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A B S T R A C T

Public transport networks are characterized by daily disturbances, as de-
lays or cancelled runs, which may negatively affect the passengers. In
fact, in case of disturbances, the travel time may increase, or some routes
may become unavailable, resulting in a discomfort for passengers. In these
cases, passengers’ behaviour can vary significantly, from sticking to the
original plan to choosing a different route, mode or destination. Therefore,
understanding passengers’ behaviour in case of disturbances is a complex
and relevant task, given the heterogeneous nature of both the passengers
and the disturbances. In fact, the same passenger may react differently
from other passengers or in case of different disturbances. To analyse this
aspect, a large number of data is needed, including long-term observations
of several passengers. In this regard, GPS tracking is a promising technol-
ogy, allowing a long-term data collection of precise information on the
travel behaviour of several users.
This dissertation aims to exploit GPS tracking to understand public trans-
port passengers’ behaviour in case of disturbances. In particular, a major
focus is the development of algorithms for automatic mode detection and
collection of long-term travel diaries from GPS data. Therefore, the travel
diaries of a large amount of users are exploited to analyse route choices in
public transport, with a focus on network disturbances.
To understand passengers’ behaviour in case of disturbances, this research
pursues four different objectives, which are addressed in four different
chapters of the thesis. A fifth chapter shows the application of the GPS
tracking and the proposed methodology to study passengers’ behaviour
during the COVID-19 pandemic.
Chapter 2 focuses on automatic collection of travel diaries from tracking
data. A case study is carried out to test a low-battery consumption smart-
phone application, allowing long-term passive tracking with a low burden
on respondents. Several algorithms are developed for trip, activity and
mode detection, to automatically collect travel diaries of different users. In
particular, the proposed mode detection algorithm exploits past travel in-
formation from the users to improve its detection accuracy, and is able to
detect the specific public transport vehicle used.
Chapter 3 focuses on identifying the available alternatives for a given pub-
lic transport trip. A novel choice set generation algorithm is proposed,
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identifying all and only the relevant alternatives, which more realistically
are taken into consideration during the choice process of the passenger.
The algorithm is computationally efficient and able to work with differ-
ent information provisions. It is evaluated on a large-scale tracking survey,
obtaining high coverage (more than 94%) and the estimation of meaning-
ful models. In this regard, multiple route choice models are estimated to
understand the most likely information that passengers consider when
choosing their route.
Chapter 4 focuses on evaluating public transport disturbances. A novel
definition of disturbance impact is proposed, able to describe different de-
grees of disturbances based on the potential impact on passengers. Several
disturbances are identified from realized public transport data, and their
impact is analysed on simulated passengers’ trips. Therefore, the relation-
ships between the disturbance characteristics and the impact are analysed
to identify the main characteristics of a disturbance.
In Chapter 5, the methods and the results of the previous chapters are
combined, to analyse passengers’ route choices in case of different network
disturbances. Namely, information on passengers’ route choices, available
alternatives, network conditions and disturbances is collected in a large-
scale integrated dataset. The passengers’ chosen routes are compared with
the available alternatives with and without disturbances, and the effects of
disturbances on travel cost are evaluated. In particular, the analysis iden-
tifies that small disturbances and delays have a significant effect on travel
cost, although they have marginal effects on route choice. Moreover, new
available connections, unavailable in the timetable, are often not exploited
by passengers.
Finally, Chapter 6 shows the application of GPS tracking and the proposed
methodology, to understand travel behaviour in exceptional conditions,
such as the COVID-19 pandemic. In this regard, a tracking survey is car-
ried out during the first pandemic wave in 2020 in Zürich. Since the re-
spondents participated also in a former survey in 2019 (the one described
in Chapter 3), travel behaviours in a pre-pandemic period and in a pan-
demic period are compared. Among the main outcomes, a sharp reduction
of travel distance is observed during the pandemic, in conjunction with
the implemented restrictions. In this regard, public transport was more
affected than private modes. Moreover, the estimation of a route choice
model for public transport shows important differences between the two
periods in the perception of costs related to transfers and travelling by
train.
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In summary, this dissertation shows a full process to understand public
transport passenger behaviour, with a focus on route choice and public
transport disturbances. Each step of the process, including the data col-
lection, the estimation of a behavioural model, and the evaluation of dis-
turbances, is addressed proposing a novel methodology, filling the related
gaps identified in literature. In this regard, the leitmotif of the thesis is
given by the GPS tracking. In fact, the availability of highly detailed long-
term travel diaries, thanks to this technology, allows the observation of
passenger behaviour in specific conditions, as in case of disturbances or
during the COVID-19 pandemic.
The results of this dissertation can be beneficial for operating companies,
infrastructure managers and the public transport industry in general. In
fact, understanding passengers’ behaviour in case of public transport dis-
turbances is a crucial element to design a response to them. The GPS
tracking, moreover, proved to be a powerful means to observe passengers’
choices, which can replace stated preference surveys in certain applications.
Ultimately, the analyses in this work are also useful for passengers, since
operators may exploit them to provide a more passenger-oriented service.

v



Z U S A M M E N FA S S U N G

Öffentliche Verkehrsnetzwerke charakterisieren sich durch tägliche Störun-
gen, wie Verspätungen oder Ausfälle, welche die Passagiere negativ beein-
flussen. Bei Störungen kann sich die Reisezeit erhöhen und in manchen
Fällen können gewisse Routen von Passagieren nicht mehr gewählt wer-
den, was eine Unannehmlichkeit für die Passagiere darstellt. In solchen
Fällen kann das Verhalten der Passagiere signifikant variieren: Passagiere
können an ihrem ursprünglichen Plan festhalten, eine andere Route, ein
anderes Verkehrsmittel, oder auch ein anderes Ziel wählen. Das Verständ-
nis des Verhaltens von Passagieren bei Störungen ist daher eine komple-
xe und relevante Aufgabe, weil sowohl die Passagiere als auch die Stö-
rungen heterogen sind. Verschiedene Passagiere reagieren möglicherwei-
se unterschiedlich auf eine Störung und die Reaktion eines spezifischen
Passagiers hängt von der konkreten Störung ab. Um diesen Aspekt zu
analysieren, wird eine grosse Datenmenge benötigt, einschliesslich Lang-
zeitbeobachtungen von mehreren Passagieren. In dieser Hinsicht stellt das
GPS-Tracking eine vielversprechende Technologie dar, die eine langfristige
Datenerfassung präziser Informationen zum Reiseverhalten verschiedener
Benutzer ermöglicht.
Diese Dissertation hat das Ziel, mittels GPS-Tracking das Verhalten von
Fahrgästen im öffentlichen Verkehr bei Störungen zu verstehen. Der Haupt-
fokus liegt speziell auf der Entwicklung von Algorithmen zur automatisier-
ten Erkennung von Verkehrsmitteln und Erfassung von Langzeitreisetage-
büchern aus GPS-Daten. Die Reisetagebücher von einer grossen Anzahl
von Passagieren werden genutzt, um die Routenauswahl im öffentlichen
Verkehr zu analysieren, wobei der Schwerpunkt auf das Verhalten der Pas-
sagiere bei Störungen im Netzwerk liegt.
Um das Verhalten der Passagiere bei Störungen zu verstehen, verfolgt die-
se Studie vier verschiedene Ziele, die in den vier Kapiteln der Arbeit behan-
delt werden. In einem fünften und letzten Kapitel wird eine Anwendung
des GPS-Trackings aufgezeigt und eine Methodik zur Untersuchung des
Verhaltens der Passagiere während der COVID-19-Pandemie vorgeschla-
gen.
Das Kapitel 2 konzentriert sich auf die automatische Erstellung von Rei-
setagebüchern aus Tracking-Daten. Eine Fallstudie wird durchgeführt, um
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eine Smartphone-Anwendung mit geringem Batterieverbrauch zu testen,
die eine langfristige passive Verfolgung der Teilnehmer der Studie ermög-
licht, welche für die Teilnehmer einen geringen Aufwand darstellt. Für die
Erkennung von Reisen, Aktivitäten und Verkehrsmittel wurden verschie-
dene Algorithmen entwickelt, um automatisch Reisetagebücher verschie-
dener Benutzer zu erfassen. Insbesondere nutzt der vorgeschlagene Algo-
rithmus Informationen bezüglich früherer Reisen der Benutzer, um seine
Lokalisierungsgenauigkeit zu verbessern und kann das gewählte öffentli-
che Fahrzeug erkennen.
Das Kapitel 3 konzentriert sich auf die Ermittlung der möglichen Alterna-
tiven für eine gewünschte Fahrt mit öffentlichen Verkehrsmitteln. Es wird
ein neuartiger Entscheidungsalgorithmus vorgeschlagen, der alle relevan-
ten Alternativen identifiziert, die während des Auswahlprozesses des Pas-
sagiers realistischer Weise berücksichtigt werden. Der Algorithmus ist ef-
fizient und kann mit verschiedenen Informationsformaten verwendet wer-
den. Er wird anhand einer gross angelegten Tracking-Umfrage ausgewer-
tet, wobei eine hohe Klassifikationsgenauigkeit (mehr als 94%) und die
Schätzung aussagekräftiger Modelle erreicht werden. In dieser Hinsicht
werden mehrere Routenauswahlmodelle geschätzt, um dieInformationsla-
ge der Passagiere, basierend auf deren Routenwahl, zu repräsentieren.
Das Kapitel 4 beschäftigt sich mit der Auswertung von Störungen im öf-
fentlichen Verkehr. Eine neuartige Definition für die Auswirkung einer
Störung wird vorgeschlagen, mit der unterschiedliche Störungsgrade ba-
sierend auf potentiellen Auswirkungen auf die Fahrgäste beschrieben wer-
den können. Aus den beobachteten Daten des öffentlichen Verkehrs wer-
den mehrere Störungen identifiziert und ihre Auswirkungen auf simulier-
te Reisen von Fahrgästen analysiert. Dabei werden die Beziehungen zwi-
schen den Störungseigenschaften und den Auswirkungen analysiert, um
die Hauptmerkmale einer Störung zu identifizieren.
Im Kapitel 5, werden die Methoden und Ergebnisse der vorherigen Ka-
pitel kombiniert, um die Routenwahl der Passagiere bei verschiedenen
Netzwerkstörungen zu analysieren. Informationen in Bezug auf die Rou-
tenwahl der Passagiere, verfügbare Alternativen, Netzwerkzustand und
Störungen werden zu einem grossen Datensatz zusammengefasst. Die von
den Passagieren gewählten Routen werden mit den verfügbaren Alterna-
tiven mit und ohne Störungen verglichen und die Auswirkungen von Stö-
rungen auf die Reisekosten werden bewertet. Die Analyse zeigt insbeson-
dere, dass kleine Störungen und Verspätungen einen erheblichen Einfluss
auf die Reisekosten haben, obwohl sie nur geringfügige Auswirkungen auf
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die Routenwahl haben. Darüber hinaus werden neu verfügbare Verbindun-
gen, die im Fahrplan nicht verfügbar sind, von Passagieren nicht häufig
gewählt. Schliesslich zeigt Kapitel 6 die Anwendung des GPS-Trackings
und der vorgeschlagenen Methodik, um das Reiseverhalten unter ausser-
gewöhnlichen Bedingungen wie der COVID-19-Pandemie zu verstehen.
In diesem Zusammenhang wird während der ersten Pandemiewelle im
Jahr 2020 in Zürich eine Tracking-Umfrage durchgeführt. Da die Befrag-
ten auch an einer früheren Umfrage im Jahr 2019 teilgenommen haben
(die in Kapitel 3 beschrieben ist), kann Ihre Verhaltensweise von zuvor
zu jener während der Pandemie verglichen werden. Insbesondere konn-
te eine starke Verringerung der Reisedistanz während der Pandemie in
Verbindung mit den umgesetzten Beschränkungen festgestellt werden. In
dieser Hinsicht war der öffentliche Verkehr stärker betroffen als private
Verkehrsmittel. Darüber hinaus zeigt die Schätzung eines Routenwahlm-
odells für den öffentlichen Verkehr wichtige Unterschiede zwischen den
beiden Zeiträumen bei der Wahrnehmung der Kosten im Zusammenhang
mit Umsteigevorgängen und bei Zugreisen.
Zusammenfassend zeigt diese Dissertation einen vollständigen Prozess
zum Verständnis des Passagierverhaltens im öffentlichen Verkehr, wobei
der Schwerpunkt auf der Routenwahl und den Störungen des öffentli-
chen Verkehrs liegt. Für jeden Schritt des Prozesses, einschliesslich der
Datenerfassung, der Schätzung eines Verhaltensmodells und der Bewer-
tung von Störungen, wurden neue Methodiken vorgeschlagen, die die in
der Literatur identifizierten Lücken schliessen. Das Leitmotiv der Arbeit
ist dabei das GPS-Tracking. Die Verfügbarkeit hochdetaillierter Langzeit-
Reisetagebücher ermöglicht, dank dieser Technologie, die Beobachtung
des Passagierverhaltens unter bestimmten Bedingungen, beispielsweise bei
Störungen oder während der COVID-19-Pandemie.
Die Ergebnisse dieser Dissertation können für Betreiber von öffentlichen
Verkehrssystemen, Infrastrukturbetreiber und die öffentliche Verkehrsbran-
che im Allgemeinen von Vorteil sein. Tatsächlich ist das Verständnis des
Verhaltens der Fahrgäste bei Störungen des öffentlichen Verkehrs ein ent-
scheidender Aspekt, um eine Reaktion auf die Störungen zu modellie-
ren. Darüber hinaus erwies sich das GPS-Tracking als eine leistungsstarke
Methode zur Beobachtung der Entscheidungen der Passagiere, die in be-
stimmten Anwendungen stated-preference Befragungen ersetzen könnte.
Letztendlich sind die Analysen in dieser Arbeit auch für Passagiere nütz-
lich, da Betreiber diese nutzen können, um einen passagierorientierteren
Service anzubieten.
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R I A S S U N T O

Le reti di trasporto pubblico sono caratterizzate da disturbi quotidiani, co-
me ritardi o corse cancellate, che hanno un impatto negativo sui passeggeri.
Infatti, in caso di disturbi, il tempo di viaggio può aumentare, o alcuni per-
corsi possono non essere più disponibili. In questi casi, il comportamento
dei passeggeri può variare significativamente, dall’attenersi al piano inizia-
le allo scegliere un diverso percorso, mezzo o destinazione. Pertanto, capire
il comportamento dei passeggeri in caso di disturbi è particolarmente ri-
levante, ma anche complesso, data la natura eterogenea sia dei passeggeri
che dei possibili disturbi. Infatti, uno stesso passeggero può comportarsi
in maniera diversa da altri passeggeri o in caso di diversi disturbi. Per
analizzare quest’aspetto del comportamento di viaggio, è necessaria una
grande quantità di dati, contenente osservazioni a lungo termine di mol-
ti passeggeri. A questo proposito, il tracciamento GPS è una tecnologia
promettente, che consente una raccolta a lungo termine di informazioni
precise sul comportamento di viaggio di utenti diversi.
L’obiettivo di questa tesi è capire il comportamento dei passeggeri in caso
di disturbi nella rete di trasporto pubblico, tramite l’uso del tracciamento
GPS. In particolare, uno degli obiettivi principali è lo sviluppo di algorit-
mi per l’identificazione automatica del mezzo di trasporto e la raccolta di
diari di viaggio a lungo termine a partire dai dati GPS. In questo modo, i
diari di viaggio di un gran numero di utenti possono essere utilizzati per
analizzare le scelte nel trasporto pubblico, e in particolare in caso di distur-
bi.
Per capire il comportamento dei passeggeri in caso di disturbi, questa ri-
cerca persegue quattro diversi obiettivi, ognuno affrontato in un diverso
capitolo della tesi. Un quinto ed ultimo capitolo mostra l’applicazione del
tracciamento GPS e dei metodi proposti per studiare il comportamento dei
passeggeri durante la pandemia di COVID-19.
Il Capitolo 2 si concentra sulla raccolta automatica di diari di viaggio da da-
ti di tracciamento. In esso è descritto uno studio di caso condotto per testa-
re un’applicazione per smartphone, che consente un tracciamento passivo
a lungo termine, con un basso consumo della batteria e senza gravare sui
partecipanti. Diversi algoritmi sono proposti per identificare dai dati GPS
i viaggi, le attività e i mezzi di trasporto utilizzati, e per raccogliere auto-
maticamente diari di viaggio di diversi utenti. In particolare, l’algoritmo
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proposto per l’identificazione del mezzo di trasporto sfrutta informazio-
ni dei precedenti viaggi degli utenti, per migliorare la propria precisione;
inoltre, esso identifica anche l’esatto veicolo utilizzato nel trasporto pubbli-
co.
Il Capitolo 3 si concentra sull’identificazione delle alternative disponibili
nel trasporto pubblico per un dato viaggio. Un nuovo algoritmo per la
generazione delle alternative è proposto, il quale identifica tutte e sole le
alternative rilevanti, ossia che sono realisticamente considerate durante il
processo di scelta del passeggero. L’algoritmo è computazionalmente effi-
ciente e può considerare diversi tipi di informazione disponibili per i pas-
seggeri. Viene valutato su uno studio di tracciamento su larga scala, dove
ottiene un’alta precisione (più del 94% di percorsi identificati) e consente la
stima di modelli comportamentali significativi. A questo riguardo, diversi
modelli per la scelta del percorso sono stimati, per capire l’informazione
più probabile che i passeggeri considerano durante la loro scelta.
Il Capitolo 4 si concentra sulla valutazione dei disturbi nel trasporto pub-
blico. Una nuova definizione di impatto di un disturbo è proposta, capace
di descrivere disturbi di grado diverso sulla base del loro potenziale im-
patto sui passeggeri. Diversi disturbi sono identificati da dati empirici dei
trasporti pubblici, e il loro impatto è analizzato su passeggeri simulati.
Sulla base di ciò, vengono analizzate le relazioni tra le caratteristiche dei
disturbi e il loro impatto, per identificare le caratteristiche principali di un
disturbo.
Nel Capitolo 5, i metodi e i risultati dei precedenti capitolo sono combina-
ti, per analizzare i percorsi scelti dai passeggeri in caso di diversi disturbi
nella rete. In pratica, informazioni sui percorsi scelti, le alternative dispo-
nibili, le condizioni della rete e i disturbi sono raggruppate in un grande
dataset integrato. I percorsi scelti dai passeggeri sono paragonati alle alter-
native disponibili con e senza disturbi, e gli effetti dei disturbi sul costo di
viaggio sono valutati. In particolare, l’analisi identifica che piccoli disturbi
e ritardi hanno effetti significativi sul costo di viaggio, mentre effetti mar-
ginali sulla scelta del percorso. In aggiunta, nuove connessioni disponibili,
non esistenti secondo l’orario programmato, spesso non sono utilizzate dai
passeggeri.
Infine, il Capitolo 6 mostra l’applicazione del tracciamento GPS e della
metodologia proposta, per capire il comportamento di viaggio in condizio-
ni eccezionali, come la pandemia di COVID-19. A questo riguardo, uno
studio basato sul tracciamento è stato condotto durante la prima ondata
pandemica nel 2020 a Zurigo. Siccome i partecipanti sono stati già tracciati
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in uno studio precedente del 2019 (quello descritto nel Capitolo 3), è possi-
bile confrontare i comportamenti di viaggio in un periodo pre-pandemia e
durante la pandemia. Tra i risultati principali, una drastica riduzione del-
la distanza di viaggio è osservata durante la pandemia, in concomitanza
con le restrizioni implementate. A questo proposito, il trasporto pubblico
è stato colpito maggiormente rispetto a quello privato. Inoltre, stimando
un modello di scelta del percorso nel trasporto pubblico, si notano impor-
tanti differenze tra i due periodi nel costo percepito viaggiando in treno e
cambiando mezzo di trasporto.
In sintesi, questa tesi mostra un processo per comprendere il comporta-
mento dei passeggeri nel trasporto pubblico, in particolare riguardo la scel-
ta del percorso in caso di disturbi. Ogni parte di questo processo, inclusa
la raccolta dati, la stima di un modello comportamentale, e la valutazione
dei disturbi, è affrontato proponendo una metodologia nuova e colmando
i relativi gap identificati nella letteratura. A questo riguardo, il leitmotiv
della tesi è dato dal tracciamento GPS. Infatti, la disponibilità di diari di
viaggio molto dettagliati e a lungo termine, grazie a questa tecnologia, con-
sente di osservare il comportamento dei passeggeri in condizioni speciali,
come nel caso di disturbi o durante la pandemia di COVID-19.
I risultati di questa tesi possono essere utili per società di trasporti, gestori
di infrastrutture, e l’industria del trasporto pubblico in generale. Infatti,
capire il comportamento dei passeggeri in caso di disturbi nel trasporto
pubblico è un elemento cruciale per progettare una risposta ai disturbi
stessi. Il tracciamento GPS, in aggiunta, ha provato di essere un mezzo effi-
cace per osservare le scelte dei passeggeri, che può rimpiazzare in diverse
applicazioni i sondaggi basati su preferenze dichiarate. Infine, le analisi
in questo lavoro sono utili indirettamente anche per i passeggeri, poichè
gli operatori possono utilizzarle per fornire un servizio più orientato ai
passeggeri stessi.
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1
I N T R O D U C T I O N

1.1 research motivation and objective

Public transport is a sustainable alternative to private transport, and has
seen an increase in usage in many countries in the last years. To remain a
valuable choice, compared to private modes, a high service quality must be
guaranteed, which meets the needs of passengers. In this regard, for an ef-
fective planning and design of public transportation systems, high-quality
data are very important. In particular, observing passengers’ behaviour
and travel choices is a key element to plan and provide a more passenger-
oriented service.
Travel surveys are a powerful tool for this purpose, and are widely em-
ployed in literate (Cottrill et al., 2013; Stopher and Greaves, 2007). In this
context, GPS tracking is an emerging technology, allowing a long-term
data collection of precise information on travel behaviour of several users.
In fact, with the help of a GPS device, or a smartphone application, it is pos-
sible to track the movements of the owner, and to infer a travel diary from
them. Tracking data provide several advantages compared to traditional
surveys, based on interviews or requesting to manually report a travel di-
ary. The burden on users is strongly reduced, which allows a long-term
data collection, spanning several days. Moreover, if the data are collected
via smartphone application, the data collection is easily scalable to several
users. GPS tracking allows the collection of highly detailed and precise
information, such as travel distance, exact departure time and visited loca-
tions. Therefore, they can complement traditional surveys, which are not
suited to collect these data. In addition, tracking data can be integrated
with external data sources, such as data on land use or on weather con-
ditions, to discover additional information. For example, the integration
with Automatic Vehicle Location data (AVL) of public transport operators
allows discovering which public transport lines and vehicles are used by a
tracked user.
On the other side, GPS tracking has its own issues and challenges. If the
tracking is based on a smartphone application, the battery consumption
must be minimized. Therefore, a trade-off between data quality (including
sampling frequency) and battery consumption must be found. Data pro-
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cessing is also an additional challenge. In fact, if the users do not provide
travel diaries manually, they have to be inferred from the raw GPS data.
The algorithms to derive travel diaries from GPS data, such as mode de-
tection algorithms, are a recent research topic. Therefore, travel diaries de-
rived in this way are rarely applied to date within transportation planning
(Harrison et al., 2020), and the aforementioned advantages are not yet ex-
ploited in research and practice. In this regard, the collection of long-term
travel diaries, with highly detailed travel information, appears particularly
useful for understanding the behaviour of travellers in exceptional condi-
tions.
In this thesis, we investigate passengers’ behaviour during public transport
disturbances. This aspect is of great importance, given the possible nega-
tive effects of disturbances on passengers and service providers. In fact, a
reliable service is particularly important for passengers, since an eventual
disturbance may cause them discomfort. Moreover, disturbances affect also
service providers, which may face revenue losses or additional costs due
to the management of the disturbance or required additional services.

Understanding passengers’ behaviour during disturbances is a complex
task, which requires a large amount of data and non-trivial analyses, as
represented in Figure 1.1. In particular, realized observations of both dis-
turbances and passengers are needed, to observe their behaviour during
disturbances. Moreover, the available alternatives for the observed trips
need to be identified, to understand why passengers choose certain routes
instead of others.
This thesis proposes a methodology divided in several steps, which, start-
ing from raw GPS data of passengers and locational data of public trans-
port vehicles, understand passengers’ behaviour during disturbances. In
particular, in this thesis, we first focus on identifying travel diaries from
tracking data, developing a mode detection algorithm. Secondly, we focus
on route choice in public transport, identifying the available alternatives
for the observed trips. Therefore, we analyse passengers’ behaviour in case
of normal network conditions, disturbances in the network, and during the
COVID-19 pandemic.
Below we report the main motivations and objectives related to each step.

Typically, to derive travel diaries from GPS data, different algorithms are
developed, such as activity detection or mode detection algorithms. To col-
lect realistic travel diaries, a high accuracy is required for these algorithms,
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Figure 1.1: Required data processing to understand passengers’ behaviour dur-
ing disturbances.

which depends on: the quality of the GPS data and their frequency; the
type of algorithms used; the data used for training (if needed); the test
case (e.g. city, context and final users). In this context, this thesis proposes
both a smartphone application, which passively collects GPS data without
affecting significantly the battery consumption, and a set of algorithms,
including a mode detection algorithm, to infer travel diaries from the col-
lected data.

To understand the behaviour of public transport passengers, in particular
why they choose certain routes, it is important to identify the alternative
routes available to them. This problem is referred in literature as choice set
generation, which consists in identifying the available alternatives, which
more realistically are taken into consideration by passengers. Therefore, a
choice set generation algorithm is a useful tool to understand travel be-
haviour from tracking data. Nevertheless, such an algorithm has to deal
with several challenges: it must identify the route chosen by the user, only
relevant and realistic alternatives, and have a low computation time. More-
over, since a passenger might be aware or not of network disturbances,
such as delays or cancelled runs, a choice set generation algorithm should
be able to model the possible information available to passengers. In this
thesis, we propose a choice set generation algorithm, which solves the
above-mentioned challenges, and it is tested on tracking data. In addition,
the algorithm can identify which information provision should be assumed
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to best represent passengers’ behaviour.

Knowing the chosen route of different users and their available alterna-
tives, it is possible to understand the route choice criteria under general
network conditions, estimating a route choice model. In contrast, if the in-
terest is on route choice in case of disturbances, two major challenges arise,
namely the definition of disturbance and the data collection.
Regarding the definition of disturbance, there is not a common measure in
literature quantifying it. Most of the works analyse the effects on passen-
gers of specific disturbances, in their specific test case (Leng, 2020; Van der
Hurk, 2015; Yap et al., 2018). Typically, they consider disruptions, which
are major events, such as a big service interruption in the transport net-
work. In contrast, smaller disturbances, such as delays or cancelled runs,
are rarely analysed. Moreover, a single disturbance can potentially have
a different impact, depending on several factors, such as: the location in
the network; the passengers involved; the time of the day. Without a clear
quantification or categorization of the possible disturbances, at the current
state, there is not a clear knowledge of the potential impact of a distur-
bance. In this regard, in this thesis, we propose a metric quantifying the
impact of disturbances on passengers. Therefore, we analyse which char-
acteristics of a disturbance are related with higher impact on passengers.
This information can be particularly relevant for operating companies, to
predict the effects of disturbances and plan an appropriate response to
them.
Regarding the data collection during disturbances, passengers’ behaviour
is seldom observed, given the unpredictability of disturbances. Therefore,
most of the work rely either on simulation or analysing a single disrup-
tion (Cats and Jenelius, 2014; Leng, 2020). In this context, tracking data
can play a key role. In fact, passive tracking allows to collect realized data
of several users for a long time. In this way, all the disturbances occurred
during a study period can potentially be analysed. In literature, passen-
gers’ behaviour in case of disturbances has not yet been analysed from a
large-scale survey based on tracking data. In this regard, this thesis fills
this research gap, observing route choices of several users in case of differ-
ent disturbances.

Finally, in this thesis we show how tracking data are a valuable resource
to understand travel behaviour during the COVID-19 pandemic. In this
period, restrictive policies were implemented in several cities in the world,
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to reduce contacts between people and their movements. Thus, the com-
parison of tracking data before and during the pandemic can shed some
light on how the restrictions and the pandemic affected people’s travel be-
haviour. Given that the pandemic outbreak is a recent event at the time of
writing, very little has been explored in this research field.

As main contribution, this thesis shows the benefits of tracking data in the
context of travel behaviour analysis and transportation planning. Moreover,
it shows algorithms and automatic procedures to infer long-term travel di-
aries and understand travel behaviour in specific conditions, as in case of
disturbances or during the COVID-19 pandemic.
This research can be beneficial for operating companies, infrastructure
managers and the public transport industry in general. We show how
GPS tracking is a powerful tool to observe passengers’ choices in differ-
ent contexts. In particular, understanding passengers’ behaviour in case of
disturbances is important to design a responsive and reliable public trans-
port service. Moreover, a better understanding of passengers’ behaviour is
also beneficial for passengers, since it helps operators to provide a more
passenger-oriented service.

1.2 research questions

1.2.1 Research question

Public transport disturbances have negative effects on both passengers and
operators, which are hard to quantify. Knowing the potential impact of dis-
turbances and how passengers react to them is important for operators to
better counteract the disturbances. Nevertheless, observing passengers in
case of disturbances is particularly challenging, given the unpredictability
and rarity of the occurrence of a disturbance. In this regard, tracking tech-
nologies are a powerful resource to observe passengers’ behaviour, given
the long-term duration of a tracking study and the high level of detail of
the acquired information. Moreover, GPS tracking allows to observe pas-
sengers in exceptional conditions, such as in case of disturbances or during
the COVID-19 pandemic.
Based on that, the research question of this thesis can be formulated as
follows:
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How can tracking technology be exploited to understand passengers’ behaviour in
public transport, and in particular during different disturbances in the network?

1.2.2 Research sub-questions

The research question described above presents several challenges, which
can be extended in different sub-questions. Each chapter of this thesis an-
swers one of the following sub-questions.

1) How to derive travel diaries from long-term GPS tracking, based on a
smartphone application?

This research question, explored in Chapter 2, aims to test a smartphone
application for GPS tracking. The application must have a low battery con-
sumption, to guarantee a low burden on the users and long-term data
collection. Therefore, a following objective is to develop novel algorithms
to automatically derive travel diaries from these GPS data. The algorithms
need to deal with low-frequency GPS data, and must identify several infor-
mation of a user, such as: activities, trips, stages, modes used, and, in case
of public transport, also the exact lines and vehicles used.

2) How to identify the available alternatives for a public transport trip, which
more realistically were considered by a passenger, given a certain knowledge of

current network conditions?

This research question, explored in Chapter 3, aims to identify a method-
ology for generating the available alternatives for a given public transport
trip. The proposed method (or algorithm) must be computationally effi-
cient and accurate in identifying among the alternatives the one chosen by
a real passenger. Moreover, it should be possible to identify the available
alternatives based on different information provisions, representing differ-
ent knowledge of network conditions for a passenger.

3) What is the impact of public transport disturbances on passengers? What are
the main characteristics of disturbances affecting their impact?

This research question, explored in Chapter 4, highlights the lack of a com-
mon definition and quantification of disturbances in literature. In partic-
ular, a common metric, defining the potential impact of a disturbance on
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a passenger, is missing. Such a metric would allow comparing the effects
of different disturbances, in different transport networks, ranging from
small delays to big service interruptions. Moreover, it is not known which
characteristics of a disturbance (such as its duration or the location in the
network) contribute most to its severity.

4) How different network disturbances affect route choice of public transport
passengers?

This research question, explored in Chapter 5, connects directly to the pre-
vious one, but referring to the effects of disturbances on passengers. In fact,
in literature there is not a clear knowledge of passengers’ behaviour in case
of disturbances. Moreover, a great heterogeneity exists both between pas-
sengers and between disturbances, which needs to be investigated. In fact,
the same passenger may react differently to other passengers or in case of
different disturbances.

5) Is it possible to understand travel behaviour during the COVID-19 pandemic
from tracking data? How the route choice criteria differ from those in a

pre-pandemic period?

This last research question, explored in Chapter 6, asks if tracking data,
and the derived travel diaries, are useful to analyse the effects on travel be-
haviour of exceptional events, such as a pandemic. In fact, the comparison
of two long-term travel diaries, collected during a pre-pandemic and a pan-
demic period, may be useful to this end. An aspect of travel behaviour that
is worth analysing is the route choice of passengers, since their criteria may
be different between the two periods, due to possible travel restrictions and
a different perception of the safety of public transport systems.

1.3 research scope and boundaries

To answer the aforementioned research questions, this thesis is based on
realized observations of both passengers and operations. Given the large
heterogeneity of existing public transport networks, and all possible types
of disturbances occurring, not all possible contexts are analysed. Therefore,
in this section, we present the research scope in terms of study area, types
of public transport disturbances analysed, and further research assump-
tions.
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1.3.1 Study area

Regarding the public transport networks, we perform our analyses in Switz-
erland. In particular, the main city we consider is Zürich, where our track-
ing studies were collected. Other two Swiss cities, Basel and Bern, have
also been considered in Chapter 2 and Chapter 4, to strengthen the pro-
posed methods and results. Zürich is the largest city in Switzerland, with
more than 400.000 inhabitants. The city is characterized by a multi-modal
public transport network, integrating buses, trams and trains, with a sin-
gle payment scheme. Public transport service is perceived as efficient and
reliable, and it is widely used among the population (mode share of 41%,
Stadt Zürich, 2021).
Therefore, our research focuses on a multi-modal public transport network
in urban environment. In fact, the analyses on both passengers’ behaviour
and disturbances are based on urban trips. Among the observed trips of
the tracked passengers, only the ones inside Zürich were analysed in detail.
Inter-urban trips, connecting two different cities, represent a very different
case study, given the limited number of modes and routes available. In
contrast, the public transport network of Zürich is considered particularly
efficient, and several alternative routes are available for most of the trips.
In any case, our research methods are not dependent on the city of Zürich
or a specific public transport network, but rather they are based only on re-
alized data of passengers and operations. Therefore, to apply the research
methods, long-term GPS data of passengers and AVL data of the relevant
public transport network are needed.

1.3.2 Public transport disturbances

Different types of disturbances can occur in a public transport network.
An important distinction is between planned and unplanned disturbances.
Planned disturbances, such as street maintenances, are well known in ad-
vance by service operators, which may prepare actions to counteract them,
such as re-routing or providing additional services. Passengers may also
be aware of them in advance. In contrast, unplanned disturbances, such
as delays or accidents, are not known in advance by both operators and
passengers. In this case, operators may react to a disturbance, informing
the passengers or adapting the service provided; meanwhile, passengers
may react changing the route, mode or destination.
Another characteristic of disturbances is their impact on passengers, which
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is generally related to their size. Although there is not a common defini-
tion in literature of impact or size (see the third research sub-question),
a small disturbance refers, typically, to a little inconvenience to both pas-
sengers and operators, such as a delayed bus; while, a large disturbance
refers to a large inconvenience, as the closure of an entire train station for
several hours. Moreover, small disturbances are generally frequent (daily
occurrence), while large disturbances are rarer (few occurrences per year).
A clear boundary between small and large disturbances does not exist, but
rather the impact of a disturbance can span a relatively wide range (Yap,
2020).
In this work, we focus on small unplanned disturbances. We consider as a
disturbance any deviation of the operations from the timetable. Practically,
the disturbances considered in this work are in the form of delays, can-
celled (or additional) runs, faults of vehicles, and re-routing. Combinations
of disturbances are also considered, e.g. concurrent delays of different ve-
hicles are considered as a single disturbance (more information in Chapter
4 and 5). Moreover, we assume the passengers may react to a disturbance
only changing their route. Essentially, we assume a small disturbance does
not justify changing to a private mode or changing the planned destina-
tion.

1.3.3 Further assumptions

This thesis relies on the quality of the AVL data of public transport oper-
ations. We assume the AVL data provided by the Swiss public transport
companies are reliable and without errors. Moreover, a public transport
network can be modelled entirely from the AVL data, which can describe
both the planned public transport service (based on the timetable) and the
actual service, with the real network conditions occurred.
We use random utility models to analyse route choice in public transport
of the tracked users. These models assume passengers are rational and
they choose the route, which maximizes their utility. We describe the util-
ity as a function of several travel time components (e.g. walking time and
time on a bus) and transfer-related parameters. Therefore, models based
on different theories, as prospect theory, are not considered.
We assume passengers’ route choices are not affected by capacity con-
straints or crowding. This is not a particularly strong assumption, given
the high quality of service of public transport in Zürich, and the rarity of
denied boarding.
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1.4 state of the art and research gaps

In this Section, we briefly introduce the state of the art and the main re-
search gaps related to the research questions of this thesis. In the following
chapters, instead, a more detailed literature on each specific topic is shown.
GPS tracking is a promising technology, which makes it possible to collect
long-term travel diaries, with low burden on respondents (Stopher et al.,
2008). In particular, while GPS loggers require a substantial effort for their
distribution (Bohte and Maat, 2009), smartphones are often carried by par-
ticipants, which made their use for travel surveys more popular (Cottrill et
al., 2013; Montini, 2016). Nevertheless, the major challenge of smartphone-
based travel surveys is the battery consumption, due to the continuous
collection of GPS data (Cottrill et al., 2013; Pendão et al., 2014; Prelipcean
et al., 2017). It follows, to collect long-term travel diaries without a signif-
icant burden on respondents, a smartphone application consuming very
little battery power is needed.
To derive travel diaries from GPS data, dedicated algorithms are used, such
as for activity detection or trip segmentation. In this regard, the identi-
fication of the travel mode is the most challenging part, which is often
addressed with a dedicated mode detection algorithm, based on machine
learning (Dabiri and Heaslip, 2018; Nikolic and Bierlaire, 2017; Wu et al.,
2016). The main drawback of such algorithms is the need of a manual la-
belling of users’ movements, to build a training set and train the model.
Moreover, we are not aware of any existing approach able to detect, in
addition to the mode, the exact public transport line and vehicle used.
This information is particularly relevant to study route choices, as shown
in Chapter 3. Finally, the quality of these algorithms is dependent on the
quality of the GPS data and their sampling frequency. Therefore, a trade-
off needs to be found between battery consumption and quality of travel
diaries.
Understanding route choices of passengers requires (in most of the stud-
ies) the knowledge of the set of available alternatives for each observed trip,
known as choice set in literature (Gentile and Noekel, 2016; Prato, 2009).
In fact, based on the routes chosen by passengers, and their respective
choice sets, it is possible to estimate a route choice model, to understand
the choice criteria of passengers (Anderson et al., 2017). In this regard, we
are not aware of any study evaluating a choice set generation algorithm
based on realized data of both operations (e.g. AVL data) and passengers
(e.g. GPS data). In particular, the usage of AVL data would allow compar-
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ing choice sets based on different information provisions, and therefore
understanding the information available to (or used by) passengers and
their choices during network disturbances.
With the absence of realized data, several studies analysed passengers’
behaviour during disturbances based on simulations (Cats and Jenelius,
2014; Leng, 2020; Van der Hurk, 2015). In these cases the behaviour is
based on assumptions or defined under normal network conditions, which
might not be realistic. In fact, passengers’ behaviour during disturbances
can largely deviate from undisrupted scenarios (Yap et al., 2018). On the
other hand, stated preference surveys are based on hypothetical scenarios,
and cannot observe the passengers’ real choices. For these reasons, GPS
tracking is a promising method to collect revealed preference data and
objectively observe travel decisions (Harrison et al., 2020; Zhu and Levin-
son, 2012). Moreover, Sun et al. (2016) affirms that without real passenger
travel data, the behaviour in case of disturbances of many passengers is not
discovered. We found only one study in literature (Yap and Cats, 2020),
analysing passengers’ behaviour during different disturbances from real
passenger data. Nevertheless, they focus on the impact of disturbances in
different public transport stops. Moreover, in most of the studies the re-
search scope is often limited to the specific test case. Most of the work
focuses on one or a few large disturbances (Leng, 2020; Van der Hurk,
2015; Yap et al., 2018), while low attention is given to small disturbances.
In addition, there is not a common measure to quantify the size of distur-
bances, which makes difficult a comparison among them.
In fact, a large variety of disturbances is possible, ranging from small de-
lays to large service interruptions. As highlighted by Yap (2020), there is
no explicit demarcation between disturbances, but rather a range of distur-
bances with different impact. In this regard, little is known about which
characteristics of disturbances most influence their impact.
In the field of passengers’ behaviour during disturbances, we identify the
following main research gaps: the lack of studies based on realized data
of multiple passengers during different public transport disturbances; the
lack of a metric quantifying and comparing different disturbances; the fo-
cus of the literature only on a few large disturbances in specific test cases.
We believe these limitations make the analyses of passengers’ behaviour
during disturbances difficult to generalize in practice and do not allow a
full understanding of it. Therefore, this work aims to fill these research
gaps, to make general conclusions on passengers’ behaviour during distur-
bances.
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Finally, an additional aspect observed in this thesis is the passengers’ be-
haviour during the COVID-19 pandemic. Given the novelty of the topic,
very few research works are available to date, mainly focusing on observ-
ing general mobility trends (Aloi et al., 2020; Jenelius and Cebecauer, 2020;
Molloy et al., 2021). In this regard, this thesis focuses on route choice in
public transport, which has not yet been observed in literature.

1.5 research contributions

1.5.1 Scientific contributions

This thesis makes several contributions to scientific research. In fact, while
each chapter contributes to a specific research area, the whole thesis repre-
sents a novel process to understand travel behaviour during disturbances
from tracking data.
The main scientific contributions are the following:

Automatic collection of travel diaries from GPS tracking (Chapter 2)
We use a smartphone application with low battery consumption and min-
imal burden on the users, to collect GPS data over long periods (the app
was developed under the supervision of the thesis’ author at the Institute
for transport Planning and Systems, ETH Zürich). We propose algorithms
to derive travel diaries from low-frequency GPS data, identifying activities,
trips, stages and transport modes used. The proposed mode detection al-
gorithm stands out among the ones available in literature for the following
properties: it is not based on machine learning, therefore it is unsupervised
and it does not require a manual collection of a training set; it can detect
also the exact public transport vehicle used, using AVL data of public trans-
port operators; it uses past travel information of users to identify missing
transfers and improve the detection accuracy.

Identification of choice sets for public transport trips based on different informa-
tion provisions on network conditions (Chapter 3)
We propose a novel choice set generation algorithm for public transport,
able to generate all available alternatives given specific constraints on du-
ration and transfers. The algorithm is characterized by a very low com-
putation time and high performance. In fact, testing the algorithm on a
large-scale tracking dataset, it identifies most of passengers’ trips (cover-
age of 94%). Moreover, estimating a route choice model (Path Size Logit)
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from the generated choice sets, we obtained realistic values for the param-
eters.
A major contribution of the algorithm is the ability to work with differ-
ent information provisions on network conditions. This allows comparing
choice sets based on different information provisions, to identify the one
that best represents the passengers’ choices. In fact, different information
provisions may lead to significantly different choice sets.

Evaluation of the impact of public transport disturbances on passengers (Chap-
ter 4)
This study contributes to the understanding of the effects of public trans-
port disturbances, proposing a novel metric quantifying the potential im-
pact of disturbances on passengers. This metric can be applied to any type
of disturbance, including short delays and long service interruption, allow-
ing a comparison between different disturbances. In this work, we identify
real disturbances from AVL data of Swiss public transport operations, and
we evaluate their impact on simulated passengers’ trips. Therefore, based
on random forest regression and feature importance analysis, we identify
the main characteristics of a disturbance influencing its impact. Such anal-
ysis contributes to vulnerability analyses, identifying specific conditions or
locations that are particularly vulnerable to disturbances.

