean µ and standard deviation σ of the tested charging thresholds: default

case (F), variations of the single parameters by ±10% (:) and exploratory scenarios

(•). These scenarios are either based on the observed behaviour (points 1–4 on the solid

line) or on a hypothetical alternative behaviour antithetical to the former (points A–D on

the dotted line). The “always charge” scenario is also tested. The points’ labels link the

sensitivities in Fig. 3.7 and 3.9 to the different behaviours. The grey background depicts

the thresholds observed in trials or used in literature introduced in Fig. 2.11. More details

are available in Section A.3.2

at a time. The grey bars depict the R2 scores of previous validation at-

tempts available in literature. Since The EV Project and the Switch EV

demonstrator comprise CPs computed at different locations, their final R2

coefficient is computed as a weighted average of the single scores at each

location4.

Results of the sensitivity analysis

My Electric Avenue & The EV Project. Fig. 3.7 presents the R2

results for the My Electric Avenue and The EV Project trials as both are

tested on CPs expressed in absolute power. In both demonstrators the CPs

produced with the default settings rank among the best cases, meaning

that an uncalibrated setup already allows for a very accurate reproduction

of the empirical profiles. The raw sensitivities only marginally impact the

4The number of charging events per location detected during the trials is used as weighting factor
[69, 78].
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quality of the results, with charging rate and losses playing a greater role as

they directly impact the CPs without feeding anything back to the driving

pattern. The delicate role of charging rate and losses observed means

that modellers must pay particular attention to these parameters when

their goal is the derivation of CPs. This also justifies the choice not to

investigate further the sensitivities of these parameters in the exploratory

scenarios.

As expected, the exploratory scenarios heavily curtail the R2 achieved by

the model, because they span a much wider parametric space. The most

significant impact is caused by variations in the powertrain fleet, as these

changes drastically affect the total electricity consumption of EVs. The

small BEVs used with default settings can thus only fulfil the shortest

assigned trips. When replacing these BEVs with PHEVs with the same

battery capacity, all previously unfeasible trips become possible as the

driver would just switch to charge sustaining mode once the battery is

drained. All trips that were deemed unfeasible with BEVs are now per-

formed with PHEVs that finish the day with fully discharged batteries.

Therefore, each new trip added to the analysis entails a total electricity

consumption higher than the average trip previously attainable by BEVs.

The average daily electricity consumption per EV thus increases together

with the daily electricity to be supplied by EVSEs. This causes longer and

more frequent charges that negatively impact the R2 of The EV Project.

The same phenomenon is magnified in the My Electric Avenue trial, where

days without charges are excluded from the analysis. The higher electric-

ity consumption that accumulates on every driven day causes much longer

charges on the few days the PHEV is plugged in, extending the simulated

CPs and penalising R2. This effect can be appreciated in Fig. 3.8, where

the blue CPs represent the case where all cars are PHEVs. The same ar-

gument explains also the deterioration of R2 when larger battery sizes are

supplied to BEVs. The effect in this case is even stronger as the larger,

heavier, batteries also entail a higher wheel energy demand.

Changing the density of work and public stations also negatively impacts

the predictive power of the model since it adds charging patterns that

were absent in the trials. The EV Project case with no public stations is

the only scenario with an improvement of the score. This is due to two

factors: firstly, the bad R2 scores of the public CPs are excluded from the

average, leaving it to the more accurate residential CPs. Secondly, the



Chapter 3 Validation 61

0 6 12 18 24
Time of day [h]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

kW
 / 

ch
ar

gi
ng

 E
V

My Electric Avenue measurements
This study - default,  R2: 0.88
This study - frequent charging,  R2: 0.48
This study - 100% PHEV,  R2: 0.55
Quirós-Tortós 2018,  R2: 0.95

Figure 3.8: Examples of My Electric Avenue CPs obtained with different settings. In

blue the case with all cars being PHEVs with the original battery size; in orange the case

with empirical behaviour 1 from Fig. 3.6, i.e. with more frequent charging.

lack of public stations forces EV drivers to charge more often at home,

increasing the peak load especially during weekdays and reducing the gap

with the reference profile.

Behavioural variations affect the results for the two demonstrators very

differently. The major repercussion of behavioural tuning is a change in

charging frequency, but the average energy to be supplied over time is only

mildly impacted. The profiles reported for The EV Project depict the

average daily electricity to be provided by each EVSE and are thus only

marginally impacted by a change in behaviour. On the other hand, the

profiles of My Electric Avenue consider only days where the EV is charged

and a change in charging frequency causes a similar but opposite change

in CPs magnitude. For instance, empirical behaviour 1 from Fig. 3.6 leads

drivers to charge their EVs any time the SOC goes below 90%, causing

more frequent and shorter charges. This effect is captured by the orange

CPs in Fig. 3.8.

In My Electric Avenue, the scenarios implementing an empirical behaviour

expectedly show better alignment with the reference profile than the al-

ternative ones. Notably, case 4 improves the R2 score compared to the
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default model, suggesting that the charging threshold for My Electric Av-

enue should have been fixed at lower µ and higher σ. Fig. 2.11 and 3.6

show that this is exactly the direction where the empirical SOC thresholds

from My Electric Avenue are located with respect to the point chosen as

default behaviour.

In both trials the default charging behaviour outperforms most other be-

havioural settings. This is particularly remarkable considering that, albeit

the same trials are used, no information is exchanged between the estima-

tion of the charging thresholds and the computation of the CPs. Namely no

empirical distribution of SOC is used to compute the numerical CPs, and

no empirical CP is used to derive the SOC thresholds in Section 2.3.2. This

good agreement is a strong argument in favour of the charging behaviour

model proposed in this work and of the methodology used to calibrate it.

The sensitivity analysis of the number of simulation days per run confirms

that four days are more than sufficient to reach convergence also in terms

of CPs. Finally, the employment of the original time series as reported in

MZMV does not affect the general CPs patterns and leaves R2 untouched.

The impact is however appreciable at smaller scale where CPs exhibit a

serrated behaviour with a frequency of about 5 minutes, consistently with

Fig. 2.1.

For My Electric Avenue also the R2 score of the numerical CP proposed in

[25] and depicted in Fig. 3.2 and 3.8 is given. The profile performs better

than any CP proposed by this work, mostly because it does not overshoot

the peak load. However, that CP is computed with data extracted from the

same My Electric Avenue trial used as reference, while the present model

employs MZMV as input. Most importantly, the improvement of [25] with

respect to the CP generated with default settings is small when compared

to other possible modelling imprecisions such as the ones investigated in

the parametric analysis.

Pecan Street & Switch EV. Fig. 3.9 reports R2 scores for Pecan Street

and Switch EV projects since all their CPs undergo some kind of normal-

isation. The peak load normalisation applied to CPs from Pecan Street

particularly helps any numerical CP to closely approach the empirical pro-

file, often resulting in R2 greater than 0.90. To appreciate the different

R2 scores of the parametric analysis the x-axis scale of the Pecan Street

demonstrator is thus magnified. The simulations involving a change in the

powertrain scenario are the only ones which exhibit lower R2. As explained
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Figure 3.9: Sensitivity analyses for the simulations of Pecan Street and Switch EV trials.

The bars use the coefficient of determination R2 to show the closeness of the simulated

CPs to the empirical ones. The R2 values shown for Switch EV are an average of the

coefficients computed at each location, weighted with the number of charging events. Note

the different x-axis scale used for the Pecan Street demonstrator.
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Figure 3.10: Examples of Switch EV CPs obtained with different settings. In blue the

case with all cars being PHEVs with the original battery size; in orange the case with

alternative behaviour C from Fig. 3.6, i.e. with less frequent charging for high SOC.

for the two previous trials, switching a BEV with a PHEV or expanding

the BEVs’ battery size both cause an increase in daily electricity consump-

tion. This affects the extension of the CPs more than their peak load and

the mismatch with the reference profile is thus retained also after normal-

isation.

In the Pecan Street trial the CPs obtained with the default settings are

among the best performing numerical profiles, supporting the design of

the model and its capability to reproduce the on-field trial conditions ac-

curately. The simulated CP from [24] achieves a higher R2 score, thanks

mostly to its capability to capture the morning peak at 8 a.m..

The Switch EV trial exhibits a diversity in R2 results comparable to Fig.

3.7, meaning that normalisation of CPs to the area does not level out the

profiles as much as the peak load normalisation. The highest sensitivity is

shown for changes in charging rate, charging losses and BEV battery size,

which reflects most of the observations made for Fig. 3.7. Two additional

comments are however necessary.

Firstly, the simulated public CPs of Switch EV are often the worst per-
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forming in terms of R2 as is observable in Fig. 3.4. The relative flatness

of the reference public CP makes it an easy target for an horizontal fit.

Since the coefficient of determination R2 compares the goodness of the

simulated profile to a hypothetical horizontal fit, it becomes a stricter pa-

rameter when the latter fits better the reference profile, such as in the case

of public CP. This means that a lot of the variance observed in the sen-

sitivity analysis is ascribable to changes in the R2 score of the simulated

public CPs.

Secondly, the mismatches characterising home and work CPs in Fig. 3.4

are small but with opposite sign. This means that even important pa-

rameter changes may affect the R2 results of the two profiles in opposite

directions, neutralising the overall impact on the metric. This is the case

for the variations in powertrain scenarios, which usually imply longer aver-

age charges. When normalising to the area, these longer CPs also manifest

a lower peak; consequently, a better reproduction of Work CPs is offset by

a worse performance of Home CPs. An example of this effect is presented

in blue in Fig. 3.10 for the case with only PHEVs.

The exploratory scenarios of the Switch EV demonstrator occasionally per-

form better than the default case. The main outlier is the scenario with

no public or work charging stations, but the main reason is the exclusion

of the poorly performing public CPs from the computation of the overall

R2. In other words, the R2 score plotted for this test indicates the ap-

proximate R2 generally achieved by the numerical home CPs. A second

scenario that performs better than the default case is where the minimum

parking time for charging is increased to 4 hours. This change mostly af-

fects stops at public spaces as these locations are more likely to host short

parking times. The variation of this parameter does not play an important

role in the other 3 trials because of the lower relevance of public CPs in

those demonstrators3. However, in Switch EV, the R2 performance of pub-

lic CPs is a dominant factor of the overall score. Increasing the minimum

parking time for charging eliminates several short charges smoothening the

synthetic public CPs and reducing the gap with the reference profile. This

improvement strongly boosts the overall R2 result for the scenario.

The last Switch EV scenario that performs better than the default case is

when charging behaviour is shifted to point C of Fig. 3.6: this point lies on

3Note that public EVSEs in The EV Project account for recharges at both workplaces and public
spaces.
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the alternative behaviour line and entails less likely charges for high SOCs

compared to default. This adjustment mostly impacts stops during the day

as EVs are always more likely to charge at home (regardless of behaviour)

and end up driving with more depleted batteries in the afternoons than in

the mornings. This means that public and work CPs are mostly affected

by the behavioural shift to point C, with morning charges becoming less

frequent. The orange profiles in Fig. 3.10 illustrate these changes, with

morning peaks of all three locations being reduced. The CP improvements

at work and public places are particularly responsible for the higher R2

achieved by this scenario.

All the other scenarios of Switch EV perform similarly to or worse than the

default case, hence further validating the architecture of the EV model.

Summary

The above examples demonstrate that the model responds logically to

changes in the input parameters although a priori the outcome is not

always intuitive. The sensitivity analysis shows also that, in few cases,

a careful adjustment of some parameters would allow to close the gap

with the empirical CPs. However, a more important conclusion is that

the uncalibrated model always ranks among the best test cases, manag-

ing to capture all important patterns at any location on any day. This

work does not intend to promote the use of fine tuning to perfectly match

experimental data; rather, it provides evidence that the construction of a

thought-out model that adequately describes car usage behaviour and EV

charging likelihood is sufficient to robustly replicate the CPs from different

contexts.

3.2 Annual mobility

This section assesses the performance of the multi-day mobility model. To

test the procedure annual mobility profiles are constructed starting from

the both weekly profiles available in NTS and daily profiles in MZMV.

The annual target has been chosen since other sources for annual mileage

exist and can be used as benchmark. However, the construction of yearly

profiles from weeks is more uncertain and a variety of clustering-sampling

combinations is possible.
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3.2.1 Metrics and nomenclature

The construction of yearly profiles from days or weeks is subject to the

following degrees of freedom:

• the variables chosen for clustering weekly data into quasi-homogenous

groups;

• the number of clusters, nclusters;

• the number of distinctive weeks to be sampled, nweeks.

Weeks are used as fundamental sampling units due to the weekly char-

acterisation of mobility established in Section 2.2.4. Even when starting

from single days in MZMV, at least a full week is drawn to describe an-

nual mobility. However, a full yearly profiles may be obtained by sampling

nweeks < 52 weeks and repeating multiple times the few sampled ones.

Fig. 3.11 displays the annual mileage distributions that result from dif-

ferent nclusters (columns) and nweeks (rows). In all cases the clusters are

formed via the car annual mileage reported by NTS respondents, which

will be shown to be the most convenient clustering variable despite its

large rounding errors.

Two benchmarks are used for NTS: the car mileages measured in the MOT

project introduced in Section 2.2.4 (black curves) and the self-reported

annual mileages from NTS, smoothed with Gaussian kernels (red curves).

Both references stay constant in all subplots.

The evaluation of the modelled distributions considers two features. First,

the PDF of annual mileages should resemble the benchmark distributions,

especially the one measured from MOT. This assessment can be carried out

qualitatively by visually comparing the distributions and quantitatively

with the Kolmogorov–Smirnov (K–S) test. The test returns the maximum

distance D between the observed (results of the model) and the reference

(MOT) cumulative distribution functions (CDF). Since the null hypothe-

sis of the test is that the observed samples are drawn from the reference

distributions, the smaller the p-value the less likely are the samples from

that distribution. A good fit between the modelled annual mileages and

the MOT distribution would thus entail low D and higher p-value, ideally

> 0.05.

The p-value has a more universal interpretability but is a stricter crite-

rion. It decreases namely with the number of samples since it grows the
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confidence on the observed data. All distributions from Fig. 3.11 have

been produced with 1000 samples for aesthetic reasons, but this impacts

the p-value (as it should, since the samples are indeed not from the MOT

distribution). The p-value rarely exceeds 0.001 and is not much helpful for

assessments.

The K–S statistic D is test-specific but does not depend on the sample

size. No general interpretation for it exists, but based on the few cases

with an appreciable p-value it can be assumed that the fit is acceptable for

D < 0.080.

The second feature to consider would be a logical week-to-week variability

within each constructed annual profile. No single criterion can fully cap-

ture this aspect, which includes plausible destinations and regular working

schedules. Given the focus on mobility performance, the standard devia-

tion σ of weekly distances within each annual profile is used as proxy. Fig.

