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Abstract
In this article, we assess farms’ technical efficiency accounting for their produc-
tion heterogeneity and correcting for the potential endogeneity associated with
the adoption of CommonAgricultural Policy (CAP) agri-environmental schemes
(AESs). We estimate a first-step selection probit model. In a second step we esti-
mate the latent class stochastic frontier model (LCSFM) separately on each of
the two sub-samples, the AESs adopters and the AESs non-adopters. We also
account for heteroscedasticity in the estimation of inefficiency effects in the
LCSFM within each sub-sample. The application is to Farm Accountancy Data
Network (FADN) dairy farms in France during 2002–2016. We identify one class
with intensive technology and one class with extensive technology for each of the
two sub-samples. The investigation of inefficiency effects shows that modeling
production heterogeneity could help better target the CAP, since the relation-
ship between operational subsidies and farms’ efficiency differs depending on
whether or not production heterogeneity is accounted for.

KEYWORDS
agri-environmental schemes, efficiency, farms, France, heterogeneous technologies, latent
class, sample selection
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1 INTRODUCTION

Evaluating the levels and determinants of farms’ technical
efficiency is a topic that has received considerable atten-
tion in the literature, using various benchmarking meth-
ods. One crucial shortcoming in benchmarking studies is
that technological heterogeneity across firms is generally
ignored. Not accounting for heterogeneity in the technol-
ogy is a strong assumption and may lead to misspecifica-
tion in the empirical evaluations (Hayami & Ruttan, 1970).

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2021 The Authors. Agricultural Economics published by Wiley Periodicals LLC on behalf of International Association of Agricultural Economists.

In agriculture, the technologies are often complex, and
their efficient usemay be strongly affected by farmers’ abil-
ities and the conditions in which the farms operate.
Heterogeneous production technologies can be mod-

eled through the meta-frontier framework. In this, a
single characteristic is considered to define a priori homo-
geneous groups of observations (in terms of location,
main production, organic or conventional agriculture,
etc.) for which different technologies are estimated (Bat-
tese & Rao, 2002; Battese et al., 2004). However, from a
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methodological point of view, the meta-frontier approach
may be affected by the problem of incompleteness, in the
sense that groups of observations may not be correctly
identified and some unobservable factors may not be
considered. In addition, the meta-frontier estimation is,
in fact, a three-stage approach in which, in the first stage,
the sample is split into several groups, in the second
stage, a frontier is estimated for each of these a priori
defined groups, and in the third stage, the meta-frontier
is constructed. These distinctive (independent) stages
imply a loss of information about the common features of
observations in different groups since each group frontier
is constructed separately (Alvarez & del Corral, 2010).
An appealing method that has been proposed to cir-

cumvent the shortcomings of the meta-frontier is the tech-
nique of latent class modeling, coupled with the stochastic
frontier framework (W. Greene, 2005; Orea & Kumbhakar,
2004). This technique simultaneously estimates the groups
of farms, called the classes, and each class’s frontier.
In agriculture, latent class modeling has been used by

Alvarez and Arias (2015), Alvarez and del Corral (2010),
Alvarez et al. (2012), Cillero et al. (2019), Kellermann
and Salhofer (2014), Orea et al. (2015), Sauer and Paul
(2013), and Grovermann et al. (2021). In general, farms
are separated into classes depending on the degree of
intensification of their practices, based, for example, on
livestock density. Another aspect that may differentiate
farms’ technologies is whether farms have adopted agri-
environmental schemes (AESs). AESs are part of the Euro-
pean Union’s (EU) Common Agricultural Policy (CAP)
and aim to increase farmers’ adoption of environmentally-
friendly practices. Farmers voluntarily adopt AESs, gener-
ally for 5 years, and receive payments to compensate for
additional costs and potential profit losses following the
adoption of environmental practices.
Many diverse AESs are designed depending on the EU

Member States or the main production specialization of
farms to accommodate production systems’ heterogeneity
(Primdahl et al., 2010). For instance, in France in the case
of livestock farming, environmental practices covered by
AESs relate to, among other things: the extent of perma-
nent grassland; number of animals per hectare (stocking
rate); no-tillage and no pesticides on permanent grassland;
set-up of ecological interest area; grass buffer strips; low
use of nitrogen fertilizers; and conversion to and main-
tenance of organic farming. Additionally, the AESs are
implemented at the regional level in France, which intro-
duces more disparity among the adopters (Chabé-Ferret &
Subervie, 2013). This heterogeneity is likely to be reflected
in the production technologies of farmers.
Modeling adoption of AESs as a variable that enables

the separation of farms into classes in a stochastic fron-
tier approach is not straightforward due to endogeneity.
The literature on AES adoption highlights that several rea-

sonsmight explain why a farmer chooses one practice over
another, such as cost-benefit analysis, opportunistic behav-
ior, etc. (Barreiro-Hurlé et al., 2010; Espinosa-Goded et al.,
2013; Vanslembrouck et al., 2002). AES adoption may also
depend on farmers’ willingness and capacity to adjust their
technology and practices. As such, the adoption process is
endogenous and has to be explicitly accounted for in esti-
mating production technologies.
In a classic efficiency analysis, we could use the stochas-

tic frontier (SF) framework (Aigner et al., 1977) which has
been extended to the Heckman selection models in W.
Greene (2010) and Lai (2015). A few studies have exam-
ined the effect of technology choice on technical efficiency
(Bostian et al., 2019; Bravo-Ureta et al., 2012; Henningsen
et al., 2015; Kumbhakar et al., 2009; Mayen et al., 2010;
Villano et al., 2015).However, none of themconsideredhet-
erogeneity within the framework of latent class modeling.
Therefore, our aim in this article is to examine the

question of farms’ technological heterogeneity, taking into
account that some farmers adopt AESs and others do not.
From a methodological point of view, our article will con-
tribute to the literature in two ways. We extend W. Greene
(2010)’s SF sample selection model to account for produc-
tion heterogeneity under the latent class stochastic frontier
model (LCSFM) (Orea &Kumbhakar, 2004). In this frame-
work, endogeneity arises from the correlation between
the two-sided error component in the production func-
tion and the sample selection equation noise.1 Our new
model accommodates the two strands of the literature and
considers production heterogeneity under the endogenous
adoption of AESs. It further accounts for the inclusion of
efficiency drivers (as heteroscedasticity in the one-sided
error term). Empirically, we operationalize the newmodel
by considering a sample of French dairy farms during
2002–2016. Finally, in the implementation of the LCSFM,
while the prior probability of farms belonging to a class
is generally fixed over time, in our new model we adopt
a pooled version of the LCSFM with modified prior prob-
abilities that change over specific periods (2002-2006,
2007—2013, and 2014–2016) which correspond to the main
reforms of the CAP.
The rest of the article is structured as follows. Section 2

presents the selection correction for the LCSFM with het-
eroscedasticity, and Section 3 describes the database and
the empirical specification. Section 4 explains the results,
while Section 5 concludes.