Observing passengers’ behaviour during public transport disturbances (Chapter
5)
This study is the first one in literature, observing passengers’ route choices
during different public transport disturbances from tracking data. In par-
ticular, we compare each route chosen by the users, with the planned al-
ternatives available (according to the timetable), and the actual alternatives
available (in case of disturbances). In this way, we evaluate the effects of dis-
turbances on users, in terms of excess journey cost, i.e. the additional cost
experienced by a user respect to the expected one. Therefore, the main con-
tribution of this work is given by the observation of how the route choice
and the excess travel cost vary in case of different disturbances.
Regarding the disturbances, we evaluate the network conditions for each
observed trip, based on a metric of service degradation, which provides a
numerical scale of the potential impact of the current disturbances in the
network. In this regard, we focus on small disturbances (e.g. delays and
cancelled runs) and "good disturbances", which we define as deviations of
the operations from the timetable, leading to less costly alternatives.
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Observing travel behaviour and route choice during the COVID-19 pandemic
(Chapter 6)
This study contributes to the very little research available to date on travel
behaviour during the COVID-19 pandemic. We compare two tracking stud-
ies involving the same participants, one conducted in 2019 and the other
in 2020 during the first pandemic wave in Switzerland. This comparison
allows identifying the main differences in travel behaviour due to the pan-
demic. In this regard, we analyse travel distance, mode share, visited lo-
cations and regular trips. The main aspect that makes our work stand out
from the literature is the analysis of route choice in public transport. In fact,
we estimate two route choice models, based on the two different periods,
to identify how the route choice criteria changed during the pandemic.

Contributions of the thesis (All chapters)
While each chapter focuses on a specific research topic, their union, form-
ing this thesis, has also important contributions to scientific research. In
particular, we show how tracking data are a valuable resource to under-
stand different aspects of travel behaviour. Overcoming the two main prob-
lems of data collection, namely the consumption of the smartphone battery
and a required active participation of the users, we are able to conduct
several studies, collecting highly detailed information, necessary for our
research objectives.
A further contribution of this thesis is the proposed methodological pro-
cess, described by the different methods in each chapter, that, starting from
the collection of tracking data, allows observing and analysing the actual
choices of passengers during public transport disturbances. This process
can be used and adapted for future research, also with different research
goals, as done for instance in Chapter 6, to observe travel behaviour during
a pandemic.

1.5.2 Contributions to society

This work helps public transport authorities and service providers to un-
derstand passengers’ behaviour, both in the general case and in case of
public transport disturbances.
A main contribution of this thesis is a series of methods to automatically
collect travel diaries from tracking data. In this respect, the collection and
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analysis of travel diaries, based on traditional surveys, is complicated and
expensive. In fact, a significant burden is given to respondents in compil-
ing travel diaries, which causes most surveys asking respondents to report
travel information during only one randomly chosen day (Greene et al.,
2016), although research clearly shows day-to-day variations of travel be-
haviour (Pas and Sundar, 1995). Therefore, the collection of longitudinal
data, based for example on a smartphone application that continuously
tracks a user, can significantly improve the quality of studies based on
travel diaries. In particular, a study based on tracking places a lower bur-
den on respondents, offering high spatio-temporal precision of the infor-
mation collected (Vij and Shankari, 2015).
This type of data collection can be implemented by service providers to en-
hance their understanding of passengers’ behaviour. In fact, tracking data
provide different and complementary information to traditional travel sur-
veys, given their longitudinal nature and the high level of detail on pas-
sengers’ movements. Service providers can enhance their already existing
smartphone applications, with passive tracking and automatic collection of
travel diaries, based on the methods described in Chapter 2. Furthermore,
the limited effects on battery consumption show the burden on the users
is reduced to a minimum, consisting only of installing the smartphone ap-
plication.
The collection of a personal travel diary for each user is particularly impor-
tant to provide a more user-oriented service, which is a benefit for both
service providers and passengers. In fact, travel diaries have several ap-
plications, such as providing personalized route recommendations, or per-
sonalized information on network conditions. For instance, in case of a
disturbance in the public transport network, it is possible to inform only
the users that are potentially affected by the disturbance. Finally, collect-
ing tracking data requires a single fixed cost, given by the development
of a smartphone application, and limited costs over time, since the data
collection is fully automatic on the users’ smartphones. Management costs
of the technical infrastructure for data storage and processing needs to be
considered. In contrast, traditional surveys, are repeated with a certain fre-
quency, with an additional cost for each survey.
A second contribution of this work is the proposal of an efficient and pre-
cise choice set generation algorithm for public transport (see Chapter 3).
Such an algorithm finds a natural application in route recommender sys-
tems, which, given an origin and a destination, suggest the available routes
for a user. Proposing only relevant routes and having a short computation
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time are two of the main characteristics required by route recommender
systems. In this regard, the proposed algorithm is designed to run in a few
seconds on a standard computer and to identify most of passengers’ trips
(coverage of 94%).
We analyse what is the right size of a choice set, both to guarantee a high
coverage and to include only relevant paths. Such analysis helps improv-
ing route recommendation, since suggesting a low number of routes may
not include the right option for a user, while a high number of routes may
represent an excess of information, which may negatively affect the user.
Finally, the proposed algorithm can generate choice sets based on different
information provisions on network conditions, therefore assuming that the
user may or may not be aware of network disturbances. This is particularly
useful for service providers, to identify on which information their users
rely to make their choices. In that way, providers can improve specifically
for each user how information is provided, for instance improving the de-
livery time or better informing in case of disturbances.
Regarding network disturbances, in this thesis we propose a novel met-
ric quantifying the impact of any disturbance on passengers, from short
delays to long service interruptions. The proposed metric can be used by
service providers and network managers in case a disturbance occurs, to
evaluate the severity of that disturbance. Moreover, they can identify which
passengers are more or less affected by the disturbance, and then plan ac-
cordingly the interventions to be adopted for the management of the dis-
turbance. Passengers can also benefit from such a metric. In fact, in case of
a disturbance, service providers can inform just the passengers who may
be most affected, without providing unnecessary information to the oth-
ers. In this work, we identify which characteristics of a disturbance (such
as the duration, the vehicles involved or the location) influence its impact
on passengers. This may help operators in strategic analyses, identifying
the conditions leading to larger disturbances and the vulnerable parts of
the network. This allows operators to better plan measures for disturbance
management, such as keeping vehicle reserves or providing alternative
routes to the disturbed ones.
How passengers react to disturbances is a complementary aspect to the
one just mentioned, which is also explored in this thesis. In particular, we
focus on route choices in case of small disturbances in a public transport
network. Observing which routes passengers choose in case of a distur-
bance helps service operators understanding its effects and which action
to take to counter the disturbance. For instance, in case of a cancelled bus,
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if passengers wait for the next one of the same line, while other faster alter-
natives are available, it is likely passengers are not sufficiently informed. In
this case, service providers can improve their information systems, to bet-
ter communicate to the affected passengers both the current disturbances
and the available alternatives to avoid them. Furthermore, a better under-
standing of passengers’ behaviour helps infrastructure managers and ser-
vice providers to estimate the usage of the network during disturbances,
and therefore to adapt their supply in a passenger-oriented way. This is
beneficial also for passengers, as they find a public transport service more
suited to their behaviour and needs.
In this work, we observe how different passengers react to disturbances
with different impact. In this regard, analysing the heterogeneity of both
passengers and disturbances is a crucial aspect for disturbance manage-
ment. In fact, the response to different disturbances needs to be tailored to
each of them, according to its characteristics and the expected impact on
passengers.
As last contribution, this thesis exploits tracking data to understand pas-
sengers’ behaviour during the COVID-19 pandemic. The exceptional na-
ture of this event and its rarity make this work one of the few study that is
available on this topic. Therefore, such a study is particularly useful for de-
cision makers and service operators, to understand how travel behaviour
changes during a pandemic. Moreover, they can observe how an increase in
contagion and/or in the restrictions implemented corresponds to a reduc-
tion in travel among the population. In this work, we also analyse route
choices in public transport. In particular, we observe the changes in the
route choice criteria during the pandemic, compared to a pre-pandemic
period. Such information can be useful for transport providers to adapt
their service during a pandemic. In fact, the public transport system and
the passenger volume are recognized as important factors that increase
the contagion (Cartenì et al., 2021). Therefore, crowding must be reduced
to provide a safer transport service. In this regard, understanding route
choices of public transport passengers helps to predict the traffic flow in
the network, and therefore to adapt the service to the new situation.

1.6 outline

In this Section, we present the structure of this thesis and the dependencies
between the chapters. Figure 1.2 shows the relationships between the chap-
ters and the datasets used. Each chapter answers one of the research ques-
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Figure 1.2: Thesis structure and dependencies between chapters.

tions identified in Section 1.2.2. Despite each chapter addresses a different
problem, they are highly dependent in terms of data and methods used.
The grey arrows indicate methodological dependencies between chapters,
while the black arrows indicate the datasets used in each chapter.
Regarding the datasets, realized observations of both operations and pas-
sengers are used in this thesis. In particular, AVL data of public transport
operations of the city of Zürich are used in all Chapters (in Chapter 2 also
of Basel and in Chapter 4 also of Bern, two other Swiss cities). Instead, the
observations of passengers are based on three different tracking studies,
conducted in 2018, 2019 and 2020, respectively.
Chapter 2 focuses on the identification of travel diaries from GPS data.
This chapter serves as the basis for the whole thesis, since it focuses on
the data processing of the raw GPS data, collected with a smartphone ap-
plication. A first tracking study is conducted for this chapter, to validate
the proposed methodology. Moreover, AVL data are also used, as a key
component of the mode detection algorithm. The raw data of the other
two tracking studies, have all been processed as described in Chapter 2, to
have travel diaries directly as input for the following Chapters, instead of
raw GPS data.
Chapter 3 focuses on the choice sets generation for public transport trips,
and the understanding of the route choice criteria under general network
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conditions. A second tracking study is conducted for this chapter, which
has been processed as described in Chapter 2. AVL data are used here, to
represent the current network conditions, which the tracked passengers
encountered during their trips. The methodology proposed in this chapter,
consisting of a choice set generation algorithm and a route choice model,
is used also in the following chapters.
Chapter 4 focuses on the definition of disturbances, the identification of
their impact on passengers, and the identification of the main characteris-
tics affecting their impact. Since this chapter focuses on disturbances, no
tracking studies are used, but rather simulated passengers’ trips. Here, the
AVL data are used to identify real disturbances occurred in the public
transport network.
Chapter 5 focuses on understanding passengers’ behaviour during pub-
lic transport disturbances. For this purpose, the methodology proposed in
Chapter 3 on understanding passengers’ route choices, and the one pro-
posed in Chapter 4 on the evaluation of disturbances, are combined in this
chapter. The same tracking study of Chapter 3 is used, as a set of real pas-
sengers’ observations. AVL data are used also here to represent different
network conditions and evaluate the impact of disturbances.
Chapter 6 focuses on understanding passengers’ behaviour during the
COVID-19 pandemic. An additional tracking study is conducted during
this period. The participants of this study were selected among the ones of
the previous study, to compare the behaviour of the same users between a
pre-pandemic and a pandemic period. The choice set generation algorithm
and the route choice model, described in Chapter 3, are also used in this
chapter.
Finally, Chapter 7 reports the conclusions, summarizing the main findings
and the implications for practice. Limitations of the research and future
works are also discussed. An appendix is available after this chapter, con-
taining clarifications to the previous chapters already published (the ap-
pendix is referred in the text with the superscript [Thesis Appendix]).
Since each chapter is based on a different journal article, some concepts
described in previous chapters are summarized or repeated in the follow-
ing ones. These repetitions are highlighted at the begin of each chapter.
Moreover, due to the different publication date of the articles, on which
the chapters are based, there are few discrepancies between the chapters,
which we highlight here, to improve the readability. What is referred as dis-
ruption in Chapter 4, is referred as disturbance in Chapter 5. The metric of
disruption impact defined in Chapter 4 is adapted in Chapter 5 and referred
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as service degradation. Finally, Chapter 4 summarizes a previous version (al-
most identical) of the choice set generation algorithm described in Chapter
3.
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Additional notes to this chapter

Some aspects of this chapter are clarified in the appendix of the thesis (see
superscript [Thesis Appendix]).

abstract

This paper describes development and testing of a passive GPS track-
ing smartphone application and corresponding data analysis methodol-
ogy designed to increase the quality of travel behavior information col-
lected in long-term travel surveys. The new approach is intended to replace
the pencil-and-paper travel diaries and prompted recall methods that re-
quire more user involvement due to requirements for manual data entry
and/or high battery usage. Reducing the burden placed on users enables
researchers to collect data over longer periods, thus improving the quality
of travel behavior research. To reduce battery use the smartphone-based ap-
plication collects GPS data less frequently than other methods. Therefore,
new algorithms were developed to identify trips and activities, transport
mode, and even the specific vehicle used by the traveler. An important
finding was the significant advantage of using users’ past data to improve
mode detection results. The system was tested successfully in Zürich and
Basel (Switzerland).

Keywords

Tracking; travel survey; public transport operations; mode detection; smart-
phone; GPS

2.1 introduction

Until now travel diaries have been the primary source of travel behavior
information on activity chains, trip patterns, mode choice and time use
(Schlich and Axhausen, 2003). Unfortunately, conducting and analyzing
travel diary studies is complicated and expensive. More importantly, since
completing travel diaries places a significant burden on respondents, most
surveys only ask respondents to report on travel during one randomly cho-
sen day (Greene et al., 2016) although research clearly shows day-to-day
variation in travel behavior (Axhausen et al., 2000; Pas and Sundar, 1995),
which limits the political and operational value of one-day data (Susilo
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and Axhausen, 2007).
The use of GPS data, for instance provided by smartphones, can signifi-
cantly improve the efficiency of travel diary studies and the quality of in-
formation collected. Collecting GPS data from smartphones places a lower
burden on respondents, offers greater spatio-temporal precision and has
lower implementation costs (Vij and Shankari, 2015). The main drawback
of using smartphones is their reliance on energy-intensive GPS services
that quickly draw-down the smartphone battery, thus reducing the desire
of travelers to use them.
The goals of this research were to develop a passive GPS tracking applica-
tion that consumes very little battery power and a set of algorithms that
can use this GPS data to provide detailed traveler behavior data. An ap-
plication meeting the low power consumption objective was developed by
reducing the GPS sampling frequency. The algorithms were designed to
use this low(er) quality locational data to understand all user trips over
a period of several weeks. These algorithms consisted of: activity and trip
identification (dividing the users’ records into activities and trips); trip seg-
mentation (grouping trips into walking or using some means of transport);
and, mode detection (identifying the transport means).
The key benefits of the application and algorithms are:

• The low battery consumption and limited (essentially zero) burden
on the traveler means that it is possible to collect a great deal of
positional data over long time periods.

• The user’s travel behavior, in terms of activities, trips and transport
modes used, is derived from low-frequency GPS data.

• The mode detection algorithm can also detect the particular public
transport vehicle used using public transport operations data.

• Past travel information from users are used to identify missing trans-
fers and improve the mode detection accuracy.

In particular, identifying the specific public transport vehicle used is not
possible with existing mode detection algorithms and provides helpful
information for understanding user travel behavior. The application pas-
sively collected location information from users approximately every 30 s.
No interaction was required from respondents except to install the app and
complete two short questionnaires at the beginning and at the end of the
study. The smartphone application and algorithms were tested in Zürich.
A further dataset, collected with a different smartphone application in the
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city of Basel, was used to validate the proposed algorithms.
The paper is organized as follows: Section 2.2 describes the state of the
art; Section 2.3 describes the smartphone application, the survey process
and the datasets; Section 2.4 describes the data cleaning procedure; Sec-
tion 2.5 describes the trip and activity identification algorithm; Section 2.6
describes the trip segmentation algorithm; Section 2.7 describes the mode
detection algorithm; Section 2.8 presents the results of the data collection;
Section 2.9 describes the validation procedure; and, finally, Section 2.10

presents conclusions.

2.2 state of the art

GPS tracking makes it possible to collect long-term travel diaries while
placing a very low burden on respondents (Stopher et al., 2008). Initial
studies using GPS loggers for travel diary collection were promising, al-
though they required a substantial effort to distribute the devices and to
obtain additional information from respondents necessary to interpret the
GPS records (Bohte and Maat, 2009; Montini et al., 2014; Oliveira et al.,
2011; Schuessler and Axhausen, 2009).
Today, the focus has shifted away from GPS loggers towards smartphone
applications (Cottrill et al., 2013), due to their easier administration and
the development of automatic methods for detecting transport mode based
on GPS data. Most of these methods are based on machine learning tech-
niques and they often integrate GPS data with data from other smartphone
sensors such as accelerometers (two related reviews are Wu et al. (2016)
and Nikolic and Bierlaire (2017)). Kanarachos et al. (2018) reported the sig-
nals used by different mode detection algorithms, identifying GPS position,
accelerometer, magnetometer, orientation, number of satellites, Horizontal
Dilution of Precision and map information. Huang et al. (2019) compared
the state of the art of mode detection based on GPS and mobile phone
network data. They stated that the studies using GPS data tend to be more
fine-grained, distinguishing among more transport modes.
Most of today’s smartphone-based tracking systems use a prompted re-
call approach. This requires respondents to manually add details such as
trip purpose, mode, group size, transit fare, parking fees etc. to each trip.
Although some systems use statistical learning to make suitable sugges-
tions to reduce the burden on respondents, a substantial amount of user
interaction is still required to annotate or validate trip information. Cot-
trill et al. (2013) developed a prompted recall travel survey, in which par-
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ticipants visit a website to validate activity and mode information. They
concluded that battery life poses a major challenge and the participation
process should be simple to ensure that the users do not feel overwhelmed.
In this sense, to reduce battery consumption Lopez Aguirre (2018) used a
mobile application, Connect, with a passive method that has a different
sampling frequency according to the battery level. Nevertheless, this re-
sults in a inhomogeneous dataset. Cottrill et al. (2013), instead, proposed
a "phased sampling", turning GPS off during sleeping periods (i.e. when
user is doing an activity). Unfortunately, they stated the data quality is
inevitably reduced during GPS sleep time. Pendão et al. (2014) reported in-
formation on the smartphone app Moves, which records the users’ physical
activity and identifies the type of motion. It minimises energy consump-
tion, activating the GPS when detecting a known type of movement by the
accelerometer. Despite this, it was observed that the app still has an impact
on battery life. Regarding smartphone-based survey tools, there is an in-
creasing number of them that collects both behavior and experience data.
For instance, Raveau et al. (2016) extended the functionality of the system
used by Cottrill et al. (2013) to collect both mobility information and mea-
sure happiness. To the authors knowledge, other (proprietary) apps were
developed (e.g. rMove, 2019), which are not covered in detail.
Up until to now these smartphone-based tracking methods have mostly
been tested on small datasets. For example, Tsui and Shalaby (2006) is
based on 60 trips; and, Stenneth et al. (2011) recorded information for three
weeks of travel by six people. Research based on large datasets have used
dedicated GPS devices, making data collection complicated and expensive.
Examples include Zheng et al. (2008) who collected information on 45 peo-
ple over a period of six months; and Schuessler and Axhausen (2009) who
used a dataset of 4882 people (requiring multiple waves to reduce the num-
ber of devices needed). An exception is Jariyasunant et al. (2015) that used
a battery-saving application and collected complete data of 78 people for 3

weeks, without any person uninstalling the app for battery reasons. In this
case, a questionnaire on battery usage to the participants could have given
more insight on the perceived battery consumption.
Finally, it is important to mention Prelipcean et al. (2017), who developed
MEILI, a battery-saving app to collect travel diaries from smartphones.
They tested it only for one week and since the users had to manually
annotate their trips, only about one third of them completed the study.
As this result shows, the problem of manually annotating trips places a sig-
nificant hurdle on data collection. Therefore, a key tool for increasing the
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Figure 2.1: Sequence of algorithms used for mode detection. Rectangles indicate
algorithms; ovals indicate data; red ovals represent the output.

efficiency of smartphone-based travel diary data collection and analysis is
automatic mode detection. Several studies have used automatic mode de-
tection from GPS data including Schuessler and Axhausen (2009), Stopher
et al. (2005), Zhu et al. (2016), Zheng et al. (2008), Zhang et al. (2011). These
studies divide the problem of mode detection into the following four tasks
(with small variations):

• Data cleaning

• Trip and activity identification

• Trip segmentation

• Mode detection

Also this paper follows this structure, as shown in Figure 2.1. Since these
tasks are often considered as separate problems, a short literature review
is presented for each task.

2.2.1 Data Cleaning

Since raw GPS data may have systematic errors, it is necessary to identify
and correct GPS errors before the data can be used in the next steps (Wu
et al., 2016). The two main techniques used for data cleaning are filtering
and smoothing.
Data filtering removes data that do not represent the user’s real position.
Several methods have been used to filter data. Ogle et al. (2002) used the
position dilution of precision (PDOP, an accuracy measure based on the
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geometry of satellites) and the number of satellites for the filtering pro-
cess. Gong et al. (2012) used the horizontal dilution of precision (HDOP)
and the number of satellites to discard points. Schuessler and Axhausen
(2009) used altitude values and sudden jumps in position to discard points.
Ansari Lari and Golroo (2015) used speed to help identify GPS points for
filtering.
The smoothing process is used to reduce the random noise present in the
data. Jun et al. (2006) compared several smoothing techniques and found
that a modified Kalman filter works best. Nitsche et al. (2014) also prepro-
cessed the positional data using a Kalman filter. Schuessler and Axhausen
(2009) used a Gauss kernel smoothing approach.

2.2.2 Trips and activities detection

The smartphone application records the user’s position continuously through-
out the day. Therefore, each user’s data must be divided in trips and activi-
ties. An activity is given by a sequence of points near each other, indicating
that the user is in the same place for a long period. In contrast, a trip is
given by a sequence of points located apart from each other, representing
the user’s movement to a different place. A user’s day is formed by activi-
ties alternating with trips.
Several techniques have been used to identify trips and activities. So far,
to the best of our knowledge, all of them begin by first detecting activities
and then defining trips. One of the most common techniques is to measure
the time between two consecutive GPS points and compare it to a given
threshold value. Different threshold values have been used ranging from
45 s (Pearson, 2001), 300 s (Wolf et al., 2004) and 900 s (Schuessler and Ax-
hausen, 2009). A second technique is to define activities as periods when
there are very low values of speed for a specified minimum amount of time
(Tsui and Shalaby, 2006). A third technique is the density-of-points based
method (Fan et al., 2015; Gong et al., 2012; Schuessler and Axhausen, 2009;
Stopher et al., 2005). This method identifies activities where the density of
points in a certain area is greater than a specific threshold. Schuessler and
Axhausen (2009) defined a value of density for each GPS point by counting
how many of the 30 preceding and succeeding points are within a 15 m
radius. An activity occurs when there is a sequence of points with a den-
sity higher than 15 for at least 10 points or 300 s. Fan et al. (2015) mark a
point t as part of an activity if the points within 2.5 min of t fall in a circle
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with diameter 200 m. Similarly, Gong et al. (2012) consider an activity as
formed by points within 50 m of each other for more than 200 s.

2.2.3 Trip segmentation

Trip segmentation consists of dividing the users’ trips into stages, which
can be walk-stages or other-stages. To simplify terminology walk-stages
are referred to as walks in the rest of the paper. A walk occurs when the
user is walking or is waiting for transport in a single place. An other-stage
occurs when a user travels using a mode of transport (car, bus, train or
other vehicle).
Trip segmentation is the most challenging part of mode detection. There
is no commonly accepted solution for this task described in the literature.
Solutions include using additional sensors, or they rely on high sampling
frequency (≤ 10 s) for the GPS data.
All the trip segmentation algorithms found in literature were based in
some way on speed. For instance, Biljecki et al. (2013) considered the user’s
stops as potential transition-points between modes. They identified a stop
when consecutive points in an interval of 12 s did not have a speed higher
than 2 km/h.
Shin et al. (2015) and Zheng et al. (2008) used acceleration to detect walks
and stops. Since people usually walk or stop between two different trans-
port modes, Zheng et al. (2008) used a threshold of speed and of accel-
eration to divide the points into walks and non-walks, then they merged
segments of points of the same type according to rules depending on the
segment length. Zhu et al. (2016) labeled points as walk or non-walk based
on speed and acceleration threshold values, then adjusted the labels based
on nearby points: if at least M (a value dependent on the number of points)
of the previous and posterior points have a different label, then the point’s
label is changed. Zhang et al. (2011) used heading change to identify stops.
Liao et al. (2006) used GIS information for trip segmentation, in particu-
lar the proximity to transition locations such as a bus stop. However, this
approach is less reliable in cities with a high density of bus stops. Unfortu-
nately, none of the algorithms outlined above has been tested on a dataset
with a low sampling frequency similar to the dataset collected in this study.
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2.2.4 Mode detection

Many methods have been studied to automatically collect information
about users’ travel behavior from raw GPS data. One of the major prob-
lems is identification of travel mode. A recent review by Wu et al. (2016)
identified two categories of methods for mode detection: machine learning
methods and hybrid methods, also relying partially on machine learning
or on probabilistic models like Hidden Markov Models (Reddy et al., 2010).
Nikolic and Bierlaire (2017) systematically reviewed the literature and found
that the methodology adopted by all the studies was similar: first, some
features are extracted from the sensors, then a training set is built to train
a machine learning algorithm, and finally the algorithm is used to clas-
sify unseen data. For instance, Stenneth et al. (2011) compared different
inference models including Bayesian Net, Decision Tree, Random Forest,
Naive Bayes and Multilayer Perceptron. They were able to classify differ-
ent transport means as car, bus, train, bike, walking and stationary. Fan et
al. (2015) used a random forest to classify trip modes as bike, bus, car, train,
walking and waiting, obtaining an overall accuracy of 86%. Nevertheless,
their analyses are based on their travel survey method that was evaluated
battery consuming. Dabiri and Heaslip (2018) used a deep learning tech-
nique, namely convolutional neural network, to predict the transport mode
from raw GPS data. Reddy et al. (2010) built their classification system
using accelerometer data in addition to GPS data and used a hybrid ap-
proach based on a decision tree and a Hidden Markov Model. Montoya et
al. (2015) built a system based on a Bayesian network to infer the transport
mode from smartphone data (GPS, wifi, accelerometer) and transport net-
work information (e.g., public transport timetables). Patterson et al. (2003)
presented a Bayesian model inferred in an unsupervised manner to distin-
guish between walk, drive or taking a bus. The research also showed that
additional knowledge such as bus stop location can improve the algorithm
results. Bantis and Haworth (2017) analyzed the relationship between per-
sonal and socio-demographic characteristics and travel mode choice using
a Bayesian network. To reduce the complexity of a mode detection algo-
rithm, Martin et al. (2017) combined dimensionality reduction techniques
with machine learning algorithms, i.e. random forest. In that way, it is com-
putationally simpler to run it on a smartphone.
Mode detection algorithms based on machine learning require manual la-
belling of user movements to train the model. This can be prohibitive when
collecting data over a long period, since the labelling process requires sig-
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nificant effort from users. Another shortcoming of existing approaches is
that none of the mode detection algorithms can detect the exact public
transport vehicle used by the traveler, but rather the generic mode (bus,
train, etc...). In this regard, it is important to mention Carrel et al. (2015)
who did not perform a mode detection analysis but used automatic vehicle
location (AVL) data from the public transport network to identify public
transport trips.

2.3 smartphone application and datasets

As part of this research, a smartphone app called ETH-IVT Travel Diary
was developed to collect travel diaries over long periods of time while
placing minimal burden on the users. The app was tested in a field trial
with students at ETH Zürich. This section outlines app development and
field testing. Analyses in the following sections are based on the records
from this field trial.

2.3.1 App design

The travel diary app developed in this research was designed to be as easy
to use as possible by not requiring regular interaction with the respondent
and not substantially affecting battery life (therefore the GPS sampling fre-
quency must not be too high). The travel diary app was developed for the
Android operating system and made available on the Google Play store.
The app’s user interface consisted only of a brief study description, a field
to enter the respondent’s identification code and a button to start data
collection. Once launched, a process runs in background collecting GPS
coordinates and timestamps until the end of the study period.
The app requests location data from the device’s internal location services.
To reach a balanced tradeoff between data quality and battery consump-
tion, the app sends requests with different priorities at different intervals.
In particular, a low priority request each 30 s and a high priority request
each three minutes, that led to an average sampling frequency of 38 s in
the collected dataset. These values were chosen during internal tests (tech-
nical details are beyond the scope of this paper). It is important to note
that update of location information is at discretion of the device’s internal
location services. Typically, location is determined using GPS, Wi-Fi and
cellular network. Kanarachos et al. (2018) compared different sensor fu-
sion methods for battery energy saving and using a combination of these
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three sensors reports the best results. Update frequency and sensors used
depend on the frequency and priority of location requests from all the
smartphone apps and varies by operating system version and device.
The ETH-IVT Travel Diary app can also use location information collected
from other apps by sending a zero-priority data request, which provides
the information without triggering an update. This means the app data
is more accurate when respondents simultaneously use fitness trackers or
navigation apps. Finally, in contrast to prompted-recall approaches em-
ployed in earlier studies, no interface was provided for respondents to
(re)view their records.

2.3.2 Data collection

Students enrolled in a civil engineering program at ETH Zürich (N = 1209)
were invited to participate in the study via e-mail in late March 2018. The
study consisted of four weeks of tracking with the app. Students were paid
CHF 20 to participate. No reminder e-mail was sent.
A total of 48 students using an Android smartphone signed up to partic-
ipate in the study. However, the particular smartphone operating system
for 9 respondents blocked the data collection and therefore their data could
not be used. The resulting data set, referred to as the “Zürich dataset” in
this paper, consisted of the travel diaries of 39 students and two of the
co-authors. In total, 1 053 days of travel diaries were collected, which cor-
responds to an average of 25.7 days per respondent.
At the end of the study, 35 respondents completed the exit survey provid-
ing feedback on the app. They rated app user-friendliness as high and 80%
stated that battery consumption was acceptable. This is a good result given
that the app requires respondents to have their GPS turned on at all times,
which increases battery consumption.

2.3.3 Validation dataset

A second dataset was used for validation and is referred to as the “valida-
tion dataset”[Thesis Appendix 1]. The validation dataset contains the ground
truth of modes taken by users in addition to their GPS data. The valida-
tion dataset was collected with a different smartphone application in the
city of Basel (Switzerland) during early 2018 (following the setup described
in Becker et al. (2018) and Becker et al. (2017)). It contains GPS data from
625 users, with an average of 7.4 days of travel each. The ground truth was
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obtained by using a proprietary automatic segmentation procedure that
identifies stages when the user is not moving for a certain amount of time.
Next, these stages are presented to the users through a web interface and
the users are asked to manually specify the mode used for each stage. Ask-
ing users to label stages rather than individual GPS points reduces work
for the users.
Interestingly, although users had the ability to correct the segmentation,
they didn’t do it very often. This means the ground truth may be less accu-
rate than in reality. For instance, if a user walks and then takes a bus, the
whole trip may have been labelled as bus, then the information about the
walk is not present in the dataset. In the following sections, we always refer
to the Zürich dataset except for the private mode detection (Section 2.7.3)
and the validation (Section 2.9), where we refer to the validation dataset.

2.4 data cleaning

The data cleaning process consisted of filtering and smoothing. Two main
features were used to filter erroneous GPS points: the speed and the angle
between points. Since the smartphone app collected only GPS coordinates
and timestamps, other features such as those described in Section 2.2.1
were not available.
The speed for each point was derived from the previous point. Points with
a speed equal to zero were removed because in these cases it is likely that
the smartphone merely returned the previous recorded position – not the
real one. Points with a speed of over 150 km/h were also removed since
they were above the maximum accepted speed.
The second feature used in the filtering process was the angle between
points (this feature has not been used in previous research to the best of
our knowledge). Here, any point that forms a very small angle with the
following and previous points, and which is far away from the previous
point, is considered to be a false GPS point. More specifically: all points
with an angle less than 15 degrees and a distance greater than 60 m from
the previous point were removed. This rule was applied iteratively to all
GPS points and the procedure was repeated until no more points are re-
moved. The distance threshold was determined empirically; it was neces-
sary because a small angle between near points can often occur if the user
is walking or stopping. A limitation of this approach is that it assumes only
one out of three consecutive points can be wrong, which means it cannot
detect false points in case of two consecutive wrong points.
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Original Data Cleaned Data

Source: map from openstreetmap.org.

Figure 2.2: Data Cleaning: Comparison of original data with cleaned data.
Colour represents the time (from orange to red).

After completing the data filtering, the Kalman Filter was applied to smoothen
the two space coordinates (longitude and latitude) of the GPS data. The
Kalman Filter can deal with inaccurate observations and its efficacy in-
creases with the frequency of the observations. For example, with a sam-
pling frequency of 1 s, false points can be significantly corrected, while
with a sampling frequency of 38 s (the average frequency of data collec-
tion in this study), only small adjustments are made to the user’s trajectory.
Figure 2.2 shows the application of data cleaning to part of a user’s day,
recorded with a high sampling frequency (≈ 1 s). In this example, some er-
roneous points are removed, because of their small angle. Furthermore, the
smoothing process adjusted the trajectory of the points in the bottom-left
part of the figure.

2.5 trip and activity identification

The next step was to identify trips and activities. In this research, an ac-
tivity was defined as a user remaining within 250 m of the same point for
at least 10 min. In turn, a trip is identified as a movement between two
activities. The density-of-points method was used to identify trips and ac-
tivities.
This method differs from those mentioned in Section 2.2.2 in that the al-
gorithm does not rely on the number of GPS points (e.g. Schuessler and
Axhausen, 2009) or on their frequency. In fact, the algorithm cannot rely
on them, because the frequency of point data is too low. Therefore, in this
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Algorithm 1 Trip and activity identification.
1: for each point P do
2: if there are following points in a radius1 long activityRadius for at

least activityTime then
3: P is the starting point of the activity
4: The last point in the radius is the ending point
5: end if
6: end for

1The center of the radius for each point Q following P is in the average point of all the points
from P to Q.

research an activity was defined when there are at least 2 successive points
within a 250-m radius (activityRadius) for at least 10 min (activityTime). At
least 2 points are required because with 1 point it is not known if there
is an activity or if no signal has been received. The iterative algorithm is
presented in Algorithm 1. The 250-m radius used in this research is higher
than used by others (e.g., 15 m in Schuessler and Axhausen (2009) and 30

m in Stopher et al. (2005)). It was made necessary due to the low precision
of the GPS data. On the other hand, very short walks, starting and end-
ing near an activity, are quite likely to really be part of the activity rather
than an actual trip. When identifying activities and trips it is possible that
the first and last points of an identified activity are in reality points from
the previous or following trip. Fan et al. (2015) address this problem by
adding an additional step. In this step, the starting and ending points of
an activity are refined based on the time difference and the distance be-
tween points. Therefore, we added two rules to the algorithm to better
assign these points. These rules rely on a variable called center of mass.
Center of mass is computed as the average of the coordinates of all the
activity’s points.

• If the distance from the activity starting point to the center of mass is
greater than two times the average distance of all points to the center
of mass, an activity is not identified and the algorithm is repeated
from the next new activity starting point.

• If the distance from the activity end point to the center of mass is
greater than two times the average distance of each point to the center
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Figure 2.3: Activity identification: The red points are in the activity, the green
points are the last points of the previous trip, the blue points
are the first points of the following trip. Source: map from open-
streetmap.org.

of mass, then this point is removed from the activity and this rule is
applied again for the new end point.

These additional rules improve the algorithm’s ability to detect the break
points between activities and trips, which helps improve mode detection.
Figure 2.3 illustrates an example of activity identification. As shown in the
figure, the first and last points, describing the user’s arrival and departure,
are not included in the activity, even though they are within the 250-m
radius and they are not the farthest from the activity center of mass.
An additional rule was used to avoid the detection of false positive trips:
a trip with an origin and destination very close to each other (less than
250 m) and with a short duration (less than 5 min), was merged with the
previous and following activity to create one single activity. This addresses
the problem of erroneous GPS position recording caused by proximity to
cell sites or antennas.
Figure 2.4 summarizes the data collected in the Zürich dataset. The study
period consisted of 40 days (21 March until 29 April 2018). The central part
shows the number of trips detected for each user for all days in the study
period. The top bar chart shows there are fewer trips made on Sundays
than on other days of the week. The right bar chart shows that the number
of trips is different among users: there are 96.7 trips per user on average,
with two users making more than 200 trips during the study period.
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Figure 2.4: Number of trips for each user for each day. The users are ordered by
the moment they installed the app. The number of trips is aggregated
by user and by day in the two bar charts.

2.6 trip segmentation

Trip segmentation consists of dividing a user’s trip into a sequence of walk
and other-stages using a segmentation algorithm. In this research a walk
was defined as a movement performed by walking or a transfer between
different vehicles. An other-stage was defined as a movement performed
using a vehicle. Therefore, a trip is formed by alternating walks and other-
stages. After trip segmentation, all other-stages can be assigned a mode
using a mode detection algorithm.
The GPS data recorded for this study have a low sampling frequency that
varied considerably with different paths or users. Therefore, it was neces-
sary to design a segmentation algorithm based on only GPS position and
a derived speed that could work with irregular sampling frequency.
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Parameter Value Parameter Value

minSpeed 8.2 Km/h minDuration 30 s

maxNearTime 30 s stageMinDuration 50 s

Scale 0.8 walkMinDuration 70 s

Table 2.1: Values of the segmentation parameters.

Before applying the trip segmentation algorithm, the trip data was checked
to identify any trips which had an absence of signal for more than 7 min.
If so, the trip was divided into two different trips, to avoid errors during
the segmentation.
The trip segmentation algorithm consists of four steps. Step 1 is label spec-
ification; here each GPS point is marked as either a walk or an other-stage
according to the speed threshold minSpeed. In step 2 the label of each point
is adjusted based on the label of the points adjacent in time. In other words,
if a single point is labelled walk in the middle of a series of other-stage
points, it is changed to an other-stage. Step 3 consists of grouping the con-
secutive points of the same type into sequences. Step 4 consists of merg-
ing the sequences according to rules depending on duration, distance and
speed.
The segmentation algorithm is presented in detail in Algorithm 2. The pa-
rameters minSpeed, maxNearTime and scale are used for the label specifica-
tion. The parameters minDuration, stageMinDuration and walkMinDuration
are used to merge small stages into walks and other stages. Their values
were automatically tuned during the algorithm validation (explained in
Section 2.9). In particular: minSpeed was set to 8.2 km/h to reduce the num-
ber of wrongly detected other-stages. This is higher than the 6.48 km/h
specified by Zhu et al. (2016), but this was appropriate since in this re-
search it was possible to correct falsely identified walks later using the
mode detection algorithm. The stageMinDuration was set to 50 s because it
is unlikely that a user’s other-stage would last less than 50 s. Similarly, the
walkMinDuration was set to 70 s because it is unlikely that a user’s walk is
shorter than 70 s. The values used for all parameters are shown in Table
2.1.
The segmentation algorithm principally relies on the speed of each point
(derived from the position and the time). Information on acceleration and
heading change were not used, because they are not reliable with a low
sampling frequency. Therefore, there are a few cases in which the trip seg-
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Algorithm 2 Trip segmentation algorithm: Label specification (lines 2:20),
merging rules (lines 22:25, 26:29, 30:33).

1: procedure Segmentation(trip, minSpeed, maxNearTime, scale, minDuration,
stageMinDuration, walkMinDuration)

2: for each point ∈ trip do
3: if point.speed < minSpeed then
4: point.type← walk
5: else
6: point.type← other-stage
7: end if
8: end for
9: repeat

10: for each point ∈ trip do
11: adjacentPoints← previous and next points in maxNearTime
12: M← size(adjacentPoints) ∗ scale
13: if more than M points in adiacentPoints are walk then
14: point.type← walk
15: end if
16: if more than M points in adiacentPoints are other-stage then
17: point.type← other-stage
18: end if
19: end for
20: until no changes
21: stages← group all sequence of points of the same type
22: repeat
23: merge each stage with duration D < minDuration between
24: previous and next stage if their duration > D
25: until no changes
26: repeat
27: merge a other-stage between two walks if its duration <

stageMinDuration
28: until no changes
29: repeat
30: merge a walk between two other-stages if its average speed >

minSpeed
31: or its duration < walkMinDuration
32: until no changes
33: return stages
34: end procedure



2.6 trip segmentation 43

Quantity Per user day

Activities 3975 3.8

Trips 3965 3.8

Walks 8564 8.1

Other-stages 5548 5.3

Detected stages 1906 (34%) 1.8

Not assigned stages 863 (16%) 0.8

Ignored stages (outside of Zürich) 2779 (50%) 2.6

Past Data Detected stages 96 0.1

Table 2.2: Zürich dataset activities, trips and stage data obtained by the mode
detection algorithm.

mentation will fail: a fast walk can be detected as an other-stage; a rapid
change of buses, with the second departing shortly after the first arrives,
can be detected as a single other-stage; a vehicle stuck in traffic for a long
time can be detected as a walk. To overcome these problems, information
obtained from the mode detection algorithm applied in the next step of
the process was used to improve the trip segmentation. This is explained
in Section 2.7.
Table 2.2 presents the results of the mode detection algorithm applied to
the Zürich dataset. The top portion summarizes the number of activities,
trips, walks and other-stages detected by the algorithm and the bottom
portion the mode detection results. As shown in the top of Table 2.2 the
algorithm found that users performed 3.8 activities per day and made 3.8
trips (based on a total of 1,053 days of valid data). These trips consisted of
8.1 walk stages and 5.3 other-stages. These results are reasonable for the
study participants (university students).
Figure 2.5 presents an example of trip segmentation. The user’s real path
starts from the activity A where the user had a short walk (B) to take a
tram (C). Then the user waited for a bus in D, took the bus (E) and arrived
at F to stay there a while. Later the user took a train (G), stayed at the
Zürich Main Station (H), walked to a stop (I), took a tram (J) and walked
to home (K). Although the sampling frequency is different throughout the
day, the segmentation algorithm is able to divide each trip correctly. More
specifically, the figure shows that the frequency is lower when the user is
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Sampling Interval (s)

A 76

B 85

C 56

D 29

E 21

F 25

G 124

H 53

I 312

J 264

K 53

Figure 2.5: Trip segmentation of a user’s day (from A to K): activities (red),
other-stages (green), walks (blue). The table reports the average time
between two points (sampling interval) for the stages and the activi-
ties. Source: map from openstreetmap.org.

on a train (G) or in a tunnel (the upper-right part of C and J). It is also
lower on I, because part of the main station is underground.

2.7 mode detection

Mode detection consists of assigning a specific mode of transport to the
stages identified as other-stages in the trip segmentation. As outlined in
Section 2.2.4, all the studies except Patterson et al. (2003), rely on inference
models using a training data set to perform mode detection. Creating a
training data set requires manually labelling of the transport modes, which
limits the amount of data easily available.
In this study, the GPS data sampling frequency is a crucial parameter for
the mode detection algorithm, because of the smartphone application’s low
sampling frequency (average of 38 s). Unfortunately, most published mode
detection studies lack information about sampling frequency.
A specific mode detection algorithm was developed in this research to use
this low sampling frequency GPS data (we verified that a moderate down-
sampling of the data by 20% does not alter the conclusions and the results
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Source: map from google.com.