3.11 reports for each distribution the average σ of all annual profiles. Very

high σ entails too diverse weekly distances in the same annual profiles,

while a low σ denotes mobility patterns with many repeated weeks.

Estimating the best range for σ is also sensitive. The most reliable ap-

proach is computing σ within homogeneous groups of the full NTS popu-

lation. The more homogeneous the groups the more accurate the estimate

would be. Grouping NTS in 20 clusters by self-reported annual mileage

(as last column of Fig. 3.11) returns σ = 188 [km]5. Grouping NTS in

20 clusters by socio-technical variables (as last column of Fig. 3.12) gives

σ = 217. This approach is likely to overestimate the real σ of drivers and

188 should thus be taken as upper bound. Any distribution with σ ≤ 188

can be considered adequate, but too low σ should be regarded with cau-

tion as these distributions could miss the heavy tails that make BEV range

particularly critical.

3.2.2 Results

NTS, from weeks to year

The first row of Fig. 3.11 is the stochastic version of the annualised weekly

profiles from Fig. 2.5. Only a week is sampled and is repeated 52.14 times.

The internal σ is thus incomputable and the resulting PDF largely misses

the empirical ones.

5σ is here measured in km, but for sake of conciseness the unit is omitted.
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Figure 3.11: Comparison between annual mileages constructed from NTS weeks (blue

histograms, weeks clustered by various socio-technical variables), measured in the MOT

project (black lines), and reported by NTS respondents (red lines, smoothed). D and

p are K–S statistic and p-value of the Kolmogorov–Smirnov test respectively. Low D

or high p indicate good fit between sampled mileages and MOT measurements. σ is the

average standard deviation of weekly distances within each annual performance. Enclosed

in green are the best performing sampling cases.
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Figure 3.12: Comparison between annual mileages constructed from NTS weeks (yellow

histograms, weeks clustered by various socio-technical variables), measured in the MOT

project (black lines), and reported by NTS respondents (red lines, smoothed). D and

p are K–S statistic and p-value of the Kolmogorov–Smirnov test respectively. Low D

or high p indicate good fit between sampled mileages and MOT measurements. σ is the

average standard deviation of weekly distances within each annual performance. Enclosed

in green are the best performing sampling cases.
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The results improve when sampling more weeks. The 0-mileage bin quickly

fades and the distribution’s mode shifts toward higher mileage. Particu-

larly interesting is the first column case with nclusters = 1 (that is no group-

ing). In this case the annual distribution is the sum of independent and

identically distributed variables (the weekly distances) and according to

the central limit theorem (CLT) the resulting PDF tends toward a normal

distribution. This is visible for nclusters = 1 and nweeks ≥ 6, but also for

nclusters = 2 and nweeks ≥ 26.

From a qualitative point of view the model seems to perform well for a wide

range of nclusters and nweeks, especially for medium-large values. These are in

fact the cases where also D reaches its lowest values. σ instead grows with

nweeks, due to the higher likelihood of encountering outliers, and decreases

with nclusters, thanks to the more homogeneous sampling pools. The cases

that perform best from a combined point of view are encircled in green.

Interestingly, it is already possible to produce plausible annual PDFs by

sampling only 4 weeks from the unclustered data. The p-value exhibits

one of its highest values and D almost its minimum. However, σ is rather

high, which is expected from sampling 4 random weeks from the entire

pool of NTS profiles. But the most robust region is located at nclusters ≥ 5

and nweeks ≥ 6: the visual and D performances of these cases are still

adequate and σ is more contained. No single optimal case stands out but

a general guidance can be provided. For lean formulations interested in

rapidly matching the target PDF, sampling few weeks from little or no

clustered data can suffice. If more accuracy on outliers and high energy

days is desired, sampling more weeks from more clusters is recommended.

Fig. 3.11 shows the analogous results with different clustering variables.

nclusters increases between columns by progressively adding the following

clustering variables:

• car ownership (private/company),

• driver’s working status (4 options, but only active professionals may

have access to a company-owned car),

• fuel type (petrol/diesel),

• driver’s sex (female/male).
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These are among the best performing NTS fields in Table 2.36 and are

supposed to be well correlated with the annual performance. Nevertheless,

Fig. 3.11 shows that these variables do not manage to adequately disperse

the profiles, resulting in mostly central distributions. Since these variables

do not separate NTS entries in significantly distinctive groups, the result-

ing clusters are not very homogeneous therein but are quite comparable

between one another. And the normal distributions predicted by the CLT

appear for every column, regardless of nclusters.

Acceptable fits are achieved for 4 ≤ nweeks ≤ 6, i.e. where nweeks is large

enough to shift away from the raw weekly PDF and small enough to avoid

the CLT. Comparable D levels to Fig. 3.11 are achievable but only in a

narrower region. The poor homogeneity within pre-sampling clusters leads

to generally higher σ, indicating excessive week-to-week variability in the

constructed annual profiles.

MZMV, from days to year

Fig. 3.13 presents the same analysis when constructing annual profiles

from the single mobility days available in MZMV. Clusters are formed by

self-reported car annual mileage. Rows indicate, as before, the number of

sampled weeks but here each day of the week is individually drawn. That

is, to sample 4 weeks 28 days are drawn, with 4 Mondays, 4 Tuesdays

and so on. The benchmark is the annual mileage PDF derived in [96] by

analysing the mileages reported in car-maintenance logs and adjusting for

the car age distribution of the Swiss fleet.

The higher number of independent draws compared to NTS means that

the CLT establishes for a lower number of weeks (both clustering by self-

reported mileage). With nweeks > 12 (ndays > 84) the individual normal

distributions associated with each cluster become visible except for very

high nclusters. The lower correlation between individual days of the week

means that more clusters are required to obtain sparse distributions. A

minimum of 5 mileage groups seems to be necessary to produce adequate

annual mileage PDFs.

D reaches ranges analogous to NTS while the p-value manages to improve

in few instances; however, comparisons between the two cases should be

treated with caution due to the differences in datasets and benchmarks.

6Driver’s sex rather than age has been chosen since the latter is heavily correlated with working status
and would not bring a significant contribution.
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Figure 3.13: Comparison between annual mileages constructed from single days of

MZMV (red histograms, days clustered by self-reported mileages) and derived in [96]

from car maintenance logs (black lines). D and p are the K–S statistic and p-value of the

Kolmogorov–Smirnov test respectively. Low D or high p indicate good fit between sam-

pled mileages and empirical measurements. σ is the average standard deviation of daily

distances within each annual performance. Enclosed in green are the best performing

sampling cases.
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σ in Fig. 3.13 describes the average standard deviation of sampled daily

distances within each yearly profile. It exhibits the same general trends

of Fig. 3.11 but its incorporation of both within-week and between-weeks

variations makes the trends less definite.

Contrary to NTS, sampling from MZMV achieves positive scores even for

visually mediocre distributions (e.g. for ndays = 364, nclusters = 10). This

highlights the need for caution in interpreting a single goodness of fit statis-

tic: the K–S test only measures the maximum difference D between the

observed and reference CDFs and can return a good score when the ob-

served PDF smoothly oscillates around the reference PDF.

3.2.3 Summary

The proposed clustering-sampling procedure to construct annual profiles

from days or weeks yields accurate results in terms of mileage PDF. The

self-reported car annual mileage particularly proves to be an adequate clus-

tering variable to split raw HTS entries in distinctive groups with high inner

homogeneity. Realistic annual PDFs are already attainable by sampling 4

independent weeks from unclustered data or 28 individual days from about

5 mileage groups. Increasing the number of sampled days or weeks allows

to capture more varied car usages and possible outliers, but it requires a

split of the dataset in more groups in order not to fall into the CLT and

generate a mixture of normal distributions.



Chapter 4

Applications of EV model

4.1 Electrification potential of BEVs

This section uses the forward EV simulation setup and the annual mobility

model to assess the fleet electrification potential of BEVs.

The single-day car usage profiles derived form MZMV are used as source.

According to Fig. 3.13 adequate annual profiles can be derived with

nclusters = 10 and ndays = 84 (12 weeks). Since charging opportunities

encountered during daily routine play a role in the electrification poten-

tial, further consistency in the day-to-day mobility is desired. Specifically

charging at workplace is supposed to play an important role, but only

professional individuals may take advantage of it. Rather than creating

10 cluster solely by self-reported annual mileage, it is thus preferred to

create 10 groups based on 5 mileage categories and 2 working status (ac-

tive/inactive). This results in an annual mileage PDF slightly tighter than

with nclusters = 10, but still more diffuse than nclusters = 5 and with a more

consistent day-to-day mobility. The average annual mileage lies around

12260 km/year and the mean driving frequency fused is 64.4%, i.e. about

235 driving days/year.

Three charging scenarios are tested:

• only home charging at 3.7 kW,

• home charging at 3.7 kW and workplace (hereafter “work”) charging

at 22 kW,

• home charging at 3.7 kW and ubiquitous charging at any other stop

at 22 kW.
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Since this is an investigation on technical feasibility charging behaviour

is not modelled as stochastic but as deterministic: the BEV driver would

charge at every possible opportunity if needed.

At the beginning of the simulation each driver is assigned a BEV with

a given battery capacity and the corresponding range r. The feasibility

assessment checks whether the BEV can fulfil the whole yearly mobility

with the available range and charging scenario. A certain tolerance level

xundone is granted and is defined as the uppermost share of unfulfillable

days for which the annual trip can still be considered electrifiable. How

BEV drivers handle those few unfulfillable days is beyond the scope of this

investigation: they could resort to en-route fast charging, an auxiliary car,

or a different mode of transport. Four levels of xundone are tested: 0% (that

is, no tolerance), 2%, 5% and 10%.

4.1.1 Single profile example
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Figure 4.1: Number of mobility days fulfilled with a given BEV range (x-axis) and

charging scenario (colour of bars) for a sampled annual profile.

Fig. 4.1 displays how a single annual trip is evaluated. The example refers

to a particularly active professional who drives 348 days a year. The bars

show, for every possible electric range, how many driving days are fulfillable

with the difference charging scenarios.
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Home charging is often sufficient to perform the majority of mobility days,

but is never capable of singularly satisfying the full annual mobility re-

gardless of the range. Work charging comes in handy at very low r but its

importance quickly fades with longer r. The next results show that this

observation is rather recurrent. Ubiquitous charging provides a stronger

support, but is still incapable of completing the whole year unless for very

long r. For any r < 480 km this driver would require some kind of “adjust-

ments” for at least few days a year. While they can be bearable for a couple

of days (representing less than 2% of annual mobility), these adjustments

become discouraging when necessary on a multitude of occasions.

4.1.2 Cars electrification potential

Fig. 4.2 presents the electrification potential for an entire fleet constructed

with the afore-described annual mobility model. All results are presented as

a function of the “real-world range” r of BEVs and have universal validity

regardless of the market segment. The proposed “net battery capacity”

instead applies only to the specific mid-size vehicle used as reference.

Blue lines describe the no-tolerance situation, where BEV drivers must

solely rely on the available charging opportunities. All charging scenarios

perform poorly for low r but greatly benefit from an increase in electric

range. A state-of-the-art BEV with a real-world range of 350 km could

successfully replace about 60% of existing cars with only home charging1.

Notably, the addition of work charging plays an inconsequential role espe-

cially for longer r. The reason is that commuting distances are commonly

within half of the range of these BEVs. With a commuting distance of 60

km work charging starts becoming relevant for r < 120 km (see Fig. 4.1).

But even then, in a tolerance-zero scenario if the driver once wishes to

travel for 150 km to a weekend stay the whole yearly profile is considered

non-electrifiable. That is, work charging helps if commuting distance is

the limiting factor in determining the electrifiability of the car; or in other

words, if the car never drives further than twice the commuting distance.

This is highly unlikely and the dash-dotted blue line shows this aspect.

However, more flexible tolerance cases may be more reasonable. In these

cases the tolerance is mostly absorbed by the longer leisure journeys and

1Most sold BEVs in Europe in 2020 were Renault Zoe, Tesla Model 3 and VW ID.3, with real-world
ranges rated at 315 (ZE50), 335 (standard range plus) and 350 km (Pro) respectively [97, 98, 99].
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commuting distance is more likely to become the determining factor. This

is why the gap between home and home+work charging scenarios widens

for larger tolerances.

Ubiquitous charging strongly expands the electrification potential of the

fleet. The state-of-the-art 350-km BEV can now satisfy almost 80% of car

usage profiles in the zero-tolerance scenario. Nevertheless, 20% of drivers

travel further than 350 km at least once a year.

Relaxing the tolerance to xundone = 2% (about 5 days a year) allows for

a greater electrification under any charging scenario. A 350-km BEV can

now fulfil more usage profiles with only home charging that it could with

ubiquitous charging for xundone = 0%. This is quite remarkable, considering

that ubiquitous charging entails installing a charging station at every pos-

sible stop, while a tolerance of 2% can be facilitated with the installation

of few fast en-route stations in strategic highway corridors.

For xundone = 2% and r = 350 km, home and ubiquitous charging electrify

82% and 92% of the fleet. Further increases in range are beneficial but at a

lower degree than for shorter r. It seems particularly hard to electrify the

last 5% of the fleet, which can be captured at a discouraging rate of about

50-km-range / 1% of the fleet. At the same time, the benefits of ubiquitous

charging weaken for longer range. More and more daily routines or weekend

trips become electrifiable with the sole home charging and the chances of

ubiquitous charging coming handy for the few extremely long journeys

become remote. As BEV range is expected to keep growing especially in

small and medium market segments, the role of ubiquitous charging might

soon become secondary.

A full electrification of the fleet is finally in reach when the tolerance is

raised to 5% (about 12 days a year). The 350-km BEV can fulfil 98% and

99.5% of usage profiles with home and ubiquitous charging scenarios re-

spectively. The value of installing a charging station at every possible stop

is minimal; the effort should rather go in designing measures to support

the remaining 2%, either via different powertrains or by facilitating the

adjustments required with BEVs.

Extending the range beyond 350 km brings virtually no benefits. Also

further increasing the tolerance level beyond 5% seems unnecessary unless

with very small BEVs.

Overall, since to reach high electrification levels an appreciable tolerance

degree is required regardless of range and charging scenario, development
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Figure 4.2: Share of cars in the fleet (y-axis) that can be successfully replaced by a BEV

with a specific range (x-axis) under a certain charging scenario (line styles). The allowed

fractions of unfulfillable days xundone are portrayed with different colours.

plans should focus on facilitating higher tolerance levels. This entails ex-

tending the fast charging network, promoting the development and sales

of fast-charging-enabled BEVs, supporting the access for BEV owners to

other modes of transport. Despite not being directly comparable, im-

provements in range and “slow” charging network seem to bring relatively

lower benefits. While the initial short ranges of BEVs dramatically curbed

the electrification potential of the fleet, the currently available 350-km

BEVs have already harvested most of the gains possible from range ex-

tension. Any further range growth would entail smaller marginal benefits

and should be considered only for selected premium BEV models. At the

same time, current and future BEV ranges relegate “slow” EV charging to

a secondary role: it might be helpful to ease the adoption of BEVs in the

short-term but this should not be regarded as a strategic pillar to foster

fleet electrification.
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Figure 4.3: Share of vkm performance (y-axis) that can be directly or indirectly electri-

fied by the introduction of BEVs with a specific range (x-axis) under a certain charging

scenario (line styles). The allowed fractions of unfulfillable days xundone are portrayed with

different colours. For home+work charging scenario only the total electrification potential

is displayed for aesthetic reasons.

