

diss . eth no. 27817

H A R D WA R E O P T I C A L F L O W F R O M E V E N T
C A M E R A S

A dissertation submitted to attain the degree of

doctor of sciences of eth zurich

(Dr. sc. ETH Zurich)

presented by

min liu

born on 27 May 1991

citizen of China

accepted on the recommendation of

Prof. Dr. Tobi Delbruck, examiner
Prof. Dr. Shih-Chii Liu, co-examiner

Prof. Dr. Benjamin Grewe, co-examiner
Dr. Garrick Orchard, co-examiner

2021

Min Liu: Hardware optical flow from event cameras, © 2021

Dedicated to my family

A B S T R A C T

Electronic cameras are now ubiquitous throughout daily life. Mobile robotics
has adopted cameras to provide environment perception. However, it is
still challenging to solve essential problems such as Visual Odometry (VOD)
and Simultaneous Localization And Mapping (SLAM) with traditional
cameras under poor lighting conditions or for high speed motion.

A new type of camera that that works differently from the conventional
frame-based camera has become more widely popular for its sparse output,
micro-second temporal resolution, and high dynamic range. This camera
is called ‘event camera’ or Dynamic Vision Sensor (DVS) because it is
activity-driven instead of being frame-based. The time resolution of DVS
is on the order of a few microseonds under good lighting conditions, which
is about 10, 000 times faster than a smartphone camera with a sample rate
of 120Hz. This characteristic makes it suitable for high-speed applications
such as mobile robotics or drones.

Optical Flow (OF) is a low-level but essential problem in the computer
vision community. It is a fundamental module for most VOD or SLAM sys-
tems. Nevertheless, frame-based optical flow usually suffers from motion
blur in the presence of fast motion or extreme image conditions such as
under/over exposure. By benefiting from the super high temporal resolu-
tion, event-based OF provides more possibilities to solve these problems.
Event-based OF is thus attracting growing attention. However, most of
them have primarily focused on the accuracy from the software side and
overlooked the real-time performance from the hardware side. Hence, in
this thesis, we present the first hardware optical flow estimator along with
a hardware corner detector for event-based cameras.

First, we propose a novel event-based optical flow estimation method
called Adaptive Block Matching Optical Flow (ABMOF). Events are accu-
mulated in rotating event slices using the area event count slice rotation
method, that adapts to scenes with various levels of spatial sparsity. The
slice rotation event count number is feedback-controlled by the average
optical flow matching distance. It use a Coarse to Fine (CTF) spatial archi-
tecture. The multiscale Block Matching (BM) size is 25× 25 pixels, and the
flow vectors span up to a 30-pixel match distance.

Second, we designed a hardware corner detection method called Slice-
based FAST (SFAST). SFAST is adapted from a popular frame-based cor-

v

ner detection method Features from Accelerated Segment Test (FAST). Cor-
ners are detected by streaks of accumulated events on event slice rings of
radius 1 and 2 pixels. Compared with another event-based variant of FAST
called Event-Based time surface FAST (EFAST), SFAST is more accurate,
more compatible with ABMOF and more efficient.

Third, we designed a new powerful event camera platform based on
Xilinx’s Zynq SoC 7100. This System On Chip (SOC) features a dual-core
ARM Cortex A9 microcontroller mated with a Xilinx Virtex family Field
Programmable Gate Array (FPGA). The platform is called Davis346Zynq.
The SOC is directly connected to the DVS sensor. The platform has 512MB
DDR3 and 1GB Flash memory. It supports three power supply methods:
external 5V plug-in, external Universal Serial Bus (USB), and LiPo battery.
The interfaces to the platform consist of one customized USB2.0 and one
Video Graphics Adaptor (VGA), two UARTs, one I2C, one MicroSD, and
several GPIO extensions.

Finally, SFAST and the ABMOF are integrated and verified on the Davis-

346Zynq. The combination of these two Intellectual Propertys (IP) is called
Event-driven Optical Flow (EDFLOW). Optical flow vectors are measured
only at the corners and can be computed in 1 us at 100 MHz clock fre-
quency. The FPGA processes the Sum of Absolute Differences (SAD) BM
at 123 GOp/s, the equivalent of 1230 Op/clock cycle. EDFLOW is 8 times
more accurate than the previous best DVS FPGA optical flow implemen-
tation on the slider_hdr_far scene from [1]. Compared with Convolutional
Neural Network (CNN)-based optical flow, EDFLOW is less accurate. How-
ever, it burns about 100 times less power and is 10 times quicker.

vi

Z U S A M M E N FA S S U N G

Elektronische Kameras sind im täglichen Leben allgegenwärtig. In der mo-
bilen Robotik werden Kameras für die Umgebungswahrnehmung verwen-
det. Es ist jedoch immer noch eine Herausforderung, wichtige Berechnun-
gen wie VOD und SLAM mit herkömmlichen Kameras, besonders bei bei
schlechten Lichtverhältnissen oder bei Hochgeschwindigkeitsbewegungen,
zu bewerkstelligen.

Ein neuer Kameratyp, der sich von herkömmlichen einzelbildbasierten
Kameras unterscheidet, ist aufgrund dünnbesetzter Ausgabe, der zeitli-
chen Auflösung im Mikrosekundenbereich und des weiten Dynamikum-
fangs immer beliebter geworden. Diese Kamera wird ‘Ereigniskamera’ oder
DVS genannt, weil sie aktivitätsgesteuert und nicht bildbasiert ist. Die
Zeitauflösung der DVS liegt bei guten Lichtverhältnissen in der Grössen-
ordnung von wenigen Mikrosekunden, was etwa 10’000 mal schneller ist
als eine Smartphonekamera mit einer Abtastrate von 120Hz. Diese Eigen-
schaft macht sie geeignet für Hochgeschwindigkeitsanwendungen wie mo-
bile Robotik und Drohnen.

Optischer Fluss / OF ist ein wichtiges Thema und Forschungsgebiet von
Computer Vision. Des Weiteren ist es eine Grundvoraussetzung für die
meisten VOD- oder SLAM-Systeme. Der bildbasierte optische Fluss leidet
normalerweise unter sehr schnellen Bewegungen oder extremen Bildbe-
dingungen wie Unter-/Überbelichtung. Durch die extrem hohe zeitliche
Auflösung bietet ereignisbasiertes OF mehr Möglichkeiten, diese Proble-
me zu lösen. Das ereignisbasierte OF findet daher zunehmend Beachtung,
die bestehenden Ansätze fokussieren sich jedoch hauptsächlich auf die Ge-
nauigkeit auf der Softwareseite und ignorieren die Echtzeitleistung und
Geschwindigkeit auf der Hardwareseite. Daher präsentieren wir in dieser
Arbeit den ersten Hardware-Optical-Flow-Schätzer zusammen mit einem
Hardware-Ecken- detektor für ereignisbasierte Kameras.

Als erstes schlagen wir ein neuartiges ereignisbasiertes Verfahren zur
Berechnung des optischen Flusses vor und nennen es ABMOF. Ereignisse
werden in rotierenden Ereignisabschnitten akkumuliert, wobei die Metho-
de der rotierenden Ereigniszählung pro Fläche verwendet wird, die sich
an Szenen mit unterschiedlichen Graden an räumlicher Dichte anpasst.
Die Anzahl der Ereignisse in den rotierenden Abschnitten wird gesteuert

vii

durch Rückkoppelung der durchschnittlichen Distanz der Punkte imopti-
schen Fluss. Das Verfahren verwendet eine CTF Raumstruktur.

Die Grösse des multiskalen BM beträgt 25 × 25 Pixel und die überein-
stimmenden Flussvektoren erstrecken sich über eine Entfernung von 30-
Pixel.

Zweitens haben wir eine Hardware-Eckenerkennungsmethode namens
SFAST entwickelt. SFAST wurde von einer beliebten Einzelbild-Eckenerken-
nungsmethode genannt FAST übernommen. Ecken werden durch Streifen
von akkumulierten Ereignissen auf Ereignisabschnittsringen mit Radius 1

und 2 Pixel erkannt. Im Vergleich zu einer anderen ereignisbasierten Vari-
ante von FAST namens EFAST ist SFAST genauer, kompatibel mit ABMOF
und effizienter.

Drittens haben wir eine neue leistungsstarke Eventkameraplattform ent-
wickelt, die auf dem Zynq-SoC von Xilinx 7100 basiert. Dieses SoC verfügt
über einen Dual-Core ARM Cortex A9 Mikrocontroller, der mit einer Xilinx
Virtex Familie FPGA kombiniert ist. Die Plattform heisst Davis346Zynq.
Der SoC ist direkt mit dem DVS-Sensor verbunden. Die Plattform hat
512MB DDR3 und 1GB Flash-Speicher. Sie unterstützt drei Stromversor-
gungsmethoden: Externes 5V, externes USB, sowie LiPo-Akku. Die Schnitt-
stellen zur Plattform bestehen aus einem angepassten USB2.0, VGA, zwei
UARTs, einem I2C, einer MicroSD und mehreren GPIO-Erweiterungen.

Zum Abschluss werden SFAST und ABMOF auf dem Davis346Zynq in-
tegriert und verifiziert. Die Kombination dieser beiden Erfindungen / IP
heisst EDFLOW. Optische Flussvektoren werden nur an den Ecken gemes-
sen und können in 1 us bei 100 MHz Taktfrequenz berechnet werden. Der
FPGA verarbeitet den SAD BM mit 123 GOp/s, das entspricht 1230 Op pro
Taktzyklus. EDFLOW ist 8 mal genauer als die bisherige beste DVS FPGA
OF Implementierung in der slider_hdr_far Szene aus [1]. Im Vergleich zum
CNN basierten optischen Fluss ist EDFLOW weniger genau. Es benötigt
jedoch etwa 100 mal weniger Strom und ist 10 mal schneller.

viii

A C K N O W L E D G E M E N T S

The PhD career is a specific and unforgettable life journey for me. Looking
back on the past years, I am fortunate that so many people are standing
and supporting behind me all the time. Without them, this PhD thesis
could not be finished.

First of all, I want to thank is my supervisor Prof. Tobi Delbruck. Tobi
provides me not only financial support but also research support. When-
ever I encountered some problems, he was there and was always ready
to provide me some solutions. I learned a lot from him. He seems pas-
sionate about everything, from circuits to algorithms, from computer mice
to slasher, from Dextra to Trixsy. He is conscientious about every detail.
When we wrote papers together, he checked the text word by word. With-
out his guidance and constant feedback, I cannot finish my PhD project. It
is hard to describe how much I appreciate his help. I want to express my
best gratitude to him.

At the same time, I want to thank Prof. Shih-Chii Liu. Although we did
not work on one project together, she gave me many suggestions not only
on the research side but also on the life side. Shih-Chii and Tobi sometimes
held parties and invited us to their home. Those are also lovely moments.
Many thanks to her for being my co-examiner and giving a lot of feedback
on my thesis.

I owe special thanks to Prof. Benjamin Grewe and Dr. Garrick Orchard,
who kindly agreed to be my co-examiners and send me a lot of comments
on my thesis.

I want to thank Chang Gao for the excellent discussions and suggestions
on Vivado HLS. I want to thank as well Yuhuang Hu for helping me make
the case for my hardware camera. I would also like to show my gratitude to
Luca Longinotti and Dr. Chenghan Li from iniVation for helping me debug
on the DAVIS sensor. Many thanks go to Joachim Ott for proofreading of
the abstract in German. I want to thank my colleagues from my group,
the best group, Sensors research group, and Institute of Neuroinformatics.
In particular, Dr. Stefan Braun who invited me to his sweet wedding and
taught me some German words, Dr. Hongjie Liu who kindly sent me a gift
card on my birthday, Dr. Dongchen Liang, Sunil Sheelavant, Shu Wang, Xi
Chen, Yingqiang Gao and Zhenming Yu. It is really lucky to be here and
meet all of them.

ix

I want to thank all my friends who support me. I wish particularly to
thank my friend Cheng-Ing Wu for encouraging me and giving me support
during the rock bottom of my PhD life. I also want to thank Wanting Chiu,
who is standing on my side all the time and help me embellish some
figures in the thesis, especially her help on the cover design of this thesis.

Finally, I would like to thank my family. We are a normal four-people
family in China. They worked very hard to support my brother and me in
our studies. My parents give all their love to us. Home is always a haven
for the soul. Whatever I meet in life, good or bad, happy or sad, they are
always ready to share with me or comfort me. They are the people I can
always count on. Without them, I would not be here. They were, are, and
will always be in my heart. I love them forever.