Figure 2.6: Public transport traffic in Zürich: darker and larger lines represent
more transport vehicles travelling on a working day (26-03-2018).

of the process to a major extent). The proposed mode detection algorithm
is unsupervised, and it does not use any statistical inference model. In-
stead, it uses actual public transport operations data. Only Stenneth et al.
(2011) used this type of data, and only to build features for their inference
model.
Figure 2.6 illustrates Zürich’s extensive public transport traffic network of
buses, trams and trains. The system is efficient and well used, in fact the
city’s modal split is 32% public transport, 33% walking, 21% motorized pri-
vate transport, 12% bicycle and 2% other (Städtevergleich Mobilität 2015,
2018). Since the Zürich dataset was collected mainly from students, its
modal split could be different from the citywide figures. The actual pub-
lic transport operational data consisting of planned and actual arrival and
departure times for all vehicles are available for all stops in Zürich (SBB
Opendata, 2018)[Thesis Appendix 2].
The mode detection algorithm uses this operational data to label an other-
stage as being carried out by bus, tram, train or otherwise a private vehicle.
An addition to this algorithm described in Section 2.7.3 shows how to dis-
tinguish between cars and bikes for private vehicle stages. Moreover, an
original contribution of the algorithm developed in this research is its abil-
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ity to detect the exact public transport vehicle taken by the user.
The algorithm works as follows: given an other-stage, identify all the pub-
lic transport stops in a radius detectionRadius near the starting point of the
other-stage, next select all the vehicles stopping at one of these stops in ±
detectionTime from the starting point. Repeat the same process for the end
point of the other-stage. Next, find the intersection of the vehicles in the
two groups (this is a list of all the vehicles passing near the user at the
beginning of the other stage and at the end). Finally, apply a likelihood
function to each element of the vehicle list to identify the most probable
vehicle taken by the user. If the list is empty, that means a private vehicle
was used for the trip. In this research the parameters were set to detection-
Time = 300 [sec] and detectionRadius = max(250,min(accuracy,400)) [m] where
accuracy is a value in meters provided by the smartphone for each GPS
point.
To overcome the incorrect identification of walks during trip segmentation
(e.g., the algorithm identifies a walk when, in fact, a vehicle is stuck in traf-
fic), a further rule is applied: if a trip has the pattern “other-stage, walk,
other-stage” and the two other-stages are not assigned to a means of trans-
port, then the three stages are considered as a single other-stage, and the
mode detection algorithm is computed again on the new other-stage. To
overcome the problem of undetected walks, the user’s past data are used
(described in Section 2.7.2).

2.7.1 Likelihood function

This research used a likelihood function to determine which vehicle out of
a set of possible vehicles best matches the user’s other-stage, computing
the degrees of similarity between the user’s path and the paths of the ve-
hicles. Other studies have also used probabilistic functions or a rule-based
system for the mode detection although in a different manner. For instance,
Schuessler and Axhausen (2009) and Tsui and Shalaby (2006) used fuzzy
logic approaches with rules based on speed and acceleration of the GPS
records.
The likelihood function to determine vehicle used, L(v,s), compares the
path of a user’s other-stage s with the path of a vehicle v. It is the product of
a function of space/time likelihood between the paths, L’(v,s); and a scaling
factor T(v,s), which takes into account how much the same time/distance
path from a given vehicle can explain the user’s entire trip. The mathemat-
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ical formulation of L(v,s) is shown below:

L′(v, s) = λ ∗ TimeDi f f erence(v, s) + (1− λ) ∗ PathDistance(v, s) (2.1)

T(v, s) = times v is a candidate vehicle for a other-stage in the same trip of s
(2.2)

L(v, s) = L′(v, s) ∗ T(v, s) (2.3)

The function L’(v,s) is also a combination of two functions: TimeDifference
and PathDistance which compare the user and vehicle paths in time and
space.
TimeDifference is the sum of the difference between the vehicle and user
departure times and the difference between the vehicle and user arrival
times. PathDistance is the average Euclidean distance between the user’s
coordinates and the vehicle coordinates. The vehicle coordinates were cal-
culated at the same timestamps as the user’s coordinates (GPS points), by
interpolating from the arrival time and the coordinates of each stop.
The TimeDifference and PathDistance values were scaled to be comparable
as shown in Figure 2.7, considering a maximum value of TimeDifference =
detectionTime (300 s) and a maximum value of PathDistance = maxPathDis-
tance (250 m). A value of 0.5 was chosen for λ because using only the
TimeDifference can result in a false positive of matching a user with a vehi-
cle that had a different path; meanwhile the PathDistance is not reliable if
there are too few points from the user. Vehicles with PathDistance = 0 were
discarded, except for trains since train path is hard to describe using only
stop point data.
The scaling factor, T(v,s), is the number of times that the vehicle v appeared
in one of the lists of candidate vehicles for other-stages of the user’s in the
same trip of s. This reflects the idea that if a single vehicle is a candidate
match for different other-stages of the same trip, it is probable that the user
took only one vehicle for all the other-stages.
To compute the likelihood that the user travelled on the given vehicle L(v,s),
the function L’(v,s) is multiplied by the scaling factor T(v,s). It is important
to note that the value of L is not comparable for different other-stages,
because it is dependent on the quality of the user’s path data. With low
quality data, L tends to be low for the taken means; in contrast, with high
quality data L approaches 1. Furthermore, vehicle path data is always of
high quality, because they are based on the position of the stops (known)
and on the actual arrival times (provided by the operator and which are
subject to smaller errors than user smartphone GPS data).
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Figure 2.7: Mode detection likelihood: Scaling of the two sub-functions PathDis-
tance and TimeDifference.

2.7.2 Using past data to identify transfers

The mode detection algorithm may miss transfers between two vehicles,
especially when the transfer is performed quickly. Therefore, this research
developed a new method for identifying missed transfers (i.e. points where
the algorithm is unable to identify the transfer point and the two vehicles
from/to) by applying the user’s past data to improve trip segmentation. In
other terms: when the segmentation does not detect a transfer (i.e. the user
departs with a vehicle from a place A; arrives at place B with another ve-
hicle; and the segmentation detects only one stage), the question is where
to look for possible transfers points (a point C where the user might have
changed the vehicle). In theory, the possibilities to connect two places by
two public transport modes could be very large, especially in a dense net-
work as the one considered in the test case. To this end, we prioritize the
search for possible transfer points, where the user has been seen in the
past. Note that those points do not describe a path, but only a possible
point of transfer, and therefore would not be enough to identify a path, a
priori.
This new method uses a personalized map of the places visited by each
user from their travel history. The visited places consist of each activity (its
center of mass) and the starting and ending points of each other-stage. For
close together places (within 250 m), only the center of mass is considered,
since they represent the same location.
After assigning modes to other-stages, the mode detection algorithm tries
to detect missing transfers based on the user’s visited places map. The
places near the user’s path (distance less than 400 m from any point on the
path) are considered possible transfer points. Next, the algorithm tries to
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detect if a transfer was feasible for each of these points. The mode detection
is (re)computed from the starting point to the potential transfer point and
from the potential transfer point to the ending point. If the mode detection
algorithm can identify two public transport means that could support a
transfer at this location, then it is assumed the transfer was made.
The process is based on the assumption that the user’s travel behavior is re-
curring, especially during weekdays and for commuters. Therefore, places
where the user has already been have a higher probability for the user
to perform a transfer, especially if the user performed a transfer there on
previous trips. This technique represents the first attempt, to our knowl-
edge, of using the user’s past data in a mode detection algorithm. This
technique is particularly useful (and possible) for user datasets spanning
multiple weeks with a large quantity of data.

2.7.3 Private mode detection

The main objectives of this study were to develop a smartphone applica-
tion and mode detection algorithm to obtain travel behavior information
with minimal impact on users. The methodology described in the previous
sections is able to distinguish the used mode among walk, bus, tram, trains
and private vehicles. Then, in this section, it is shown that is possible to
integrate an additional module to distinguish between bicycles and cars
for private stages. This module is not described in detail, since it is similar
to classical mode detection algorithms (described in Wu et al. (2016) and
Nikolic and Bierlaire (2017)), although the classification is performed only
between two modes (bicycle and car).
The private mode detection used machine learning to identify modes. This
required a ground truth and therefore the validation dataset was used to
train and evaluate the private mode detection model. All the stages marked
in the validation data as performed by bicycle or car were selected, then a
set of features were extracted to represent each stage by a vector of features.
The selected features were: number of points; length of the stage (meters);
duration of the stage (seconds); average distance between two consecutive
points; maximum speed; average speed; median speed; maximum acceler-
ation; average acceleration; median acceleration; average angle formed by
a point with the previous; median angle.
The validation dataset was divided in 70% for the training set and 30% for
the test set. Then, several classification algorithms were tested: logistic re-
gression, svm, decision tree and random forest. The one with the greatest
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accuracy, defined as the percentage of correct detection, was selected for
use in this study. The results of this procedure are described in Section
2.9.5.

2.8 assessment of algorithm results using zürich dataset

Two methods were used to assess the algorithm and methods developed
in this research. First the algorithm was applied to the Zürich dataset to
test the overall ability of the smartphone application and algorithm to un-
derstand users movements. Second, the algorithm was applied to the Basel
dataset (which included the ground truth of modes actually taken by the
users) to determine how well the algorithm performed. This section de-
scribes testing with the Zürich dataset, Section 9 describes testing with the
Basel dataset.
The lower part of Table 2.2 summarizes how the algorithm classified other-
stages. As shown, the other-stages are divided into three groups: detected
stages (34%), not assigned stages (16%), and ignored stages (50%). Stages are
marked as detected if the mode detection algorithm was able to identify a
mode. Stages are marked as not assigned if the algorithm could not identify
a mode. Stages outside Zürich were ignored because this study relied on
data from the city of Zürich. The not assigned stages principally consist of
other-stages performed with a private vehicle but could also include public
transport stages that were not detected due to low GPS quality or problems
in the activity identification or trip segmentation steps. For instance, the
not assigned stages could include false positives such as if the user is travel-
ling in a car or on a bike directly behind a bus and the algorithm identifies
bus as the transport mode. However, this case is considered rare because a
car can overtake or has a different lane and a bicycle normally has a higher
travel time.
The 96 stages detected using past data (representing 5% of the detected
stages) would have been labelled as not assigned if the past data had not
been used, with an increase of the not assigned group of the 11%. This in-
dicates the importance of using information about the user’s past travel
behavior for mode detection. Its impact will be better analyzed in Section
2.9.3.
To measure the quality of the mode detection, the TimeDifference function
(described in Section 2.7.1) was used. This function represents the sum of
the difference of the departure times and the difference of the arrival times
of the user and the detected vehicle. A low value indicates that the detec-
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Figure 2.8: Distribution of TimeDifference for all the detected stages in the Zürich
dataset (grouped each 20 s)

tion is correct, because the user and the vehicle were in the same places at
the same times. The PathDistance function is not as good as an indicator
because the GPS data describing a user’s path can be quite noisy.
Figure 2.8 presents the distribution of the TimeDifference for all detected
stages in the Zürich dataset. This value depends on two main factors: the
trip segmentation and the sampling frequency. In particular, an erroneous
trip segmentation can identify the beginning or the end of the other-stage
at a point before or after the real beginning or end point. Importantly, due
to the low sampling frequency there are often no points in the dataset rep-
resenting the exact time the user boarded the transport vehicle. For this
reason, the distribution’s mean value of 91 s and a median value of 62 s for
the TimeDifference can be considered good values and a strong indication
of correct matching. Instead, with higher values, such as more than 300 s,
the probability of a wrong detection increases.

2.9 assessment of algorithm results using validation dataset

Showing that the average time difference between the users’ paths and the
detected public transport means is low demonstrates the validity of the
proposed algorithm and shows good overall results but it does not show
clearly the accuracy of mode detection. Therefore, the mode detection al-
gorithm was also evaluated using the validation dataset collected in Basel,
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described in Section 2.3.3, which contains the ground truth data about user
modes.

2.9.1 Preparing the validation dataset

The first step in using the Basel dataset was preparing the data. More
specifically determining which labelled stages of the validation dataset can
be considered valid for use in determining the accuracy of mode detection
results. This step is needed because participants may have erroneously la-
beled a sequence of stages as a single stage, due to imprecise framing of
the labelling question at the time of data collection or laziness in report-
ing. These cases are characterized by having fewer stages in the validation
dataset compared to actual.
The process began by comparing each stage available in the validation
dataset (labelled stage) with all the stages identified by the mode detection
algorithm in the same time interval. If there was at least one stage with
the same mode, the detection was considered correct. Figure 2.9 presents
the distribution of number of stages detected by the algorithm for each
labelled stage from the validation dataset. As shown, almost 50% of the
stages perfectly match with one stage; 30% with two stages, which always
include a walk stage; and very few with more than two stages, showing
that the validation methodology provides a reasonable upper bound.
If there is only one stage detected for one labelled stage, then the labelled
stage can be considered valid, since the two stages can be easily compared.
If there are two detected stages for one labelled stage, then the labelled
stage can be considered valid because one of the detected stages can be
assumed to be a walk and every real trip includes a walk.
In cases where the algorithm identifies more than two stages there is some
ambiguity as to whether the validation data has been correctly reported.
In these cases if a labelled stage is detected by the algorithm as performed
by both a bus/tram and a private vehicle, the stage is discarded as not
valid, and not considered further for the validation, as it is impossible to
associate a ground truth to it. This case is highlighted in orange on Figure
9; it occurs for only 6.6% of the stages. Further details on the combinations
considered valid are available in the Appendix 2.11.1.
There were several shortcomings in the Basel dataset. First, actual public
transport data was only available for half of the buses and trams in the
network. For the other half, the algorithm used planned timetable data
(two operators work in Basel, BVB and BLT, and the realized data are
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Figure 2.9: Distribution of the number of stages detected by the mode detection
algorithm with an interval of time in common for each labelled stage
from the validation dataset. In orange, stages not considered for the
validation, since they are detected as performed by both bus/tram
and a private vehicle.

provided only by BVB). Therefore, the algorithm cannot identify buses
or trams when they are delayed by more than detectionTime. Second, there
are on average only 7.4 days of data recorded per user, meaning that the
user’s travel history has only limited value in identifying possible trans-
fers. Finally, to avoid errors in data collection, data from outside the city of
Basel or that had stages with no signal for over 7 min were not used in the
validation, to avoid errors due to the data collection.

2.9.2 Tuning mode detection algorithm parameters

A subset of the validation data consisting of approximately 400 days of
tracking data (about 8%) was used to tune the parameters in the mode
detection algorithm. Since the algorithm contains several parameters for
each step (cleaning, activity identification, trip segmentation and mode de-
tection), it was prohibitive to analyze all possible parameters. Therefore,
only the five most relevant parameters (as assumed by the authors) were
selected for tuning: three for segmentation (maxNearTime, minSpeed and
minDuration) and two for mode detection (detectionTime and maxPathDis-
tance). The other parameters were set by manual tuning as described in
previous sections, except the activityRadius. This was set at 100 m, to better
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Parameter Values

maxNearTime (s) {30, 60, 90}

minDuration (s) {10, 20, 30}

minSpeed (m/s) {6.8, 7.5, 8.2}

detectionTime (s) {150, 200, 250, 300}

maxPathDistance (m) {150, 250, 350, 450}

Table 2.3: Different values for the validation parameters. The selected best val-
ues are bold.

Mode Total Detected Accuracy

All Stages 5659 4875 86.14 %

Walk 1520 1435 94.41 %

Bus/Tram 888 716 80.63 %

Train 123 84 68.30 %

Private 3128 2640 84.40 %

Table 2.4: Mode detection accuracy, express as percentage of correct detection.

align with data from a different smartphone application used in the Basel
study.
Table 2.3 presents the different values considered for the five parameters.
The set of evaluated combinations is the Cartesian product of those pa-
rameters. The final configuration was selected in order to have the highest
average accuracy, in terms of percentage of correct detection, among the
different modes. Further details are presented in Appendix (2.11.2).

2.9.3 Accuracy of Mode Detection Algorithm

After the mode detection algorithm was tuned it was used to detect modes
from the rest of the validation dataset. Table 2.4 presents results of that
analysis showing the accuracy of the mode detection algorithm in terms of
percentage of correct detections. Since the validation dataset contains only
one label for bus and tram, the two modes were considered as one.
The highest rate of correct detection was for walking. This shows the high
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accuracy of the segmentation algorithm. On the other hand, trains have
the lowest rate of correct detection since the quality of user GPS data is
lower inside stations and trains, and therefore it is harder to identify the
exact GPS point when the train is departing (or arriving). The Bus/Tram
stages were moderately well detected; the main problems for detecting
them were the low quality of GPS data; segmentation errors; lack of user
past data; and mainly the fact that actual public transport operations data
were not available for all lines. Finally, the quality of private mode iden-
tification depended on the parameters detectionTime and maxPathDistance,
chosen in order to have a balanced detection of public and private modes.
In conclusion, the average accuracy of the mode detection algorithm was
found to be comparable with the state of the art (the average accuracy of
the works reviewed by Nikolic and Bierlaire (2017) is between 75% and
98%). Furthermore, these results can be significantly improved with more
past data from users and actual public transport operations data for the
entire network. Table 2.5 presents results from the mode detection algo-
rithm with and without using the past user data. These results show the
importance of users’ past data, even though there are only 7.4 trips per
user on average. In particular, the use of past data increases the accuracy
of Bus/Tram stage detection by 4.1% and of train stages by 1.4%, by detect-
ing missed transfer points. On the other hand, the slight decrease of accu-
racy for private mode stages is due to the detection of false transfer points.
Table 2.6 compares the accuracy of the algorithm on the validation dataset
using the realized public transport data (for the trains and the bus/trams
with associated realized data) versus using only planned timetable data.
As shown, the accuracy of public transport mode detection using planned
schedule data is sharply lower. On the other hand, the accuracy for walks
and private modes is almost the same (it is slightly different because their
detection also depends on the public transport detection). These results
confirm that the accuracy of the mode detection algorithm would have
been greater if realized data had been available for all the public transport
lines.

2.9.4 Comparison with machine learning based mode detection

The proposed mode detection algorithm was compared with a revised ver-
sion of the algorithm proposed by Zheng et al. (2008). This algorithm was
chosen because it is representative of common mode detection algorithm
(it is based on machine learning techniques), it was tested on a relatively
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Mode Acc. with past Acc. without past

All Stages 86.14 % 86.15 %

Walk 94.41 % 94.28 %

Bus/Tram 80.63 % 76.53 %

Train 68.30 % 66.93 %

Private 84.40 % 85.68 %

Table 2.5: Mode detection accuracy without using past data.

Mode Accuracy Realized Accuracy Timetable

All Stages 86.14 % 82.22 %

Walk 94.41 % 93.69 %

Bus/Tram 80.63 % 55.51 %

Train 68.30 % 60.33 %

Private 84.40 % 84.44 %

Table 2.6: Impact of realized data of public transport.

large dataset (45 people over a period of six months) and it has a large
number of citations. Furthermore, it was evaluated on the accuracy of de-
tected stages, making it easily comparable with the proposed algorithm.
Both the algorithms rely on a previous segmentation and they were evalu-
ated on the number of detected stages. After the segmentation (in common
between the two algorithm), features were extracted from each segment
and a random forest was trained on them. The dataset was divided in
60% training-set and 40% test-set, using cross-validation to estimate the
internal parameters. The features used are the same described in Zheng
et al. (2008). Since walks are detected during the segmentation, the model
was trained only to detect Bus, Train or Private vehicles. For this reason,
the post-processing proposed in Zheng et al. (2008) was not used, since
its purpose was to connect other-stages with walk. The comparison of the
two algorithms is shown in Table 2.7 and it is based on the same validation
procedure explained in Section 2.9 (for this reason the walk accuracy is not
exactly the same). The accuracy of the two methods is comparable for each
mode, therefore we can assert that the proposed algorithm is comparable
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Mode Accuracy Proposed Accuracy ML Based

All Stages 86.00 % 84.44 %

Walk 95.83 % 97.28 %

Bus/Tram 74.74 % 65.43 %

Train 71.64 % 73.91 %

Private 84.86 % 80.14 %

Table 2.7: Comparison between the proposed mode detection algorithm and a
machine learning based algorithm.

if not better than a machine learning based algorithm, but in addition, it
identifies also the exact public transport means used.

2.9.5 Results of the private mode detection

A private mode detection algorithm, described in Section 2.7.3, was used
to distinguish private trips between bicycles and cars. The research tested
several classification algorithms and selected the random forest algorithm
with a maximum depth = 5 and 50 trees (since it performed best as defined
by the highest percentage of correct detection). The training dataset for pri-
vate mode detection needed to take into account that the Basel dataset con-
tained many more bicycle trips than car trips. Therefore, each sample has
a weight inversely proportional to the class frequencies, to equally train
the classifier.
The confusion matrix is shown in Table 2.8. As shown the private mode de-
tection algorithm had an overall accuracy of 86.75%. This good result is in
spite of the fact that the segmentation procedure for the validation dataset
was not perfect, as described in Section 2.3.3, and that no data were avail-
able from an accelerometer or other sources that could help distinguish
between cycling and automobile travel.
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Detected

Bike Car Total Accuracy

Real
Bike 915 92 1007 91 %

Car 119 466 585 80 %

Correct stages 915 466 1592 87%

Table 2.8: Confusion matrix and results of the private mode detection.

2.10 conclusions and future work

Results of this research confirm that GPS data collected from smartphones
are a powerful means for understanding travel behavior and have sev-
eral advantages over traditional survey methods. The research also clearly
demonstrated that it is possible to develop a smartphone GPS tracking ap-
plication that overcomes two of the main problems with earlier tracking
technology by placing very low demand on the smartphone battery and
requiring almost no work by the user. This ease of use makes it possible
to easily track a large number of travelers for long periods of time, thereby
significantly increasing the amount of data available for analyzing travel
behavior.
Furthermore, the research shows that it is possible to understand the users’
travel behavior based on only low-frequency and low-precision GPS data
by designing and testing specific algorithms for activity detection, trip seg-
mentation and mode detection for use with this type of data. The mode
detection algorithm used in this research is an improvement over other
methods because it only needs users’ GPS traces and public transport net-
work data. Most existing work described in the literature is based on su-
pervised learning, requiring significant efforts to manually label data.
In addition to distinguishing between public transport and private modes,
the algorithm also is able to detect the exact public transport vehicle used
by the traveler. The method represents an original attempt to use actual
operations data for a travel survey purpose. The algorithm also includes a
method for exploiting the user’s past data to detect transfers and thereby
improve the quality of mode detection. The research results show clearly
that this extra information helps improve the quality of results.
However, the results of this research have to be interpreted as a proof-
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of-concept. The app was tested with a small1 and very specific, urban,
technology-savvy group. Yet, it can be expected that the app would work
even better in other contexts: it does not require any respondent interac-
tion and mode detection is hardest within cities, because of the small speed
differences between modes. Anyway, a larger field test would be required
to validate the results. Further limitations of this research are discussed in
Appendix (2.11.3).
The research points out several paths for future work. First, the ability to
unobtrusively collect data from users over long periods of time means it
is possible to obtain much more interesting travel behavior data. For ex-
ample, Figure 2.10 illustrates all the movements of one study participant
over a 25-day period. Assuming that the participant’s home and workplace
are easily recognizable, there is a clear pattern in the morning trips from
home to work. Although it is less regular, there is a similar pattern in the
opposite direction in the evening. This illustrates a first step in discovering
travel patterns and traveler choices that cannot be derived from a small
dataset. Another path for future work is detection of the exact public trans-
port vehicle. This is powerful information which cannot be obtained with
a traditional mode detection algorithm. This precise data will make it pos-
sible to better analyze why people make specific travel choices (e.g., choos-
ing a certain line), and to understand their main criteria for these choices.
Remaining within the public transport mode, the long term tracking data
made available by the proposed app could be complementary and/or al-
ternative to smart card data tracking of users, which are able to measure
only entrance/exit point of the user in the system in most common imple-
mentations ( Pelletier et al., 2011).
The authors plan to use the methodology to collect a large-scale dataset,
in terms of both users and days of tracking, which will support a wide
variety of travel behavior research, such as identification of trip purpose
(Montini et al., 2014). In particular, it could be possible to evaluate alter-
native plans of operations, within a specific mode of public transport, or
including different modes, in passenger-aware models, similar to the bus
bridging in case of disruption presented in Zhang and Lo (2018) or the
train disruption resolution approaches proposed in Binder et al. (2017).
Having more precise recorded data and/or behavioral models of passen-
ger route choices in public transport networks under delays is of crucial
importance in evaluating the value of delays for specific vehicles. This is

1 Although the sample size is small, it is comparable with earlier research (Stenneth et al., 2011;
Tsui and Shalaby, 2006)



60 deriving travel diaries from gps tracking

Figure 2.10: Continuous tracking of a single user for different days. Activities
in the same place have the same color, which goes from red to yel-
low according to the time spent doing the activity. A white space
indicates absence of signal.

an open research gap, which needs to be tackled for instance for enabling
non-discriminatory management of traffic, when multiple public transport
modes and operators compete and complement each other’s offer (see for
instance Luan et al., 2017). Moreover, as identified in Carrel et al. (2013),
providing correct and timely information to users would be a key factor
in enhancing perception of public transport systems. The approach pro-
posed could be very useful in segmenting users based on their diary, their
risk-aversion, their attitude to partial, limited and dynamic information
(Corman and Kecman, 2018) and their reaction to disruptions.
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2.11 appendix

2.11.1 Valid combinations of detected stages

Table 2.9 shows the valid combinations of detected stages for each type
of labelled stage, i.e. the combinations that can be used in evaluating the
mode detection algorithm’s accuracy.
The first four rows of Table 2.9 are cases when one stage is detected. In
other words, the mode detection algorithm identifies one mode for a case
where the validation dataset shows one mode. In the case of a one to one
correspondence, the detected mode must be the same to be classified as
correct (this is the case of the first column in Figure 2.9).
The next three rows are cases where the mode detection algorithm detects
two stages, although the validation dataset shows only one stage. In these
cases, the algorithm has detected a walk. When the algorithm detects two
stages one of them is always a walk, since the trip segmentation algorithm
divides a trip into alternating walks and other-stages. In other terms, a
combination {Bus,Private} would be algorithmically infeasible, since there
would be a small walk in between the two. Furthermore, in the real world
it is common to walk before or after taking a vehicle. Since it is possible
the user labelled the stage with only one mode (the one considered most
relevant by the user), the detection is considered valid and correct either
for a walk or for the other detected mode.
The next two rows are cases where the mode detection algorithm has de-
tected three different stages for a single stage in the validation dataset.
When the algorithm detects a labelled stage as performed by a train; either
a bus or a private transport; and a walk (representing the transfer), the
combination is considered valid, since it is common to take a bus or car to
reach a train station.
The bottom two rows describe cases where the mode detection algorithm
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aaaaaaaaaaaaaa
Detected stages

Labelled stage

Bus Walk Private Train

{Bus} X

{Walk} X

{Private} X

{Train} X

{Bus, Walk} X X

{Private, Walk} X X

{Train, Walk} X X

{Bus, Walk, Train} X X X

{Private, Walk, Train} X X X

{Bus, Walk, Private} discarded

{Bus, Walk, Private, Train} discarded

Table 2.9: Valid combination of detected stages for each type of labelled stage.
The correct are marked. The last two combination are discarded from
the validation. The order of the modes is not relevant. Repetition of
the same mode are not considered in the table. Combination with at
least 2 stages and without a walk are not algorithmically feasible.

has identified combinations that include a bus and a private mode. A com-
bination of this type is considered implausible and these data are discarded
(this case is highlighted in orange in Figure 2.9).
The reason for discarding this data is that it is not possible to determine
whether the algorithm made a mistake, or the user made a mistake when
labelling the data. For instance, assume a user has performed a trip with
5 stages consisting of: a bus stage, a walk, a private stage, a walk, and
again a bus stage (that would fit the scheme {Bus, Walk, Private} in Table
2.9). The user labels this as a single stage, associated to private mode. The
algorithm correctly identifies the 5 stages but is unable to determine if this
match is correct or incorrect.
Another possibility is that the algorithm is incorrect. For example, assume
the user performs a trip by car, and the car drives so close to a bus that the
algorithm assigns the first part of the trip to a bus stage, and something
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similar happens on the last part of the trip. The algorithm would detect
the same 5 stages listed above, although the user (correctly) would label
this as a private trip.
Previous analysis has shown that user labelling in the original dataset was
prone to misidentification of successive stages. For instance, users system-
atically identified a sequence of stages “walk, private, walk” as a single
private stage. Therefore, it is not possible to exclude either of the two pre-
viously described possibilities. It is not clear whether it is the fault of the
user, or the fault of the algorithm, and therefore we discard this labelled
stage when determining the correctness and accuracy of the algorithm.
Finally, a labelled stage detected by the algorithm as an activity, like a slow
walk near the same place, has been discarded for the validation, since it
represents an activity and not a stage, according to our definition.

2.11.2 Choice of Parameters

Given the Cartesian product of the different parameters described in Table
2.3, the chosen configuration is the one with the greatest average accuracy
among Walk, Bus/Tram, Train and Private vehicles. Since the number of
Train samples is low (14 in the validation dataset) and the train accuracy
is strongly dependent on detectionTime, both the best combination with
detectionTime = 250 and 300 were tested and the second one is reported
in the paper, since it has the highest accuracy. The importance of each
parameter is reported in Figure 2.11 and the main consideration are the
following:

1. Highest minSpeed increases the number of correct walk detection,
since it relaxes the threshold to label a point as a walk point.

2. minDuration has a marginal impact compared to the other parame-
ters.

3. A larger maxNearTime leads to wrong public transport detection, since
it wrongly detects the correct starting point of a stage.

4. Low values of detectionTime and maxPathDistance lead to fewer trips
being assigned to public transport mode and more trips being as-
signed to private mode. When lower values are used the algorithm
tries to match the user’s path only with the public transport means
closer to the user during the trip.
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Figure 2.11: Parameters’ importance: accuracy of different values of each param-
eter, fixing the other parameters to the values in the final configu-
ration (minSpeed = 8.2, minDuration = 30, detectionTime = 300, max-
PathDistance = 250, maxNearTime = 30).

Theoretically, with a correct segmentation and good quality of the data,
the mode detection algorithm should work correctly with low values of
detectionTime and maxPathDistance. However, when the quality of GPS data
is poor, and the segmentation is incorrect, higher values are needed to
guarantee the matching of user trips to public transport data. Therefore,
improving the quality of GPS data and segmentation makes it possible
to decrease detectionTime and maxPathDistance, and improve the quality of
mode detection algorithm by reducing the number of false positives.

2.11.3 Limitation of the research

Given the nature of the data collection, tracking studies can be affected
by different biases. For instance, despite smartphones have become widely
spread across all population groups, the recruiting process is biased to-
wards younger people, because of their familiarity with this technology.
Also socio-economic dimensions, like educational level, can influence the
decision of participation. For this reason, the recruitment process and the
smartphone application need to be as simple as possible, to build a more
representative dataset. Different people have different travel patterns, there-
fore a not representative dataset leads to biases in the observed travel be-
havior. The Zürich dataset consisted only of 41 persons and was collected
mainly from students. Therefore, the usage of public transport is above the
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average population. In addition, all students have similar travel patterns as
they share a common location (the university). These factors can affect the
tuning of the algorithms and undermine their effectiveness with a differ-
ent dataset. Another source of bias is the specific smartphone used, in fact
only owners of Android devices could participate in the study. Therefore,
a substantial part of the population were ignored, making the dataset less
representative. In addition, the Android version and the other applications
running on the smartphone can affect the data quality and the sampling
frequency. In this sense, a systematic evaluation of the data quality on dif-
ferent devices was not performed. Despite these limitations, the use of two
different datasets in this paper can contrast partially the aforementioned
biases.
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Additional notes to this chapter

Some aspects of this chapter are clarified in the appendix of the thesis (see
superscript [Thesis Appendix]).

abstract

To understand the route choices of public transport users, it is important
to know the information available to them, and the context present at that
moment. In fact, each choice situation in a transport network has different
characteristics and possibilities, also depending on the current status of
the transport network. In this regard, travel diaries based on tracking tech-
nologies can capture precise observations for a long term. In this work,
we exploit a large-scale tracking dataset, collected through a mode detec-
tion algorithm, to understand route choices of public transport users. We
propose a choice set generation algorithm, able to cover more than 94%
of the collected trips without any computational constraint. We compare
the users’ paths in the public transport network with different choice sets,
under multiple performance indicators, including coverage, size, and fit.
This latter is computed by the estimation of a Path Size Logit model.
The use of Automatic Vehicle Location (AVL) data allows comparing the
available paths in terms of public transport vehicles used. We also con-
sider different information provisions of network conditions and distur-
bances (full knowledge, no knowledge and current knowledge), and study
which information provision best represents the choice set inferred by the
observed users’ behaviour. Estimating a Mixed Path Size Logit model, we
identified high heterogeneity among the users in only a few aspects. Over-
all, a condition of no knowledge results as the best fit, i.e. users seem to
take into account in a minor way the realized delays in the alternatives
considered when deciding their public transport route.

Keywords

public transport; choice set generation; tracking; route choice; passengers’
information; AVL data
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3.1 introduction

The route choices of passengers in public transport networks can depend
on different factors, which make complex the problem of their understand-
ing. In order to understand the passengers’ route choices and identify their
main characteristics, it is necessary to identify the available alternatives.
The literature identifies two problems: the choice model, determining the
actual chosen route out of a small set (choice set); and the identification of
a choice set from a large set of all possible alternatives called the universal
set (Bovy, 2009). We focus on the latter problem, the choice set (CS) gener-
ation, which focuses on identifying all and only the relevant alternatives,
which more realistically are taken into consideration during the choice
process of the passengers. We solve this problem by means of a novel CS
generation algorithm, able to identify all possible alternatives given some
fixed constraints. Such an algorithm is fast and accurate, with a minimal
computation time (in the order of seconds for a large network), with more
than 94% of collected trips covered by the CS, and a high fit in the resulting
choice models. In addition, the approach is flexible, as it can consider al-
ternatives as sequences of public transport lines or vehicles, more detailed
than the commonly used definition of alternative as a sequence of stops.
The different context and information available to passengers, when mak-
ing each different choice, are difficult to model through a stated preference
survey. Instead, revealed preference surveys relate to the real choices of
passengers in their context and can potentially explain more details on the
choices. Nevertheless, these surveys require more resources and are more
difficult to analyse. In this context, passive tracking and mode detection
algorithms can help to reduce the burden on the users and collect more
easily a dataset, which can fairly well represent the passengers’ choices.
We test our CS generation algorithm on automatically collected travel di-
aries from a large amount of users for long time (order of weeks). There-
fore, we compare the chosen public transport route with the available alter-
natives, which are defined by considering different information provisions
for the users. The use of realized operation data allows detecting the ex-
act vehicle used and the available alternatives in that specific moment (i.e.
with the realized conditions of the network, possibly delayed). For this
study, we collected travel diaries of a sample of Zürich citizens travelling
for 3 weeks in their city. Regarding the data collection methods, we refer
to Marra et al. (2019). Therefore, the focus of this work is on the CS genera-
tion algorithm and its evaluation in terms of coverage, computation speed
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and fit. About the latter, we estimated a Path Size Logit model, which vali-
dates the results of the CS generation algorithm.
We illustrate the capabilities of the algorithm on the analysis of the avail-
able alternatives based on different information provisions, to understand
the observed route choices. Based on the available Automatic Vehicle Lo-
cation (AVL) data, we studied different information provisions of realized
network conditions and disturbances: no knowledge; perfect knowledge;
and current knowledge, i.e. knowledge of the conditions at the begin of
the trip. Those three conditions result in three different CSs.
We assume that if a CS, based on a specific information provision, per-
forms on the observed choices better than another one, based on a differ-
ent information provision, given the same choice model, the former CS
describes better than the latter the alternatives considered by the users in
their choice process. This allows understanding how information affected
the CS, which we assume as a proxy for how the passengers used infor-
mation that might have been available to them during their choice process.
Therefore, the information is accounted in the CS generation, and the same
Path Size Logit model is estimated with different CSs. In this sense, we ob-
tained the best fit assuming no knowledge of network conditions, resulting
in an R2 value of 0.65.
Such a study has implications on the design of route recommender engines,
and how to best inform users (frequency/availability of en-route updates)
about the realized delays of the network.
The main contributions of this work can be summarized as follows:

• A computationally efficient (running in a few seconds on a standard
computer) choice set generation algorithm is proposed, based on con-
strained enumeration, and able to work with dynamic operation de-
scription, and different information provisions. The algorithm is eval-
uated on a large-scale tracking survey, collected from GPS data and
automatic mode and vehicle detection, obtaining high precision both
in terms of coverage (more than 94%) and model estimation (high R2

and reasonable parameters).

• Aspects of choice sets rarely considered in literature are analysed,
such as: the CS size and relevance of a path; the assumed walking
distance; trips with transfers; and two levels of details are considered,
namely representing public transport stages as sequences of vehicles,
or lines.
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• The users’ choices are evaluated according to different information
provisions of network conditions: no knowledge, current knowledge
and perfect knowledge. Multiple Path Size Logit models, also in-
cluding panel effects, are estimated with different CSs to understand
the information provision better representing the passengers’ choices.
The results show how information provision results in significantly
different choices sets, which allowed understanding the most likely
information provision that each user considers when determining the
possible alternatives for their route choice. In addition, heterogene-
ity has been identified among users regarding information provision,
perception of a few travel time components and assumed walking
distance.

The paper is organized as follows: Section 3.2 presents the state of the
art; Section 3.3 describes the datasets used and briefly introduce the mode
detection; Section 3.4 presents the CS generation algorithm; Section 3.5 de-
scribes the way we evaluate the model, under different assumptions on
information provisions; Section 3.6 shows the results; Section 3.7 discusses
the results and their policy implications; Section 3.8 contains the conclu-
sions.

3.2 state of the art

3.2.1 Choice set generation

Transport networks tend to offer a large number of alternative paths be-
tween a given origin and a given destination. The enumeration of all possi-
ble alternatives is not feasible in practice and it is unlikely that passengers
take into account all of them (Gentile and Noekel, 2016). Therefore, to
model the possible choices considered, an often used paradigm splits the
choice process into a selection of relevant alternative paths (CS generation),
and a selection of a choice out of the selected alternatives (choice model);
this latter can be finally observed in real life (Bovy, 2009). We focus on the
former step. A CS generation algorithm must be able to identify all and
only the relevant paths. In this sense, a CS must guarantee high coverage,
in terms of the ability to observe the passenger’s path. It must also guar-
antee high precision, in terms of including only relevant paths. However,
what is a relevant path cannot be objectively defined, making challenging
the assessment of the CS quality.
Most of the work on route CS generation are focused on car trips (Ras-
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mussen et al., 2016) rather than public transport trips. In addition, most of
the proposed techniques are used (in different works) both for road and
transit networks. Nevertheless, the two networks have important differ-
ences, such as, the transit network has less possible connections in space,
but instead both timetable and transfers must be taken into account.
Most of the CS generation algorithms proposed in literature are heuris-
tics, which need to find a compromise between the quality of the CS and
the computation time. They can be divided in deterministic and stochas-
tic. Among the deterministic, a basic approach is a K-shortest path based
algorithm (e.g. Yen, 1971), which is known to generate too similar routes
(Prato, 2009). Labelling approaches consist on identifying the shortest path
using different cost functions, assuming several objectives for the user (Ben-
Akiva et al., 1984). Link elimination algorithms eliminate one or more links
from the least cost path before identifying the next least cost path (Rieser-
Schüssler et al., 2013). Nassir et al. (2015) proposed a time-dependent K-
shortest path with link elimination and constraints on maximum transfers,
walking distance and waiting time, to identify a set of possible access stops.
Similarly, De la Barra et al. (1993) proposed a link penalty approach, which
after identifying the least cost path, gives a penalty to the cost of links of
the identified path.
A different group of deterministic algorithms is formed by the constrained
enumeration methods, which rely on a different behavioural assumption.
Instead of identifying minimum cost paths, they assume users choose
routes according to several rules (Prato, 2009). In this context, Friedrich et
al. (2001) proposed a branch and bound method that enumerates all possi-
ble paths given some constraints, as the maximum number of transfers and
dominated connections. Hoogendoorn-Lanser et al. (2007) generated CSs
in a multimodal transport corridor in the Netherlands, given constraints
on several factors, such as time, space and money. Typically, rationality of
the users can be assumed in order to filter those unreasonable paths which
would not be rational choices; for instance a path visiting twice the same
stop. Cats (2011) developed a recursive search method with exclusion of
unreasonable alternatives using filtering rules based on walking distance,
in-vehicle time and number of transfers. Tan et al. (2007) used a recursive
search to find all possible paths, given constraints on the time and trans-
fers. Since all these methods are heuristics, there is not a specific reason
to prefer one approach to another. Nevertheless, constrained enumeration
methods are the most used in the recent works and achieve the highest
performances (Bovy, 2009), in terms of coverage level of observed routes
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and estimation quality of estimated choice models.
Stochastic CS generation algorithms include a stochastic factor in the gener-
ation of each path. Therefore, repeated paths are computed and new paths
are added to the current CS (Fiorenzo-Catalano, 2007; Frejinger et al., 2009).
A stochastic factor can be considered both in network attributes (e.g. travel
time, waiting time, etc.) and in their perception by the users. Fiorenzo-
Catalano (2007) proposed a doubly stochastic approach for multi-modal
networks, including private vehicles. In their work, both link attributes and
behavioural parameters are randomized. They stated that, with a correct
calibration of the underlying parameters, this method guarantees hetero-
geneous paths with reasonable computational costs.
As discussed by Rasmussen et al. (2016), in a schedule-based public trans-
port network a path can be considered at different levels of detail. Some
possibilities are: (1) vehicle level, in terms of vehicles used (i.e. specific run
of a line, as in this work); (2) line level, in terms of lines used (Rasmussen
et al., 2016); (3) stop level, in terms of stops passed, regardless of the lines
used (Cats, 2011). Vehicle or line levels can be combined with stop level,
considering also the stops where boarding, transferring and alighting oc-
cur. The chosen level of detail can affect significantly the computation time
and the evaluation of the CS.
The evaluation of a CS generation algorithm in multi-modal public trans-
port is rarely proposed, since a detailed revealed preference survey might
be necessary. In fact, according to Meyer de Freitas et al. (2019), stated
preference surveys have disadvantages in modelling route choices in a
multi-modal network, given the high number of available alternatives and
the response burden required. In addition, they can produce biased results
due to framing effects (Beck et al., 2017; Meyer de Freitas et al., 2019). Bovy
(2009) identified as common evaluation indicators the coverage of observed
routes in the relative CSs and the estimation quality of an estimated choice
model. The coverage is usually referred to as the percentage of observed
routes that are fully (or partially) included in the relative generated CSs.
Rasmussen et al. (2016) evaluated their algorithm using a questionnaire-
based survey, resulting in a collection of travel diaries. The observed paths
are therefore map-matched to the transport network. They evaluated the
CS coverage (at stop level), obtaining a value above 90% (considering 100%
of overlap) for some of the proposed configurations. Nevertheless, these
configurations tend to build CSs with counterintuitive paths. In a previous
work (Anderson et al., 2014), they showed a line-level coverage of 78% for
CSs of average size of 40.4. Rieser-Schüssler et al. (2014) evaluated their
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doubly stochastic CS generation algorithm using a GPS-based survey. Au-
tomatic mode detection and map-matching to the Zürich public transport
network are performed, and validated by the users. Unfortunately, only
193 trips have been analysed, obtaining a coverage of 77%. Based on GPS
data, there are also studies focused on car trips, such as Rieser-Schüssler
et al. (2013). They applied a breadth first search with link elimination, ob-
taining a coverage of 63% for CSs of size 20 and 73% for CSs of size 100.
We believe some important aspects, which can provide an additional value
to a CS generation algorithm, are missing in literature. To the best of our
knowledge, small attention is given to the analysis of the CS size, in terms
of which paths are relevant and should be included in a CS. A large CS
size affects negatively the efficiency of the algorithm, while a small CS can
affect its precision in terms of coverage. The CS size is an important as-
pect potentially affecting the correctness of the parameter estimation (see
the recent discussion in Zimmermann and Frejinger, 2020). In addition, the
definition of relevant path is subjective, dependent on assumptions of ra-
tionality (exploited in labelling approaches) and often hardly quantifiable
or justifiable against real life behaviour, making difficult the selection of
the CS size. A second missing aspect is that no work has ever used si-
multaneously realized data of both operations (AVL data) and passengers
(tracking or automatic fare collection systems) to improve and adapt a CS
generation algorithm. Finally, no work has ever evaluated different infor-
mation provisions for passengers, comparing different CSs for the same
trip. This comparison can be useful to understand which information a
passenger has (and/or likely used) and if the passenger’s choices adapt to
network disturbances. In fact, a CS based on a given information provision
represents the relevant alternatives, assuming that information available.
Therefore, we assume, considering a small number of exemplary informa-
tion provisions, the one associated to the CS matching best the passenger’s
choices represents best the information available. We based such an analy-
sis on some of the assumption and results from the literature. In this sense,
information acquisition is identified as a component for CS formation by
Bovy (2009). In addition, Jiang et al. (2019) identified that some travellers
do not make use of real-time traffic information and they assumed infor-
mation is costly, in terms of acquiring and processing it. In this context,
but for car trips, Ding-Mastera et al. (2019) investigated drivers’ ability to
plan ahead and utilize real-time information.
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3.2.2 Route choice behaviour

Most of the mentioned work combined a CS generation algorithm with
the estimation of a route choice behavioural model. The purpose is ei-
ther to validate a CS generation algorithm estimating a route choice model
(Rasmussen et al., 2016; Ton et al., 2018), or to use a CS to estimate a be-
havioural model and explain the users’ behaviour in the specific test case
(Anderson et al., 2014). In this context, Bovy (2009) argued the modelling
steps of choice set generation and choice modelling should be explicitly
separated since they are distinct mental processes of a traveller. One of
the first works estimating transit route choice at individual level is Bovy
and Hoogendoorn-Lanser (2005), using a Hierarchical Nested Logit Model
and a Multi-Nested GEV Model. Nevertheless, their analysis is based on
only 235 observations, and focuses on routes with train as primary mode.
In recent works, for route choice estimation, the most used model is the
Path Size Logit, a variant of the Multinomial Logit Model introducing a
correction term for overlapping paths (Anderson et al., 2014; Montini et
al., 2017; Tan et al., 2015). Anderson et al. (2014) estimated a Mixed Path
Size Correction Logit in the multimodal public transport network of the
Greater Copenhagen Area, obtaining an adjusted R2 of 0.45. Rasmussen
et al. (2016) tested different levels of stochasticity in their CS generation
algorithm and analysed the stability of the parameters of the estimated
route choice models. The highest R2 obtained is equal to 0.66, even if the
estimation of transfer-related parameters is reported to be affected by the
level of stochasticity in their model. An interesting contribution is given by
Montini et al. (2017), estimating a Path Size Logit on public transport trips,
reported as travel diaries collected from GPS traces of people travelling in
Zürich (only 273), obtaining an R2 of 0.595. Nassir et al. (2015) adopted a
Nested Logit model, including a correction term based on the Path Size
Logit, to identify the access stop choice.
Finally, it is important to mention the existence of methods studying user
behaviour without explicitly generating a CS, such as the recursive logit
(RL, see Fosgerau et al., 2013). We see RL models as an alternative ap-
proach and applicable for a similar study (with the appropriate changes).
To the best of our knowledge, and as reported in Zimmermann and Fre-
jinger (2020), only one work applied the recursive logit to a multi-modal
transport network (Meyer de Freitas et al., 2019)). The work reports on
very heavy computational requirements for RL approaches, against which
our methods compare favourably (see Section 3.6.2). Those computational
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requirements suggested the authors to simplify the transport network into
a static network, i.e. without considering realized arrival/departure times
of public transport. This would not allow understanding a key issue at
the focus of the present paper, namely the impact of transit information in
case of actually disturbed operations (See Section 3.6.4). Finally, without
explicitly generating a CS, it is not easily possible to make considerations
on the relevance of an alternative and the CS size (see Section 3.6.3).