4.1.3 Vkm electrification potential

Fig. 4.3 shows the actual share of vkm performance that is electrified

with the different measures just discussed. The allowance for a tolerance

level introduces a distinction between directly electrified vkm (e-vkm) and

potential e-vkm. At a given xundone > 0%, direct e-vkm refer to the perfor-

mance that all electrifiable cars can undertake without the need for adjust-

ments. Potential e-vkm include also daily trips requiring adjustments. The

choice between the two depends on how drivers deal with the non-directly

fulfillable days: if they resort to a clean mode of transport (such as train

or the same BEV with en-route fast charging) then all potential e-vkm

are unlocked; if drivers opt for a non-electric alternative (e.g. a rented

or owned ICEV, or a flight) then only direct e-vkm are achieved. In case

of no-tolerance there is no distinction between the two definitions (blue

lines). In order not to clutter the plot and due to its lower importance, for

home+work charging scenario only the total potential is displayed.
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From a qualitative point of view, Fig. 4.3 displays the same general trends

of Fig. 4.2, with work charging playing a marginal role and ubiquitous

charging valuable for shorter BEV ranges.

However, the results of Fig. 4.3 confirm what is generally acknowledged and

reaffirmed by Tables 2.2 and 2.3: the hardest profiles to electrify (longest

journeys) are also the most performing ones (highest annual mileage). The

share of electrified vkm (either direct or total) in Fig. 4.3 is thus always

smaller than the share of electrified cars from Fig. 4.2.

The 60% of cars replaceable by a 350-km BEV with sole home charging

and xundone = 0% cover only 45% of the total distance. To reach 60% of

performance either ubiquitous charging is installed or a 450-km range is

provided.

Also, the 98% fleet electrification achieved by the 350-km model with home

charging and xundone = 5% is less remarkable from a performance point of

view. In the optimistic case with a clean adjustment of unfulfillable days

the potential e-vkm reach 95% of the total driven distance. But if other

alternatives are employed, the actual share of electrified performance drops

to 85%.

The gap between direct and potential e-vkm further widens for larger toler-

ances. As a last example, with home charging and xundone = 10%, a 250-km

BEV can electrify 99.5% of cars which cover 98% of the total distance, but

only 80% of performance is directly electrifiable.

The fact that full fleet electrification requires a substantial tolerance level

implies that a direct electrification of all performances is virtually impossi-

ble. Measures supporting larger tolerance levels should also make sure that

the inevitable adjustments do not jeopardise the gains made by electrifying

the fleet.

4.1.4 Home charging availability

An important assumption under all these scenarios is that home charging

is always available. This requires that car owners have a reserved parking

place at home, ideally in a garage. Section A.4 portrays the home parking

situation in Switzerland as of 2015.

On average, in Switzerland there are 0.88 reserved residential parking spots,

either rented or owned, per passenger car. The situation improves in rural

municipalities but declines in large cities, where the parking availability
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can drop to 0.6. This means that the full availability of a home charger

is, today, a generous assumption, especially for cities. Nevertheless, the

current parking availability is sufficient to accommodate a large share of

early adopters and early majority, supporting the idea that these categories

do have access to a reserved parking place.

The large electrification scenarios assessed in Fig. 4.3 and 4.2 take nec-

essarily place in a medium-term future, when more residential buildings

will be equipped with parking places and infrastructure suitable to the

installation of EV charging stations [100].

4.2 Impact of GHG content of electricity

This section presents the results of some exemplary studies where CPs

have been used to simulate national electricity systems. In general, power

dispatch models are employed to evaluate how future energy systems can

punctually supply the demanded electricity (or energy) while optimising

between costs, sustainability and security of supply. The goals of these

studies vary greatly, but can be summarised to:

• quantify the need for flexible and storage technologies to balance

renewable generation [101, 102],

• determine the cheapest evolution of the power plant fleet under CO2-

constraining scenarios [103, 104],

• quantify the frequency and gravity of supply shortages [104],

• compute the average CO2 or GHG content of the electricity produced

or consumed [104, 105].

In all cases, CPs of future EV fleets are an essential component of the

projected hourly demand for electricity and the methodology described

in Chapter 2 has been used to provide CPs tailored to the application.

Among the aforementioned goals, the following discussion focuses on the

estimation of the GHG content of electricity, since it has been introduced

as one of the key factors determining the sustainability of BEVs [6].

Fig. 4.4 shows the current and future GHG content of the Swiss electric-

ity according to various scenarios and calculation methods. For reference,
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the figure includes tipping points where the GHG content of the electric-

ity makes the environmental impact of BEVs worse than the best fossil

powertrains. The tipping points are presented as “zones” since two fos-

sil powertrains are used as benchmarks: HEV running on petrol, which

delimits the tipping zones to the right, and HEV fuelled with CNG, that

sets the left limits since environmentally better than HEV-petrol. Addi-

tionally, two environmental assessments are used for the comparison with

BEVs. The red tipping zone considers only Well-to-Wheel (WTW) emis-

sions, which account for electricity generation, transmission and charging

losses for BEV, and for fuel extraction, distribution and combustion for

HEV [6]; this zone lies in the same range as the transition zone between

BEV and HEV-CNG showed in Fig. 1.2, which indeed covers only the

WTW scope. The yellow tipping zone considers instead the full life-cycle

assessment (LCA) of BEV and HEV, hence including manufacturing and

scrapping of vehicles [12].

The LCA tipping zone lies on the left of the WTW zone since BEVs en-

tail higher grey emissions linked to vehicles manufacturing (especially the

battery) compared to HEVs. This implies that a cleaner electricity mix

is required for BEVs to match the LCA footprint of HEVs compared to

the WTW assessment. For 2017, the LCA tipping zone lies between 330–

480 gCO2eq/kWh [12], while the WTW one around 520–690 gCO2eq/kWh

[6]. Importantly, the tipping zones might change in the future depending

on the relative technological improvements of BEV and HEV. While in

the WTW scope no particular innovation is forecasted to shift the bal-

ance between the two technologies, the LCA perspective will see different

improvements in vehicle manufacturing. The HEV powertrain is rather

established and only marginal gains in the manufacturing process are ex-

pected; however, the production of batteries for BEVs will experience a

remarkable decrease in environmental footprint thanks to the introduction

of improved chemistries and the reduction in energy and material inputs

(see Section A.2). Future BEVs can thus afford slightly dirtier electricity

mixes and the LCA tipping zone shifts to 360–510 gCO2eq/kWh for 2050

[12]2.

The current production and consumption electricity mixes for Switzerland

are 30 and 149 gCO2eq/kWh respectively [106]. The production mix is

2The LCA improvements between 2017 and 2040 presented in [12] have been linearly extrapolated to
obtain the trends between 2015 and 2050.
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Figure 4.4: Current and future GHG intensity of the Swiss electricity based on dif-

ferent scenarios and calculation methods. Blue dots represent today’s situation, dashed

lines the consumption mix according to three different scenarios based on [104], solid

lines the long-term marginal mix according to four scenarios based on [105]. The yellow

LCA tipping zone indicates the GHG intensity of the grid for whom BEV and HEV have

comparable life-cycle assessments [12]. The red WTW tipping zone indicates the GHG

intensity of the grid for whom BEV and HEV have similar emissions along the electric-

ity/fuel supply and usage chains [6].

very low since the Swiss electricity generation is dominated by nuclear

and hydropower. The consumption mix is higher since it accounts for the

electricity imported from countries with more fossil generation (primarily

Germany). Nevertheless, both values are much smaller than the lowest

threshold (LCA comparison against HEV-CNG), promoting BEVs as a

much cleaner alternative to conventional powertrains. However, it may be

argued that a single additional charging BEV would not consume the aver-

age electricity supplied to the country, but it would prompt the increase in

production from a specific “marginal” asset. Using this approach can lead

to higher CO2 intensities of the grid, potentially up to 338 gCO2eq/kWh

[107]. This value would fall within the LCA tipping zone, suggesting that a

thorough analysis of the origin of electricity is vital to accurately assess the

environmental performance of BEV compared to alternative technologies.
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Finally, Fig. 4.4 presents some future scenarios on the future evolution

of the Swiss electricity mix. The dashed lines represent the average Swiss

consumption mix resulting from a power market model of central Europe

[104]. The three different lines vary depending on the scenario assumed

for the evolution of the Swiss power sector: in blue is the reference sce-

nario, in green stronger support to renewables increases the photovoltaics

(PV) installed capacity, in orange the lifetime of nuclear power plants is

extended. By supporting renewables or extending nuclear lifetime the re-

liance on imports decreases and the consumption mix shifts to lower CO2

intensities. In any case, all scenarios are far from the LCA tipping zone.

The solid lines represent the GHG intensity of the long-term marginal

electricity supplied to BEVs resulting from a dispatch model of the entire

Europe [105]. This measure is defined long-term marginal since it is the

ratio between the additional GHG emissions caused by BEVs and their

cumulative electricity demand. It is thus marginal since it only reflects the

specific GHG intensity of the electricity supplied to BEVs, and long-term

because the power sector can gradually adapt to the expected demand by

installing additional capacity. The different lines also vary depending on

the assumed scenario:

• the purple lines assume that all electricity imported to Switzerland is

generated by combined cycle gas turbine (CCGT), regardless whether

it is fed to BEVs or not,

• the green lines assume that electricity is imported from the hourly

generation mix of a “low-carbon” Europe, with expanded renewables

and wide installation of carbon capture and storage (CCS),

• the darker lines assume a mild penetration of PV in Switzerland,

with an annual generation of 13 TWh in 2050,

• the lighter lines assume a large expansion of PV in Switzerland, with

an annual generation of 32 TWh in 2050.

In all cases here presented, the excess renewable generation is simply cur-

tailed [105].

As expected, the more renewables are installed in the system (either in

Switzerland or in Europe), the lower the marginal GHG intensity. Most

importantly, even the worst case scenario with little PV penetration in
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Switzerland and CCGT-based imports (dark purple line) remains always

below the LCA threshold. This result highlights the strong benefit of the

efficient BEV powertrain: even with a comparable primary source (natural

gas), the “power plant + transmission + charging + BEV” conversion

chain is more efficient than its direct employment in a HEV3.

3In the dark purple scenario not all electricity comes from CCGTs: the marginal GHG intensity is
about 300 gCO2eq/kWh, while CCGT intensity is between 360–423 gCO2eq/kWh [105], which lies within
the LCA tipping zone. However, it is reasonable to expect that at least a small share of electricity fed to
BEV will come from cleaner sources, as visible from all 7 scenarios of Fig. 4.4.
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Case study: benefits of BEV sharing

This chapter presents an in-depth analysis of the mutual benefits of shared

BEVs and car-sharing systems. Section 4.1 has shown that privately owned

BEVs can fulfil the mobility needs of most drivers either when equipped

with extremely large batteries or when an adequate level of tolerance is

granted. A central operator of shared BEVs (hereafter SEVs) can take ad-

vantage of the variance of daily mobility needs to provide the most suitable

range to every user on each day, thus minimizing the total battery require-

ments. This gain comes on top of the typical lower number of cars needed

in car-sharing systems, giving an additional edge to SEVs compared to

shared ICEVs. Overall, the transition from private BEVs to SEVs entails

both environmental benefits concerning the supply of vehicle parts and

batteries and economic advantages for SEV users, who gain a cheap access

to sustainable private mobility.

5.1 Literature specific to shared BEVs

The employment of BEVs in car-sharing schemes has long been investigated

and several companies have adopted BEVs as part of their shared fleets

[108, 109, 110]. However, BEVs introduce an additional difficulty in sharing

schemes: the regular charging of the batteries [17, 111]. From this point

of view, station-based car-sharing — where the vehicle is picked up and

dropped at designated parking locations — presents fewer difficulties, as

each station can simply be provided with charging connectors used by

SEV drivers at the end of their trips. On the other hand, free-floating

schemes — where the car can be picked up and dropped anywhere within

a designated region — have to rely on individual drivers’ responsibility not
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to leave the BEV too depleted after their journeys or to sometimes plug it

in to a charging station. Alternatively, incentives could be given to SEV

users to leave the car plugged in to a charging station, or personnel could

be hired to bring the BEVs to a charging point when a certain depletion

level is reached. In any case, the SEV free-floating scheme becomes more

complex and expensive to run [17, 112].

Regardless of the employment of BEVs, one-way car-sharing — where the

vehicle may be dropped at locations other than the start, either in at a

station or free-floating — suffers from an additional issue: the unintentional

drift towards a spatial imbalance of the fleet [112]. The cost and efficiency

of the technique employed to solve this problem is a key factor towards the

success of one-way schemes [17, 113, 114]. Multiple strategies have been

proposed in literature [112, 115, 116], but the most relied upon enablers are

considered autonomous vehicles (AV) [111, 115, 117]. AVs will introduce

both important benefits [16, 111] and noteworthy concerns: from the net

increase in vkm [16, 111, 117] to the possible positive feedback on the

demand for passenger-km (pkm) [118, 119, 120]. The technology enabling

full-autonomous cars is progressing quickly [120, 121, 122], but few studies

highlight the many barriers still to overcome [17, 123]. Finally, autonomous

SEV will require, in order to charge, either a form of wireless charging or

an attendant to manually plug in the connector [111].

For these reasons, the following investigation focuses on the leanest car-

sharing scheme that exploits all benefits of BEVs while not necessitating

further technological advancements: two-way station-based BEV-sharing.

Contrary to the cases listed above, this car-sharing scheme is implementable

with currently available technology and does not require many attendants

nor complex coordination algorithms.

The benefits rising from station-based SEVs have not been thoroughly

explored in literature. Authors of [124] consider the driving range of two

BEV models to constrain the minimum average range that their optimal

station-based shared fleet should offer. However, they also include other

powertrain technologies and do not attempt the design of a full-BEV fleet

capable to offer the service.

Since the shared fleet operator exploits the variety of mobility patterns, the

efficiency of the scheme strongly depends on the size of the shared fleet.

This dimension has not received the deserved attention in the community,

which usually relies on a constant fleet size [111, 116, 124]. [125] quantifies
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the advantages of larger fleets for the case of shared AVs. The following

analysis shows that also spatially-constrained station-based SEVs benefit

from large fleets thanks to a better integration of the varied demand.

5.2 Methodological adaptations

For this analysis annual usage profiles built from NTS are used as basis.