I gratefully acknowledge financial support from the Swiss National Cen-
ter of Competence in Research Robotics (NCCR Robotics).

x

C O N T E N T S

Abstract v

Acknowledgements ix

Acronyms xv

1 introduction 1

1.1 From zoopraxiscope to event camera 1

1.1.1 The man who stopped time 1

1.1.2 Modern image sensors 3

1.1.3 Dynamic vision sensors 4

1.2 Introduction of optical flow 8

1.2.1 Optical flow estimation methods for frame-based cam-
eras 10

1.3 Optical flow applications 15

1.3.1 Use of optical flow in the film production 15

1.3.2 Use of optical flow in computer mice 19

1.3.3 Use of optical flow in microrobotics 21

1.4 Optical flow sensors 22

1.5 Thesis contributions 23

1.6 Thesis structure 25

2 a first event-based block-matching optical flow al-
gorithm and its fpga implementation 27

2.1 Introduction 27

2.1.1 Why event-based optical flow 27

2.1.2 Prior DVS optical flow 28

2.2 BMOF algorithm and its FPGA implementation 32

2.2.1 System architecture 32

2.2.2 Optical flow algorithm 34

2.3 Experimental results 35

2.3.1 Accuracy analysis 37

2.3.2 Time complexity analysis 38

2.4 Summary 38

xi

xii contents

3 adaptive block matching optical flow for event-based

camera 41

3.1 Introduction 41

3.2 ABMOF algorithm 41

3.2.1 Block-Matching DVS time slices 42

3.2.2 Slice rotation methods 44

3.2.3 Search method 50

3.2.4 Multi-scale and multi-bit event slices 50

3.2.5 Adaptive event skipping 51

3.2.6 Sparsity checking 52

3.3 Experimental results 53

3.3.1 ABMOF18 dataset 53

3.3.2 Type I experiment result 55

3.3.3 Type II experiment result 59

3.4 Summary and discussion 60

4 first hardware implementation of an event-driven

corner detector 65

4.1 Introduction 65

4.1.1 Corner detectors 66

4.2 EFAST 67

4.3 FPGA implementation 68

4.3.1 Introduction of Vivado SDSoC and HLS 69

4.3.2 Baseline implementation 72

4.3.3 Memory layout and optimization 74

4.4 Experimental results 77

4.4.1 MiniZed platform 77

4.4.2 Server setup 79

4.4.3 Quantitative result 79

4.4.4 EFAST performance in dark environments 81

4.5 Summary 82

5 hardware camera platform davis346zynq 85

5.1 Introduction 85

5.2 Prior development boards for event-based cameras 86

5.3 DAVIS346Zynq 89

5.3.1 Hardware architecture 90

5.3.2 Power and storage circuits 90

5.3.3 DAVIS controller 93

5.3.4 VGA for events rendering 95

contents xiii

5.3.5 Reimplementation of the USB controller 97

5.3.6 Final PCB 99

5.4 Summary and discussion 100

6 hardware implementation of adaptive block match-
ing flow and corner detector on davis346zynq 103

6.1 Introduction 103

6.2 Hardware optical flow 105

6.3 The architecture of the EDFLOW algorithm 107

6.3.1 Why SFAST? 110

6.3.2 SFAST algorithm introduction 112

6.3.3 Differences between software SFAST and software EFAST 113

6.4 EDFLOW hardware implementation of ABMOF and SFAST 114

6.4.1 Multiscale slice event accumulation 114

6.4.2 SFAST hardware keypoint detector 115

6.4.3 ABMOF hardware design 121

6.4.4 Unroll trick used in the hardware design to increase
parallelism 128

6.5 Experimental results 128

6.5.1 OF accuracy on baseline dataset 128

6.5.2 OF accuracy on more complicated dynamic scenes 129

6.5.3 Adaptive slice exposure control 131

6.6 Summary and discussion 136

7 conclusion and outlook 141

7.1 Conclusion 141

7.2 Outlook 143

7.2.1 Accuracy improvement 143

7.2.2 Optical flow as features for DNN accelerators 144

7.2.3 Combine with other sensors for sensor fusion 145

7.2.4 Event-based optical flow benchmark 146

7.2.5 Event representation 147

7.2.6 ASIC silicon area/power estimates 147

7.2.7 Is the event camera at the dawn of a new computer
vision era? 148

a appendix 151

a.1 Building a MiniZed SDSOc platform 151

a.1.1 Hardware 151

a.1.2 Software 152

xiv contents

a.2 Some tricks of HLS optimization 154

a.2.1 Interleaving technique 154

a.2.2 Apply dataflow to several simple PE 157

a.2.3 Miscellaneous tips 159

a.3 VGA protocol and timing diagram 160

a.4 USB 2.0 protocols introduction 161

a.5 DAVIS346Zynq configuration 167

a.6 Hardware debugging story 169

a.7 Dataset and source code repository 173

bibliography 175

A C R O N Y M S

AAE Average Angular Error
ABMOF Adaptive Block Matching Optical Flow
AEE Average Endpoint Error
AER Address Event Protocol
APS Active Pixel Sensor
ASIC Application Specific Integrated Circuit
BHD Binary Hamming Distance
BM Block Matching
BMOF Block Matching Optical Flow
BRAM Multipurpose Block RAM memory module in FPGA
CCD Charge-coupled Device
CMOS Complementary metal–oxide–semiconductor
CNN Convolutional Neural Network
CPI Count Per Inch
CPLD Complex Programmable Logic Device
CRC Cyclic redundancy check
CTF Coarse to Fine hierarchical search strategy used in BMOF
CV Computer Vision
DAVIS Dynamic and Active pixel Vision Sensor
DB Daughter Board
DDR DDR memory unit that transfers data on both clock edges
DMA Direct Memory Access
DNN Deep Neural Network
DRAM Dynamic RAM
DS Diamond search method
DS Direction Selective model of motion detection in biological vision, usu-

ally either Hassenstein-Reichhardt or Barlow-Levick type
DSP Digital Signal Processing unit
DVS Dynamic Vision Sensor
EBLK Event-based Lucas-Kanade
ED Event Density
EDA Electronics Design Automation
EDFLOW Event-driven Optical Flow
EFAST Event-Based time surface FAST
FAST Features from Accelerated Segment Test

xv

xvi Acronyms

FIFO First In First Out memory
FPGA Field Programmable Gate Array
FPS Frame Per Second
FSM Finite State Machine
GF Global Flow
GPU Graphics Processing Unit
GT Ground Truth
HD Hamming Distance
HDL Hardware Description Language
HLS High Level Synthesis
IAS Image Acquisition Sensor
IC Integrated Circuit
II Initial Interval
IMU Inertial Measurement Unit
IP Intellectual Property
JTAG Joint Test Action Group
LK Lucas-Kanade
LP DVS OF method that fits a plane to local event cloud
LSB Least Significant Bit
LUT LookUp Table
MAV Micro Aerial Vehicles
MB Mother Board
MCU Microcontroller Unit
ME Motion Estimation
MSB Most Significant Bit
NPC Number of Parallel Computation
NRZI Non-Return-to-Zero Inverted Code
OF Optical Flow
OPS Operations Per Second
PCB Printed Circuit Board
PE Processing Elements
PID Packet Identifier
PL Programmable Logic
PLL Phase-locked loops
PRM Pixel Rendering Module
PS Processing System
RANSAC RANdom SAmple Consensus
RB A Reference Block centered on the event location in the t-d1 slice
ROS Robot Operating System

Acronyms xvii

SA Search Area for block matching
SAD Sum of Absolute Differences
SAE Surface of Active Events
SD Secure Digital
SDK Software Development Kit
SDSoC Software-Defined System On Chip
SFAST Slice-based FAST that uses accumulated event count slices for de-

tecting keypoints
SIFT Scale Invariant Feature Transform
SILC Speed Invariant Learned Corners
SITS Speed Invariant Time Surface
SLAM Simultaneous Localization And Mapping
SNN Spiking Neural Network
SOC System On Chip
SRAM Static RAM
SUSAN Smallest Univalue Segment Assimilating Nucleus)
TB A candidate or best-match Target Block for block matching in the t-d2

slice
TI Timestamp Image; image of latest event timstamps, same as Surface of

Active Events
ULPI UTMI+Low Pin Interface
USB Universal Serial Bus
UTMI USB Transceiver Macrocell Interface
VGA Video Graphics Adaptor
VIO Visual-Inertial Odometry
VOD Visual Odometry

1
I N T R O D U C T I O N

"When we walk or drive or even move our heads, our
view of the world changes. Even when we are at rest,
the world around us may not be; objects fall, trees
sway, and children run. Motion of this sort, and our
understanding of it, seems so straightforward that we
often take it for granted. In fact, this ability to
understand a changing world is essential to survival;
without it, there would be no continuity to our
perceptions."

— Michael Black (1992, Ph.D. thesis)

1.1 from zoopraxiscope to event camera

1.1.1 The man who stopped time

Film or motion picture is quite familiar to us in modern days. However, the
history of the film actually started from a bet. In 1872, a racehorse owner,
who also served as the former governor of California, Leland Stanford1

asked a question to the public, if a horse could “fly" in a gallop. He bet
on the side that advocates "unsupported transit," which means that all four
hooves are in the air while it is running. To solve this bet, he invited the top
photographer Eadweard Muybridge. It might be a simple question in cur-
rent days. However, limited by the camera technology at that time, which
requires fifteen seconds to even several minutes for exposure, it is impossi-
ble to capture the motion generated by a horse running at about 40 feet per
second. The first thing Muybridge did was to speed up the exposure time.
He managed to design a new method and decreased the exposure time
to a fraction of one second. Then, he placed 12 cameras in parallel with a
horse’s race path, and a wire controlled each camera’s shutter. While the
horse was running, the horse’s chest would break the wire and thus trig-
ger the shuttle. The whole experiment was done in June of 1878 beside the
track on the Palo Alto Stock Farm. The result of the experiment is 12 suc-
cessive photos. The successive photos proved Stanford’s idea, which was

1 He is also the founder of the famous Stanford University.

1

2 introduction

different from the scene that people saw in typical paintings. In contrast
to the four legs that were extended in the paintings of the day, the photos
showed that they gathered under the horse. For the first time, it captures
ephemeral details that the human eye cannot distinguish at such speeds,
such as the position of the leg or the angle of the tail. Muybridge quickly

Figure 1.1: Card with “Sallie Gardner" in an altered 1879 edition. Sallie Gardner
is the race horse’s name. The 12 successive photos taken by Muy-
bridge are made as cards and published by Morse’s gallery. These
cards show the details of the gallop of a horse. It is very clear from
these cards that all four legs are in the air while the horse is running.
Figure courtesy of Library of Congress Prints and Photographs Divi-
sion.

began selling his photocopies as “photo cards." Morse’s gallery publishes
twelve cards created based on Muybridge’s photos. These cards are shown
in 1.1.

To make the horse motion clearer, Muybridge invented a new machine
to project moving photographic photos. This machine rotates at a specific
speed and shows the successive photos one by one. When observed by
human eyes, it looks like a “moving" horse. Nowadays, we know that the
persistence of vision causes this phenomenon. Muybridge called this new
machine zoopraxiscope, and it started the new era of film or the history of
cinematography.

1.1 from zoopraxiscope to event camera 3

It might not be seen as a remarkable achievement in modern days. How-
ever, Muybridge was the first person who really “stopped" time. It was the
first time that humans could cut fast motion into static motion pictures.
Curiosity about high/super high-speed motion did not stop there. Faster
and faster video cameras are still developed to capture short sequences at
up to billions of frames per second.

1.1.2 Modern image sensors

Several years after the bet, the founder of the Kodak company, George East-
man, made the film camera almost ubiquitous in the world by improving
the technology and making cameras smaller and smaller.

This section mainly reviews the digital camera. The time comes to 1969.
Willard Sterling Boyle and George Elwood Smith from Nokia Bell Labs
invented the Charge-coupled Device (CCD). The original purpose of the
CCD was for memory devices. However, it is successfully used in the
digital image sensor and becomes quite popular soon. CCDs transfer the
charges triggered by the light to its neighbor, and this transfer is performed
one by one until it arrives at the last capacitor. By repeating this process,
the charge stored in each pixel is converted to a voltage. These voltages
are sampled and stored in a memory device or sent to the other circuit
for further processing. Kodak invented the first CCD camera in 1975. Since
then, the camera history has entered into the digital era.