2 THE STOCHASTIC FRONTIER
MODELWITH SELECTION CORRECTION

The sample selection model initially introduced by Heck-
man (1976) and (1979) has been adapted to the case of SF by
W.Greene (2010). Herewe extend thismodel to account for
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technological heterogeneity under the latent class struc-
ture discussed in Orea and Kumbhakar (2004). First we
present the SF model corrected for selection that is for-
mulated in W. Greene (2010). Then we elaborate on our
extension of the sample selection correction to the case of
LCSFM.

2.1 Greene’s (2010) sample selection
correction

2.1.1 Likelihood construction

The SF model was originally and independently proposed
by Aigner et al. (1977) and Meeusen and Vandenbroeck
(1977). It is a composed error structure and is written as
follows:

yit = 𝛽′xit + vit − uit𝑖 = 1, … , 𝑄; 𝑡 = 1,… , 𝑇 (1)

where

uit = 𝜎u |Uit| , Uit ∼ 𝑁(0, 1)

vit ∼ 𝑁(0, 𝜎
2
v) (2)

where 𝑦𝑖𝑡 is the logarithmic output quantity of each farm i

in time t; xit is the vector of transformations of input quan-
tities; 𝛽 is the vector of parameters to be estimated; 𝑁(.)
indicates the normal distribution; and vit−uit is the com-
posed error, where vit is the unrestricted statistical noise
(randomvariations)with variance𝜎2v anduit represents the
inefficiency termwith scale parameter 𝜎u. 𝜎2v is parameter-
ized as exp(c).
The formulation above is extended to account for het-

eroscedasticity in the one-sided error term u.2 We develop
the model based on the literature (Caudill & Ford, 1993;
Caudill et al., 1995; Reifschneider & Stevenson, 1991). More
specifically, we have

uit = 𝜎uit |Uit| , Uit ∼ 𝑁(0, 1)

𝜎2
uit

= 𝑒𝑥𝑝(𝛿′Hit) (3)

where Hit is a vector of variables (including a constant
term), namely the drivers of inefficiency; and 𝛿 is the vector
of parameters to be estimated.
The estimation of model (1) can be conducted using var-

ious procedures. In the case of the sample selection, W.
Greene (2010) advocated the use of the maximum simu-
lated likelihood (MSL) for its practicability. However, here,

we used the quadrature method, which is more efficient
than the MSL.
Conditional on uit, the density of the two-sided error dis-

turbances vit is:

f (yit|xit, |Uit|) = 1

𝜎v
𝜙

(
yit−𝛽

′xit+𝜎uit |Uit|
𝜎v

)
(4)

where 𝜙 is the density function of the standard normal
distribution.3
The log-likelihood function is obtained by integrating

the density in (4) over the range of |Uit|. Thus:
logf (yit|xit) = log∫

Uit

1

𝜎v
𝜙

(
yit−𝛽

′xit+𝜎uit |Uit|
𝜎v

p (|Uit|) d |Uit|) (5)
where p (|Uit|)= 2𝜙(|Uit|), and |Uit| ∈ [0, ∞).4
WhileW.Greene (2010) considered simulation (with, for

instance, Halton draws for Uit), the integral in (5) can also
be approximated using the quadraturemethod (i.e., Gauss-
Kronrod routine) which is the approach that we follow
here as it is more efficient.
In the presence of sample selection, the canonical form

of the Heckman model is:

yit= β′ xit+vit

d∗
it
= γ′ zit+wit (6)

where d∗
it
is a latent (unobserved) variable; zit is a vector

of explanatory variables; 𝛾 are parameters to be estimated;
and wit is an error term.
The second equation in (6) is the selection equation

which can be estimated using a binary probit selection cri-
terion [dit= 1(d∗

it
> 0) ∧ dit= 0(d∗

it
≤ 0)]. Moreover, values

of y and x are only observed when dit= 1, and (v, w) ∼

N2[
0

0
, (
𝜎2v 𝜌𝜎v
𝜌𝜎v 𝜎2w= 1

)]; whereN2 indicates the bivariate nor-

mal distribution.
Selection models such as the one in (6) can be estimated

using two methods. One method is the Heckman (1979)
two-step, limited information procedure, which consists of
estimating the aforementioned probitmodel (second equa-
tion in (6)) in a first step. In a second step, the Inverse
Mills Ratio (IMR) is generated for each observation and
then used as an additional explanatory variable in the lin-
ear regression estimation of the top equation in (6). How-
ever, as underlined in W. Greene (2010, p. 17), the two-step
approach is inappropriate in the case of non-linear mod-
els such as the SF, and only a few studies have used the
two-step estimator in the case of SF (Sipiläinen & Oude
Lansink, 2005; Solís et al., 2007). Another method used
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to estimate the model in (6) is the full information max-
imum likelihood—FIMLE (see Maddala, 1983), which is
more appropriate in the presence of inefficiency.
The combination of (1) and (6) yields

yit = β′ xit−𝜎uit |Uit|+vit
d∗it = γ′ zit+wit

(v, w) ∼ N2

[
0

0
,

(
𝜎2v𝜌𝜎v

𝜌𝜎v 𝜎
2
w= 1

)]
(7)

where the correlation between wit and vit, 𝜌, captures
the sample selection.
The full information likelihood is built up from (i)

Prob(selection) × density|selection for selected observa-
tions; and (ii) Prob(non − selection) for non-selected
observations. Thus, the conditional (on uit) density can be
written as:

Lit = dit
{
f
(
yitxit, |Uit| , wit> −γ′zit

)
P
(
wit> −γ′zit

)}
+ (1−dit)P

(
wit ≤ −γ′zit

)
(8)

where expression f (yitxit, |Uit|, wit> −γ′zit)P(wit> −γ′zit)

is equivalent to
∞∫

−γ′zit

f (vit, wit)dwit.5

From the bivariate normal distribution, we know that
wit|vit ∼ N(

𝜌

𝜎v
vit, 1−𝜌

2). Then

∞∫
−γ′zit

f (vit, wit) dwit= f (vit)
∞∫

−γ′zit

f (wit|vit) dwit

= 𝜙 (vit) Φ
⎛⎜⎜⎝

𝜌

𝜎v
vit+γ

′zit√
1−𝜌2

⎞⎟⎟⎠
whereΦ is the cumulative distribution of the standard nor-
mal distribution. Thus, we have

f
(
yitxit, |Uit| , wit > −𝛾′zit

)
= 𝜙

(
yit − 𝛽′xit + 𝜎uit |Uit|)

Φ
⎛⎜⎜⎝

𝜌

𝜎v

(
yit − 𝛽′xit + 𝜎uit |Uit|) + 𝛾′zit√

1−𝜌2

⎞⎟⎟⎠ (9)

