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Abstract

We study two classes of constrained submodular minimisation problems, where
a submodular function f defined on a lattice family L is to be minimised over a
subfamily of L. In the first class, so-called congruency constrained submodular
minimisation (CSM) problems, the subfamilies are of the form F = {S ∈ L |
|S| ≡ r (mod m)}. For the second class of problems, namely generalised con-
gruency constrained submodular minimisation (GCSM) problems, we are given
a constant number of fixed sets S1, . . . , Sk and consider subfamilies of the form
F = {S ∈ L | ∀i : |Si ∩ S| ≡ ri (mod m)}.

If m is a prime power, we provide polynomial time algorithms to solve both
CSM and GCSM problems. Our algorithms rely on guessing a constant number
of elements that belong to an optimal solutions and a constant number that
do not. While our approaches and algorithms for CSM and GCSM problems
can be seen as generalisations of a result by Goemans and Ramakrishnan for
minimising submodular functions over parity families, we introduce and apply
new techniques for proving correctness of the algorithms. Among others, this
includes handling purely combinatorial problems on existence of set systems
with certain covering properties and restricted intersections modulo m.

We also show that for strong combinatorial reasons, our current methods do not
generalise to CSM and GCSM problems with moduli other than prime powers.
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Chapter 1

Introduction

We begin this thesis by introducing unconstrained submodular minimisation and a
general setting for constrained submodular minimisation problems. In particular, we
describe a special type of constrained problems that was considered by Goemans and
Ramakrishnan, namely minimisation of submodular functions over parity families.
The two authors provided a polynomial time algorithm for solving such problems.
Their algorithm forms the starting point of this master thesis project: We are able
to extend parts of the results of Goemans and Ramakrishnan to considerably more
general settings, which are introduced in this chapter.

1.1 Unconstrained submodular minimisation

We start by briefly reviewing the problem of unconstrained submodular minimisa-
tion. To this end, we recall the following definition.

Definition 1.1 (Lattice family, submodular function). Let V be a finite set.

(i) A family L of subsets of V is called a lattice family on V , or simply a lattice,
if for all A,B ∈ L, we have A ∩B ∈ L and A ∪B ∈ L.

(ii) A lattice L′ on V is a sublattice of L if L′ ⊆ L.

(iii) Let L be a lattice family on V . A function f : L → Z is called submodular if
for all A,B ∈ L, we have

f(A) + f(B) > f(A ∩B) + f(A ∪B) .

Submodular functions arise in many different areas in and outside mathematics,
including, for example, rank functions of matroids [1], cut or s-t-cut functions in
graph theory [15], coverage functions used in sensor placement or facility location
problems [17], and many more. From an optimisation point of view, already the
few examples given above motivate studying the problem of efficiently optimising a
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1. Introduction

submodular function. We concentrate on minimisation here, so we want to find a
set S∗ ⊆ V such that

S∗ ∈ arg min
S∈L

f(S) .

This problem is what we call submodular minimisation or, if we want to emphasise
that there are no extra constraints, unconstrained submodular minimisation.

When talking about efficiently minimising a submodular function, we need to clarify
what “efficient” means in this context. Usually, a submodular function f : L → Z is
given by a value oracle, i.e., an oracle returning the value f(S) for a given set S ∈ L.
An algorithm for minimising the submodular function f is said to be polynomial time
if both its running time and the number of calls to the value oracle are bounded by
polynomials in the size |V | of the ground set. To emphasise the fact that there is
a bound on the number of value oracle calls, such algorithms are also called oracle-
polynomial.

There are different polynomial time algorithms known for submodular minimisation.
The historically first such algorithm was found by Grötschel, Lovász and Schrijver
in the 1980’s and is based on the ellipsoid method [6, 7]. Later, purely combina-
torial procedures for submodular minimisation were developed [10, 14], and further
publications reduced bounds on the time complexity considerably [2, 9, 13]. The
currently best algorithm relies on fast cutting plane methods that were introduced
by Lee, Sidford and Wong [11].

The results presented in this thesis all depend heavily on the fact that unconstrained
submodular minimisation can be handled efficiently. To be precise, we use that given
a submodular function f on a lattice family L, it is even possible to find a minimal set
with respect to inclusion among all sets in the lattice minimising f . To see this, we
can for example consider the function g : L → Z given by g(S) = (|V |+1) ·f(S)+ |S|
for all S ∈ L. It is easy to see that every set minimising g over L is a minimial set
minimising f over L. As furthermore, g is itself a submodular function, a minimiser
of g can be obtained efficiently.

1.2 Constrained submodular minimisation and prior
results

As opposed to unconstrained submodular minimisation, where the goal is to minimise
a submodular function f : L → Z over a lattice family L, constrained submodular
minimisation problems contain further constraints on the sets to which the optimi-
sation should be restricted. These further constraints can be generally viewed as
a restriction to optimising over a subfamily F ⊆ L of the lattice, with the goal of
finding a set S∗ ∈ F such that

S∗ ∈ arg min
S∈F

f(S) .

Already for seemingly “simple” constraints like cardinality constraints, such con-
strained submodular minimisation problems can get hard. To be more precise, if the
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1.2. Constrained submodular minimisation and prior results

set family F is of the form

F = {S ∈ L | |S| < c} or F = {S ∈ L | |S| > c}

for a constant integer c, then the corresponding constrained submodular minimisa-
tion problem is NP-hard, and even inapproximable within a factor of o(

√
n/ logn)

with a polynomial number of queries to a function-value oracle, where n is the size
of the ground set [16].

Non-trivial examples for constrained families F where an efficient solution of the cor-
responding submodular minimisation problem is possible were, among others, given
by Grötschel, Lovász and Schrijver [7, Section 10.4] and Goemans and Ramakrishnan
[4]. The first authors consider so-called triple families, while the second examine a
generalisation thereof, namely parity families.

Definition 1.2 (Triple family, parity family). Let V be a finite set and let L be
a lattice family on V .

(i) A subfamily T ⊆ L is called triple family if for any A,B ∈ L, whenever three
of the four sets

A, B, A ∩B, and A ∪B

are in L \ T , then the fourth set is in L \ T , as well.

(ii) A subfamily P ⊆ L is called parity subfamily of L, or simply a parity family,
if

∀A,B ∈ L \ P : A ∩B ∈ P ⇐⇒ A ∪B ∈ P .

It is easy to see that every triple family is a parity family. An example for triple
families (and hence also for parity families) is the following. Let m ∈ Z>0, let r ∈ Z,
and let L be a lattice family on a finite set V . Then, the family P defined by

P = {S ∈ L | |S| 6≡ r (mod m)}

is a triple family.

As another example, parity families include complements of lattice families: If L1 ⊆
L2 are lattice families on a finite set V , it can be shown that L2 \ L1 is a parity
subfamily of L2. Using a chain for L1, it can be shown that complements of lattice
families are in general not triple families [4].

The main result of Goemans and Ramakrishnan in the context of parity families is
that submodular function minimisation problems over parity families can be solved
efficiently. More precisely, they prove the following theorem.

Theorem 1.3 (Goemans and Ramakrishnan, [4]). For a finite set V , let L be
a lattice family on V , let P be a parity subfamily of L, and let f be a submodular
function on L. Then, a set minimising f over P can be obtained in oracle-polynomial
time by solving O

(
|V |2

)
submodular function minimisation problems over sublattices

of L.
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1. Introduction

The algorithm provided by Goemans and Ramakrishnan shows that we can drop the
constraint of optimising over the parity family P by replacing it with a condition
of the following form: For two elements a and b of the ground set, optimise only
over those sets in the lattice family L that contain a but not b. Goemans and
Ramakrishnan show that there exist two elements a and b such that this approach
returns an optimal set. Consequently, enumeration over all O(|V |2) possible pairs
(a, b) gives the above theorem.

As we show in the next section, we are able to obtain results similar to Theorem 1.3
for new types of subfamilies of L.

1.3 Our results

Our results origin in studying the problem of minimising submodular functions over
intersections of parity families. We obtain efficient algorithms in two special cases,
the first being so-called congruency constrained families. Congruency constrained
families are set families of the form

F =
{
S ∈ L

∣∣ |S| ≡ r (mod m)
}
,

where L is a lattice family, m ∈ Z>0, and r ∈ Z. We call m the modulus of the
family. To see that these families can be written as intersections of parity families,
let

Pr,m =
{
S ∈ L

∣∣ |S| 6≡ r (mod m)
}

denote the example parity family considered in the previous chapter. Then, we have

F = Pr+1,m ∩ Pr+2,m ∩ . . . ∩ Pr+m−1,m ,

so congruency constrained families with modulus m can be written as an intersection
of m− 1 parity families.

We call the problem of minimising submodular functions over congruency constrained
families congruency constrained submodular minimisation. Formally, this problem is
defined as follows.

Congruency constrained submodular minimisation (CSM)

Let V be a finite set, let L be a lattice family on V and let f : L → Z
be a submodular function. Let m ∈ Z>0 and let r ∈ Z. Find a set
minimising f over the family

F =
{
S ∈ L

∣∣ |S| ≡ r (mod m)
}
.

For easier referencing, we call the above setting a CSM problem with parameters
(V,L, f,m, r). Additionally, we call m the modulus of the CSM problem.

Our main result in the context of CSM problems is the following.
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1.3. Our results

Theorem 1.4. Let m be a prime power. Consider a CSM problem with parameters
(V,L, f,m, r). A set minimising f over F can be obtained by solving O

(
|V |2(m−1))

submodular function minimisation problems over sublattices of L.

Note that if the modulus m is a constant, then the above theorem implies that CSM
problems can be solved in oracle-polynomial time.

Already at this point, we emphasise an important detail in the above theorem:
While CSM problems can be considered for arbitrary positive integral moduli m,
our approaches yield the above result only for prime power moduli. It is not clear
whether a transition to general composite moduli is possible. We are able to show
that already with modulus 6, our current approaches are not strong enough.

We also introduce a generalisation of CSM problems, so-called generalised congru-
ency constrained submodular minimisation (GCSM) problems, which allow putting
congruency constraints on the size of intersections with certain fixed subsets of the
ground set. The formal definition is given below.

Generalised congruency constrained submodular
minimisation (GCSM)

Let V be a finite set, let L be a lattice family on V and let f : L → Z
be a submodular function. Let S1, . . . , Sk ⊆ V be non-empty, where
k ∈ Z>0. Let m ∈ Z>0 and let r1, . . . , rk ∈ Z. Find a set minimising
f over the family

F =
{
S ∈ L

∣∣ ∀i ∈ [k] : |S ∩ Si| ≡ ri (mod m)
}
.

Similar as for CSM problems, we call the above setting a GCSM problem with
parameters

(
V,L, f, {S1, . . . , Sk},m, {r1, . . . , rk}

)
, where m is the modulus of the

problem. Moreover, we say that in the above setting, F is a generalised congruency
constrained family with k constraints and modulus m. Obviously, GCSM problems
generalise CSM problems: Every CSM problem with parameters (V,L, f,m, r) can
be seen as a GCSM problem with parameters (V,L, f, {V },m, {r}).

Our main theorem for GCSM problems is the following.

Theorem 1.5. Let m be a prime power. Consider a GCSM problem with parameters(
V,L, f, {S1, . . . , Sk},m, {r1, . . . , rk}

)
. A set minimising f over F can be obtained by

solving O
(
|V |2k(m−1)) submodular function minimisation problems over sublattices of

L.

As for CSM problems, our approaches for GCSM problems are limited to prime
power moduli. In the case of prime power moduli, however, the above theorem show
that GCSM problems can be solved in oracle-polynomial time provided that the
modulus m and the number of constraints k are constant.

Note that again, the family F in a GCSM problem can be written as an intersection
of parity families. To see this, note that for every i, the family

P(i)
r,m =

{
S ∈ L

∣∣ |S ∩ Si| 6≡ r (mod m)
}

5



1. Introduction

is a parity family, and we have

F =
⋂
i∈[k]

(
P(i)
ri+1,m ∩ P

(i)
ri+2,m ∩ . . . ∩ P

(i)
ri+m−1,m

)
.

Hence, F is an intersection of k(m− 1) parity families.

Besides providing efficient algorithms for solving GCSM problems, we also explore
structural results and reductions between GCSM problems of certain kinds. It turns
out, for example, that GCSM problems can always be reduced to problems where
the sets S1, . . . , Sk are disjoint. Another interesting result is that the seemingly more
general GCSM problems, where we allow a different modulus for each congruency
constraint, can be reduced to GCSM problems with a single constraint given that
the moduli are pairwise coprime. The modulus in the problem that we reduce to
then is the product of the prior moduli.

1.4 Organisation of the thesis

The remaining part of this thesis is organised as follows. In Chapter 2, we introduce
the algorithmic approach that we use to solve both CSM and GCSM problems,
namely partial enumeration procedures. Aspects of running time and ideas towards
proving correctness of such algorithms for specific problems are also discussed there.

Chapter 3 provides methods to prove correctness of partial enumeration procedures
for minimisation of submodular functions over subfamilies of lattices. Among others,
sufficient conditions for correctness in terms of existence of certain set systems are
deduced. Besides that, a framework for working with and transforming set systems
with certain relevant properties is introduced. As a side result, we also present
a necessary condition for partial enumeration procedures to successfully solve the
general problem of minimising submodular functions over intersections of parity
families.

The next two chapters apply the results from Chapter 3 to the specific settings of
CSM and GCSM problems. For both problems, we reduce showing correctness of
certain partial enumeration procedures to showing inexistence of certain systems of
sets with congruency constrained cardinalities. Remarkably, this reduces correctness
proofs to purely combinatorial questions.

Chapter 4 focuses on CSM problems. We provide three proofs of different generality
for correctness of certain partial enumeration procedures for solving CSM problems
in the case of prime power moduli. For extensions beyond prime power moduli,
we show that our current approaches reach their limits and can—for combinatorial
reasons—not be immediately extended.

The more general GCSM problems are the focus of Chapter 5. Here, we extend the
methods that we saw for CSM problems to also give the claimed result for GCSM
problems in the case of prime power moduli. Additionally, two reductions between
certain types of GCSM problems are shown.

Last but not least, Chapter 6 contains conclusions and hints at open problems in
context with the topics discussed in this thesis.
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Chapter 2

Partial enumeration procedures

The algorithmic approaches for the constrained submodular minimisation problems
that we study in this thesis are all of the same type: They rely on simplifying con-
straints by guessing a certain number of elements that are contained in an optimal
solution and some that are not. In this chapter, we formalise this guessing approach
in what we call a partial enumeration procedure and briefly discuss the time com-
plexity of the corresponding algorithms.

We consider a constrained submodular minimisation problem in its most general
form. Let V be a finite set, let L be a lattice family on V and let f : L → Z be
a submodular function. Given a subfamily F ⊆ L, we want to find a set S ∈ F
minimising the function f over F .

As indicated in the introduction, Goemans and Ramakrishnan considered the case
where the family F is a parity subfamily of the lattice family L and provided an
efficient algorithm for solving such problems [4]. In their work, the main algorithmic
idea is to fix two elements a and b of the ground set, and to minimise f over all
sets in the lattice family L that contain a but not b. They show that there exist
elements a and b such that the minimal minimiser obtained this way is, in fact, a set
minimising f over the parity family F . Consequently, by trying all pairs (a, b) and
comparing the results, an optimal solution for the initial problem can be found.

Inspired by this algorithm for parity families F , we investigate more general ap-
proaches of a similar type. Instead of fixing single elements a and b, we fix subsets
of bounded cardinality. The precise formulation is presented in Algorithm 2.1.

7



2. Partial enumeration procedures

Algorithm 2.1: Partial enumeration procedure of order d

Input: A submodular function f on a lattice family L on a finite
set V , a subfamily F of L.