In 1993, NASA’s Jet Propulsion Laboratory developed a Complemen-
tary metal–oxide–semiconductor (CMOS) Active Pixel Sensor (APS) sen-
sor, simply called it APS in the following text. This sensor uses the CMOS
technology which is also used for other digital ICs such as the microcon-
troller, which makes it possible to integrate the image sensor and the post-
processing circuit such as the readout circuit, analogy to digital converter
circuit, and even the memory circuit on one chip. Instead of only one am-
plifier for all pixels in CCD, APS cameras use an individual amplifier for
each pixel. APS helps increase throughput while decreasing the cost and
power compared with CCD. Once the fundamental invention of fully de-
pleted photodiodes, correlated double sampling readout, and many other
techniques enabled APS to start to match the extremely high quality of
the existing CCD cameras, APS became the primary type of camera in the
consumer electronics market.

4 introduction

1.1.2.1 High-speed cameras

Nowadays, image sensors are not only used to make specific professional
cameras or videos; they are also embedded mainly into phones. It hence
enhances the application of the images/videos. Image/video is not only
used as a tool to record beautiful scenes, people, and precious moments. It
is also used in such as facial recognition, surveillance, and even robotics.
The sensor evolves in two directions to satisfy all kinds of requirements.
One is to increase the resolution. Phone company Xiaomi published the
first phone CC9, which includes a 108 million-pixel image sensor, in 2019.
The other direction is to increase the Frame Per Second (FPS). FPS does
not only require a fast camera, but also requires a fast Microcontroller
Unit (MCU) for processing. iPhone 12 Pro, the best IOS phone released by
Apple in 2020, could process 4K video at 60fps. This is enough for the most
common recording and processing in real-time. However, it is still slow for
high-speed or ultra-high-speed image/video processing applications such
as flying drones, autonomous cars, and robotics.

TABLE 1.1 compares some of the state-of-the-art ultra-high-speed cam-
eras. All of them are implemented by CMOS with a global shutter. Phan-
tom could achieve the max FPS with a moderate resolution at the cost of
around 80,000 dollars. Freefly Wave has the highest resolution and could
run at a maximum of 422 FPS. Chronos 2.1-HD is the cheapest but has the
lowest resolution. If we checked it from the real-time processing aspects,
such as using them in robotics, Freely Wave would be a possible option
since it is the lightest and consumes the least power.

1.1.3 Dynamic vision sensors

The sensors discussed in Sec.1.1.2 are called Frame-based vision sensors
or cameras. Although some properties such as high temporal resolution
could be comparably implemented in frame-based cameras as shown in
TABLE 1.1, they are often bulky, power-insensitive and require cooling.

Let us go to check more details about TABLE 1.1. Cameras in TABLE 1.1
look provide some promising candidate cameras for high-speed applica-
tions, but actually none of them are good enough. The most common
and significant problem for all of them is power consumption. Take Freely
Wave as an example, it consumes the least power, but 24W is still far more
away from that a mobile robotic which might be equipped with a battery
could provide. The other problem is storage. Phantom T1340 reports that it
could fill up the 144GB internal RAM in only 7.6 seconds when running at

1.1 from zoopraxiscope to event camera 5

Spec

Model Phantom

T1340 [2]

Freefly

Wave [3]

Chronos

2.1-HD [4]

Sensor type
Global shutter

CMOS

Global shutter

CMOS

Global shutter

CMOS

Sensor size
27.6 mm x

26.3 mm

22.53 mm x

16.90 mm

19.2 mm x

10.8 mm

Resolution 2048 x 1952 4096 x 3072 1920x1080

FPS 3270 422 1000

Dynamic Range 61.4dB 66 dB 62.4 dB

Mechanical

dimensions

203mm x 127mm

x 127mm

150mm x 97mm

x 47mm

155mm x 96mm

x 67.3mm

Weight 4.5kg 0.716kg 1.06kg

Bit-depth 12 10 12

DC operation

voltage
20-28V 12-26V 17-20V

Power 150W 24W 40W

Price $80,000 $10,000 $5,000

Table 1.1: comparison between different ultra-high-speed cameras

the maximum FPS, 12bits, 2048x1952 resolution. Not to mention that more
extensive storage consumes more power; it also makes the system more
expensive and bulkier.

All frame-based vision sensors capture the images in a fixed interval
and record them one by one. Eventually, it would record many redundant
data, especially when the scene does not change too much. This redundant
data occupies storage and consumes more power, which makes it not ef-
ficient. However, if we compare it with the visual processing in primates
such as humans, we can find that human visual processing is powerful
and effective. The human could finish many tasks which are considered
“complicated" for the machine, such as object recognition, motion estima-
tion, and classification easily and still maintain the brain at an approximate
temperature. What is the mystery behind human eyes, and can we mimic

6 introduction

a silicon eye to solve the problems that current frame-based vision sensors
are difficult or even impossible to solve.

DVS or called the event-based camera [5–10] was thus invented. It mim-
ics human retina photoreceptors and retina ganglion cells. This new type
of sensor is very different from the frame-based vision sensor as the hu-
man’s retina neuro system works asynchronously. Therefore, the first dif-
ference is that DVS does not have a global clock that ticks the photodiodes
to “precept" the world with a fixed rhythm.

Secondly, the output of DVS is quite different. For frame-based vision
sensors, either CCD or APS, each pixel’s voltage is triggered by the ab-
solute brightness, and all pixels must be triggered within a small time
window. However, DVS pixels independently react to brightness (log in-
tensity) changes. If any pixel detects a brightness increase or decrease that
exceeds a critical threshold amount relative to the previously memorized
brightness, it generates an output spike and memorizes the new brightness
value. It helps remove the static or redundant background and makes the
camera more focused on the moving objects. This spike is also called an
event. Each event consists of a timestamp with microsecond resolution, an
event address represented by x and y pixel location, and the brightness
change direction or polarity (0 means brightness decrease and 1 means in-
crease). The DVS is data-driven rather than regular-sample-driven. It out-
puts a variable data-rate stream of timestamped pixel brightness change
events.

Comparing with a conventional camera, the DVS has worse spatial res-
olution but better temporal resolution. The temporal resolution of DVS
could go to 1us, which is much faster than most super high-speed frame-
based cameras. Thus, DVS asynchronously output an event stream while
the frame-based vision sensors synchronously output the frame stream. It
also has a higher dynamic range (120db vs 60db) and relatively low power
consumption (mW at the die level).

Event cameras are available from these five companies: iniVation, Proph-
esee, Samsung, CelePixel, and Insightness. The comparison among these
cameras refers to [11]. Here we give a brief history review on iniVation’s
cameras. The first generation of event cameras produced by them is called
DVS128 [5], and as the name indicated, this camera has a resolution of
128x128. DVS128 was released in 2008, and it has a very large pixel size of
40um. Small resolution restricts many applications. However, as the first
event camera presented in the research community, many seminal publica-
tions are still based on DVS128. Later in around 2014, the second genera-

1.1 from zoopraxiscope to event camera 7

tion of DVS called DAVIS240 [8, 12] was released. Compared with DVS128,
DAVIS240 has a smaller pixel size (18.5um). Since then, DVS is upgraded
to Dynamic and Active pixel Vision Sensor (DAVIS). A DAVIS [8, 9, 12] is
a novel vision sensor that outputs asynchronous brightness change events
concurrently with conventional frames. It combines DVS [5–10] and APS
on one pixel. Therefore, DAVIS can also concurrently output intensity sam-
ples [7–10, 13, 14]. Besides that, the DAVIS added an Inertial Measurement
Unit (IMU) chip centered on the same position as the sensor chip but the
other side of the board. In summary, DAVIS provides three outputs: event
stream, APS frames and IMU output. DAVIS346 is another event camera
of the second generation. It adopted the same pixel size as DAVIS240 but
has a higher resolution. The third generation is based on DAVIS346, but it
provides additional color information with some color filters on the pixel.

Figure 1.2: DAVIS’s principle. It shows how the event stream and APS are gen-
erated by a DAVIS camera.

Figure 1.2 illustrates how DAVIS event camera works. The DAVIS cam-
era is set in front of a spinning dot. This black dot is rotating on a white
background with a frequency of 50Hz. Frame 0 and Frame 1 are generated
by the APS part of the camera, and its interval is 80ms. The spiral dots be-
tween frame 0 and frame 1 are the events generated by DVS. It is evident
that APS output is discrete, and some information is missed during this
80ms interval. However, thanks to the high temporal resolution provided
by the DVS output, the event stream looks very continuous and can pro-
vide the trajectory of how this dot is moving during the “blind" period for
APS frames.

In summary, the event camera, DVS or DAVIS provides high temporal
resolution, sparse, and low latency data. It can work in a higher dynamic

8 introduction

environment and consume several mWs. It is recently widely used in all
kinds of applications, from robotics, drones, even in satellites for star track-
ing [15, 16]. For low-level computer vision problems, it includes corner
detection [17–20], segmentation [21], simulator [1, 22, 23] and dataset [24–
27] The DVS has been proposed for high-level vision algorithms such as
angular velocity estimation [28], tracking [29, 30], obstacle avoidance [31],
landing [32–34], localization [35], navigation [36–38], VOD [39–42], and
SLAM [43, 44]. For an overall review, we recommend readers to refer
to [11]. More resources and code for event-based algorithms or applica-
tions are available on this GitHub repositorty2. However, more effort is
required to exploit the advantage of DVS.

We reviewed the history of human perception of the world with video
cameras. Muybridge started the first “motion picture" called zoopraxis-
cope. Since then, the cameras become more and more advanced while the
prices are cheaper and cheaper. Cameras also walk out from the profes-
sional photography community and enter a variety of other areas. This
results in the emergence of several other types of cameras. Event camera
belongs to one of them and becomes increasingly popular in high-speed
applications.

1.2 introduction of optical flow

OF is all around the world and exists in our life everywhere. When we
walk in the street, we feel humans, buildings “moving" behind us. When
we sit on a train, we feel the scene outside the window “moving" fast away
from us. When we turn our heads, we feel the world rotating around us.
All these movements we see caused by the environment and our motion
in it are the OF.

Neuroscientists initially proposed the concept of OF. It was first studied
in the context of neuroscience to understand motion perception in insects
and mammals. James J. Gibson first proposed OF concept in 1950s. He
describes the OF as the apparent flow of the movement of objects in the
visual field relative to the observer and OF could be determined by using
the pattern of light on the retina. The scenario of the moving object makes
it as if the light flows in front of the eyes. Therefore, people vividly called
it optical flow.

OF plays a vital role in insects. The primary sensor system of most in-
sects uses some form of visible light to perceive the environment around

2 https://github.com/uzh-rpg/event-based_vision_resources

https://github.com/uzh-rpg/event-based_vision_resources

1.2 introduction of optical flow 9

them. Visual navigation in flying insects is primarily based on the optical
flow [45]. In essence, OF provides information on the ratio of velocity to
distance, such that the actual metric distance to the environment is not
directly available. Instead, flying insects navigate based on certain visual
observables extracted from the optical flow field related to ego-motion.
[46] shows that dragonflies could obtain the wide-field OF from their com-
pound eyes. The biologists found that honeybees rely on OF for grazing
landing [45, 47, 48], travel distance estimation [49], obstacle avoidance, and
flight speed regulation [50].

In humans, OF combined with the vestibular system enables us to adapt
the body’s movements to the environment and thus to help us not to get
lost and move safely in the world. The vestibular system in vertebrates
is a sensory system that provides the leading contribution to the sense
of balance and spatial orientation coordinated to movement with balance.
The brain receives the OF and by interpreting the OF information, it could
help humans/animals answer the following questions such as: Do I move
or something in the environment? Which direction am I moving in? Am I
moving straight ahead or am I turning? How far away are the objects from
me? When will I encounter one of the objects? This information helps the
human or animals localize themselves, measure distance, avoid collisions,
etc.

Until now, researchers have found that the brain contains motion-sensitive
neurons that react specifically to OF stimuli, translating the OF into neu-
ronal spikes. However, despite OF is quite common for us, and we almost
used it all the time, the mystery behind how the brain process OF informa-
tion and thus answers the listed questions as we mentioned before is still
under-investigated by researchers.

Computer scientists introduced the concept of OF to the computer vision
area and used it to describe the relative motion between two consecutive
images caused by the camera only, or only the observed moving objects
or both of them. OF contains the changes between two images and thus
contains the motion information of the natural objects projected on the
image plane. Calculating OF makes it possible to recover the 3D motion
in the real world of the observing object possible [51, 52]. For image and
video processing, it is used in action recognition [53, 54] and video com-
pression [55] and segmentation [56, 57]. In robotics area, it is also a very
fundamental topic and it could be used for tracking [30], navigation [58–
60], obstacle detection [61–63] and soft landing for flying drones [64–66].

10 introduction

Figure 1.3: An example of the OF result in a road driving scene. Arrows repre-
sent the direction and the length means the magnitude. From web-
site3.