As previously, the log-likelihood function of the model
specified in (7) is obtained by integrating the density in (8)
over the range of |Uit|. Thus:
logf (yitxit) = log ∫|Uit| f (yitxit, |Uit| , dit) p (|Uit|) d |Uit|

(10)

with |Uit| ∈ [0, ∞). Specifically, we have:

logf (yitxit) = log

[
dit ∫|Uit| 𝜙

(
yit−β

′xit+𝜎uit |Uit|)Φ
×
⎛⎜⎜⎝

𝜌

𝜎v

(
yit−β

′xit+𝜎uit |Uit|)+ait√
1−𝜌2

⎞⎟⎟⎠ d |Uit|
+ (1−dit) Φ (ait)] (11)

where ait=γ̂
′
zit is obtained from the first-step probit

model which is similar to the two-step Heckman model,
and |Uit| ∈ [0, ∞).
Under this simplification, maximizing the log-

likelihood function specified in (11) is a hybrid two-step
Limited Information Maximum Likelihood (LIML)
estimation. As underlined in W. Greene (2010), the
non-selected observations ( dit= 0) do not contribute
information about the parameters, and hence the log-
likelihood function to be maximized is simplified to

logf (yitxit) =

log
⎡⎢⎢⎣ ∫|Uit | 𝜙 (yit−β′xit+𝜎uit |Uit|) Φ ⎛⎜⎜⎝

𝜌

𝜎v
(yit−β

′xit+𝜎uit |Uit|) +ait√
1−𝜌2

⎞⎟⎟⎠ d |Uit|⎤⎥⎥⎦
(12)

with |Uit| ∈ [0, ∞).
In contrast to Bravo-Ureta et al. (2020) where the selec-

tion mechanism is considered at a single base period (ai is
constant over time), in our case the selectionmechanism is
not fixed over time. Therefore, our model is estimated as a
pooled model andMurphy and Topel (2002)’s correction is
applied to obtain the appropriate standard errors (see Lai,
2015, p. 109, formula [14] for more details).

2.1.2 Efficiency of observations

The estimation of each observation’s efficiency follows the
line of Jondrow et al. (1982) but is adapted to account for
sample selection. Following W. Greene (2010), we have:

p(uit𝜖it) =
p (uit, 𝜖it)

p(𝜖it)
=

p (𝜖ituit) p (uit)

∫uit p (𝜖ituit) p (uit) duit
(13)

where 𝜖it=vit −uit.
Therefore

E[uit|𝜖it] =∫uit uitp (𝜖ituit) p (uit) duit
∫uit p (𝜖ituit) p (uit) duit

(14)
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with p() the probability and uit=𝜎uit |Uit|. Therefore
uit ∈ [0, ∞).
Thus, the denominator of formula (14) is obtained as

the predicted value of f (yitxit) in Equation (12). In our
case, the numerator’s integral is solved with the parame-
ters obtained from maximizing (12). Finally, the efficiency
is computed as exp[−�̂�[uit|𝜖it]].
2.2 Sample selection correction in the
LCSFM case

2.2.1 Likelihood construction

As underlined in Orea and Kumbhakar (2004), in the pres-
ence of technological differences in the SF framework dis-
cussed earlier, the results obtained may be biased since
the unobserved technological heterogeneity might be con-
foundedwith producer-specific inefficiency. To handle this
technological heterogeneity, one can assume a discrete
(finite) mixture of several technologies that approximates
to the continuous random parameters model (W. Greene,
2005).
Let’s assume that the data can be segmented into J latent

classes. The LCSFM is a single-stage approach where the
probability of class membership and the mixture of tech-
nologies are simultaneously estimated. Each observation i
in time t belongs to class j with a prior probability (which
can also be viewed as the mixture weight) parameterized
using a multinomial logit function, as is commonly done
in latent class analysis (W. H. Greene, 2001):

Π𝑖𝑡𝑗

(
𝝀|qih(t))= exp(λ′jqih(t))∑J

m=1
exp(λ′mqih(t))

j = 1, … , J; 𝜆J= 0; h = 1, 2, 3; t = 1, … , T

0 ≤ Π𝑖𝑡𝑗

(
𝝀|qih(t)) ≤ 1;

∑
j

Π𝑖𝑡𝑗

(
𝝀|qih(t))= 1 (15)

where 𝐪ih(t) is the vector of the period- and firm-specific
variables that explains the probability of belonging to one
class or another (separating variables); 𝝀𝑗 is a vector of
unknown coefficients for the latent class j (relative to the
base class J), and 𝝀 = (𝝀1, 𝝀2, … , 𝝀𝑱) Three periods h
are considered, corresponding to the implementation in
France of major reforms of the CAP: the first period is
2002–2006, the second 2007–2013, and the third 2014–2016.
Practically, for each period h and each farm i, the variable
q is averaged over the time period, which makes the prob-
ability of belonging to a class constant over the period h.

Equation (15) shows one empirical contribution of our

modeling: the prior probabilities are period-dependent
instead of being fixed through time, as is usually the case
in the literature. For example, in W. H. Greene (2002),
Orea and Kumbhakar (2004), and W. Greene (2005), it is
assumed a priori that a firm permanently belongs to a spe-
cific class, and the prior probabilities represent the ana-
lyst’s knowledge uncertainty and not the state of nature.
With this in mind, some authors (Alvarez & del Corral,
2010; Orea & Kumbhakar, 2004) recommend using firm
averages to construct time-independent separating vari-
ables. However, we consider that specific periods asso-
ciated with important changes in the CAP may be sig-
nificant factors. Therefore, as the model estimated is a
pooled LCSFM, for each observation i and each time t,
the separating variables are equal to the average (of the
observation) over the specific period h (repeatedly). In
other words, here farms are a priori allowed to move from
one class to another class only twice, depending on the
periods.
Under the LCSFM framework and endogenous sample

selection, the production technology can be described as
follows:

yit= β
′

j xit−𝜎uit,j
|||Uit,j

|||+vit,j j = 1, … , J

d∗it= γ′ zit+wit

(
vj, w

)
∼ N2

[
0

0
,

(
𝜎2
v,j

𝜌𝜎v,j

𝜌𝜎v,j 𝜎
2
w= 1

)]
j = 1, … , J (16)

Since we consider heterogeneity in the production tech-
nologies only, the sample selection equation (second equa-
tion in (16)) is the same as the one for the case without pro-
duction heterogeneity (see Equation (7)).