Output: A set S∗ ∈ F , or “The problem is infeasible!”.

1. For all A,B ⊆ V with |A|, |B| 6 d and A ∩ B = ∅, let SAB be a
minimal set minimising f over the family

LAB := {S ∈ L |A ⊆ S ⊆ V \B} .

Let S be the family of all these sets SAB.

2. If none among the sets in S lie in F , then return “The problem
is infeasible!”.

3. Otherwise, among the sets in S, let S∗ be one minimising f .
Return S∗.

Note that in the first step of the partial enumeration procedure, where we minimise
f over the family LAB, we in fact optimise over all sets containing all elements of A,
but none from B. Also note that the order d of the guessing procedure is an upper
bound on the number of elements that we fix inside and outside of the solution.

As in our settings, the goal is to find algorithms for prescribed constrained families
while the submodular function is kept general, the following definition is natural.

Definition 2.1. Let V be a finite set, let L be a lattice family and let F ⊆ L be a
non-empty family. For m ∈ Z>0, we say that the partial enumeration procedure of
order m is correct on F if for every submodular function f : L → Z, it returns a set
S∗ such that

f(S∗) = min{f(S) |S ∈ F} .

From an algorithmic point of view, we are not only interested in whether or not the
partial enumeration procedure is correct on some family F , but we are also interested
in its running time.

In this context, a key property of the family LAB is that for all A,B ⊆ V , this family
is itself a lattice family. To see this, let S1, S2 ∈ LAB. In particular, this implies
that S1, S2 ∈ L, so by definition of a lattice family, we get

S1 ∩ S2 ∈ L and S1 ∪ S2 ∈ L .

Moreover, the property that A ⊆ Si ⊆ V \ B for i ∈ {1, 2} is passed to S1 ∩ S2 and
S1 ∪ S2. Hence, we indeed have S1 ∩ S2 ∈ LAB and S1 ∪ S2 ∈ LAB, so LAB is a
lattice family.

By this property, every minimisation problem in the first step of a partial enumera-
tion procedure is an unconstrained submodular minimisation problem, and we know
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that problems of this type can be solved in polynomial time. Consequently, the run-
ning time of the partial enumeration procedure of order m is a polynomial times the
number of submodular minimisation problems solved in the first step. This number
is in O(|V |2m), so we obtain the following corollary.

Corollary 2.2. Let |V | be a finite set, let L be a lattice on V , let f be a submodular
function on L, and let F ⊆ L. If for some d ∈ Z>0, the partial enumeration procedure
of order d is correct on F , then a set minimising f over F can be found by solving
O(|V |2m) submodular function minimisation problems over sublattices of L.

Thus, we can minimise a submodular function over a family F in oracle-polynomial
time if a partial enumeration procedure of constant order is correct on F .

We will show that partial enumeration procedures can be used to solve both con-
gruency constrained submodular minimisation problems and generalised congruency
constrained minimisation problems. More precisely, we show the following theorem.

Theorem 2.3. Let F be a congruency constrained subfamily of a lattice family L
with modulus m. Then the partial enumeration procedure of order m − 1 is correct
on F .

The analogous theorem for generalised congruency constrained families is as follows.

Theorem 2.4. Let F be a generalised congruency constrained subfamily of a lattice
family L with k constraints and modulus m. Then the partial enumeration procedure
of order k(m− 1) is correct on F .

Proofs of these two theorems are shown in Chapter 4 and Chapter 5, respectively.
Our arguments rely on general sufficient conditions for correctness of partial enu-
meration procedures, which are discussed in the next chapter.

In combination with Corollary 2.2, the above two theorems directly imply our main
results, namely Theorem 1.4 and Theorem 1.5.

Last but not least, note that the sets SAB depend only on the lattice L and the
submodular function f , but they are independent of the constrained subfamily F .
Consequently, once the sets SAB are calculated, a minimiser of f over a family F
(assuming correctness of the partial enumeration procedure of order d on F) can be
found among the sets in F ∩ {SAB | A,B ⊆ V s. t. |A|, |B| 6 d}.

9





Chapter 3

Proving correctness of partial
enumeration procedures

In this chapter, we describe sufficient conditions for correctness of the partial enu-
meration procedures introduced in the previous chapter. Section 3.1 deduces a first
sufficient condition on the set families underlying the minimisation problems. This
sufficiency result is then further reduced to a condition in terms of inexistence of
set systems with certain properties in Section 3.2. For applications of this last suf-
ficient condition, we need tools to handle and transform set systems. These are
introduced in Section 3.3. Besides sufficient conditions, we also treat a necessary
condition for correctness in Section 3.4, namely a lower bound on the order of a
partial enumeration procedure that is necessary to solve problems of a certain type.

3.1 A first sufficient condition for partial enumeration

Having Corollary 2.2 at hand, a natural step is to start looking for sufficient condi-
tions on set families F that guarantee correctness of a partial enumeration procedure
of constant order on F .

Given a lattice family L on a finite set V , a subfamily F ⊆ L, and d ∈ Z>0, it will
be important whether or not the triple (L,F , d) has the following property.

Property 3.1. For every submodular function f : L → Z and every minimiser S∗ /∈
{∅, V } of f over F , there exists a set A ⊆ S∗ with |A| 6 d such that

∀S ∈ L : A ⊆ S ⊆ S∗ =⇒ f(S) > f(S∗) . (3.1)

Before stating a theorem on sufficient conditions for correctness of a partial enumer-
ation procedure, we need to introduce the following definition.

Definition 3.2. Let F be a family of sets on a finite set V . Then, we define the
family comp(F) to be the set family given by comp(F) = {S ⊆ V |V \ S ∈ F}.

11



3. Proving correctness of partial enumeration procedures

In other words, comp(F) is the family of all complements of sets in F . Note that if
L is a lattice family, then comp(L) is a lattice family, as well. Moreover, if F ⊆ L,
then we also have comp(F) ⊆ comp(L). With these observations, we are ready to
state the main reduction theorem of this section.

Theorem 3.3. Let V be a finite set, let L be a lattice family and let F ⊆ L. For
d ∈ Z>0, the partial enumeration procedure of order d is correct on F if the triples
(L,F , d) and (comp(L), comp(F), d) both have Property 3.1.

In the rest of this section, we present a proof of Theorem 3.3. We first show two lem-
mas about implications of the assumption that (L,F , d) and (comp(L), comp(F), d)
both have Property 3.1. The first lemma shows that if we restrict our attention to
minimal minimisers S∗ in Property 3.1, then we get the strict inequality in (3.1).

Lemma 3.4. Let V be a finite set, let L be a lattice family and let F ⊆ L. If the
triple (L,F , d) has Property 3.1, then for every submodular function f : L → Z and
for all minimal minimisers S∗ /∈ {∅, V } of f over F , there exists a set A ⊆ S∗ with
|A| 6 d such that

∀S ∈ L : A ⊆ S ( S∗ =⇒ f(S) > f(S∗) .

Proof. Fix a submodular function f : L → Z and a minimal minimiser S∗ of f over
F and let the function g : L → Z be defined by

g(S) = |V | · f(S) + |V | · |S \ S∗|+ |S| for all S ∈ L .

We now prove the following two claims.

Claim 1: S∗ is a minimiser of g over F .

By definition of S∗, we know that for all S ∈ F , we have f(S) > f(S∗). We now
distinguish two cases. If f(S) > f(S∗) + 1, we get

g(S) > |V | · f(S)
> |V | · (f(S∗) + 1)
> |V | · f(S∗) + |S∗| = g(S∗) .

If, in the other case, f(S) = f(S∗), we know from minimality of S∗ that S\S∗ 6= ∅,
hence |S \ S∗| > 1, so

g(S) > |V | · f(S) + |V | · |S \ S∗|
> |V | · f(S∗) + |V |
> |V | · f(S∗) + |S∗| = g(S∗) .

In both cases, we got g(S) > g(S∗) for all S ∈ F , so indeed, S∗ is a minimiser of
g over F .

Claim 2: For all sets S ( S∗, g(S) > g(S∗) implies f(S) > f(S∗).

12



3.1. A first sufficient condition for partial enumeration

As we only consider sets S ( S∗, the term |V | · |S \ S∗| is always zero, so the
inequality g(S) > g(S∗) can be rewritten in the form

|V | · f(S) + |S| > |V | · f(S∗) + |S∗| .

As S ( S∗, we have |S| < |S∗|, so for the above inequality to hold true, we must
have f(S) > f(S∗), which is what we wanted to prove.

Now note that as a linear combination of the three submodular functions S 7→ f(S),
S 7→ |S∩S∗| and S 7→ |S|, the function g is itself submodular. By the first claim, we
can apply Property 3.1 to the triple (L,F , d) with the function g and the minimiser
S∗, so we get that there exists a set A ⊆ S∗ with |A| 6 d such that

∀S ∈ L : A ⊆ S ⊆ S∗ =⇒ g(S) > g(S∗) .

By the second claim, the last inequality implies f(S) > f(S∗) whenever A ⊆ S ( S∗,
which is what we wanted to show. �

The following lemma deals with implications of the second assumption in Theo-
rem 3.3, namely that the triple (comp(L), comp(F), d) has Property 3.1.

Lemma 3.5. Let V be a finite set, let L be a lattice family and let F ⊆ L. If the
triple (comp(L), comp(F), d) has Property 3.1, then for every submodular function
f : L → Z, either one of ∅ and V is a minimiser of f over F , or for all minimisers
S∗ /∈ {∅, V } of f over F , there exists a set B ⊆ V \ S∗ with |B| 6 d such that

∀S ∈ L : S∗ ⊆ S ⊆ V \B =⇒ f(S) > f(S∗) .

Proof. Fix a minimiser S∗ of f over F . Let the function f ′ : comp(L) → Z be
given by f ′(S) = f(V \ S) for all S ∈ comp(L). Note that then, f ′ is submodular,
and V \ S∗ is a minimiser of f ′ over comp(F). Invoking Property 3.1 for the triple
((comp(L), comp(F), d) with the submodular function f and the minimiser V \ S∗,
we get the existence of a set B ⊆ V \ S∗ with |B| 6 d such that

∀S′ ∈ comp(L) : B ⊆ S′ ⊆ V \ S∗ =⇒ f ′(S′) > f ′(V \ S∗) .

Rewriting the above with S = V \ S′, we get the equivalent statement

∀S ∈ L : B ⊆ V \ S ⊆ V \ S∗ =⇒ f(S) > f(S∗) .

As furthermore, B ⊆ V \S ⊆ V \S∗ is equivalent to S∗ ⊆ S ⊆ V \B, this is precisely
the statement that we wanted to prove. �

Using Lemma 3.4 and Lemma 3.5, we can now prove Theorem 3.3.

Proof of Theorem 3.3. Fix a submodular function f : L → Z and a minimal min-
imiser S∗ of f over F . By Lemma 3.4 and Lemma 3.5, there exist sets A ⊆ S∗ and
B ⊆ V \ S∗ with |A|, |B| 6 d and such that for all S ∈ L, we have

A ⊆ S ( S∗ =⇒ f(S) > f(S∗) , (3.2)
and S∗ ⊆ S ⊆ V \B =⇒ f(S) > f(S∗) . (3.3)

13



3. Proving correctness of partial enumeration procedures

We claim that in the first step of the partial enumeration procedure of order d, we
find SAB = S∗. Assuming this claim, the partial enumeration procedure obviously
also returns a correct solution, hence it is correct on F .

Consequently, it only remains to show SAB = S∗, where SAB is a minimal minimiser
of f over LAB. As S∗ ∈ LAB, we have f(S∗) > f(SAB). Together with submodularity
of f , we get

2f(S∗) > f(S∗) + f(SAB) > f(S∗ ∩ SAB) + f(S∗ ∪ SAB) . (3.4)

Now note that S∗ ∪ SAB is a set in LAB with S∗ ⊆ S∗ ∪ SAB ⊆ V \ B, so by (3.3),
we have f(S∗ ∪ SAB) > f(S∗). Using this inequality in (3.4) and subtracting f(S∗),
we get the chain

f(S∗) > f(SAB) > f(S∗ ∩ SAB) . (3.5)

To finish the argument, note that S∗∩SAB is a set in LAB with A ⊆ S∗∩SAB. Hence
if S∗ ∩ SAB ( S∗, then by (3.2), we get f(S∗ ∩ SAB) > f(S∗), contradicting (3.5).
Consequently, we must have S∗ ∩ SAB = S∗. This has two implications. On the
one hand, it implies f(S∗ ∩ SAB) = f(S∗), and hence equality in (3.5). This gives
f(S∗) = f(SAB), so S∗ is a minimiser of f over LAB. On the other hand, S∗∩SAB =
S∗ also implies that S∗ ⊆ SAB, so minimality of SAB lets us conclude SAB = S∗.
This proves Theorem 3.3. �

Remark 3.6. We remark that in the above proof, we in fact show that under the
assumptions of Theorem 3.3, every minimal set S∗ minimising f over F has the
property that there exist A,B ⊆ V with |A|, |B| ≤ d such that the partial enumer-
ation procedure of order d finds SAB = S∗. Consequently, the partial enumeration
procedure of order d can be used to find all minimal sets minimising f over F . This
property was already remarked by Goemans and Ramakrishnan for their algorithm
for submodular minimisation over parity families [4]. The above shows that our gen-
eralised approach of partial enumeration procedures allows for the same conclusion
if correctness is proved through Theorem 3.3.

3.2 Set systems and a second sufficient condition

The next reduction of Theorem 3.3 that we show reduces correctness of a partial
enumeration procedure on some family F to inexistence of set systems with certain
properties. Thus, we start by introducing terminology for set systems.

Definition 3.7. Let S be a family of sets and let T be a finite set.

(i) S is a set system on T if for every S ∈ S, we have S ⊆ T .

(ii) S is intersection-closed if for any S1, S2 ∈ S, we have S1 ∩ S2 ∈ S.

(iii) For k ∈ Z>0, S is a k-covering set system on T if

∀U ⊆ T : |U | 6 k =⇒ ∃S ∈ S : U ⊆ S .

In other words, S is k-covering if for any at most k elements of T , there exists a set in
S containing all of them. Using this definition, we can state the following theorem.
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3.2. Set systems and a second sufficient condition

Theorem 3.8. Let L be a lattice family on a finite set V , let F ⊆ L and let d ∈ Z>0.
The triple (L,F , d) has Property 3.1 if there does not exist a d-covering intersection-
closed set system S on a non-empty finite ground set T with the property that T ∈ F ,
but S ∈ L \ F for all S ∈ S.

Combining the above theorem with Theorem 3.3, i.e., applying Theorem 3.8 to both
(L,F , d) and (comp(L), comp(F), d), we immediately get the following corollary.

Corollary 3.9. Let L be a lattice family. The partial enumeration procedure of
order d is correct on a subfamily F ⊆ L if the following two properties hold true.

(i) There does not exist a d-covering intersection-closed set system S on a non-
empty finite ground set T with the property that T ∈ F , but S ∈ L \ F for all
S ∈ S.

(ii) There does not exist a d-covering intersection-closed set system S on a non-
empty finite ground set T with the property that T ∈ comp(F), but S ∈
comp(L) \ comp(F) for all S ∈ S.

Corollary 3.9 will be applied in Chapter 4 and Chapter 5 to deduce our results on
congruency constrained and generalised congruency constrained submodular minmi-
sation problems. For a conclusion of this section, we prove Theorem 3.8.

Proof of Theorem 3.8. We show the contrapositive, namely that if the triple
(L,F , d) does not have Property 3.1, then there exists a d-covering intersection-
closed set system S on a non-empty finite ground set T with the property that
T ∈ F , but S ∈ L \ F for all S ∈ S.