According to Fig. 3.11, sampling 52 whole weeks from 10 mileage groups

returns adequately distributed annual profiles. Since the distribution of

daily distances matters more than a consistency in day-to-day routines, no

further socio-economical clustering is done. The resulting fleet exhibits an

average driving frequency fused = 65.8% (i.e. about 240 days a year).

The next sections detail the sizing of private and shared BEV fleets required

to satisfy a given annual mobility demand, both in terms of number of

BEVs and individual battery sizes. A certain degree of tolerance xundone is

also considered.

Sizing private BEV fleet

The sizing of the private BEV fleet employs the established simulation

framework in a backward fashion: the electric ranges r of all BEVs in

the fleet are determined in order to meet a given (here full) electrification

target with a certain tolerance level xundone. Contrary to the simplified

cases tested in Section 4.1, this backward simulation returns an assorted

distribution of tailored ranges. Eq. 2.13 is then employed to compute the

battery capacity to be equipped on every BEV.

Sizing shared BEV fleet

An economic narrative is adopted where the fleet manager tries to minimise

the investment in SEVs required to satisfy the target mobility demand of

the community. In this two-way whole-day car-sharing system the manager

can take advantage of two dynamics:

• users may do not need a car every day, hence reducing the need for

a fleet as large as the number of drivers;

• users seldom need to perform long journeys and when they do they

can be given the same long-range SEVs on separate days.
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The characterisation of the SEV fleet is thus an interdependent problem

where all SEVs are simultaneously sized while considering the whole mo-

bility demand of the community. The decision process can abstractly be

summarised with the following optimisation problem:

minimise: cost of purchased SEV fleet

such that:

• every SEV is driven by maximum 1 user per day;

• every user drives maximum 1 SEV per day;

• every SEV has a battery capacity to satisfy all assigned daily trips;

• the share of satisfied daily trips in the whole community is larger

than (1− xundone).

To solve this problem an heuristic approach is employed. Although the

heuristics may come short of the global optimum achieved by more ro-

bust programming environments, it still allows to comparatively assess the

benefits of different SEV systems against a fleet of private BEVs. The

more conservative estimates produced by the heuristics might also better

reflect the projections of potential investors who lack the perfect foresight

of simulations.

The heuristic mechanism is schematically summarised in Fig. 5.1. Con-

sidering a community with N private cars the goal of the heuristics is to

determine the optimal number nopt
cars of SEVs that, while accounting for

the required battery capacity, minimise the fleet purchase costs Cfleet. The

purchase costs and embedded emissions used in this analysis are listed in

Table 5.1.

per BEV per kWh
w/o battery of battery

purchase costs (Ccar, CkWh) [AC] 23500 315
embedded emissions [kg CO2e] 11700 108

Table 5.1: Purchase costs and embedded emissions assumed in this study.

All figures refer to a mid-size BEV manufactured in 2017 [12]. However, the

battery manufacturing process is improving quickly and both specific costs

and emissions are projected to be cut by more than half by 2040 [12, 126].
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The relative importance of the battery pack on the overall environmental

or economic assessment of BEVs will thus lessen in the future.

The range of values n can assume is limited. On the upper side, the

maximum number nmax of SEVs required to satisfy the whole mobility

demand is equal to the maximum number of private cars used on the same

day. On the lower end, the lowest acceptable number nmin is such that,

by compacting as many daily trips as possible on nmin SEVs the share of

unserved trips does not exceed xundone. Section A.5.1 details the precise

steps for estimating nmin and nmax.

The optimal number nopt
cars of SEVs must lie between nmin and nmax. Al-

gorithm 6 in the Appendix presents the detailed estimation procedure.

Conceptually, the heuristics evaluates every feasible n in terms of fleet

purchase costs Cfleet and finally selects the cheapest option nopt
cars. For every

n, the heuristics selects the most convenient trips to be disregarded within

the tolerance xundone in order to either reduce the number of required SEVs

or to limit the longest trip to be served.

4

5 min necessary
# shared cars

max sufficient
# shared cars

optimum

cars costs

batteries costs

Figure 5.1: Total purchase costs for a fleet of 100 private BEVs (on the right) and

a shared fleet that fulfils the same mobility demand (on the left). Various SEV fleet

sizes are feasible and the goal of the heuristic algorithm is to select the cheapest option

after exploring all possibilities. The cars contribution to the purchase costs (in blue) is

proportional to the fleet size, while the investment in batteries (in orange) is substantially

higher for private BEVs than SEVs.

The output of the heuristics for a community of N = 100 private cars

is shown in Fig. 5.1. With xundone = 2%, nmin and nmax resulted in 70

and 84 SEVs respectively. However, by always removing 2% of the trips
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no more than 82 SEVs ever resulted to be necessary. In addition to the

costs output of the heuristic optimiser, the costs for the private case with

100 individually sized BEVs are depicted on the right. The breakdown

of the purchase costs shows that the contribution of the cars is simply

proportional to the fleet size. The costs of batteries is where SEVs perform

particularly better than private BEVs. This is evident from Fig. 5.2,

which shows the distribution of batteries selected by the model for the

two fleets (with ncars = 71 for the shared case). The need to satisfy every

individual range requirement forces private BEVs to often accommodate

large batteries. Contrarily, the flexibility of the shared scheme allows the

fleet manager to dedicate only few SEVs to the fulfilment of long journeys,

leaving the majority of the fleet to operate short daily trips. More than

80% of SEVs are equipped with the minimum battery size of 20 kWh.

The maximum battery capacity assigned also reduces from 123 to 98 kWh

thanks to the possibility of the shared fleet operator to neglect the overall

longest trips from the whole community mobility demand.
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battery capacity [kWh]
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Figure 5.2: Distributions of battery requirements for a private and shared fleets that

satisfy the same share of mobility demand. A minimum battery size of 20 kWh is set for

both cases.

The cost of batteries for different sizes of the shared fleet in Fig. 5.1 seems

fairly constant and inconsequential except near nmin. The general constant

trend is due to the dominance of 20-kWh-SEVs for most n. However, for

low n the tolerance xundone is almost entirely used by trips occurring on

days with more demand than n, leaving few degrees of freedom for the

removal of longest journeys. The fewer SEVs may thus be assigned larger
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batteries which raise the costs. This characteristic moves the optimum

closer to nmin but usually not at exactly nmin.

5.3 Results

In order to show the benefits of changing the ownership model of BEVs,

most results present the relative cost savings of a SEV fleet with respect

to the private BEV fleet that satisfies the same share of mobility demand.

Costs and emissions have not been modelled at the refinement level required

to make robust conclusions on the absolute values. However, the consistent

and conservative assumptions applied to private and shared BEVs make

the following relative results particularly useful and reliable. Fig. 5.1 can

be used to visualise the actual cost numbers behind the relative trends.

The results investigate various aspects of the problem, but the largest focus

is on the community size N . This is because the dimension of the problem

can enable the scale effects that only the shared fleet operator can exploit

to size the fleet.

5.3.1 Private BEV ownership

As mentioned in the methodology, sizing the fleet of private BEVs only

requires the computation of individual battery requirements. Each BEV

battery capacity depends solely on the driver’s traveling pattern and is

thus independent from the mobility demand of the community or its size

N .

Fig. 5.3 shows the battery requirements for 1000 private BEVs for differ-

ent shares of unserved individual mobility demand xundone. The average

battery capacity expectedly drops with increasing xundone, but the steepest

reduction occurs when the longest 2% of daily trips is excluded from bat-

tery sizing. Further omissions of long trips lead to lower marginal benefits.

The box plots and the mean line show that the battery distribution is not

symmetric and is markedly skewed towards higher values. This is consis-

tent with the intuition that the distribution of “longest trips of the year”

is in some way related to the distribution of total annual mileages shown

in Fig. 3.11.

Beyond the raw share xundone, the x-axis of Fig. 5.3 displays the average

number of unserved trips per year. While each bin depicts the battery
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Figure 5.3: Distribution of battery requirements for private BEV owners for various

shares of unfulfilled mobility xundone. Each boxplot refers to a specific xundone, which

entails on average 240 · xundone unserved trips a year.

requirements of 1000 cars at the same xundone, the actual number of un-

fulfilled trips depends on the individual mobility behaviour. The second

x-axis is based on the average sampled driving frequency of 240 days a

year.

The plot shows that at xundone = 2% most users are satisfied with battery

sizes currently available in the market, with the mean (orange diamond in

Fig. 5.3) around the typical 50 kWh of top-selling state-of-the-art BEVs

[98]. At the same time, xundone = 2% implies that BEV drivers need to

resort to fast en-route charging or different transport modes for about 5

trips a year, which seems a reasonable discomfort to bear [127, 128]. For

these reasons the subsequent analysis sets

xundone = 2%

as default unfulfilment rate for both private and shared fleets.

5.3.2 Shared vs Private BEV fleets

Fig. 5.4 presents the economic and environmental benefits of reorganizing

private BEV fleets of various size into shared BEV fleets. The grey lines
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Figure 5.4: Net reduction in various indicators when substituting a fleet of private

BEVs with a fleet of SEVs that satisfy an equivalent mobility demand. The reductions

depend on the number of replaced private cars (x-axis, logarithmic scale). Purchase costs

and embedded emissions are a function of the number of cars and the kWh of batteries

installed.

with squares and diamonds represent the reductions in number of cars and

total installed battery capacities respectively. When only a single driver

joins the shared scheme there is no technical difference between private and

shared ownership and neither the number of cars nor the battery capacity

is affected by the change.

As observed in Fig. 5.1, when multiple drivers quit private ownership the

decrease in battery capacities is more pronounced than the drop in BEVs

employed. Specifically, the shared fleet operator can already take advan-

tage of very few users to distribute short and long journey between the

owned SEVs, hence optimizing the installed battery capacities. However,

the operator needs to reach a threshold of about 6 users before the oppor-

tunity to entirely remove cars arises. That is, when the community counts

6 or more private cars, on any day of the year there will be at least one car

that is not driven.

The benefits in number of cars and batteries installed keep widening for

larger communities until a few hundreds users are reached, after which a

saturation effect is observed. If 1000 people were to give up their private

cars and join a shared scheme, they would need 30% fewer cars and 70%

less kWh of total battery capacity.

The solid red line and the green dash-dotted line represent the reductions
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in total purchase costs and embedded emissions respectively. These indi-

cators use the inputs of Table 5.1 to weigh the relative benefits induced

by the fewer cars and the smaller batteries. The two measures display

a similar pattern that starts decreasing for very few users thanks to the

batteries optimisation, and further plunges when also the number of cars

gets reducible. Similarly to the two underlying quantities, also purchase

costs and emissions stabilise when the community reaches a few hundreds

members, landing at about 50–55% of the original value.

Notably, purchase costs and embedded emissions exhibit very similar rel-

ative improvements due to the comparable ratios between car-specific and

kWh-specific values presented in Table 5.1 (75 and 108 for costs and emis-

sions respectively). The improvement in battery manufacturing process

will lead to an increase of both ratios, but in a comparable manner. There-

fore, the reduction in purchase costs can be regarded as an acceptable

proxy for the environmental benefits in embedded emissions. In order not

to crowd the following plots, the environmental gains are not explicitly

presented but can be considered “captured” by the economic benefits. In

addition, the closeness between economic and environmental improvements

signifies that similar results are attained when optimizing the system for

minimal embedded CO2 emissions rather than for minimal purchase costs.

The shaded areas in Fig. 5.4 describe the uncertainty faced by the shared

fleet operator. Specifically, for every private fleet size N , 100 different

scenarios are simulated where:

• N annual trips are sampled;

• the N private BEVs are assigned an adequate battery size;

• the shared fleet manager determines the optimal fleet of SEVs.

The shaded areas represent the possible fleets that the SEVs operator

should provide depending on the community to be addressed. In order

to make the shared fleets comparable, they are all normalised to the same

average private fleet. The shaded areas span from the 5th to the 95th per-

centile that the shared fleets achieve in every indicator.

The variability visibly drops when shifting towards larger communities.

This intuitively follows from the law of large numbers. On the left side,

sizing a shared fleet for a single user is equivalent to sizing the battery for

a private owner. The uncertainty in battery capacity for one user is thus
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analogous to the variance depicted in Fig. 5.3 (with xundone = 2%). To

the contrary, the variability in number of cars for very small communities

(N < 6) is null, due to the certain need to provide as many SEVs as the

replaced private BEVs. Similarly to the mean lines, also the variance of

purchase costs and embedded emissions results from the weighted average

between the variances of the two underlying assets.

Considering a risk-averse entrepreneur, the 95th line of total purchase costs

may offer an indication of the number of drivers to reach to confidently

approach lower investment costs. With N < 6 the high mobility uncer-

tainty makes the sizing of a suitable shared fleet particularly difficult and

the result might be more expensive (and unsustainable) than the original

set of private BEVs. If a profit margin of at least 20% is desirable, the

community size threshold moves to about N = 10.

Finally, Fig. 5.4 highlights the significant role that BEVs play in support-

ing the transition towards shared ownership. If both private and shared

cars were ICEVs, the net environmental and economic benefits of the pro-

posed car-sharing scheme would approximately follow the “number of cars”

line1. The operator of SEVs can instead exploit the additional optimisa-

tion of batteries allocation to further increase the benefits of car-sharing:

by 13% for small communities and by about 16% for larger ones.

Role of community taxonomy

In Fig. 5.4 the community is composed of drivers whose mobility patterns

are extracted from any socio-demographic background. The following dis-

cussion refines this approach by building annual trips from more specific

and homogeneous categories of the society. This is more consistent with

the scenario of a station-based car-sharing system that manages to address

only the community in its surroundings.

Income. Fig. 5.5 presents reductions in number of BEVs, battery ca-

pacity and purchase costs for two segments of society: lower income (blue

solid lines) and higher income population (dashed orange lines).2 Income

is a well-known factor influencing mobility behaviour [20, 129, 130, 131].

Specifically, higher income people tend to be more mobile (see Table 2.3),

1A minor change would occur as the minimiser of Fig. 5.1 would select the fleet with least cars rather
than with least costs.

2Income segments are defined by quintiles of the population, with the lower being the 1st and 2nd and
the upper the 4th and 5th.
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Figure 5.5: Net reductions in number of cars, battery storage and purchase costs when

switching from private BEVs to SEVs for two segments of society: lower income (blue

solid lines) and higher income (dashed orange lines) communities.
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Figure 5.6: Net reductions in number of cars, battery storage and purchase costs when

switching from private BEVs to SEVs for types of settlement area: urban (blue solid

lines) and rural (dashed orange lines).

drive longer distances and rely more often on private means of transport

such as the car. This is the reason why their potential car reduction when

switching to SEVs (lines with squares) is less than for lower income com-

munities: their frequent usage of cars increases the number of SEVs needed

on any given day (nmax) and limits the cars-saving benefit of shared own-
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ership.