Figure 1.3 shows the OF result on a road driving scene. OF reflect the
displacement between two adjacent frames. If the depth could be inferred,
it is possible to convert this 2D OF to a 3D scene motion, and thus the
velocity could be estimated. If the car is autonomous, the estimated velocity
could help the car localize itself and drive more safely.

We also need to measure how good that vector is, and possibly such
things as how different the next frame is. That is, the absolute difference
between a pixel in frame 1 shifted by its motion vector and the correspond-
ing pixel in frame 2. There can also be a confidence level or a penalty for
how different a pixel is from its neighbouring vectors.

1.2.1 Optical flow estimation methods for frame-based cameras

The author of Middlebury OF Benchmark dataset Prof. Michael J. Black,
wrote in his Ph.D. thesis: "Optical flow estimation is a chicken-and-egg
problem: if you know how to segment the scene into differently moving
objects, then computing their motion is relatively easy; if you know how
to compute motion accurately you can segment the scene into differently
moving objects. The problem is that these two things have to be done simul-
taneously. And it is hard." Dr. Black’s thesis was finished in 1992. Almost

3 https://medium.com/building-autonomous-flight-software/math-behind-optical-flow-
1c38a25b1fe8

https://medium.com/building-autonomous-flight-software/math-behind-optical-flow-1c38a25b1fe8
https://medium.com/building-autonomous-flight-software/math-behind-optical-flow-1c38a25b1fe8

1.2 introduction of optical flow 11

30 years has passed, OF is a mature but not completely solved problem.
This section gives a review of the frame-based OF estimation algorithms.

The OF estimation is based on two basic assumptions: i) brightness con-
stancy assumption and ii) small movement assumption. To formulate OF
in a mathematical way, that is to say, the goal of OF is for each pixel we
need to calculate a motion vector which is a subpixel of x and y move-
ment, say ∆x and ∆y. Based on assumption i, we can write the equation as
follows:

I(x, y, t) = I(x + ∆x, y + ∆y, t + ∆t) (1.1)

And then applying the Taylor expansion for the right part of the equation,
we get:

I(x + ∆x, y + ∆y, t + ∆t) = I(x, y, t) +
∂I
∂x

∆x +
∂I
∂y

∆y +
∂I
∂t

∆t

+higher− order terms
(1.2)

Based on the assumption ii, we can remove the higher-order terms and
replace them back to equation 1.1, We get:

∂I
∂x

∆x +
∂I
∂y

∆y +
∂I
∂t

∆t = 0 (1.3)

Divide it by ∆t:
∂I
∂x

∆x
∆t

+
∂I
∂y

∆y
∆t

+
∂I
∂t

∆t
∆t

= 0 (1.4)

Use Vx and Vy to represent the flow speed in x and y directions:

∂I
∂x

Vx +
∂I
∂y

Vy +
∂I
∂t

= 0 (1.5)

Denote the brightness gradient of the image as Ix and Iy:

IxVx + IyVy = −It (1.6)

There are two unknown variables Vx and Vy in equation 1.6 while only
one constraint. To solve the equation, at least one more constraint is re-
quired. The two significant and pioneering works done by Horn and Shun-
k [67] and Lucas Kanade [68] in 1981 solved the problem with two differ-
ent extra constraints. Because both of them are trying to solve the problem
based on the gradients of the images, they are categorized into gradient-
based methods.

12 introduction

Horn-Schunck [67] adds a global smooth constrain. It tries to make the
flow field across the image smooth, so it adds an energy item to penalize
the discontinuous OF result. The goal of Horn-Schunck is thus to minimize
the following equation:

E =
x [

(Ixu + Iyv + It)
2 + α2(‖∇u‖2 + ‖∇v‖2)

]
dxdy (1.7)

The minimum could be obtained by solving the associated multi-dimensional
Euler–Lagrange equations. The positive side of Horn-Schunck is that it
could provide dense optical flow output, and the negative side is that it is
more sensitive to noise than the local methods. A range of modification-
s/extensions of Horn–Schunck, using other data terms and other smooth-
ness terms, are proposed. For example, Black and Anandan [69] proposed
segment smooth constraints, gradient constancy by Brox and Malik [70],
color model by Mileva [71] and Zimmer [72].

Lucas Kanade added another constraint that the optical flow value in a
small area stays the same. The motion vector between two images is esti-
mated by dividing an image into patches of identical size, and it assumes
that all pixels of the same patch have the same displacement. The patch
size depends on the application. The equations for this method could be
shown as follows:

Ix(q1)Vx + Iy(q1)Vy = −It(q1)

Ix(q2)Vx + Iy(q2)Vy = −It(q2)

...

Ix(qn−1)Vx + Iy(qn−1)Vy = −It(qn−1)

Ix(qn)Vx + Iy(qn)Vy = −It(qn)

(1.8)

Where Ix(q1), Iy(q1) and It(q1) are the partial derivatives of the image
intensity with respect to position x, y and time t, evaluated at the point
q1 and at the current time. Points q1, q2 . . . qn are within the same patch
region. Equation 1.8 could be solved by the least-squares principle.

After about 30 years of development, there is a massive improvement
of the techniques used for different aspects of optical flow estimation. All
these methods could be categorized into four types: block matching [55],
phase-correlation, gradient-based and learning-based.

Block matching is a method that originated from MPEG compression.
The core idea of this method is to find the best similar region to the ref-
erence region of frame 0 in frame 1. The motion vector is searched in

1.2 introduction of optical flow 13

a defined search window for each region to minimize the criterion cho-
sen [73]. The criterion used to measure the similarity differs for different
applications, but the most frequently used in the research is SAD. The
most straightforward search strategy for block matching is the exhaustive
method which compares all possible blocks with the reference block. Some
other non-exhaustive search strategies [74–77] are also explored. However,
no matter which kind of strategy is used, complicated math operations
such as exp or derivatives are not required, making it very hardware-
friendly. The disadvantage of this method is that the accuracy of this
method is not so good, and sometimes you get lots of spurious matches.

Phase correlation is an approach to estimate the relative translation offset
between two similar images (digital image correlation) or other data sets.
OF based on phase correlation firstly converts the image from the time
domain to the frequency domain. Then it calculates the cross power be-
tween the frequency spectrum of these two images. OF is estimated when
it maximizes the normalized cross-correlation, which is obtained by ap-
plying the inverse Fourier transform to the cross power result. Compared
with spatial-domain algorithms, the phase correlation method is resilient
to noise, occlusions, and other defects typical of medical or satellite im-
ages. Therefore, it tends to give more accurate results. Although it looks
pretty complicated, as it requires lots of FFT’s and multipliers, it is rather
hardware-friendly as it is a closed-form solution that does not require iter-
ation.

From the aspect of accuracy, the gradient-based method might be the
most accurate method among non-learning-based methods. The idea is to
take two blocks of data from adjacent frames and to use the gradient in-
formation to progress iteratively to a solution where the pixels are aligned.
This gradient information includes partial derivatives of the image signal
and/or higher-order partial derivatives. Two methods Horn Shunck [67]
and Lucas Kanade [68] we introduced before, belong to this category. The
gradient-based method is usually combined with a hierarchical architec-
ture or called CTF. The reason for that is when the displacement of two
images is too big, the gradient-based method does not perform very well.
Although it gives a more reliable result, multi-scale and requirement of
derivative calculation make it highly computationally expensive. Other
gradient-based work includes [46, 78, 79].

Recent years witness the rapid development of deep learning. There are
many latest OF is based on learning architecture. Weinzaepfel et al. [80] de-
veloped a method called DeepFlow. The name seems like a deep learning-

14 introduction

based approach, and it is not. However, it has similar ideas as Deep Neu-
ral Network (DNN). It uses convolutions and pooling similar to a CNN
and creates a pyramid of images. The correspondences were first found in
the highest level and then repeated until all levels’ correspondences were
tracked. Revaud et al. [81] developed EpicFlow, which produces higher ac-
curacy on optical flow evaluation from the Sintel dataset. The algorithm
uses a novel interpolation method robust to large pixel displacements,
boundaries of motion, and occlusions within the image. However, this
method runs very slowly. Its run time exceeds 16.4 seconds for a MPI-
Sintel image pair (1024× 436 pixels) on one CPU-core at 3.6Ghz. Fischer
et al. [82] created FlowNet, a fully convolutional deep neural network
trained to produce optical flow images from a pair of input images. It
is the first-ever deep learning scheme based on convolutional neural net-
works. However, its efficiency remains below state-of-the-art traditional
methods. FlowNet2 [83] built a more robust structure by stacking together
multiple FlowNet modules. It achieves better performance than the origi-
nal Flownet, but it requires heavy memory (around 38 million parameters);
hence is not well suited for mobile and other embedded devices. A light
version of FlowNet called LiteFlowNet [84, 85] is proposed in 2018, and its
improvement version in 2020 by Hui. Ranjan et al. proposed SpyNet [86],
which combines the CTF approach with DNN and it has 96% less weights
than FlowNet. PWC-net [87] uses pyramid, warping and cost volume. It
adopts a similar idea as SpyNet but with some differences: i) SpyNet warps
frames with coarse estimates of the flow, while PWC-net warps feature
maps. ii) PWC-net data augmentations do not include Gaussian noise [88].
Other CTF deep-learning-based optical includes [84, 89]. To date, deep
learning, especially the CNN, has led to breakthroughs in frame-based
optical flow area. However, this advance comes with major computational
demands due to the use of cost-volumes and pyramidal representations.
Cost-volumes is a concept initially from stereo matching and later used in
OF to represent the matching cost between two feature volumes.

For the dataset and benchmark part, the community has accumulated
a lot of resources [82, 90–97]. Among them, the most popular evalua-
tion benchmarks are Middlebury, MPI-sintel and KITTI. The Middlebury
benchmark [90] is composed of sequences partly made of smooth deforma-
tions, but also involving motion discontinuities and motion details. MPI-
sintel [91] is drawn from a short computer-rendered movie. It counts around
1500 frames with OF groundtruth. It is a challenging benchmark includ-
ing fast motion, occlusions, and nonrigid objects. KITTI [92, 93] has two

1.3 optical flow applications 15

versions, and the latest one was published in 2015. It is tailored for au-
tonomous driving. Compared to KITTI2012, it contains more dynamic
scenes, large motion, illumination changes and occlusions, and HD1K dataset.

To summarise the frame-based OF algorithms, the problem of optical
flow estimation could be considered as almost completely solved [98] in
the particular case of small displacements. And the accuracy of OF meth-
ods is actually pretty good except at motion boundaries. The remaining
challenges can be listed as (i) fast motion, (ii) illumination changes, (iii) oc-
clusion, and (iv) untextured regions. In these challenges, the optical flow
estimation problems become ill-posed and hard to treat analytically.

1.3 optical flow applications

OF is widely used in a variety of applications, and some of them occur
almost every day. This section will show three types of optical flow appli-
cations as examples: film, optical mouse, and robotics.

1.3.1 Use of optical flow in the film production

OF plays an important role in creating visual effects in the film industry. In
the world of visual effects, OF is used as a tool for re-timing shots, tracking,
3D reconstruction, and motion blur.

OF technology was first used in feature films starting from 1995. Kodak’s
American developed a new image technology called Cinespeed which
could interpolate between frames based on OF. They contacted Kim Li-
breri, known for his work on the Matrix series and Super 8, who was Chief
Technology Officer of a visual effects company called Cinesite London. Ko-
dak introduced this new technology to Libreri and thought it might be
helpful for them. The technology was quickly named Cinespeed and was
the first major commercial OF re-timer as part of the Kodak Cineon System.
Cinespeed was later used in the film Mission: Impossible and made this film
the first film shot using OF re-timer technology. One scene in which the
camera circled Tom Cruise when he kissed Emmanuelle Beart on a rough
turntable used this technology. It was successfully smoothed and re-timed
using a combination of traditional 2D algorithms and Cinespeed. "We were
basically presented with a working prototype of a system for re-timing" re-
calls Libreri, "while the shot was cut from the final film, it worked well."
Although this shot was cut from the film in the final release, it worked very
well and inspired people to consider OF for the film shooting.

16 introduction

Figure 1.4: Bullet time effect in Matrix. From website4.