By definition of Property 3.1, if the triple (L,F , d) does not have that property, then
for some minimiser T /∈ {∅, V } of f over F , we know that for every set A ⊆ T with
|A| 6 d, there is a set S ∈ L such that A ⊆ S ⊆ T , but f(S) < f(T ). Let SA be a
maximal such set.

Let T = {Q ⊆ T | |Q| 6 d} \ ∅ denote the family of all non-empty subsets of T of
cardinality at most d. Moreover, for a family A ⊆ T , we write SA :=

⋂
A∈A SA. We

claim that the set system
S := {SA | A ⊆ T }

is a d-covering intersection-closed set system on the non-empty ground set T with
the property that T ∈ F , but S /∈ F for all S ∈ S. We prove this in four steps.

Step 1: S is a d-covering set system on T .

All sets SA are subsets of T . Consequently, all sets in S are subsets of T , as well,
so S is indeed a set system on T .

Let A ⊆ T be a subset with |A| 6 d. Then, by definition, we have A ⊆ SA and
SA ∈ S, hence S is indeed a d-covering set system on T .

Step 2: S is intersection-closed.

Let A,B ⊆
⋃d
i=1

(T
i

)
. By definition of SA and SB, we have SA ∩ SB = SA∪B.

Consequently, as A ∪ B ⊆
⋃d
i=1

(T
i

)
, this implies that SA ∩ SB is as well an

element of S, so S is intersection-closed.
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3. Proving correctness of partial enumeration procedures

Step 3: T ∈ F .

By definition, T is a set minimising f over F , so in particular, we have T ∈ F .

Step 4: For all A ⊆
⋃d
i=1

(T
i

)
, we have SA ∈ L \ F .

Note that by definition, SA ∈ L for all A ⊆ T with |A| 6 d. Hence, every set
SA is an intersection of sets from the lattice L, and hence SA ∈ L holds true, as
well.

Therefore, it remains to see SA /∈ F . To this end, we show that f(SA) < f(T )
for all A ⊆

⋃d
i=1

(T
i

)
by induction on |A|. As T is a minimiser of f over F , this

immediately implies that SA /∈ F .

For |A| = 1, i.e., A consisting of a single set A, we have SA = SA, and f(SA) <
f(T ) holds by definition of SA. For the inductive step, consider some non-empty
family A (

⋃d
i=1

(T
i

)
with f(SA) < f(T ) and a set A ∈

⋃d
i=1

(T
i

)
\ A. We show

that f(SA∪{A}) < f(T ).

If SA∪{A} = SA, there is nothing to show. Hence, we assume the opposite, namely
SA∪{A} ( SA. From the equivalence

SA∪{A} ( SA ⇐⇒ SA ∩ SA ( SA ⇐⇒ SA \ SA 6= ∅ ⇐⇒ SA ( SA ∪ SA

and the maximality of SA, we get f(SA ∪ SA) > f(T ). Together with submodu-
larity of f , we get

f(SA) + f(SA) > f(SA ∩ SA) + f(SA ∪ SA) > f(SA∪{A}) + f(T ) .

Now note that by the induction basis and the inductive assumption, both terms on
the left hand side are strictly smaller than f(T ), so we also get f(T ) > f(SA∪{A}).
This completes the induction, and hence step 4.

The above steps show that the set system S has all of the desired properties, so the
proof of Theorem 3.8 is complete. �

3.3 Set system transformations

When proving inexistence of the set systems raised in Corollary 3.9, we will repeat-
edly transform one set system to another. The goal of this section is to collect
the theory of these transformations and to provide a basis for applying set system
transformations in Chapter 4 and Chapter 5.

Cardinality transformation functions and their properties

We will use a special type of transformation maps that are characterised by the
following definition.

Definition 3.10. A map g : Z>0 → Z>0 is a cardinality transformation function if
for every finite set V , there exists a finite set W and a map G : 2V → 2W with the
following three properties.
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3.3. Set system transformations

(i) (ground set transformation) G(V ) = W .

(ii) (cardinality transformation) ∀S ⊆ V : |G(S)| = g(|S|).

(iii) (homomorphism w.r.t. intersection) ∀S, T ⊆ V : G(S) ∩G(T ) = G(S ∩ T ).

In this case, we call G a set transformation function for g on V .

We use cardinality transformation functions to transform set systems. If S is a set
system on the ground set V and g is a cardinality transformation function, then by
definition, there exists a finite set W and a map G : 2V → W with properties as
listed in the above definition. In particular, we can define a set system

T := {G(S) |S ∈ S} .

By definition of G, the new system T is a set system on W . Slightliy abusing
notation, we will also write T = G(S).

Property (i) in Definition 3.10 makes sure that the ground set V of S is mapped to
the ground set W of T , while property (ii) guarantees that cardinalities of sets are
transformed via the cardinality transformation function g. The third property can
be seen as a “homomorphism property” with respect to intersection: It states that
the image of an intersection of two sets under the transformation map is the same
as the intersection of the images of the two sets.

In Definition 3.7, we introduced two important properties of set systems: Intersection-
closed set systems and k-covering set systems. Starting with intersection-closed
systems in Lemma 3.11, we will now see how these properties are affected by set
transformation functions.

Lemma 3.11. Let S be an intersection-closed set system on a finite ground set V .
Let g be a cardinality transformation function and G a corresponding set transforma-
tion function G : 2V → 2W . Then, the set system T = G(S) is intersection-closed.

Proof. Let T1, T2 ∈ T . By definition of T , there exist two sets S1, S2 ∈ S such
that Ti = G(Si) for i ∈ {1, 2}. By the homomorphism property of G with respect to
intersection, we get

G(S1) ∩G(S2) = G(S1 ∩ S2) .

As by assumption, S is intersection-closed, we get S1 ∩ S2 ∈ S. Consequently,
G(S1 ∩ S2) ∈ T , and hence also G(S1) ∩G(S2) ∈ T , as desired. �

While by the above lemma, the property of being intersection-closed is invariant
under set transformation functions, a k-covering property is generally not. This
motivates the following definition.

Definition 3.12. Let g : Z>0 → Z>0 be a cardinality transformation function.

(i) We say that g has covering coefficient α ∈ R>0 if for every finite set V , there
exists a set transformation function G for g on V such that for every k ∈ Z≥0,
the transformation G(S) of a k-covering set system S on V is an bαkc-covering
set system on G(V ).
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3. Proving correctness of partial enumeration procedures

(ii) We say that g has level ` ∈ Z>0 if for every finite set V , there exists a set
transformation function G : 2V → 2W for g on V such that for every w ∈ W ,
there is a set S ⊆ V with |S| 6 ` and w ∈ G(S).

Note that both the covering coefficient and the level are monotone properties in the
sense that a cardinality transformation function g with covering coefficient α also
has covering coefficient α′ for all α′ 6 α, and if g has level `, then it also has level
`′ for all `′ > `. The following lemma creates a link from levels of a cardinality
transformation function to covering coefficients.

Lemma 3.13. If for some ` ∈ Z>0, a cardinality transformation function has level
`, then it has covering coefficient 1/`.

Proof. Consider a k-covering set family S on a finite ground set V and let g be
a cardinality transformation function of level ` with a set transformation function
G : 2V → 2W such that for all w ∈ W , there is a set Sw ⊆ V with |Sw| 6 ` and
w ∈ G(Sw).

To show that G(S) is a bk/`c-covering set system on W , let w1, . . . , wk′ ∈ W be
k′ = bk/`c elements from W . Then,∣∣∣∣∣∣

k′⋃
i=1

Swi

∣∣∣∣∣∣ 6 k′ · ` 6 k .

As S is a k-covering set system, this implies that there exists a set S ⊆ V with⋃k′
i=1 Swi ⊆ S. We claim that G(S) is a set covering all the elements w1, . . . , wk′ .

Indeed, by the homomorphism property of G with respect to inclusion, we get for
each i ∈ [k′] that

wi ∈ G(Swi) = G(Swi ∩ S) = G(Swi) ∩G(S) ,

so wi ∈ G(S) for all i ∈ [k′]. This proves the claim and hence the lemma. �

While the covering coefficient is what we are interested in when applying cardinality
transformation functions, we will see in the next section that arguments in terms of
levels are easier to handle.

Construction of cardinality transformation functions

We now provide methods for constructing cardinality transformation functions of
certain types. For our constructions, we need three “elementary” cardinality trans-
formation functions. These are presented in the following lemma.

Lemma 3.14. The following statements hold true for every ` ∈ Z>0.

(i) The map g : Z>0 → Z>0 given by g(x) = ` is a cardinality transformation
function with level 0.

(ii) The map g : Z>0 → Z>0 given by g(x) = x` is a cardinality transformation
function with level `.
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3.3. Set system transformations

(iii) The map g : Z>0 → Z>0 given by g(x) =
(x
`

)
is a cardinality transformation

function with level `.

Proof. To see that the given functions are cardinality transformation functions, we
need to show that for every set V , there exists a set W and a map G : 2V → 2W such
that properties (i), (ii) and (iii) from the definition of a cardinality transformation
function hold. Additionally, we show that the levels are as indicated.

(i) Let W be a set of size ` and define G by G(S) = W for every set S ⊆ V . Then,
all three properties (i), (ii), and (iii) trivially hold true.

As by definition, G(∅) = W , the cardinality transformation function in question
has level 0.

(ii) For a set A, let A` denote the set of all ordered sequences of length ` over A.
Using this notation, let W = V ` and define G(S) = S` for all S ⊆ V . By
definition, property (i) is satisfied. Moreover, a counting argument shows that
|S`| = |S|`, hence

|G(S)| = |S`| = |S|` = g(|S|) ,

so property (ii) holds. Moreover, for all S, T ⊆ V , we have

G(S) ∩G(T ) = S` ∩ T ` = {sequences on S} ∩ {sequences on T}
= {sequences on elements that appear in S and T}
= (S ∩ T )` = G(S ∩ T ) ,

so property (iii) is satisfied as well.

The fact that g has level ` can be deduced from the definition of G: An element
w ∈ W is a sequence of ` elements of V , so the set S of all elements in w has
size at most ` and satisfies w ∈ G(S), as desired.

(iii) For a set A, let
(A
`

)
denote the set of all subsets of size ` of A (note that this

set is empty if ` > |A|). Using this notation, let W =
(V
`

)
and G(S) =

(S
`

)
for all S ⊆ V . By definition, this implies that property (i) holds. A counting
argument shows that

∣∣(S
`

)∣∣ =
(|S|
`

)
, hence

|G(S)| =
∣∣∣∣∣
(
S

`

)∣∣∣∣∣ =
(
|S|
`

)
= g(|S|) ,

so property (ii) is true. Moreover, for all S, T ⊆ V , we have

G(S) ∩G(T ) = S` ∩ T ` = {subsets of S} ∩ {subsets of T}
= {subsets containing only elements that appear in S and T}

=
(
S ∩ T
`

)
= G(S ∩ T ) ,

so property (iii) is satisfied as well.

To show that g has level `, we proceed similarly as before. By the above
construction, an element w ∈ W is a set of cardinality `, so S = w ⊆ V has
the desired properties |S| 6 ` and w ∈ G(S). �
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3. Proving correctness of partial enumeration procedures

By Lemma 3.14, we know that constants, monomials and binomials are cardinality
transformation functions. It turns out that these elementary cardinality transforma-
tion functions can be combined to obtain a larger class of functions with the same
property.

Lemma 3.15. Let g and h be cardinality transformation functions with levels `g and
`h, respectively. Then, the function g + h is a cardinality transformation function
with level max{`g, `h}.

Proof. Let V be a finite set, and let G : 2V → 2W1 and H : 2V → 2W2 be set
transformation functions for g and h on V .

We claim that the function G ∪̇H : 2V → 2W1∪̇W2 defined by

(G ∪̇H)(S) = G(S) ∪̇G(S)

for all S ⊆ V is a set transformation function for g + h on V of level max{lg, lh}.
We use the symbol ∪̇ to emphasise that we take disjoint unions of the two sets.
In particular, there will be applications where elements w ∈ W1 ∩W2 exist – but
nevertheless, we consider the union W1 ∪̇W2 to contain two distinguishable copies
of w, say w1 and w2, that can be matched with their origin W1 and W2.

For a proof of the above claim, we start with showing properties (i), (ii) and (iii) of
Definition 3.10. By definition of G and H, we have G(V ) = W1 and H(V ) = W2, so
(G ∪̇H)(V ) = G(V ) ∪̇H(V ) = W1 ∪̇W2, which is the first property.

As we consider disjoint unions, we get that for every set S ⊆ V ,

|(G ∪̇H)(S)| = |G(S) ∪̇H(S)| = |G(S)|+ |H(S)| = g(|S|) +h(|S|) = (g+h)(|S|) ,

so the second property holds true, as well. For showing the third one, let S, T ⊆ V
and observe that

(G ∪̇H)(S) ∩ (G ∪̇H)(T ) =
(
G(S) ∪̇H(S)

)
∩
(
G(T ) ∪̇H(T )

)
=
(
G(S) ∩G(T )

)
∪̇
(
H(S) ∩H(T )

)
= G(S ∩ T ) ∪̇H(S ∩ T )
= (G ∪̇H)(S ∩ T ) ,

where we used that the homomorphism property with respect to intersection holds
for G and H. This establishes the third property, so we proved that g + h is a
cardinality transformation function.

To see that g + h has level ` := max{lg, lh}, consider let w ∈ W . Note that as
W = G(V ) ∪̇H(V ), we have w ∈ G(V ) or w ∈ H(V ). If w ∈ G(V ), then from the
fact that G has level `1 6 `, we know that there is a set S ⊆ V such that |S| 6 `
and w ∈ G(S). Consequently, we also have w ∈ (G ∪̇H)(S). If w ∈ H(V ), the same
steps provide a set S with |S| 6 ` and w ∈ (G ∪̇H)(S).

This finishes the proof of the lemma. �
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3.3. Set system transformations

Of course, we can iteratively apply Lemma 3.15 to obtain results for linear combi-
nations of cardinality transformation functions. Using the three elementary types of
cardinality transformation functions shown in Lemma 3.14 and applying Lemma 3.13
to do the transition from levels to covering coefficients, we get the following last result
of this preparatory chapter.

Corollary 3.16. Let k ∈ Z>0 and let a0, . . . , ak ∈ Z>0 with ak > 0. Then, the maps
g, h : Z>0 → Z>0 given by

g(x) = a0 + a1x+ . . .+ akx
k

and h(x) = a0 + a1

(
x

1

)
+ . . .+ ak

(
x

k

)

are cardinality transformation functions with covering coefficient 1/k.

Generalised cardinality transformation functions

Besides the cardinality transformation functions found above, we also use a more
general form of such functions. These are introduced in the following definition.

Definition 3.17. A map g : Zk>0 → Z>0 is a generalised cardinality transformation
function if for every finite set V and k subsets S1, . . . , Sk ⊆ V , there exists a finite
set W and a map G : 2V → 2W with the following three properties.

(i) (ground set transformation) G(V ) = W .

(ii) (cardinality transformation) ∀S ⊆ V : |G(S)| = g(|S1 ∩ S|, . . . , |Sk ∩ S|).

(iii) (homomorphism w.r.t. intersection) ∀S, T ⊆ V : G(S) ∩G(T ) = G(S ∩ T ).

In this case, we call G a set transformation function for g on V with respect to
S1, . . . , Sk.

Note that this definition is compatible with Definition 3.10 for cardinality transfor-
mation functions, which we recover for k = 1 and S1 = V . For a set system S on
a finite set V and a generalised cardinality transformation function g, we can use a
corresponding set transformation function with respect to some fixed sets S1, . . . , Sk
to transform the system S to the system T = G(S) as defined earlier.