3.3 tracking survey and datasets

A key aspect of the present work is the use of realized data for both pas-
sengers and operations. We based our analysis on urban trips of Zürich
residents. Therefore, we used realized data of all the public transport vehi-
cles travelling in the city, including trains, trams and buses (Swiss Federal
Office of Transport, 2019). For each day, the arrival and departure times of
each vehicle at each stop are provided, both planned and realized. This al-
lows making more detailed analyses, compared to using only the planned
timetable, since the different network conditions of each day are consid-
ered.
The passengers’ data are collected through a tracking survey based on a
smartphone application, the ETH-IVT Travel Diary, able to continuously col-
lect GPS data for multiple weeks, without affecting the battery consump-
tion (Marra et al., 2019). The user interaction is reduced to a minimum,
consisting only in installing the application. Therefore, a mode detection
algorithm is applied to identify the recorded movements. Zürich residents
were invited to participate in the study, offering them a compensation of
20 CHF. The survey consisted of answering a starting and an ending ques-
tionnaire, installing the app and let it run for at least three weeks. Table 3.1
provides general statistics on the survey. Despite invited people were se-
lected without any specific criteria, the participants are on average young
and highly educated (most of the people with only mandatory school de-
gree are still studying). This is probably due to the nature of the task,
which requires familiarity with smartphones, or to the offered compensa-
tion, which can be more attractive for younger people. Nevertheless, the
representativeness of the sample is not a key aspect for this work.



3.3 tracking survey and datasets 83

Period 03/04/2019 - 02/06/2019

Participants 172

average age 32.6

% female 43%

occupation 63% workers; 25% students; 7% both; 5% other

education
54% university or high professional; 36% high school;

10% mandatory school

Table 3.1: Tracking survey information.

3.3.1 Mode detection

The GPS raw data are processed to identify activities, trips and stages and
automatically infer the transport mode used. First, the GPS points are clas-
sified as activities or trips, identifying areas with high-density of points as
activities, and the connection between the activities as trips. Afterwards, a
segmentation step divides trips in walk-stages and other-stages, based on
the points’ speed. Finally, a mode detection algorithm classifies the other-
stages as public transport or private stages, comparing the users’ GPS
traces with the realized paths of the operations. In particular, if a user’s
stage begins and ends at the same time and at the same place of a public
transport vehicle, the stage is marked as performed on that vehicle; other-
wise, the stage is assumed as private, and it is classified as a car or bike
stage afterwards. Therefore, a key aspect of the mode detection algorithm
is the identification of the exact public transport vehicle used. In particular,
the algorithm detects the following information for each public transport
stage: the mode (Bus, Tram or Train), the line, the specific vehicle of that
line, the user’s departure stop and time, the user’s arrival stop and time.
More details on the mode detection algorithm are in Marra et al. (2019).
We exploit this feature of the mode imputation, able to pin point the ex-
act vehicle, in the analyses performed in the present paper regarding the
choice set.
Table 3.2 shows the general results of the GPS data processing applied to
the collected dataset. While activities, trips, walks and stages are always
identified, the mode detection is limited to stages inside the city of Zürich.
Therefore, considering only the trips inside the city, and assuming trips
with transfers as performed by only one mode, the mode share is the fol-
lowing: walk 23%, public transport 38%, car 15%, bike 13%, mixed 10%
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(public and private). Despite our dataset has not been selected to be repre-
sentative of the population, the mode share is very close to official reports
(Stadt Zürich, 2020, reporting 41% of modal split for public transport), es-
pecially for public transport trips, the only one studied in detail in this
paper.

Tracked days 3785

Avg. days per person 22

Activities 14066

Trips 13913

Stages 22654

Walks/Transfers 29890

Stages outside Zürich 8472

Public transport stages 8849

Private mode stages 5333

Table 3.2: Results of the GPS data processing.

In this work, we consider only public transport trips, i.e. trips using only
and at least one public transport vehicle. Therefore, we assume that people
did not consider private or alternative transport modes for these trips. Ta-
ble 3.3 shows more details on the public transport trips. Interesting is that
40% of the trips are performed with at least one transfer, making the route
choice problem more challenging compared to direct connections.
With tracking and automatic mode detection, it is possible to build large-
scale travel diaries with low efforts, since the burden on the users is re-
duced to a minimum. Knowing the exact public transport vehicle used for
each trip would require a constant participation that can be hard to obtain
for a long period. Despite this, some limitations exist, such as errors in the
different steps of the mode detection, mainly due to the quality of the GPS
data. This leads to missing or wrongly detected activities, trips or modes
that add noise to the dataset. As shown in Marra et al. (2019), the average
detection accuracy of the considered approach is 86.14% (68.3% for trains,
80.6% for bus and trams, 84.4% for private vehicles and 94.4% for walks).
This accuracy refers to the percentage of stages correctly classified by the
algorithm, and it is based on validation and testing on a similar dataset,
collected in Basel (Switzerland), where the respondents manually labelled
their stages. In any case, a wrong detection (misclassification) of a public
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Urban public transport trips 2901

% # stages per trip {1: 60%, 2: 29%, 3: 9%, 3+: 2% }

% modes used {Tram: 52%, Bus: 38%, Train: 10% }

Avg. duration per trip 21.7 min

Avg. air distance per trip 2.88 km

Table 3.3: Information on public transport trips in Zürich.

Figure 3.1: OD flows of the collected public transport trips in Zürich. The width
of the arcs is proportional to the number of trips between an Ori-
gin and a Destination. Near locations are aggregated using the mean
shift algorithm. Locations with 5 or less trips are not shown. Back-
ground from google.com/maps.

transport trip still represents a feasible path to reach the destination. For
example, if a car trip is identified as performed by a certain bus, that bus
actually did a path similar to the one of the car, at the same time. In fact,
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the algorithm considers for a possible public transport trip only vehicles
that did a path similar to the one of the user, according to a likelihood
function. In addition, a misclassification of a car trip as a public transport
trip with a transfer is rarer, since it involves three consecutive misclassifica-
tions (two vehicles and one walk for transfer). Therefore, in this work we
assume correct the mode detection results. Despite these limitations, the
following results were not significantly affected, since we obtained high
coverage compared to the state of the art, and a R2 value of a route choice
model equal to 0.65.
Figure 3.1 shows the distribution in Zürich of the public transport trips
considered. Most of the trips are located near the city center or the rail-
way stations. Nevertheless, the dataset contains also peripheral trips and
spreads through the whole city area.

3.4 choice set generation algorithm

In this Section, we describe a novel choice set generation algorithm, able
to work with different information provisions. The proposed algorithm re-
sults efficient in terms of computation time, and with high precision, in
terms of coverage and model estimation.
We propose a CS generation algorithm based on constrained enumeration,
able to generate all possible alternatives given a maximum duration and
a maximum number of transfers. As an alternative, we consider a path
formed by walks and public transport vehicles. Same vehicles but different
walks are assumed as the same alternative (e.g. same transfer between the
same vehicles, performed at different stops). The algorithm is based on
a schedule-based model, performing a Depth First Search (DFS) on a di-
achronic graph (time-expanded network). The graph is modelled from the
AVL data of the public transport operations to model the timing of each
trip of each vehicle.
The innovative features of the proposed algorithm are both methodological
and related to its applicability. Regarding the methods, we used a differ-
ent time representation from the literature, therefore a different graph. In
addition, we propose a two-phases search to identify each path in the CS,
reducing strongly the computation time. Regarding the applicability, the al-
gorithm allows analysing choices both at line and vehicle level and is able
to integrate different information provisions, to derive implications on in-
formation provisions to users. The information is provided as an input to
the CS generation algorithm, in the form of transit events to consider. This
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allows full flexibility on which information to consider, without affecting
the correctness of the algorithm.

3.4.1 Graph representation

We use a transport network graph, where nodes represent specific events
in a time-dependent fashion; and links connect them in an acyclic structure.
Typically, in a schedule-based model, the transport network graph is repre-
sented using time-discretization, i.e. creating multiple nodes for each stop
at different time intervals (Gentile and Noekel, 2016). In this case, a transit
network and a walking network are connected at the stop location nodes.
Instead, we decided to not discretize in time, but rather express all events
in their realized time (event-based rather than time-based discretization).
In particular, each node models the arrival or departure event of a vehicle
at a stop.
Transfers are modelled with direct arcs between two nodes whenever a
transfer is possible. In addition, not all possible transfers are allowed in our
model, since we introduced constraints already at this step[Thesis Appendix 3],
to further speed-up the paths search.
We consider as input a list of stops and a list of vehicles running in the
network (retrieved from the AVL data). As a vehicle, we refer to a single
service provided between the first and last stop of a planned run. The
arrival and departure times of the vehicles at each stop represent the infor-
mation provided (see Section 3.5.3).
The graph structure is described formally in Table 3.4. We considered a
graph G = (V, E), where each node in V is a triple (vehicleId, stopId, A/D),
representing the arrival or departure (A/D) of a public transport vehicle
(vehicleId) at a stop (stopId). The nodes Origin and Dest are created for
each OD, before computing the CS.
E models the trips of the vehicles, the possible transfers and the possible
starting and ending walks. The first two groups of arcs (third and fourth
rows) connect all the nodes of a single vehicle, modelling its trip. The third
group of arcs models the transfers. The arrival of a vehicle is connected to
the departure of another one if the following conditions hold: the walking
distance is ≤ N; the required walking time is sufficient; the waiting time is
≤ TD. In addition, for each possible transport line, only the best transfer
is considered. For instance, arriving with the bus A1 at 10:00 at a station S,
where three buses of the same line (B1, B2, B3) are departing respectively
at 10:10, 10:20 and 10:30, only the transfer to B1 is considered, since it is not
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reasonable to wait more for the same bus line (unless special cases of de-
nied boarding, that we do not consider). The Origin and the Destination of
a trip are connected to the graph through the last two groups of arcs. The
Origin is connected to all nodes departing in stops nearby, i.e. reachable
from the starting point within a distance equal to N, as for the transfers.
Even in this case, only the first feasible boarding for vehicles of the same
line is considered. The Destination is connected to all the vehicles arriving
at stops nearby (distance N).
Regarding the starting time, we include an extra adjustment factor to the
starting time of the user’s trip, to take into account possible errors due to
the GPS quality and mode detection. In fact, wrong GPS position, missed
walk or late trip starting time can make the user’s trip infeasible in the
graph. Therefore, the starting time is defined as min(TSt, FVt−Wt), where
TSt is the trip starting time, FVt is the departure time of the first vehicle
used by the user and Wt is the walking time necessary to reach the used
stop.
Modelling parameters are a maximum transfer distance of 700 meters (N),
the average walking speed of 1.5 m/s and a maximum waiting time of 30

min (TD). The last one does not affect the CS quality, since in the mode de-
tection a user not moving for more than 15 min (ActivityTime) is considered
doing an activity. In addition, the effective frequency of public transport in
our test case is generally much higher than 30 min.

3.4.2 Selection of the alternatives

For a given OD, the choice set generation algorithm works as follows:

• We restrict the transport network graph introduced above to the sub-
graph of only those nodes reachable by both the origin and the desti-
nation. This strongly reduces the search space, since only the vehicles
able to connect the OD are considered. In addition, we consider only
vehicles reaching the destination before 2 times (maxTime) the dura-
tion of the shortest path. Since the subgraph is time-expanded, it is
directed and acyclic, and all the possible paths between two nodes
can be efficiently found with a DFS. We perform a DFS to identify
all possible combinations of vehicles that can be taken (i.e. sequences
of vehicles without specifying the stops). A threshold of maximum 2

transfers (maxTrans) is also considered.
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Node (v, s, A) ∀v ∈ vehicles, s ∈ stops : v arrives at s

Node (v, s, D) ∀v ∈ vehicles, s ∈ stops : v departs f rom s

(v, sv
i , A)→ (v, sv

i , D) ∀v ∈ vehicles, ∀i : 1 ≤ i ≤ vstops

(v, sv
i , D)→ (v, sv

i+1, A) ∀v ∈ vehicles, ∀i : 0 ≤ i ≤ vstops − 1

(v, s, A)→ (w, z, D) ∀v, w, s, z : distance(s, z) ≤ N,

walkTime(s, z) ≤ zw,D
time − sv,A

time ≤ TD,

(w, z) = f irstTrans f er(v, s, wline)

Origin→ (v, s, D) ∀(v, s, D) : distance(Origin, s) ≤ N,

walkTime(Origin, z) ≤ sv
time −Origintime ≤ TD,

(v, s) = f irstTrans f er(Origin, vline)

(v, s, A)→ Dest ∀(v, s, A) : distance(s, Dest) ≤ N

Notation:

vstops number of stops passed by v

sv
i ith stop of vehicle v

sv,A/D
time arrival/departure time of v at stop s

f irstTrans f er(v, s, l) (w, z) : w is the first vehicle of line l and z is

the nearest stop allowing a transfer

from v and s to line l

Table 3.4: Public transport graph structure.

• For each combination of vehicles identified, there are multiple op-
tions to travel with the same vehicles, depending on the stops at
which to get on, transfer and get off. These options have only marginal
differences on the walks, and correspond to the same alternative ac-
cording to our definition. Therefore, for each combination of vehi-
cles, the path with shortest walks is selected. Practically, this can be
obtained computing the shortest path on an even smaller subgraph,
formed by only the nodes of the vehicles.

• The final CS is given sorting the list of paths by a simple cost function:
the travel time with a transfer penalty of 5 min.

The problem of identifying a single path is decomposed in first identify-
ing the combination of vehicles (i.e. stages), and then identifying the best
option to travel with them (at which stops to get on, transfer and get off).
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This results more efficient than performing only a DFS, identifying directly
the final path.
Furthermore, the CS generation algorithm does not consider the following
paths, which we assume unrealistic:

• paths using two times the same stop;

• paths using additional vehicles compared to others (therefore, with
no improvement in travel time);

• paths using the same lines of less costly paths (according to the men-
tioned cost function).

These constraints can be easily considered during the DFS.
The only parameters affecting the CS size and inversely the computation
time are N, maxTime and maxTrans. As we show in Section 3.6.1, the cho-
sen values are large enough for our test case, Zürich, the city with the
largest public transport service in Switzerland. We remark that the trans-
fer penalty affects only the sorting of the CS and not its coverage. Douglas
and Jones (2013) reviewed transfer penalty estimates in literature and they
showed how there is no agreement on a common value, even if most of
the estimates range between 5 and 9 minutes of travel time. Finally, since it
is not possible to know without prior knowledge if a user is waiting for a
transfer or is performing an activity, the minimum time for an activity (Ac-
tivityTime) is hard to determine. After a comparison of the results of this
work, considering an ActivityTime of 10, 15 and 20 minutes, we evaluate
that its value does not significantly affect the outcomes.

3.5 model evaluation and information provision

3.5.1 Choice set evaluation

We evaluated the CS generation algorithm according to four factors: the
coverage, the size, the computation time and model estimation. With cov-
erage we refer to the percentage of trips identified in their CS. High cov-
erage shows the ability to capture the users’ trips. We remark that we are
considering paths at vehicle level, meaning that two paths are considered
equal only if they used exactly the same vehicles. Coverage at line level
is easier and more commonly found in literature. Therefore, we compared
coverage both at vehicle and line levels. This leads to a different resolution
from considering paths at stop level. In this last case, hyperpaths formed
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by different vehicles connecting the same stops are considered; therefore
the stops are assumed relevant, and not the vehicles.
The CS size should guarantee high coverage, even though this is seen of-
ten as detrimental to high precision, in terms of including only relevant
paths. Since a good CS must contain all and only the choices relevant for
the users, we analysed the increase in coverage and the performance of
model estimation according to the CS size, to identify which paths can be
considered relevant.
The computation time should be minimal, to guarantee the applicability
of the algorithm in practical contexts, as route recommender systems. In
this sense, we show the required time of the CS generation algorithm is
significantly low (median of 7 s per CS).
Finally, a good CS should guarantee high estimation quality of an esti-
mated choice model (Bovy, 2009), which we describe in Section 3.5.2.

3.5.2 Estimation of route choice model

In order to validate the CS generation algorithm and to identify the con-
ditions resulting in a CS that better represents the users’ behaviour, we
estimated a behavioural model for the choice of public transport paths.
Therefore, we estimated a Path Size Logit model (Equation 3.3) consider-
ing two possible levels of detail, vehicles and lines, and various informa-
tion provisions. The software used for the estimation is Biogeme (Bierlaire,
2018). For each trip, we estimated a utility function Utrip,CS(

−→
β ) (Equation

3.1) based on the following parameters: tram (travel) time, bus time, train
time, walk time, transfer time, # transfers, path size cost (PS). We denote
the first and last walks as walk time, and the intermediate walks as transfer
time. During a transfer, we could not discriminate between walk and wait-
ing time, given the quality of the GPS data. In addition, we considered a
penalty for each transfer. Monetary costs were not considered in this work,
since inside the city of Zürich the price is fixed, and therefore it does not
change among the alternatives.
The path size cost (Equation 3.2) is based on the formulation proposed by
Bovy et al. (2008), considering the stages (vehicles or lines) forming each
trip and the travel time as a measure of length, as in Tan et al. (2015). The
PS is equal to 0 for a non-overlapping trip (i.e. its stages are only in this
trip of the CS), and decreases negatively with the times each stage is con-
sidered in the CS. Considering other Path Size factors, as the classical one
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proposed by Ben-Akiva and Bierlaire (1999), did not change significantly
the results.

Ui,CS(
−→
β ) = βtram ∗ tram time + βbus ∗ bus time

+ βtrain ∗ train time + βwalk ∗ walk time

+ βtt ∗ trans f er time + βtrans f er ∗ #trans f ers + βPS ∗ PSi,CS

(3.1)

PStrip,CS = − ∑
stage s∈trip

length(s)
length(trip)

ln(times s in CS) (3.2)

P(trip|CS;
−→
β ) =

eUtrip,CS(
−→
β )

∑j∈CS eUj,CS(
−→
β )

(3.3)

3.5.3 Information provision

According to which data are used to generate the diachronic graph (planned
or realized data), different information provisions of network conditions
can be assumed, generating different CSs. We considered three different
provisions: perfect information, assuming known all disturbances during
the day; no information, assuming no disturbances; current information,
assuming available the information of the next vehicles of each line depart-
ing near the user, at the begin of the trip. The perfect information provision
is unrealistic, since it considers full knowledge of future network condi-
tions, but it allows to identify the real available alternatives. The current
information provision represents the case of a user checking the network
conditions before departing. The no information provision represents a
user relying only on the timetable. In this latter case, a connection missed
due to a delay will still be present in the Timetable CS, but not in the Real-
ized CS; the CSs will differ in the amount of possible alternatives.
This work aims to identify which information provision results in a CS,
which represents best the users’ behaviour. In this sense, Bovy (2009) ex-
plicitly modelled the information acquisition as a component for CS for-
mation; and suggests that CS generation and choice modelling are distinct
mental processes and they should be separated. Therefore, we evaluated
the same Path Size Logit model proposed in Section 3.5.2, considering the
three different CSs based on the different information provisions.
Again, we restate the underlying assumption of our study, which is: con-
sidering only a few possible cases of information provision, keeping the
same model (Path Size Logit), but testing different CSs, the one perform-
ing best is more suitable to determine the choices considered by the users.
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We highlight that the proposed analysis compares only the three proposed
information provision. Possibly, additional information provisions could
be taken into account. Further analysis in this direction are left for future
work.

3.5.4 Users’ heterogeneity

We analyse the heterogeneity among the users both in terms of informa-
tion provision, and in terms of perceived costs of the different travel time
components.
As stated by Bovy (2009), the CS formation process needs to consider het-
erogeneity among users. In fact, preferences, available information and
other conditions are different among individuals making a similar trip, re-
sulting in a different composition of the set of considered alternatives. In
this sense, we report the same analysis described in Section 3.5.3, but for
each single user separately.
Regarding the perceived costs of the different travel time components, to
observe the heterogeneity among the users and possible panel effects, we
estimated a Mixed Path Size Logit model (Anderson et al., 2014; Prato et
al., 2014; Schmid et al., 2019). In this model, the βs are random param-
eters, distributed according to a probability density function f (β|θ). The
probability to choose a path is therefore the following:

P(trip|CS) =
∫ eUtrip,CS(

−→
β )

∑j∈CS eUj,CS(
−→
β )

f (β|θ)dβ (3.4)

The choice of the distribution f varies across the literature and types of pa-
rameters. Typically, the normal or log-normal distributions are chosen. If
on one side the log-normal allows to restrict values to a certain sign, on the
other it can provide a too broad distribution, given its long tail (Hess et al.,
2005). For this reason, in this work we considered the normal distribution
for all the parameters.
The model was estimated with mixl (Molloy et al., 2019), allowing comput-
ing for each user the individual-specific cost coefficients, conditional on
the observed choices. In particular, the expected value of the parameters
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for a certain user n (β̄n) is defined as follows (Sillano and Dios Ortúzar,
2005):

β̄n =
∑R

r=1 Ln(cn|βr
n)βr

n

∑R
r=1 Ln(cn|βr

n)
(3.5)

Ln(cn|βr
n) =

Tn

∏
t=1

P(cn,t|CSn,t, βr
n) (3.6)

where R is the number of draws to compute the expected value, cn is the
set of choices of the user n, and Tn is its number of choices.

3.6 results

3.6.1 Choice set coverage

We evaluate the performance of the proposed algorithm already distin-
guishing the three different information provisions identified. For each
public transport trip observed, three different CSs were computed, based
on three different information provisions: perfect information, no informa-
tion and current information, that we refer as realized, timetable and cur-
rent CSs. Figure 3.2 shows the coverage of the CSs according to their size,
considering both vehicles and lines. The figure shows also the adjusted R2

of a route choice model, which is discussed later in Section 3.6.3. We can
see that the timetable CS has always a higher coverage than the other two.
Moreover, the 90% of coverage (line based) is already obtained among the
first 13 paths for the realized CS and 9 paths for the timetable CS. A maxi-
mum size of 100 is set for the analysis (even if the algorithm identifies all
possible paths, which can be more). Only 6.4% of trips are not covered in
the first 100 paths of the realized CS, and 5.5% for the timetable CS.
6.4% of users’ trips are not in the realized CS, and are not identified for the
following reasons: 41% for a long walk; 28% for a too long duration; 14%
are after the 100

th position; 7% are dominated paths; 4% do more transfers;
4% do a fast transfer, which cannot match the walking speed considered in
the model; 2% used two times a same stop. Therefore, the only reason that
can slightly affect the coverage is the long walk. Unfortunately, increasing
the walking distance by 250 meters (950 meters) increases the coverage
only by 1.2%. Therefore, we consider valid our choice of the parameters.
In addition, it should be considered that two sources of noise are present:
the users, which can make mistakes or choose a particular path for exter-
nal reasons; the mode detection, which can make mistakes, as identifying
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Figure 3.2: Choice set coverage based on different information provisions. The
adjusted R2 of the path size logit, line based, considering no infor-
mation, is also shown.

a single trip between two activities, without identifying an existing activity
in the middle.

3.6.2 Computation time

The computation time to compute a single CS is very short, even though no
specific code optimization or parallelization was performed and a standard
personal computer was used. On average, a graph representing a network
during one day is formed by 500 thousand nodes and 10 million arcs. Nev-
ertheless, the median of the computation time to generate the alternatives
is 7 s and the average of the values below the 95 percentile (100 s) is 12

s. There is a small percentage of CSs requiring higher computation time,
in the order of minutes. These are mostly long-distance paths, poorly con-
nected, which require more transfers and travel time. In a practical context,
further rules can be added to control and pre-process these specific cases.
Since the estimation time of the Path Size Logit model is negligible (order
of seconds), we can compare the order of magnitude of the required com-
putation time by the proposed CS generation algorithm, and the recursive
logit of Meyer de Freitas et al. (2019), both applied in Zürich. The recursive
logit required around 1 min per observation and 80 GB of memory using



96 choice set generation for public transport

Figure 3.3: Distribution of size for the realized choice set. A limit of 100 paths is
fixed.

a cluster; much higher than the 12 s and 7.5 GB required by the proposed
algorithm, using a standard personal computer.

3.6.3 Choice set size and relevance of a path

Figure 3.3 shows the distribution of the size of the realized CS computed
for each trip (the distributions of the other CSs are similar). Most of the
CSs have a size of 100 (the fixed limit), even if there is a big portion (40%)
with size less than 20. These are mostly trips with one or few options dom-
inating the others in terms of travel time. Nevertheless, the CS generation
algorithm obtains high coverage, even with relatively small CSs.
Despite the high coverage showed in Section 3.6.1, it is unreasonable that
a passenger considers 100 alternatives to choose a path[Thesis Appendix 4]. In
addition, an unnecessarily big CS increases the computational costs of fol-
lowing analyses, as route choice estimation. To identify a suitable amount
of alternatives, we estimated the Path Size Logit model described in Sec-
tion 3.5.2 with different CS sizes. Figure 3.2 shows both the variation of
the coverage and the adjusted R2 (of the Path Size Logit applied to the
timetable CS, line based, reported dotted in green) according to the CS
size. Both values grow more quickly for small CSs, and more slowly for
bigger CSs. This shows that large size CSs may contain irrelevant paths
that are not considered by the users. For our test case, we can identify 40
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as a possible reasonable value of CS size. In fact, the coverage is 94% and
the R2 is 0.65, that do not differ significantly from the values obtained for
size 100 (94.5% and 0.68) or even 500 (94.7% and 0.7).
Compared to the estimated parameters for a CS size of 40 (shown in Table
3.5), the ones estimated for a CS size of 100 are very similar (not shown
for brevity). Moreover, a larger CS size brings marginally smaller changes,
i.e. their values converge. In particular, with a CS size larger than 10, the
estimated value of each parameter is already within 10% of the values at
100 (except the PS, which depends on the CS size). In conclusion, we can
conclude that considering CSs with size larger than 40 does not change
significantly the model interpretation and performances in our test case.
Finally, it is important to notice that the CSs are sorted by travel time, in-
cluding a transfer penalty of 5 min. Sorting the CSs by a utility function
estimated by a route choice model determines a faster increase of the cov-
erage (but not a higher value).
In this Section we analysed the trade-off between the CS coverage and
model estimation on one side, and the CS size on the other. This repre-
sents a first step in analysing the CS size and irrelevant paths. Despite this,
we acknowledge that the relevance of a path and the number of alterna-
tives considered can vary across users and trip characteristics. We focus on
some selected aspects of this heterogeneity in Section 3.6.8. We consider
this analysis as a starting point and we leave further research for a future
work.

3.6.4 Performance of route choice model and information provision

We estimated the Path Size Logit model both to validate the CS generation
algorithm and to understand which information provision can better rep-
resent the users’ choices, as explained in Section 3.5. Table 3.5 shows the
results of the estimation with the three CSs, considering 40 as maximum
size, and paths described at line level. The estimation considering paths at
vehicle level is comparable and is discussed in Section 3.6.5. As a measure
of goodness of fit, the adjusted R2 obtained using the timetable CS is 0.65.
Despite the results strongly depend on the test case considered, this value
shows that our CS generation algorithm, based on modelling each alter-
native as a sequence of vehicles (or lines), is able to explain most of the
users’ choices. We consider the model reliable and usable for recommend-
ing policy actions (Garcia-Martinez et al., 2018, stated the same, given their
model had an R2 = 0.51). Other possible explanations for this value are:
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Parameter
Timetable
estimate t-test

Realized
estimate t-test

Current
estimate t-test

In vehicle

travel time (s)

Tram -1 -21.7 -1 -21.1 -1 -20.7

Bus -1.14 -20.2 -1.11 -19.7 -1.15 -19.7

Train -1.19 -12.4 -1.18 -11.2 -1.18 -11.7

Walking time -2.56 -42.6 -2.6 -41.1 -2.63 -41.6

Transfer time -1.06 -15.6 -1.17 -15.9 -1.16 -15.9

No. of transfers -889 -27.4 -1050 -34.7 -940 -27.7

Path Size 55.4 2.49 64.5 2.68 96.2 4

Observations 2719 2687 2693

Null log-likelihood -7361 -7572 -7690

Final log-likelihood -2555 -2898 -2870

R̄2
0.65 0.62 0.63

Cross-val. R̄2
0.655 0.616 0.63

St. dev. 0.01 0.014 0.017

Scaling factor 0.0038 0.0033 0.0034

Table 3.5: Path size logit estimates for CSs with different information provision,
maximum size 40, line based. The parameters are scaled (multiplied
by the scaling factor) to have the tram travel time coefficient equal to
-1.

the nature and the size of the dataset, based on automatic mode and ve-
hicle detection; the high coverage of the CS; users related factors, e.g. the
average young age and the familiarity with smartphones (this can lead to
a major use of route recommender systems).
Regarding the comparison of different information provisions, the estima-
tion results of the three models are quite similar, but the timetable CS has
the best performance. This confirms the better coverage obtained for this
CS. To test the statistical significance of the values computed for the three
models, we applied Monte Carlo cross-validation, with R2 as performance
measure. Specifically, we randomly divided the dataset into 75% training-
set and 25% test-set. The model is trained with the former and evaluated
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on the latter. We repeated this operation 50 times and observed the dis-
tribution of the R2. The mean of the R2 for the three models (timetable,
realized, current) are respectively 0.655, 0.616, 0.63 and the standard devi-
ations are 0.01, 0.014 and 0.017. This shows a low variance of the model
performances, which is smaller than the difference between the R2 of the
models. The same conclusion comes also from the hit-rate of the three
models (i.e. percentage of times the most probable path is the one chosen
by the user), which are respectively 68, 62 and 64%.
Looking at the estimated coefficients, all of them are significant. To better
discuss the ratio of the parameters, we report the coefficients scaled, so that
the tram travel time coefficient is equal to -1. This scaling does not affect
the model or the interpretation of the results. The preferred transport mode
in city is the tram, followed by the bus and the train[Thesis Appendix 5]. This
is consistent with the literature, and in particular with studies in Zürich
(Montini et al. (2017) estimated a preference for trams, and Meyer de Fre-
itas et al. (2019) identified the same order of preference in one of their
model). The walking time has higher cost than in-vehicle travel times, con-
sistently with most of the literature (Anderson et al., 2014; Meyer de Freitas
et al., 2019). The transfer penalty is estimated as around 15 min of travel
time in tram. This is very close to the range estimated by Garcia-Martinez
et al. (2018), between 15.2 and 17.7 min of in-vehicle travel time, in a multi-
modal urban network (Madrid). As shown by Douglas and Jones (2013),
the range of transfer penalty values estimated in literature is broad, and
the identified value is consistent with this range.
The estimated coefficients of the realized and current CSs are similar, show-
ing that the disturbances in the starting area of the trip are the most rel-
evant in the choices of the users. The main differences with the timetable
CS are in the coefficients related to transfers, which are weighted more.
We highlight the results shown are dependent on our test case and can
be different considering another city with a different transport system. In
fact, we suppose the network reliability and the presence of disturbances
or disruptions in the network can affect users’ choices and their reliance
on the timetable. In addition, a more realistic information provision would
result in a gradual increase of information through the trip. Further inves-
tigations in these directions are left for future work.
We remark that the Null log-likelihood is different among the three models
because the alternatives can be different among the models (and therefore,
also the observations covered and used in the choice model). For instance,
a disruption in the network could make a possible alternative available for
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choice in the timetable CS but not in the realized CS (as delays make the
connection infeasible). Similarly, differences in the coverage among the CSs
hint some minor variations in the amount of observations considered. This
does not affect the comparison, since we aim to identify which data (i.e.
information provision) performs better for model estimation, which we
evaluated with both monte-carlo cross validation and comparing the hit-
rates. Finally, we highlight that we considered for each model only trips
covered in the respective CS, since the non-covered trips can include un-
realistic paths, as deviations for intermediate stops, or long waiting for
external reasons. This results in minor changes between the number of ob-
servations of the CSs within 1%; in other terms, including also these trips
does not change significantly the results.

3.6.5 Comparison vehicle and line based CS

The coverage of a line based CS is obviously higher than of a vehicle based
one, since same vehicle implies same line, but not vice versa. The differ-
ence in coverage is 9.8% for the timetable CS (see Figure 3.2). A trip in this
9.8% has a corresponding trip in the CS with the same lines but different
vehicles. In addition, the same coverage of the vehicle based CS, consider-
ing a size of 100 paths (84.7%), is obtained with only 4 alternatives in the
line based CS.
We can find and quantify some sources for this difference. First, in case of
delays, a user can take the same line as in the planned undelayed timetable,
but probably different vehicles (i.e. they might get a delayed vehicle leav-
ing within few minutes of another planned run of the same line). This
applies to timetable and current CSs, which do not take into account the
real network condition.
Moreover, walking speed has been assumed constant in our study, despite
large evidence of consistent variations across users. Specifically, this has
large impact at transfer points. In fact, it is difficult to establish if a user
is able to transfer from a vehicle to another, especially when the time be-
tween the arrival of the feeder and the departure of the connected vehicle
is very close to the assumed walking time. This is rather relevant as in our
test case most public transport lines have a high frequency of operations.
Regarding estimation performances of a route choice model, we compared
the estimation of a Path Size Logit model considering vehicle and line
based CSs. Our hypothesis is that if the users reason in terms of vehicles,
the line based model has lower performance, since it considers as a chosen
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Parameter Line Estimate t-test Vehicle Estimate t-test

In vehicle

travel time (s)

Tram -1 -21.7 -1 -19.7

Bus -1.14 -20.2 -1.13 -18.2

Train -1.19 -12.4 -1.16 -11

Walking time -2.56 -42.6 -2.53 -39.8

Transfer time -1.06 -15.6 -1.02 -13.7

No. of transfers -889 -27.4 -943 -25

Path Size 55.4 2.49 20.5 0.82*

Observations 2719 2441

Null log-likelihood -7361 -6434

Final log-likelihood -2555 -2184

R̄2
0.65 0.66

Cross-val. R̄2
0.655 0.659

St. dev. 0.01 0.018

Scaling factor 0.0038 0.0039

Table 3.6: Path Size Logit estimates for line and vehicle based timetable CSs with
maximum size 40. * indicates a non-significant parameter (|t| < 1.96).
The parameters are scaled (multiplied by the scaling factor) to have
the tram travel time coefficient equal to -1.

alternative also an alternative equal to the real choice in the lines taken,
but not in the precise vehicles taken. Instead, if the users reason in terms
of lines, the two models should be comparable (since same vehicle implies
same line). The results are shown in Table 3.6 and do not show remarkable
differences. In other terms, there is not a significant improvement in con-
sidering vehicles, when studying users’ choices. Despite vehicle based CSs
are more realistic, line based CSs obtain higher coverage and similar model
estimation. The results suggest that users reason at line level, therefore, in
case of missed vehicle or connection, they generally wait the next vehicle
(this is confirmed by different reasons in Section 3.6.7).
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3.6.6 Assessment of walking distance

One modelling assumption of the CS generation algorithm is the maxi-
mum walking distance. Typically, in literature, this value is assumed as
a constant, and its implications are seldom analysed. On one side, small
values do not allow to capture certain paths (i.e. users might walk rela-
tively long under certain conditions); on the other, large values assume
higher willingness to walk (which also might not be a correct assumption,
at times).
In this work, assuming for example that a public transport line ends within
500 meters of the destination, but no direct bus exists to reach the des-
tination, and assuming a maximum walking distance of 700 meters, the
algorithm will consider that users prefer to walk from the stop to the desti-
nation, rather than transferring to another public transport line, which will
need to include penalties for transfer, and for waiting time.
This effect leads to a partial coverage, often analysed in literature as over-
lap percentage (see Anderson et al., 2014; Ding-Mastera et al., 2019; Prato
and Bekhor, 2006). In other terms, a minor part of the trip, typically when
leaving the public transport system, is not explicitly identified.
In our experiments, considering the timetable CS, 14.6% of the trips are
partially covered, i.e. 94.5 - 14.6 = 79.9% have a perfect coverage. This latter
concept refers to a path matching completely from the access to the pub-
lic transport system to the egress. A way to overcome this problem is to
enlarge the CS, including dominated paths that could be (in theory) con-
sidered irrelevant. To study this effect of partial coverage, we considered
CSs including paths based on short walking distance, and paths based on
long one. This will generate some partially dominated paths in the CS, as
a short walking path will not consider long walking stages; and a long
walking path will ignore using public transport services for very short dis-
tances.
In particular, for each trip we considered a CS formed by the union of
two CSs, based on a walking distance of 300 and 700 meters, respectively.
Figure 3.4 considers those larger CS including dominated paths related to
short and long walking distance. The ratio of perfect coverage goes up to
85.5%, i.e. almost two fifths of the partially covered trips are perfectly cov-
ered ((85.5 - 79.9)/14.6). This comes at the cost of a slightly worse precision,
i.e. the coverage grows slower in Figure 3.4 compared to Figure 3.2, prov-
ing that less relevant, actually dominated, paths are added. This analysis
shows that in 14.6% of trips, people preferred to walk less than expected
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Figure 3.4: Perfect CS coverage considering two different walking distances in
each CS (300 and 700 meters). Each CS is given by the union of two
CSs based on the two walking distances.

(max 700 m) and took an additional vehicle instead. Two fifths of those
14.6% of trips are identified, considering walks long less than 300 m. For
the remaining three fifths (9% of the trips), the additional vehicle replaced
a walk which would have been less than just 300 m (maybe also related to
crowded buses, or just mistakes).
In addition, denoting the mean walking distance of a user as mwd and its
standard deviation as swd, we analysed the distribution of mwd and swd
among the users. mwd has a mean of 240 meters and st. dev. of 118, while
swd has a mean of 225 and st. dev. of 170. These values show a large inter-
and intra-user variation of the walking distance, showing the considered
walking distance is dependent by external factors, as probably the location
or the weather.

3.6.7 Trips with transfers

We distinguish here the case of trips with transfers, to identify if there
are differences in the coverage with different information provisions. Fig-
ure 3.5 shows the coverage only for trips with transfers. The coverage for
line based CSs is comparable between the timetable and realized CSs. Re-
garding the vehicle based CSs, the realized performed better. In fact, the
realized CS considers the real available alternatives and can better capture



104 choice set generation for public transport

Figure 3.5: CS coverage for trips with transfers.

the available transfers. Nevertheless, the similar coverage for the line based
CSs shows that, even if the timetable CS is not able to identify the correct
vehicles, it can identify the correct lines. Finally, the current CS has less cov-
erage because it considers disturbances only for the first vehicle, therefore
considering unrealistic transfers.