The real breakthrough for OF used in the film came in 1998. This film
is called what dreams may come which won the Academy Award for Best
Visual Effects in 1998. In this film, the male protagonist, acted by Robin
Williams, entered a "virtual heaven world" after his death. This heaven
world is based on an oil painting which his beloved wife draws. Therefore,
many scenes of the film are virtually painted drawings. In the film, he is
live-action, but it behaves like it is made of paint when he touches the fo-
liage. This visual effect is achieved with OF tracking techniques. Synthetic
objects could be driven by the captured motion and placed into the live
environment with the OF. The brush stroke tracking systems help process
the images for a painterly effect and animate the brush strokes to follow
the underlying motion in the scene. The final effect works quite well, and
it makes the filmmakers and artists think of it not only as a re-timing tool
and can be used for some other interesting applications such as tracking
brush strokes and 3d plants. Tracking the paint stroke is not the only us-
age of OF. It is also used for adding motion blur to the painted strokes, 3d
elements, and warped 3d models. In 1998, a REVisionFX press commented
that what dreams may come marked an important “first” in visual effects,
“successfully implemented the first production pipeline to use computer
vision technology so pervasively. The ‘Painted World’ section is the first
long moving picture sequence that relies on image-based animation and

4 https://www.telegraph.co.uk/films/2019/07/24/inside-keanu-reevess-bullet-time-scene-
matrix-changed-cinema/

https://www.telegraph.co.uk/films/2019/07/24/inside-keanu-reevess-bullet-time-scene-matrix-changed-cinema/
https://www.telegraph.co.uk/films/2019/07/24/inside-keanu-reevess-bullet-time-scene-matrix-changed-cinema/

1.3 optical flow applications 17

non-photorealistic rendering, two growing areas of development in com-
puter graphics.” This visual effect work is done within Mass Illusion.

Figure 1.5: The history scene that the actor meets his younger counterpart. The
man sitting on the left is the real actor and the right side man is the
synthesized person. Figure courtesy of [99].

The other example that is important to show OF used in the feature
film industry is the bullet-time effect in the film Matrix. Many people who
watched Matrix might be impressed by its shocking visual effect. There
was a very famous scene in which Keanu Reeves leaned himself to avoid
the super-fast bullet. The whole process is shown in a super-slow-motion
way to make the audience see it clearly and more immersive to the film
scene. This visual effect was called the bullet-time effect and later became
a comprehensive popular technology in the film. Fig 1.4 shows how the
bullet time effect looks like in Matrix. The audience can even see the shock
wave generated by the super-fast bullet in the film. Multiple cameras in the
film were arranged in orbit, which a pre-defined rig path was forming a
complex curve through space. The path was designed based on computer-
generated visualization. The multiple cameras on the rig were triggered
in a very short interval, and because the cameras are arranged in a shape
similar to a spiraling up circle, the viewpoint was thus changed. Addition-
ally, the individual frames were sent to the computer for further interpo-
lation where the technology behind was the OF algorithm. This approach

18 introduction

improves the fluidity of the movement and thus generates the super-slow-
motion scene. The bullet time effect in the Matrix promotes the super-slow-
motion shooting for the follow-up films. Following films, Bullet time was
also featured as crucial gameplay mechanics in various video games such
as Max Payne and Cyclone Studios’ Requiem: Avenging Angel.

Figure 1.6: The motion blur visual effect. The motion blur behind the flash man
is used to emphasize his super fast speed. This is a poster for the
Flash movie series. From website 5.

The Disney human face project is another interesting use of OF. This
project constructed a virtual person who was the young version of the real
actor, and these two “guys" were sitting side by side in the film. The vi-
sual effects team for this film is from Walt Disney Feature Animation. To
achieve this goal, they first shot the actor’s facial performance against the
green screen. Then, they ran the OF to track each pixel’s motion over time
in each view. A cyber scan model of a neutral expression of the actor was
combined with the OF result and the photogrammetric reconstruction of
the camera positions. After the 3D model for the target actor was estab-
lished, it projected a vertex of the model back into the 2D image of the
“virtual" young face and then tracked the motion using OF again. The OF
algorithm they used was based on Black’s work [69]. It solved the OF in an
iterative way and tracked the eye in a manner analogous to Lucas-Kanade
affine tracking. The algorithm finally worked quite well. The track result
was then rendered on the young face model. In 2002, they presented a

5 https://hdqwalls.com/wallpaper/3840x2400/the-flash-run-art

https://hdqwalls.com/wallpaper/3840x2400/the-flash-run-art

1.3 optical flow applications 19

demo of their work [99] at SIGGRAPH and attracted a lot of attention.
Fig 1.5 shows the final visual effect in the film.

Motion blur visual effect is another common application of OF for films.
Fig 1.6 shows an example of how the motion blur visual effect looks like.
The scene in this figure is from a London street. This visual effect is also
achieved by OF. The creator frequently uses it to emphasize some objects.
It also helps heighten the sense of reality.

After about 20 years of development, OF is now in common use in a vari-
ety of commercial productions and almost becomes a standard technology
used by many big visual effects companies such as ReVisonFX, Foundry,
ILM, etc.

1.3.2 Use of optical flow in computer mice

According to the working principle, computer mice can be divided into
two categories. The first category is the mechanical mouse. This is also the
primary type of the earliest mice. There is a ball installed on the bottom
of the mouse. By measuring the distance the ball rolls, the mouse could
convert it to the value the arrow on the screen should move. The accuracy
of the mouse entirely depends on the precision of the ball. Therefore, the
mechanical mouse requires cleaning the ball frequently and thus makes it
not very convenient.

The second category of mice, “optical mouse," was thus developed to
solve problems of the mechanical mouse. The optical mouse, more accu-
rately, should be called optical-electronic mouse since the core part of the
mouse is a circuit implementing the OF estimation algorithm. OF, espe-
cially the global translation flow, is a fundamental measurement for an op-
tical mouse. Fig. 1.7 shows the principle of the optical mouse. As shown in
this figure, the optical mouse mainly consists of three parts: LED, lens, and
OF sensor. The environment under the mouse is very dark, and it is chal-
lenging to get the images there. The LED is thus installed to lighten it and
combined with a lens to make the mouse could see it clearly with the help
of a small lens. The OF sensor is often made up of an Image Acquisition
Sensor (IAS) and a Digital Signal Processing unit (DSP). Usually, there are
two chips on the Printed Circuit Board (PCB). The IAS outputs the images
of the observing surface or texture. The resolution of the image sensor is
often not very high, such as 32x32. DSP is usually a microprocessor such as
a low-cost ARM with OF algorithm that has been flashed inside. It extracts
the motion information between these two matrices based on the pixel lo-

20 introduction

cation and intensity information. After the OF is obtained from the sensor,
the mouse could measure the actual translation distance and could help it
localize and update the coordinates of the mouse arrow on the PC screen.
The position information is sent to the PC via PS2/USB (wired mouse) or
2.4Gz radio/Bluetooth (wireless mouse).

PCB

OF Sensor LED

Lens

Figure 1.7: The working principle of the optical mouse. It mainly consists of
three parts: LED, lens and OF sensor. Adapted from 6.

Hawk lens

IR Laser LED
Image Sensor

Laser mouse

Lens

LED
Image ensor

Optical mouse

Figure 1.8: Difference between IR mouse and optical mouse. Adapted from 6.

During the early days, regular LED, especially red LED, is the primary
light source in the optical mouse. However, this light beam of this LED
source is very dispersed and makes the light intensity arriving at the sen-
sor weak. The diffuse reflection even makes it worse. To get clear images

6 https://kknews.cc/zh-sg/news/23mk5e.html

https://kknews.cc/zh-sg/news/23mk5e.html

1.3 optical flow applications 21

from IAS, the LED’s intensity should be strong enough. On some specific
surfaces, such as glasses, it is almost entirely dark and cannot work at all.

To address this problem, the laser replaces the regular LED as the light.
Fig. 1.8 compares the difference between the normal optical mouse and
laser mouse. As the laser source is coherent light only consists of one single
wavelength, it could maintain the same intensity and wave shape even after
a long-range transmission. As the laser light is concentrated, it also helps
avoid diffuse reflection.

However, no matter which light source is used, the core computation
parts of them are the same. The OF algorithm is still the essential software
for a mouse.

The metrics to evaluate the performance of a mouse are resolution and
refresh rate. The resolution is also called Count Per Inch (CPI). It describes
how much feedback the mouse could receive from the DSP by mouse. For
example, if a mouse has a CPI 400, it means that when the mouse moves
an inch in the physical space, it will receive 400 measurement times feed-
back. In other words, the minimum motion displacement it could sense is
1/400 inch. This metric is used to represent its spatial resolution. The CPI
is mainly determined by the minimum OF vector displacement the DSP
and image sensor could obtain. Higher CPI is more suitable for higher res-
olution screens. The other metric is called refresh rate. This one is easy to
understand. It is very similar to the FPS in computer vision. The higher
the refresh rate, the higher accuracy the mouse could obtain but impose
faster and low power consumption OF algorithms.

1.3.3 Use of optical flow in microrobotics

Rapid advances in microelectronics catalyzed the development of tiny fly-
ing robots, formally referred to as Micro Aerial Vehicless (MAV) [100]. OF
estimation has always been a low-level but fundamental topic in machine
vision; it is widely used in take-off and landing, 3D reconstruction, and
navigation in the robotics community. [101] presents complex maneuvers
to be able to perform the autonomous take-off and landing based on an op-
tical flow sensor. Some event-based OF used for landing is demonstrated
in [32, 34].

Many types of vision sensor hardware have been used to collect videos
of optical flow in robotics. The sensor needs to be small and light due to
the constraints of small or microrobotics platforms. More importantly, the
hardware limitations of different vision sensors can significantly affect the

22 introduction

consequent optical flow computation. For instance, the pixel count directly
affects the computational power required for on-board optical flow compu-
tation, while the field of view affects the sensing range of the robot. Thus,
the optical mouse sensor is a very straightforward option. A mouse sensor-
based optical flow module for quadrotor control is shown in [102]. [59, 103,
104] use an optical mouse sensor for VOD. But using a mouse to estimate
optical flow for MAV has many drawbacks. It is unsuitable for indoor ap-
plications since standard mouse sensors require stronger lighting than in
normal indoor conditions. These mouse sensors work well with in-door
well-conditioned environments, e.g., surfaces with sufficient texture for
motion detection [103]. [105] proposed a customized hardware optical
flow-based to solve the illumination limitation problems of mouse optical
sensors. This one could work well on a wide range of illumination envi-
ronments but cannot work on the constant distance plane. Optical mice
generally output only the 2d global translational flow vector, which is not
sufficiently informative for motion parallax or obstacle detection or VOD.

[36, 106] shows a flight control system using a CMOS image sensor for
OF computation. However, the data is not processed on board; it is sent to
a computer on the ground using a wireless link. The processed OF result
value is sent back to the MAV.

They use pix4flow [105] as the algorithm module. pix4flow [105] is an
embedded OF module for real-time computation. The size of the module
is 45.5 mm x 35mm and consumes about 0.5W. It uses the ARM Cortex M4F
as the processing unit and connects to the sensor via a parallel interface.
The image sensor is a 752x480 MT9V034. It processes about 60 frames for
the full resolution. In [105], they use a gyro to estimate the angular velocity,
and then it is used to compensate the OF. The camera translation part of
the OF is extracted, and a metric value which is the depth is used to scale
it back to the actual velocity. The depth is assumed approximately constant
since it is tested in a hovering condition. The distance from the sensor to
the ground is almost unchanged.

1.4 optical flow sensors

Optical flow sensors are used extensively in the computer optical mouse as
the primary sensing component for measuring the mouse’s motion across
a surface. We already show this part in in Sec. 1.3.2. Optical flow sensors
are also being used in robotics applications, primarily where there is a
need to measure visual motion or relative motion between the robot and

1.5 thesis contributions 23

Sensor type Image pixel Size Weight Update rate FOV Applications

ADNS-2610 [107] 18 x 18 pix.
25 x 30 mm

35 x 30 mm

50 x 30 mm

15 g

23 g

23 g

1500Hz

20Hz

6.5deg

2.5deg

1.2deg

Obstacle

avoidance

CentEye

TinyTam
16 x 16 pix 7 x 7 mm 125 mg 20Hz N/A

MAV

Hovering

OV7740

+ FPGA [108]
320 x 240 pix

6.5 x 6.5

x 4 mm
120Hz 50 deg.

On board OF

calculation

PX4FLOW [105] 188 x 120 pix 45.5 x 35 mm 250/500Hz 21 deg.
On board OF

calculation

GoPro Hero [109] 1920 x 1080 pix
42 x 60

x 30 mm
94g 29.97Hz 127 deg.

Compare w.

navigation

sensors

Table 1.2: Comparison of different hardware optical flow sensor. Adapted
from [59].

other objects in the robot’s vicinity, such as Zuffrey et al. [110], who used it
for for stability and obstacle avoidance. About this part we have described
in Sec.1.3.3.