As before, intersection-closedness is preserved under such transformations. Anal-
ogously to the situation with cardinality transformation functions, we can define
covering coefficients and the level of generalised cardinality transformation functions
following Definition 3.12, and we can observe that Lemma 3.13 extends the connec-
tion between level and covering coefficient to the generalised setting.

To get examples of cardinality transformation functions, the results of Corollary 3.16
can be easily generalised to obtain generalised cardinality transformation functions
of the form

g(x1, . . . , xk) = p1(x1) + p2(x2) + . . .+ pk(xk) ,

where pi are polynomials or linear combinations of binomial coefficients, and the cov-
ering coefficient of such a generalised cardinality transformation is 1/maxi∈[k] deg(pi).
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3. Proving correctness of partial enumeration procedures

We do not go into the details of proving these properties and only do so for a partic-
ular generalised cardinality transformation function that we need later, namely the
product function g(x1, . . . , xk) = x1 · . . . · xk.

Lemma 3.18. Let k ∈ Z>0. The map g : Zk>0 → Z given by g(x1, . . . , xk) = x1·. . .·xk
is a generalised cardinality transformation function with covering coefficient 1/k.

Proof. Let V be a finite set and let S1, . . . , Sk ⊆ V . Let W = S1 × . . . × Sk and
define G : 2V → 2W by

G(S) = (S1 ∩ S)× (S2 ∩ S)× . . .× (Sk ∩ S)

for all S ⊆ V . We claim that this map G is a set transformation function for g on
V with respect to S1, . . . , Sk. To check this, note that point (i) of Definition 3.17 is
satisfied because Si ⊆ V for all i ∈ [k] implies Si ∩ V = Si, hence

G(V ) = (S1 ∩ V )× (S2 ∩ V )× . . .× (Sk ∩ V ) = S1 × S2 × . . .× Sk = W .

For point (ii), observe that the cardinality of a product of sets equals the product of
the cardinalities of the sets, and so for all S ⊆ V , we have

|G(S)| = |(S1∩S)×(S2∩S)×. . .×(Sk∩S)| =
∏
i∈[k]
|Si∩S| = g(|S1∩S|, . . . , |Sk∩S|) .

To see that G also satisfies point (iii), note that for all S, T ⊆ V ,

x ∈ (S1 ∩ S ∩ T )× . . .× (Sk ∩ S ∩ T )︸ ︷︷ ︸
=G(S∩T )

is equivalent to having

x ∈ (S1 ∩ S)× . . .× (Sk ∩ S)︸ ︷︷ ︸
=G(S)

and x ∈ (S1 ∩ T )× . . .× (Sk ∩ T )︸ ︷︷ ︸
=G(T )

,

hence x ∈ G(S ∩ T ) iff x ∈ G(S) ∩G(T ). This proves G(S ∩ T ) = G(S) ∩G(T ).

To see that the covering coefficient of g is 1/k, note that by Lemma 3.13, it is
enough to show that the level of g is k. But this is obvious from the above: Any
element w ∈W is a sequence of elements (s1, . . . , sk) with si ∈ Si. Consider the set
Sw = {s1, . . . , sk}, then w ∈ G(Sw). As |Sw| = k, we conclude that g has level k,
and hence covering coefficient 1/k. �

The methodes of the above proof combined with an adaption of Lemma 3.15 for gen-
eralised cardinality transformation functions, can be used to show, for example, that
every polynomial g in k variables with positive coefficients is a generalised cardinal-
ity transformation function, and that the covering coefficient of such a polynomial
is 1/ deg(g).
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3.4 A lower bound on the order

As described in the introduction chapter, our results are efficient minimisation algo-
rithms for special cases of a problem of the following general form: Given a lattice
family L, a submodular function f : L → Z, and parity subfamilies P1, . . . ,P`, find
a set minimising f over the intersection P1 ∩ . . . ∩ P`.

For the two special cases that we consider, we show that a partial enumeration
procedure of order ` solves the problem. The following proposition shows that in
general, this order is best possible.

Proposition 3.19. Let V be a finite set and let ` ∈ Z>0. If a partial enumeration
procedure of order d is correct on the family

F = {S ⊆ V | |S| ≡ 0 (mod (`+ 1))},

then d > `.

Note that the family F in the above proposition is indeed an intersection of ` parity
subfamilies of the lattice 2V , namely of the families

Pi = {S ⊆ V | |S| 6≡ i (mod (`+ 1))}

for i ∈ [`]. Thus, the proposition indeed proves that for optimising over an intersec-
tion of ` parity families, the order of a correct enumeration procedure has to be at
least `.

Proof of Proposition 3.19. Without loss of generality, we assume that for some
n ∈ Z>0, we have V = {0, 1, . . . , n}. To prove the above proposition, it is sufficient
to provide a submodular function f : 2V → Z such that whenever we fix at most
`− 1 elements of the ground set V , then every minimal set optimising f over all sets
in 2V containing these elements is not in F .

To this end, we consider the submodular function f : 2V → Z given by

f(S) =
{
|S| if 0 /∈ S,
|S| − `− 2 if 0 ∈ S.

This function corresponds to assigning weight −(`+ 1) to the element 0 and weight
1 to all other elements of V , so it is easy to see that f is submodular (and even
modular). Minimising f over the congruency constrained family F , we see that
precisely the sets of cardinality `+ 1 containing the element 0 are optimal solutions.
However, if we try to find an optimal set in F by fixing a set A ⊆ V of at most
` − 1 elements and optimising over all sets containing A, we always obtain the set
A ∪ {0}. For every choice of A, this set is of cardinality ` − 1 or ` (depending on
whether 0 ∈ A or not), so we never get a minimiser of f over F . Thus, fixing at least
` elements is necessary, which means that a correct partial enumeration procedure
needs order d > `. This proves the Proposition. �
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Chapter 4

Congruency constrained submodular
minimisation

In this Chapter, we show three different arguments of various generality that prove
Theorem 2.3, namely correctness of partial enumeration procedures on congruency
constrained families. All proofs rely on the reductions presented in Chapter 3 and
show that set systems with certain properties do not exist. In Section 4.2, we start
with an elementary approach that proves the result for prime moduli. Next, in
Section 4.3, we use the previously introduced cardinality transformation functions
for a first time to obtain a different proof for prime moduli. This approach using
set system transformations is extended in Section 4.4 to give the result in its most
general form, i.e., for prime power moduli. The penultimate section presents an
argument why our current methods using set system transformations might not easily
generalise to arbitrary moduli, and the last section collects result of computational
experiments that we did in context with checking existence of particular set systems.

4.1 Employing sufficient conditions for correctness: Set
systems

We want to prove Theorem 2.3, namely correctness of a partial enumeration proce-
dure of order m−1 on congruency constrained set families with modulus m. To this
end, we use Corollary 3.9. By this result it is enough to see that for every congruency
constrained subfamily F of a lattice family L with modulus m, the following two
conditions hold true.

(i) There does not exist an (m − 1)-covering intersection-closed set system S on
a non-empty finite ground set T with the property that T ∈ F , but S ∈ L \ F
for all S ∈ S.

(ii) There does not exist an (m − 1)-covering intersection-closed set system S on
a non-empty finite ground set T with the property that T ∈ comp(F), but
S ∈ comp(L) \ comp(F) for all S ∈ S.
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4. Congruency constrained submodular minimisation

We will see that by the following lemma, it is enough to check one of the above two
points.

Lemma 4.1. Let F be a congruency constrained subfamily of a lattice family L on
the ground set V . Then, comp(F) is a congruency constrained subfamily of the
lattice comp(L).

Proof. First, note that by definition of comp(F), every set S ∈ comp(F) is the
complement of a set in L, so we obtain comp(F) ⊆ comp(L). Consequently, it
suffices to see that comp(F) can be written in the form of a congruency constrained
subfamily of comp(L).

Note that comp(F) is precisely the family of all sets S ∈ comp(L) of the form
S = V \ S′, where S′ ∈ L satisfies a constraint of the form

|S′| ≡ r (mod m) .

Plugging in S′ = V \ S and using |S′| = |V | − |S|, we can equivalently write this
constraint in the form

|S| ≡ |V | − r (mod m) .

We obtain that comp(F) is precisely the family of all sets S ∈ comp(L) satisfying the
above constraint, which is a congruency constraint. Hence, comp(F) is a congruency
constrained subfamily of comp(L), which is what we wanted to show. �

Using the above lemma, we see that it suffices to check that for every lattice L and
every congruency constrained subfamily F ⊆ L with modulus m, there does not exist
an (m − 1)-covering intersection-closed set system S on a non-empty finite ground
set T with the property that T ∈ F , but S ∈ L\F for all S ∈ S. If we rewrite these
conditions for a congruency constrained family of the form F =

{
S ∈ L

∣∣ |S| ≡ r
(mod m)

}
, we get

T ∈ F ⇐⇒ T ∈ L ∧ |T | ≡ r (mod m) ,

S ∈ L \ F ⇐⇒ S ∈ L ∧ |S| 6≡ r (mod m) .

It turns out that even without the requirements that T ∈ L and S ∈ L for all S ∈ S,
no set system of the prescribed type exists. More precisely, we prove the following
theorem, which (by the above arguments) is sufficient for deducing correctness of
partial enumeration procedures of order m−1 on congruency constrained set families
with modulus m, given that m is a prime power.

Theorem 4.2. Let m ∈ Z>0 be a prime power and let r ∈ Z. There does not exist
an (m − 1)-covering intersection-closed set system S on a non-empty finite ground
set T with the property that |T | ≡ r (mod m), but |S| 6≡ r (mod m) for all S ∈ S.

In the following three sections, we will see three different proofs of Theorem 4.2, two
of which only prove the special case where m is a prime number.
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4.2 An elementary solution for prime moduli

The first proof of Theorem 4.2 that we show here is an elementary proof for the case
where m is a prime number. To make clear that we are in the prime case here, we
change notation and write p instead of m. The proof below uses a double counting
argument, the inclusion-exclusion principle and Fermat’s little theorem.

Proof of Theorem 4.2 (for prime moduli). Let m = p be a prime number. We
assume for contradiction that there exists an (p − 1)-covering set system S on a
non-empty finite ground set T such that |T | ≡ r (mod p), but |S| 6≡ r (mod p) for
all S ∈ S.

As a first step, we show that it suffices to consider the case where r = 0. Indeed,
assume that there exists a set system S on a non-empty finite ground set T with the
prescribed properties for some r 6≡ 0 (mod p). Let X be a set of p− r new elements
and define a set system U on the finite ground set W := S ∪X by

U := {S ∪X |S ∈ S} .

The system U inherits the properties of being (p−1)-covering and intersection-closed
from S. Moreover, and we have

|W | = |T |+ |X| ≡ r + (p− r) ≡ 0 (mod p) ,

and every set U ∈ U satisfies U = S ∪X for some S ∈ S, hence

|U | = |S|+ |X| 6≡ r + (p− r) ≡ 0 (mod p) .

Altogether, we see that U satisfies the set system properties in question with r = 0,
so it suffices to prove inexistence in this case.

By the above argument, we now assume that r = 0 without loss of generality. We
will reach a contradiction by finding two ways to count the quantity given by the
sum ∑

A∈T p−2

∣∣∣∣∣∣
⋃

S∈S, A⊆S
S

∣∣∣∣∣∣ . (4.1)

That is, for every ordered sequence A of p − 2 elements of the ground set T , we
consider all sets S in the set family that contain all elements of the sequence A
(which is, slightly abusing notation, denoted by A ⊆ S), and look at the union of
these sets. Ultimately, we sum up the cardinalities of all unions obtained this way.

For a first way to calculate the above sum, fix a sequence A = (t1, . . . , tp−2) ∈ T p−2

and consider only the term of the sum corresponding to A. This term is the union
of all sets in S containing all elements ti for i ∈ [p − 2]. Let t ∈ T . Then, the
set {t, t1, . . . , tp−2} has cardinality at most p − 1, so as the set system S is (p − 1)-
covering, there is a set in S covering {t, t1, . . . , tp−2}. In particular, this set is a term
in the union

⋃
S∈S, A⊆S S, so t ∈

⋃
S∈S, A⊆S S. This holds for every element t ∈ T , so

we conclude
T =

⋃
S∈S, A⊆S

S ,
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and consequently,

∑
A∈T p−2

∣∣∣∣∣∣
⋃

S∈S, A⊆S
S

∣∣∣∣∣∣ =
∑

A∈T p−2

|T | ≡ 0 (mod p) . (4.2)

A second approach for calculating the term in (4.1) is to use the inclusion-exclusion
principle for rewriting the unions. To do so, let SA, for every A ∈ T p−2, be the
subfamily of S consisting of all the sets in S containing all elements of A. We get

∑
A∈T p−2

∣∣∣∣∣∣
⋃

S∈S,A⊆S
S

∣∣∣∣∣∣ =
∑

A∈T p−2

|SA|∑
k=1

(−1)k+1 ∑
{S1,...,Sk}⊆SA

∣∣∣∣∣
k⋂
i=1

Si

∣∣∣∣∣
=
|S|∑
k=1

∑
{S1,...,Sk}⊆S

∑
A∈T p−2,

A⊆
⋂k

i=1 Si

(−1)k+1
∣∣∣∣∣
k⋂
i=1

Si

∣∣∣∣∣ .
To get the last representation, we changed the order of summation and adjusted
summation boundaries correspondingly. Note that the summand does not depend
on the innermost sum, hence

∑
A∈T p−2

∣∣∣∣∣∣
⋃

S∈S,A⊆S
S

∣∣∣∣∣∣ =
|S|∑
k=1

∑
{S1,...,Sk}⊆S

∣∣∣∣∣
{
A ∈ T p−2

∣∣∣∣∣A ⊆
k⋂
i=1

Si

}∣∣∣∣∣ (−1)k+1
∣∣∣∣∣
k⋂
i=1

Si

∣∣∣∣∣ .
The coefficient

∣∣∣{A ∈ V p−2
∣∣∣A ⊆ ⋂ki=1 Si

}∣∣∣ counts the number of ways to choose an
ordered sequence of p − 2 not necessarily different elements from

⋂k
i=1 Si, which is

equal to
∣∣∣⋂ki=1 Si

∣∣∣p−2
. Using this, we get

∑
A∈V p−2

∣∣∣∣∣∣
⋃

S∈S,A⊆S
S

∣∣∣∣∣∣ =
|S|∑
k=1

∑
{S1,...,Sk}⊆S

(−1)k+1
∣∣∣∣∣
k⋂
i=1

Si

∣∣∣∣∣
p−1

.

By assumption, all intersections
⋂k
i=1 Si have nonzero cardinality modulo p. In

particular, their cardinalities are coprime to p, hence Fermat’s Little Theorem implies
|
⋂k
i=1 Si|p−1 ≡ 1 (mod p). Plugging this in, we get

∑
A∈V p−2

∣∣∣∣∣∣
⋃

S∈S,A⊆S
S

∣∣∣∣∣∣ ≡
|S|∑
k=1

∑
{S1,...,Sk}⊆S

(−1)k+1

≡
|S|∑
k=1

(−1)k+1
(
|S|
k

)
≡ −

(
(1− 1)|S| − 1

)
≡ 1 (mod p) . (4.3)

Here, we used that the number of choices for {S1, . . . , Sk} ⊆ S is
(|S|
k

)
. The last step

uses the binomial formula, where the correction −1 accounts for the missing term
for k = 0.

Comparing (4.2) and (4.3), we see that we reached a contradiction, so the set system
S cannot exist. This proves Theorem 4.2 for prime moduli. �
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With the above proof, we thus showed that partial enumeration procedures of order
p−1 correctly solve congruency constrained submodular minimisation problems with
prime modulus p.