3.6.8 Users’ heterogeneity

In this Section, we analyse the heterogeneity of the results of the proposed
analysis among the different users. In particular, we analyse the hetero-
geneity regarding the information provision and the heterogeneity on the
parameters of the route choice model, in terms of how the different travel
time components are valued. Further considerations on the heterogeneity
of considered walking distance are described in Section 3.6.6.

3.6.8.1 Heterogeneity regarding information provision

Figure 3.6 shows the heterogeneity of the coverage of different CSs among
the users. Each dot represents a user, located in the axis of the CS with
highest coverage. For 35% of the users (the overlapping dots in the center),
there is no difference in which information is provided, since the respec-
tive CSs are equally able to cover their trips. This probably shows that
these users did not experience any significant disturbance. For the remain-
ing users, the highest coverage is obtained with different information pro-
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Figure 3.6: CS with the highest coverage, for each user. Each dot represents a
user, and the axis indicates the CS with highest coverage (in case of
Timetable/Realized, and Timetable/Current, the two CSs perform
equally well). The distance from the center is the difference in cover-
age between the best CS (i.e. the axis) and the worst CS. The size of
the dot is proportional to the number of trips (users with less than 20

trips are not shown). For example, the rightmost dot is a user with
the timetable and current CS having equal coverage and 11% higher
than the one of the realized CS. The dots at the origin of the axes are
users for whom the three CSs perform equally well.

visions (22% by the timetable CS, 10% realized, 5% current, 28% timetable
and another), even if the timetable CS performs better for more users. In
other terms, generally, the timetable CS does not perform always best, and
different users rely on different information provisions.

3.6.8.2 Heterogeneity regarding route choice

As described in Section 3.5.4, we estimated a Mixed Path Size Logit model
to investigate possible panel effects. The computation time of this model
is much larger than the one of the Path Size Logit (respectively 90 min,
compared to 14 s on the same machine, an increase of more than 385-fold).
Table 3.7 shows the estimated coefficients for the timetable CS (similar con-
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Parameter µ t-test std t-test

In vehicle travel time (s)

Tram -1 -14.9 0.19 2.51

Bus -1.21 -13.8 0.33 6.48

Train -1.58 -7.57 0.96 8.05

Walking time -2.64 -26.4 0.64 8.17

Transfer time -1.02 -12.4 0.12* 1.44

No. of transfers -899 -21.4 18.5* 0.56

Path Size 62.1 2.21 38.7* 1.54

Observations 2719

Users 152

Draws 500

Null log-likelihood -7361

Final log-likelihood -2420

R̄2
0.67

Scaling factor 0.004

Table 3.7: Mixed Path Size Logit model estimates for line based timetable CS
with maximum size 40. Parameters distributed according to a normal
distribution. * indicates a non-significant parameter (|t| < 1.96). The
parameters are scaled (multiplied by the scaling factor) to have the
tram travel time coefficient equal to -1.

sideration can be made for the other CSs). The R2 value is slightly higher
than the one of the Path Size Logit (Table 3.5), proving a slight increase of
performances. The mean value of all coefficients is significant, and in line
with the value estimated by the Path Size Logit. Three of the coefficients
have a moderate variation among the users (st. dev. between 19 and 27%
of the mean value): the travel time in bus, in tram and the walking time.
Remarkable is the variation of the in-train travel time among the users
(st. dev. of 61%), showing that considering the train as a possible trans-
port mode depends strongly on the user. Finally, the standard deviation
of the transfer time and of the transfer penalty are not significant, show-
ing that there is no reason to treat these parameters as random and that
transfers are generally perceived homogeneously among the users. There-
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Clus- Users Tram Bus Train Walk Transfer Trans- Path

ter time fers Size

1 62 -1.10 -1.21 -1.55 -2.87 -1.07 -946 93.4

2 24 -0.98 -1.34 -1.82 -2.67 -1.08 -994 93.5

3 19 -1.02 -1.35 -1.45 -2.95 -1.06 -884 93.7

4 13 -1.10 -1.39 -1.15 -2.39 -1.06 -995 93.4

Table 3.8: Clustering of the users, based on the estimated coefficient of each cost
component, using the k-means algorithm. The average values for each
cluster are shown.

fore, from the moderate improvements of the R2 value, and from the low
standard deviation for most of the coefficients, we conclude that there is
not a remarkable heterogeneity among the users on perceived costs, except
regarding in-train travel time.
To understand if there are groups of users with similar perception of the
costs, we estimated the most likely values of the parameters for each user
(see Section 3.5.4) and we applied clustering on the users. We applied the K-
means algorithm considering 4 clusters, which corresponds to the highest
silhouette value (0.2). We considered 118 users, discarding the ones with
an outlier in one of the parameters (below the 2nd percentile or above the
98th). Table 3.8 shows the results of the clustering. Among the clusters, two
have more distinct characteristics: cluster 2 refers to people with a positive
preference for trams and negative for trains and transfers; while cluster
4 refers to people with a preference for trains and for walking. Despite
this, the low silhouette value indicates that within each cluster, there is
not perfect homogeneity among the users, and that the global heterogene-
ity between users (which is large only concerning the train coefficient, see
previous analysis) does not easily lead to groups with similar behaviour.

3.7 discussion and policy implications

In this Section, we discuss the results and related possible policy implica-
tions for transport planners and service providers.
The proposed work is based on a large-scale tracking survey, based on au-
tomatic data collection and mode detection. The high level of coverage of
the generated CSs and significance of route choice model estimation show
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the applicability of this dataset in real context. Therefore, this work proves
the feasibility for service providers to exploit location data provided by
smartphone applications, to automatically collect large-scale surveys with-
out burden from the users.
The novel CS generation algorithm obtained high precision in terms of cov-
erage and minimal required size, high quality of model estimation, and
high efficiency, in terms of computation time. This encourages the applica-
bility of the algorithm both for model estimation and route recommender
systems in practice. Several specific aspects regarding CSs, scarcely inves-
tigated in literature, also shed light on the choice process of users and
their practical implications. First, the relationship between the CS size and
the relevance of a path suggests that including more than 10 alternatives
does not change substantially the coverage and the route choice model
estimation significantly. This is relevant for transport planners, both for
modelling purposes, as considering smaller CSs to speed-up the following
analysis, and for policy making, as to show a sufficient number of alterna-
tives on a route recommender system.
Also relevant for route recommender systems is the finding that, gener-
ally, users consider alternatives as sequences of lines, and not vehicles. In
particular, in case of missed vehicle or connection, generally users have a
low en-route replanning and they rather seem to wait for the next vehicle.
This can be explained by a high service reliability; a lack of information for
the passengers; or that the passengers tend to stick to their original plan.
This is confirmed by the analysis of trips including transfers, showing the
similar performance of all analysed CSs, when coverage in terms of line is
considered.
In this work we analyse which information provision results in a CS, which
represents best the users’ behaviour. This has important policy implica-
tions, since it allows service providers to identify if their users rely on the
provided information to make their choices. As a consequence, providers
can adapt their information systems, for instance to improve route rec-
ommendation. In this sense, we assume that the information provision
resulting in highest coverage and better model estimation, is the one better
representing the general available information. The highest coverage and
best fit is obtained with no information, showing that in general users rely
on the timetable, rather than real conditions. This can be a signal suggest-
ing service providers to better inform their users. In this regard, delivery
time and correctness of the information might be improved; and/or the
information system in case of delays or disruptions might be enhanced.
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Moreover, information provision might be disregarded by users because
its inclusion on the choice process is perceived as an effort (Jiang et al.,
2019), and/or information is not deemed suitable enough, or sufficiently
targeted, to the specific needs of the travellers.
On the modelling side, these results show that, for operations with these
planned and operational characteristics, it is not necessary to use realized
operation data to build a CS. In addition, they suggest to transport plan-
ners and policy makers what is the current value of reliability in practice.
In fact, a highly reliable service can make users rely more on the usual
choices, and having less need, or consideration, for updated information.
The estimation of the Path Size Logit assuming perfect and current infor-
mation provided similar coefficients, showing that the disturbances in the
starting area of the trip are the most relevant in the choices of the users.
This suggests to policy makers to better exploit the possibility to counter-
act/notify disturbances at the begin of the users’ trips. In addition, assum-
ing the users have knowledge about disturbances, transfers are weighted
more (compared to assuming no information), meaning that direct paths
are preferred. This can be explained by a lower trust in the system in pres-
ence of disturbances, or by a greater preference for more comfortable paths
without transfers.
We observed the users’ heterogeneity, both in terms of perceived costs and
information provision. A low heterogeneity is found in the perceived costs
of the different travel time components, including transfers, but not for
the in-train travel time. It follows that, even if the preferred mode is user-
dependent, the perceived discomfort of a transfer is more uniform. There-
fore, transport planners can focus on improving the quality of transfers,
to decrease the general discomfort. Regarding the information provision,
we compared different CSs for each user. Based on that, we identified high
heterogeneity: different users rely on different information, despite the ma-
jority rely on the timetable. This result allows identifying which users are
more (or less) informed and can be a basis for a personalized recommender
system of a service provider. In fact, this suggests that certain specific users
might appreciate (or even need) more information, which can be faced
with personalized recommendations. Finally, users seem to have hetero-
geneity only in few aspects, namely the in-train travel time, and the con-
sidered walking distance. The latter variation is both inter- and intra-user,
and probably it depends on trip purpose. In other terms, it might be worth-
while to consider alternatives based on both short and long walks. In this
sense, route recommender systems should provide alternatives with differ-
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ent walking distances, or profile the users to understand the most likely
situation.

3.8 conclusions

This work presents an algorithm for efficient and precise computation of
choice sets in public transport networks. As such, it represents a first at-
tempt to study the users’ choices in public transport with realized data
of both passengers and operations. We exploit an automatic mode detec-
tion algorithm to collect travel data from a large amount of users for a
long time, without requiring an active participation. The knowledge of
what happened in reality allowed analysing precisely the users’ choices in
terms of public transport vehicles used. Our proposed computationally ef-
ficient CS generation algorithm is based on constrained enumeration, and
performs well according to a series of performance factors, as follows. The
running time of the proposed algorithm is a few seconds on a standard
computer. The algorithm obtained a coverage above 94% within the first
40 alternatives. The estimation of a Path Size Logit model resulted in a
high adjusted R2 (0.65) and reasonable parameters’ values, validating the
applicability of the generated CSs. In this respect, the high value of the
adjusted R2 can be explained by different factors: the nature and the size
of the dataset; the vehicle-based modelling of each alternative; the high
coverage of the CSs; users’ related factors.
We tried to fill the gap in literature, concerning the evaluation of the right
CS size and the relevance of a path. Therefore, we identified a size of 40 as
a reasonable maximum size to cover most of the observations and to un-
derstand the users’ behaviour. In addition, we can consider paths defined
as sequences of vehicles (or lines), with a different resolution compared
to the commonly used sequences of stops. The latter, in fact, do not dis-
tinguish among vehicles passing the same stops. The comparison between
line based CSs and vehicle based CSs hints at whether users reason in
terms of line or vehicles. The results suggest generally users base their de-
cisions on lines, and in case of a missed connection, they rather wait the
next vehicle, than follow a different route.
Different information provisions of the network conditions were assumed
for the users and the Path Size Logit model was estimated for each of them.
We observed that, for most of the users, considering no information on the
network conditions describes better their choices than assuming perfect
information or current information, in terms of both coverage and model
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estimation. This can be explained either assuming the passengers have no
information of the network conditions, or that they stick to an original
plan, based on the timetable. For trips with transfers, we observed the CS
based on no information captures well the lines taken, but not the vehicles
taken, where network information, such as delays, are needed.
We analysed the heterogeneity of users according to several aspects. Re-
garding perceived costs of the different travel time components, transfers
are perceived homogeneously among the users, while there is a high vari-
ability on the perceived cost of in-train travel time. We identified that, de-
spite the majority of the users rely on the timetable, different users rely
on different information provisions. Finally, we observed a large inter- and
intra-user variation of the considered walking distance.
For future work, we plan to integrate the CS generation algorithm with
different information provisions into simulation tools (Leng and Corman,
2020) or optimization models (Corman et al., 2017), considering passen-
gers’ route choice in public transport. The potential of Recursive Logit ap-
proaches has been reported to come at high computational costs. Future re-
search should investigate how improved graph modelling and estimation
methods would allow for the identification of the respective advantages
of the two approaches, as suggested in Zimmermann and Frejinger (2020),
and their complementarity in determining different implications for public
transport design and information provision.
Some assumptions related to the panel effects are worthwhile being inves-
tigated in future research: for instance, the possibility to exploit more in
depth the longitudinal behaviour of each user, beyond the small panel ef-
fects found, is of potentially great interest, to determine the impact of trip
purpose or external influences such as weather.
We also plan to explore other information provisions or adapted informa-
tion during a trip. Additional information on the amount of alternatives
considered by each user can improve the analysis of the CS size. In addi-
tion, we plan to compare the users’ choices with the available alternatives
in case of disruptions in the network, to identify how the users react to
disturbances and in which cases a user sticks to a plan, or changes it.
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Additional notes to this chapter

In this thesis, we do not make a rigorous distinction between the terms
"disturbance" and "disruption", and we mainly use the first. Instead, in
this chapter, we use the term "disruption", since it is used in the published
article.
Section 4.4.2.1 summarizes a previous version of the choice set generation
algorithm proposed in Chapter 3, using slightly different values for the
parameters.
Some aspects of this chapter are clarified in the appendix of the thesis (see
superscript [Thesis Appendix]).

4.1 abstract

Public transport networks (PTN) are affected daily by different types of
disturbances. In fact, between a single delay and a long service interrup-
tion, there is a range of disruptions with different impacts, depending on
their characteristics. Despite this, in literature, the common definition of
disruption is a link closure for a certain amount of time. Low interest is
given to different types of disruptions or to the connection between delays
and disruptions. In addition, in multimodal PTN a physical link closure
is not always observable, but rather people experience delays or cancelled
stops on different lines. The aim of this work is to explore the relation-
ship between delays and disruptions, analyzing different degrees of dis-
ruptions, in relation to duration, delay, size, and network characteristics.
Real disturbances of the PTNs in Zürich and Bern, Switzerland, are ana-
lyzed to identify disruptions with different characteristics. Therefore, the
disruption impact is computed on simulated origin–destinations (ODs),
based on the sets of possible paths with and without the disruption. For
this purpose, a choice set generation algorithm is used. Finally, relation-
ships between the disruption characteristics and the impact are analyzed
to identify the main features of a disruption.

4.2 introduction

Public transport networks (PTN) are characterized by daily unexpected de-
lays or cancelled trips. The impact of each of them depends on multiple
factors, such as network characteristics and the entity of the disturbance.
For instance, a cancelled trip of a bus travelling in a city center has a differ-
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ent impact than a bus travelling in a rural area. In addition, combinations
of delays and failed trips can affect particular areas of the PTN more than
single disturbances. Typically, a major exceptional event, in relation to du-
ration and effects, is defined as a disruption. Nevertheless, there is not a
clear distinction between small and big disruptions, but rather there is a
continuous range of disruptions with different impact.
To discuss such a continuous spectrum of disruption it is proposed in this
paper to relate a measurable quantity, that is, a disruption impact, with
characteristics (features) of the disruption which can determine and ex-
plain most of the impact. In that way, knowing the characteristics of a
disruption, public transport providers can proactively update operations
to better deal with such events. An impact quantification would allow pos-
sible actions as: identification of critical locations and times and where to
increase operational margins in running time or reserve vehicles; specific
attention to some passenger groups which happen to be more vulnerable;
and optimal response whenever a disruption has been just identified, in-
cluding targeted alerts for passengers.
To identify different disruptions, real disturbances of the Zürich PTN and
Bern PTN are extracted from one year of automatic vehicle location (AVL)
data reporting planned and realized arrival and departure time at stops,
and grouped through a clustering algorithm (1). Therefore, the impact of
each disruption is estimated on different origin–destinations (ODs), con-
sidering a range of possible paths for the passengers. A disruption impact
measure is defined, based on a discrete choice model and comparing the
choice set of available alternatives in case of disruption with the one in
case of no disturbance. Finally, the relationships between the disruption
characteristics and the impact are analyzed through machine learning and
feature importance metrics.

4.3 state of the art

In previous works, the definition of disruption in PTN is generally sim-
ple and network based. Typically, a disruption is described as a node or a
link failed for a certain amount of time, without traffic admitted through
it (Cats and Jenelius, 2014; Rodríguez-Núñez and García-Palomares, 2014).
This definition can be consistent with a railway/metro network and with
long disruptions. Instead, for multimodal networks including buses, a dis-
ruption can be better defined from the operational perspective, taking into
account delays or missed trips. In this regard, Sun and Guan (2016) ana-
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lyze vulnerability from line operation perspective, but they consider only
a metro network and a disruption as formed by cancelled trips.
In the literature of transport disruptions and vulnerability studies, few
works examine public transport networks compared with road networks
(Mattsson and Jenelius, 2015). In addition, most of them are focused only
on metro or railways, instead of considering a multimodal PTN (Lu, 2018;
Rodríguez-Núñez and García-Palomares, 2014; Van der Hurk, 2015). In
that area, they analyzed the users’ behavior in a multimodal network, but
they considered only railway disruptions (Leng and Corman, 2020).
Most of the previous works are focused on identifying critical links or sta-
tions and less attention is given to analyzing the impact of disruptions with
different characteristics. Burgholzer et al. (2013) described a disruption by
its duration (2 h the smallest), its time of occurrence and the capacity re-
duction. Cats and Jenelius (2018) analyzed the relation between the extent
of capacity reduction and its consequences on PTN performance, but they
did not examine other disruption characteristics. One of the few works
considering different characteristics of a disruption is Jenelius (2009), even
if on a road network (e.g., road density, user travel time, traffic flow). He
investigates the dependence of the effects of link closure on several indica-
tors using a regression model.
Focusing on the methodology, Mattsson and Jenelius (2015) identified two
distinct traditions in disruption analysis: topological vulnerability anal-
ysis, based on the topological properties of the transport network; and
system-based vulnerability analysis, which represents also the demand of
the transport systems. In the first group, Angeloudis and Fisk (2006) study
the degree distribution of different subway networks and they simulate
attacks on the stations to analyze the network robustness. In the second
group, the interaction between demand and supply is simulated by means
of transport system models. Typically, the passengers’ behavior is mod-
eled as the shortest travel time or using discrete choice models (Cats and
Jenelius, 2014; Lu, 2018; Rodríguez-Núñez and García-Palomares, 2014;
Van der Hurk, 2015). Therefore, the impact of a disruption is primarily
measured based on the whole traffic in the network (Burgholzer et al.,
2013; Cats and Jenelius, 2014; Cats and Jenelius, 2018). Computing the im-
pact on passengers based on realized automated fare collection (AFC) and
realized disruption (i.e., a complementary approach based on observed
passenger choices) has been proposed concurrently to the present work,
for larger and planned disruptions (Yap, 2020). To the best of the authors’
knowledge, the impact is never analyzed on single ODs or considering the
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entire choice set of a user.
A key missing aspect in literature is the analysis of short disruptions (in the
order of minutes), although they are the most frequent disruptions people
experience in daily trips. In addition, the relationship between disruptions
and operational delays is seldom analyzed. Instead, it is reasonable to think
that they are linked phenomena and there is not a strict boundary between
them.

4.4 methods

The methods used to understand the impact of different types of disrup-
tions on a PTN are schematically represented in Figure 4.1, and they can
be divided into three parts. First, the concept of disruption is defined and
several disruptions are identified from the AVL data; second, the impact
of the disruptions is computed, based on a choice set generation algorithm
and a behavioral model, applied to simulated ODs; third, disruptions’ fea-
tures are extracted and the relationships between them and the disruption
impact are analyzed, through machine learning and features importance
metrics.

4.4.1 Disruption Identification

The definition of a disruption as a (physical) link closure is not realistic
in the case of a multimodal PTN. In fact, the network traffic is character-
ized by delays or missed stops (i.e., a bus that did not stop at a stop), that
cannot all be described by a physical link closure (intended as no traffic
allowed between two or several stops at a certain moment). Therefore, a
new definition of disruption is necessary, able to include delays and failed
trips, and to represent both short and long-term disruptions. An event is
defined as an arrival of a public transport vehicle at a stop (considering
departures does not change the analysis significantly). Therefore, a disrup-
tion is defined as a set of delayed or failed events near to each other in time
and space. This definition is not strict, but it allows both to connect delays
to disruptions and to determine many characteristics for disruptions, of
which impact can be analyzed afterwards. For ease of understanding, a
disruption is referred to as the cooccurrence of several disturbances in a
certain area in a certain time.
To identify real cases of disruptions, AVL data are used, seeking clusters
of delayed or failed events. To find the clusters, the ST-DBSCAN algorithm
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Figure 4.1: Graphical scheme of the proposed methods. AVL = automatic vehicle
location; ODs = origin–destinations.

is used (Birant and Kut, 2007). This algorithm is a variant of the cluster-
ing algorithm DBSCAN, used to cluster spatio-temporal data. DBSCAN
is a density-based algorithm that groups together points close to each
other, based on a distance metric. In ST-DBSCAN both a spatial distance
and a temporal distance are used, to form clusters of points (representing
events) close in time and space. Given a set of delayed or failed events,
ST-DBSCAN is able to detect groups of related events that satisfy the defi-
nition of disruption.
The algorithm takes in input the following parameters:

• P: set of points to cluster, with two spatial and one temporal coordi-
nates (i.e., latitude and longitude of the stop, and time of the event)

• epsSpace: maximum spatial distance to consider two points as near

• epsTime: maximum temporal distance to consider two points as near

• minPoints: minimum number of points within epsSpace and epsTime
to form a cluster

Therefore, the output is a label assigned to each point (event), representing
its cluster. A point can also be marked as noise if it is not part of any cluster.
In that way, an isolated event is not considered as part of any disruption.
The parameter epsSpace regulates the spatial aggregation of the events in
a disruption. Since each event is located in a stop of the network, epsSpace
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determines if near stops can be part of the same disruption. epsTime be-
haves similarly in time.
Referring to one day of service, P is defined as the set of all the events with
a delay ≥ minDelay. Failed events are considered as delayed events with a
delay equal to the time difference with the next same event (same line at
the same stop). The parameter minDelay acts as a threshold for too-small
delays, since it is assumed they have a marginal impact compared to others.
Furthermore, the ∆ε parameter of the ST-DBSCAN is not used (∆ε = ∞).
For a detailed description of the algorithm, refer to Birant and Kut (2007).

4.4.2 Disruption Impact Evaluation

Since the aim is to consider also short disruptions (in the experiments
minDelay is set = 6 min), it was decided to evaluate the impact of a dis-
ruption only on ODs directly affected by it, without considering capacity
constraints or a full OD matrix of the network. Therefore, ODs were con-
sidered with Origin in the center of mass of the disruption, departure time
at its beginning (the planned time of the first event of the disruption), and
Destination chosen randomly among the stops of the network. The begin-
ning of the disruption is chosen as departure time, since it is believed it
is the time most affected by the disruption. In fact, an earlier departure
allows considering alternatives starting before the disruption, while a later
departure discards the first disrupted events.
For each OD, two choice sets are generated to model the possible paths
with and without the disruption. Using the whole choice set, instead of a
single optimal path, can better describe the disruption impact, since more
possibilities for the user are taken into account.

4.4.2.1 Choice sets generation

Since the used choice set generation algorithm is not the focus of this pa-
per, only the most important details of it are reported.
Two choice sets are generated: one based on the timetable (Timetable Choice
Set), without considering disturbances in the network; the other consider-
ing as the only disturbances in the network the events of the disruption
(Disrupted Choice Set). In this way, the impact of a disruption can be eval-
uated comparing the two sets of alternatives for an OD.
The PTN operations were modeled from the AVL data as a schedule-based
model, using a time-expanded (diachronic) graph to represent each single
trip of each vehicle. Nodes correspond to the arrival or departure of a pub-
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lic transport vehicle at a stop, while arcs model the trips and the available
transfers. The procedure to build the two choice sets is the same, since the
difference is only in considering the disturbances to build the graph. In par-
ticular, a missed stop is modeled removing the related service nodes and
arcs from the diachronic graph based on the timetable. A delay is modeled
increasing the travel time (the weights of the arcs) and adjusting the possi-
ble transfers. The Origin and the Destination are connected to the network
through walk arcs. The Origin is connected to all the nodes departing in
near stops after the starting time of the trip. The Destination is connected
to all the vehicles arriving at near stops.
To model the users’ choices, a path-based assignment model was used,
explicitly enumerating the relevant paths through a choice set generation
algorithm. In particular, the algorithm is part of a well-known family of al-
gorithms for choice set generation, called constrained enumeration (Bovy,
2009; Cats, 2011; Tan et al., 2007).
The proposed algorithm enumerates all the possible combinations of vehi-
cles available for each OD and generates a feasible path for each of them.
Given the amount of ODs that are analyzed in this work, and that two
choice sets need to be generated for each OD, some constraints must be set
to reduce the computation time. In particular, three maximum transfers
are allowed; the maximum waiting time is 30 min; the maximum transfer
distance is 350 m (used also to identify stops near the Origin and the Des-
tination); and only the paths with a duration less than twice the one of
the best path are considered. These constraints are also used in previous
works and their values are assumed realistic for the transport systems of
the two cities considered in this work (Cats, 2011; Nassir et al., 2015).
In addition, standard consolidation of paths is performed, removing unre-
alistic dominated paths, such as those having loops, using the same stop
twice, or using additional vehicles compared with other paths, resulting in
a longer travel time. Out of the set of paths using the same lines but differ-
ent vehicles, only the shortest one was considered (i.e., if it is possible to
take the first arriving vehicle of a line, it is assumed there is no reason to
wait for the next). In relation to overlapping lines, that is, with some or all
stops in common, they were considered as different alternatives. In fact, it
is not obvious when to consider two lines overlapping. Since it is possible
to get on (or transfer to) a certain vehicle from different stops, lines doing
a common path can still be taken doing two different paths.
As the last parameter, the walking speed for transfers is set to 1.4 m/s.
Instead, the walking times from the Origin to the first stop, and from the
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last stop to the Destination are set to 0. This ensures that all the stops
near the Origin are reachable at the departure time (the beginning of the
disruption). In addition, since the Destination is a stop in the network,
considering a walking time would have penalized near stops and lines not
stopping exactly at the Destination.
In conclusion, with the presented constraints, the proposed algorithm is
able to generate two choice sets for each OD, containing a path for each
possible combination of vehicles to use. These two sets represent the avail-
able alternatives with two different conditions of the network: without any
disturbance and in case of disruption.

4.4.2.2 Disruption Impact

The impact of a disruption on a certain OD was defined based on random
utility theory and the multinomial logit model. The impact is defined as
the difference of the weighted average travel cost of the two choice sets
(Equation 4.1). The equation represents the difference of travel cost in case
of disruption (first term) with the case of no disruption (second term). The
cost of each path is weighted by the probability to use it, computed using
the multinomial logit model. In particular, the unnormalized probability
of choosing a path j in a choice set is equal to e−βCj . Therefore, the lower
the cost Cj, the higher the weight for this path. The underlying assump-
tion is that people choose different paths to reach a destination, and the
percentage of people choosing a certain path decreases with the cost of it.
Full information on the disruption is assumed for the user (i.e., the user
knows the available alternatives). The cost function used Cj is the travel
time with a transfer penalty of 5 min and the calibrated parameters are
based on Montini et al. (2017). Douglas and Jones (2013) reviewed trans-
fer penalty estimates in literature and they showed there is not a common
used value, even if most of the estimates range between 5 and 9 min of
travel time.

impact (od, dis) =
∑j∈P(od,dis) e−βCj Cj

∑j∈P(od,dis) e−βCj
−

∑j∈P(od) e−βCj Cj

∑j∈P(od) e−βCj
(4.1)

P(od, dis) = choice set for the given od and disruption. (4.2)

P(od) = choice set for the given od without any disruption. (4.3)

Following, a numerical example evaluating the disruption impact is re-
ported
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Two alternatives are available for a certain OD, A and B, with respective
costs CA = 5 and Cb = 10 min. It is assumed β = 0.1 for simplicity. .
Therefore, the second term of the impact (i.e., average travel cost without
disturbances) is equal to 6:89.
A disruption causing a delay of 5 min is assumed to the alternative A (e.g.
CA = 10). The first term of the impact (i.e., average travel cost in case of
disruption) would be equal to 10, and therefore, impact = 3.11 min. In
conclusion, in this toy example a delay of 5 min in one of the alternatives
caused an impact of 3.11 min to the OD. Nevertheless, if the delay would
have affected the alternative B, the impact would have been only 0.8 min.
This shows that a disruption affecting a less costly path has a higher im-
pact.
In relation to passengers’ information on the disruption, it was decided to
assume full information instead of no information, since the former can
describe better the resilience of a system, in relation to providing a good
quality service and alternatives in case of disruptions. In fact, assuming no
information, in case of a line failure or a very long delay, the passengers
would still wait for the failed service, even if a much better alternative were
available. Nevertheless, the full information case can assume a specific con-
nection is known, available only thanks to a delay. Finally, analyzing some
sort of partial information is left for a future work, given the additional
challenges and assumptions to take into account.

4.4.3 Features Analysis

Analyzing the relationship between an OD and the impact of a disrup-
tion, it is possible to determine how much the impact of the disruption
on the OD depends on its characteristics and which of these are more
important[Thesis Appendix 6]. First, 21 features were extracted for each OD,
describing size of the disruption, duration, service frequency, network met-
rics, and other characteristics of the disruption and the OD. The list of fea-
tures is shown in Table 4.1. The similarity between two trips is defined as
the number of common stops divided by the average number of stops of
the two trips. Therefore, the feature’s importance in predicting the impact
is analyzed computing the mutual information (MI) and using random for-
est regression[Thesis Appendix 7]. The mutual information is a measure of the
amount of information one random variable contains about another (Cover
and Thomas, 2006). Given two random variables X and Y, the mutual in-
formation is the following:
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Feature MDI MI Description
Frequency 0.078 0.203 Number of events per day (AVG)
Closeness 0.039 0.203 Closeness centrality (AVG)
OutDegree 0.047 0.181 # of reachable stops (AVG)
Betweenness 0.050 0.180 Betweenness centrality (AVG)
NumLines 0.079 0.156 # lines running at the stop (AVG)
ChoiceSetSize 0.119 0.146 Size of the timetable choice set
AvgTransfers 0.047 0.133 Avg. # of transfers in the timetable choice set
Events/Perimeter 0.034 0.133 # events / disruption perimeter
TripsSimilarity 0.048 0.131 Avg. similarity between disrupted trips
AvgTravelCost 0.079 0.122 Avg. travel cost in the timetable choice set
ClosenessDest 0.073 0.110 Destination closeness
Distance 0.080 0.098 OD distance
AvgDelay 0.044 0.087 Delay (AVG)
BetweennessDest 0.062 0.079 Destination betweenness
TotalDelay 0.042 0.062 Sum of delays of the disruption events
BusPercentage 0.001 0.048 % of buses involved respect to other means
TramPercentage 0.001 0.046 % of trams involved respect to other means
Duration 0.025 0.041 Disruption duration
Trips 0.016 0.031 # vehicles involved
Events 0.014 0.030 # events
TrainPercentage 0.001 0.021 % of trains involved respect to other means

Table 4.1: Feature Importance: Features Rankings Based on Mutual Information
(MI) and Mean Decrease Impurity (MDI). AVG = the feature is com-
puted as the average among the events of the disruption. Features are
sorted by MI.

MI (X, Y) = ∫X ∫Y p (x, y) log
(

p (x, y)
p (x) p (y)

)
dx dy

This metric determines the similarity between the joint distribution p(x, y)
and the product of the marginal distributions p(x) and p(y). In fact, if the
two variables are independent, MI(X, Y) = 0.
Therefore, it is possible to rank the features by their mutual information
with the impact.
Applications of this metric for a related task can be found in Chandrashekar
and Sahin (2014). Indeed, present different feature selection methods, in-



128 impact of public transport disturbances

cluding methods based on MI, to rank features by their importance. Nev-
ertheless, this measure does not capture the relationships among features
and it is possible that a feature has a high importance only if combined
with others. In contrast, a random forest regression considers multiple fea-
tures in one single model. To fit the regression model, 67% of the dataset
was used as training set and cross-validation to estimate the parameters.
The regression can show how much the features are able to describe the
impact, and can rank them based on a metric called Mean Decrease Impu-
rity (MDI) (Breiman, 2002; Louppe et al., 2013). Considering a feature x, its
MDI value is computed as follows:

MDI(x) =
1
|T|∑T

∑
n∈T:v(sn)=x

p(n)∆i(sn, n)

where T is the set of trees in the forest; n is a tree node such that the split
(sn) is made on the feature x; p(n) is the proportion of samples reaching n;
∆i(sn, n) is the decrease (difference) of the considered impurity measure af-
ter the split sn. In case of regression tree, i is the variance. For more details
on feature importance in random forest, refer to Louppe et al. (2013). It is
necessary to remark that particular attention must be given to correlated
features, since this metric tends to distribute their importance.
These features have been preliminarily selected based on practical input
and relevance, and review of the existing literature. Of course, a larger
set of features could be considered, even though including additional fea-
tures can reduce the interpretability of the results (in particular of the MDI)
and cause overfitting. Therefore, a feature is included among the proposed
ones, based on the following criteria: the feature describes a main disrup-
tion characteristic (as avgDelay, centrality measures, events); the feature
has high importance (top part of the list); the feature has little correlation
with the others (e.g., closenessDest, busPercentage, choiceSetSize). Among
the excluded features none of them is considered worthy of mention. How-
ever, including different features does not impact the methodology of this
work.

4.5 experiments and results

4.5.1 Disruption Identification

For the experiments, 9 months (January 2018 to September 2018) of AVL
data of the city of Zürich (≈ 64 million of events) were used to analyze
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realized disruptions (Swiss Federal Office of Transport, 2020). These data
are provided as open data from the Swiss Federal Office of Transport, and
were used in other studies, confirming their validity (Büchel and Corman,
2019; Marra et al., 2019). In particular, Marra et al. (2019) showed how
the same AVL data can be used to improve a mode detection algorithm,
compared with using timetable data. Therefore, despite no report on the
accuracy being provided, and it is not possible to exclude any error during
the data collection, it is considered the data represent reasonably the real
events in the network.
In Section 4.5.4, similar analysis is presented on the city of Bern. To identify
disruptions with the ST-DBSCAN algorithm, for each day, all the events
with a delay ≥ 6 minutes (minDelay) are selected for clustering. A thresh-
old of maximum 3 h of delay is also considered to filter possible errors in
the data.
The following values are assigned to the ST-DBSCAN parameters: MinPoints
= 6, epsSpace = 250 m, epsTime = 4 min. How these values were chosen is
explained in Section 4.5.3. In our experiments, 2955 disruptions were de-
tected (≈ 11 per day).
The disruptions were detected out of data spanning 9 months of service.
Each day has a slightly different timetable, but, to allow comparisons, all
those disruptions were projected to a "template" timetable, which is the
same for all disruptions. In other terms, to avoid bias because of different
timetables (e.g., during weekends or adjustments because of maintenance
services), the disruptions considered in this analysis were only those with
events (i.e., a public transport vehicle servicing a stop at a certain planned
moment) that have been planned (and would have happened) also on a
normal working day, which has been fixed w.l.o.g. to the October 1, 2018

(1,622 disruptions). If a disruption involves events not happening in that
"template" day (e.g., a bus running only on Sunday), it is discarded from
the analysis. Considering a different working day does not change signifi-
cantly the results.
The spatial distribution is shown in Figure 4.2. It can be seen that most of
the disruptions are located near the city center or railway stations.
Figure 4.3 presents the distribution of number of events and average delay
per disruption. The number of events seldom becomes very high (≥ 20),
leading to clusters formed by events close to each other. This is also shown
by the average number of stops involved in a disruption, which is 2.75. In
relation to the amount of delay, the analyzed disruptions have a median
of average delay of ≈ 10 min, showing that the analysis is focused mainly
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Figure 4.2: Distribution of disruptions in Zürich (from January 1, 2018 to
September 30, 2018). Source: Map from openstreetmap.org.

Figure 4.3: Distribution of number of events and average delay per disruption.

on small disruptions. In relation to the types of mode, on average, 97% of
disruptions involve buses and trams, and 3% involve trains. The number of
train disruptions is low because only 5% of the events (arrival of a vehicle
at a stop) are made by trains in Zürich.
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4.5.2 Disruption Impact Analysis

To evaluate the impact of the identified disruptions, for each disruption
15 different random ODs are created and the impact on each OD is com-
puted, as explained in Section 4.4.2. Large choice sets were limited to the
top 100 paths. The ODs not affected by the disruption (i.e., none of the
vehicles involved in the disruption is ever used to reach the destination)
are discarded (17%). In total, 19,731 OD pairs were analyzed.
It is necessary to remark that, since the impact function is based on the
multinomial logit model, a disruption can also have a negative impact. For
instance given an OD, if a disruption affects the worst path in its choice
set, the probability to choose a better path increases, reducing the average
travel cost.
The relationship between the features of each OD and the impact are ana-
lyzed as explained in Section 4.4.3. The random forest regressor gives an
R2 = 0.41. It is hard to assess the goodness of fit of the regression, since
there are no studies with which to compare the results. Nevertheless, it
is remarked that the main focus of this work is not the development of
a prediction model, but to assess if it is possible to explain the impact of
a disruption from its characteristics. Therefore, it can be appreciated how
41% of the variance in the disruption impact can be explained by the identi-
fied features. This proves that it is possible to (partially) predict the impact
of a disruption (as defined by the authors) from its characteristics.
Given that two choice sets need to be computed for each OD, the num-
ber of possible ODs to analyze is limited in this paper by computational
constraints. Therefore, the size of the dataset was selected when the corre-
sponding model does not perform significantly better than a model based
on a lower size. Namely, considering half of the dataset (9,865 ODs), the R2

of the regressor decreases by 6%; while considering three-quarters of the
dataset, it decreases by only 4%. Given that the full dataset, considering
15 ODs per disruption, does not perform significantly better than a sub-
sample of it, it is assumed that considering even more ODs may still not
significantly affect the results and the conclusions.
The results of the features importance analysis are shown in Table 4.1.
Given the complexity of the task and the high correlation among the fea-
tures, the values in Table 4.1 must be judged as useful to make general
conclusions and not as strict rankings[Thesis Appendix 8]. One of the most rel-
evant features in both the metrics is the f requency (of service). This proves
that a high-frequency service can contrast delays or single failures. Slightly
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less important are three network metrics (out-degree, closeness, and be-
tweenness centrality), proving that the impact of a disruption depends on
its location and connectivity in the network. These metrics are computed
on a static network with a node for each stop and arcs weighted by the
travel time. Two stops are connected if they are connected by a service
or if they are distant by less than 350 m. Despite a high MI, they have a
lower MDI for their high correlation among them and other features. The
disruption density (events/Perimeter) has a moderate influence, showing
that an increase of disturbances in the same area has a greater impact. In-
stead, features with a lower influence are the duration and the number of
events of the disruption. It is interesting that network metrics of the desti-
nation do not have a high influence on the impact, proving that it is more
important to go away from the disrupted zone. Finally, the type of mode
involved in the disruption is not relevant (trainPercentage, tramPercentage,
busPercentage).
The relationships between some of the features and the impact are shown
in Figure 4.4. The impact decreases with higher f requency, choiceSetSize
and outDegree. This is realistic, since high values of these features corre-
spond to a better quality of service in the disrupted area. With the increase
of betweenness, the impact first slightly decreases, but then it increases
again. This shows that a disruption has higher impact in a poorly con-
nected area or in a hub, and less in intermediate zones. Considering the
delays of the disruption events, the impact increases with avgDelay un-
til a certain value (≈ 17 minutes), then an increase of delay is no longer
important. Finally, the impact decreases with numLines. This shows that
if several lines are available in the disrupted area, a disruption has lower
impact.
To make the analysis as realistic as possible, it is based on a behavioral
model, considering the set of available alternatives. In this sense, the val-
idation of the proposed methods with realized passengers’ data, such as
AFC data or tracking data, can strengthen the findings.
Nevertheless, this validation leads to additional challenges, such as the
identification of passengers affected by the disruption; the retrieval of in-
formation on the initial plan; and the delay estimation for each passenger.
Therefore, this type of validation is left for a future work.
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Figure 4.4: Relationships between features and impact.
ODs = origin-destinations.

4.5.3 Tuning of the Disruption Identification Parameters

Since the aim is to identify disruptions with different characteristics, there
is not a specific target to tune the parameters of the disruption identifica-
tion algorithm. Nevertheless, some boundaries must be respected to obtain
feasible results. In particular, for each day, the algorithm must both identify
disruptions and not report too-broad clusters. In fact, too-strict values lead
to no disruption identified; in contrast, slack values lead to big disruptions
expanding in the network. To tune the parameters, the disruptions which
were analyzed were those identified with different combinations of values
for the four parameters in a tuning period of 30 days: minDelay ∈ {4, 6, 8};
epsSpace ∈ {150, 250, 350}; epsTime ∈ {2, 4, 6}; minPoints ∈ {4, 6, 8}. The final
values (in bold) were chosen as follows:
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Zürich Bern

Area considered (km2) 330 64

Public transport stops 987 365

Bus/tram lines 126 25

Events per day (≈) 235,000 73,700

Avg # connected stops per stop 5.34 4.53

Std # connected stops per stop 3.7 3.8

Avg stop distance (meters) 1,156 735

Table 4.2: Zürich and Bern Public Transport Networks (PTNs) comparison. The
Bus/tram lines referred to are those that provided automatic vehicle
location (AVL) data in the analyzed period.

• epsSpace = 250. (Using 150 leads on average to less than two stops
per disruption; and using 350 leads to less than two events per stops.))

• minPoints = 6. (Using 4 leads on average to 47 disruptions per day
[that can be considered unrealistic]; and using 8 does not identify
disruptions in most of the cases [59% of the analyzed days].)

• minDelay = 6. (Using 4 leads on average to 48 disruptions per day
[unrealistic]; and using 8 does not identify disruptions in most of the
cases [55% of the analyzed days].)

• epsTime = 4. (Given the chosen values of the other parameters, epsTime =
2 does not identify any disruption in 59% of the days; and 6 leads to
events less close in time compared with 4 [disruptions 55% longer];
therefore 4 is preferred to analyze more compact disruptions.)

With the selected parameters, in the tuning period, disruptions were iden-
tified in 66% of the days, with an average of 8.35 disruptions per day and
a maximum of 64 in one day. Each disruption has an average of 9.4 events
and 1.4 missed stops, and the median of its events’ delays of 10.2 min.
Given the high number of events per day (Table 4.2), the number of disrup-
tions per day is not considered to be too high.
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Figure 4.5: Distribution of disruptions in Bern (from 01-01-2018 to 31-12-2018).
Source: Map from openstreetmap.org.