An optical flow sensor is a module capable of capturing images and
measuring OF information. The module could be a small PCB consisting
of several chips, as we often see in the mouse. It can also be a more com-
pact version that integrates the image sensor circuit and the processing
circuit on the same die, forming an Application Specific Integrated Circuit
(ASIC) [111, 112]. The processing circuitry may be implemented using ana-
log or mixed-signal circuits to enable fast optical flow computation with
minimal power consumption. One area of contemporary research is the
use of neuromorphic engineering techniques to implement circuits that re-
spond to optical flow, which may be appropriate for use in an optical flow
sensor [113]. Such circuits may draw inspiration from biological neural
circuitry that similarly responds to optical flow.

A comparison of the characteristics of various optical flow sensors is
shown in Table 1.2.

1.5 thesis contributions

As shown in Sec. 1.1.3, the DAVIS event camera provides sparse, quick,
high dynamic range events signaling brightness changes as well as global-
shutter APS image frames that can be triggered and captured on demand.

24 introduction

It also integrates an IMU that provides vestibular rotation and acceleration
sensing. These characteristics make it potentially useful for mobile robotics,
but it almost provides practically no on-board computing ability. Although
the USB device controller includes an MCU (Cypress FX2 for DAVIS240

and FX3 for DAVIS346), it has no access to the data, which flows directly
through the USB Integrated Circuit (IC) via the USB chip endpoint First In
First Out memories (FIFO). Moreover, the Complex Programmable Logic
Device (CPLD) logic chip on the DAVIS PCB that interfaces between the
USB chip and the DAVIS has limited resources and is almost filled by the
its logic circuits for Address Event Protocol (AER) and APS data handling.
Therefore, the first achievement of my Ph.D. project is that I designed a
new DAVIS camera that features the DAVSI346 sensor and a SOC that
includes a powerful FPGA and a dual-core 800MHz ARM processor (Xilinx
Zynq 7z100). The new camera is called DAVIS346Zynq.

The computer vision community has explored frame-based OF for a long
time. However, due to the disadvantage of the frame-based camera com-
pared with event cameras, such as low dynamic range and low temporal
resolution and too much redundant data, in some complicated environ-
ments such as fast motion or high dynamic range light conditions, the
result is not good enough. Almost all developments are based on camera
frames. These frame-based OF algorithms are thus not able to be applied
to event cameras directly.

Compared with frame-based camera OF, event-based OF could obtain
the samples at a high frequency of up to several kHz effective rate. This
makes the “brightness constancy constraint" underlying most OF compu-
tations more feasible. Events are generated in continuous time and could
resolve the large displacement and motion blur problems that occur in
frame-based OF. Therefore, event-based OF receives increasing attention
from many research communities, not only from the computer vision side
but robotics. In this thesis, we proposed several novel algorithms dedi-
cated to event-based cameras and took the limitations of real robotics into
account. One is for OF estimation and the other is for corner detection.
Combining the corner detector with the optical flow estimation achieved a
good accuracy while maintaining a low power consumption, low memory
occupation, and enabling real-time operation even at high event rates of
over 10 MHz. It has been implemented and verified on DAVIS346Zynq.

In summary, the main contributions of this thesis are:

• A novel event-based OF method is called ABMOF (Chapter 3). The in-
coming event actively drives the estimation. Events are accumulated

1.6 thesis structure 25

into rotating event slices. The duration of the event slice is controlled
by a feed-forward method named AreaEventNumber and a feedback
mechanism adapts the event exposure count value to scenes with
various levels of spatial sparsity.

• A hardware corner detection method called SFAST (Sec. 6.3.2) which
is more accurate, more compatible with ABMOF and more efficient
than the prior hardware EFAST corner detector (Chapter 4).

• A powerful event camera DAVIS346Zynq (Chapter 5) that targets real-
time applications. It features the most powerful SoC Zynq 7100 FPGA
among the Xilinx Zynq families. It has a DAVIS controller for AER
protocol handling, a USB controller, and a VGA port. For memory, it
supports 512MB DDR3 and 1GB NAND flash.

• An open-source hardware implementation of combined SFAST and
full multiscale adaptive event slice ABMOF, which together improves
the accuracy of optical flow estimation and increases the through-
put (Chapter 6). It combines several techniques in scheduling and
Hardware Description Language (HDL) architecture (e.g., data parti-
tioning, on-the-fly processing with minimal buffers, deep pipelining,
parallelization at bit-/data-/instruction-/task-level) for efficient cir-
cuit design.

1.6 thesis structure

The remainder of this thesis is organized as follows. Chapter 2 describes
the basic event-based Block Matching Optical Flow (BMOF) algorithm and
its FPGA implementation. Chapter 3 shows an improvement version of
BMOF called ABMOF. The event-based corner detectors EFAST and its
FPGA implementation are introduced in Chpater 4. Chapter 5 is concerned
with the DAVIS346Zynq camera. Chapter 6 presents the EDFLOW which
implements the corner detector and ABMOF on DAVIS346Zynq. Chapter 7

concludes this body of the thesis and provides an outlook for the possi-
ble future directions. Appendix A provides the description of the MiniZed
Software-Defined System On Chip (SDSoC) platform, High Level Synthe-
sis (HLS) optimization strategies, troubleshooting stories, UART configu-
ration of DAVIS346Zynq and URL links to resources.

The chapter that follows now describes my earliest and simplest devel-
opments of DVS OF where we first explored the use of block matching for
measuring OF.

2
A F I R S T E V E N T- B A S E D B L O C K - M AT C H I N G O P T I C A L
F L O W A L G O R I T H M A N D I T S F P G A
I M P L E M E N TAT I O N ¶

"Analytically, this total transformation of the array
appears to mean that the elements of this texture are
displaced, the elements being considered as spots.
Introspectively, the field is everywhere alive with
motion when the observer moves."

— James J. Gibson, 1966

This chapter describes my first DVS OF algorithm which uses a BMOF
approach and the FPGA implementation of this algorithm.

2.1 introduction

This section has two parts. The first part explains why event-based OF is
important and what are the challenges of measuring OF. The second part
reviews relevant prior event-based OF work.

2.1.1 Why event-based optical flow

In Chapter 1, we introduced the definition of OF in neuroscience and com-
puter vision, and reviewed some algorithms for frame-based cameras (see
Sec. 1.2.1). Much work and research has been done in OF for frame-based
cameras. However, the fixed sample rate of frame-based cameras makes
it difficult to get small-displacement image pairs when the scene is mov-
ing too fast. For example, the most popular method for frame-based OF is
Lucas-Kanade (LK) proposed in 1981 [68]. It works well on the small dis-
placement motion but badly on scene with large motion flow (see Fig. 3.10

in Chapter 3). LK also fails when the images are over or underexposed and
when the images are too blurred to extract good features. The DVS’s su-
per high temporal resolution, low latency, and high dynamic range could
provide solutions to these problems.

¶ A substantial content of this chapter is published in [114]. Copyright © 2017 IEEE.

27

28 bmof and its fpga implementation

However, event-based OF is also challenging because of the unfamiliar
way in which events encode visual information. In conventional cameras,
the optical flow is obtained by analyzing two consecutive images. These
provide spatial and temporal derivatives that are substituted in the bright-
ness constancy assumption (Equation 1.3), which, together with smooth-
ness assumptions, provide enough equations to solve for the flow at each
image pixel. In contrast, events provide neither absolute brightness nor
spatially continuous data. Each event does not carry enough visual infor-
mation to determine the flow, so events need to be aggregated to produce
an estimate, leading to the unusual question of where in the x-y-t-space
of the image plane spanned by the events is flow computed [11]. Ideally,
one would like to know the flow field over the whole space, which deems
computationally expensive. In practice, optical flow is computed only at
specific points: at the event locations or artificially chosen points. Finally,
another challenge is to design a flow estimation algorithm that is com-
patible with what is known from neuroscience about early processing in
the primate visual cortex, and that can be implemented efficiently in neuro-
morphic processors. Nevertheless, computing flow from events is attractive
because they represent strong spatial gradient area, which are the parts of
the scene where flow estimation is less ambiguous, and because their fine
timing information allows measuring high-speed flow [115]. Meanwhile,
DVS provides high dynamic range and activity-driven brightness change
events, and it makes possible to explore some environment which is diffi-
cult for conventional cameras.

2.1.2 Prior DVS optical flow

This section reviews previous DVS OF algorithms of which there are only
a handful. Event-based OF has been proposed to date. It could be classified
into three categories. The first category adapts the conventional OF algo-
rithms to event-based versions, such as event-based Horn Schunck and
event-based Lucas Kanade. The second category is the variational method,
such as motion compensation framework [116]. The third category is the
learning-based method, such as EV-flownet.

[117] described an open-source algorithm (called Direction Selective
(DS) in this thesis) for time-of-flight DVS OF based on oriented edges de-
tected by spatio-temporal coincidence. It works only for sharp edges and
suffers from aperture problems since it is edge-based.

2.1 introduction 29

[118] adapted the frame-based LK algorithm (called Event-based Lucas-
Kanade (EBLK) in this thesis) for the DVS. It stores a fixed-queue length
window of past events. For each new event, it computes the LK algorithm
on a window of the fixed time interval of a block of pixels surrounding
the current event pixel. Brightness of the pixel is replaced by the event
count and the gradient calculation is thus based on the quantized event
count. The gradient estimation precision is low due to quantization and
a small 5x5 window size. The small window size was used to limit the
computation time in order to keep up with a high rate of events.

[119] proposed a contour-based method. In their work, they compared
the events-only method and events-frames-combined method. The differ-
ence is that by using the only the events, they need to reconstruct the con-
trast of the edge to localize the contour but it is not necessary for frames
that have the absolute intensity. The optical flow estimation is then ob-
tained from the contour width divided by the time interval.

[120] proposed a time-surface method (called Local Plane (LP) in this
thesis) that combines the 2D events and timestamps into 3D space. Normal
OF is obtained by robust iterative local plane fitting. It works well for sharp
edges but fails with dense textures, thin lines, and natural scenes [115,
121] since all these produce complex structures that plane fitting does not
model.

[122] proposed a more expensive phase-based method for high-frequency
texture regions. They use normalized cross-correlation to measure the pixel’s
timestamps’ similarity and localize the contour. Once the contour is found,
they use a Gabor filter to extract the local phase. The OF constraint that
assumes the constancy of the spatio-temporal contours using the phase is
formulated and is used to solve the normal OF flow.

[115] implemented and compared the DS, EBLK, and LP methods. It
concluded that the existing algorithms were both computationally expen-
sive and do not work well with natural scenes and noisy sensor data. This
paper also proposed an evaluation method and provided a simple bench-
mark dataset with ground truth. The ground truth OF is obtained by con-
straining the camera motion to pure rotation and uses the camera’s IMU
rate gyros to obtain the global translational and rotational OF.

[123] proposed a frame-based variational algorithm that simultaneously
estimates the OF, gradient map, and intensity reconstruction from DVS.
Although the simultaneous constraints results in a regularized output, the
results are not quantified, and the method is very computation expensive
compared to others.

30 bmof and its fpga implementation

Although the main goal of [29] is for event-based feature tracking, it
also proposed a pipeline to compute OF on corner points. They added
another two assumptions: One is that events generated by the same point
lie on a curve, and OF within a small spatio-temporal window is constant.
The OF problem is cast in an optimization framework, and the expectation
maximization algorithm computes the solution. It can run in real-time with
15 features on a PC.

In recent years, motion compensation combined with optimization ap-
proaches have been widely used for event camera OF [28, 116, 124, 125]
and have become the most popular approaches among all the first and
second category OF methods. These methods stem from the simple obser-
vation that if the event cloud is viewed in 3D spacetime, there is a view
angle where the events locally line up. This view angle represents a partic-
ular flow. The optimization procedure to locally align the event cloud can
be carried out by a search procedure that maximizes the contrast of the
resulting 2D image. Since it requires multiple local optimizations and lots
of memory to hold a cloud of events, it needs an entire desktop Graphics
Processing Unit (GPU) for tens of FPS.

Other event-based OF approaches were also developed. The relation be-
tween segmentation and OF is like the chicken and egg problem: better
segmentation improves OF accuracy and more accurate OF improves seg-
mentation. In [125], they analyzed the influence of different contrast max-
imum reward functions on the aperture problem to jointly estimate the
pixel-level segmentation and OF. [126] estimated the OF and intensity im-
age from a single blurred DAVIS APS image and event stream, similar
to [123]: both use variational methods to estimate OF and intensity jointly.
However, [126] exploited single-frame motion blur, so they only require
one single APS image. Nevertheless, both of them are very slow, i.e., less
than 1 FPS on desktop CPU. For example, [126] was implemented in Mat-
lab using C++ wrappers and it takes around 1.5s to process one image
on a single i7 core running at 3.6GHz, which is very far from real-time
processing.