The (conditional) log-likelihood function associated
with the formulation in (16) is

LFit|𝑗 (𝜃j|xit, Hit, 𝑎𝑖𝑡
)
= ∫|||Uit, j

|||
𝜙
(
yit−β

′

jxit+𝜎uit,j
|||Uit,j

|||)Φ
⎛⎜⎜⎜⎝

𝜌𝑗

𝜎v, j

(
yit−β

′

jxit+𝜎uit, j
|||Uit, j

|||)+ait√
1 − ρ2j

⎞⎟⎟⎟⎠ d
|||Uit, j

|||
(17)

where 𝜃j= (𝛽j, 𝛿j, cj, 𝜌j) are the parameters to be esti-
mated for each class j, and |Uit,j| ∈ [0, ∞).
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The unconditional likelihood of observing i in time t is
then obtained by averaging over classes:

LFit
(
Θ|xit,Hit, ait,qih(t)

)
=

J∑
j=1

Π𝑖𝑡𝑗

(
𝝀|qih(t))×LFit|𝑗 (𝜃j|xit,Hit, ait

)
(18)

where𝚯 = (𝜽1, 𝜽2, … , 𝜽𝐉, 𝝀). The log-likelihood of the
LCSFM (log L) in our case can be written as:

logL = log

(
N∏
i=1

T∏
t=1

LFit
(
𝚯|xit,Hit, ait,qih(t)

))

logL =

N∑
i=1

T∑
t=1

log

(
J∑
j=1

Π𝑖𝑡𝑗

(
𝝀|qih(t))×LFit|𝑗 (𝜃j|xit,Hit, ait

))
(19)

This log-likelihood is maximized using the conventional
BFGS (Broyden-Fletcher-Goldfarb-Shanno) method. The
standard errors are obtained using Murphy and Topel
(2002)’s correction.
Using the Bayes conditional probability theorem,we can

compute the posterior probability of belonging to class j in
time t as:

P
(
class = j|xit,Hit, ait,qih(t)

)
=

Π𝑖𝑡𝑗

(
𝝀|qih(t)) × LFit|𝑗 (𝜃j|xit, Hit, 𝑎𝑖𝑡

)∑J

m=1
Π𝑖𝑡𝑚

(
𝝀|qih(t)) × LFit|𝑚 (𝜃m|xit, Hit, 𝑎𝑖𝑡)

(20)

Each observation can be assigned to a specific class con-
sidering the largest posterior probability. As underlined in
Parmeter and Kumbhakar (2014), some observations may
have a probability of belonging to a specific class close to
unity and, therefore, it is consistent with using the tech-
nological parameters of this class for these observations.
However, other observations may have non-unity proba-
bilities of belonging to different classes. Nevertheless, in
our case, the parameters considered for each observation
are the ones associated with the class that has the highest
(posterior) probability. The number of classes to consider
can be based on a comparison of the Akaike Information
Criterion (AIC) across models, as suggested by Orea and
Kumbhakar (2004).6

2.2.2 Efficiency of observations

For each class frontier, the inefficiency is estimated using
Equations (13) and (14) for each technology. As pointed out
inW.Greene (2010), the inefficiency scores obtained in this
way are very close to the ones obtained using the Jondrow
et al. (1982) formula.

Finally, as mentioned above, an additional contribution
of our article is to extend the LCSFM to the incorporation
of heteroscedasticity in the one-sided error term. In other
words, inefficiency effects are estimated in the same single
stage as the other LCSFM parameters.

3 DATA AND EMPIRICALMODEL

Our study uses an unbalanced panel dataset of French
dairy producers obtained from the annual farm-level
French Farm Accountancy Data Network (FADN) during
2002–2016. The FADN database, managed by the French
Ministry of Agriculture, includes accountancy data of rep-
resentative commercial farms in France. The sample of
dairy farms used here consists of 15,623 observations in
total in 2002–2016.7
Following the literature (Bradfield et al., 2021; Keller-

mann & Salhofer, 2014; Skevas et al., 2018), in the pro-
duction technology specification, two outputs are used;
namely, the quantity of milk produced (Y1; in tons) and
the other output value (Y2; in constant Euros)8, and five
inputs (X1, X2, X3, X4, X5) which are: utilized agricultural
area (UAA) (in hectares - ha); total labor (in full time equiv-
alent annual working units); herd size (in livestock units)9;
intermediate inputs (in constant Euros)10; and fixed assets
excluding land and herd (in constant Euros). In addition,
to control for exogenous factors in the production process,
we include year fixed effects (D) and a dummy indicating
whether the farm is located in a less favored area (LFA),
assuming that being located in LFA indicates low soil pro-
ductivity.11
We specify the technology as a negative Translog output

distance function, exploit its homogeneity in output quan-
tities, and assume ln𝐷 (Yit, Xit, t, LFAi) = −uit,12 simi-
larly to Dong et al. (2016), Orea et al. (2015), Pérez-Méndez
et al. (2020) as follows:

lnY1it = 𝛽0 +

5∑
k=1

𝛽klnXkit+ηln
Y2it
Y1it

+
1

2

5∑
k=1

k∑
l=1

𝛽kllnXkitlnXlit+
𝜅

2

(
ln
𝑌2𝑖𝑡

𝑌1𝑖𝑡

)2

+

5∑
k=1

𝜏klnXkitln
Y2it
Y1it

+

2016∑
t=2003

𝛽tDt+𝛽LFALFAi+vit−uit (21)

with 𝛽kl = 𝛽lk for 𝑘, 𝑙 = 1, … , 5.
Two separating variables (q1, q2) are used in the LCSFM

to identify the farm classes: (i) the stocking rate, calcu-



428 DAKPO et al.

lated as the number of livestock units per ha of UAA. This
variable is an indicator of grazing pressure: the higher this
variable, the more intensive is the technology; and (ii) the
share of permanent grassland in theUAA,whichmay shed
light on the available pastures for animal feed: the higher
the share, the more extensive is the production technol-
ogy. These two separating variables are not included in the
production function since they proxy practices and are not
inputs nor exogenous controls. In the existing literature,
similar separating variables are used (see, for instance,
Alvarez & del Corral, 2010; Kellermann & Salhofer, 2014).
As explained above, one main modeling contribution

is that we simultaneously investigate the drivers of ineffi-
ciency while correcting for selectivity in the LCSFM. Five
variables (H1, … , H5) are used to model the one-sided
error variance. Based on the large literature on farms’ tech-
nical efficiency (Bonfigl et al., 2020; Cabrera et al., 2010;
Dakpo, Latruffe, et al., 2021; del Corral et al., 2011; Dong
et al., 2016; Latruffe et al., 2017; Minviel & Latruffe, 2017),
we include:

- a farmer’s socio-demographic characteristics:
farmer’s age (H1); and a low education dummy
(H2) taking the value one if the farmer has a low
level of education (that is, either no education or
primary education) and zero if the farmer has a
high level of education (secondary education or
above);

- the resort to external inputs: the share of hired labor
in total labor (H3); and the share of rented area in
UAA (H4);

- public support reliance: operational subsidies per ha
of UAA (H5); these are provided to farms under
the framework of the CAP and include fully decou-
pled subsidies in the form of the Single Farm Pay-
ment, subsidies coupled to the acreage of specific
crops and to the headage of specific livestock, sub-
sidies received from adopting AESs, and subsidies
received for being located in a LFA.