4.5.4 Bern Network Analysis

To strengthen the results with respect to a possible bias because of the spe-
cific PTN, the same analysis was repeated for a different city of Switzer-
land, Bern. The major differences between the PTN of the two cities are
highlighted in Table 4.2. The network of Bern is smaller in relation to area
and service, and the geographical characteristics of the cities are also dif-
ferent, given, for instance, the presence of the lake in Zürich. The same
disruption identification algorithm was applied in Bern, considering data
of all the days in 2018. Therefore, 376 disruptions were analyzed and their
distribution is shown in Figure 4.5. As in Zürich, the highest number of
disruptions is near the main station. For the impact analysis, 20 different
ODs were selected per disruption. After discarding ODs not affected by
the disruption, a total of 5,897 ODs were analyzed. The random forest re-
gressor gives an R2 = 0.60, that is higher than the one from Zürich. This
can be explained by the smaller size of the PTN in Bern; therefore, it is
easier to identify heterogeneity among different disruptions’ locations.
The feature importance analysis is shown in Table 4.3. Comparing Table
4.1 and Table 4.3, the order of the features is similar for both the tables
(with some exceptions). This demonstrates that the features of an OD can
explain the disruption impact independently of the PTN. In this sense, it
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Feature MDI MI Feature MDI MI

Betweenness 0.067 0.474 Duration 0.054 0.209

Closeness 0.056 0.473 AvgTravelCost 0.069 0.167

Frequency 0.056 0.467 Trips 0.021 0.142

OutDegree 0.039 0.381 BusPercentage 0.009 0.131

TripsSimilarity 0.040 0.363 TramPercentage 0.007 0.118

Events/Perimeter 0.033 0.357 ClosenessDest 0.052 0.103

AvgDelay 0.046 0.308 Events 0.023 0.097

TotalDelay 0.054 0.265 Distance 0.072 0.096

ChoiceSetSize 0.115 0.258 BetweennessDest 0.049 0.087

NumLines 0.083 0.255 TrainPercentage 0.002 0.074

AvgTransfers 0.056 0.234

Table 4.3: Bern feature importance: Features Rankings Based on Mutual Infor-
mation (MI) and Mean Decrease Impurity (MDI). Features are sorted
by MI.

can be confirmed that the frequency of service, the choice set size, and net-
work metrics play a key role on the disruption impact. In conclusion, this
section showed that the same analysis can be applied to different networks,
obtaining similar results.
Despite testing the analyses with two different PTNs, it is acknowledged
that the whole variety of cases was not covered. PTNs in different countries
are subject to different regulations and developed in different manners. In
addition, they can include different transport modes, such as a metro sys-
tem. On the contrary, the Swiss public transport system is characterized by
a short distance between the stops and a high reliability of service. Given
that, it is remarked that the methodology is independent of the specific
test case, while the tuning of the disruption identification algorithm and
the feature importance values may be subject to variations. Given the ob-
jective effort in the collection and evaluation of long-term AVL data, the
analysis of additional PTNs was left for future work.
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4.6 conclusion

The classical definition of PTN disruption as a physical link closure has
been overcome in this study. A new definition is given, based on the combi-
nation of delays and missed stops, to represent disruptions with different
characteristics and relate them with small disturbances in the PTN. This
approach allows analyzing the impact of a disruption from small distur-
bances, and considering their co-occurrence as the actual disruption. In
fact, it was identified that the amount of delay has a positive influence on
the impact of a disruption, but only until a certain value. In addition, the
heterogeneity of the generated disruptions allowed the analysis of both
small groups of delays and big disturbances in the network. AVL data of
the cities of Zürich and Bern was used to identify real cases of disrup-
tions. This fills the gap in the literature on short (in the order of minutes)
disruptions analysis in multimodal public transport. The focus was on
road-based public transport services, as they occur more frequently in the
dataset and the statistical strength of the analysis is larger. An extension
to other modes, such as railways or metros, is of course possible. Possibly
some ad-hoc adjustment of the disruption identification will be needed, to
include also topological proximity, in case of track-based systems; but it
is felt that the proposed methods are still valid to analyze these specific
disturbances.
An additional aspect in this analysis that differs from the literature is the
level of detail. Instead of computing the disruption impact on the whole
network, it was modeled on single ODs affected by the disruption, based
on two different choice sets, allowing consideration of the impact at a fine-
grained level and analysis of it for different types of OD. Therefore, a
choice set generation algorithm was used to generate the possible paths
with and without disturbances in the network. It was shown for Zürich
that there is a strong relationship between the impact of a disruption and
its characteristics, and the disruption characteristics were ranked accord-
ing to their influence. In particular, the service frequency, the choice set
size of the considered OD, and network metrics of the disruption area play
a key role in the disruption impact. In contrast, destinations’ metrics are
less important. An interesting finding is that the size and the number of
events in a disruption are less relevant than the characteristics of its loca-
tion. Finally, the analysis was repeated on a different city, Bern, showing
that the main findings can be generalized and they are not limited to the
particular case study.
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From an industrial perspective, this paper helps operators in strategic
analyses, by providing quantitative assessment of the impact of differ-
ent disruptions in a PTN, thus prioritizing contingency measures, such
as keeping suitable vehicle reserves, or providing sufficient buffer times in
operations[Thesis Appendix 9]. From an operational perspective, the quantita-
tive framework proposed can be triggered in real time to determine if mea-
sured delays are normal variations to be absorbed by existing buffer times;
or if, instead, they need to be managed with specific processes (such as
contingency plans or re-scheduling). For instance, a real-time impact com-
putation of all events can be continuously computed, and only those events,
that together will determine a large impact to passengers, prioritized for
operator response. In this sense, operators can base their decision weight-
ing the disruption impact by the relevance of the affected ODs. Finally, as a
measure of analysis and evaluation, such a study allows authorities to de-
sign a passenger-based quality control, where not only operational aspects
are considered, but also their joint impact toward passengers outcomes.
This paper represents a first step in the analysis of different types of dis-
ruptions and several future directions are possible, such as using a differ-
ent disruption identification method or a different impact function, for in-
stance including crowding factors in affected lines (Yap, 2020). Testing the
same methodology on big disruptions, involving the whole network, can
help to make a better distinction between small and big disruptions. Ana-
lyzing the disruption impact considering different information provisions
for the users can help understand the importance of information systems
for disruption management.
The test case refers to a public transport system working mostly on road-
based buses, with a high quality. An analysis of cities with various degrees
of exposure to disruptions would contribute to the state of the art of un-
derstanding how PTNs work. Moreover, combining this research with a
tracking study and a mode detection algorithm, such as the one proposed
by Marra et al. (2019), or with AFC systems, allows empirical evaluation
of the findings and the users’ behavior in case of disruptions.
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Key findings

• The behaviour of passengers in case of disturbances is observed from
a large-scale study based on GPS tracking

• The effects of different disturbances on passengers are analysed in
terms of excess journey cost and route choice

• Disturbances are compared based on a metric of service degradation
quantifying the disturbances affecting a specific demand

• The focus is on multiple small disturbances and "good disturbances"
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Additional notes to this chapter

The metric of service degradation described in Section 5.5.2 is based on the
definition of disruption impact in Section 4.4.2.2. The differences are in the
definition of a disturbance and the cost function used.
The Appendix of this Chapter is an addition to the submitted paper.

5.1 abstract

Public transport networks are affected daily by disturbances with different
entities. While big service disturbances (or disruptions) are rare, delays
and cancelled runs are more frequent and they affect daily the passen-
gers. Despite this, most of the work on passengers’ behaviour in case of
disturbances focuses on big disturbances and not on daily disturbances.
In this work, we analyse how different network disturbances affect public
transport passengers, regarding the chosen route and the travel cost. For
this purpose, we exploit a large-scale travel survey, based on GPS track-
ing, and AVL data of public transport operations in Zürich (Switzerland).
We propose a novel metric of service degradation to quantify the distur-
bances in the network, which are relevant for a specific passenger’s trip.
In that way, we can analyse passengers’ route choices in case of different
disturbances. In particular, our study evaluates the effects of disturbances
on travel costs, comparing the passenger’s chosen route with the available
alternatives with and without disturbances. Our analysis identifies that
small disturbances and delays have a significant effect on travel cost, al-
though marginal effects on route choice. In contrast, "good disturbances",
i.e. variations of the operations from the timetable, which generate less
costly alternatives, have a significant effect on route choice. In particular,
we identified that passengers do not exploit these new available alterna-
tives, suggesting a need of better information in these cases. In addition,
we observed that travel costs are generally higher in case of "good distur-
bances" than in case of no disturbance.
Keywords: Public Transport; Disturbances; Tracking; User Behaviour; Route
Choice

5.2 introduction

The presence of disturbances in a public transport network is an impor-
tant aspect affecting the passengers’ choices. Unexpected delays or, more
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in general, service degradation can significantly affect the users, forcing
them to deal with unplanned events. In this regard, understanding the im-
pact of a certain disturbance on a specific user is a complex task, which
requires different sources of information. First, the disturbance needs to
be identified and clearly defined. Second, the choice of an affected user
must be observed, and the available alternatives identified. Third, there is
the need of a reference choice (what would have been chosen if no distur-
bance occurred), with which compare the chosen alternative, in order to
quantify the impact of the disturbance on the user.
In this work, we use the term disturbance to indicate any frequent and
small unplanned service deviation, while the term disruption only when
we report findings of external works using that word, which refers often
to big service disturbances. Stated preference surveys are not particularly
suited for this task (understanding the impact of disturbances on a specific
user), since they are based on hypothetical scenarios, and the user’s real
choices under disturbances cannot be observed. Therefore, they can suffer
of an inner bias (Lin et al., 2018). Several studies on disruption analysis
based their work on simulations (Cats and Jenelius, 2014; Leng and Cor-
man, 2020), in order to investigate the behaviour of multiple passengers
under specific disruptions. Nevertheless, the behaviour of each simulated
passenger is based on assumptions, or typically defined under normal con-
ditions in the network. This might not be realistic, since the user behaviour
under disruptions can largely deviate from undisrupted scenarios (Yap et
al., 2018). In addition, the information available to each passenger needs to
be specified, also based on assumptions. In this sense, despite in the last
years the research attention on disruption impact is increasing (Marra and
Corman, 2020b), there is not yet a clear understanding of specific aspects
of passengers’ behaviour under disturbances, compared to undisturbed
conditions. In fact, Lin et al. (2016) identify low attention in literature on
transit user behaviour in response to service disruptions.
For the above-mentioned reasons, revealed preference surveys are a promis-
ing data source to observe users’ behaviour in case of disturbances. In par-
ticular, passive GPS tracking allows collecting a large amount of data for
a long time, without an excessive burden on the users. In this regard, Zhu
and Levinson (2012) recommend survey approaches based on GPS track-
ing, to objectively observe travel decisions and experiences, allowing more
sophisticated behavioural analysis. Harrison et al. (2020) affirms tracking
datasets provide a more finely grained picture of travel behaviour and ac-
curate details on revealed trip choices. In addition, Sun et al. (2016) affirms
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that without the support of real passenger travel data, the behaviour in
case of disruptions of many passengers is not discovered. In this sense,
with these data, no assumptions are needed on the passengers’ behaviour
or the available information, since the behaviour is directly observed.
This work aims to fill this gap, and understand, from realized data, "how
different unplanned network disturbances affect public transport passen-
gers, in terms of increased travel cost and deviation of the chosen route
from the expected one in normal conditions?"
The scientific and practical challenges are in the determination of a coordi-
nated set of procedures to perform: (1) the aggregation of data about multi-
ple disturbances and disruptions into a single metric; (2) the identification
of a most likely route, i.e. the alternative which, with higher probability,
would be chosen in case of no disturbance; (3) the identification of the cho-
sen route in case of disturbances. Comparing the last two, one can identify
the changes in route and costs. If a relationship can be established between
those changes and the disturbance metric, the role of the disturbances can
be better understood.
We base this analysis on the hypotheses that the travel times and costs
of disturbed trips may be different (typically, higher) from planned condi-
tions; and that passengers may choose a different route to avoid a distur-
bance or its effects (passengers may also change their destination in case of
big disruptions, which we do not consider in this study). We explore these
hypotheses from a large-scale survey based on tracking. The resulting de-
scriptive study is able to establish a relation between different disturbances
and the observed route choices and travel costs of passengers.
Each disturbance may affect each passenger differently, depending on the
disturbance characteristics, the passenger, and the trip of that passenger.
Therefore, multiple observations of passengers’ trips in case of different
disturbances are needed, to understand their effects. In contrast, most
of the work in literature focuses only on one or few disturbances, typi-
cally disruptions, which are also rare events (Yap and Cats, 2020). Little
attention is given to small disturbances, such as delays or cancelled runs,
which are much more common. No attention is given to quantify and com-
pare different disturbances. This paper proposes a novel metric of service
degradation, which quantifies the disturbances in the network, potentially
affecting the passengers. Such a metric allows comparing, on the same
numerical scale, conditions of no disturbance, small disturbances and big
disturbances. Additionally, we observe the effects of "good disturbances",
which we define as deviations of the operations from the timetable, lead-
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ing to less costly alternatives. Those situations are for instance an earlier
arrival/departure or new available transfers, which would typically be un-
available in planned conditions. This type of disturbance has not yet been
analysed in the literature, despite our analyses show that it has a signifi-
cant impact on passengers.
Regarding observations of passengers’ trips, we exploit a large-scale GPS
tracking survey, based on automatic mode detection. In addition, for each
observed public transport trip, we identify the available alternatives, us-
ing a choice set generation algorithm based on Automatic Vehicle Location
(AVL) data. This large dataset allows estimating a general route choice
model of public transport passengers; and provides very detailed infor-
mation in case a disturbance occurs (compared to aggregated passenger
flows). To the best of our knowledge, this is the first work addressing the
understanding of behaviour in case of different unplanned disturbances
from a large-scale survey.
The main contributions of this paper can be summarized as follows:

• A metric of service degradation is defined, which quantifies the level
of disturbances in the relevant sub-network for a specific demand,
defined by an origin, a destination and a departure time. The met-
ric is based on a discrete choice model, and it quantifies the expected
increase of cost for a certain demand, due to the current network con-
ditions. This metric allows evaluating the level of service degradation
in the network, which directly affects a specific user. We use this met-
ric to aggregate, over multiple cases of individual disturbances, their
impact on passengers’ route choices.

• We evaluate the impact of the disturbances on a specific user in terms
of excess journey cost (EJC), i.e. the additional cost experienced by
the user respect to the expected one. In particular, we compare the
user’s chosen route with the set of available alternatives in case of
disturbances, and the set of alternatives in planned conditions.

• We observe the behaviour of public transport passengers, under dif-
ferent disturbances, through a large-scale travel survey, based on
tracking. Information on route choice, including exact public trans-
port vehicles used and current network conditions, are available for
each observed trip. The focus is on multiple small disturbances, in-
stead of the more studied big disturbances (or disruptions). In partic-
ular, we analyse 2901 trips, each affected by different network condi-
tions and disturbances.
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• We identify a general trend of the effects of disturbances. The main in-
sights are as follows: even if disturbances negatively affect the users’
trips (in terms of increased travel cost), they marginally affect the
users’ route choice. In contrast, in case of "good disturbances", such
as an early departure of a public transport vehicle, the users do not
exploit the new available alternatives, and their chosen route is often
different from the most likely route in case of no disturbance.

The paper is organized as follows: in Section 5.3, we present the state of
the art on users’ behaviour under disturbances; Section 5.4 describes the
datasets; Section 5.5 presents the methodology; Section 5.6 illustrates the
results of the analyses; Section 5.7 shows the conclusions.

5.3 state of the art

In the last decade, the attention on the management of public transport dis-
turbances has shifted from an operation-oriented perspective to a passenger-
oriented perspective (Krishnakumari et al., 2020; Van der Hurk, 2015; Zhu
and Goverde, 2019). The impact of a disturbance is not only evaluated in
terms of operations’ delay, but the effects on passengers gained a central
role. In particular, most recent works analyse the disturbance impact on
passengers, focusing on their routes. This is also the focus of the current
paper. In contrast, different studies, such as Rahimi et al. (2020) and Shires
et al. (2019), aim to understand how passengers react to disturbances, in
terms of change of mode or plan.
Table 5.1 reports some of the most recent works on public transport pas-
sengers and disturbances, summarizing the different datasets used for pas-
sengers’ trips, and how the disturbance impact on passengers is evaluated.
The list of works does not aim to be comprehensive of all available works,
but wants to highlight the current state of the art, its missing aspects and
where this paper positions itself (see last row). In addition, we remark
that our focus is on the effects of disturbances on passengers, in terms
of increased travel cost and deviation of the chosen route from the ex-
pected one. Therefore, travel time reliability (Carrion and Levinson, 2012),
expected delays and past disturbances experienced by passengers are not
considered in this paper, since we focus on the effects of a disturbance at
that moment.
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5.3.1 Data Sources

Quantifying the impact of a specific public transport disturbance can help
understanding its severity, which passengers are most affected, and how
to respond better to the disturbance. Unfortunately, this task is not trivial,
since it requires the knowledge of both the passenger’s realized trip and
the planned trip (Paulsen et al., 2018). If the first is retrievable from track-
ing systems or Automatic Fare Collection systems (AFC), the latter can be
retrieved only directly asking to the passenger, which is often unfeasible
for large, long-term longitudinal datasets. In addition, the initial plan is
not always fixed and can mutate during the time and the trip, changing
either the destination, the mode or the route.
Passengers’ behaviour in case of disturbances can be observed from dif-
ferent data sources. Among survey-based studies, Currie and Muir (2017)
collected information through a web survey to better understand users’ pri-
orities and perceptions in unplanned railway disruptions. Lin et al. (2018)
collected a joint Revealed Preference (RP) and Stated Preference (SP) sur-
vey to investigate mode choice in case of subway service disruptions. They
highlighted that if on one hand SP surveys have an inherent bias, RP sur-
veys may contain an insufficient number of observations. In addition, many
factors affect passengers’ decision making, such as the duration of a delay,
the weather, the trip purpose and the available information (Leng, 2020).
Therefore, the complexity of decision making shows the need of empirical
studies for a better understanding (Lin et al., 2016).
Rahimi et al. (2020) and Shires et al. (2019) observed passengers’ behaviour
through a combined SP-RP survey. Rahimi et al. (2020) presented hypothet-
ical disrupted scenarios to respondents, to understand which mode/action
they choose, such as using a taxi or changing the destination. Similarly,
Shires et al. (2019) asked respondents to remember a disrupted episode.
With the absence of passengers’ data, a different stream of research sim-
ulated passengers’ behaviour (Cats and Jenelius, 2014; Leng and Corman,
2020; Paulsen et al., 2018). In this context, Van der Hurk (2015) use a simu-
lation model to calculate the change in passenger flows due to a disruption.
Nevertheless, they need to assume a behavioural model of how passengers
react to a disruption, and the information available to each passenger. An
alternative data source is a network OD matrix, used to assign the traffic
in the network, and analyse the effects of disturbances in the network or
for specific ODs (Ghaemi et al., 2018; Lu, 2018). In this case, the traffic as-
signment in case of disturbances becomes a crucial assumption.
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A more detailed data source is an AFC system, which automatically col-
lects the entrance and/or the exit of each passenger in the network, al-
lowing inferring the passengers’ trip. Limitations of AFC data are the
non-trivial inference of the real trip, and the lack of knowledge on the
real origin and destination of the trip (since in the data the trip starts di-
rectly at the first public transport stop). One of the few paper investigating
public transport route choice under disturbances from AFC data is Yap
et al. (2018). Focusing on 4 planned disruptions, they identified that the
in-vehicle time of rail-replacing services and its waiting time are perceived
worse than the ones of normal services. Finally, we have no evidence of any
study exploiting tracking data to observe passengers’ behaviour in case of
disturbances. In car traffic, in contrast, a recent work (De Moraes Ramos et
al., 2020) analysed route choice in a congested network from GPS trackers.
Instead, Paipuri et al. (2020) showed that phone data can be used to extract
information on the user-equilibrium gap (a concept very close to the EJC
of this work) for specific ODs and times of the day, which is otherwise
possible only with simulations.

5.3.2 Type of Disturbances

Regarding the type of disturbances analysed, most of the works focuses
on big disturbances, which are rare and unique events, instead of small
network disturbances, which have a daily frequency (Marra and Corman,
2020b). Among the recent works, we identified only Paulsen et al. (2018)
focusing on small disturbances. Nevertheless, they analysed only train de-
lays, through a simulation model, while our work focuses on different
public transport disturbances and real passengers’ observations. Table 5.1
reports the number of disturbances of different studies (see third column).
Most of the studies focuses on only one or few disturbances (Lin et al.,
2016), making their findings difficult to generalize. In contrast, Yap and
Cats (2020) built a prediction model from 4263 disruptions, to predict
the disruptions frequency and their impact on passengers. None of the
works in literature defined a metric quantifying the severity of different
disturbances or describing them, despite its importance has been acknowl-
edged (Yap et al., 2018). Such a metric allows comparing the passengers’
behaviour under different types of disturbances, ranging from no distur-
bance to big ones, and including "good disturbances", as we do in this
paper. In particular, we were able to compare 2901 different network con-
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ditions from realized observations, which is one of the largest number
observed in literature (see Table 5.1).

5.3.3 Disturbance Impact on Passengers

In literature, the planned trip (i.e. a reference trip, to which the passen-
ger’s trip in case of disturbances is compared), is often modelled based
on specific assumptions. Mainly, three alternative assumptions are used,
all of them assuming no disturbance in the network: selecting the path
with shortest travel time (Lu, 2018; Sun et al., 2016; Van der Hurk, 2015);
simulating the passenger’s behaviour (Cats and Jenelius, 2014; Leng and
Corman, 2020; Paulsen et al., 2018); estimating a traffic assignment in the
network or for specific ODs (Ghaemi et al., 2018; Yap et al., 2018; Yap and
Cats, 2020). The shortest travel time and the simulation consider only one
alternative as reference trip for a passenger, which can or cannot be based
on some behavioural assumption. Instead, the traffic assignment loses the
focus on each single passenger’s trip, and analyses the effect of a distur-
bance at a broader level (for each OD or the whole network). In this sense,
this work aims to keep the focus on each passenger’s trip, but considering
a more sophisticated reference trip, based on a choice set, comprising the
available alternatives (see Section 5.5.3).
Regarding the evaluation of the disturbance impact to a specific user, there
is not a common metric in literature, since it depends on the study purpose.
The most common metric is the excess journey time (EJT), which is the dif-
ference between the travel times of the disrupted trip and the planned trip.
Similarly, two works (Cats and Jenelius, 2014; Ghaemi et al., 2018) consider
the excess journey cost (EJC, also called generalized travel cost), which is
the difference of the travel cost of the disrupted trip and the one of the
planned trip, with the cost obtained from a behavioural model. Consider-
ing the excess journey cost as evaluation criterion allows measuring the
impact of a disturbance from the passengers’ point of view (Ghaemi et
al., 2018). Finally, other less common metrics are a resilience measure (Lu,
2018), maximum delay and punctuality rate (Sun et al., 2016), or using a
prediction model to observe behavioural changes (Yap et al., 2018). In this
work, we aim to compare the user’s route choice with the expected one
with or without disturbances. Therefore, we evaluate the EJC, as the differ-
ence between the cost of the user’s trip and the expected cost among the
available alternatives (instead of only one). Two different EJCs (timetable
and realized) are considered, as explained in detail in Section 5.5.3. This
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allows evaluating the disturbance impact on a user with respect to both
the current condition and a condition of no disturbances.

5.3.4 Missing Aspects

We believe several aspects are missing in current works, which we consider
in this paper. First, most of the work focuses only on big disturbances in
the network, with little attention being paid to the more common small
disturbances, or even to "good disturbances" (as defined in Section 5.2).
In addition, previous studies mainly focus on one or few specific distur-
bances. Therefore, it is not trivial to generalize findings based on different
contexts. We contribute to this aspect by the proposed metric in section
5.5.2.
As no work provided a rigorous quantification of the level of disturbances,
the conditions of no disturbances, small and big disturbances could not be
numerically compared with each other. The typical approach of defining
one or very few disruption scenarios does not allow analysis of general
trends. Therefore, it is not known at the current state how different distur-
bances may affect the same public transport passenger. Moreover, no work
investigated how users react to different disturbances in a public transport
network, which allows more general conclusions, not tied to one or few
disrupted scenarios.
The only works analysing how users react to disturbances, focusing on
each single trip, are based on simulations, therefore there are no empirical
studies. In particular, no work analysed a large-scale revealed preference
survey, such as a tracking-based survey, focusing on route choice in case of
different disturbances. The only identified work focusing on route choice
is Yap et al. (2018), but they focused only on few disruptions (4), which
moreover were planned, and lasted multiple days.

5.4 datasets and travel diaries

This work aims to empirically observe public transport passengers’ route
choice in case of disturbances. Therefore, observations of both passengers
and operations are needed. For this purpose, we exploit a unique combi-
nation of different datasets and methods, allowing, for each passengers’
public transport trip, the observation of: the route choice with the vehicles
taken; the network conditions; the available alternatives both with actual
network conditions and without any disturbance. Regarding the opera-
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tions, we used Automatic Vehicle Location (AVL) data to identify the net-
work conditions (i.e. the disturbances) and the available alternatives. In
particular, we used AVL data of the public transport services in Zürich,
containing the planned and realized arrival and departure times of each
public transport vehicle at each stop. From these data, we identified the
level of service degradation for each trip, as described in Section 5.5.2.
Regarding the passengers, we collected GPS tracking data from a smart-
phone application, the ETH-IVT Travel Diary, able to continuously collect
GPS data for a long period (Marra et al., 2019). We collected data of 172

Zürich residents for an average of 22 days per person. Using a mode de-
tection algorithm, we first divided the GPS traces into activities and trips,
then the trips into stages, identifying the transport modes used. Since the
mode detection algorithm uses AVL data of the public transport opera-
tions, it is also able to detect the exact public transport vehicles used. In
Marra et al. (2019), the algorithm obtained an average detection accuracy
of 86% and it has been proven to identify a realistic number of activities
and trips. We refer to Marra et al. (2019) for more details on the mode de-
tection algorithm.
Instead, we refer to Marra and Corman (2020a) for more details on the
tracking survey, where it has been already described and used to test a
choice set generation algorithm and to estimate a route choice model. Here,
we summarize the main characteristics and limitations of the survey. Table
5.2 provides general information on it. Regarding the representativeness
of the participants, they are generally younger and with higher education
than official reports. The gender distribution is slightly skewed towards
men, while income and household size follow quite regularly the real dis-
tribution, despite a lower share of participants in the lowest income range.
The resulting mode share is realistic and follows the official reports, es-
pecially for public transport, which is the focus of this paper. In fact, in
this work, we focus only on public transport urban trips, i.e. trips located
inside the city of Zürich, and done by a combination of public transport
and walking. Among the public transport trips, 40% of them have at least
one transfer. Moreover, the tram and the bus are much more used than
the train (10% of the trips), given the more frequent service offered in the
urban area.
Despite the number of participants can be considered limited to be repre-
sentative of Zürich population, we do not consider the size of the dataset
as a major limitation. In fact, most of the socio-demographic characteristics
reflects the official reports, as well as the mode share. In addition, Marra



156 passengers’ behaviour during public transport disturbances

Survey This Paper Zürich 2016

Participants 172 \\

Age

<18: 0%;

18-24: 33%;

25-34: 27%;

35-44: 21%;

45-54: 18%;

54>: 1%

<18: 15%;

18-24: 8%;

25-34: 22%;

35-44: 18%;

45-54: 13%;

54>: 24%

Gender
Female: 43%;

Male 57%

Female: 50%

Male 50%

Education
Mandatory: 10%;

Secondary: 36%;

Higher: 54%

Mandatory: 18%;

Secondary: 34%;

Higher: 48%

Household income

(Monthly CHF)

<4000: 8%;

4000-8000: 24%;

8000-12000: 29%;

12000-16000: 14%;

>16000: 9%;

no answer: 16%

<5000: 24%;

5000-7500: 24%;

7500-12500: 31%;

12500-16666: 12%;

>16666: 9%

no answer: 0%

Household Size

1: 23%;

2: 25%;

3: 22%;

4: 22%;

5+: 8%

1: 22%;

2: 30%;

3: 18%;

4: 18%;

5+: 12%

Mode share

Public transport: 38%;

Walk: 23%;

Car: 15%;

Bike: 13%;

Mixed: 10%

Public transport: 41%;

Walk: 26%;

Car: 25%;

Bike: 8%;

Mixed: not reported

Table 5.2: Information on the tracking survey (the table continues). Official
statistics of socio-demographic information in 2016 are shown (Stadt
Zürich, 2021; Zürich Statistic Office, 2021). Income and mode share
refers to 2015. This Table extends Table 3 in Marra and Corman
(2020a).
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Survey This Paper Zürich 2016

Study Period 03/04 – 02/06/2019 \\

Tracked days 3785 \\

Public transport trips in Zürich 2901 \\

Number of stages

per p.t. trip (%)

1: 60%;

2: 29%;

3: 9%;

>3: 2%

\\

Avg. duration per p.t. trip 21.7 min \\

Avg. air distance per p.t. trip 2.88 km \\

Table 5.2: Continue of previous table. Information on the tracking survey.

and Corman (2020a) show that the dataset leads to meaningful parameters
of an estimated route choice model, in line with the values in literature.
Small heterogeneity was also found among the users on perception of dif-
ferent travel costs. Moreover, regarding the scope of this paper (the effects
of disturbances on public transport passengers), the dataset is one of the
largest in the literature, in terms of number of trips and disturbances, given
that only few works are based on realized observations (see Table 5.1).

5.5 methodology

5.5.1 Groundwork

In this Section, we briefly summarize two preliminary methods, described
in Marra and Corman (2020a), on which our work builds: a choice set gen-
eration algorithm and a route choice model. Therefore, we refer to that
work for more details and for a review on route choice model estimation
(see also Van der Hurk, 2015). In particular, the state-of-the-art model for
route choice in public transport is the Path Size Logit Model (Nielsen et al.,
2021; Yap and Cats, 2021), which we describe in this Section.
To identify the available alternatives for each trip of each passenger, we
used a choice set generation algorithm based on constrained enumeration,
a well-established technique in literature, which generates all available al-
ternatives, given reasonable constraints, such as maximum travel time. The
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algorithm showed high performance both in terms of coverage (identifica-
tion of passengers’ trips, 94%), selection of relevant alternatives and model
estimation. Each alternative is described as a combination of walks and
public transport vehicles, including possible transfers. In this paper, to
compute our novel metric of service degradation for a certain demand,
we generate two different choice sets: one in case of no disturbance (based
on the timetable), and one with real conditions (based on AVL data). In
that way, for each demand we know the alternatives available in planned
conditions and the ones available in reality.
The second method is the Path Size Logit Model, a route choice model,
which has been estimated in Marra and Corman (2020a) on the same track-
ing dataset of this work. This model is a variant of the standard Multino-
mial Logit Model, which includes a correction factor (PathSize), penaliz-
ing overlapping alternatives (i.e. alternatives with one or more vehicles in
common). In particular, several coefficients were estimated, describing the
following utility function:

Uj = −Cj = βtram ∗ tram time + βbus ∗ bus time + βtrain ∗ train time

+βwalk ∗ walk time + βtt ∗ trans f er time

+βtrans f er ∗ trans f ers + βPS ∗ PathSize
(5.1)

Walktime refers to the first and last walk, while trans f ertime to the inter-
mediate ones. The waiting time is included in these two parameters, since
we could not discriminate precisely between walk and waiting time, from
the GPS data. Reliability parameters, as average delay of the public trans-
port line or standard deviation of the travel time, were not included in the
utility function, since they did not improve the model performance.
In this work, the cost of each alternative is determined from the cost func-
tion Cj, estimated from a choice set assuming no disturbances in the net-
work. Table 5.3 reports the model estimation (see Table 5 in Marra and
Corman, 2020a, for more details).
Here, we introduce some terminology used in the following Sections. We
refer with realized (or using a superscript R) to each alternative, choice set
or travel cost, based on the real (disturbed) network conditions, i.e. con-
sidering the disturbances occurring at that moment. In contrast, we refer
with planned (or using a superscript T, from timetable) to each alterna-
tive, choice set or travel cost, based on planned (not disturbed) conditions,
i.e. the timetable. Chosenalternative refers to the observed, actual trip of
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Parameter Estimate t-test

Tram travel time (s) -1 -21.7

Bus travel time -1.14 -20.2

Train travel time -1.19 -12.4

Walking time -2.56 -42.6

Transfer time -1.06 -15.6

Number of transfers -889 -27.4

Path Size 55.4 2.49

Observations 2719

Null log-likelihood -7361

Final log-likelihood -2555

R2
0.65

Scaling factor 0.0038

Table 5.3: Path Size Logit Estimation. The parameters are scaled (multiplied by
the scaling factor) to have the coefficient of travel time in tram equal
to – 1. See Table 5 in Marra and Corman (2020a) for more details).

a user, as determined by the tracking. Leastcostlyalternative refers to the
alternative in a choice set with lowest cost Cj, which is also the most likely
alternative to be chosen, according to the Path Size Logit model. Despite
the terms planned and realized are already mentioned and opposed in liter-
ature (e.g. in Van der Hurk, 2015), we acknowledge there is not a common
terminology and different terms, as per f ectlyreliable and actual, are used
to express similar concepts.

5.5.2 Metric of Service Degradation for Various Disturbances

To evaluate the passengers’ behaviour in case of different disturbances, it
is important to define clearly which disturbances are considered, and how
to summarize insights over them. In this sense, this work focuses on small
disturbances, like delays or single cancelled runs, rather than big distur-
bances, such as long service interruptions. Moreover, the same disturbance
can have a large impact on certain passengers, while no impact on others,
depending on several factors, as the origin, the destination and the start-
ing time of their trips. Therefore, a metric that quantifies the disturbances
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affecting a certain user is needed, in order to compare the users’ behaviour
in case of different levels of disturbances.
We propose a novel metric of service degradation, which quantifies the
level of disturbances for a specific demand, defined by an origin, a desti-
nation and a departure time. Namely, we measure how the current state
of the network, with delays and cancelled runs distributed in the network,
can affect a passenger travelling from O to D and departing at time W.
This metric assesses the disturbance, and it is not based on what a user
actually did, but on the set of alternatives available. The metric is based on
the definition of disruption impact in Marra and Corman (2020b) (used to
assess disruptions’ effects on hypothetical demand), relating it to the Path
Size Logit Model.
More formally, the service degradation, described in Equation 5.2, is the
expected excess travel cost with the current network condition, computed
as the difference between the expected realized travel cost (CR, expected travel
cost considering the disturbances) and the expected planned travel cost (CT ,
expected travel cost without any disturbance). Each expected travel cost
is based on a route choice model, and computed as a weighted average
among the available alternatives at that time for that specific demand.

degradation (O, D, W) = CR − CT (5.2)

CR = ∑
j∈CSR

P(j|CSR)Cj (5.3)

CT = ∑
j∈CST

P(j|CST)Cj (5.4)

P (i|CS) =
e−Ci

∑j∈CS e−Cj
(5.5)

CSR (O, D, W) = realized choice set f or the given demand (5.6)

CST (O, D, W) = planned choice set f or the given demand (5.7)

The cost of an alternative (Cj, Equation 5.1) is the negation of the utility
function of a Path Size Logit Model, estimated as in Table 5.3. The weight
of an alternative is its probability to be chosen (P(i|CS)). The difference of
the two expected travel costs (i.e. the service degradation) gives a measure
of the expected additional cost afforded in real conditions. Only the sub-
network relevant to the OD is considered, since only the vehicles present
in the choice sets are considered. In addition, disturbances on the most
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Figure 5.1: Example of a demand with origin, destination, available alternatives
and relative costs. Possible increases of costs due to disturbances are
highlighted in red and gold.

likely alternatives are weighted more.
In Figure 5.1, we report a small example, to explain better the service degra-
dation metric. We assume the passenger has three available alternatives,
with the costs shown in black (no unit measures in the example). Without
any disturbance, the expected planned travel cost (CT) is 0.25. If due to
a disturbance (e.g. a delay of a bus) the cost of the first alternative (C1)
increases by 0.1, the expected realized travel cost (CR) is 0.27, resulting in
a service degradation of 0.02. Instead, if the same increase of cost (0.1) oc-
curs in the second alternative, the expected realized travel cost becomes
0.29, and the service degradation 0.04, which is higher than the previous
one. With this example, we want to show that the service degradation
takes into account all the alternatives, but it focuses more on the less costly
ones, since there is a higher probability to choose them. This is in accor-
dance with the principle that a delay in an inconvenient alternative has a
marginal impact, compared to a delay in the main alternative.
We want to highlight that the service degradation can also be negative, i.e.
the current network conditions result in less costly available alternatives,
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reducing the expected realized travel cost. This is the case of an early ar-
rival/departure, or new available connections. Considering the same exam-
ple in Figure 5.1, if due to an early departure, the cost of the first alternative
decreases by 0.1, the expected realized travel cost becomes 0.22, resulting
in a negative service degradation of -0.03 (i.e. a "good disturbance").
Summarizing, the defined service degradation metric results in a novel
quantitative measure of the expected impact of any disturbance, and has
the following advantages:

• It represents the expected increase of travel cost in the current net-
work conditions for a given demand.

• It is based on the well-established random utility theory to determine
the cost of each alternative. Therefore, a disturbance on a less costly
alternative (with higher probability to be chosen) has a larger effect.

• It describes the level of disturbances from the point of view of the
passengers, considering the effects on the available alternatives; and
not from the operational point of view, such as in terms of vehicle
delay or number of vehicles involved.

• It allows to measure both small and big disturbances, and to easily
compare them. "Good disturbances", potentially reducing the passen-
gers’ travel cost, are also identified.

5.5.3 Excess Journey Cost and Effects of Network Disturbances

In this Section, we show the methodology to evaluate the effects of network
disturbances on public transport passengers. In this regard, we quantify
the level of the disturbances affecting a passenger, as the service degrada-
tion during that specific trip (O, D and W are respectively the origin, the
destination and the departure time of the passenger). The hypothesis is
that the service degradation influences both the chosen alternative and its
travel cost (Ctrip, as defined in Equation 5.1). Most of the work in literature
(see Table 5.1) evaluates the impact of the disturbances on passengers in
terms of excess journey cost (EJC) or excess journey time (EJT). Neverthe-
less, they consider only one alternative (e.g. the shortest path) as reference
alternative to compare the one chosen by the user. Instead, in our study
we evaluate the EJC, considering the set of available alternatives as set
of reference alternatives. In particular, we define two different versions of
EJC:
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EJCR (trip) = Ctrip − CR (5.8)

EJCT (trip) = Ctrip − CT (5.9)

EJCR is the difference between the cost of the chosen alternative by the user
(Ctrip) and the expected realized travel cost. While EJCT is the difference
between the cost of the chosen alternative by the user and the expected
planned travel cost. In that way, we can observe how much the cost of the
chosen alternative deviates from the expected one without disturbances
(CT) or the expected one in case of disturbances and assuming full infor-
mation on them (CR). The expected costs are calculated as the average cost
of the available alternatives, weighted by the probability to choose them, as
defined in the Equations 3 and 4. The available alternatives are respectively
the ones in the choice set CSR, if real conditions are considered, and the
ones in CST , if planned conditions are considered. As a technical remark,
we assume the cost of the chosen alternative (Ctrip) being the same of the
corresponding alternative in CSR. This allows to remove the noise due to
different walking patterns and speed between the user and the choice set
generation algorithm, without changing the overall results (see discussion
on walking distance in Marra and Corman, 2020a, for further details).
In the two EJC metrics, we consider as cost of the chosen alternative (Ctrip)
the actual cost (including possible delays), but a different reference cost
(CT) or (CR). Therefore, the EJCR can be also seen as the error of the route
choice model (difference between the cost of the chosen trip and the ex-
pected cost assuming full information on the disturbances). In fact, we
want to observe when the choice of a user deviates from the expected
one. In contrast, the same interpretation is not true for the EJCT , since it
compares an actual cost (of the user) with planned costs. Therefore, it rep-
resents the increase in cost compared to that under planned conditions.1

Referring to the example in Figure 5.1, we can assume a large delay in
the alternative 2, increasing its cost by 0.5 (C2 = 0.1 + 0.5). Without show-
ing the full calculations, it results CR = 0.39 and CT = 0.25. The service
degradation is therefore 0.14. The most likely choice without disturbances
would have been the alternative 2 (C2 = 0.1). Instead, we can assume the
user reacted to the delay by choosing the alternative 3 (Ctrip = C3 = 0.3).
Therefore, EJCT = 0.05, i.e. the user incurred in an increased cost, com-
pared to a condition of no disturbance (where alternative 2 had lower

1 this and the previous paragraph have been improved compared to the submitted version.
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cost). In contrast, EJCR = −0.09, i.e. the user incurred in a journey cost
lower than expected in disturbed conditions (in fact, the user chose the
alternative with the lowest cost, given the large delay in the alternative 2).
This represents the typical case of a user reacting to network disturbances,
trying to reduce the journey cost, but still experiencing an increased cost
compared to planned conditions (EJCT > 0).
A similar example can be made for "good disturbances" (i.e. negative ser-
vice degradation). We assume the cost of the alternative 2 reduced by 0.08

(C2 = 0.1 − 0.08), due to for instance an early departure/transfer. It re-
sults, CR = 0.21, CT = 0.25 and the service degradation = −0.04. The most
likely choice with or without disturbances is the alternative 2. We can as-
sume if the user is aware of the early departure, the user takes alternative
2, with a lower cost than planned. Instead, if the user is not aware, we
assume the user did not arrive in time at the stop to take the alternative
2 (even if it was possible). Therefore, the user chooses the alternative 3

(Ctrip = C3 = 0.3). In this case, EJCT = 0.05, i.e. the user incurred in an in-
creased cost, compared to a condition of no disturbance (where alternative
2 had lower cost). EJCR = 0.09, i.e. the user incurred in a higher cost than
expected in disturbed conditions, where alternative 2 is by far the best
alternative. This represents the case of a good disturbance, which could
potentially reduce the user’s travel cost, but rather it increases it, since the
user is unaware of it. We remark we proposed two simple examples to clar-
ify the two EJC metrics; however, other examples are possible, describing
different responses of passengers to disturbances.
In this work, we analyse how the two EJC vary, according to different
values of service degradation, to evaluate how the travel cost varies in
case of disturbances. We also compare how the hit rate of a route choice
model varies according to different service degradations. In particular, we
selected the most likely alternative among the ones available without any
disturbance (CST), according to the estimated Path Size Logit model. In
that way, we observe when the passengers’ route choice adheres with the
most likely one (in case of no disturbances) in terms of lines taken; and
when it is less predictable, showing a reaction of the users to the current
network conditions.
As shown in Section 5.3, the works on passengers’ behaviour in case of dis-
turbances are often based on behavioural assumptions, such as the choice
of the shortest path or the usage of a simulation tool, given that the realized
and planned trips are not always observable. In this work, the realized trip
is observed through tracking; hence, there are no assumptions on it. The
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only source of error is the accuracy of the mode detection algorithm (86%),
which in any case currently cannot be overcome by alternative methods
(AFC estimation can also lead to errors). In contrast, we assume the cost
of the planned trip, as the expected one based on the Path Size Logit (CT

and CR). Given that the planned/intentioned trip is hardly identifiable, we
believe our assumption (based on a choice set and a route choice model)
is more realistic than the ones proposed in literature, based on a single
shortest path or on a simulation. Finally, we remark that we choose the
same cost function (i.e. values of the parameters) for all the users, to have
a robust parameters’ set, which can describe well the average behaviour
(as done by Yap and Cats, 2020). In addition, in Marra and Corman (2020a)
no significant heterogeneity was identified on cost perception among the
users, except for the in-train travel time (the Mixed Path Size Logit did not
perform particularly better than the Path Size Logit).