Akolkar [127] proposed an optimal method based on [120]. It divides a
curve into several segments and adjusts the scale to maximize the mean
value of all segments’ normal optical flow. Using iteration can help the
algorithm find the best scale of the window size to mitigate the aperture
problem. It obtains the actual flow rather than the normal flow. Low [128]
is another work based on LP fitting. It proposes using Prim’s algorithm
to find the optimal event sets for plane fitting to improve the accuracy.

2.1 introduction 31

They simplify the original LP fitting [120] by imposing more constraints
on the incoming event and make it a non-iterative. Guidelines for potential
implementations on hardware are also reported in this work. However,
it cannot solve the essential problem that the original LP method faced,
which is that the result is still the normal flow and still suffers from the
aperture problem.

Deep learning is also explored in event-based OF algorithms [129–132].
EV-flownet [129] reported the first CNN-based DAVIS OF architecture and
published a valuable dataset. The network is trained by minimizing the
photometric loss from the DAVIS APS frames. It achieves the best-published
accuracy, but burns 50W to run at 25 Hz frame rate on a laptop gamer GPU.
They further extended this network to jointly estimate the depth and ego
motion together in [133]. These DNN learning-based methods are more
accurate than the hand-crafted approaches, but they are much more com-
putationally intensive. For example, [134] reported that their most capable
CNN runs at 40 FPS on an NVIDIA 1080Ti GPU whose power consump-
tion is about 200W.

[135] proposed another unsupervised brain-inspired learning rule. They
presented an adaptive STDP rule to estimate the global OF from local OF
estimations. They use Spiking Neural Network (SNN) as the network ar-
chitecture. Even though the accuracy is not good as the CNN network
architecture used by Zhu et al. [24, 133], it introduces methods of using
SNNs for OF learning.

Most of the works mentioned above are based on PC computation [115,
118, 120, 122]. There is one work is based on embedded system. In 2015,
Conradt et al. [136] proposed a real-time optical flow algorithm based on
DVS which is implemented on an ARM 7 microcontroller. Although Con-
radt’s work [136] achieved a real-time result, it was only characterized for
camera rotation, not camera translation through space, and its use of the
direct time of flight of events makes it unlikely to work well with densely
textured scenes and to suffer from aperture problems for edges.

In this chapter, we introduce an event-based BMOF algorithm and its
FPGA implementation. This chapter is organized as follows: Sec. 2.2 intro-
duces the system architecture and algorithm. Sec. 2.3 shows experimental
results, and Sec. 2.4 concludes this chapter.

32 bmof and its fpga implementation

2.2 bmof algorithm and its fpga implementation

The output of DVS is a stream of brightness change events. Each event has
a microsecond timestamp, a pixel address, and a binary polarity describing
the sign of the brightness change. Each event signifies a change in bright-
ness of about 15% since the last event from the pixel. In this work, events
are accumulated into time slice frames as binary images ignoring the po-
larity, since our aim is for minimum logic and memory size. Here we will
refer to these bitmap frames as event slices. It is equivalent to the concept
event frame used in [14]. For clarity, we use event slice in the following text.

In video technology, OF is called Motion Estimation (ME) and is widely
used in exploiting the temporal redundancy of video sequences for video
compression standards, such as MPEG-4 and H.263 [137]. The pipeline
for ME includes block matching. Block matching means that rectangular
blocks of pixels are matched between frames to find the best match. Block
matching is computationally expensive. That is why it is now widely im-
plemented in dedicated logic circuits. To address this problem, an exam-
ple of logic ME implementation based on block matching is presented in
Shahrukh [137]. In this chapter, we proposes an event-based block match-
ing algorithm to calculate OF on FPGA.

A block is a square centered around the incoming event’s location. Match-
ing is based on a distance metric. In this work, we implemented Hamming
Distance (HD) as the distance metric. HD is the count of the number of
differing bits. For bitmaps, HD is exactly the same as the better-known
SAD. The software implementation is open source.

2.2.1 System architecture

The hardware evaluation system is divided into two parts, one for data
sequencing and monitoring and the other for the algorithm implementa-
tion. For the first part, we use a monitor-sequencer board [138] designed
by Raphael Berner in his masters project at Univ. of Seville . The sequencer
converts the event-based benchmark dataset [115] into real-time hardware
events sent to the FPGA for OF estimation. During OF calculation, the mon-
itor collects the OF events and sends them over USB to jAER for rendering
and analysis. In this way, we can compare the software and hardware pro-
cessing of the OF algorithm. In this work, we only used prerecorded data
to allow a systematic comparison between software and hardware imple-
mentations.

2.2 bmof algorithm and its fpga implementation 33

clk

Finite State
Machine

Rotation
Control
Logic

Host PC
Monitor-

Sequencer
Board

send

receive

data

Enable

Slice RAMs

Spartan 6 FPGA

Figure 2.1: System Architecture

The OF architecture (Fig. 2.1) contains three main modules: the Finite
State Machine (FSM), block RAMs and rotation control logic. The architec-
ture of the FSM is shown in Fig 2.2. The FSM consists of three parts: data
receiving module, OF calculation module, and data sending module. The
data sending and data receiving module communicate with the monitor-
sequencer. The OF module is described in the Sec. 2.2.2.

Three 240x180-pixel DVS event slices are stored in RAM. These slices
are like binary image frames from conventional cameras but in the case
of DVS we can arbitrarily select the slice interval d. One is the current
slice starting at time t and the other two are the past two slices starting
at times t-d and t-2d. At intervals of d, the rotation control logic circulates
the three slices. The t slice accumulates new data. It starts out empty and
gradually accumulates events, so it cannot be used for matching with past
slices. The two past slices are used for OF, but the OF computation is done
at the location of each event stored into the t slice, and thus is driven by
the incoming events. Slices are stored in block RAM on the FPGA. The
total size of the RAM is 240x180x3, matching the DVS pixel array size. It is
generated by the IP Core of Xilinx.

34 bmof and its fpga implementation

IDLEstart Read
Data

Check
Extract
Events

Read
Blocks

HD
Get Min-

imum
Send
data

Timeout
Check

RAM
Rotation

req = 0

req = 1

No

Yes

ack = 1

ack = 0

No

Yes

Figure 2.2: Finite state machine

2.2.2 Optical flow algorithm

The current algorithm’s search radius is 1 and thus the search range is
[-1, 1] pixel. Therefore, for every reference block, we compare it with 9

candidate blocks. When an event arrives, a single reference block from
slicet-d and When an event arrives, a single reference block from slice t-
d and 9 blocks from slice t-2d are sent to the HD module to calculate the
distances. In the current implementation, the block contains 9x9 pixels. For
the t-d slice, we use only one center block as the reference. The algorithm
finds the most similar block on the t-2d slice. According to the brightness-
constancy assumption of OF, we should see a similar block in the t-2d slice
for the block that best matches the actual OF. We search over 8 blocks
centered on the 8 neighbors of the current event address and one block
centered on the reference and choose the one with minimum distance.

2.2.2.1 Hamming Distance

The implementation of one HD block is shown in Fig 2.3. A total of 81

XOR logic gates receive input from the corresponding pixels on the slices.
The XOR outputs are summed to compute the HD.

2.3 experimental results 35

blockt−d[0]
blockt−2d[0]

blockt−d[1]
blockt−2d[1]

blockt−d[79]
blockt−2d[79]

blockt−d[80]
blockt−2d[80]

. . .
HD

x1
x2

xn−1
xn

+

Figure 2.3: Hamming Distance implementation for one 9x9 block match. There
are 9 of these circuits for the 9 flow directions.

2.2.2.2 Minimum Distance Computation

The last step of the algorithm is to find the minimum distance candidate.
Part of the novel minimum circuit is shown in Fig 2.4. It is a parallel imple-
mentation that outputs the index of the minimum distance direction. For
instance, if we need to find the minimum among 5 data: HD0-4 (output
from Fig 2.3), the circuit can be divided into 5 parts. The first part in Fig
2.4 compares HD0 with all other data and outputs a count of how many
times data0 is larger than HD1-4. The other 4 parts are implemented in the
same way and all those parts are computed concurrently. At the end, the
part whose sum is zero is the minimum candidate. Thus, the minimum
distance candidate is determined in one clock cycle.

2.3 experimental results

We used the Opal Kelly XEM6310MT development board as our to imple-
ment our algorithm. This board featured a Xilinx Spartan 6 family chip
xc6slx150t. It has 184304 Flip-Flops and 92152 LookUp Tables (LUT) and
4MB block memory. The implemented OF design occupies 0.9% of the Flip-
Flops, 5% of the LUTs and 5% of the block RAM. For the test dataset, we
use the event-based optical flow benchmark dataset in [115] which also
provides the evaluation method and the ground truth.

We tested three sample real DVS recording datasets: the boxes, pavement,
and gravel corresponding to edge, sparse points, and dense texture respec-
tively. The boxes scene has a box in the foreground and clutter in the back-
ground and the camera pans to the left, producing rightwards global trans-

36 bmof and its fpga implementation

≥

≥

≥

≥

HD0

HD1

HD2

HD3

HD4

of inputs
smaller than
HD0

+

Figure 2.4: Sort algorithm implementation block for HD0, simplified for 5 inputs
rather than 9. There are 9 of these blocks.

(a) Boxes translation (b) Pavement on grass (c) Gravel

Figure 2.5: OF Results. The arrows are the flow vectors and their length repre-
sents the speed (determined by the slice duration d). DVS On events
are green and Off events are red. The color wheel indicates the flow
vector direction color. The 2D gray scale histogram (zoom in to see
it clear) above each color wheel shows the distribution of flow event
directions (here we use 9 direction bins) in the time slice. The bright-
est bin votes the highly possible direction of the global motion. (a) is
the boxes scene from [115] with d = 40ms. (b) is pavement recorded
by a down-looking DVS; d = 10ms. (c) is a gravel area with d = 3ms.
For clarity, event rate down sampling was used to compute 1 flow
event for every 100 DVS events.

lation mostly of extended edges. In the pavement dataset, the camera was
down-looking and carried by hand; the flow points downwards and to
the right. Imperfections in the pavement cause sparse features. The gravel
dataset is recorded outside and has dense texture; movement is eastward.

2.3 experimental results 37

AAE transBoxes

PMhd 42.68±33.82

LKsg 30.30±44.35

LKbd 98.92±42.24

LPorig 77.18±33.73

LPsg 47.52±54.44

(a) AAE comparison

AEE transBoxes

PMhd 17.86±6.31

LKsg 24.72±26.11

LKbd 37.00±15.18

LPorig 93.02±107.02

LPsg 98.32±82.5

(b) AEE comparison

Table 2.1: OF algorithm’s accuracy

The block-matching OF results are shown in Fig 3.11. It can be seen
that in each scene, most vectors point correctly east for box translation,
southeast for the pavement scene, and east for the gravel scene. Errors are
mostly caused by DVS noise or aperture ambiguity at the extended edges.

2.3.1 Accuracy analysis

[115] proposed two ways to calculate event-based OF accuracy, based on
similar metrics used for conventional OF. One is called Average Endpoint
Error (AEE) and the other is Average Angular Error (AAE). AAE mea-
sures error in the direction of estimated flow and AEE includes speed error.
These two methods are already implemented in jAER [139]. They use IMU
data from a pure camera rotation along with the lens focal length as the
ground truth. Since the output data of the sequencer lacks IMU data, we
measured the OF accuracy using the PC implementation. The algorithm
pipeline between FPGA and PC is identical, so it will not influence the
accuracy. The result is also compared with [115]. We chose two variants of
the EBLK and LP algorithms. The errors from all algorithms are shown in
Table 2.1. PMhd represents the block matching algorithm with HD metric.

As shown in Table 2.1, the block matching algorithm has the best accu-
racy for AEE and second-best for AAE, partly from an appropriate choice
of the sample rate that matches the dataset motion.

Fig 2.6 shows the relationship between the block radius and AAE. It indi-
cates that bigger block dimension leads to better accuracy. However, larger
blocks consume more logic and reduce the spatial resolution of the flow.

38 bmof and its fpga implementation

Block Radius

0 2 4 6 8 10 12

A
v
e

ra
g

e
 A

n
g

u
la

r
E

rr
o

r
30

35

40

45

50
AAE as a function of the block radius

Figure 2.6: The relationship between the block radius and AAE 1.

The comparison between the PC and FPGA implementation complexity is
discussed next, in 2.3.2.