At the same time, the average longer distances driven by higher income

individuals increase their need for long-range BEVs in the private scenario.

The above discussions showed that the shared scheme is particularly effi-

cient in optimizing the set of batteries to install on the SEVs. This explains

why higher income communities benefit more than lower incomes ones in

terms of battery capacity optimisation.

Ultimately, the reduction in total battery capacity outweigh the drop in

number of BEVs and the higher income group nets higher cuts in purchase

costs than the lower income one. If a large higher income community were

to adopt the proposed station-based car-sharing scheme, it could benefit

from a 50% reduction in purchase costs.

Settlement. Fig. 5.6 presents the same analysis when segmenting society

by type of settlement area, that is urban in contrast to rural3. In this

classification the rural segment is the one characterised by higher mobility

needs, especially by car, both in terms of frequency and distances [130, 132].

This is why the SEV benefits exhibited by this classification neatly follow

the same patterns of the income analysis, with rural areas playing the role

of higher income communities.

The major difference between Figures 5.5 and 5.6 is the smaller gap be-

tween the different settlement curves compared to the ones differentiated

by income. That is, income plays a larger role than settlement type in

shaping the mobility characteristics that determine the benefits potential

of SEVs. This finding aligns well with the correlation coefficients observed

in Table 2.3.

Nevertheless, the preference for rural counties seems to contradict the gen-

eral acknowledgement that urban areas are more suited for car-sharing

than rural counties [17, 111, 125, 133]. However, Fig. 5.6 only considers

the different mobility behaviours, disregarding another important feature

of urban areas: high population density. Section 5.3.3 expands the analysis

by addressing the role of population density.

Overall, higher income and rural areas exhibit a higher potential reduction

in purchase costs with respect to lower income and urban communities.

Similar conclusions can be drawn for embedded emissions. However, since

emissions weigh the number of BEVs more heavily than purchase costs,

3Area types defined by the settlement size: urban with population > 250000 residents, rural with
population < 10000 inhabitants.
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the net environmental gains of higher income and rural communities is

narrower than on the basis of purchase costs.

Impact of varying satisfaction rates

Figure 5.7: Mean purchase costs reduction for varying SEV tolerance level xsharedundone and

constant private tolerance level xprivateundone = 2%.

Figure 5.8: Mean total battery capacity reduction for varying SEV tolerance level xsharedundone

and constant private tolerance level xprivateundone = 2%.

This section explores the consequences of the car-sharing operator sizing

the fleet for an unfulfilment rate xshared
undone other than the one applied by
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private owners xprivate
undone. This is not a sensitivity analysis on the xprivate

undone as-

sumed for private buyers when making their purchase decision. It is rather

an assessment of the business choice faced by the shared fleet operator

when deciding upon the quality of the service provided. Therefore, in the

following plots xshared
undone is varied from 0.5% to 10%, while xprivate

undone is kept

constant at 2%.

Fig. 5.7 shows the purchase costs reduction achieved by the shared fleet

operator for varying xshared
undone with respect to a private fleet sized for xprivate

undone =

2%. Although many realisations are run like for Fig. 5.4, only the mean

line is shown. Predictably, the lower the tolerance rate, the higher the

total purchase costs. However, for any community larger than 4 drivers

the shared model is able to reduce costs even while improving the overall

satisfaction rate. For higher xshared
undone the shared fleet is able to achieve even

lower costs, but with diminishing marginal savings. A large community

joining a shared scheme with xshared
undone = 10% can save up to 53% of the

original private costs. At the same time, the same community may enjoy a

better service with only xshared
undone = 0.5% and save 45% of the original costs

nonetheless.

Fig. 5.7 can be used by the shared fleet manager as design table to link

the three main features of the provided service: size of the community

addressed N , purchase costs of the shared fleet Cfleet and related savings,

and quality of the service offered xshared
undone. If the community size is fixed

(due for instance to the population density, as explored in Sec. 5.3.3), the

fleet manager may opt to worsen the quality of the service in order to offer

a cheaper alternative to private mobility.

Fig. 5.4 showed that battery sizing is the main driver of the variability

in fleet costs. This is analogously the case when adjusting the satisfaction

rate xshared
undone of the shared fleet. Fig. 5.8 shows the total battery capacity

required by SEVs for varying xshared
undone with respect to a private fleet sized

for xprivate
undone = 2%. The impact of xshared

undone is particularly large for small

communities. Specifically, sizing the battery for a single user is the same

as for a private owner: the variability of Ebatt for N = 1 in Fig. 5.8 is thus

the same as the mean line shown in Fig. 5.3, with the battery capacity for

xundone = 1% (10%) being 33% larger (52% smaller) than for xundone = 2%.

Also the battery capacity variability decreases for larger communities, with

the amount of kWh converging towards 30% of the original capacity.
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5.3.3 The role of population density

The above results presented the potential reduction in total purchase costs

— and, as a proxy, in embedded emissions — achievable with varying:

• size of the addressed community N ;

• mobility patterns, by income or by settlement size;

• quality of the service provided by the shared fleet xshared
undone.

Of these 3 dimensions, the size of the problem plays the largest role, with

the potential to alone reduce costs by up to 50% ceteris paribus. The possi-

bility to reach and trigger the substitution of a large number of private cars

is not trivial for station-based car-sharing systems. These are necessarily

conditioned by the context where they are located and suffer from the need

for users to reach the station to pick up the vehicles. If the integration of

car-sharing services in a multimodal system is ignored, the potential reach

of a station-based scheme is thus proportional to the population density ρ

that surrounds the station. This is particularly the case for the two-way

service here addressed, where users drive the SEVs on home-to-home round

trips.

The following paragraphs aim at framing the discussion on costs reduction

potential in terms of population density ρ rather than in number of replaced

private cars N .

Linking population density and community size

Since N is an absolute quantity while ρ is defined per unit of surface area,

the first step is the characterisation of the area A on which N is defined.

Without multimodal transitions, A can be interpreted as the circular area

of radius R that people feel comfortable to walk to reach the car-sharing

station. R is here set to the distance walked in 5 minutes at the speed of

1.4 m/s [134, 135, 136], hence:

R = 420 m and A = πR2 = 0.554 km2

All the relevant quantities can now be linked with:

N = A · ρ ·M (5.1)
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where M is the motorisation rate, i.e. the number of private cars per

resident of any age. However, car ownership can vary greatly between

city and countryside and thus correlates with the population density ρ

[137, 138]. Section A.5.2 quantifies this correlation and Eq. 5.1 becomes:

N = A · ρ ·
(

4506

ρ− 7601
+ 0.021

)
(5.2)

which directly relates the population density ρ to the number of private

cars N expected in a given area A.

Car-sharing potential at varying population density

Eq. 5.2 estimates the number of all private cars N all in reach of a station-

based car-sharing service. However, the actual number of replaced private

cars N can also be smaller than N all. A new degree of freedom thus arises:

the density ρ sets the market potential N all of the car-sharing service, but

the shared fleet operator may choose to address only a subset N of the

available market. More precisely, the car-sharing business may offer a fleet

of n SEVs that does not aim to saturate the available market.

Fig. 5.9(a) unfolds the main results of Fig. 5.4 against the two introduced

degrees of freedom: population density ρ on the x-axis and number of

provided SEVs n on the y-axis. Specifically, every point of the contour

plot indicates the purchase cost reduction achievable when offering a shared

fleet of n SEVs at a location with local density ρ. The same xundone = 2% is

assumed for sizing all private and shared fleets and the influence of income

or settlement typology on mobility is neglected due to its very low impact

(see Fig. 5.5, 5.6).

The diagonal grey dashed line of Fig. 5.9(a) is the output of Eq. 5.2 and

represents the maximum number of private cars N all for varying ρ. The

squared grey line indicates the number nall of SEVs that cost-optimally

replace all N all private cars4. These two grey lines are the projections onto

the new space of the analogous-style lines of Fig. 5.4, namely the reference

and the “number of cars” lines.

The contour lines crossed by the squared grey line indicate the relative

shared fleet costs when replacing all N all private cars; these are the same

4nall should not be confused with nmax: the former is the usual n < nmax obtained with the heuristics
for N = Nall.
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(b)   Shared EVs - Optimal adoption

(d)   Shared ICEVs - Optimal adoption(c)   Shared ICEVs - Random adoption

(a)   Shared EVs - Random adoption

Figure 5.9: Contour plots of the purchase costs of the shared fleet relative to the private

fleet being replaced; results for different local densities ρ (x-axis) and shared fleet sizes n

(y-axis). The squared grey line indicates the size n required to replaced all private cars

in reach (dashed grey line). When n cannot replace all private cars, cases (a) and (c)

assume a random selection of the drivers joining the car-sharing scheme, while (b) and

(d) assume that the least driving residents join the scheme until the mobility capacity of

n is saturated. Cases (a) and (b) apply to private and shared fleets composed of BEVs,

while (c) and (d) to fleets of ICEVs.
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purchase costs reductions captured by the red line in Fig. 5.4. Any point

between the two grey lines represents a situation where the shared fleet

n is over-dimensioned and the additional SEVs are unused. The purchase

costs thus sharply rise in this region. All points above the diagonal dashed

line are not investigated as they would entail the illogical business choice

of offering n > N all.

For all points below the squared grey line the introduced n SEVs cannot

saturate the market and may only replace a subset N of the private cars in

reach. The actual number N and the related cost savings depend, beyond

on n, on which private drivers choose to join the car-sharing scheme. A

new adoption uncertainty emerges that links the car-sharing efficiency to

the particular driving patterns of its members.

Random adoption. Fig. 5.9(a) presents the case where the people adopt-

ing SEVs are randomly sampled from the community in reach of the sta-

tion. Since for any ρ mobility patterns are assumed to be the same, N

private cars at high ρ drive on average similarly to N private cars at low

ρ. This is why the purchase cost reduction in Fig. 5.9(a) do not depend

on ρ but solely on n. Specifically, n SEVs manage to replace the same

amount N of private cars for any ρ with at least N private cars (that is,

for any ρ with N all ≥ N). With the same mobility patterns, also the gains

in battery capacity are unaffected and the overall purchase cost savings

remain constant.

Nonetheless, only large ρ contain enough private cars to make large n

sensible and profitable. For example, only for ρ > 700 people/km2 the

shared fleet manager can offer n > 90 SEVs that, if allocated, ensure a

cost reduction of more than 45%. This is where the urban context gains

an edge over the rural one: only high densities entail the large fleet sizes

that unlock, following Fig. 5.4, the profitable scale effects of car-sharing

systems.

Optimal adoption. Fig. 5.9(b) displays the relative purchase costs when

only the most suitable drivers within the pertinent zone decide to join the

shared scheme. For n SEVs made available to the public, a varying N

of private cars may get replaced depending on the compatibility of their

mobility patterns. In this work, the propensity to join the car-sharing

system is set proportional to the number of days the private car is not

driven. When n < nall SEVs are offered at a location, only the N < N all

cars with the least driving days are dropped in favour of SEVs. N is
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determined so that the usage capacity of the n SEVs is saturated.

If the (N + 1)th driver has a better mobility compatibility with the shared

fleet than the N th driver, the latter is still chosen to join the shared scheme

due to its lower number of driving days. The selection is thus greedy

and made from the point of view of the private car owner, who decides

whether to join the car-sharing scheme independently from other mobility

patterns. Nonetheless, the car-sharing scheme greatly profits from this

selection process, as infrequent drivers occupy SEVs for fewer days leaving

room for more members to join.

When shifting towards higher ρ, the pool of drivers that can join the car-

sharing system widens. It thus gets more likely to encounter particularly

non-driving candidates. This explains the sharper decline in fleet costs of

Fig. 5.9(b) compared to Fig. 5.9(a).

This freedom of choice vanishes when n approaches the nall squared line.

In these cases the nall SEVs are aiming to replace all N all cars available in

the area, leaving no room for selective adoption. Therefore, the relative

shared fleet costs in the region between nall and N all are the same as in

Fig. 5.9(a).

For medium-to-high ρ the cheapest adoptions are achieved for compro-

mising fleet sizes: when n grows the aforementioned selective adoption

weakens; with smaller n the beneficial scaling effects of car-sharing remain

locked. This results in an “optimal” middle pathway, that provides the

ideal shared fleet size nopt at any given ρ. A smooth approximation of

this optimal pathway is shown in Fig. 5.10 with the square-dotted orange

line. These optimal fleets manage to accomplish much lower costs than

their random counterpart in Fig. 5.9(a), approaching 38% of the original

private costs at high ρ.

Sharing of ICEVs. Figures 5.9(c) and (d) show the same results with

both the private and shared fleets composed of ICEVs. When replacing

the private fleet with the shared one, the minimisation of purchase costs

of Fig. 5.1 simplifies to the direct selection of nmin.

The trends exhibited by the two ICEV plots are the same shown by the

BEVs graphs. In the random adoption case (c) the cheapest fleet conver-

sions are still achieved for high ρ and n, but the resulting costs reductions

are significantly smaller than in the BEV case (a). In the optimal adop-

tion approach (d), the gap from the BEV performance (b) decreases, with

the ICEV shared fleet achieving important cost reductions for high ρ and
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middle n. The reason for the narrower gap in the optimal case is that the

selection of the N “optimal” drivers is based on the number of driving days

and ignores the distances driven. This approach affects BEVs and ICEVs

in the same way and does not enhance the SEVs capability to absorb long-

range requirements in fewer cars. Nonetheless, the optimal adoption of

SEVs unlocks larger costs reductions than optimally shared ICEVs since

the efficient allocation of battery capacities still rewards the costs ratios of

BEVs.

Summary. The expanded analysis of Fig. 5.9 confirms the observation

made for Fig. 5.4 that BEVs multiply the economic and environmental

convenience of shared ownership. This holds true regardless of the adoption

behaviour assumed. Nevertheless, optimal adoption can lead to significant

cost reductions, especially for high ρ, making the urban context even more

vital for the success of car-sharing.

Beyond enabling further economic savings, optimal adoption shifts the best

strategy of the shared fleet manager to more practical fleet sizes, with 20 <

n < 90. If the fleet manager can convince the most suitable drivers of high

density areas to join the shared scheme, the best fruits of car-sharing can be

harvested without reaching hundreds of vehicles in the fleet. Additionally,

the car-sharing subscribers may feel more comfortable when sharing their

vehicles with fewer users. However, the fleet manager has no certainty that

the optimal adoption scenarios (b) or (d) will occur rather than the random

(a) or (c). Realistically, any case in between may materialise depending on

people’s awareness of their travel behaviour and the economic rationality

of their decisions. The next section explores how this adoption uncertainty

affects the cost-benefit analysis of the shared fleet operator.

Attainability of optimal SEVs adoption.