5.6 results

5.6.1 Users’ Choices in Case of Disturbances

In this Section, we observe how the costs of the routes chosen by the users
vary according to different network disturbances. We refer to network dis-
turbances, as defined in Section 5.5.3, namely the level of service degrada-
tion in the sub-network of interest for a given OD.
Figure 5.2 shows the distribution of the service degradation among the col-
lected public transport trips in Zurich (2901). The travel costs, and there-
fore the service degradation too, are scaled in terms of travel time in-tram
(CJ → CJ/|βtram| in Equations 3 and 4). Hence, the service degradation
can be interpreted as the expected increase of travel time in tram (in sec-
onds) for that trip with the current network conditions. We remark that a
degradation of 600 seconds does not correspond directly to a delay of 10

minutes, but rather some of the available alternatives might be strongly de-
layed (or even cancelled), while others might be on time, and thus might
partially compensate for the disturbances of the delayed alternatives. In
this sense, even a small service degradation may strongly affect a passen-
ger, if the chosen route is the only one delayed among all the alternatives.
Most of the trips have no service degradation or low positive values, show-
ing that the service runs on time most of the time. Nevertheless, 22% of
the trips have a degradation greater than 240 (equivalent to a 4 minutes
delay in tram if only one alternative is available), while 20% have a neg-
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Figure 5.2: Distribution of service degradation among the public transport trips
in the dataset. Outliers below the 4th percentile or above the 96th
percentile are not shown.

ative degradation (i.e. "good disturbances", when the network conditions
allow less costly solutions than without any disturbance). This distribution
shows the novelty aspect of this work, which is the focus on many small
disturbances and "good disturbances".
In Figure 5.3 , we compare each passengers’ choice with the available real-
ized alternatives (i.e. with disturbances), and the available planned alterna-
tives. Namely, we compare each passengers’ choice with two benchmarks,
and we observe how the excess journey costs (EJCR and EJCT , as defined
in Section 5.5.3) vary according to the service degradation (x-axis and grey
line). Therefore, the y-axis represents the extra cost that the user incurred,
compared to the expected one in either the planned conditions (EJCT ,
blue line) or the realized conditions (EJCR, orange line). The travel costs
are scaled in terms of travel time in-tram, therefore the EJC can be inter-
preted as the increase of travel time in tram (in seconds) the passenger
incurred. We highlight that the service degradation (grey line) represents
the expected increase of travel cost with the current network conditions,
i.e. how the blue line should look like, if users choose as expected with
current conditions (Ctrip = CT , namely if users follow the Path Size Logit).
We report the moving median of the EJC, since we aim to observe the
trend and the average behaviour. In fact, with the same service degrada-
tion, two different trips in the dataset can have different EJC, since they
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Figure 5.3: Relationship between service degradation and excess journey cost
(timetable and realized). Moving median and range between 25 and
75 percentiles are shown (window of 120 seconds).

might have different origin, destination and network conditions (but same
service degradation). The confidence intervals (25 and 75 percentiles) are
also shown.
Looking at positive values of service degradation, EJCR < EJCT , since,
by definition of service degradation, the realized travel cost (CR) is higher
than the timetable one (CT), showing that disturbed operations result in
higher travel costs. The EJCT increases roughly linearly with the service
degradation. Therefore, higher degradation implies more costs to passen-
gers (compared to planned conditions). In contrast, the EJCR decreases
with the service degradation. Therefore, with higher disturbances in the
network, passengers counteract the disturbances and choose a less costly
available alternative, i.e. a path that compensates or avoids the degrada-
tion in fact.
Looking at negative values of service degradation, EJCR > EJCT , since, by
definition of service degradation, the realized travel cost (CR) is lower than
the timetable one (CT), showing that the current network conditions re-
sult in less costly alternatives. The confidence intervals of EJCT and EJCR

(≈ 400 seconds) are larger than the ones for positive degradation (≈ 200
seconds), showing a higher variability. Looking at the median, the EJCT is
almost constant for a service degradation near 0, while it increases remark-
ably for values < −105, and up to a maximum where data are unavailable.
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This shows that even with "good disturbances", the passengers’ travel costs
are higher than without disturbances. This means that the new network
conditions are not exploited by the users, but instead they hinder them. In
addition, the sharp increase of the EJCR suggests that the new available
alternatives (with lower cost) are rarely chosen by the users (see Section
5.6.2 for more details).

5.6.1.1 Available information

One remarkable advantage of realized data, compared to simulations, is
that there is no need to make assumptions on the available information to
passengers regarding the disturbances, since the chosen route is observed.
Therefore, the effects of different disturbances can be evaluated without
knowing if the user is aware of them or not. Nevertheless, the analysis of
the EJCR can give some insights on the information available to passen-
gers. In particular, for negative values of service degradation, the EJCR

increases, showing that the users do not exploit the new available alter-
natives and/or have no information about them. In contrast, for positive
values of degradation, the EJCR decreases, showing that on average users
choose less costly alternatives. This suggests a greater need of informa-
tion in case of "good disturbances" compared to "bad disturbances", since
the new less costly alternatives are less likely chosen. In this sense, we be-
lieve this analysis can be a starting point for future studies on information
availability, in which the available information is not just assumed in a
behavioural model, but instead it is inferred from realized observations.

5.6.1.2 Summary of the findings

We can summarize the key findings of this analysis, as follows: the ef-
fects of disturbances on travel costs are highly variable (especially those of
"good disturbances"), and they may affect different passengers’ trips in dif-
ferent ways. Nevertheless, a general trend of the excess journey cost with
respect to the service degradation can be clearly observed. For positive
values of degradation, the users experience an increased cost compared
to normal conditions, nevertheless the gap between the user’s travel cost
and the least costly available alternatives reduces (lower EJCR ). Therefore,
there is no particular need of information for users, since they already
choose less costly alternatives. Instead, the operations’ delay should be re-
duced, since users still experience a delay compared to normal conditions
(higher EJCT). In contrast, for negative values of degradation, the opera-
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tions provide less costly alternatives than in planned conditions, but the
users still experience an increased cost (higher EJCT ) and do not exploit
the new available alternatives (higher EJCR ). Therefore, in this case there
is need to inform better the users.

5.6.1.3 Clarifications and limitation

We remark that the proposed analysis lays on the assumption that the
planned travel cost is based on a Path Size Logit model, describing the
average behaviour for all the trips in the dataset. Therefore, it must not be
seen as an analysis on when users perform better, but on when and how
travel behaviour deviates from the expected one. Moreover, given that we
are focusing on small disturbances (in the order of minutes), the assump-
tion of similar user behaviour for different service degradations is more
realistic, compared to the case of big service disturbances. In addition, our
reference costs (CR and CT) are more realistic and have more theoretical
foundations than those used in literature (e.g. shortest travel time or simu-
lation), since ours are based on random utility theory and a set of available
alternatives.
We highlight that what we observed is the relationship between the excess
journey cost and the service degradation. To better consolidate the depen-
dencies identified between the two variables, and exclude possible external
effects, we examined the correlation between the service degradation and
several variables describing the trip. For brevity, we do not report in de-
tail the relationships between all the analysed variables, since we did not
identify any significant correlation between the service degradation and
the following ones: average number of transfers, average walking distance,
trip length, betweenness and closeness centrality of origin and destination
(i.e. location in the network), service frequency and time of the day (despite
a slightly higher degradation is found during the morning peak and in the
evening). The service degradation is only slightly negatively correlated (-
0.12) with the expected planned travel cost (CT). Namely, trips with higher
cost tend to have a lower service degradation, while trips with lower cost
a higher service degradation. This occurs because trips with higher cost
(i.e. longer trips or with multiple transfers) tend to have more available
alternatives, with similar costs, and therefore they are more resistant to
disturbances.
As alternative approach to the one proposed, we included in the Path Size
Logit two additional parameters, describing the delay of the first vehicle
of each alternative (one if the delay is positive and the other if the delay is
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negative, i.e. there is an early departure). The parameters were not found
significant, showing the delay does not contribute linearly to the utility
function (probably the user is not aware of it). This also shows that ex-
tending a Logit model with these parameters related to disturbances does
not contribute to the understanding of route choice in case of disturbances.
In contrast, from our approach, we observe that different service degrada-
tions affect differently the route choice of passengers, and with a certain
variability, as shown in Figure 5.3.
Finally, we remark that we did not discriminate among the users in this
analysis, to observe possible heterogeneity. Despite each user was tracked
for a large number of days (22 on average), given that we are considering
a continuous range of service degradation, it was not possible to collect
enough trips for each user for the different values of service degradation
(especially the negative ones, occurring in only 20% of cases). Therefore,
the analysis of heterogeneity among users is left for a future work.

5.6.2 Deviation from the Most Likely Route Choice

In this Section, we analyse if and how the alternative chosen by each user
in case of disturbances (i.e. observed in the tracking) is different from the
most likely planned alternative, i.e. the alternative with higher probability
to be chosen in case of no disturbances. In this way, we can see if the users
choose differently in case of disturbances. A similar objective is analysed
by Yap et al. (2018), which compared the prediction accuracy of two mod-
els, one trained in case of disruptions, and the other with regular service.
Differently than them, in addition to showing that the prediction accuracy
can be different in case of disturbances, we identify how the accuracy vary
for different values of service degradation.
We define as hit rate, the percentage of times the Path Size Logit identifies
as the most likely alternative the one chosen by the user. We consider the
hit rate in terms of lines taken. Therefore, if the user does not take the
first available vehicle of a certain line (e.g. because the run is cancelled),
but waits for the next one, the prediction is considered correct. Figure 5.4
shows the hit rate obtained by the Path Size Logit, considering the planned
choice set (CST , i.e. alternatives available in case of no disturbance), accord-
ing to different values of service degradation. The hit rate (reported as a
covered alternative in Figure, in blue) is above 70% for positive values of
degradation (average 72%). This shows that in case of "bad disturbances",
both with low and high degradation, the users choose more than 70% of
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Figure 5.4: Hit-rate of Path Size Logit based on planned choice set (planned
network conditions), according to different values of service degra-
dation. N is the number of trips in that range of service degradation.

times the most likely alternative according to the timetable.
Instead, for negative values of service degradation the hit rate strongly de-
creases (average 54%). This shows that in case of "good disturbances" the
users do not choose (or cannot choose) the least costly planned alternative,
but rather they choose alternatives based on different lines. In other terms,
they choose less likely the expected route.
Table 5.4 describes in more details the cases with negative degradation. In
84% of cases (first two rows), the degradation is negative due to the most
likely realized alternative, which costs less than the most likely planned
alternative. In contrast, in 16% of cases (last two rows) the degradation is
negative due to other less likely alternatives. We focus on the mentioned
84%, given that there is a direct relationship between the negative degra-
dation and the most likely alternative, which is easier to analyse. In par-
ticular, in 30% of cases the least costly alternatives in the planned and
realized conditions are the same (i.e. in case of disturbances there is an ear-
lier arrival). When the least costly alternative is the same with and without
disturbances, considering all trips in the dataset (both delays and earlier
arrivals), the hit rate is generally high (78%). Instead, considering only ear-
lier arrival cases, the hit rate decreases to 70% (second row of Table 5.4).
Therefore, earlier departures/arrivals affect passengers’ chosen route. The
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Case
Occurrence
percentage

Hit rate

The least costly alternative with and
without disturbances is different. The al-
ternative in case of disturbances costs
less.

54%
40% planned

25% realized

The least costly alternative with and
without disturbances is the same. One
of the vehicles arrives earlier than
planned.

30% 70% (both)

The least costly alternative with and
without disturbances is the same. No
vehicle departs earlier, i.e. another avail-
able alternative costs less.

12% 67% (both)

The least costly alternative with and
without disturbances is different. The al-
ternative in case of disturbances costs
more, i.e. other available alternatives
cost less.

4%
65% planned

17% realized

Table 5.4: Occurrences of different cases leading to negative service degradation.
The hit rate for each case is shown.

effect is equivalent to 10.3% ((78-70)/78) of passengers missing the planned
vehicle, due to an earlier departure of that vehicle.
In 54% of cases with negative degradation (first row), there is a new avail-
able alternative, with a lower cost than the least costly planned alternative.
In this case, 40% of users choose the planned alternative, while only 25%
the realized one. Therefore, the users less likely choose and exploit the new
available alternative, despite its lower cost (similar conclusions are derived
in Section 5.6.1).

5.7 conclusions

In this work, we observed passengers’ behaviour in public transport, with
a focus on route choice in case of disturbances. We identified as the main
aspects missing in literature a focus on small disturbances and how differ-
ent disturbances affect the passengers. In this sense, we defined a metric
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of service degradation to quantify the network disturbances affecting each
specific trip. This is the first metric defined in literature for quantifica-
tion and comparison of various disturbances, with a focus on passengers,
rather than the operations (as the vehicle delay). In particular, this metric
allows the comparison of several network conditions, such as no distur-
bance, small disturbances, big disturbances, and "good disturbances".
An additional novel aspect of this paper is the use of realized observations
of passengers and the focus on each individual trip. In this regard, we
analysed a GPS-based tracking dataset, which allows observing the actual
passengers’ choices under different network disturbances.
We study the effects of disturbances on passengers based on the excess
journey cost, derived from the chosen route and two different choice sets.
In particular, we compared the passengers’ chosen route with the available
alternatives in case of disturbances and in case of planned conditions.
We identified that the effects of disturbances on travel costs are highly
variable among different trips. Despite this, a general trend can be ob-
served. In particular, "bad disturbances" negatively affect passengers, in
terms of increased travel cost, despite they choose more likely the least
costly available alternative in current network conditions. Instead, "good
disturbances", leading to less costly available alternatives compared to no
disturbance, also affect negatively the passengers, since in this case passen-
gers do not exploit the less costly alternatives, and their travel cost is even
higher than the expected one without the disturbances. This leads to the
following suggestions to reduce the overall passengers’ travel cost: in case
of "bad disturbances", the operations’ services must be improved; while, in
case of "good disturbances", the passengers’ must be informed about the
new available alternatives. In particular, regarding "good disturbances", be-
sides not being aware of the new available alternatives, passengers are also
affected by vehicles departing earlier, which are chosen 10% of the time
less, compared to on-time vehicles. Therefore, "good disturbances" affect
users as much as bad disturbances, hence, service operators must increase
the attention on them.
We remark that this is the first work observing directly the public transport
route choice of different passengers in case of many small disturbances.
Despite this, we acknowledge the following limitations of our study. The
real intention of the users for each trip is unknown; therefore, we com-
pared each users’ choice with the expected choice defined by a behavioural
model, which can best represent the average behaviour of the users in the
dataset. For this reason, the results of this work should be interpreted as
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observing how the users’ route choice deviates from the expected one, in
case of different public transport disturbances. In this regard, for future
works, we plan to investigate other types of expected behaviour in addi-
tion to the two considered (without disturbances and with full information
on disturbances), such as assuming current information on disturbances at
the begin of the trip. Moreover, several external sources can affect the users’
behaviour, such as the weather, which we did not take into account. Fur-
ther investigations in this direction are left for future works. In addition to
that, we plan to exploit longitudinal data to identify patterns and regulari-
ties from users’ trips, and possible anomalies in case of disturbances1.
Finally, we want to add some considerations that we learned from this
study, about the analysis of disturbances from tracking data. Although
tracking data are suitable to analyse the passengers’ behaviour in daily
life and in case of small disturbances, we believe the data collection still
has some problems in case of big unplanned disturbances. In fact, since
they are rare events, the study duration should be particularly long, and
it is not guaranteed that a big disturbance will occur in that period. In
addition, the sample must be large and heterogeneous enough to identify
a large amount of users affected by the disturbance. In fact, even in case
of a big disturbance, it is not guaranteed that the tracked users will be
affected by it. The largest disturbance found in our dataset has a service
degradation of 2093 seconds, experienced by a user traveling from and to
a peripheral zone of the city. The only direct bus connection was delayed
by 10 minutes and in addition, its run was cancelled in the middle of the
trip, therefore the user had to wait 5 minutes more for the next vehicle of
the same line (approximately 15 minutes delay and an additional transfer
correspond to an increased cost of 2093 seconds, according to Equation
5.1). Despite this disturbance strongly affected a user, it did not affect the
vast majority of travellers in Zürich, given its peripheral position.
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5.8 appendix : alternative metric of service degradation

A possible metric of service degradation, alternative to the one proposed
in Section 5.5.2, is the change in consumer surplus, named also welfare
changes or logsum difference. This metric has been applied in literature
as an evaluation measure for projects, comparing the conditions before
and after a change (De Jong et al., 2007). The change in consumer surplus
is defined as the difference between the expected maximum utility in a
certain condition (e.g. during disturbances) and the expected maximum
utility in another condition (e.g. without disturbances). In our test case,
the metric can be calculated as follows (see De Jong et al., 2007; Zhao et al.,
2012, for the formal derivation):

∆E =
1

βtram
(ln( ∑

jεCSR

eUj)− ln( ∑
jεCST

eUj)) (5.10)

CSR is the realized choice set and CST is the planned choice set, as defined
in Section 5.5.2. The metric is typically divided by the marginal utility of
income (in our case by βtram, the coefficient of the travel time in tram).
The change in consumer surplus and our metric of service degradation
have the following theoretical difference. The former is formally derived
from the Multinomial Logit model, taking into account the error term
in the utility. Our metric, instead, takes inspiration from practical traffic
assignment and simulation models, which have to deterministically dis-
tribute the population among the available routes (according to the proba-
bility to choose them).
In practice, in our test case the two metrics are highly correlated (ρ = 0.94),
and using the change in consumer surplus instead of the proposed metric
of service degradation does not change significantly the results. Therefore,
the same conclusions drawn in this work can be drawn using the change
in consumer surplus to evaluate the service degradation.
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Key findings

• Two travel surveys based on GPS tracking are conducted in 2019
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• Analysis of travel distance, mode share, visited locations and recur-
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• Variations in route choice criteria are observed estimating two route
choice models
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Additional notes to this chapter

In this Chapter (Section 6.5.1), we estimate the same route choice model
described in Section 3.5, but with data collected during the COVID-19 pan-
demic.

6.1 abstract

The COVID-19 pandemic strongly affected mobility around the world. Pub-
lic transport was particularly hindered, since people may perceive it as un-
safe and decide to avoid it. Moreover, in Switzerland, several restrictions
were applied at the beginning of the first pandemic wave (16/03/2020),
to reduce the contagion. This study observes how the pandemic affected
travel behaviour of public transport users, focusing on route choice and re-
current trips. We conducted a travel survey based on GPS tracking during
the first pandemic wave, following 48 users for more than 4 months. The
very same users were also tracked in spring 2019, allowing a precise com-
parison of travel behaviour before and during the pandemic. We analyse
how the pandemic affected users, in terms of travel distance, mode share
and location during the day. We specifically focus on recurrent trips, com-
muting and non-commuting, observing how mode and route changed be-
tween the two different periods. Finally, we estimate a route choice model
for public transport (Mixed Path Size Logit), based on trips during the two
different years, to identify how the route choice criteria changed during
the pandemic. Major differences were identified in the perception of trans-
fers and of travel time in train.
Keywords: COVID-19; Public Transport; Tracking; Route Choice; User Be-
haviour

6.2 introduction

The outbreak of the COVID-19 pandemic dramatically affected the world’s
population in early 2020. Mobility was particularly affected, since several
governments imposed restrictions and disincentives to it, as lockdowns, re-
mote working and closure of shops. Moreover, people tried to reduce their
movements and social contacts, to reduce the risk of a contagion. Public
transport suffered particularly from the pandemic, since passengers may
perceive the system as unsafe and a possible source of infection (Aloi et al.,
2020).
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This work aims to understand how the COVID-19 pandemic affected travel
behaviour of public transport passengers in Zürich, Switzerland. We focus
on the effects of the pandemic in general, observing travellers in that pe-
riod. Therefore, we do not isolate the effects of specific aspects, such as im-
posed restrictions, the progress of the infection, or passengers’ perception
of safety and risk. In this study, we exploit two long-term travel surveys
based on GPS tracking, one collected in spring 2019 and the other during
the first pandemic wave in 2020 (from 14 February to 13 July), including
data of the very same 48 users. The surveys contain a travel diary for each
user, including information on activities, trips, mode choices and route
choices. The long duration of the surveys, the high level of detail of the
collected information, and the possibility to track the same users during
both an entire pandemic wave and the same period of the year before make
this dataset a unique opportunity to observe the effects of a pandemic on
travel behaviour.
We analyse several aspects of travel behaviour during the COVID-19 pan-
demic, which result in the following contributions:

• Two long-term travel surveys based on GPS tracking are conducted
in 2019 and 2020 in Zürich, on the same users. The users were con-
tinuously tracked during the first wave of COVID-19 pandemic to
observe changes in travel behaviour, compared to the previous year.
General changes in travel distance, mode share and visited locations
during the day are shown.

• From the travel surveys, we identify recurrent trips, and differentiate
them in commuting and non-commuting, based on imputation of
home and work locations. Variations in mode and route chosen are
analysed for those trips.

• We estimate two route choice models for public transport, one on
trips before the pandemic (2019) and the other during the pandemic
(2020). This allows to identify the main criteria for route choice dur-
ing the pandemic and compare them with the ones in 2019. The
differences identified pertain to preferences towards transfers and
trains. To the best of our knowledge, this is the first work in litera-
ture analysing route choice in public transport during the COVID-19

pandemic.

The paper is organized as follows: Section 6.3 presents the state of the
art on travel behaviour during a pandemic, and on route choice models
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estimated in different periods; Section 6.4 describes the surveys; Section
6.5 presents the methodology; Section 6.6 presents the results; Section 6.7
discusses the results; Section 6.8 shows the conclusions.

6.2.1 The first wave of the COVID-19 pandemic in Switzerland

This Section summarizes briefly the evolution of the pandemic in Switzer-
land during the study period, with a focus on the main measures affecting
mobility.
On February 25, 2020 the first case of COVID-19 was confirmed in Switzer-
land. Following, the number of reported infections increased quickly, and
on March 16, more than 1000 daily cases were reported. The first pandemic
wave continued until May, with a peak of 1464 reported cases on March 23.
Afterwards, in May and June, the number of cases daily reported remained
below 100 on most days. In July the cases started to increase towards the
second wave in fall 2020, which is out of the analyses in this paper.
To mitigate the contagion, several restrictions were applied by the Swiss
government. Starting from March 16, schools and most of the businesses
were closed, with only essential stores and institutions remaining open.
Working from home was implemented whenever possible.
Restrictions were applied also regarding movements. Traffic with neigh-
bouring countries was strongly limited. People were not forced to stay at
home (like in Italy, France and Austria) but a limit of 5 people for gath-
erings in public places was imposed. The Federal Office of Public Health
recommended to avoid public transport at peak times, whenever possible,
and especially for risk categories. Nevertheless, public transport services
were maintained (sometimes with reduced service frequency, depending
on cantons and the evolution of the pandemic).
The restricting measures were kept until April 26, and released in three
successive steps, driven by the decrease of infections in the country. From
April 27 only certain businesses were allowed to re-open. From May 11

mandatory schools, museums and most of the businesses, as shops and
restaurants, were allowed to re-open. On June 8 universities and entertain-
ment businesses re-opened to public. The limit of people for gatherings
increased from 5 to 30. The general obligation to wear masks in public
transport became mandatory only from the July 6.
Summarizing, the study period of this work can be divided in three phases:
pre-lockdown (from 14 February to 15 March); lockdown (from 16 March
to 27 April); post-lockdown (from 27 April to 13 July).
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6.3 state of the art

6.3.1 Transport studies during the COVID-19 pandemic

During a pandemic, the transport system and the passenger volume play a
key role in the spread of the infection (Cartenì et al., 2021; Lau et al., 2020).
On the other end, the pandemic itself affects the transport system and the
passengers, which may drastically change their behaviour. This paper fo-
cuses on this second aspect. In this regard, restricting measures decided
by authorities may forbid or discourage movements or specific transport
modes. Moreover, public transport systems, especially if crowded, might
be perceived as unsafe (Aloi et al., 2020), encouraging a shift to private
modes, as cars or bikes. In fact, Badr et al. (2020) identified in the USA
that behavioural changes were observable days to weeks before the restric-
tions, implying that individuals anticipated public health directives. This
is also confirmed by this study and Molloy et al. (2021). Other individuals,
in contrast, may be captive to public transport and need to use it in any
case (Awad-Núñez et al., 2021).
Several studies analysed the effects of the COVID-19 pandemic on mobility
in different countries. They are mostly based on online surveys (Abdullah
et al., 2020; Bhaduri et al., 2020) or third-party data, such as ticketing data
(Jenelius and Cebecauer, 2020), reports from google (Aloi et al., 2020; Tira-
chini and Cats, 2020), data from Baidu maps (Huang et al., 2020), or data
from bike sharing systems (Chai et al., 2020).
Most of the work focuses on general mobility trends, such as the mode
share or the traffic reduction. For instance, Aloi et al. (2020) identified a
drop of 93% of public transport users in Santander (Spain) due to the
imposed quarantine. Abdullah et al. (2020) collected data from various
countries and identified during the pandemic a significant variation of trip
purpose, mode choice, distance travelled, and frequency of trips for the
primary travel. In particular, they observed a shift from public transport
to private transport modes. Similarly, Bhaduri et al. (2020) identified in
India a propensity to shift to private modes from shared ones, but also
a significant inertia to continue using pre-COVID modes. They reported
heterogeneity in the results based on age, income and working status. A
different analysis is performed by Chai et al. (2020), which developed a
behaviour pattern analysis framework based on usage of bike sharing, to
measure the relevance between the change of behaviour and the progress
of confirmed cases. Overall, they identify a decrease of less than 40% of
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usage of bike sharing.
From online surveys and the above-mentioned third-party data, general
changes in mobility and overall trends can be observed. In contrast, to ob-
serve long-term variations for specific users, longitudinal data are needed.
In this regard, Jenelius and Cebecauer (2020) analysed mobility in Sweden
from smart-card data, focusing on public transport ridership and reduction
of the number of trips due to the pandemic. Molloy et al. (2021), instead,
collected a GPS tracking panel of 1439 Swiss residents. They focused on be-
havioural shifts in terms of mode share, travel distance, travel speed, and
socio-demographic variations.
In addition to Molloy et al. (2021), other studies and companies provided
reports on mobility in Switzerland during the COVID-19 pandemic. Google
(2021) and Apple (2021) provide reports regarding mobility in several coun-
tries of the world. Apple (2021) report the number of search requests by
transport mode (public transport, walking and driving), while the reports
of Google (2021) focus on the usage of different categories of places such
as retail, supermarkets and public transport. Intervista AG (2021) carried
out a mobility tracking study of the Swiss population, observing the daily
distances covered and the purpose of mobility. In this regard, mobility
tracking, besides providing highly detailed information, avoids some of
the modelling problems of traditional surveys, such as the difficulty for
respondents to describe their routes (Zhu et al., 2010).
To the best of our knowledge, at the time of writing, only two works anal-
ysed longitudinal data of several individuals (Jenelius and Cebecauer, 2020;
Molloy et al., 2021), but they presented mainly aggregated results and gen-
eral trends. Therefore, additional specific insights are extremely relevant,
to answer several open questions on users’ behaviour. This paper focuses
on route choice in public transport and analyses how recurrent trips, both
commuting and non-commuting, changed during the pandemic. In that
sense, a major characteristic of the current study is the availability of track-
ing data collected both during spring 2019 and the entire first pandemic
wave in spring 2020. Given that the pandemic was an unforeseen event,
and there was no time to prepare a tracking study, which includes data
of the previous year and just before the pandemic outbreak, our dataset
represents a unique resource, which cannot be collected again.
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6.3.2 Route choice in public transport

Route choice models in public transport are used to analyse or predict the
chosen routes of one or multiple passengers in a public transport network.
Most of the work divide the modelling in two steps (Anderson et al., 2017;
Bovy, 2009; Marra and Corman, 2020): a choice set generation algorithm,
enumerating the available alternatives; and a route choice model, estimat-
ing the passengers’ behaviour. The choice set generation is a complex task,
often solved using heuristics, since enumerating all possible alternatives
is typically not feasible. In this work, we apply the choice set generation
algorithm described in Marra and Corman (2020), based on constrained
enumeration, a family of algorithm widely used in literature (Bovy, 2009;
Cats, 2011; Prato, 2009). The algorithm has a coverage of 94% (identified
trips), and is able to generate all the available alternatives given some con-
straints on the maximum duration and number of transfers of the trip (see
the validation performed in Marra and Corman, 2020).
Regarding route choice, different models are used in literature (Prato, 2009).
The most used one is the Path Size Logit, which is a variation of the
standard Multinomial Logit, including a penalizing parameter for corre-
lated/overlapping alternatives. Anderson et al. (2017) estimated a Mixed
Path Size correction Logit in the public transport network of the greater
Copenhagen area, from a revealed preference survey. Similarly, Montini
et al. (2017) estimated the Path Size Logit from public transport trips in
Zürich, collected from GPS data. Yap and Cats (2021) estimated a Path
Size Logit to evaluate denied boarding in crowded public transport sys-
tems.
In this work, we estimate two Mixed Path Size Logit models: one with
data of 2019 and the other with data during the pandemic in 2020. The
Path Size Logit has been already estimated with success on the dataset of
2019 in Marra and Corman (2020). We refer to that work for further details
on the model and the literature on both choice set generation and route
choice models. We also believe that a comparison with alternative models
(Nested Logit, see Nassir et al. (2015), or Recursive Logit, see Zimmermann
and Frejinger (2020)) is out of the scope of this paper.
A main outcome of this study is the estimation of a route choice model dur-
ing the COVID-19 pandemic, and its comparison with a model estimated
before the pandemic. In literature, route choice has not yet been analysed
during a pandemic. Moreover, a recent work (Weis et al., 2021) highlights
that there are only few repeated studies in the field of transport planning.
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Repeating a study allows observing changes in respondents’ preferences,
if the survey methodology and the sample characteristics stay consistent
over time. To this end, Weis et al. (2021) analysed mode and route choice
of Swiss population from a combined SP/RP (stated preference/revealed
preference) survey in 2015, comparing it with one in 2010. They identified
that willingness to pay indicators are rather stable in time, which is partic-
ularly relevant for their use in cost-benefit analyses.
In the current paper, the tracking of the very same respondents before and
during the pandemic, and the use of the same methodology, guarantee a
fair comparison between the two different periods.

6.4 datasets and study period

The travel diaries used in this study are collected during two different
periods from the same group of users, which are all residents of Zürich.
In spring 2019, 172 participants installed a smartphone app, the ETH-IVT
Travel Diary (Marra et al., 2019), which continuously collect GPS data with-
out affecting the battery consumption. On average each participant was
tracked for 22 days. In February 2020 (few weeks before the outbreak of
the pandemic in Switzerland), the same participants were contacted again,
and 48 of them decided to participate again to the study. This time the par-
ticipants were tracked until early July 2020, with an average of 112 days
per user. Only data and trips collected inside the city of Zürich are consid-
ered in this analysis.
To derive travel diaries from the GPS data, we applied a mode detection
algorithm, described in Marra et al. (2019). The algorithm automatically
identifies activities, trips, stages and transport modes used. Each public
transport stage is described with information on the line, the vehicle of
that line, the departure stop and time, and the arrival stop and time. The
mode detection algorithm has an average accuracy of 86.14% and has been
already validated in previous studies. In particular, Marra and Corman
(2020) used the same dataset of this study (the one of 2019), showing a
realistic mode share and realistic estimations of route choice models.
Table 6.1 shows information on the users in our surveys and their represen-
tativeness (the information refers to 2020, despite it was not significantly
different in 2019). We remark that the survey in 2020 contains only 48 of
the 172 users of the survey in 2019, used in Marra and Corman (2020).
Therefore, in this paper, we will consider only these users, for both years.
Regarding the representativeness, our survey contains in general younger
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Survey 2020 (%) Zürich 2016 (%)

Users 48 -

Gender Male 54 50

Female 46 50

Age <18 0 16

18-24 23 8

24-34 37 22

34-44 21 18

44-54 19 14

>54 0 25

Education Mandatory 6 18

Secondary 29 34

Higher 65 48

Household size 1 29 22

2 33 30

3 9 18

4 21 19

5+ 8 12

Income <4000 9 24 (<5000)

(monthly CHF) 4000-8000 29 24 (5000-7500)

8000-12000 31 31 (7500-12500)

12000-16000 13 11 (12500-16666)

>16000 8 9 (>16666)

No answer 10 0

Table 6.1: Comparison of socio-demographic characteristics between the sur-
vey and the official statistics in Zürich in 2016 (Zürich Statistic Of-
fice, 2021). The income information in Zürich Statistic Office (2021) is
based on a survey in 2015 and the ranges are slightly different from
the ones of our survey.

and highly educated participants. A possible explanation is the nature of
the survey, requiring installing a smartphone application, which might not
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2019 2020

Period 03.04.2019 -
02.06.2019

14.02.2020 -
13.07.2020

Users 48 48

Avg. days per user 25 112

Activities 4617 12234

Trips 4597 12157

Trips inside Zürich 2266 6316

Car trips in Zürich 382 (17%) 1371 (22%)

Bike trips in Zürich 279 (12%) 1089 (17%)

Walk trips in Zürich 398 (18%) 1520 (24%)

Mixed trips in Zürich 244 (10%) 687 (11%)

Public transport trips
in Zürich

963 (43%) 1649 (26%)

# transfers per p.t.
trip (%)

{0: 58%, 1: 31%, 2: 8%,
3+: 3% }

{0: 68%, 1: 25%, 2: 6%,
3+: 1% }

p.t. modes used (%) {Tram: 52%, Bus: 41%,
Train: 7%}

{Tram: 52%, Bus: 40%,
Train: 8%}

Avg. duration per p.t.
trip

22 min 20 min

Avg. air distance per
p.t. trip

2.99 km 2.35 km

Table 6.2: Comparison of travel diaries in 2019 and 2020. Mode share in Zürich
in parentheses.

be attractive for older people. Gender, household size and income follow
quite regularly the actual distribution, despite there are fewer participants
in the lowest income range, and slightly more men than women.
Table 6.2 compares the travel diaries collected in 2019 and 2020. The dura-
tion of the data collection is much longer in 2020 (almost 5 months) com-
pared to 2019 (2 months), and on average each person was tracked 4 times
longer in 2020. This led to a larger number of trips and activities collected
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in 2020. Despite this, due to the effects of the pandemic, the number of
identified trips in 2020 is just 2.6 times that of 2019 (1.7 times for public
transport).
In this work, we analyse only trips inside the city of Zürich, and we discard
trips with an absence of signal longer than 7 minutes (as in Marra et al.,
2019). In total, we analyse 2266 trips in 2019 and 6316 trips in 2020. The
mode share in 2019 (reported in parentheses in Table 6.2) is close to the of-
ficial one in 2016 (Stadt Zürich, 2021, 41% public transport, 26% walk, 25%
motorized private mode, 8% bike), especially for public transport (43% in-
stead of 41%), which is the focus of this paper. We remark that mixed trips
(public and private transport) are not reported in the official statistics, but
only in our survey. In contrast, the mode share in 2020 is remarkably differ-
ent: the public transport share is strongly reduced (26%) in favour of walk,
car and bike (more details in Section 6.6).
An additional difference between 2020 and 2019 is the number of transfers.
Trips without transfers (i.e. only one public transport vehicle) increased
from 58% to 68%, suggesting passengers prefer to reduce the number of
transfers. This might come from a perception of each vehicle as additional
source of contagion; we analyse this aspect in details in Section 6.6.3. A
further difference concerns the length of the trips, which decreases from
2.99 km to 2.35 km. Finally, there is no particular difference in the mode
share among public transport modes (tram, bus and train).
This dataset represents a unique data source, containing long-term travel
diaries of several users before and during the pandemic. We believe the
relatively small number of users (48) does not represent a limitation: most
of the socio-demographic characteristics reflects the official reports, with
few exceptions; the mode share in 2019 does not differ significantly from
the real one; general characteristics of mobility, as mode share and travel
distance during pandemic are in line with other studies in Switzerland (see
Section 6.6.1). In addition, the data collection and the dataset of 2019 were
already tested successfully in a previous work (Marra and Corman, 2020).
In that work, no heterogeneity among participants was found regarding
public transport route choice, which is the focus of this paper. This sug-
gests that the results are significant and representative, without the need
of a larger dataset (which would be in any case impossible to collect).
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6.5 methodology

6.5.1 Route choice model formulation

In this Section, we present the route choice model estimated for public
transport trips. We estimate the same model both on data of 2019 and
data of 2020, to observe the differences between before and during the
pandemic. To understand route choices of public transport passengers, a
route choice model requires two types of information: a set of observed
choices, describing the routes chosen with different attributes (e.g. travel
time, mode, transfers); a set of non-chosen routes for each observation
(choice set), describing alternative choices discarded by the passengers. In
our study, the observed choices correspond to the public transport trips
in Zürich in Table 6.2, while the choice set for each trip is determined by
the choice set generation algorithm described in Marra and Corman (2020).
For each trip, up to 40 alternatives are identified, consisting of sequences
of public transport vehicles alternated by walks. We consider an alterna-
tive matching the passenger’s choice, when it has the same lines used by
the passenger (taking the same line at a near stop is considered the same
alternative). No information on network conditions and delays is assumed
for the choice set generation, i.e. the alternatives are generated from the
timetable.
We estimate a Mixed Path Size Logit model, which is an extension of the
Path Size Logit, allowing for random taste variations across users. The
Path Size Logit is a variant of the standard Logit, including a penalty for
overlapping trips in the utility function. For each route, we consider the
utility function in Equation 6.1, including travel time (in bus, tram and
train), walking time, transfer time and the number of transfers. The walk-
ing time refers to the time between the start of the trip (at the origin) and
the departure of the first vehicle (at the first stop), plus the time between
the arrival of the last vehicle (at the last stop) and the arrival at the desti-
nation. The transfer time is the entire time during a transfer. Therefore, the
waiting time is included both in the walking time and the transfer time,
since the quality of the GPS data did not allow a precise discrimination
between walking and waiting. Monetary costs were not considered in this
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work, since in Zürich there is a fixed price for public transport, which does
not depend on the chosen route.

Uj = −Cj = βtram ∗ tram time + βbus ∗ bus time

+ βtrain ∗ train time + βwalk ∗ walk time

+ βtt ∗ trans f er time + βtrans f er ∗ #trans f ers + βPS ∗ PathSizej

(6.1)

PathSizetrip = − ∑
stage s∈trip

duration(s)
duration(trip)

ln(times s in choiceset) (6.2)

P(trip|choiceset;
−→
β ) =

eUtrip(
−→
β )

∑j∈choiceset eUj(
−→
β )

(6.3)

The PathSize is a penalty attribute, based on the formulation in Bovy et al.
(2008), which penalizes alternatives using the same stage (public transport
line). The penalty increases with the duration of an overlapping stage in
the trip and the number of times the stage appears in the choice set.
To observe possible panel effects and heterogeneity among users in the per-
ception of costs, we estimated a Mixed Path Size Logit model (Anderson
et al., 2017; Prato et al., 2014; Yap and Cats, 2021). In this model, the coef-
ficients (

−→
β ) are assumed random parameters following a probability den-

sity function f (β|θ). In literature, the normal and log-normal distributions
are used for the parameters. Despite the log-normal distribution allows to
restrict the values to only one sign, it may result in a wide distribution,
given its long tail. Therefore, we assume normally distributed parameters,
described by a mean and a standard deviation. A high standard deviation
for a parameter indicates high heterogeneity in the perception of its cost
among the users. The probability of choosing a trip is the following:

P(trip|choiceset) =
∫ eUtrip(

−→
β )

∑j∈choiceset eUj(
−→
β )

f (β|θ)dβ (6.4)

The model was estimated with the software mixl (Molloy et al., 2019), using
500 draws to simulate the probabilities.
The Path Size Logit model (and the Mixed Path Size Logit) has already
been successfully estimated on the dataset of 2019 in Marra and Corman
(2020), which also discuss details on the performance and validity. In this
work, instead, we estimate the same model on data collected during the
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pandemic, from the same users, and we compare the two models and the
estimated coefficients. While no remarkable heterogeneity estimating the
Mixed model was identified in the dataset of 2019 in Marra and Corman
(2020), we here analyse the heterogeneity in cost perception during the
pandemic. The pandemic is an exceptional condition, and the passengers
might consider also the risk of contagion during their choices, which may
influence the perception of the travel cost components in different ways.
We remark we estimate a single model, and not a model for each phase of
the pandemic, since it would result in fewer observations per model and
less reliable results.

6.5.2 Identification of visited locations and recurrent trips

To analyse how the pandemic affected recurrent trips, we need to under-
stand from which location a trip is performed and to which destination.
In the collected travel diaries, each activity of a user corresponds to a set
of GPS points near to each other for a long time. Each activity is the end
location of a previous trip and the start location of an upcoming trip. No
semantic meaning is associated to the identified activities.
Therefore, in this work we apply an intuitive and effective method, to clas-
sify the activities in home, work (or secondary location) or other location.
First, to identify activities representing the same location, we applied a
clustering algorithm, the DBSCAN (Ester et al., 1996), which assigns a
cluster to each activity. A simple rule-based approach can then classify
the clusters (and the activities) in home, work and other.
The DBSCAN algorithm takes as input the GPS coordinates of all the ac-
tivities of a user (mean point of each activity), and a maximum distance
as parameter (100 meters). No minimum number of activities for a cluster
is specified. The advantage of this algorithm is that it does not require to
specify the number of clusters, since the algorithm just groups together
activities near to each other. Each isolated activity will form a cluster of its
own. As result of the clustering, the activities in the same cluster represent
the same location (e.g. the home).
After identifying the clusters, we apply two simple rules to identify home
and work locations. We name home location the one corresponding to the
cluster with highest number of activities (weighted by their duration) dur-
ing weekdays, between 23:00 and 06:00. We name work location the one
corresponding to the cluster with highest number of activities (weighted
by their duration) during weekdays between 09:00-12:00 and 13:00-17:00
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(excluding the home cluster). The activities belonging to other clusters are
marked as other locations.
The proposed method finds several correspondences in the literature. Bhadane
and Shah (2020) compare different clustering algorithms to identify Re-
gion of Interest (e.g. home, work, post office), concluding DBSCAN suits
well for spatial data clustering. Liu et al. (2019) identify individual ac-
tivity clusters from geo-tagged tweets, applying an adapted version of
DBSCAN. Xiong et al. (2020) clusters points of interest in regions using
DBSCAN. Moreover, existing research identifies home and work locations
as the most frequently visited stop during nighttime and daytime hours,
respectively (Calabrese et al., 2013; Chen et al., 2014; Kung et al., 2014;
Phithakkitnukoon et al., 2012).
In our test case, the average distance between two activities in the same
cluster is 27 meters, which confirms they represent the same physical loca-
tion. This method does not aim to be the state of the art in activity classifi-
cation, but it is sufficient to show the general changes in users’ location due
to the pandemic. We remark that there are exceptions in users’ behaviour
which are not considered in this method, as night workers or people with
multiple work locations.
After assigning a location (i.e. a cluster) to each activity of a user, it is possi-
ble to assign each trip to an origin-destination couple (OD). In other words,
two trips starting and ending in the same locations can be assigned to the
same OD. We call those recurrent trips. Moreover, we refer the recurrent
trips between home and work (both directions), as commuting trips.
As a technical remark, we applied the clustering algorithm considering
both the activities in 2019 and 2020, to have the same physical location (e.g.
a supermarket) labelled as the same location/cluster in both years. In con-
trast, we identify the home and work location independently in 2019 and
2020, to identify people who potentially have changed home or workplace.
Considering the two years independently or together for the clustering
and/or the labelling does not change significantly the results.