Regarding the first-step probit selection equation, as
mentioned in the introduction, a large body of the liter-
ature has examined AESs adoption determinants (Coyne
et al., 2021; Defrancesco et al., 2008; Lefebvre et al.,
2020). Based on this literature and also considering that
AESs may induce changes in farmers’ practices (Arata &
Sckokai, 2016), thus preventing the use of several farm
characteristics, the following simplified model is used:

d∗
it
=𝛾0 +

3∑
m=1

𝛾mzmit+

20∑
r=1

𝜁rRrit+wit (22)

where z1 is the milk price (in Euros per ton of milk),13z2
and z3 are farmers’ characteristics namely age and low
education dummy respectively ( z2=H1 ; z3=H2 ), and R

represents regional dummies (21 regions in total).
Table 1 displays some of the descriptive statistics of the

variables. Overall, 34% of our sample observations have
adopted AES, and we will call them the sub-sample of
AESs adopters. On average, output levels, milk yield, herd
size, and intermediate consumption are higher for farmers
who have not adopted AESs, who we call the sub-sample
of AESs non-adopters. By contrast, UAA and milk price
are higher for the sub-sample of AESs adopters on average.
About 75% of the AESs adopters are located in LFAs, while
this proportion is 36% for non-adopters. In terms of the sep-
arating variables, the stocking rate is higher for AESs non-
adopters’ sub-sample. At the same time, the share of per-
manent grassland in UAA is lower, indicating more inten-
sive practices for this sub-sample than for the sub-sample
of AESs adopters. In terms of the drivers of inefficiency,
the descriptive statistics are relatively similar for both sub-
samples. Finally, within each sub-sample, a high hetero-
geneity is observed, with high values for the coefficients
of variation (>25% for most variables), suggesting the rele-
vance of using a latent class model for each sub-sample.

4 RESULTS

The main results of the estimation of the first-step pro-
bit model in (22) are displayed in Table 2 (full results
are presented in Table A1 of the Supplementary online
appendix). Results show that the probability of adopting
AESs increases with milk price. Younger farmers and low-
educated farmers have a higher probability of adoption
than older farmers and more highly educated farmers.
Although the result regarding education is not in line with
the literature (Siebert et al., 2006), our first-step probit’s
explanatory variables are highly significant. The rate of
good predictions is 72.12%, suggesting that our selection
model is valid.
We now turn to the main results; namely those for

the LCSFM that has been estimated separately for each
sub-sample (AESs adopters; AESs non-adopters), account-
ing for the sample selection parameter 𝜌. As usual for
the Translog functional form, explanatory input and out-
put variables (x1, x2,x3, x4, x5, y1,y2) are scaled by their
(geometric) means. Therefore, the first-order coefficients
represent distance elasticities at the sample (geometric)
mean. In each sub-sample, farms are categorized into two
classes.14 Moreover, in addition to the LCSFM with two
classes, for comparison purposes, we have estimated a
standard sample-selection stochastic frontier model (i.e.,
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TABLE 2 First-step probit model (determinants of AESs
adoption) on the full sample

Variables
Estimates and
significance

Milk price (𝑧1) .0009***
Farmer’s age (𝑧2) −.015***
Farmer’s low education
dummy (𝑧3)

.091***

Rate of good predictions 72.12%
Pseudo R2 .186

Notes: *, **, *** indicate significance at the 10%, 5%, 1% level, respectively.
Regional dummies are included in the regression, and the results are shown
in the appendix.

with one single class) for each of the two sub-samples of
farms.
The main results of the estimation for the single-class

model (a) and the LCSFM with two classes (b) are pre-
sented in Table 3 for the AESs adopters’ sub-sample. Simi-
larly, Table 4 presents the results for theAESs non-adopters
sub-sample (full results are available in Tables A2 and A3,
respectively, in the Supplementary appendix).
First, Tables 3 and 4 show that the selectivity param-

eter (𝜌) is significant, confirming the presence of sam-
ple selection bias and the necessity to correct for the bias
with the first-step probit model. Second, for each sub-
sample, results show differences in coefficients and elas-
ticities between the single-class and the two-class models,
highlighting the importance of accounting for technologi-
cal heterogeneity in the frontier estimation.
In order to assess the reliability of the results in particu-

lar of the efficiency estimates (seeHenningsen&Henning,
2009), we report in Table A6 the share of observations that
satisfy the monotonicity conditions for models with sam-
ple selection.Monotonicity conditions aremore frequently
violated within the sub-sample of AES adopters than in
the sub-sample of non-adopters. Within each sub-sample,
those conditions are more fulfilled in the intensive class
than in the extensive class. Overall, depending on the sub-
sample and the class, the share of observations that satisfy
all the monotonicity conditions ranges between 39% and
about 87%.
Focusing firstly on the estimation for AES adopters’ sub-

sample (Table 3), the results regarding the separating vari-
ables indicate that the probability of belonging to class 1 is
negatively associated with a higher stocking rate and pos-
itively associated with a higher share of permanent grass-
land in UAA. Based on these results, class 1 can be deemed
extensive, while class 2 is intensive. The estimation results
of the distance function indicate that for both classes, the
highest distance elasticity is associatedwith the intermedi-
ate inputs, followed by herd size. While LFA is negatively

TABLE 3 Estimated coefficients of the latent Translog
production frontier for the AESs adopters’ sub-sample: Comparison
of (a) the single class model, and (b) the latent class model with two
classes—Estimation with sample selection

Latent class model with
two classes (b)

Variables

Standard
model
(single
class) (a)

Class 1
(extensive)

Class 2
(intensive)

Production function: Elasticities
at sample geometric mean

log(𝑋1: UAA) .025** .186*** .029**
log(𝑋2: total labor) .122*** .071*** .142***
log(𝑋3: herd size) .231*** .204*** .24***
log(𝑋4: intermediate
consumption)

.554*** .485*** .5***

log(𝑋5: fixed assets) .06*** .066*** .052***
log(𝑌2∕𝑌1: other
output/milk
production)

−.25*** −.268*** −.239***

Farm in LFA dummy −.079*** −.016 −.069***
Sample selection parameter
Rho (𝜌) .326*** −.424*** .541***
Separating variables
Stocking rate: 𝑞1 – −1.07*** –
Share of permanent
grassland in UAA: 𝑞2

– 4.286*** –

Inefficiency drivers
Farmer’s age:𝐻1∕100 −.344 −1.793*** 6.61*
Farmer’s low education
dummy:𝐻2