This last section investigates the car-sharing profitability under two fleet

sizing strategies: one that aims at replacing all private cars in reach of the

station and another that hopes to persuade only the most convenient subset

of drivers in the area. Both approaches are described by the respective

pathways in Fig. 5.10: the grey lines depict the replace-all plan, while the

orange ones focus on the optimal subset; in both cases, the squared lines

indicate the number of SEVs and the dash(-dotted) lines the number of

replaced private cars.

The optimal pathway is defined by setting the number of replaced private
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Figure 5.10: Two pathways used to design the shared fleet: by addressing all private

cars in reach (grey lines) or only a subset of them (orange lines). The relative shared fleet

costs indicated by the contour lines are achieved if the subset is optimally selected with

the least driving residents in the area.

cars N opt equal to: {
N opt = Eq. 5.2 (ρ) for ρ ≤ 60

N opt = 5 log ρ for ρ > 60
(5.3)

The optimal size of the shared fleet nopt is generated by the simulation and

depends on the individual realisations. The average size depicted by the

orange squared line in Fig. 5.10 can be approximated by:{
nopt = 0.34ρ− 0.0013ρ2 for ρ ≤ 60

nopt = 3.8 log ρ for ρ > 60
(5.4)

Beyond comparing the profitability of the two pathways, this sections aims

to investigate the uncertainties involved. To this end, the iterative Alg. 4

is employed.
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Algorithm 4 Iterative process to derive uncertainties of Fig. 5.11. For
every private or shared fleet the respective purchase costs are computed.

1: for each ρ do

2: N all = Eq. 5.2 (ρ)

3: N opt = Eq. 5.3 (ρ)

4: for scenario j in [1 : 30] do

5: generate N all
j individual annual trips

6: compute nall
j

7: for realisation k in [1 : 30] do

8: sample N opt
j,k random trips from N all

j

9: compute corresponding nrand
j,k

10: end for

11: nopt
j =

∑
k n

rand
j,k /30

12: assuming optimal adoption, determine the most profitable N opt
j

and the resulting nbest
j

13: assuming worst adoption, determine the least profitable N opt
j and

the resulting nworst
j

14: end for

15: end for

This iterative approach addresses the two uncertainties faced by the shared

fleet designer:

• the location uncertainty, i.e. the variability in mobility patterns en-

countered in the area where the station is located: it is explored via

different scenarios for the same ρ (lines 4–6);

• the adoption uncertainty, i.e. the variability of which users living in

the area would actually join the car-sharing scheme: it is explored by

testing various random realisations within the same scenario (lines

7–11); additionally, the best (optimal) and worst possible adoption

cases are simulated for each scenario (lines 12–13).

The results of this procedure are shown in Fig. 5.11. The graph is analo-

gous to Fig. 5.4, although only the number of cars (squared lines) and the

total purchase costs (unmarked lines) are shown for both strategies. Each

x-coordinate refers to a unique ρ and the corresponding private fleet sizes

N all and N opt as determined by the pathways.
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adoption cases
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Figure 5.11: Purchase costs (unmarked lines) and number of cars (squared lines) of the

shared fleet relative to the private fleet being replaced; results for two design strategies:

by replacing all cars in reach (grey x-axis and lines) or only a subset of them (orange

x-axis and lines). Shaded areas depict the variances involved: 5th − 95th percentiles for

location and adoption uncertainties, and the best/worst adoption outcomes of the subset

approach. Best/worst cases are not shown for the number of cars in order not to crowd

the figure.

The grey solid lines and shaded areas represent the replace-all strategy

with its uncertainties (displayed as 5th − 95th percentiles range). The pat-

terns follow the same results exhibited in Fig. 5.4, as this also assumed

a replacement of all private cars in reach. As in that case, the costs vari-

ance is solely due to the location uncertainty and is inversely related to the

population density: the lower ρ the least predictable the mobility needs of

the few drivers in the area. Higher ρ entails larger fleets that, with the law

of large numbers, help reducing the variability in mobility patterns and

shared fleet costs.

The orange dotted lines and shaded areas describe the economic poten-

tial of replacing only a subset of the private cars in the addressed area.

The mean number of cars and purchase costs are always higher than the

respective trends of the replace-all strategy. This is because the smaller

private fleet size does not lead to profitable scale effects if the subscribers
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are randomly selected. This is the same phenomenon displayed in Fig.

5.9(a), where N randomly selected drivers achieve the same profitability

regardless of the density they are extracted from.

The subset approach is however subject to multiple uncertainties, which

are displayed in Fig. 5.11 with different shades of orange. The darkest

inner shade represents the location uncertainty, which, being a function of

ρ, affects this strategy in the same way as the replace-all one. The second

middle shade describes the adoption uncertainty, depicted by the 5th−95th

percentiles resulting from all random realisations. The random selection of

N opt drivers does not achieve significant costs reductions compared to the

average case: the most convenient 5th percentile is more expensive than

the replace-all approach for any ρ > 400 people/km2.

To reach significant savings, the adoption behaviour has to be optimally

managed as done in Fig. 5.9(b). This enables the costs reductions depicted

by the faintest orange shade of Fig. 5.11, which achieves 38% of the original

private fleet costs for N opt = 46. These relative fleet costs cannot be

achieved by the replace-all approach for any fleet size, but require an ideal

adoption behaviour which might not occur. When choosing the strategy to

adopt at high ρ, the shared fleet manager is weighing the profitable scale

effects of larger fleets against the possibility to exploit the easier integration

of the least frequent drivers in the area. The latter solution may grant lower

capital expenditures but is subject to more uncertainty.

5.4 Potential applicability

Fig. 5.12 shows for every British MSOA5 the purchase costs of the shared

BEV fleet relative to the dismissed private BEV fleet, assuming the replace-

all approach. Apart from the least inhabited regions, every MSOA can

lower fleet costs by more than 20%, with urban areas approaching 50%

reduction.

These robust results represent a technical potential, which assumes that

private owners in the area give up their cars to join the car-sharing system

until there is capacity; i.e. the shared fleet is never overdimensioned or

left unused. Equivalently, each driver is modelled as a homo economicus

5In this work, MSOAs refer to the British census output areas, i.e. the smallest geographical units
used to cluster census data. These areas namely are the Middle layer Super Output Areas of England
and Wales and the intermediate zones of Scotland.
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Figure 5.12: Relative fleet costs when shifting from private to shared BEVs. Every

MSOA5 of Great Britain has different potential depending on the local population density.

who would join the car-sharing scheme whenever possible in order to benefit

from the lower costs. While this is an acceptable first-order approximation,

non-monetary considerations such as comfort or model choice should also

be considered.

Importantly, all environmental and economical operational aspects have

been neglected. Purchase costs have principally been employed as proxy

variable to account for both the number of BEVs and the total battery stor-

age installed. To assess the effective economic soundness and sustainability

potential of SEVs, more dedicated and comprehensive analyses should be

carried out. Finally, the quick improvements of battery manufacturing

processes entail that the number of vehicles will weigh more toward the

proxy purchase cost variable. Results such as Fig. 5.4 might thus see a
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slight increase in purchase cost and embedded emissions relative to the

equivalent private BEV fleet.





Chapter 6

Conclusions and Outlook

This thesis deepens the comprehension of private passenger transportation

in order to adequately address the most pressing needs surrounding elec-

tric vehicles (EV). EVs are one of the essential strategies to decarbonise

passenger transportation but their introduction entails a series of problems

whose resolution requires, among other aspects, an extremely refined pic-

ture of car usage cases. This level of detail is available, in raw form, in

traditional household travel surveys (HTS), which are also characterised

by statistically significant samples and advantageous spatio-temporal dis-

tributions. This thesis expands the descriptive power of HTSs and presents

a validation of their employment in EV simulations to legitimate this kind

of use case. The subsequent applications of HTS-based EV models provide

helpful insights into the technical potentials and limitations of EVs.

This thesis in a nutshell

This work starts by characterising HTSs and proposing solutions to some

of their possible shortcomings. Firstly, a procedure is provided to derive

the actual driving frequency of cars from HTSs which do not have a full

picture of car mobility. Secondly, a methodology to synthesise long-term

car usage profiles (e.g. annual) from the daily and weekly records typically

available in HTSs is proposed. The usage profiles so obtained are suitable

for any analysis which simultaneously requires an accurate picture of both

intra-day and multi-day mobility.

To specifically address EVs, their energy flows have then been modelled.

Among charging strategies the focus has been given to plain plug-and-

charge schemes due to their easier reproducibility and hence suitability

for the subsequent validation. This straightforward charging behaviour
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has nevertheless been refined in order to emulate the realistic plugging-in

propensity of EV drivers. The favourable comparison between the charging

loads obtained from the resulting model and the empirical loads measured

in four different EV trials supports the soundness of the entire simulation

chain.

The annual mobility model has then been used to explore the electrification

potential of private BEVs when accounting for both the variety of car use

cases and the variability of day-to-day mobility needs throughout the year.

The marginal benefits offered by longer BEV range, opportunity charging

and consent to alternative means have been investigated.

As an exemplary application of the charging profiles developed in this the-

sis, a brief discussion on the output of power dispatch models is presented.

Particular focus is given to the simulated greenhouse gas (GHG) content

of the electricity fed into BEVs since it has a strong impact on the overall

environmental performance of BEVs.

Finally, the annual mobility model is applied to investigate the potential

of EV-sharing setups to reduce the overall demand for vehicles and battery

capacity.

Key insights

The validation of the HTS-based EV model presented in Chapter 3 gives

legitimacy to all studies that employ analogous approaches. The aforemen-

tioned advantages of HTSs justified their extensive employment in many

EV investigations, but a comprehensive validation of such utilization was

missing. Future EV research can keep fairly relying on traditional HTSs

even when stemming from rather unelectrified fleets.

The annual mobility model proposed in Section 2.2 is helpful for all those

analyses that require an adequate picture of the variance in mobility per-

formance beyond its mean value. Applications such as the eligibility to

join a car-sharing service, the design of an optimal fleet portfolio or the

estimation of the fleet-average utility factor of plug-in hybrid EVs (PHEV)

can return widely different results depending on the degree of inclusion of

mobility variance.

Section 2.3 shows that the charging behaviour observed in various EV trails

can be elegantly reduced to a single stochastic function where the decision

to plug in the battery electric vehicles (BEV) solely depends on the battery

state of charge. This decision function can be easily integrated into future
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EV studies to model the charging propensity in plug-and-charge scenarios.

The analysis on the electrification potential of BEVs presented in Section

4.1 reveals that, when considering the entire annual mobility, extending

BEV range is not enough to successfully replace a large share of conven-

tional cars. The possibility to charge at work is also superfluous if home

charging is accessible since commuting distances are rarely the critical fac-

tor. However, ubiquitous charging is quite helpful, especially with short-

to-medium BEV ranges, because it unlocks many leisure trips that would

otherwise be inaccessible. But the largest potential is unlocked by provid-

ing drivers with alternatives for the few very long trips of the year: these

alternatives can be simple en-route fast chargers, rentable HEVs or public

modes of transport. For instance, a 300-km BEV with only home charging

can satisfy the same demand of a 600-km BEV with ubiquitous charging

with only 7 additional days requiring adaptation.

Section 4.2 aggregates a typical outcome of power dispatch models that

make use of EV charging profiles: the GHG intensity of the electricity

supplied to EVs. The results from two different dispatch models show

that in any investigated scenario the GHG intensity of the Swiss grid will

remain rather low, making BEV the most sustainable powertrain even when

compared to a gas-fuelled hybrid vehicle over the full life-cycle. In general,

the very high efficiency of the powertrain makes BEV the most sustainable

car technology whenever the GHG content of the electricity is lower than

the output of a combined cycle gas turbine.

Finally, the EV-sharing investigation of Chapter 5 shows that tangible

benefits are possible for a wide range of service sizes, but that the largest

gains are achievable in dense areas. These contexts link the possibility to

reach many users and benefit from scaling effects with the higher likelihood

of encountering particularly inactive drivers who are the most suitable

profiles to join car-sharing systems.

Proposals for improvements and expansions

Data sources. The presented mobility model heavily relies on HTSs, espe-

cially for the description of intra-day mobility. This approach is successful

also thanks to the high quality of the two specific HTSs here employed

(MZMV from Switzerland and NTS from the United Kingdom). Both

HTSs track every single movement of the respondents and take note of

which household car is driven in any leg. However, there are HTSs that



118 Chapter 6 Conclusions and Outlook

solely ask for the longest or more relevant trip of the day [139]. Neverthe-

less, access to high-quality mobility data should not be at risk in the future:

on one side national statistical offices are comprehending the importance

of reliable travelling information about their citizens, on the other smarter

mobility tracking systems are becoming available [139, 140].

Additionally, HTSs manage to properly track, as the name suggests, house-

hold mobility. HTSs may miss vehicles and movements purely related to

professional duties. The share of national mobility missed by HTSs depends

on the specific boundaries of the survey. The British HTS, for instance, in-

cludes cars available to the household but owned by a firm; it however asks

not to report legs related to carrying people or goods for professional rea-

sons. For investigations on the electrification of captive or business fleets,

the relevant mobility sources should be employed.

Methodology. While the construction of long-term car profiles presented

in Section 2.2 is flexible, the best results in terms of mileage distribution

are obtained when clustering HTS records by the self-reported car annual

mileage. Unfortunately, this information is severely rounded and approxi-

mated by respondents. An impartially measured annual mileage would be a

considerably more reliable source for this methodology. However, datasets

that simultaneously contain intra-day mobility details and reliable annual

information would be expensive to build and are currently extremely rare.

Nevertheless, the validation in Section 3.2 shows that the annual mobility

profiles constructed from the self-reported car mileages can already capture

much of the existing variance.

The stochastic charging behaviour proposed in Section 2.3.2 has been de-

rived from EV trials with BEVs with rather small battery capacities. It is

not guaranteed that drivers of larger BEVs would exhibit the same charging

decision process. Once access to the relevant data is provided, an estima-

tion of the charging behaviour of larger BEVs can be carried out with the

same methodology here applied to smaller BEVs.

An estimation of the charging behaviour of PHEV drivers would be ex-

tremely useful since it could inform about the actual sustainability of this

powertrain. The methodology here applied to BEVs could, with few exten-

sions, be employed to perform this assessment. However, the importance

of this evaluation urges for dedicated and extensive on-field measurement

campaigns [141].

The proposed BEV charging likelihood function could be used as a first-
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order approximation of the plugging-in decision process in smart charging

contexts. Specifically, it could be argued that BEV drivers would welcome

actively managed charging only when assured about the low intrusiveness

of the system: BEV drivers might then keep behaving as with plug-and-

charge schemes [48]. Nevertheless, this may not fully hold true, especially

in case the local operator offers incentives to keep the BEV plugged in

as much as possible. However, assuming that BEV drivers would indeed

always plug in the car at every opportunity as currently done in most

smart charging studies can also represent a dangerous over-simplification

[142, 143]. It is thus recommended to investigate the specific plugging-

in propensity of BEV drivers under different smart charging designs and

incentive schemes.