4.3 Polynomial set transformations and prime moduli

In this section, we give a different proof of Theorem 4.2 for the case of prime mod-
uli. For this proof, we use cardinality transformation functions as introduced in
Section 3.3. To be precise, we use polynomial cardinality transformation functions.
We show that with these functions, it is also possible to extend the result to m = 4,
but not to any other non-prime modulus.

Before going to the details of applying cardinality transformation functions, we con-
centrate on the following useful lemma that will also have applications beyond this
section.

Lemma 4.3. Let r ∈ Z, let m ∈ Z>0 and let S be a 1-covering intersection-closed
set system on a non-empty finite ground set T . If for all S ∈ S, we have |S| ≡ r
(mod m), then we also have |T | ≡ r (mod m).

Proof. As S is 1-covering, we have T =
⋃
S∈S S. By the inclusion-exclusion princi-

ple, we get

|T | =
∣∣∣∣∣ ⋃
S∈S

S

∣∣∣∣∣ =
|S|∑
k=1

(−1)k+1 ∑
{S1,...,Sk}⊆S

∣∣∣∣∣
k⋂
i=1

Si

∣∣∣∣∣ .
By assumption, S is intersection-closed, so every set of the form

⋂k
i=1 Si is in fact

a set in S, so its cardinality is congruent to r modulo m. Plugging this in and
observing that the inner sum has precisely

(|S|
k

)
many terms, we get

|T | ≡
|S|∑
k=1

(−1)k+1 ∑
{S1,...,Sk}⊆S

r

=
|S|∑
k=1

(−1)k+1
(
|S|
k

)
· r

= −
(
(1− 1)|S| − 1

)
· r = r ,

which is what we wanted to prove. �

With a slightly different phrasing, the above lemma was already proved by Goemans
and Ramakrishnan in [4]. They use it to show correctness of the partial enumeration
procedure of order 1 on parity subfamilies of a lattices L of the form

P =
{
S ∈ L

∣∣ |S| 6≡ r (mod m)
}
,

where r ∈ Z and m ∈ Z>0. Their proof can be recovered by using Corollary 3.9 and
then Lemma 4.3 for proving inexistence of the arising set systems.

We now use Lemma 4.3 for a proof of Theorem 4.2. As in the first proof that we
saw, the idea is to assume for contradiction that a set system with the properties in
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question exists. We will then apply a cardinality transformation function to obtain
a new set system that conflicts with Lemma 4.3, giving the desired contradiction.

Second proof of Theorem 4.2 (for prime moduli). Letm = p be a prime num-
ber. We assume for contradiction that there exists a (p − 1)-covering set system S
on a non-empty finite ground set T such that |T | ≡ r (mod p), but |S| 6≡ r (mod p)
for all S ∈ S. Moreover, we assume without loss of generality that 0 6 r < p.

By Corollary 3.16, we know that the map g : Z≥0 → Z≥0 defined by

g(x) =
(
x+ (p− r)

)p−1 =
p−1∑
i=0

(p− r)p−i−1
(
p− 1
i

)
xi

is a cardinality transformation function with covering coefficient α = 1/(p−1), as by
the assumption 0 6 r < p, all coefficients (p−r)p−i−1(p−1

i

)
are positive. By definition

of cardinality transformation functions and the covering coefficient, we know that
there exists a finite set W and a map G : 2T → 2W such that the set system

U = {G(S) |S ∈ S}

is an α(p− 1)-covering, i.e., 1-covering, intersection-closed set system on W . More-
over, note that by Fermat’s Little Theorem, we get

g(x) =
(
x+ (p− r)

)p−1 ≡
{

0 (mod p) if x ≡ r (mod p) ,
1 (mod p) if x 6≡ r (mod p) .

(4.4)

Consequently, |T | ≡ r (mod p) implies that we have

|W | = |G(T )| = g(|T |) ≡ 0 (mod p) , (4.5)

while for every U ∈ U , there is a set S ∈ S with U = G(S), hence from |S| 6≡ r
(mod p), we deduce

|U | = |G(S)| = g(|S|) ≡ 1 (mod p) . (4.6)

By Lemma 4.3 applied to the 1-covering intersection-closed set system U , (4.6) im-
plies |W | ≡ 1 (mod p), but this contradicts (4.5). That contradiction finishes this
proof of Theorem 4.2 for prime moduli. �

The crucial step in the above proof was to have a cardinality transformation function
g with the property given in (4.4). In the general case with modulus m, we would
need a cardinality transformation function with covering coefficient at least 1/(m−1)
that maps all sets S ∈ S with cardinalities satisfying |S| 6≡ r (mod m) to sets with
cardinalities equal to one common residue, and the ground set T to a set with
cardinality equal to a different residue modulo m. If we restrict our attention to
polynomial cardinality transformation functions, we saw that it is enough to find a
polynomial g with the above properties for r = 0 because then, a polynomial for
general r is given by x 7→ g(x+m− r).

Once we find a cardinality transformation function with these properties for some
modulus m, a proof of Theorem 4.2 for that modulus can be deduced along the lines
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of the above proof. For m = 4, for example, we see that the polynomial g(x) = x3 +x
is a suitable choice, because

g(0) ≡ 0, and g(1) ≡ g(2) ≡ g(3) ≡ 2 (mod 4) .

It turns out, though, that m = 4 this is the only case beyond prime numbers
where polynomial cardinality transformation functions are sufficient for proving The-
orem 4.2.

To see this, we assume for contradiction that g is a polynomial cardinality transfor-
mation function of degree k that has the desired properties. The covering coefficient
of g is, by Corollary 3.16, equal to α = 1/k. Recall that by Proposition 3.19 and
its proof, a partial enumeration procedure of order d < m − 1 cannot generally be
correct on congruency constrained families with modulus m. Using the function g,
we could show correctness if αd > 1 (i.e., if the transformed set system is a 1-cover,
at least), so we conclude αd < 1. In particular, for d = m − 2 and by plugging in
α = 1

k , we get k > m− 2. Consequently, g needs degree at least m− 1 for the proof
to work.

To reach a contradiction, we show that if there exists a polynomial cardinality trans-
formation function g with the desired properties and degree k > m − 2, then there
also exists such a function h with degree at most m−2, which contradicts the above
observation. We need the following lemma.

Lemma 4.4. Let m > 4 not be prime and define the polynomial

pm(x) = (x− 1) · (x− 2) · (x− 3) · . . . · (x−m+ 1) .

Then pm(j) ≡ 0 (mod m) for all j ∈ Z.

Proof. Obviously, it suffices to check that pm(j) ≡ 0 (mod m) for j ∈ {0, . . . ,m−1}.
If j ∈ {1, 2, . . . ,m− 1}, then the factor (x− j) appears in pm, so pm(j) = 0 trivially
follows. Moreover,

pm(0) = (−1) · (−2) · (−3) · . . . · (−m+ 1)
= (−1)m−1 · 2 · 3 · . . . · (m− 1) = (−1)m−1 · (m− 1)! .

It is easy to see that for m > 4 not prime, we have (m−1)! ≡ 0 (mod m), so indeed,
pm(j) ≡ 0 (mod m) for all j ∈ {1, 2, . . . ,m− 1}. �

Now, still assuming existence of the polynomial g above, for some non-prime number
m > 4, note that by polynomial division, there exist polynomials h and q such that
deg(h) < deg(pm) = m− 1 and

g(x) = q(x)pm(x) + h(x) .

As pm(x) ≡ 0 (mod m), we get g(x) ≡ h(x) (mod m). So modulo m, h has the
same values as g, and deg(h) < m − 1. This is the desired contradiction. We thus
know that no polynomial cardinality transformation function can extend the second
proof of Theorem 4.2 to non-prime moduli other than 4.
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4.4 Binomial transformations and prime power moduli

In Section 3.3, we did not only prove that polynomials are cardinality transformation
functions, but also linear combinations of binomial coefficients. We will see in this
section that the latter transformation functions can be used to obtain a proof of
Theorem 4.2 even for prime power moduli m = pα. Before showing the proof, we
provide some properties of binomial coefficients.

Lemma 4.5. Let p be a prime number and let a, b ∈ Z>0.

(i) If pα and pβ are the largest powers of p dividing a and b, respectively, and
α > β, then (

a

b

)
≡ 0 (mod p) .

(ii) Let α ∈ Z>0. If b < pα, then(
a+ pα

b

)
≡
(
a

b

)
(mod p) .

(iii) Let α ∈ Z>0. If b < pα, then(
a

b

)
≡
(

(a mod pα)
b

)
(mod p) ,

where (a mod pα) denotes the unique integer in {0, . . . , pα − 1} congruent to a
modulo pα.

Proof. (i) Let a = pα · a′ and b = pβ · b′. Then, p - a′ and p - b′. By definition of
the binomial coefficient, we have(

a

b

)
= a

b

(
a− 1
b− 1

)
= pα−β

a′

b′

(
a− 1
b− 1

)
∈ Z .

Since p - b′, we must have a′

b′
(a−1
b−1
)
∈ Z, so as α−β > 0 by assumption, the last

expression is divisible by p, and hence also
(a
b

)
, as desired.

(ii) Using Vandermonde’s identity, we obtain(
a+ pα

b

)
=

b∑
k=0

(
a

b− k

)(
pα

k

)
. (4.7)

Using the first part of this Lemma, we see that for k > 1, we have
(pα
k

)
≡ 0

(mod p). Plugging this into (4.7), we get(
a+ pα

b

)
=

b∑
k=0

(
a

b− k

)(
pα

k

)
︸ ︷︷ ︸
≡0 if k > 0

≡
(
a

b

)
(mod p) ,

proving the second part of the Lemma.
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(iii) The third part of this Lemma follows immediately by writing a = (a mod pα)+
k · pα with k =

⌊
a
pα

⌋
and repeated applications of the second part, namely(

(a mod pα)
b

)
≡
(

(a mod pα) + pα

b

)
≡
(

(a mod pα) + 2pα

b

)

≡ . . . ≡
(

(a mod pα) + kpα

b

)
≡
(
a

b

)
(mod p) .

This completes the proof of Lemma 4.5. �

Alternatively, we could also use Lucas’s Theorem [12] to prove the above result.
Having Lemma 4.5 at hand, we are ready to give a full proof of Theorem 4.2.

Third proof of Theorem 4.2 (for prime power moduli). We denote the
prime power m by m = pα for a prime number p and α ∈ Z>0. As in previous
proofs, we assume for contradiction that there exists a (pα−1)-covering intersection-
closed set system S on a non-empty finite ground set T such that |T | ≡ r (mod pα),
but |S| 6≡ r (mod pα) for all S ∈ S. Moreover, we assume without loss of generality
that 0 6 r < pα.

The goal of this proof is to transform the set system S to a 1-covering intersection-
closed set system in which the cardinalities of all sets have the same residue, while
the ground set has a different one. Then, we obtain a contradiction using Lemma 4.3.

Consider the function g : Z>0 → Z>0 defined by

g(x) =
∑
k odd,

16k<pα

(
x

k

)
+

∑
k even,

16k<pα

(p− 1)
(
x

k

)

for all x ∈ Z>0. We claim that g has the following property.

g(x) ≡
{

0 (mod p) if x ≡ 0 (mod pα) ,
1 (mod p) if x 6≡ 0 (mod pα) .

(4.8)

Indeed, if x ≡ 0 (mod pα), then by Lemma 4.5 (i), every binomial coefficient
(x
k

)
is

divisible by p, so the whole sum g(x) is divisible by p, as well. In other words, we
have g(x) ≡ 0 (mod p) if x ≡ 0 (mod pα). For the case x 6≡ 0 (mod pα), we can
apply Lemma 4.5 (iii) to reduce x modulo pα and obtain

g(x) =
∑
k odd,

16k<pα

(
x

k

)
+

∑
k even,

16k<pα

(p− 1)
(
x

k

)

≡
pα−1∑
k=1

(−1)k+1
(
x

k

)
≡

pα−1∑
k=1

(−1)k+1
(

(x mod pα)
k

)
(mod p) .

Now note that
((x mod pα)

k

)
= 0 whenever k > (x mod pα), so we can truncate the

sum. Together with the binomial formula, we obtain

g(x) ≡
(x mod pα)∑

k=1
(−1)k+1

(
(x mod pα)

k

)
≡ 1− (1− 1)(x mod pα) ≡ 1 (mod p) .
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This proves that g(x) ≡ 1 (mod p) whenever x 6≡ 0 (mod pα), so we proved (4.8).

We would like to have a cardinality transformation function h with properties similar
to those of g, namely

h(x) ≡
{

0 (mod p) if x ≡ r (mod pα) ,
1 (mod p) if x 6≡ r (mod pα) .

(4.9)

It is easy to see that the map h : Z>0 → Z>0 defined by h(x) = g(x + pα − r) has
this property. This function h is of the form

h(x) =
∑
k odd,

16k<pα

(
x+ pα − r

k

)
+

∑
k even,

16k<pα

(p− 1)
(
x+ pα − r

k

)
.

Using Vandermonde’s identity, namely(
x+ pα − r

k

)
=

k∑
i=0

(
pα − r
k − i

)(
x

i

)
,

we see that h(x) can be written as a linear combination of binomial coefficients with
non-negative coefficients. The largest lower entry of these binomial coefficients with
non-vanishing coefficient is pα−1. Consequently, by Corollary 3.16, h is a cardinality
transformation function with covering coefficient α = 1/(pα− 1). We use this cardi-
nality transformation function to transform the (pα− 1)-covering intersection-closed
set system S on the ground set T to a new set system U .

As in the previous proof, the definitions of cardinality transformation functions and
the covering coefficient let us deduce existence of a finite set W and a map H : 2T →
2W such that the set system

U = {G(S) |S ∈ S}

is an α(pα − 1)-covering, i.e. 1-covering, intersection-closed set system on W . Us-
ing (4.9) and |T | ≡ 0 (mod pα), we have

|W | = |H(T )| = h(|T |) ≡ 0 (mod p) . (4.10)

Moreover, note that every set U ∈ U can be written in the form U = H(S) for some
S ∈ S. From (4.9) and |S| 6≡ 0 (mod pα), we deduce

|U | = |H(S)| = h(|S|) ≡ 1 (mod p) (4.11)

for all U ∈ U . By Lemma 4.3 applied to the 1-covering intersection-closed set system
U , (4.11) implies |W | ≡ 1 (mod p), but this contradicts (4.10). This contradiction
finishes this proof of Theorem 4.2 for prime power moduli. �

The above proof finally finishes a long chain of arguments that prove correctness of
partial enumeration procedures of order m − 1 for solving congruency constrained
submodular minimisation problems with prime power modulus m = pα.
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4.5 Obstacles for transformations in the composite case

We always emphasised that we show correctness of certain partial enumeration pro-
cedures on congruency constrained families only for the case of prime power moduli.
The aim of this section is to point out that our current methods do not allow ex-
tensions beyond prime power moduli. To this end, we need two known results. The
first one is a classical result by Frankl and Wilson on restricted intersections modulo
primes in a set system.

Theorem 4.6 (Frankl and Wilson, [3]). Let p be a prime number and s ∈ Z>0.
Let µ0, µ1, . . . , µs ∈ {0, 1, . . . , p−1} be distinct, and let S be a set system on a ground
set of n elements such that there exists k ∈ Z with

(i) ∀S ∈ S : |S| = k ≡ µ0 (mod p) ,

(ii) ∀S1, S2 ∈ S, S1 6= S2 : |S1 ∩ S2| ≡ µi (mod p) for some i ∈ {1, . . . , s} .

Then, |S| 6
(n
s

)
.