.274*** .431*** −.431

Share of hired labor in
total labor:𝐻3

−.446** −.579* −15.069

Share of rented area in
UAA:𝐻4

−.155 .023 −3.854***

Operational subsidies
per ha of UAA:
𝐻5∕1000

1.571*** 1.663*** 3.709**

Log-likelihood −2,601.22 −2,197.57
Scale elasticity at
sample means

.99 1.01 .96

Average efficiency .86 .85 .98
Average posterior
probability

1 .79 .83

Number of
observations

5,274 2,759 2,515

Note: *, **, *** indicate significance at the 10%, 5%, 1% level, respectively.

associated with productivity for the intensive class, it is
non-significant for the extensive class. Comparing the dis-
tance elasticities (at sample means) between both classes
reveals that land elasticity in the extensive class is about
sixfold that in the intensive class. On the other hand, labor
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TABLE 4 Estimated coefficients of the latent Translog
production frontier for the AESs non-adopters’ sub-sample:
Comparison of (a) the single class model, and (b) the latent class
model with two classes—Estimation with sample selection

Latent class model with
two classes (b)

Variables

Standard
model
(single
class) (a)

Class 1
(extensive)

Class 2
(intensive)

Production function: Elasticities
at sample geometric mean

log(𝑋1: UAA) .033*** −.015 .063***
log𝑋𝑥2: total labor) .146*** .124*** .147***
log(𝑋3: herd size) .227*** .29*** .255***
log(𝑋4: intermediate
consumption)

.567*** .605*** .461***

log(𝑋5: fixed assets) .058*** .066*** .057***
log(𝑌2∕𝑌1: other
output/milk
production)

−.273*** −.303*** −.241***

Farm in LFA dummy −.053*** −.034*** −.043***
Sample selection parameter
Rho (𝜌) .083** −.256*** .118*
Separating variables
Stocking rate: 𝑞1 – .005 –
Share of permanent
grassland in UAA: 𝑞2

– 4.186*** –

Inefficiency drivers
Farmer’s age:𝐻1∕100 .836*** .093 .29
Farmer’s low education
dummy:𝐻2

.41*** .271*** .87***

Share of hired labor in
total labor:𝐻3

−.161 −.175 .118

Share of rented area in
UAA:𝐻4

−.115* −.042 −.643**

Operational subsidies
per ha of UAA:
𝐻5∕1000

−.093 .562*** −3.217***

Log-likelihood −11,872.22 −11,037.16
Scale elasticity at
sample means

1.03 1.07 .98

Average efficiency .87 .84 .95
Average posterior
probability

1 .79 .79

Number of
observations

10,162 4,495 5,667

Note: *, **, *** indicate significance at the 10%, 5%, 1% level, respectively.

elasticity is twice as high in the intensive class. For the
other inputs, the results are quite close.
The extensive class exhibits slightly increasing returns

to scale (1%) at the sample means, while for the intensive
class, the returns to scale are decreasing (-4%). The aver-
age efficiency score is higher for the intensive class. The
efficiency score for the intensive class is 98% on average
(almost zero inefficiencies in the class), while it is 85% in
the extensive class.
Further comparisons of the two classes are presented

in Table 5. The class which is the more efficient and
more intensive in terms of stocking rate and share of
permanent grassland in UAA (class 2), is further charac-
terized by more intensive practices than the other class:
higher consumption of intermediate inputs (fertilizers,
pesticides, energy, concentrate feed, veterinary expenses),
higher share of foddermaize in UAA, and lower amount of
AES subsidies per hectare of UAA, compared to the exten-
sive class. Farms in the intensive class are, on average,
larger in terms of output produced and fixed assets than
farms in the extensive class, and receive more operating
subsidies per hectare of UAA but a lower milk price.
Going back to Table 3, we now comment on the inef-

ficiency determinants for each class of the sub-sample of
AESs adopters. Negative signs of the coefficients indicate
a negative association with inefficiency; that is, a posi-
tive impact on efficiency. In contrast, positive signs indi-
cate a positive association with inefficiency and hence a
negative association with efficiency. In both classes, the
level of operational subsidies per hectare of UAA is nega-
tively associated with efficiency, as it is also in the standard
(single class) model. Specific to each class are the associa-
tions between efficiency and of farmer’s age, low education
dummy, hired labor’s share, and rented area’s share. While
farmer’s age is positively associated with farm’s technical
efficiency in the extensive class, the relationship is reversed
in the intensive class. The low education variable is neg-
atively associated with the extensive class’s technical effi-
ciency and is non-significant in the intensive class. For this
latter class, the share of rented area is positively associated
with the level technical efficiency while in the extensive
class, it is the share of hired labor that is positively asso-
ciated with technical efficiency; the other relationships
being non-significant.
It is important to note here an illustration of the need

to account for technological heterogeneity to generate tar-
geted policy recommendations. For example, in the single-
class model, low education is negatively associated with
the efficiency; however, when specific class models are
estimated, this negative relationship holds for farms in the
extensive class only. The only consistent result across the
single class and both classes, is the negative association
between operational subsidies and technical efficiency.
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TABLE 5 Average farm characteristics for each class for the
AES adopters’ sub-sample

Variables
Class 1
(extensive)

Class 2
(intensive)

Main production (tons of milk): 𝑌1 253.00 329.84
Other output (thousand Euros): 𝑌2 46.07 65.27
UAA (ha): 𝑋1 97.80 91.57
Total labor (annual working units):
𝑋2

1.78 1.93

Herd size (livestock units): 𝑋3 91.55 94.62
Intermediate consumption
(thousand Euros): 𝑋4

72.43 90.33

Fixed assets (thousand Euros): 𝑋5 186.85 196.80
Farm in LFA (dummy: 1 if yes, 0 if
not): 𝐿𝐹𝐴

.88 .60

Stocking rate (livestock units per ha
of UAA): 𝑞1

.95 1.11

Share of permanent grassland in
UAA: 𝑞2

.81 .31

AES subsidies per hectare of UAA
(Euros): 𝑞4

70.48 60.84

Farmer’s age (years):𝐻1 46.80 46.00
Farmer’s low education (dummy: 1 if
yes, 0 if not):𝐻2

.22 .27

Share of hired labor in total labor:𝐻3 .05 .07
Share of rented area in total UAA:
𝐻4

.79 .78

Operational subsidies per ha of UAA
(Euros per ha):𝐻5

358.18 406.30

Concentrated feed expenses per
livestock unit (Euros)

250.32 257.69

Veterinary expenses per livestock
unit (Euros)

42.49 51.05

Fertilizers expenses per ha of UAA
(Euros)

58.22 94.01

Pesticides expenses per ha of UAA
(Euros)

12.91 36.60

Energy expenses per ha of UAA
(Euros)

34.37 42.44

Share of fodder maize in UAA (%) .04 .13
Milk price (Euros per ton) 358.36 337.06
Milk volume per milking cow (tons
per cow)