6.6 results

6.6.1 Mobility trends during pandemic

In this Section, we show how the mobility changed during the different
phases of the pandemic, studying mode share, travel distance and location
during the day of the tracked users.
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Figure 6.1: Travel distance increase during 2020. The baseline (0%) is the average
travel distance in spring 2019.

Figure 6.1 shows the travel distance increase during 2020, compared to
2019. During the last weeks of February, at the begin of the outbreak, the
travel distance for every mode is around 50% less than 2019. This can be
explained both by a higher baseline (which is based on spring 2019, includ-
ing Easter and other holidays), and by the first effects of the pandemic. In
fact, Badr et al. (2020) show evidence of behavioural changes in US before
the restrictions, indicating an anticipation of public health directives from
the individuals. With the first restrictions implemented on 16 March, the
travel distance drops significantly (more than 90% for public transport).
With the first easing of the restrictions, the travel distance increases again.
In June, with most of the restrictions removed, the travel distance of pri-
vate modes reaches the values of 2019. In contrast, for public transport a
decrease of around 40% remained (despite an increase for trains in the last
days), probably due to ongoing policies, as the possibility to work from
home, and a remaining perception of public transport as unsafe. We high-
light that the same trend of travel distance was observed in two different
surveys in Switzerland (Intervista AG, 2021; Molloy et al., 2021), based on
larger samples of users, collected in the whole Switzerland. Despite our
survey focuses on the city of Zürich, the trend of travel distance observed
in the three studies is similar, which shows the validity and representa-
tiveness of our approach. An exception is the distance by bike, which was
found increasing significantly during the pandemic by Molloy et al. (2021),
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Figure 6.2: Mode share in 2019 and 2020 (number of trips).

while not by this work and Intervista AG (2021). A possible explanation is
given by the different baseline, based on fall 2019 in Molloy et al. (2021),
while on spring 2019 in this work. In any case, this paper does not focus
on bike trips.
Figure 6.2 shows the mode share in 2019 and 2020. In February 2020, the
mode share is similar to the one identified in 2019. With the restrictions in
March, the share of public transport reduces in favour of walk and private
modes. The share of public transport follows a similar pattern as for the
travel distance, reaching a plateau (below 40%) at the second half of May,
lower than the 2019 baseline (around 48%). Again, this can be explained by
ongoing policies, as possibility to work from home, and by a perception of
public transport as unsafe.
Figure 6.3 shows the location of the users in 2019 and 2020 during the day.
In 2019, during weekdays, most of the users stays at home in the early
morning and during the night, as expected. Around 8 and 18, there are
the two travelling peaks, in conjunction with an increase and a decrease of
people at work. In 2020, instead, the percentage of people staying at work
decreases, from a peak of 50% to 14%. The trips also decreases, especially
the ones in the morning. In contrast, the activities marked as other, i.e. ev-
erything else besides home and work, did not decrease substantially. In
general, the location pattern during weekdays in 2020 is similar to the one
in 2019 during weekend, with most of the trips occurring in the afternoon.
Comparing the weekend in 2019 and 2020, the location of the users during
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Figure 6.3: Location of the users during the day in 2019 and 2020. All days of all
users are aggregated.

the day is similar, with the only exception of a higher percentage of people
at home in 2020, unsurprisingly.

6.6.2 Analysis of recurrent trips: commuting and non-commuting

In this section, we analyse if in 2020 people choose a mode or route dif-
ferent from that of 2019 for recurrent trips. We selected for each user all
ODs occurred at least 4 times in 2019, identifying 125 ODs. 51% of them
occurred at least 4 times also in 2020, for a total of 64 ODs analysed.
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Figure 6.4: Mode choice of the ODs in 2019 and 2020. Each dot represents an
OD, with its size representing the frequency. Axes represent the per-
centage of times the OD is performed by public transport in 2019

and 2020. Only ODs with at least 4 trips in each year are considered.

Figure 6.4 shows the public transport share for each OD in the two years.
For example, a 80% in the x-axis means the user chose 80% of times pub-
lic transport for that OD in 2019 (the remaining 20% includes walk, bike
and car). We can divide the ODs in three groups: ODs with an increase
in public transport share in 2020 by at least 10% (labelled I); ODs with
a similar share between the two years (labelled II); ODs with a decrease
in public transport share in 2020 by at least 10% (labelled III). The most of
non-commuting ODs are in the second group (43%), compared to the third
(36%) and the first (21%). Thus, for those trips the share of public transport
decreased during the pandemic, but not significantly. In contrast, for com-
muting, the majority of users switched clearly from public transport to
private modes (14% first group, 33% second group, 53% third group).
In general, no ODs are located in the top-left corner of the figure, rep-
resenting a switch from private to public transport. The few ODs in the
bottom-left corner, with a higher public transport share in 2020, can be
imputed to the shorter study period in 2019. In fact, an OD that is rarely
travelled by public transport may result in a 0% of public transport usage
in 2019 and a small percentage (5-20%) in 2020.
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Figure 6.5: Frequency of most chosen routes for commuting and non-
commuting ODs. Only ODs with at least 4 trips in each year are
considered.

Figure 6.5 shows how the frequency of the most chosen routes in 2019

changed in 2020. For example, the first two bars show that on average the
most frequent route in commuting ODs is chosen 39% of times in 2019,
while the same route is chosen 21% of times in 2020. On average, the cho-
sen routes for the same OD in the two years are different. For commuting
ODs, the preferred public transport route is chosen less, since passengers
try different routes and partially switched to private modes. The usage
of bike greatly increased, matching the observed reduced public transport
share. Also for non-commuting trips the preferred public transport route
is less chosen (from 25% in 2019 to 13% in 2020), and walking trips signifi-
cantly increased.

6.6.3 Route choice

Table 6.3 shows the estimation of the Mixed Logit in 2019 and 2020. The
observations include all identified public transport trips, covered by the
choice set generation algorithm. Very short trips, where using public trans-
port is unrealistic (i.e. walking takes less than half the time of any public
transport trip), are discarded. The estimated model in 2019 is the same as
in Marra and Corman (2020) (Table 7), except that the number of observa-
tions is lower, since in this work we consider only the users, which are also
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Parameter 2019 t-test 2020 t-test

In vehicle travel time (s)

µ Tram -1 -8.34 -1 -9.17

µ Bus -1.17 -8.57 -1.16 -10.09

µ Train -1.85 -4.97 -1.00 -4.54

µ Walking time -2.39 -14.10 -2.44 -20.22

µ Transfer time -1.06 -13.70 -0.91 -10.49

µ Number of transfers -792 -13.04 -1008 -12.44

σ Tram 0.18 1.96 0.17 4.74

σ Bus 0.22 3.39 0.13* 0.51

σ Train 0.83 3.61 0.28* 1.09

σ Walking time 0.56 4.09 0.25 2.78

σ Transfer time 0.01* 0.12 0.01* 0.03

σ Number of transfers 88* 0.74 200 3.31

Observations 877 1427

Null log-likelihood -2352 -3544

Final log-likelihood -726 -1054

Adjusted R2
0.69 0.70

Scaling factor 0.0040 0.0041

Table 6.3: Mixed Logit estimated in 2019 and 2020. Parameters distributed ac-
cording to a normal distribution. * indicates a non-significant param-
eter (|t| < 1.96). The parameters are scaled (multiplied by the scaling
factor) to have the in-tram travel time coefficient equal to -1.

tracked in 2020. Nevertheless, the estimated coefficients and standard de-
viations are very close to the ones estimated in Marra and Corman (2020),
showing a model robust to a reduction of users (48 instead of 172). The
only difference is in the PathSize factor, which was not found significant in
this work. We remark that the PathSize was not found significant also in
one of the experiments in Marra and Corman (2020) and in Nielsen et al.
(2021). They showed the PathSize may act both as a correction factor, pe-
nalizing overlapping alternatives, and as a positive factor, rewarding paths
with more opportunities to reach the destination. Doubts on the validity
of the PathSize were also raised in Duncan et al. (2020), which demonstrate
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issues with this model. Therefore, we also estimated the model without
this parameter, as a Mixed Logit (testing different correction parameters is
out of the scope of this work).
Here, we briefly discuss the model in 2019 to better understand the model
in 2020. We report the coefficients scaled by the travel time in tram, to
better discuss the rates of substitution among them. All mean values are
statistically significant, and their sign and values are realistic and in line
with the literature. The preferred mode is the tram, followed by the bus
and the train, in accordance with previous works in Zürich (Meyer de Fre-
itas et al., 2019; Montini et al., 2017). The walking time has a higher cost
than the in vehicle travel time, as expected (Meyer de Freitas et al., 2019).
The transfer penalty is around 15 minutes of travel time in tram, which
falls near the range identified by Garcia-Martinez et al. (2018), between
15.2 and 17.7 min of in-vehicle travel time, in the multi-modal urban net-
work in Madrid. Looking at the standard deviations, the ones of travel time
in bus, tram and walking time are significant but low (between 18% and
23.4% of the respective mean value), showing low heterogeneity among
the users. The standard deviations of the transfer penalty and the trans-
fer time are not significant, showing that there is no heterogeneity in the
perception of transfers among the users. Finally, the only parameter with
a large standard deviation is the travel time in train (44.9%). This implies
that 1.3% of the population is associated with a positive coefficient for the
travel time in train. This is a limitation of using the normal distribution1.
The model of 2020 has comparable coefficients of tram, bus and walk, as
well as low standard deviations, which is non-significant for the bus. Re-
markable differences are in the other coefficients. The in-train travel time
is perceived with a lower cost, and it is comparable with the in-tram travel
time. No heterogeneity was found related to this parameter. Looking at the
transfer-related coefficients, compared to the 2019, the transfer penalty is
much higher and the coefficient of the transfer time is lower. In addition,
in 2020, there is heterogeneity in the perception of the transfer penalty.

6.7 discussion

Mobility has been strongly affected by the COVID-19 pandemic, even be-
fore any restriction, observing a strong decrease and a slow recovery. The
situation in June 2020 is not at the level of 2019, probably due to increased
working from home, and perception of unsafe public transport. The ob-

1 clarification added in this thesis
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served shift to private modes can have negative consequences if it remains
after the pandemic, such as increased traffic congestion and pollution.
Therefore, keeping an attractive public transport system, especially with
policy measures to improve its safety, or its perception, would be crucial.
The obligation for wearing masks (as of 06 July 2020) is indeed moving in
this direction.
Looking at the locations visited during the pandemic, people spent much
more time at home compared to the previous year, especially during week-
days. The workplace, instead, is visited roughly 3.5 times less. These changes
show the impact of working-from-home, and temporary closures of most
of working activities. Accordingly, the time spent travelling also decreased,
and the daily routine during weekdays switched from a morning and an af-
ternoon peak, to a single peak in the afternoon. If the working-from-home
share is higher in the future, the demand will decrease, and especially the
demand peaks, with a potential impact towards supply and infrastructure
needs.
Focusing on recurrent trips, we identified that the chosen modes and routes
strongly changed due to the pandemic. Public transport usage generally
decreased in favor of private modes. For commuting trips, the increase
was greater for bike; while, for non-commuting trips, the share of walk in-
creased. This shows there is a large percentage of people willing to switch
to private modes to avoid public transport. In this regard, the increase
in bike usage is a positive trend, which can be maintained after the pan-
demic, given sufficient investments in bike infrastructure and bike sharing
systems.
Regarding the public transport route choice, in 2020 the preferred route is
chosen less, in proportion to other routes or private ones. In other terms,
the routes are chosen more equally and there is a smaller gap between the
most chosen route and the second chosen one. Among the possible fac-
tors (different daily routines, route choice criteria or safety perception), we
tested the crowding, but without identifying a clear relationship between
the chosen route and the expected crowding (considering the average oc-
cupancy rate of public transport lines in 2019). Further investigations on
crowding and safety perception are left for future works.
The estimation of a route choice model in 2019 and 2020 showed the route
choice in public transport was affected by the pandemic. In fact, we iden-
tified important differences and similarities between the two periods (see
Table 6.3). While the cost perception of tram, bus and walking is similar,
the one for train and transfers is different. We hypothesize for the lower



204 passengers’ behaviour during the covid-19 pandemic

cost perception of the travel time in train that trains, being large vehicles,
guarantee (or are perceived to guarantee) more easily an adequate social
distance. Moreover, trains are used for short urban trips (rarely more than
three stops). Passengers would therefore be for a very short period with
other people, which could be potentially perceived as a threat (wearing a
mask was not mandatory during the study period).
The transfer penalty in 2020 is much higher than in 2019 (by 27%). We link
this again to perceived contagion risks, as an additional transfer means
more and different people encountered during the trip. In contrast, the
perception of transfer time is lower in 2020 and it is lower than the travel
time in any vehicle. As most of the transfers in Zürich takes place outdoors,
the waiting time at a transfer stop could be perceived safer than being in a
vehicle. No heterogeneity among users was found in 2020 related to trains,
showing a general lower cost perceived by all the users. Instead, the trans-
fer penalty is perceived differently among the users in 2020, while not in
2019.
Overall, the identified changes in route choice criteria help predicting the
traffic flow and prepare a response for current or future waves or pan-
demics. The new estimated coefficients and the resulting utility function
can be used for a more accurate traffic assignment model, which can pre-
dict the use of the public transport service during a pandemic. Such a
model helps public transport planning, for instance, identifying potentially
crowded vehicles, which may expose people to a high risk of contagion.
Similarly, the model can also be used to recommend routes with a lower
risk of contagion for the user. In this regard, the collected data hint towards
redesigning the network to increase direct connections and reduce trans-
fers, or increasing frequency and capacity of the lines for which crowding
is expected.1

While the differences in mode share and travel distance can be explained
both by personal factors (as safety perception) and by the implemented
restrictions, the differences in route choice can be imputed mainly to per-
sonal factors. In fact, the settings for route choice (public transport offer,
available alternatives and travel times) remained substantially the same
as before the pandemic. The only differences in the public transport ser-
vice are a general reduction of crowding and a more reliable service. A
marginal change in the public transport offer occurred from March 30 to
May 4, 2020, consisting in a reduction of the frequency of some tram and
bus lines, mainly during peak-hours, from a run every 7.5 minutes to ev-

1 this paragraph has been extended compared to the submitted version.
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ery 10 minutes. Anyhow, this period corresponds to the highest restrictions
and therefore a small fraction of observations in our dataset. We thus be-
lieve changes in personal preferences are the main factor determining the
observed changes in route choice.
A limitation of the route choice analysis is the limited inclusion of trip pur-
pose (as 2020 had much less work trips than 2019). We are aware that trips
with different purposes might result in different choice criteria, but we
preferred estimating a single model for all trips. Dividing by trip purpose
would result in fewer observations per model and less reliable results.
As a thought exercise, we could think of the trips in 2019 as predominantly
work-oriented and the ones in 2020 as predominantly leisure-oriented. In
such a case, we can look if the identified differences match the literature
comparing working and leisure trips. In Switzerland, Weis et al. (2021)
identify for both the transfer penalty and the transfer time a higher cost
(respect to the travel time) in non-working trips. Nielsen et al. (2021) iden-
tify in leisure trips a higher rate of substitution with in-bus time (i.e. a
higher cost), for in-train time, transfer penalty and transfer time. In our
case, instead, we have identified a different situation, with higher trans-
fer penalty (in 2020), but lower costs for transfer time and in-train time.
Therefore, we link the identified differences between the two periods to
the pandemic, and not to the different trip purposes.

6.8 conclusions

In this work, we observed travel behaviour during the COVID-19 pan-
demic from GPS tracking. This technology proved to be an efficient method,
to collect long-term travel diaries without a significant burden on the users.
The resulting dataset used here is an unrepeatable opportunity to observe
travel behaviour during a pandemic. Moreover, the observation of the very
same users already in 2019 allows a precise comparison of travel behaviour
before and during the pandemic.
We observed how the mode share and the travel distance changed during
the different phases of the pandemic. Public transport modes resulted as
the most affected ones, with a reduced traffic persisting even after the first
wave. We exploited the long-term nature of the dataset to observe how
recurrent trips changed in 2020, in terms of mode and route choice. The
share of public transport decreased, in favour of private modes, with a
significant increase of bike usage for commuting trips. Moreover, public
transport users have not anymore a precise preferred route, and they often
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choose different routes for the same OD.
We estimated two route choice models, based on trips before and dur-
ing the pandemic, identifying important differences in perception of travel
time in train and transfers. Given an already exiguous literature on compar-
ing route choices of the same population in different periods, our work rep-
resents an important contribution on understanding how travel behaviour
evolves in time, especially during a pandemic.
Therefore, for future work, we encourage the repetition of long-term sur-
veys in different years. An interesting possibility is comparing a pre-pandemic
period with a post-pandemic one, when the emergency may be considered
over. In this work, we focused on public transport and route choice, al-
though other aspects of mobility can be analysed. For instance, analysing
activity-based travel patterns and daily routines, one can observe how the
pandemic affected the daily behaviour of different users. Finally, we re-
mark that we analysed the effects on travel behaviour of the pandemic
in general, while further research is needed to observe the consequences
of specific restrictions or how passengers’ perception of safety affect their
behaviour.
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7
C O N C L U S I O N S

7.1 main findings

This thesis focuses on understanding passengers’ behaviour in public trans-
port from GPS tracking. A particular attention is given to public transport
disturbances, their impact on passengers, and how passengers react to
them. We formulated the objective of this thesis in the following research
question:

How can tracking technology be exploited to understand passengers’ behaviour in
public transport, and in particular during different disturbances in the network?

We answered this question developing several algorithms and methods
that, starting from raw GPS data of passengers and Automatic Vehicle
Location data (AVL) of the operations, can derive precise information on
passengers’ travel behaviour. Moreover, analysing real-life network distur-
bances and observing passengers’ route choices in those cases, we were
able to understand how passengers’ behave in case of disturbances.
Given the complexity of the research question, we divided it in different
sub-questions, to each of which we answered in a different chapter. Below,
we report each sub-question, with a summary of the proposed methods
and the results obtained.

1) How to derive travel diaries from long-term GPS tracking, based on a
smartphone application?

In Chapter 2, we developed a smartphone application, able to continuously
collect GPS data, without a significant burden on the tracked users. In par-
ticular, the application is able to track users for a long period, without
requiring any interaction other than its installation, and without signifi-
cantly affecting the battery consumption. To achieve this, the GPS data are
collected with a low sampling frequency. Therefore, specific algorithms
need to be used to derive travel diaries from GPS data, able to deal with
low-frequency data.
In particular, we developed algorithms for activity and trip identification,
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trip segmentation, and mode detection. This latter is the main focus of our
research, given its higher complexity. The main characteristic of the mode
detection algorithm, which makes it stand out from other works in litera-
ture, is the ability to identify the exact vehicle used in each public transport
stage (therefore mode, line, vehicle, and exact departure and arrival times).
In fact, the algorithm exploits the AVL data of public transport operations,
comparing the GPS points of the tracked user with the locations of all pub-
lic transport vehicles running in the network. If a matching is identified
at the origin and at the destination of the user’s stage, the used public
transport vehicle is detected. The mode detection algorithm is therefore
unsupervised, since it is not based on an inference model, which would
require a training set, based on an extensive manual labelling of users’
movements. Instead, only an eventual tuning of the parameters is needed.
An additional novel aspect of the proposed algorithm is the usage of past
travel information. In fact, previously visited locations of a user are ex-
ploited to identify possible transfers in future public transport trips.
The smartphone application and the proposed algorithms were tested in
Zürich and Basel. In particular, the mode detection algorithm obtained
an average accuracy of 86.14%. The combination of a long-term tracking
system not affecting the battery consumption, highly accurate algorithms
for collecting travel diaries, and a mode detection algorithm identifying
also the public transport vehicles, makes the proposed methodology par-
ticularly suitable to observe long-term travel behaviour of public transport
passengers.

2) How to identify the available alternatives for a public transport trip, which
more realistically were considered by a passenger, given a certain knowledge of

current network conditions?

Chapter 3 answers this research question, proposing a novel choice set
generation algorithm for route choice in public transport. The proposed al-
gorithm is based on constrained enumeration, which means it identifies all
available routes, given certain constraints on the maximum duration and
the maximum number of transfers.
We evaluated the algorithm on public transport trips from a large-scale
tracking study, based on three different aspects, in which the algorithm ob-
tained outstanding performance. First, the computation time to generate
one choice set is significantly short, with a median of 7 seconds on a stan-
dard computer. Second, the algorithm has a coverage above 94%, which
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represents a great ability to identify the passengers’ routes in the gener-
ated choice sets. Third, the algorithm is evaluated based on the quality of
the estimation of a route choice model. In this regard, the estimation of
a Path Size Logit model leads to significant estimated parameters, in-line
with the values expected from the literature.
An important characteristic of the proposed algorithm is the modelling of
the public transport network based on AVL data, which makes it possi-
ble to generate the alternatives based on different information provisions
on the network conditions to the passengers. We evaluated three differ-
ent information provisions (full information, partial information and no
information) on the tracked passengers, to identify the information repre-
senting best their choices. On average, the absence of information resulted
as the best fit, despite we identified high heterogeneity among the passen-
gers.
An important aspect of route choice modelling rarely considered in litera-
ture is the choice set size. In fact, a choice set must contain all and only the
relevant alternatives considered by the passenger. In this regard, we identi-
fied the right size as the minimum number of alternatives, which does not
decrease significantly the performances (i.e. including more alternatives
does not change the understanding of passengers’ choices).
Finally, a further aspect we analysed is the distance travelled walking by
passengers. In fact, we identified a large variation of it among different
users and different trips of each user. This is particularly relevant, to de-
fine the maximum walking distance in choice set generation, since people
may be willing to walk more or less for different trips. In this regard, con-
sidering both alternatives based on short walks and those based on long
walks leads to a higher coverage, at the cost of more non-relevant alterna-
tives included in the choice set.

3) What is the impact of public transport disturbances on passengers? What are
the main characteristics of disturbances affecting their impact?

Chapter 4 answers this question, proposing a novel metric of disturbance
impact, which quantifies the effect of any disturbance (named disruption
in Chapter 4) from the passengers’ point of view. This metric evaluates
the impact of a disturbance on a certain origin-destination pair (OD), it is
based on random utility theory and it represents the difference between
the expected travel cost in case of disturbances with the expected one with-
out disturbances. The major advantages of this metric are the applicability
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to any disturbance (from small to large ones), and the evaluation of the
impact on a specific OD. Therefore, the impact of a disturbance is assessed
in relation to the origin and destination of the affected passenger.
To identify the main characteristics of disturbances affecting their impact,
we based our analyses on real disturbances occurred in two Swiss cities,
Zürich and Bern. We considered a disturbance as a combination of de-
lays and cancelled arrivals of public transport vehicles, near each other
in time and space. This flexible definition includes both small and large
disturbances, allowing the comparison of disturbances with different char-
acteristics. Therefore, we identified around 2000 disturbances from long-
term AVL data, applying the clustering algorithm ST-DBSCAN. Analysing
more than 25000 ODs starting in disturbed areas, based on random forest
regression and feature importance metrics, we identified the main charac-
teristics of disturbances affecting their impact on passengers.
Two of them are the service frequency and the choice set size (number of al-
ternatives available). In fact, high values of these features are related with a
lower impact of disturbances. Network metrics of the disturbed area, such
as betweenness and closeness centralities, also play a key role in determin-
ing the disturbance impact. In particular, we identified that a disturbance
in a peripheral area or in a hub has higher impact compared to one in an
intermediate zone. The disruption impact increases also with higher de-
lays, but until a certain value (≈ 17 minutes in Zürich), after which it does
not increase further.
Finally, among the less important features, there are those related to the
destination. This shows the disturbance impact is mainly determined by
the disturbed area. In that sense, the number of events involved in a dis-
turbance was also found less important than the features describing the
disturbed area.

4) How different network disturbances affect route choice of public transport
passengers?

Chapter 5 answers this question, based on real observations of passen-
gers’ behaviour during network disturbances. To observe passengers’ route
choices in case of disturbances, we combined the methodology proposed
in the three previous chapters. We derived travel diaries of several users
from a large-scale tracking study, as described in Chapter 2. We identified
the available alternatives of each public transport trip, in planned condi-
tions and in case of disturbances, as described in Chapter 3. We evaluated



7.1 main findings 217

the service degradation during passengers’ trips, adapting to the new con-
text the metric of disturbance impact proposed in Chapter 4.
We observed the effects of disturbances on passengers in terms of both
route choice and increased travel cost. As main outcome, we identified
high heterogeneity among the effects of disturbances on the observed trips.
Despite this, we observed the following general trend. A higher service
degradation corresponds to an increased travel cost, compared to a condi-
tion of no disturbances. Similarly, a negative service degradation, referring
to variations from the timetable leading to less costly alternatives, such as
early departures, corresponds also to an increased travel cost. Regarding
the route choice, with higher service degradation, passengers choose more
likely the less costly alternative. In contrast, with negative service degrada-
tion, passengers do not exploit the new available alternatives.

5) Is it possible to understand travel behaviour during the COVID-19 pandemic
from tracking data? How the route choice criteria differ from those in a

pre-pandemic period?

Chapter 6 answers this research question, based on two tracking studies in
Zürich. In particular, the same group of participants was tracked in both
studies, one in 2019, before the pandemic, and the other in 2020, during
the first pandemic wave. The availability of data of the same people, before
and during the pandemic, gives a unique occasion to observe how travel be-
haviour changed. In fact, collecting travel diaries and understanding their
route choice criteria, based on the methodology described in Chapter 2

and Chapter 3, we were able to compare the travel behaviour between the
two different periods, and understand the effects of the pandemic on it.
The main observed effect of the pandemic is a strong reduction of the trav-
elled distance, especially for public transport trips. The modal split was
also affected, with the share of public transport decreasing, in favour of
walk and private modes. These changes varied during the different phases
of the pandemic. In fact, the lowest travel distance and public transport
usage were observed with the strongest restrictions implemented by the
authorities. In contrast, with the easing of the restrictions, these two val-
ues increased again.
Users’ behaviour related to work was also particularly affected by the pan-
demic. In fact, we observed a strong reduction of the time spent at the
workplace, while an increase of the time spent at home. Moreover, among
the regular trips, commuting trips were the most affected, observing a
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strong decrease of public transport usage, in favour of private modes.
Estimating two route choice models, we identified important differences
between the route choice criteria in 2019 and 2020, during the pandemic.
The travel time in train, which is the least preferred mode in 2019, is per-
ceived with a much lower cost in 2020. The transfer time is also perceived
better in 2020, while the number of transfers has a higher cost. More-
over, heterogeneity was found among the users regarding perception of
additional transfers. These identified differences clearly show that the pan-
demic influenced the route choice in public transport. Among the possible
explanations, there is the importance given to safety and its perception
by travellers. Anyhow, identifying how each specific consequence of the
pandemic affected travel behaviour is left for a future work.

7.2 implications for practice

Based on the analyses and results of this dissertation, in this section, we
complement the contributions to society mentioned in Section 1.5.2, with
the following implications and recommendations to the public transport
industry.
In this thesis, we showed how automatic procedures and methods can de-
rive from tracking data a variety of information on travel behaviour. In
particular, we analysed passengers’ behaviour in case of normal network
conditions, network disturbances and during the COVID-19 pandemic. Re-
garding network disturbances, understanding passengers’ behaviour re-
quired a series of steps, including: mode detection, choice set generation,
route choice model estimation and evaluating the service degradation. The
application of these methods, as proposed in this thesis, allowed observing
passengers’ choices over a long period and during different disturbances.
The high level of detail of passengers’ choices allows a better understand-
ing of passengers’ reaction to disturbances, and therefore a better planning
of disturbance management by service operators.
It follows, as major implication for public transport industry, the proposed
methods are a valid tool for transport analysts, to automatically under-
stand passengers’ behaviour. In fact, the proposed data-driven approach
supersedes traditional surveys in several aspects, such as the duration of
the data collection and the level of details of the collected information.
Moreover, each method can be adapted individually to different contexts
and the specific needs of the transport analyst, without affecting the other
methods. For instance, different algorithms can be used to derive travel
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diaries, if Automatic Fare Collection data (AFC) are used, instead of GPS
data; or a different choice set can be generated, if private modes should be
considered.
Given the heterogeneity of the proposed methods, each analysis we per-
formed has important implications on its own.
In Chapter 2, we showed how GPS data can be collected and exploited
to understand passengers’ behaviour in public transport. In particular, we
tested a smartphone application and a mode detection algorithm to au-
tomatically collect long-term travel dairies, without a significant burden
on the users. The high accuracy of the mode detection algorithm, and the
realistic and significant results achieved in behavioural analyses (in the fol-
lowing chapters) show the validity of our methods in practice. Moreover,
the algorithms proposed in Chapter 2 are directly applicable by public
transport operators, to collect long-term travel diaries. In fact, the mode
detection algorithm is not bound to our case study, and it can be applied
in any city providing locational data of the operations. Only a tuning of
the parameters may be required. We see the conduction of regular track-
ing studies by public transport operators as a potential application of our
methods. Such studies allow to monitor the passengers in the system, and
therefore to better understand their needs and adapt the provided service
consequently. Moreover, the costs of these studies would be limited, since
the data processing can be fully automatized, and the participants may be
recruited proposing offers or discounts on the public transport service.
In Chapter 3, we proposed a choice set generation algorithm. Besides find-
ing application for research and modelling purposes, the proposed algo-
rithm can be applied by public transport operators for route recommen-
dation. In fact, the high coverage obtained (above 94%) shows a high pre-
cision in identifying the route chosen by the users. Moreover, the very
low computation time makes possible using the algorithm in route rec-
ommender systems in daily life. We analysed choice sets based on dif-
ferent information provisions of network conditions, to identify the one
representing best the passengers’ behaviour. Such analysis is particularly
relevant for service providers, since it indicates based on what informa-
tion passengers consider their alternatives. In our test case, a condition of
no information performed best, which may indicate a need of more infor-
mation for passengers or better recommendations to be provided. In this
regard, the same analysis can be performed independently for each user,
identifying which one is less informed or might benefit from targeted rec-
ommendations.
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Regarding public transport disturbances, in Chapter 4, we proposed a met-
ric to quantify their impact on passengers, and we identified the charac-
teristics of disturbances related to a higher impact. Knowing these charac-
teristics is particularly important for service providers, both for transporta-
tion planning, disturbance management and reliability analysis. In our test
case, we identified the service frequency, the number of alternatives avail-
able, and the position in the network, as the main factors reducing the
impact of potential disturbances. Therefore, service providers may adapt
their transport service in accordance with this information, to increase its
reliability. For instance, in stations considered particularly important or
vulnerable, they may increase the service frequency, the connections with
other stops, or the number of public transport lines running. Moreover,
with the proposed methodology, the effects of such measures on passen-
gers can be quantified, allowing the comparison of different measures for
disturbance management. Among the less important characteristics of a
disturbance, we identified the number of disturbed events (arrival of a
vehicle at a stop). This highlights to service providers that the size of a
disturbance is not particularly important, while a major attention must be
given to poorly connected locations, providing few alternative routes and
are therefore more vulnerable to disturbances. Hence, to provide a more
resilient service, providers should increase the number of alternatives avail-
able in less connected locations.
Following this analysis, in Chapter 5 we observed the effects of different
network disturbances on route choice of public transport passengers. One
of the main results we identified is a high heterogeneity among the effects
of disturbances, in terms of increased travel cost for passengers. This is
particularly relevant for disturbance management, since this heterogeneity
must be taken into account to evaluate the effects of disturbances and plan
mitigation actions accordingly. Analysing "good disturbances", which we
refer as deviations from the timetable leading to less costly alternatives,
such as early departures, we identified an increased travel cost for pas-
sengers. This type of disturbance is rarely considered in practice and in
scientific literature, although our analysis shows it should be considered
as much as a normal disturbance. In this regard, our analysis shows pas-
sengers choose the less costly alternatives in case of normal disturbances,
while more costly ones in case of "good disturbances". Therefore, a recom-
mendation for service providers resulting from this analysis is that in case
of normal disturbances, operations should be regularized and there is not
a particular need of informing the passengers; in contrast, in case of "good
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disturbances", either passengers should be informed of the new available
connections or operations should be regularized.
Finally, in Chapter 6, we analysed travel behaviour during the COVID-
19 pandemic, observing important variations in the travel distance, mode
share and route choice, compared to a pre-pandemic period. Given the
small and recent literature on travel behaviour during a pandemic, this
study contributes to its understanding, and helps decision makers on plan-
ning and evaluating policies. For example, the observed reduction in travel
distance during the pandemic helps understanding the effects of restric-
tions on mobility. Moreover, the observed variations in the route choice
criteria helps predicting the traffic flow during the pandemic, and thus
adapting the transport service, for instance to reduce crowding.

7.3 limitations of the research

In addition to the research boundaries and assumptions described in Sec-
tion 1.3, the proposed research has further limitations, which must be con-
sidered by researchers or experts interested in reproducing the results.
In this research, we conducted several tracking studies in a university en-
vironment, informing participants about data collection and usage. There-
fore, practitioners who wish to apply similar methods must consider regu-
lations on privacy and transparency.
Regarding the data collection, different smartphones provided GPS data
with different quality, due to the large heterogeneity of smartphones avail-
able on the market and the relative software installed. It follows that the
data collection (and the following mode detection) might not work prop-
erly for certain users.
To observe travel behaviour in public transport, we proposed a series of
methods to apply in sequence (GPS tracking, mode detection and choice
set generation). Despite the high precision of the proposed methods, each
one has a small percentage of error, which can be accumulated during the
data processing. Therefore, a high accuracy in the first steps of data pro-
cessing is necessary to have reliable results on the following analyses. In
the proposed mode detection algorithm, the accuracy for train detection
is lower than for other modes, due to the lower GPS quality inside trains
(68.3%). Despite train trips represent a minority of the observed public
transport trips in this work (10%), we recommend to improve the train de-
tection in future works.
To study route choice in public transport, in particular in Chapter 3 and
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Chapter 5, we relied on a series of assumptions. First, we assumed the
route choice process starting at the ending time of the previous activity (i.e.
the last GPS point). This may not always be true, since people may wait in
their current location a scheduled public transport vehicle. Second, despite
constraints in a choice-set generation algorithm (e.g. maximum number of
transfers) are necessary to drastically reduce the computation time (at the
expense of discarding ≈ 5% of observations, as subject to unmodelled sit-
uations), they may create endogeneity and bias the coefficients during the
model estimation. Third, we did not take into account the trip purpose of
passengers, since it was not available in the data. This information may
improve our analyses, since different trip purposes may correspond to dif-
ferent choice criteria for passengers.
Finally, we remark that our analysis of travel behaviour during distur-
bances is conducted in Zürich, a city with a very reliable public transport
service, which rarely faces large disturbances. In fact, during the three
tracking studies, no large disturbances occurred, affecting several partici-
pants. We therefore believe that repeating the same analyses in a city with
an unreliable service may provide more insights about it.

7.4 future research

GPS tracking is a relatively modern technology, which only in the last
years has been applied to collect travel diaries. In fact, with the broad
diffusion of smartphones, the collection of GPS data became much easier,
given that people were already carrying a GPS device with them. For this
reason, there is plenty of room for research in the analysis of travel be-
haviour based on this technology. Moreover, given the heterogeneity of the
proposed methodology in this dissertation, we identified several future re-
search directions, which can extend and improve the current work:

Exploiting long-term travel diaries
With the increasing quality of GPS data and of the methods for deriving
travel diaries from them, there is plenty of room for research on analysing
long-term travel diaries with detailed travel information. In fact, in this
thesis, we focused on travel behaviour and in particular on route choice in
case of disturbances. Nevertheless, the same smartphone application and
data processing proposed in Chapter 2 can be exploited for other studies,
requiring long-term travel diaries. A possible research direction is given
by analysing sequences of activities. Observing which activities users per-
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form and in which order has several potential applications, ranging from
urban planning (Jiang et al., 2012) to understanding human behaviour (Ho-
ranont et al., 2013) or health management (Chiang et al., 2014). Related to
this, long-term travel diaries can be used to study the regularity of human
mobility (Mucelli Rezende Oliveira et al., 2016), and therefore to identify
anomalies in users’ behaviour in case of special events.

Improving the mode detection algorithm
The mode detection algorithm presented in Chapter 2 stands out among
the ones available in literature for being able to identify the exact public
transport vehicle used, and for not being primarily based on machine learn-
ing. Therefore, it is worth to study a new mode detection algorithm, which
integrates the two methodologies. Such an algorithm may exploit GPS and
AVL data to identify the public transport vehicles (as the one proposed),
and machine learning based on previous information about the user to
improve the detection. For instance, if a user travels regularly to a certain
destination, information of previous trips can be used to adapt the likeli-
hood function described in Section 2.7.1. In any case, the mode detection
algorithms described in literature are all heuristics, whose performance
depends on the test case and the quality of the GPS data. Therefore, we
encourage further research on this field, exploring alternative methods.

Exploiting longitudinal data to predict route choice
In this thesis, we analysed route choice in public transport using random
utility models, as the Path Size Logit. While such a model is useful to
understand the route choice criteria, machine learning approaches may be
better suited for route prediction. In this context, the travel diaries collected
in this study can be used as a training set for a route prediction model. This
model may exploit the longitudinal nature of the dataset (e.g. the previous
choices of the same user), socio-demographic information, or external in-
formation (e.g. the weather conditions). This stream of research is particu-
larly new and it is emerging in the last years in the context of mode choice,
while not yet in route choice. For instance, Wang et al. (2020) proposes a
neural network with alternative-specific utility for mode choice. Similarly,
Sifringer et al. (2020) proposes a neural network, including a data-driven
parameter in the utility, which outperforms traditional choice models.

Relevance of paths in a choice set
In Chapter 3, we analysed the size of a choice set and when a path can
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be considered relevant and included in it. We identified the right size of
a choice set based on a trade-off with its performance (i.e. the minimum
size that guarantees high performance). Nevertheless, we acknowledged
the relevance of a path is very subjective and the number of alternatives
considered can vary among users and among trips with different charac-
teristics. We are not aware of any work investigating the choice set size in
detail, despite it can affect the quality of models’ estimation (Zimmermann
and Frejinger, 2020), and its importance in practice (for instance in route
recommender systems). Therefore, a future work may focus on identify-
ing which alternatives the users consider relevant. Such work can also be
based on tracking, including regular surveys asking about the alternatives
considered for each trip. In this regard, the surveys can be visually inte-
grated in the smartphone application, to encourage a response.

Exploring the impact of disturbances in different contexts
In Chapter 4, we analysed the impact of public transport disturbances
on passengers and identified their main characteristics. In particular, we
focused on small disturbances in multi-modal networks in Switzerland.
Given the heterogeneity of the various public transport networks and the
possible types of disturbances, we recommend for future work to perform
a similar analysis in different contexts. In particular, in case of railway
networks, we expect different results, such as a higher importance iden-
tified to the location of the disturbance in the network. In fact, the lower
accessibility of the stations in a railway network makes more difficult for
passengers to move from a station with disturbances. Moreover, the types
of railway disturbances can be significantly different from the ones in a
multi-modal network. For similar reasons, we expect different results in
public transport networks providing a significantly different quality of ser-
vice, compared to the ones analysed.

Inference of the information available to passengers
Until now, research works model passengers’ behaviour assuming a cer-
tain information available to them (Gentile and Noekel, 2016; Leng, 2020).
This is particularly useful, for instance, to estimate the effects of informing
(or not) passengers of a disturbance. In practice, it is not known if passen-
gers are informed (or not), if the right information is provided to them,
if they use it, and how they use it. In this regard, a novel stream of re-
search may focus on understanding the information available to (or used
by) passengers from realized observations. Knowing if passengers are cor-
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rectly and promptly informed about disturbances in the network, and if
they use this information, is particularly useful for service providers, to
understand the effectiveness of their information systems. The analyses in
Chapter 3 and Chapter 5 go in this direction, comparing the passengers’
choices with those expected knowing or not about the disturbances. There-
fore, a possible future work may be based on a large-scale tracking dataset,
where information is provided in different ways, and passengers’ choices
are analysed to understand if and how they use the provided information.

Analysis of large disturbances
In this work, we focused on small disturbances in a public transport net-
work, while we did not analyse large disturbances, such as a big service
interruption. We believe the main obstacle for such analysis is the data col-
lection of realized data of passengers, given the rarity of large unplanned
disturbances. In fact, disturbances with higher impact are typically rarer
(Yap, 2020). For this reason, the literature focusing on large disturbances is
based either on simulations (Leng, 2020), on one or few disturbances (Sun
et al., 2016), or on planned disturbances (Yap et al., 2018). Therefore, for a
future work on passengers’ behaviour during large disturbances, a method-
ology similar to that of this thesis can be applied, while a different attention
must be paid to data collection. This last one should involve a large amount
of passengers, and span several months (or years), to observe a sufficient
number of unplanned disturbances. Moreover, the burden on passengers
and the economic costs should be minimized. AFC systems are a technol-
ogy that meets these requirements. Unfortunately, they are not available
in all cities and they monitor the passengers only within the transport
system. On the contrary, GPS tracking can be used potentially everywhere
and can observe also walks and activities, but at the cost of a more difficult
recruitment of participants. Finally, we remark privacy issues are possible
for such a long study period, such as the need to anonymize AFC data,
which does not allow studying regular trips.

Further research on travel behaviour during a pandemic
The COVID-19 pandemic is an exceptional event that affected the travel
behaviour of the world population. At the time of writing, the pandemic
is not over yet, and we do not know when it will last and what its future
phases will be. For this reason, and given the heterogeneity of how the pan-
demic evolved in different countries, there is not yet a clear understanding
of travel behaviour during a pandemic. In this thesis, we shed some light
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on travel behaviour during the first wave in Switzerland, with a focus on
route choice. Therefore, for future works, we encourage exploring other as-
pects of travel behaviour during the different phases of a pandemic, such
as the trip purpose, activity sequences and daily routines. In this regard,
GPS tracking is a valid technology to collect highly detailed information
on passengers. Finally, a possible future work can be based on a further
tracking study, to compare a pre-pandemic period with a post-pandemic
one, and to observe possible long-term changes in travel behaviour.
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A P P E N D I X

This appendix contains additional details to specific passages in the Thesis,
marked with the superscript [Thesis Appendix]. These comments were not
added directly in the text, to not modify the published articles.

1. We used a different dataset for validation, given the availability of
ground truth data.

2. The public transport operational data are assumed reporting correct
information on actual arrival and departure times, for all chapters of
the thesis.

3. We refer to the following constraints mentioned later in the same
Section: walking distance is ≤ N; the waiting time is ≤ TD; for each
possible transport line, only the best transfer is considered.

4. Fiorenzo-Catalano (2007) affirm that in route choice in transport net-
works it is expected travellers consider a choice set with a limited
number of alternatives, since the number of routes that might be
known, considered or used is limited.

5. In other terms, one minute in the tram is perceived as less penalizing
than one minute in other vehicles.

6. We consider a characteristic of a disruption important, when it affects
more the impact of the disruption compared to other characteristics.

7. The random forest model has in input the list of features in Table 4.1
and as target value the disruption impact.

8. The feature importance metrics should be used to identify which
characteristics affect most the impact of a disruption.

9. In practice, the proposed framework can be used to estimate the im-
pact of current or possible future disruptions. Instead, the feature im-
portance metrics in Table 4.1 show a ranking of the features, in terms
of their influence on the disruption impact. Based on those metrics,
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operators can intervene on specific features to reduce the disruption
impact (e.g. increasing the service frequency or the closeness central-
ity).
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