Charging costs have been neglected. The proposed function in terms of

state of charge seems to successfully describe the behaviour of EV drivers,

but it has been tested in contexts with few charging options. When com-

peting charging alternatives are available it is possible that the different

costs of charging influence the plugging-in preferences of drivers. Future

works should take this into account by modelling EV drivers’ elasticities

and their monetisation of range anxiety.

Validation. These limitations of HTSs and charging behaviour curb the

applicability of the charging load validation proposed in Section 3.1. EV

simulations and trials involving larger BEVs would be required to give

a stronger legitimacy to HTS-based EV models. However, the current

validation already fills an important gap of the research field and the cur-

rent success of HTS-based models suggests that further efforts towards

an enhancement of the validation may be unnecessary. Furthermore, EV

introduction in fleets is proceeding at a high rate and it will soon be possi-

ble to directly rely on the EV subset of HTSs from particularly electrified

countries (such as Norway or California). Such data will combine the high

statistical power of HTSs with the specific driving routines of EVs.

EV-sharing systems. Chapter 5 analyses the case for shared EVs in the

form of two-way station-based schemes since these are the prototypical form

of car-sharing. It is of course important to also investigate the employment

of EVs in less traditional sharing schemes such as with free-floating cars.

The proposed two-way car-sharing system could be analysed in a zero-

dimensional fashion, ignoring the spatial distribution of mobility patterns.

The assessment of more asymmetric systems would necessitate an accurate
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modelling of this spatial component with the consequential higher demand

for mobility data and computational power.

Shared EVs have been here analysed only in terms of initial investment

and footprint, that is their operation has been neglected. Complete and

discounted techno-economical analyses should be carried out to assess the

actual sustainability and profitability of these mobility systems.

Outlook to the future

Beyond enhancing the understanding of car usage, supporting EVs diffu-

sion requires further investigations in complementary fields.

EV charging. While plug-and-charge schemes can be fully addressed by

the proposed model, smart charging necessitates a deeper understanding

of drivers’ propensity to share their batteries and of the monetary value

assigned to this choice. Additionally, the legal framework in terms of pri-

vacy guarantees and accountability has to be developed; the general IT

architecture to efficiently and securely manage these systems should also

be established [142, 144].

These argumentations apply to both mono- and bi-directional smart charg-

ing. However, the latter may entail serious advantages for the whole sys-

tem, which could then rely on a large and distributed electricity storage to

handle intra-day production fluctuations [145, 146]. This would be partic-

ularly important for countries that cannot rely on other short-term storage

systems such as pumped-hydro power [101].

Carbon intensity of charged electricity. While the specific CO2 in-

tensity of the grid impacts the environmental performance of EVs, more

precise estimations of the exact mix used to charge the EV may be un-

necessary. The urgent (and faster) decarbonisation of the power sector

is shifting electricity mixes towards ranges where EVs would unlikely fall

behind other powertrains under any conditions. Exact specifications of

the charged mix would thus not bring substantial value in determining the

most sustainable technological option.

Nevertheless, after the successful uptake of EVs, legislators may wish to

adopt a more technology-neutral approach and could thus resort to WTW

or LCA approaches accounting for the CO2 content of the electricity. In

this scenario, the average electricity mix could be used as a good first ap-

proximation. If more differentiation is desired, certificates of origin (i.e.

electricity labels) could then be employed: these would be simple for tax
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offices to check and would not require complex tracing systems of the phys-

ical electrical flow.

BEV range. As already acknowledged in literature and here reaffirmed,

the limited range of BEVs is often a rhetorical argument with no substan-

tial foundation, apart from some specific use cases [51]. Long trips are

extremely rare and usually occur on specific arterial roads. It is thus more

convenient to strategically place fast-charging stations in those segments.

Nevertheless, drivers may be discouraged by the longer “refuelling” times

of these en-route stops. Efforts should thus go on one side towards the

enhancement and standardisation of fast charging technology and on the

other towards a strategic placement and expansion of charging stations in

arterial roads [147]. Analogously, battery swapping technology seems un-

necessary given the few times a year the swap would occur. While some

users may benefit from this fast recharging option, existing alternatives

such as fuel-cell or plug-in hybrid cars could also serve the purpose.

Future of mobility. All these arguments apply to today’s mobility

paradigm. However, important technological and cultural disruptions are

on the horizon, especially autonomous vehicles and mobility as a service

[122]. While their profitability will largely determine when and how they

may succeed, regulators must make sure that these innovations, including

EVs, stay on a sustainable track. This includes environmental concerns

such as the rise in vehicle-km, hence energy demand, likely caused by

driverless cars [120, 119]. However, sustainable development also involves

social considerations like the working conditions of extraction points of raw

materials for batteries and electronics [148, 149] or the reallocation of jobs

lost in the traditional automotive industry due to the reduced demand for

vehicles and parts [150]. The discussion should not neglect the role of pub-

lic transport since, despite its problematic profitability, it is a necessary

pillar for efficient passenger transportation systems [123].





Appendix

A.1 Car locations on different days of the

week

This sections presents a more detailed breakdown of the locations of Swiss

active cars on specific days of the week. Fig. A.1 provides the same infor-

mation of Fig. 2.4, but for average weekdays (Monday–Friday), Saturdays

and Sundays. As usual, all the plots refer solely to cars which have been

driven on those days.

The graphs show that the car patterns drastically change between different

days, hence affecting the charging opportunities the EVs may encounter.

Weekdays expectedly show the highest percentage of vehicles parked at

Work, whose share reaches 40% in the morning. Weekdays also present

the largest rush hour, with 13% of the cars being mobile between 5 p.m.

and 6 p.m.

Saturdays and Sundays present a considerably higher share of cars at

Home. Since all plotted vehicles are being driven, this observation reveals

that weekends’ car movements are combined with rather short stops away

from Home. The only significant exceptions are stays at Other people’s

Houses, such as friends or family members. Two last noteworthy patterns

are stops at Services on Saturdays and visits to Food & Drink businesses

on Sundays. All these observations endorse the plausibility of the underly-

ing data, but also introduce uncertainty regarding viability and influence

of charging at points of interest.
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Figure A.1: Car locations and activities on specific days of the week. Only cars which

are used at least once during the day are included.
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A.2 EV battery properties

Battery technology is evolving very rapidly, with both improvements in the

manufacturing of established technologies and the development of more

advanced chemistries (cite EU2020). This progress will improve various

EV performance indicators (range, environmental footprint, price) and will

shift the favour of typical powertrain assessments closer to EVs. This thesis

employs the specifications of state-of-the-art Li-ion batteries and the results

thus reflect today’s technological status. This implies that most results can

be regarded as conservative estimates of future trends.

To contextualise the assumptions made in this thesis, the foreseen improve-

ments in battery technology are here presented. Fig. A.2 shows the cur-

rent and future estimates of battery energy densities from various sources

[6, 12, 151, 152, 153, 154, 155]. All values refer to the energy content per

kg of battery pack, thus including sealing and casing.

Figure A.2: Present and future estimates for the energy density of EV batteries with

respect to the weight of the entire battery pack.

Current state-of-art batteries energy densities lie around 150 Wh/kg, but

quick improvements to up to 600 Wh/kg are foreseen for the mid of cen-

tury. Some studies ignore the introduction of new battery chemistries (e.g.

Transport & Environment [155]) and thus display lower gains compared

to analyses that model the introduction of solid-state or Na-ion batteries

(e.g. the European Commission report [153]). This thesis uses the value of



126 Appendix

157.5 Wh/kg as proposed by L. Küng [6] following the 2012 specification

of cell energy density by Panasonic of 225 Wh/kg. This measure is higher

than other estimates from the same time period, but can reflect the status

of battery technology at the time of writing (2021) and in the near future.

However, there is general agreement that battery energy densities higher

than 200 Wh/kg should be assumed after 2025.

Figure A.3: Present and future estimates for the life-cycle emissions of EV batteries

considering the production of the entire battery pack.

Figure A.3 displays the current and future estimates of greenhouse gas

(GHG) emissions from life-cycle assessments (LCA) of EV batteries [12,

126, 152, 153]. As in the former plot, emissions related to entire battery

system are considered. Current LCAs place the footprint of batteries at

around 120 kgCO2e/kWh but this estimate is subject to large uncertainties

due to the difficulty in modelling all energy and material flows linked to

battery manufacturing. Nevertheless, all studies foresee a dramatic reduc-

tion in life-cycle emissions thanks both to the decarbonization of energy

inputs and to the lower material needs per energy content shown in the

previous plot. This thesis uses the estimate for 2017 provided by Cox et

al. [12] of 108 kgCO2e/kWh, considered representative for state-of-the-art

batteries at the time of writing. However, the quick foreseen improvements

may make such value quickly obsolete and LCA footprints lower than 80

kgCO2e/kWh should be assumed after 2030.
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A.3 Charging behaviours

This section reports in detail all charging behaviours of the analysed trials

and of the tested scenarios. Charging behaviours are here presented with

the S curves introduced in Fig. 2.9 and 2.10, curves that indicate the like-

lihood of plugging in an EV for a given SOC of its battery. In other words,

these S curves are the survival function (i.e. inverse of the cumulative dis-

tribution function) of the normally distributed SOC threshold below which

the EV would be plugged in.

A.3.1 EV trials

Figure A.4 and Table A.1 report the charging behaviours extracted from

the EV trails with the Algorithms 2 and 3 in Section 2.3.2. This procedure

is applied only to charging data of BEVs and the SOC threshold is thus

modelled by normal distributions truncated on the lower tail. This is the

reason why all curves start from a probability of 1 with a depleted battery.
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Figure A.4: Charging behaviours derived from the empirical data reported by the EV

trials. The curves are derived only for BEVs.

With the data reported by the Green eMotion trial [84] Algorithm 2 can

be directly applied to two of its demo regions — DK1 and DK2. The

resulting charging behaviours are shown with dash lines. With the incom-

plete information from the other three trials — My Electric Avenue [70],

Switch EV [81], The EV Project [82] — the iterative Algorithm 3 must
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µ σ weight

Green eMotion DK1 0.67 0.13 1

Green eMotion DK2 0.70 0.17 1

My Electric Avenue 0.54 0.25 4

Switch EV 0.58 0.19 4

The EV Project 0.63 0.17 4

This study default 0.6 0.2

Table A.1: Parameters of truncated normal distributions extracted from the EV trials.

The default settings for this study are obtained as weighted average of the single trails’

parameters.

be applied. This procedure returns multiple charging behaviours for each

field test (see Fig. 2.11). The solid lines in Figure A.4 and the values in

Table A.1 illustrate the charging behaviours that each trial converges to.

This thesis adopts the weighted average of the single trials’ parameters

as default charging behaviour. The weights approximately measure the

quality of the data provided by the demonstrators. Specifically, the use

case of the BEVs employed in the Green eMotion trials is either unknown

(DK2) or unsuitable (a captive fleet is tracked in DK1).1 The resulting

charging behaviour has parameters:

µ = 0.6 σ = 0.2

and is illustrated by the black in Fig. A.4. As discussed in Section 2.3.2,

due to the lack of sufficient data the same default charging behaviour is

assumed for both BEVs and PHEVs.

A.3.2 Sensitivity analysis

Table A.2 summarises all charging settings explored in the sensitivity anal-

ysis in Section 3.1.4. These parameters are always simultaneously changed

in the charging mechanisms of both BEVs and PHEVs. The only dif-

ference is that the former samples the threshold SOC from a truncated

distribution.

1There is no specific reason for setting the weights to 4 rather than, for example, 2. However, the
change would be marginal: setting the higher weights to 2 shifts the weighted average to: µ = 0.61 σ =
0.19.
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µ σ

Raw sensitivities µ+ 10% 0.64� 0.2

Fig. A.5
µ− 10% 0.56� 0.2

σ + 10% 0.6 0.22

σ − 10% 0.6 0.18

Exploratory scenarios always charge 1 0

Fig. A.6

empirical behav. 1 0.9 0

empirical behav. 2 0.7 0.12

empirical behav. 3 0.5 0.28

empirical behav. 4 0.3 0.44

alternative behav. A 0.9 0.44

Fig. A.7
alternative behav. B 0.7 0.28

alternative behav. C 0.5 0.12

alternative behav. D 0.3 0

Table A.2: Parameters of the charging behaviours tested in the sensitivity analysis.
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Figure A.5: Charging behaviours tested in the raw sensitivities. The curves for BEVs

and PHEVs are essentially identical and no difference can be appreciated.

The charging probabilities resulting from the raw sensitivities are illus-

trated in Fig. A.5. The curves’ deviation from the default behaviour is

marginal, and this explains the minor impact on the coefficient of determi-

nation R2 observed in Section 3.1.4. In addition, all curves, including the

default behaviour, exhibit no difference between BEVs and PHEVs. This

�The ±10% shift of µ is applied in terms of battery depletion (i.e. on a basis of 0.4), rather than in
terms of absolute SOC.
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is due to the steepness of the curves, which quickly approach the proba-

bility of 1 even when not truncated (PHEV case). The truncation on the

lower tail (BEV case) thus plays almost no role, as it tries to enforce a

charging probability of 1 when this is already in place.

Figure A.6 shows the charging probabilities tested in the exploratory sce-

narios that follow an empirical behaviour. The name for this set of scenar-

ios comes from an examination of Figure A.4, which presents the charging

behaviours observed in the EV trials, i.e. empirical. They are united by

similar charging probabilities at high SOC and by more disperse attitudes

for depleted batteries. This gives rise to the linear trend between µ and σ

observed in Fig. 2.11.

The empirical set of exploratory scenarios positions itself in the same trend,

anchoring to stable charging behaviours at high SOC and exploring more

attitudes at low SOC. This is evident from Fig. A.6, where particularly

behaviours 2–4 wrap the charging probabilities drawn by the EV trials.

Empirical behaviour 1 theoretically falls in the same pattern, but its null

standard deviation makes it look like a sharp step function. The plot also

includes the “always charge” scenario, which represents the most conser-

vative approach with a charging probability always equal to 1.

Contrary to the previous examples, empirical behaviours 3 and 4 manifest

a difference between BEVs and PHEVs. The higher σ of these scenarios

allows PHEVs to have a lower-than-1 probability to charge even with a fully

depleted battery. This behaviour is technically viable, as PHEVs can rely

on a second on-board energy carrier. However, first studies seem to show

that PHEVs drivers may tend to charge their car very often in order to

minimize the consumption of the liquid fuel [156]. Further research should

be carried out to better understand the charging practices of PHEV drivers.

Finally, Figure A.7 presents the charging probabilities investigated in the

exploratory scenarios that do not follow the empirical pattern from above.

This set of scenarios is named alternative and is designed in a symmetrical

manner compared to the empirical behaviour (see Table A.2 or Fig. 3.6).

Therefore, these alternative scenarios share similar charging probabilities

to the default case at low SOC, but explore more diverse behaviours for

charged batteries.