While the above theorem shows that uniform set systems with restricted intersections
modulo prime numbers are at most of polynomial size in the size of the ground set, it
turns out that this is not true for composite moduli. Grolmusz showed the following
result on large set systems with restricted intersections modulo 6.

Theorem 4.7 (Grolmusz, [5]). There exists a constant c > 0 such that for every
n ∈ Z>0, there exists a set system S on a ground set of n elements such that

(i) |S| > exp
(
c log(n)2

log logn

)
,

(ii) ∀S ∈ S : |S| ≡ 0 (mod 6) ,

(iii) ∀S1, S2 ∈ S, S1 6= S2 : |S1 ∩ S2| 6≡ 0 (mod 6) .

To show that our set system transformation methods do not extend beyond prime
power moduli, we will show that if they did, then we could transform a large set
system given by Theorem 4.7 to a system contradicting Theorem 4.6.

Note that the set system transformations that we exploited in the previous sections
to prove Theorem 4.2 all had a similar form. They were cardinality transformation
functions g : Z>0 → Z>0 as provided by Corollary 3.16, namely polynomials or linear
combinations of binomial coefficients. Moreover, they had the property that for some
prime number p, an integer c 6≡ 0 (mod p) and an integer r,

g(x) ≡
{

0 (mod p) if x ≡ r (mod m)
c (mod p) if x 6≡ r (mod m)

(4.12)

holds for all x ∈ Z>0. We now assume that such a function exists for r = 0. Let S
be a uniform set system on a finite ground set T of cardinality n that is obtained as
follows: Consider the set system provided by Theorem 4.7, and let S be the largest
uniform subsystem. We observe that in this case, S is of size at least 1

n ·exp
(
c log(n)2

log logn

)
.

Furthermore, let G be a set transformation function for g on T . Using G, we can
transform the system S to a new system U given by

U = {G(S) |S ∈ S}
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on the ground set W = G(T ). Note that by definition of U every set U ∈ U can be
written in the form U = G(S) for some S ∈ S, and hence

|U | = |G(S)| = g(|S|) ≡ 0 (mod p)

holds for all U ∈ U . Moreover, note that for all distinct U1, U2 ∈ U , we can write
U1 = g(S1) and U2 = g(S2) with S1, S2 ∈ S and get

|U1 ∩ U2| = |G(S1) ∩G(S2)| = |G(S1 ∩ S2)| = g(|S1 ∩ S2|) ≡ c (mod p) .

The last two properties show that U is a set system on the ground set W that satisfies
the assumptions of Theorem 4.6 with s = 1, µ0 = 0, and µ1 = c, so we conclude that
|U| 6 |W |. We know that |W | = g(|T |) = g(n), which is of polynomial size in n by
our assumptions on the form of g.

On the other hand, by construction of U , we have |U| = |S| > 1
n · exp

(
c log(n)2

log logn

)
,

which is a superpolynomial lower bound on the size of W in n. For n large enough,
this lower bound is larger than the polynomial upper bound obtained before. This
contradiction shows that no polynomial (or binomial) cardinality transformation
function g with properties of the type stated in (4.12) can exist. More precisely,
the construction shows that we would need to transform our set system with su-
perpolynomial cardinality transformation functions to have a chance of getting the
result.

The above discussion is not limited to modulus 6. In fact, Grolmusz proves a result
generalising Theorem 4.7 to any modulus that is not a prime number [5]. The
superpolynomial-size set systems guaranteed by this result can be used to obtain
insights analogous to the above one, but for general composite moduli.

4.6 Computational experiments

While we could show Theorem 4.2 for prime power moduli, the question remains open
for moduli with more than one prime divisor. This motivates checking existence of
the set systems in question for general moduli using computers.

We checked computationally if for small moduli and small sizes of the ground set,
there is a set system contradicting Theorem 4.2. In other words, we checked whether
for given integers n, m and r, there exists a set system S on the n-element ground
set [n] that has the following properties:

(i) The system S is closed under intersections.

(ii) The ground set has cardinality congruent r modulo m, i.e., n ≡ r (mod m).

(iii) Every set in the family has cardinality not congruent to r modulo m.

(iv) Any m− 1 elements are covered by a set in the family.

Testing existence of a system S with these properties using the approach that we
describe below is possible in reasonable time only for small values of n (we tested
n 6 11). In all cases that we tested, the software showed infeasibility of the problem.
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4.6. Computational experiments

The computation was set up as an integer program with one binary variable xS
per set S ⊆ [n], indicating whether the set S is an element of S (corresponding to
xS = 1) or not (corresponding to xS = 0). In other words, we have

S =
{
S ⊆ [n]

∣∣xS = 1
}
.

The above four constraints are modelled as follows.

(i) For enforcing that the system S is closed under intersection, we add the fol-
lowing family of constraints:

∀S1, S2 ⊆ [n] : xS1∩S2 ≥ xS1 + xS2 − 1.

If this constraint is satisfied, then the intersection variable has to be equal to 1
if both S1 and S2 are in the family, and it is unconstrained if at least one of
the sets is not in the family.

(ii) The condition that the ground set has cardinality n ≡ r (mod m) is guaranteed
by the input.

(iii) For getting the property that every set in S, i.e., every set S with xS = 1, has
cardinality not congruent to r modulo m, we add constraints xS = 0 for all
sets S with cardinality congruent to r modulo m.

(iv) To guarantee the covering property for every m−1 elements, we require at least
one set containing these elements to be in the family by adding the constraints

∀A ∈
(

[n]
m− 1

)
:

∑
S : A⊆S⊆[n]

xS ≥ 1.

Altogether, we check feasibility of the following system, where we choose the param-
eters such that n ≡ r (mod m).

xS ∈ {0, 1} ∀S ⊆ [n] ,
xS = 0 ∀S ⊆ [n] such that |S| ≡ r (mod m) ,

xS1∩S2 − xS1 − xS2 ≥ −1 ∀S1, S2 ⊆ [n] ,∑
S : A⊆S⊆[n]

xS ≥ 1 ∀A ∈
(

[n]
m− 1

)
.

To test feasibility of the above system, we use the C++ interface of the Gurobi
integer linear program solver [8]. The corresponding code is given in Listing A.1 in
Appendix A, a sample output for the test with parameters m = 6, n = 9, and r = 3
is given in Listing A.2.

An overview of the parameters that we tried is given in Table 41. As indicated
before, all systems were infeasible. Note that no tests were done for n 6 m. For
n < m, it can be immediately seen that there is no set system with the desired
properties: By the covering property, all n 6 m − 1 elements need to be covered
by a set of the system, but this would imply that the ground set is in the family,

37



4. Congruency constrained submodular minimisation

but by the congruency constraints, this is impossible. In the case m = n, note that
r = 0. Consequently, the intersection of all sets is non-empty, hence by removing an
element common to all sets from the family, we get a new instance with n replaced
by n− 1 and r replaced by r − 1, and it is sufficient to check this instance.

m n r result

6 7 1 infeasible

6 8 2 infeasible

6 9 3 infeasible

6 10 4 infeasible

6 11 5 infeasible

10 11 1 infeasible

Table 41: Results of computational experiments for various inputs.

For modulus m = 6, we could check the relevant ground set sizes n up to and
including n = 11, for n = 13, the program ran out of memory. The next modulus m
that is not a prime power is m = 10, for which the model was infeasible with n = 11
and r = 1. For larger values of m and n, no results could be obtained in reasonable
time.
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Chapter 5

Generalised congruency constrained
submodular minimisation

In this chapter, we prove Theorem 2.4, namely that partial enumeration procedures
of a certain order are correct on generalised congruency constrained families with
prime power moduli. As for the results obtained for congruency constrained problems
in the previous chapter, our proof relies on the methods presented in Chapter 3, so
the main focus lies on showing inexistence of set systems with certain properties.
Besides this proof, we also consider generalised congruency constrained problems
with non-uniform moduli. We show that already a problem with two constraints,
one with modulus 2 and the other with modulus 3, can be reduced to a congruency
constrained problem with a single constraint with modulus 6.

5.1 Set systems in the generalised setting

We want to prove that for every k and every prime power m = pα, the partial
enumeration procedure of order k(m− 1) is correct on generalised congruency con-
strained families with k constraints and modulus m. By Corollary 3.9, we know that
it is sufficient to check the following two points.

(i) There does not exist a k(m − 1)-covering intersection-closed set system S on
a finite non-empty ground set T with the property that T ∈ F , but S ∈ L \ F
for all S ∈ S.

(ii) There does not exist a k(m − 1)-covering intersection-closed set system S on
a finite non-empty ground set T with the property that T ∈ comp(F), but
S ∈ comp(L) \ comp(F) for all S ∈ S.

We already saw that for simple congruency constrained families, checking one of the
two constraints is enough. The following lemma allows for the same conclusion with
generalised congruency constrained families.

39



5. Generalised congruency constrained submodular minimisation

Lemma 5.1. Let F be a generalised congruency constrained subfamily of a lattice
family L on the ground set V . Then, comp(F) is a generalised congruency con-
strained subfamily of the lattice comp(L).

Proof. Assume that F is of the form
F =

{
S ∈ L

∣∣ ∀i ∈ [k] : |Si ∩ S| ≡ ri (mod m)
}

with parameters m, k ∈ Z>0, r1, . . . , rk ∈ Z and S1, . . . , Sk ⊆ V . Then, we can write
comp(F) =

{
S ⊆ V

∣∣V \ S ∈ F}
=
{
S ⊆ V

∣∣V \ S ∈ L, |Si ∩ (V \ S)| ≡ ri (mod m)
}
.

Now observe that V \ S ∈ L is equivalent to S ∈ comp(L), and
|Si ∩ (V \ S)| ≡ ri (mod m) ⇐⇒ |Si ∩ S| ≡ |Si ∩ V | − ri (mod m) .

Thus, the family comp(F) can ge written in the form
comp(F) =

{
S ∈ comp(L)

∣∣ ∀i ∈ [k] : |Si ∩ S| ≡ |Si ∩ V | − ri (mod m)
}
,

which is the form of a generalised congruency constrained subfamily of comp(L), as
desired. �

Now indeed, if we can prove that point (i) holds for every lattice family L and every
generalised congruency constrained subfamily F ⊆ L with k constraints and modulus
m, then by Lemma 5.1, point (ii) holds for all these families, as well.

Let us again consider F to be of the form
F =

{
S ∈ L

∣∣ ∀i ∈ [k] : |Si ∩ S| ≡ ri (mod m)
}
,

where L is a lattice family on a finite set V , S1, . . . , Sk ⊆ V are non-empty and
r1, . . . , rk ∈ Z for some k ∈ Z>0. Then point (i) is to prove inexistence of a k(m−1)-
covering intersection-closed set system S on a finite ground set T with the property
that T ∈ F , or equivalently,

T ∈ L ∧ (|S1 ∩ T |, . . . , |Sk ∩ T |) ≡ (r1, . . . , rk) (mod m) ,

and, for all S ∈ S, S ∈ L \ F , which can be written in the form
S ∈ L ∧ (|S1 ∩ S|, . . . , |Sk ∩ S|) 6≡ (r1, . . . , rk) (mod m) .

Note that to prove inexistence of such a set system, we can prove the stronger result
where the conditions T ∈ L and S ∈ L for all S ∈ S are omitted. Moreover, note
that the properties of the system do not change if we replace Si by Si∩T , so we can
as well concentrate on the situation where Si ⊆ T . In this case, Si ∩ T = Si, so the
first constraint above can be rewritten in the form |Si| ≡ ri (mod m) for all i ∈ [k].

Together, we see that it is sufficient to prove the following theorem, which can be
viewed as an analogue of Theorem 4.2 for the generalised congruency constrained
setting.

Theorem 5.2. Let m ∈ Z>0 be a prime power, let k ∈ Z>0 and let r1, . . . , rk ∈ Z.
There does not exist a k(m− 1)-covering intersection-closed set system S on a non-
empty finite set T and sets S1, . . . , Sk ⊆ T with the property that |Si| ≡ ri (mod m)
for all i ∈ [k] and, for all S ∈ S,

(|S1 ∩ S|, . . . , |Sk ∩ S|) 6≡ (r1, . . . , rk) (mod m) .
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5.2 A solution for prime power moduli

In this section, we prove Theorem 5.2. Similar to the proofs of Theorem 4.2 that we
presented, this proof is a proof by contradiction and relies on exploiting set system
transformations as introduced in Chapter 3. As before, the final contradiction is
reached by observing that the set system reached after some transformations con-
tradicts Lemma 4.3.

Proof of Theorem 5.2. The proof is by contradiction, so we assume that for
some prime power m = pα ∈ Z>0 and some integer k ∈ Z>0, there exists a
k(m − 1)-covering intersection-closed set system S on a finite ground set T and
sets S1, . . . , Sk ⊆ T with the property that |Si| ≡ ri (mod m) for all i ∈ [k] and, for
all S ∈ S,

(|S1 ∩ S|, . . . , |Sk ∩ S|) 6≡ (r1, . . . , rk) (mod m) .

We now transform the system S in three steps to obtain new set systems with simpler
properties. Recall that the goal still is to obtain a contradiction.

Claim 1: There exists a set system with the same properties as S, but

r1 = . . . = rk = 0 .

Proof of Claim 1. We first show how we can modify the set system S to obtain a
set system U with the same properties as S, but rk = 0. To this end, let X be a
set of m− rk new elements, and define the new set system U on the ground set
W = T ∪X by

U = {S ∪X |S ∈ S} .

Additionally, let Ui = Si for i ∈ [k − 1] and Uk = Sk ∪ X. Note that then, we
have

(|U1 ∩W |, . . . , |Uk ∩W |) ≡ (r1, . . . , rk−1, 0) (mod pα) ,

and, for all U ∈ U ,

(|U1 ∩ U |, . . . , |Uk ∩ U |) 6≡ (r1, . . . , rk−1, 0) (mod pα) .

As furthermore, adding the elements of X to all sets does not change the prop-
erties of being k(m − 1)-covering and intersection-closed, we see that U indeed
has the same properties as S with rk = 0. Repeating the above step for all other
ri one after another, we end up with a set system that has the same properties
as S with r1 = . . . = rk = 0. This proves the first claim. �

Claim 2: There exists a k-covering intersection-closed set system S on a finite
ground set T and sets S1, . . . , Sk ⊆ T with the property that |Si| ≡ 1 (mod p)
for all i ∈ [k] and, for all S ∈ S,

(|S1 ∩ S|, . . . , |Sk ∩ S|) ∈ {0, 1}k \ {(1, . . . , 1)} (mod p) .

Proof of Claim 2. We apply a transformation map to the set system that we ob-
tain from Claim 1. Recall the cardinality transformation function g with covering
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coefficient 1/(m − 1) that we used in the proof of Theorem 4.2 in Section 4.4.
This function g : Z≥0 → Z≥0 was defined by

g(x) =
∑
k odd,

16k<pα

(
x

k

)
+

∑
k even,

16k<pα

(p− 1)
(
x

k

)

for all x ∈ Z>0, and we showed that

g(x) ≡
{

0 (mod p) if x ≡ 0 (mod pα) ,
1 (mod p) if x 6≡ 0 (mod pα) .

Note that as a consequence, the function h(x) = 1 + (p− 1)g(x) is a cardinality
transformation function with covering coefficient 1/(m− 1), and we have

h(x) ≡ 1− g(x) ≡
{

1 (mod p) if x ≡ 0 (mod pα) ,
0 (mod p) if x 6≡ 0 (mod pα) .