5.31 6.16

Looking at the sub-sample of farmers who have not
adopted AESs (Table 4), the probability of belonging to
class 1 is positively related to a higher share of perma-
nent grassland in UAA and non-significantly related to the
stocking rate. These results suggest that class 1 is exten-
sive, while class 2 is intensive. This is confirmed by fur-
ther examination of the characteristics of each class, as

TABLE 6 Average farm characteristics for each class for the
AES non-adopters’ sub-sample

Variables
Class 1
(extensive)

Class 2
(intensive)

Main production (tons of milk): 𝑌1 313.88 403.94
Other output (thousand Euros): 𝑌2 60.85 75.04
UAA (ha): 𝑋1 89.87 85.16
Total labor (annual working units):
𝑋2

1.83 1.92

Herd size (livestock units): 𝑋3 105.18 99.72
Intermediate consumption (thousand
Euros): 𝑋4

95.84 110.83

Fixed assets (thousand Euros): 𝑋5 185.76 182.26
Farm in LFA (dummy: 1 if yes, 0 if
not): 𝐿𝐹𝐴

.42 .31

Stocking rate (livestock units per ha
of UAA): 𝑞1

1.23 1.25

Share of permanent grassland in
UAA: 𝑞2

.52 .15

Farmer’s age (years):𝐻1 48.06 46.92
Farmer’s low education (dummy: 1 if
yes, 0 if not):𝐻2

.26 .22

Share of hired labor in total labor:𝐻3 .07 .07
Share of rented area in total UAA:𝐻4 .81 .79
Operational subsidies per ha of UAA
(Euros per ha):𝐻5

363.77 387.75

Concentrated feed expenses per
livestock unit (Euros)

258.72 299.50

Veterinary expenses per livestock
unit (Euros)

44.69 57.32

Fertilizers expenses per ha of UAA
(Euros)

112.21 133.33

Pesticides expenses per ha of UAA
(Euros)

45.86 66.39

Energy expenses per ha of UAA
(Euros)

41.61 49.77

Share of fodder maize in UAA (%) .16 .24
Milk price (Euros per ton) 343.28 329.36
Milk volume per milking cow (tons
per cow)

5.75 6.95

shown in Table 6. Table 6 shows a very close value in
terms of stocking rate for the two classes, but a lower share
of permanent grassland in UAA and higher consumption
of intermediate inputs (fertilizers, pesticides, energy, con-
centrate feed, veterinary expenses) for the intensive class
2 compared to the extensive class 1. A conclusion from
Table 6 is that using the stocking rate and the share of per-
manent grassland in UAA as separating variables in the
LCSFM is sufficient to generate two contrasting classes in
terms of intensive or extensive practices.
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The estimation results of the distance function in Table 4
show that, similarly to the sub-sample of AESs adopters,
the input with the highest elasticity are intermediate
inputs, followed by herd size. A divergence is that the elas-
ticity of land is non-significant for the extensive class in
the AESs non-adopters’ sub-sample (Table 4).This class
exhibits moderate increasing returns to scale (1.07, see
Table 4) while the intensive class has slightly decreasing
returns to scale (.98). Similarly, to the sub-sample of AESs
adopters, in the sub-sample of AESs non-adopters, the
intensive class is, on average, more efficient (with a 95%
efficiency average compared with 84% for the extensive
class). A further look at the class characteristics (Table 6)
reveals that farms in the intensive class on average receive
a higher amount of operational subsidies per ha of UAA
but a lower milk price, similar to the case of AESs adopters
(Table 5).
Finally, going back to the estimation results in Table 4,

and similarly to the case of the extensive class in AESs
adopters in Table 3, for AESs non-adopters low education
is negatively associated with efficiency for both classes.
In contrast, operational subsidies per ha of UAA are neg-
atively associated with efficiency for the extensive class
only, and positively associatedwith efficiency for the inten-
sive class, while it is not significant in the single class
model. Here again the results underline the discrepancy
in the association with of efficiency drivers depending on
whether heterogeneity is taken into account, and depend-
ing on the class. The association between of the share of
rented area and efficiency is positive for the intensive class,
similarly to the intensive class in the case of AESs adopters.
The share of hired labor has no significant relationship in
either class.
To assess the importance of accounting for sample

selection in the LCSFM, models without selection correc-
tion have been estimated. The corresponding likelihood
and subsequent functions can be found in Parmeter and
Kumbhakar (2014). Results are available in the Supple-
mentary appendix. In the case of AESs adopters, compar-
ing results without selection correction (Table A4 in the
Supplementary appendix) and results with selection cor-
rection (Table 3), shows that similar classes are iden-
tified. The same conclusion is made when comparing
results without selection correction (Table A5 in the Sup-
plementary appendix) and results with selection correc-
tion (Table 4) for the sub-sample of AESs non-adopters.
For both sub-samples, the separating variables still indi-
cate that class 1 is the extensive one, with low average
efficiency.
However, the inefficiency drivers show some contrast-

ing impacts. Most notable is the difference regarding the
association between of the share of hired labor and the effi-
ciency of the extensive class for the sub-sample of AESs

adopters: while the share of hired labor has no signifi-
cant relationship without selection correction (Table A7),
it is positively associated with efficiency in the model with
selection correction (Table 3). Hence, not accounting for
sample selection of AES adoption modifies some conclu-
sions related to the inefficiency drivers.

5 CONCLUSION

This article’s objective was to assess farms’ technical effi-
ciency accounting for their production heterogeneity and
simultaneously accounting for whether or not farms have
adopted AESs. Considering the latent technologies, and to
correct the potential endogeneity associatedwith the adop-
tion of AESs, we have extended the LCSFM with sample
selection correction, which is ourmajor contribution.15 We
have estimated a first-step selection probit, and in a second
step we have estimated the LCSFM on two separate sub-
samples (the AESs adopters and the AESs non-adopters)
including a term for correcting sample selection obtained
in the first step. A second main contribution is that we
have accounted for heteroscedasticity with the estimation
of inefficiency effects in the LCSFM. The application was
to FADN dairy farms in France during 2002–2016. The sep-
arating variables (namely, stocking rate and share of per-
manent grassland in UAA) to account for production het-
erogeneity in the latent class model have been constructed
to allow a priori farms to change class only twice. We used
the average of each separating variable for specific periods
of CAP implementation in France: 2002–2006, 2007–2013,
and 2014–2016.
For each of the two sub-samples (AESs adopters and