Figure A.7 shows that these alternative scenarios cut through the empirical

behaviours observed in the EV trials. Also this set includes a scenario

with null σ, behaviour D, that resembles a step function. However, in this
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Figure A.6: Charging probabilities tested in the exploratory scenarios that follow the

empirically observed behaviour. For the same behavioural parameters (colours), BEV

(solid lines) and PHEVs (dash-dotted lines) may exhibit different charging probabilities.
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Figure A.7: Charging probabilities tested in the exploratory scenarios that follow a

behaviour antithetical to the one empirically observed. For the same behavioural param-

eters (colours), BEV (solid lines) and PHEVs (dash-dotted lines) exhibit slightly different

charging probabilities.

situation it represents a very risky approach, as the EV would never be

plugged in for SOCs higher than 30%.

BEVs and PHEVs perform similarly also in this set of scenarios. The

reason is that the charging probabilities are so designed to resemble the
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default behaviour at low SOC. And this behaviour does not exhibit differ-

ence between BEVs and PHEVs. The diversity added by the alternative

scenarios rather occurs at high SOCs, but this has a minor role on the

BEV charging threshold, being this truncated only on the lower tail.

A.4 Availability of reserved home parking
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Figure A.8: Above: average number of home reserved parking spots per owned car by

Swiss commune. Communes are horizontally split by population size. Stars indicate the

average private parking availability for the whole commune size category. Whiskers define

the 5th and 95th percentiles. Below: distribution of the Swiss population among commune

size categories.
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Figure A.9: Average number of home reserved parking spots per owned car by Swiss

commune. Communes with fewer than 16 entries in MZMV have been fit according to

their population density.

A.5 Benefits of shared BEVs

A.5.1 Sizing of a shared BEV fleet

Let’s assume a community with N private cars that perform T ∈ R365×N

trips during the year. Tij represents the total daily distance of jth private

car on the ith day of the year. The goal of the heuristic algorithm is to

determine the optimal number n of SEVs that, while accounting for the

required battery capacity, minimize the fleet purchase costs Cfleet.

The maximum number nmax of SEVs sufficient to satisfy the whole mobility

demand T equals the maximum number of private cars used on the same

day d:

nmax = max [count (Td∗) for d in [1 : 365]]

where Td∗ denotes the entire row d and count counts the elements greater

than zero, i.e. the number of trips.

By reducing n some trips of the community remain unserved. The maxi-
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mum number of unfulfillable trips U is exogenously given by:

U = round (count (T ) · xundone)

Algorithm 5 details the computation of the minimum number nmin of SEVs

such that only U or fewer trips are left unserved.

Algorithm 5 Derivation of the minimum number nmin of SEVs required
to leave fewer than U day trips unserved.

1: for d in [1 : 365] do

2: sort Td∗ ascendingly

3: end for

4: tripsundone = 0

5: for c in [1 : N ] do

6: tripsundone = tripsundone + count (T∗c)

7: if tripsundone > U then

8: nmin = N − c+ 1

9: break for

10: end if

11: end for

Algorithm 6 is then employed to evaluate every feasible n in terms of fleet

purchase costs Cfleet and finally select the cheapest option (lines 1, 21–26).

The heuristic approach considers the total number of unfulfillable trips U

as a budget that can be spent in two ways:

• to reduce the number of required SEVs: this is a function of the n

being evaluated and costs kd trips for every day d with more driving

private cars than n (lines 3–6);

• to remove the longest daily trips from the overall mobility demand

X: the number of erased trips is given by the budget that remains

after the previous step (lines 7–8)2.

After all U trips have been removed (i.e. set to 0), the algorithm computes

the minimum battery requirements bc for each shared car c. The idea is

to maximize the utilisation of any battery bc by assigning to c the longest

2X is just a copy of T that is reinitiated at every loop to preserve the original mobility demand (line
2).
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Algorithm 6 Heuristic approach employed to size fleet and batteries of
SEVs.

1: for n in [nmin : nmax] do

2: X = T

3: for d in [1 : 365] do

4: kd = max (count (Xd∗)− n, 0)

5: remove kd longest trips from Xd∗

6: end for

7: U = U −
365∑
d=1

kd

8: remove U longest trips from whole X

9: for d in [1 : 365] do

10: sort Xd∗ descendingly

11: end for

12: ncars = n

13: for c in [1 : n] do

14: rc = max (X∗c)

15: if rc = 0 then

16: ncars = c− 1

17: break for

18: end if

19: bc = Eq. 2.13 (rc)

20: end for

21: Cfleet = ncars · Ccar +
ncars∑
c=1

bc · CkWh

22: if Cfleet < Copt
fleet then

23: Copt
fleet = Cfleet

24: nopt
cars = ncars

25: end if

26: end for

trips it can fulfil, as long as they occur on different days. The journeys on

each day are thus ordered by total distance (lines 9–11) and each column

of the resulting matrix X is assigned a SEV. The range requirement rc
for each SEV is given by the largest journey assigned (line 14) and the

corresponding battery size bc is computed from Eq. 2.13 (line 19).

After all U trips are removed in the upper part of the routine (lines 3–
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8), some of the n SEVs may have no trips assigned: in those cases the

actual number of sized SEVs ncars can be lower than n and the superfluous

battery capacities are ignored (lines 12, 15–18). Finally, the purchase costs

of the resulting fleet are computed and compared against the provisional

optimum (lines 21–25).

A.5.2 Correlation between population density and

motorisation rate
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Figure A.10: Correlation between motorisation rate and population density in every

MSOA of Great Britain.

Fig. A.10 shows the relation between ρ and M for every census area

(MSOA3) of Great Britain [157]. Predictably, the higher the population

density the lower the car ownership level. Very rural areas reach mo-

torisation rates of about 0.7 cars/person, while inner cities see a drop in

ownership rate below 0.3 cars/person.

3In this work MSOAs refer to both the Middle layer Super Output Areas of England and Wales as
well as the intermediate zones of Scotland.
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A least square fit of the data points returns the following rectangular hy-

perbola:

(ρ− 7601) · (M − 0.021) = 4506 (A.1)

with ρ expressed in people/km2.

The hyperbolic formulation has been chosen so that Eq. 5.2 can be poten-

tially reversed with the quadratic formula to obtain the population density

ρ as a function of N .





Nomenclature

Acronym Description

BEV Battery Electric Vehicle

CCGT Combined Cycle Gas Turbine

CCS Carbon Capture and Storage

CDF Cumulative Distribution Function

CH Switzerland

CLT Central Limit Theorem

CNG Compressed Natural Gas

CP Charging Profile (electricity demand caused by EV

charging)

DoD Depth of Discharge

EV Electric Vehicle (either BEV or PHEV)

EVSE Electric Vehicle Supply Equipment

FCEV Fuel Cell Electric Vehicle

GB Great Britain

GHG GreenHouse Gas

HEV Hybrid Electric Vehicle

HTS Household Travel Survey

ICEV Internal Combustion Engine Vehicle

K–S Kolmogorov–Smirnov (test or metric)

LCA Life-Cycle Assessment

MZMV Mikrozensus Mobilität und Verkehr (CH)

NTS National Travel Survey (GB)

PDF Probability Distribution Function

PFCEV Plug-in Fuel Cell Electric Vehicle

PHEV Plug-in Hybrid Electric Vehicle

pkm person-km

PV Photovoltaic



140 Nomenclature

Acronym Description

SEV Shared battery Electric Vehicle

SOC State Of Charge

UF Utility Factor

UK United Kingdom

US United States

vkm vehicle-km

WTW Well-To-Wheel

Symbol Description

A surface area in reach of a car-sharing station

b gross energy capacity of batteries

c energy consumption per unit distance

C purchase costs

dcar average daily distance of a car

dcar used average daily distance of a car when driven

D K–S statistic of the Kolmogorov–Smirnov test

Ebatt gross energy capacity of batteries

fused average driving frequency of a car

M motorisation rate

N number of private cars

n number of shared cars

p p-value

r range of BEVs

R radius of influence area of car-sharing station

xundone tolerance level, i.e. share of unfulfillable trips

η association coefficient

µ mean of a statistical distribution

ρ population density

σ standard deviation of a statistical distribution
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reia. Trip pricing of one-way station-based carsharing networks with

zone and time of day price variations. Transportation Research

Part B: Methodological, 81:461–482, 11 2015. ISSN 01912615. doi:

10.1016/j.trb.2015.06.003. URL https://linkinghub.elsevier.

com/retrieve/pii/S0191261515001265.

[117] Daniel J. Fagnant and Kara M. Kockelman. The travel and envi-

ronmental implications of shared autonomous vehicles, using agent-

based model scenarios. Transportation Research Part C: Emerging

Technologies, 40:1–13, mar 2014. ISSN 0968090X. doi: 10.1016/j.trc.

2013.12.001. URL https://linkinghub.elsevier.com/retrieve/

pii/S0968090X13002581.

[118] James M Anderson, Kalra Nidhi, Karlyn D Stanley, Paul Sorensen,

Constantine Samaras, and Oluwatobi A Oluwatola. Autonomous ve-

hicle technology: A guide for policymakers. Rand Corporation, 2014.

[119] Nikolas Thomopoulos and Moshe Givoni. The autonomous car—a

blessing or a curse for the future of low carbon mobility? An

exploration of likely vs. desirable outcomes. European Journal

of Futures Research, 3(1):14, dec 2015. ISSN 2195-4194. doi:

10.1007/s40309-015-0071-z. URL http://link.springer.com/10.

1007/s40309-015-0071-z.

[120] Zia Wadud, Don MacKenzie, and Paul Leiby. Help or hindrance?

The travel, energy and carbon impacts of highly automated vehicles.

Transportation Research Part A: Policy and Practice, 86:1–18, apr

2016. ISSN 09658564. doi: 10.1016/j.tra.2015.12.001. URL https:

//linkinghub.elsevier.com/retrieve/pii/S0965856415002694.

[121] IEA. Energy technology perspectives 2020: clean energy

technology guide. URL https://www.iea.org/articles/

etp-clean-energy-technology-guide.

[122] M.W. Adler, S. Peer, and T. Sinozic. Autonomous, connected,

electric shared vehicles (ACES) and public finance: An explo-

http://ieeexplore.ieee.org/document/8317960/
http://ieeexplore.ieee.org/document/8317960/
https://linkinghub.elsevier.com/retrieve/pii/S0191261515001265
https://linkinghub.elsevier.com/retrieve/pii/S0191261515001265
https://linkinghub.elsevier.com/retrieve/pii/S0968090X13002581
https://linkinghub.elsevier.com/retrieve/pii/S0968090X13002581
http://link.springer.com/10.1007/s40309-015-0071-z
http://link.springer.com/10.1007/s40309-015-0071-z
https://linkinghub.elsevier.com/retrieve/pii/S0965856415002694
https://linkinghub.elsevier.com/retrieve/pii/S0965856415002694
https://www.iea.org/articles/etp-clean-energy-technology-guide
https://www.iea.org/articles/etp-clean-energy-technology-guide


168 BIBLIOGRAPHY

rative analysis. Transportation Research Interdisciplinary Perspec-

tives, 2:100038, sep 2019. ISSN 25901982. doi: 10.1016/j.trip.2019.

100038. URL https://linkinghub.elsevier.com/retrieve/pii/

S2590198219300387.

[123] Graham Currie. Lies, Damned Lies, AVs, Shared Mobility, and Ur-

ban Transit Futures. Journal of Public Transportation, 21(1):19–30,

jan 2018. ISSN 1077-291X. doi: 10.5038/2375-0901.21.1.3. URL

http://scholarcommons.usf.edu/jpt/vol21/iss1/3/.

[124] Rafael F.F. Lemme, Edilson F. Arruda, and Laura Bahiense. Op-

timization model to assess electric vehicles as an alternative for

fleet composition in station-based car sharing systems. Transporta-

tion Research Part D: Transport and Environment, 67:173–196, 2

2019. ISSN 13619209. doi: 10.1016/j.trd.2018.11.008. URL https:

//linkinghub.elsevier.com/retrieve/pii/S1361920918304656.

[125] Patrick M. Boesch, Francesco Ciari, and Kay W. Axhausen. Au-

tonomous Vehicle Fleet Sizes Required to Serve Different Levels of

Demand. Transportation Research Record: Journal of the Trans-

portation Research Board, 2542(1):111–119, jan 2016. ISSN 0361-

1981. doi: 10.3141/2542-13. URL http://journals.sagepub.com/

doi/10.3141/2542-13.

[126] Global Battery Alliance World Economic Forum. A vision for a sus-

tainable battery value chain in 2030.

[127] Nathaniel S. Pearre, Willett Kempton, Randall L. Guensler, and

Vetri V. Elango. Electric vehicles: How much range is required

for a day’s driving? Transportation Research Part C: Emerging

Technologies, 19(6):1171–1184, dec 2011. ISSN 0968090X. doi:

10.1016/j.trc.2010.12.010. URL https://linkinghub.elsevier.

com/retrieve/pii/S0968090X1100012X.

[128] Elizabeth Traut, Chris Hendrickson, Erica Klampfl, Yimin Liu, and

Jeremy J. Michalek. Optimal design and allocation of electrified

vehicles and dedicated charging infrastructure for minimum life cycle

greenhouse gas emissions and cost. Energy Policy, 51:524–534, 2012.

ISSN 03014215. doi: 10.1016/j.enpol.2012.08.061. URL http://

linkinghub.elsevier.com/retrieve/pii/S0301421512007434.

https://linkinghub.elsevier.com/retrieve/pii/S2590198219300387
https://linkinghub.elsevier.com/retrieve/pii/S2590198219300387
http://scholarcommons.usf.edu/jpt/vol21/iss1/3/
https://linkinghub.elsevier.com/retrieve/pii/S1361920918304656
https://linkinghub.elsevier.com/retrieve/pii/S1361920918304656
http://journals.sagepub.com/doi/10.3141/2542-13
http://journals.sagepub.com/doi/10.3141/2542-13
https://linkinghub.elsevier.com/retrieve/pii/S0968090X1100012X
https://linkinghub.elsevier.com/retrieve/pii/S0968090X1100012X
http://linkinghub.elsevier.com/retrieve/pii/S0301421512007434
http://linkinghub.elsevier.com/retrieve/pii/S0301421512007434


BIBLIOGRAPHY 169

[129] Department for Transport. NTS0705: Travel by household

income quintile and main mode or mode: England, 2020.

URL https://www.gov.uk/government/statistical-data-sets/

nts07-car-ownership-and-access.

[130] John Pucher and John L Renne. Urban-Rural differences in mobility

and mode choice: Evidence from the 2001 NHTS. Bloustein School

of Planning and Public Policy, Rutgers University, pages 1–22, 2004.

[131] Maxime Lenormand, Thomas Louail, Oliva G Cantú-Ros, Miguel

Picornell, Ricardo Herranz, Juan Murillo Arias, Marc Barthelemy,
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