(5.1)

Applying a corresponding set transformation function H for h on T to the set
system S and letting Ui = H(Si) we see that

U = {H(S) |S ∈ S}

is a k-covering intersection-closed set system on the non-empty finite ground set
H(T ) with the properties that for all i ∈ [k], we have

|Ui| = |H(Si)| = h(|Si|) ≡ 1 (mod p)

because |Si| ≡ 0 (mod pα). Moreover, every set U ∈ U can be written in the
form U = H(S) for some S ∈ S, hence

|Ui ∩ U | = |H(Si) ∩H(S)| = |H(Si ∩ S)| = h(|Si ∩ S|) .

Combining the known

(|S1 ∩ S|, . . . , |Sk ∩ S|) 6≡ (0, . . . , 0) (mod pα)

with (5.1), we finally obtain

(|U1 ∩ U |, . . . , |Uk ∩ U |) ∈ {0, 1}k \ {(1, . . . , 1)} (mod p)

for all U ∈ U . Thus, the system U that we obtained satisfies all properties
postulated by Claim 2. �

Claim 3: There exists a 1-covering intersection-closed set System S on a non-empty
finite ground set T such that |T | ≡ 1 (mod p), and such that for every S ∈ S, we
have |S| ≡ 0 (mod p).

Proof of Claim 3. For a proof of the third claim, we use the generalised cardinality
transformation function g from Lemma 3.18 given by g(x1, . . . , xk) = x1 · . . . · xk
to transform the system given by Claim 2.
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More concretely, let S be this system, namely a k-covering intersection-closed
set system on a finite ground set T with sets S1, . . . , Sk ⊆ T such that |Si| ≡ 1
(mod m) for all i ∈ [k] and, for all S ∈ S,

(|S1 ∩ S|, . . . , |Sk ∩ S|) ∈ {0, 1}k \ {(1, . . . , 1)} (mod m) .

Let G be a set transformation function for g on T with respect to S1, . . . , Sk, and
define W = G(T ). We define a new set system U on W by

U = {G(S) |S ∈ S} .

As before, we check that U has the properties postulated by Claim 3. We
have seen that as the image of the intersection-closed set system S, U is it-
self intersection-closed. Moreover, as g has covering coefficient 1/k and S is
k-covering, we can choose G such that U is 1-covering. The ground set W satis-
fies

|W | = |G(T )| = g(|S1∩T |, . . . , |Sk∩T |) =
∏
i∈[k]
|Si∩T | =

∏
i∈[k]
|Si| ≡ 1 (mod p) .

For all elements U ∈ U , there is a set S ∈ S such that U = G(S), and hence

|U | = |G(S)| = g(|S1 ∩ S|, . . . , |Sk ∩ S|) =
∏
i∈[k]
|Si ∩ S| ≡ 0 (mod p) ,

where the last equivalence follows from the fact that (|S1 ∩ S|, . . . , |Sk ∩ S|) ∈
{0, 1}k \ {(1, . . . , 1)} (mod p), so at least one of the factors will be 0 modulo p.
We thus see that the set system U has all of the desired properties. �

Last but not least, note that the set system guaranteed by Step 3 above contra-
dicts Lemma 4.3. Thus, we obtained the desired contradiction, which proves Theo-
rem 5.2. �

5.3 Reducing to disjoint conditions

Recall that congruency constrained subfamilies of a lattice family L on a finite set
V have constraints of the form

|S ∩ Si| ≡ ri (mod m) ,

where Si ⊆ V are some fixed subsets of the ground set. In particular, the constraints,
i.e., the underlying sets Si, can overlap. In this section, we show an argument that
reduces overlapping problem settings to non-overlapping ones. In other words, we
show that every constrained submodular minimisation problem can be solved by
solving a similar problem with pairwise disjoint sets Si.

For simplicity, we only present our construction for the case of two constraints,
although all arguments immediately generalise to an arbitrary number of constraints.
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5. Generalised congruency constrained submodular minimisation

Consider a generalised congruency constrained submodular minimisation problem
with parameters (V,L, f, {S1, S2},m, {r1, r2}), i.e., we want to minimise f over the
family

F =
{
S ∈ L

∣∣∣∣∣ |S1 ∩ S| ≡ r1 (mod m)
and |S2 ∩ S| ≡ r2 (mod m)

}
.

We will extend and modify the given instance to obtain a generalised congruency
constrained problem with parameters (V ′,L′, f ′, {S′1, S′2},m, {r1, r2}) for which we
can guarantee that the ground sets S′1 and S′2 of the conditions are disjoint, and such
that a solution of the initial problem can be deduced from a solution of the second.
The idea of the extension is to increase the ground set by introducing copies of certain
elements. In particular, copies of elements that appear in multiple constraint sets Si
can be used to assign one copy of every element to each of the involved constraints.
Together with a mechanism that ensures that for every solution candidate, either
all copies of an element or none are chosen, we arrive at the reduction. But let us
introduce the modified problem step by step.

The new ground set is given by

V ′ := V ∪̇ S′1 ∪̇ S′2 ,

where S′1 and S′2 are copies of S1 and S2, respectively. To avoid notational ambigui-
ties, we write x(1) ∈ S′1 for the copy of an element x ∈ S1, and x(2) ∈ S′2 for the copy
of an element x ∈ S2.

The idea for a link from subsets of the initial ground set V to subsets of V ′ is that
any set S ⊆ V corresponds to the set S′ ⊆ V ′ given by

S′ = S ∪
{
x(1)

∣∣∣x ∈ S1 ∩ S
}
∪
{
x(2)

∣∣∣x ∈ S2 ∩ S
}
. (5.2)

By the natural partition of V ′ into V , S′1 and S2, every set S′ ⊆ V ′ has three parts:
|V ∩S′|, |S′1 ∩S′| and |S′2 ∩S′|. As indicated above, the idea is that we translate the
original conditions |S1 ∩ S| ≡ r1 (mod m) and |S2 ∩ S| ≡ r2 (mod m) on subsets S
of V to the conditions

|S′1 ∩ S′| ≡ r1 (mod m) and |S′2 ∩ S′| ≡ r2 (mod m) , (5.3)

on the parts |S′1 ∩ S′| and |S′2 ∩ S′|, where we see that, as desired, the new sets S′1
and S′2 are disjoint. While we use the parts S′1 ∩ S′ and S′2 ∩ S′ for separating the
conditions, the remaining part V ∩S′ will be used to define the value of a submodular
function on S′. This motivates the definition of the new lattice family

L′ := {S′ ⊆ V ′ |V ∩ S′ ∈ L} .

Note that with this definition, the function S′ 7→ f(V ∩ S′) is a well-defined sub-
modular function on L′. The submodular function f ′ that we use in our reduction
partially consists of the map S′ 7→ f(V ∩ S′).

Note that a set S′ of the form given in (5.2) is a set such that for every x ∈ V , S′ either
contains x and all available copies of x, or it contains none of the these elements. For
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5.3. Reducing to disjoint conditions

such a sets S′, it is easy to see that V ∩ S′ satisfies the initial conditions if and only
if S′ satisfies the new conditions (5.3). The goal is to define the new submodular
function f ′ in such a way that a minimiser of f ′ over the new family always has the
property of containing either all copies of an element or none. In other words, we
want to have a penalty in the function value f ′(S′) if two copies of an element are
separated by S′. One way to achieve this is by adding a cut function.

To this end, let G = (V ′, E) be the graph on vertices V ′ obtained by adding the
edges {x, x(1)}, {x, x(2)}, and {x(1), x(2)} for all x ∈ V , whenever both endpoints are
in V ′. For a large constant M ∈ Z, we then define the function f ′ : L′ → Z by

f ′(S′) := f(V ∩ S′) +M · |δG(S′)| .

The function f ′ is a linear combination of the submodular function S′ 7→ f(V ∩
S′) and the cut function S′ 7→ |δG(S′)| (which is submodular), hence f ′ is itself
submodular. By choosing M larger than any value of f can be, we see that no
set S′ that cuts an edge in G can be a minimiser of f ′. Figure 51 illustrates the
construction that we did so far.

V

S1

S2

S′
1

S′
2

x1

x2
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Figure 51: Construction of V ′ by duplicating elements, and the graph G = (V ′, E).

We now formalise the intuition behind the above definitions in the following claim,
which uses the notation introduced above.

Claim 5.3. For a minimiser S′ of f ′ over the family

F ′ =
{
S ∈ L′

∣∣∣∣∣ |S′1 ∩ S| ≡ r1 (mod m)
|S′2 ∩ S| ≡ r2 (mod m)

}
,

the set V ∩ S′ is a minimiser of f over F .

Proof. We first note that for every minimiser S of f over F , the corresponding
set S′ ⊆ V ′ that contains all copies of elements in S is feasible for F ′. Indeed,
S ∈ L implies S′ ∈ L′, and as |S1 ∩ S| = |S′1 ∩ S′| and |S2 ∩ S| = |S′2 ∩ S′| implies
validity of the new congruency constraints from validity of the old ones, we obtain
feasibility. Moreover, as S′ does, by definition, not cut any edges in the graph G, we
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5. Generalised congruency constrained submodular minimisation

get f ′(S′) = f(V ∩ S′) = f(S). As S is a minimiser of f over F , this implies

min
S∈F

f(S) > min
S′∈F ′

f ′(S′) . (5.4)

For the other direction, let S′ be a minimiser of f ′ over F ′. Note that if S′ crosses
an edge of G, then f ′(S′) > M , which is larger than any value of f on F . But then,
by the values of f ′ that we saw in the previous paragraph, we conclude that such a
set S′ cannot be a minimiser of f ′. Thus, S′ does not cross edges of G. In particular,
we have |S′1 ∩ S′| = |S1 ∩ S′|, and hence

|S1 ∩ (V ∩ S′)| = |S1 ∩ S′| = |S′1 ∩ S′| ≡ r1 (mod m) ,

so the set V ∩ S′ satisfies the first congruency constraint of F . The same argument
shows that it also satisfies the second. As S′ ∈ L′, we also conclude that V ∩S′ ∈ L.
Consequently, V ∩ S′ is feasible for F and f(V ∩ S′) = f ′(S′). As this time, S′ is
defined as a minimiser of f ′ over F ′, we obtain

min
S∈F

f(S) 6 min
S′∈F ′

f ′(S′) . (5.5)

Combining (5.5) and (5.4), we see that the objective values of the two problems
coincide, and a minimiser of one problem can be obtained from a minimiser of the
other by adding or deleting all available copies of the elements contained in the
minimiser, depending direction of the transformation. This proves the claim. �

Remark 5.4. In the above arguments, we changed the submodular function so that
separating two elements that are a copy of each other results in a penalty in terms
of the function value. A different approach is to define the set family L′ in such a
way that S′ ∈ L′ if and only if V ∩S′ ∈ L, and S′ contains all available copies of the
elements in V ∩ S′. In other words, with this definition, the sets in L′ are precisely
those that do not separate any copies and whose intersection with V lies in L. The
new submodular function f ′ can then be defined by mapping S′ 7→ f(V ∩ S′). Also
note that in the approach described here, the new lattice family is smaller. Than in
our approach. If, for example, L = 2V , then the first approach leads to L′ = 2V ′ ,
while the second results in a strict subset L′ ( 2V ′ .

The proof given above shows that if we are given a GCSM problem with 2 con-
straints, then we can obtain a minimiser by solving a modified GCSM problem with
2 constraints on disjoint subsets of the ground set, where the size of the ground set
in the new problem is bounded by 3 times the size of the initial ground set.

The above construction could be done in a more efficient way by duplicating only
those elements that actually appear in more than one constraint set. Moreover, also
note that a generalisation of the above to GCSM problems with k constraints is
immediate, and a generalisation of the construction presented above requires a blow
up of the ground set by a factor of (k+ 1). Note that a blow up of this order can be
necessary to separate the constraints if, for example, Si = V for all i ∈ [k].
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5.4 A variation: Varying moduli

Recall that congruency constrained subfamilies of a lattice family L on a finite ground
set V were defined as families of the form

F =
{
S ∈ L

∣∣ ∀i ∈ [k] : |Si ∩ S| ≡ ri (mod m)
}
,

where k ∈ Z>0, m ∈ Z>0, S1, . . . , Sk ⊆ V , and r1, . . . , rk ∈ Z. In particular, we
always used the same modulus m for all k constraints.

In this section, we want to study an aspect of the more general families of the form

F =
{
S ∈ L

∣∣ ∀i ∈ [k] : |Si ∩ S| ≡ ri (mod mi)
}

with different moduli m1, . . . ,mk ∈ Z>0. For simplicity, we focus on a setting where
L = 2V and where the family has two constraints, one of which has modulus 2 and
the other has modulus 3. In other words, we consider a family of the form

F =
{
S ∈ L

∣∣∣∣∣ |S1 ∩ S| ≡ r1 (mod 2) ,
and |S2 ∩ S| ≡ r2 (mod 3)

}
. (5.6)

Our main result is that a problem of this type can be reduced to a GCSM problem
with modulus 6 and only one constraint. Note that the inverse direction of this
statement is trivial: Given the problem of minimising a submodular function over a
family of the form

F =
{
S ∈ L

∣∣ |S0 ∩ S| ≡ r (mod 6)
}

on some ground set V , we can trivially rewrite the problem as minimising F over

F =
{
S ∈ L

∣∣∣∣∣ |S0 ∩ S| ≡ r (mod 2)
and |S0 ∩ S| ≡ r (mod 3)

}
.

The other direction, however, is more interesting and requires a small construction.

Assume that we have a family F as given in (5.6). First of all, by the result from the
previous section, we can assume S1 ∩S2 = ∅. The main idea of the reduction is then
to again duplicate certain elements of the ground set. To be precise, we will add two
extra copies of every element in S1 and one extra copy of every element in S2 to the
ground set V . As before, we will also modify the submodular function by adding
a cut function to make sure that minimisers of the new function always contain an
element together with all of its copies, or none of these elements. It turns out that
then, as every element from S1 that is contained in a minimiser comes with its two
copies (hence in a group of three), while every element from S2 that is contained
in a minimiser comes together with one copy (hence in a group of two), there is a
single constraint modulo 6 that can model the initial two constraints modulo 2 and
modulo 3. But let us again formally introduce the new system before proving this
result.

To make the setting clear, we repeat that we are given a finite ground set V , a lattice
L on V and a submodular function f : L → Z>0. Moreover, we are given two disjoint
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5. Generalised congruency constrained submodular minimisation

sets S1, S2 ⊆ V , r1, r2 ∈ Z and m ∈ Z>0. The problem is to minimise f over

F =
{
S ∈ L

∣∣∣∣∣ |S1 ∩ S| ≡ r1 (mod 2) ,
and |S2 ∩ S| ≡ r2 (mod 3)

}
.

Let S′1 = {x(1) |x ∈ S1}, S′′1 = {x(2) |x ∈ S1} and S′2 = {x(1) |x ∈ S2} denote copies
of the initial elements in S1 and S2. Define a new ground set

V ′ := V ∪̇ S′1 ∪̇ S′′1 ∪̇ S′2 .

Let the lattice family L′ be defined by

L′ :=
{
S′ ⊆ V ′

∣∣V ∩ S′ ∈ L} .

For defining a submodular function f ′ on L′, we will use the submodular function
S′ 7→ f(V ∩S′) on L′ and add a cut function. To do so, let G = (V ′, E) be the graph
obtained by adding the edges {x, x(1)}, {x, x(2)} and {x(1), x(2)} for all x ∈ S1, and
the edges {x, x(1)} for all x ∈ S2. For a large constant M ∈ Z, we then define the
function f ′ : L′ → Z by

f ′(S′) := f(V ∩ S′) +M · |δG(S′)| .

As before, by choosing M larger than any value of f can be, we will see that no set
S′ minimising f ′ will cut an edge of G. The new setting is illustrated in Figure 52 for
an example with V = {x1, x2, x3, x4, x5, x6}, S1 = {x1, x2, x3}, and S2 = {x4, x5}.
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Figure 52: Construction of V ′ by duplicating elements, and the graph G = (V ′, E).