AESs non-adopters) we have identified one class with
intensive technology and one class with extensive technol-
ogy. For both sub-samples, the farms in the intensive class
rely less on permanent grassland and more on external
inputs such as pesticides, fertilizers and concentrated feed,
than the farms in the extensive class. However, on average,
for both sub-samples the intensive class is more efficient,
receives more operational subsidies per ha of UAA, but is
paid a lower milk price, than the extensive class.
Our findings therefore show that there exists a het-

erogeneity in terms of more or less intensive technology
within farms that have adopted AESs, as well as within
farms that have not adopted AESs, with four classes in
total, from the most extensive (the extensive class in the
AESs adopters sub-sample) to the most intensive (the
intensive class in the AESs non-adopters sub-sample).
From a policy point of view, these results could help bet-
ter target the CAP incentives provided to farmers to adopt
environmentally-friendly practices: obviously, the existing
AES are not suited to the sub-sample of non-adopters of
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AES, and new AES could be designed in a way that they
are specifically targeted to the intensive class of the sub-
sample of non-adopters of AES, with our methodological
approach being one possibility to identify such class.
Further insights for policy design are provided with

the results regarding inefficiency. The main divergence
in findings between the LCSFM for the sub-sample of
AESs adopters and the LCSFM for the sub-sample of AESs
non-adopters relates to the association between opera-
tional subsidies per ha and efficiency. First, in the case of
AESs non-adopters, association between these subsidies
and efficiency for the full sub-sample is non-significant,
while it is significant for each class identified: negative
association with efficiency for the extensive class, and pos-
itive association with efficiency for the intensive class.
Second, the association between subsidies and farms’

efficiency in each class differs depending onwhether farms
have or have not adoptedAESs. In both sub-samples (AESs
adopters and AESs non-adopters), operational subsidies
per ha have a negative association with efficiency for the
extensive class. However, while the association with effi-
ciency is also negative for the intensive class of the AESs
adopters, the association with efficiency is positive for the
intensive class of the AESs non-adopters.
Third, more evidence in support of this comes from

the comparison of the results obtained in the LCSFM
accounting for sample selection with results obtained in
the LCSFMwithout sample selection: some results regard-
ing inefficiency drivers, for example regarding the associa-
tion with the share of hired labor in total labor, are differ-
ent depending on whether sample selection is accounted
for or not. Therefore, modeling production heterogeneity
as precisely as possible could help better target the CAP
or other policies aimed at improving farms’ efficiency. For
example, our results indeed show that CAP subsidies are
negatively associated with the efficiency of specific groups
of farms. These groups can be identified based on their
technology and our methodological approach. Hence, spe-
cific subsidies could be designed specifically for each group
of farms, directly with operational subsidies, or indirectly
through subsidies linked to drivers identified in our mod-
els, for example, hired labor.
Our results therefore underline that, from a policy point

of view, accounting for heterogeneity both in terms of
intensive and extensive technology, and in terms of the
adoption of AESs, could help better target the CAP. In
particular, the divergence observed in terms of the asso-
ciation between efficiency and operational subsidies per
ha supports Minviel and Latruffe (2017) who stressed that
the association between subsidies on farms’ technical effi-
ciency depends on modeling.
From a methodological point of view, we have shown

that it is possible to account for sample selection in LCSFM

and at the same time assess inefficiency effects. Future
research could investigate, reversely, the role of ineffi-
ciency in the selection equation while also accounting for
production heterogeneity. Kumbhakar et al. (2009) and
Latruffe and Nauges (2014) gave evidence that farms’ tech-
nical efficiency influences their choice of whether to con-
vert to organic farming or remain conventional. Kumb-
hakar et al. (2009) found that inefficiency decreases the
probability of organic farming, while Latruffe and Nauges
(2014) found that the direction of the effect depends on the
farm size and main production. Separating farms based on
the degree of environmental-friendliness of their farming
practices with a LCSFM may provide additional insights
into the role of efficiency on the decision whether or not
to adopt organic farming. In addition, in the case of panel
data, the extension of the latent class modeling to account
for intra-class heterogeneity (fixed or random effects) is
another interesting avenue for future research. In the case
of the classic stochastic frontier, few models have been
developed to deal with fixed effects (Chen et al., 2014;
Wang & Ho, 2010). These models could be extended to
the LCSFM to account for intra-class heterogeneity even
though this adds more complexity to the likelihood func-
tion. Finally, dynamic aspects in light of adjustment costs
are another future avenue of research (Minviel & Sipiläi-
nen, 2021).

NOTES
1 As underlined in W. Greene (2010), other sample selection speci-
fications have been developed in the literature (Kumbhakar et al.,
2009, Lai, 2015). These specifications have not been considered
in this article due to the substantive complexity associated with
them, particularly when extending them to the LCSFM.

2 A drawback of the formulation in (2) is that the inefficiency term
is assumed to be homoscedastic. This model provides biased coef-
ficients and efficiency scores if inefficiency is heteroscedastic.

3 Throughout the manuscript, we have used f () to define various
density functions.

4 The closed form of the integral in (5) can be found in Aigner et al.
(1977), Kumbhakar and Lovell (2000) and estimated using maxi-
mum likelihood.

5 Equation (8) and the following equations apply to the sub-sample
of AES adopters. For the sub-sample of non-adopters, we simply
reverse the process where 𝑦𝑖𝑡 is only observed for non-adopters.

6 In our case, only two classes are considered since the model failed
to converge for three and more classes.

7 The BACON algorithm (Billor et al., 2000), in addition to graph-
ical visualizations, has been used a priori to screen out outlying
observations.

8 All monetary values were deflated by output or input price indices
provided by the French statistical office (INSEE) with base year
2015.

9 “The livestock unit [. . . ] is a reference unit which facilitates
the aggregation of livestock from various species and age as
per convention, via the use of specific coefficients established
initially on the basis of the nutritional or feed requirement of
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each type of animal [. . . ].” (http://ec.europa.eu/eurostat/statistics-
explained/index.php/Glossary:Livestock_unit_(LSU) accessed on
December 14, 2020).

10 Intermediate inputs comprise all the costs related to fertilizers,
seeds, pesticides, feed purchases, veterinary services and products,
energy consumption and other materials and services.

11 “In areas designated as ‘less-favored’, agricultural production or
activity is more difficult because of natural handicaps such as
difficult climatic conditions, steep slopes inmountain areas or low
soil productivity” (https://ec.europa.eu/jrc/en/news/classifying-
areas-natural-handicaps-agricultural-aid-7294) accessed on
December 14, 2020).

12 We use capital letters when inputs and outputs are at levels: y1 =
lnY1, y2 = lnY2, 𝑥𝑘 = lnXk (𝑘 = 1,… , 5).

13 During the period studied, in France, most AES were not AES
associated with being organic farming. Hence, farmers engaged
in AES for organic conversion are assumed to have similar milk
prices as non-organic farms. In other words, we believe that the
potential issue of reverse causality associated with milk price is
negligible.

14 All computations were carried out using R software (R Core Team,
2020). The stochastic frontier models without sample selection
were estimated using the package sfaR (Dakpo, Desjeux, et al.,
2021). For replication purposes, all the codes used for the analy-
sis of this article can be found in the online appendix.

15 We thank one anonymous Reviewer for suggesting this correction.
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