The following claim specifies the reduction, building on the notation introduced
above.

Claim 5.5. Let S0 = S1 ∪ S′1 ∪ S′′1 ∪ S2 ∪ S′2, and let S′ be a minimiser of f ′ over
the family

F ′ :=
{
S ∈ L′

∣∣ |S0 ∩ S| ≡ 3r1 + 2r2 (mod 6)
}
.

Then, the set V ∩ S′ is a minimiser of f over the family F .
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Proof. We start by observing that for any set S minimising f over F , the set S′ ⊆ V ′
that contains all copies of elements in S is feasible for F ′. Indeed, note that as S′
contains all copies of elements in S, we have

|S0 ∩ S′| = |S1 ∩ S′|+ |S′1 ∩ S′|+ |S′′1 ∩ S′|+ |S2 ∩ S′|+ |S′2 ∩ S′| (5.7)
= 3 · |S1 ∩ S|+ 2 · |S2 ∩ S| ≡ 3r1 + 2r2 (mod 6) ,

where the last equivalence follows from |S1 ∩ S| ≡ r1 (mod 2) and |S2 ∩ S| ≡ r2
(mod 3), which holds by feasibility of S for F . Moreover, by definition of f ′, we
have f(S′) = f(S′ ∩ V ) = f(S). As S is a minimiser of f , this implies

min
S∈F

f(S) > min
S′∈F ′

f ′(S′) . (5.8)

For the other direction, let S′ be a minimiser of f ′ over F ′. Again, if S′ crosses an
edge of G, then f(S′) > M . But we saw in the first part of this proof that f ′ also
attains values equal to values of f , which are smaller than M , so if S′ is a minimiser
of f ′, then S′ does not cross any edge of G. We thus conclude that if S′ contains an
element of V ′, then it also contains all copies of that element.

In particular, we have |S1 ∩ S′| = |S′1 ∩ S′| = |S′′1 ∩ S′| and |S2 ∩ S′| = |S′2 ∩ S′|.
Using (5.7) and denoting |S1 ∩ S′| = a and |S2 ∩ S′| = b, we get

|S0 ∩ S′| = 3 · |S1 ∩ S′|+ 2 · |S2 ∩ S′| = 3a+ 2b ,

and together with feasibility of S′ for F ′, which gives |S0 ∩ S′| ≡ 3r1 + 2r2 (mod 6),
we conclude

3a+ 2b ≡ 3r1 + 2r2 (mod 6) .

By reducing the last congruence to modulo 2 and modulo 3, we obtain a ≡ r1
(mod 2) and b ≡ r2 (mod 3), respectively. Plugging in a = |S1∩S′| = |S1∩ (V ∩S′)|
and b = |S2 ∩ S′| = |S2 ∩ (V ∩ S′)|, this reads as

|S1 ∩ (V ∩ S′)| ≡ r1 (mod 2) and |S2 ∩ (V ∩ S′)| ≡ r2 (mod 3) .

As additionally, S′ ∈ L′ implies V ∩ S′ ∈ L, we have feasibility of V ∩ S′ for F . By
observing f ′(S′) = f(V ∩ S′), we obtain

min
S∈F

f(S) 6 min
S′∈F ′

f ′(S′) . (5.9)

Altogether, (5.8) and (5.9) imply that the minimum values of f and f ′ over F and
F ′, respectively, are equal, and an optimal set for one problem can be obtained from
an optimal set of the other problem by adding or removing all of the elements in
question. This proves our claim. �

Remark 5.6. Analogously to what we remarked for the reduction to disjoint con-
ditions in the precious section, we also remark here that for the above reduction,
changing the submodular function by a cut function can be avoided by changing the
underlying lattice family. More precisely, the argument yields the same conclusion
if we let L′ be the family of all subsets S′ ⊆ V ′ with the property that for every
element in S′, all available copies of that element are also contained in S′, and if we
define f ′ by f ′(S′) = f(V ∩ S) for all S′ ⊆ V ′.
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5. Generalised congruency constrained submodular minimisation

The reduction above can be generalised to settings with two arbitrary coprime moduli
m1 and m2 instead of 2 and 3. Then, the blow up of the sets S1 and S2 has to be
done with a factor of m2 and m1, respectively. With pairwise coprime moduli, a
generalisation to a larger number of constraints is possible, as well. As before, the
modulus of the resulting constraint is equal to the product of the original moduli.
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Chapter 6

Conclusion

The main contribution of this thesis is providing efficient algorithms for solving
congruency constrained submodular minimisation problems (CSM problems) and a
generalised version thereof (GCSM problems), where congruency constraints with
prime power moduli are considered.

While the algorithms themselves were inspired by and generalised from prior work by
Goemans and Ramakrishnan for minimising submodular functions over parity fam-
ilies, an adaption of the proofs to our settings required introducing new techniques,
in particular for dealing with set systems with particular covering properties.

Our work leaves some open questions that require further research. First and fore-
most, an extension or a hardness result for CSM and GCSM problems with moduli
m that are not prime powers would be interesting. We could only show arguments
why our current methods cannot directly generalise beyond prime power moduli.

Even the special case of GCSM problems with a single constraint modulo a composite
number that is not a prime power is an interesting open case. We could show that
GCSM problems with different and pairwise coprime moduli for each congruency
constraint reduce to that class of problems.

Another interesting aspect comes from a considerably more general perspective that
initiated our interest to problems of this kind: The question whether or not a sub-
modular function can be minimised efficiently over general intersections of parity
families or triple families. The result of Goemans and Ramakrishnan as well as our
two results fit in a framework that suggest the following open problem.

Open Problem. For a finite set V , let L be a lattice family on V and let f be
a submodular function on L. Let P1, . . . ,P` be parity subfamilies of L. Can a set
minimising f over the family

F = P1 ∩ . . . ∩ P`

be obtained through a partial enumeration procedure of order `?

We show that for all ` ∈ Z>0, there exist examples of parity families such that a
partial enumeration procedure needs order at least ` to solve above problem, and
our results for CSM and GCSM problems achieve this lower bound.
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Appendix A

C++ code for computational
experiments

In this appendix, we present the C++ code for checking existence of certain set
systems as described in Section 4.6. Listing A.1 contains the program code, while
the output generated for the parameters m = 6, n = 9, and r = 3 is given as a
sample output in Listing A.2.

Listing A.1: Code for checking whether a modular set family exists for input parameters.

/*
* Congruency constrained set system
* Checking whether set systems with the following properties exist :
* - Grund set [n] with n \ equiv r \pmod m.

5 * - For any two sets , their intersection is in the set system , as well.
* - All sets S in the set system satisfy |S| \not\ equiv r \mod m.
* - For any m -1 elements of the ground set , there exists a set containing ←↩

them all.
*/

10 #include <iostream >
#include <vector >
#include <cmath >
# include " gurobi_c ++.h"

15 using namespace std;

bool is_residue ( const int& x, const int& r, const int& m ) {
// check if the residue of x equals r mod m
return x % m == r;

20 }

int intersect ( const int& set1 , const int& set2 ) {
// intersection of two sets given in binary encoding as an integer
return set1 & set2;

25 }

int cardinality ( const int& set ) {
// calculate the cardinality of a set given in binary encoding as an ←↩

integer
if ( set == 0 )

30 return 0;
return set %2 + cardinality ( set /2 );

}
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bool is_contained ( const int& x, const int& set ) {
35 // check if element x is contained in a set given in binary encoding as ←↩

an integer
return set & 1<<x;

}

bool increase_e ( vector <int >& e, const int& l, const int& n ) {
40 // simulates counting up l- digit numbers with strictly increasing digits←↩

from {0 ,... ,N -1}
// PRE: e is of length l,
// e is either satisfies e[0] == -1 or contains strictly increasing←↩

digits from {0 ,... ,N -1}
// POST: true if
// - e[0] == -1, in this case e is set to [0 ,1 ,... ,l -1]

45 // - e[0] != -1 and e can be increased , in which case e gets ←↩
increased

// false if e cannot be increased

// check whether e is [ -1 ,...] and if yes , increment to [0 ,1 ,... ,l -1]
if ( e[0] == -1 ) {

50 for ( int i = 0; i < l; ++i )
e[i] = i;

return true;
}

55 // find (form right to left) the first position that can be increased
int pos = l -1; // current position
int bound = n -1; // upper bound for current position
while ( e[pos] == bound ) {

// check if we are at leftmost position
60 if ( pos == 0 )

return false ;
// if not , move left and update bound
--pos;
--bound ;

65 }
// increase digit at position found
++e[pos ];
// set all digits to the right
while ( ++ pos < l ) {

70 e[pos] = e[pos -1]+1;
}
return true;

}

75
void test_instance ( const int& n, const int& m, const int& r ) {

cout << " Generating model ." << endl;

80 // Obtain Gurobi environmnt and create model
GRBEnv env = GRBEnv ();
GRBModel model = GRBModel (env);

// Create a variable for each set , indexed by binary representation of ←↩
the set

85 vector <GRBVar > X( pow (2,n)+1 );
for ( int set = 0; set < pow (2,n); ++ set ) {

string name = "x_" + to_string (set);
if ( is_residue ( cardinality ( set ), r, m) ) {

// set bounds such that the variable is zero
90 X[set] = model . addVar (0, 0, 0, GRB_BINARY , name);

}
else

// set X[set] to a binary variable
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X[set] = model . addVar (0, 1, 0, GRB_BINARY , name);
95 }

cout << "- Variables created ." << endl;

// Add intersection constraints I_s1_s2
100 // --> For any sets s1 and s2 in the family , their intersection has to ←↩

be inside , as well
// --> Modelled by the constraint X[s1\cap s2] >= X[s1] + X[s2] - 1
for ( int set1 = 0; set1 < pow (2,n); ++ set1 ) {

for ( int set2 = set1 +1; set2 < pow (2,n); ++ set2 ) {
// define contraint name

105 string name = "I_" + to_string (set1) + "_" + to_string (set2);
// define constraint and add to model
GRBLinExpr expr = X[ intersect ( set1 , set2 )] - X[set1] - X[set2←↩

];
model . addConstr ( expr , GRB_GREATER_EQUAL , -1, name );

}
110 }

cout << "- Intersection constraints added ." << endl;

// Add covering constraints C_e1_ ... _em -1
115 // --> For all e_1 ,... e_m -1\ in[n], there is a set in the family ←↩

containing them all
// --> Modelled by the constraint \sum_{s:{e_1 ,... ,e_m -1}\ subset s} X[s]←↩

>= 1
vector <int > e(m -1 , -1);
while ( increase_e ( e, m-1, n ) ) {

// define constraint name
120 string name = "C";

for ( vector <int >:: iterator it = e. begin (); it != e.end (); ++ it ) {
name += "_" + to_string (* it);

}
// define constraint

125 GRBLinExpr expr = 0;
for ( int set = 0; set <= pow (2,n); ++ set ) {

bool contains_all = true;
for ( vector <int >:: iterator it = e. begin (); contains_all && it ←↩

!= e.end (); ++ it ) {
contains_all &= is_contained ( *it , set );

130 }
if ( contains_all )

expr += X[set ];
}
// add constraint to model

135 model . addConstr ( expr , GRB_GREATER_EQUAL , 1, name );
}

cout << "- Covering constraints added ." << endl << endl;

140 // Optimise the model
model . optimize ();

// Write model to file
model . write (" modularSetSystem .lp");

145
// Check the status
int status = model .get( GRB_IntAttr_Status );

// Print solution if feasible ( status 2)
150 if ( status == 2 ) {

cout << endl << "The system is feasible , one possible solution is as←↩
follows : " << endl;

for ( int set = 0; set < pow (2,n); ++ set ) {
cout << " " << X[set ]. get( GRB_StringAttr_VarName ) << " = "
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<< X[set ]. get( GRB_DoubleAttr_X ) << endl;
155 }

}
}

int main () {
160 // read in m, n and r

int m, n, r;
cout << "+----------------------------------------+" << endl

<< "| Congruency constrained set systems |" << endl
165 << "+----------------------------------------+" << endl

<< " Modulus : ";
cin >> m;
cout << m << endl

<< " Ground set cardinality : ";
170 cin >> n;

cout << n << endl;
cout << " Residue class : ";
cin >> r;
cout << r << endl;

175 cout << endl;

test_instance ( n, m, r);

return 0;
180 }

Listing A.2: Output for m = 6, n = 9 and r = 3.
+----------------------------------------+
| Congruency constrained set systems |
+----------------------------------------+
Modulus : 6

5 Ground set cardinality : 9
Residue class : 3

Generating model .
- Variables created .

10 - Intersection constraints added .
- Covering constraints added .

Optimize a model with 130942 rows , 512 columns and 356122 nonzeros
Variable types : 0 continuous , 512 integer (512 binary )

15 Coefficient statistics :
Matrix range [1e+00 , 1e+00]
Objective range [0e+00 , 0e+00]
Bounds range [1e+00 , 1e+00]
RHS range [1e+00 , 1e+00]

20 Presolve removed 110682 rows and 131 columns
Presolve time: 1.97s
Presolved : 20260 rows , 381 columns , 77736 nonzeros
Variable types : 0 continuous , 381 integer (381 binary )
Presolved : 381 rows , 20641 columns , 78117 nonzeros

25

Root relaxation : objective 0.000000 e+00 , 7 iterations , 0.02 seconds

Nodes | Current Node | Objective Bounds | Work
30 Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 0.00000 0 7 - 0.00000 - - 2s
0 0 0.00000 0 12 - 0.00000 - - 2s
0 0 0.00000 0 8 - 0.00000 - - 2s

35 0 0 0.00000 0 13 - 0.00000 - - 2s
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0 0 0.00000 0 10 - 0.00000 - - 2s
0 0 0.00000 0 7 - 0.00000 - - 2s
0 0 0.00000 0 8 - 0.00000 - - 2s
0 0 0.00000 0 9 - 0.00000 - - 2s

40 0 0 0.00000 0 11 - 0.00000 - - 2s
0 0 0.00000 0 11 - 0.00000 - - 2s
0 0 0.00000 0 11 - 0.00000 - - 3s
0 0 0.00000 0 11 - 0.00000 - - 3s
0 2 0.00000 0 11 - 0.00000 - - 4s

45 9 7 infeasible 5 - 0.00000 - 92.9 5s
138 29 0.00000 3 11 - 0.00000 - 102 10s
283 45 infeasible 11 - 0.00000 - 104 15s
371 48 infeasible 21 - 0.00000 - 112 21s
442 53 infeasible 11 - 0.00000 - 109 25s

50 585 50 infeasible 11 - 0.00000 - 112 30s
694 56 infeasible 21 - 0.00000 - 113 35s
820 54 0.00000 14 43 - 0.00000 - 113 41s
984 50 0.00000 12 102 - 0.00000 - 111 47s

1058 48 infeasible 22 - 0.00000 - 111 50s
55 1235 47 infeasible 27 - 0.00000 - 109 57s

1295 47 0.00000 32 33 - 0.00000 - 111 60s
1464 39 0.00000 9 60 - 0.00000 - 111 68s
1524 32 infeasible 11 - 0.00000 - 112 72s
1668 32 0.00000 12 31 - 0.00000 - 109 76s

60 1755 29 0.00000 14 61 - 0.00000 - 109 80s
1901 0 0.00000 32 81 - 0.00000 - 110 86s

Cutting planes :
MIR: 4

65 Inf proof : 1
Zero half: 38

Explored 1959 nodes (217025 simplex iterations ) in 86.44 seconds
Thread count was 4 (of 4 available processors )

70
Solution count 0
Pool objective bound 1e+100

Model is infeasible
75 Best objective -, best bound -, gap -
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