2.3.2 Time complexity analysis

The time complexity of the software grows quadratically with the block
size while only linearly in FPGA. The processing time of the algorithm
contains three parts: reading data from three slices, HD calculation and
looking for the minimum. Both FPGA implementation and software im-
plementation on PC consume linear time to read data from RAM since
multiple data cannot be read from one RAM simultaneously. However,
the latter two parts take constant time (2 clock cycles) on FPGA while
quadratic time on PC. In summary, the processing time on FPGA is (block
dimension + 2) cycles. In this work, FPGA runs at 50MHz frequency and
the block dimension is 9. Thus, the whole algorithm will take only 220ns
per event, i.e. 0.22us. On PC, it takes 4.5us per event for (admittedly non-
optimized) jAER to run the algorithm. The implementation on FPGA is 20

times faster than that on the PC.

2.4 summary

This chapter presented a block matching method to estimate the event-
based OF on FPGA in real time. The software computational cost of HD in-
creases quadratically as the block size increases, however, in FPGA, all bits
in the block can be calculated at the same time which leads to a constant
time for all block sizes. This greatly reduces the overall computation time

1 Tested on boxes_translation scene from [115].

2.4 summary 39

for the FPGA implementation, which is 20 times faster than the software
implementation. In the final implementation, every single incoming event
is processed (allowing an input event rate of up to 5 Meps to be handled
using a modest FPGA clock of only 50 MHz). However, processing every
event is not required, as illustrated in Fig. 3.11(d), where OF computation
is downsampled, but the DVS events still indicate locations to estimate the
flow.

There are three possible improvements. The current implementation esti-
mates only the direction of flow and not speed. Measuring speed requires
additional search distances and there are well-known algorithms for ef-
ficient search [140]. Secondly, other distance metrics should be explored
because event sequences collected onto the slices usually have different
length due to noise and HD is somewhat ambiguous [141]. Finally, it is
worth implementing feedback control on the slice duration to better ex-
ploit the unique feature of DVS event output that it can be processed at
any desired sample rate. This capability is a key distinguishing charac-
teristic from frame-based vision, where the sample rate and processing
rate are inextricably coupled. It could allow a block-matching approach
for DVS that achieves high OF accuracy even with only small search dis-
tances and modest hardware resources. The next chapter explores these
improvements.

3
A D A P T I V E B L O C K M AT C H I N G O P T I C A L F L O W F O R
E V E N T- B A S E D C A M E R A ¶

3.1 introduction

In Chapter 2, we showed a basic BMOF for event-based camera. The block
size was 9x9, and the search radius was only one pixel. This small radius
and block size severely limited OF accuracy. We thus improved BMOF in
three aspects:

• We use Sum of Absolute Differences (SAD) as the metric to improve
the search accuracy and Diamond Search (DS) to increase the search
efficiency.

• We proposed a new event slice accumulation method to make the
algorithm more adaptive to the dynamic environment.

• We used a feedback signal based on the result OF histogram to fine-
tune the slice duration further.

The novel algorithm is called Adaptive Block Matching Optical Flow (AB-
MOF). This chapter is organised as follows: Sec.3.2 describes the algorithm
in detail. Sec.3.3 shows the experimental result and Sec.3.4 concludes this
chapter.

3.2 abmof algorithm

The pipeline of ABMOF is summarized in Fig 3.1. When a new event ar-
rives, the event’s timestamp is used by the rotation logic to determine
whether the event slice is to be rotated. If yes, the slices are rotated and
the slice duration d or event count parameter K or k is adapted based on
the current slices’s OF distribution. The adapted slice duration is sent as
an input to the rotation logic. The adaptation takes the OF distribution of
the previous slice as the input. We use a dashed connection in the figure
to represent their relationship. Details of the rotation logic are introduced
in Sec. 3.2.2.

¶ A substantial content of this chapter is published in [142].

41

42 abmof

Symbol Description Typical values (default)

w× h width × height of pixel array 346x260

d slice duration 1–100 ms (50)

K global event number 1k–50k events (10k)

k area event number 100–1k events (1k)

a area dimension subsampling 5 bits

b block dimension 11–21 pixels (21)

r search radius 4–12 pixels (4)

s # scales 1–3 (2)

p skip count on PC for real-time 30–1000

g # bits for slice counts 1–7 (3)

g # bits for slice counts 1–7 (3)

D average match distance ideally r/2

(vx, vy) OF result pixels/sec (pps)

Table 3.1: Symbols, description, and typical values/units.

All the new events will be accumulated to multi-scale slices. If the sys-
tem is busy, the OF calculation for the event is skipped. Otherwise, it trig-
gers the OF calculation. The event skipping mechanism is introduced in
Sec. 3.2.5. After removing events with too sparse blocks, the OF histogram
is updated.

All the parameters that are used in this paper are summarized in Ta-
ble 3.1.

3.2.1 Block-Matching DVS time slices

To make the chapter self-explanatory, we first make a brief wrap-up of
BMOF in this subsection. Fig. 3.2 shows the main principle of BMOF. Three
event-slice memories store the events as 2D event histograms: Slice t accu-
mulates the current events. Slices t-d and t-2d hold the previous two slices.
d is the slice duration. When a new event arrives, it is accumulated to slice
t by either incrementing the pixel value, or adding the polarity of the event
to it. Which of these is done depends on whether we ignore the event po-

3.2 abmof algorithm 43

Input DVS event

Rotate slice?

Accumulate
events to

multi-scale
slices

Skip current event? OF cal-
culation

Remove
outliers

Update OF
histogram

OF
output

Adapt slice
duration

no

yes

yes no

Figure 3.1: The pipeline of our algorithm

larity. For the experiments in this work, we usually ignored event polarity
because the accuracy did not change significantly even if it is included. In-
cluding polarity may enable better block matching, but it carries the price
that one bit of the pixel memory is used for the sign bit. After accumu-
lating the event, then the other two slices are then used to compute the
OF based on the current event’s location. When multi-scale slices are used
(Sec. 3.2.4), then each slice is a pyramid of s slices.

A reference block (b ∗ b pixels) is centered on the incoming event’s lo-
cation on the t-d slice map (red box in slice t-d). The best matching block
on the t-2d slice is found based on SAD inside a (2r + 1)2 search region,

44 abmof

Figure 3.2: BMOF block matching, on boxes from [115]

shown as a white rectangle in the t-2d slice. Thus, the optical flow result
is obtained by using these two blocks’ offset (dx, dy), divided by the time
interval ∆t between these two slices. The time of each slice is taken as the
average of the first and last timestamp of events accumulated to each slice.

The slices are rotated according to the slice rotation logic (Sec. 3.2.2).
The rotation discards the t-2d slice and uses its memory for the new slice
t; similarly slice t becomes slice t-d and slice t-d becomes slice t-2d. In
BMOF, the slice duration d was set by user manually. It is not convenient
for general application since it limits the speed range. In this work, we
propose several methods to adjust it adaptively.

3.2.2 Slice rotation methods

Slice rotation is the core part of our algorithm. It calculates when to ro-
tate the slices to ensure good slice quality. Good slices should have sharp
features, not too much displacement, and not be too sparse. This goal is
achieved by feed-forward and feedback control. We show the details of
these two algorithms in the following subsections.

3.2.2.1 Feedforward slice rotation

The new events are accumulated into the latest slice, slice t. Slice t is only
used for accumulation. After that, it will be rotated to be as a past slice
and used for OF calculation.

3.2 abmof algorithm 45

In the original BMOF work, we implemented the method ConstantDura-
tion, where each slice has the same duration d. Another obvious method is
to rotate slices after a constant number K of events have been accumulated,
called ConstantEventNumber.

• ConstantDuration: Here, the slices are accumulated to time slices uni-
formly with duration d. This method is what we reported before and
corresponds most closely to conventional frame-based methods. It
has the disadvantage that if the scene motion is too fast, then the
movement between slices may be too large to be matched using a
specified search distance. If the movement is too slow, then the fea-
tures may not move enough between slices, resulting in reduced flow
speed and angle resolution.

• ConstantEventNumber: Here, the slices are accumulated until they con-
tain a fixed total count of DVS events K. If K is large then the slices
will tend to have larger d. But if the scene moves faster, then the rate
of DVS events also increases, which for fixed K will decrease d. There-
fore the ConstantEventNumber method automatically adapts d to the
average overall scene dynamics.

A drawback of the ConstantEventNumber method is its global nature. For
scenes which have lots of or very few textures, it is impossible to set a
suitable global K. In order to address this problem, we propose a new
rotation method called AreaEventNumber.

• AreaEventNumber: Instead of rotating the slices based on the sum of
the whole slice event number, AreaEventNumber will trigger the slice
rotation once any one of the area’s event number (Area Event Coun-
ters) exceeds the threshold value k. Each area is (w× h)/2a pixels, i.e.,
10× 8 pixels.

ei = {x, y, ts, pol}
It = {e0, e1, · · · , eO}

kmn =
O

∑
i=1

fmn(ei) where fmn =

{
1 d x

2a e = m, d y
2a e = n

0 otherwise

(3.1)

ConstantNumber : O >= K (3.2)

46 abmof

AreaEventNumber : ∃ kmn >= k (3.3)

The definitions of ConstantEventNumber and AreaEventNumber can be
represented by math equations. As shown in the equation 3.1, the current
event slice It is divided into m× n small areas. If the total event number
O is bigger than the threshold K, the slice is rotated. This method is called
ConstantEventNumber (eqaution 3.2). If any event number of the small area
kmn exceed the area event number threshold k, the slice is rotated. This
method is called AreaEventNumber (eqaution 3.3).

By using the AreaEventNumber method, slice rotation is data-driven by
the accumulation of DVS events, but adapts the slice durations to match
the area of the scene which has the most DVS activity. This adaptation pre-
vents under-sampling that causes displacement that is too large to match
between slices. Compared with ConstantEventNumber method, it preserves
the advantage that the generated slices adapt to the scene dynamics. The
local adaptability makes the slices more robust to variation and distribu-
tion of scene texture.

To make it even more robust and adaptive, the slice event number k
is also adaptive to the scene. When the scene moves fast, the parameter
k will be increased. Otherwise, it is decreased. Adaptation of k is further
described in Sec. 3.2.2.2.

An example to demonstrate these three methods is shown in Fig 3.3. The
blue arrows pointing to the three time axes represent these three rotation
method results. It is obvious that both the time interval and the event
number interval are fixed for ConstantDuration and ConstantEventNumber.
However, both of them vary in the AreaEventNumber method which makes
it more adaptive to the dynamic scene.

In Fig 3.4, we compare these three methods on two different scenes,
one has sparse textures and the other has dense textures. Among them,
Figs. 3.4(a), 3.4(c), and 3.4(e) are obtained from the same dense scene
by the three different methods. Figs. 3.4(b), 3.4(d), and 3.4(f) are obtained
from a sparse scene. Both dense and sparse scenes use the same parameter
for every method which is d = 10ms for ConstantDuration, K = 10000 for
ConstantEventNumber and k = 700 for AreaEventNumber. The resulting slice
durations are shown overlaid on each scene.

Neither ConstantDuration nor ConstantEventNumber work well on both
of these two scenes with fixed values of d or K. For example, ConstantDu-
ration fails in the sparse scene because d was set for the faster motion in
Fig. 3.4a and the duration was too short for the slower motion in Fig. 3.4b.

3.2 abmof algorithm 47

t

(a) ConstantDuration (d = 40)
t

(b) ConstantEventNumber (K = 4)
t

(c) AreaEventNumber (k = 2)

Area
Event
Counters

(3,3,0)
(5,3,25)

0
2
0
0

(1,5,50)
(2,5,75)

0
0
0
2

(4,1,100)

(1,4,150)
(0,5,180)

0
0
1
2

(5,4,200)

(0,4,250)

(3,3,300)

0
2
0
1

(3,5,350)

(0,4,400)

Figure 3.3: Three feedforward slice rotation methods. The event stream is at the
top of the figure. The information including event address (x,y) and
timestamp is shown under the event stream. An example of these
three slice methods is demonstrated here, with (a) slice duration d =
40, (b) global event number K = 4 and (c) area event number k = 2.

ConstantEventNumber makes the slice too short in duration in the dense
scene in Fig. 3.4c, because K was set to make a good slice for Fig. 3.4d.
However, AreaEventNumber with fixed parameter k functions well on both
of scenes, because it correctly creates the Fig. 3.4f slice after being set for
the dense scene in Fig. 3.4e. It shows that AreaEventNumber is more robust
to dynamic scene content.

3.2.2.2 Feedback Control of Slice Duration

Another method to automatically adjust the slice duration is possible via
feedback control. An optical flow distribution histogram is reset after each
slice rotation and then collects the distribution of OF results. The his-
togram’s average match distance D is calculated. If D > r/2 where r is

48 abmof

(a) ConstantDuration on dense tex-
ture scene

(b) ConstantDuration on sparse tex-
ture scene

(c) ConstantEventNumber on dense
texture scene

(d) ConstantEventNumber on sparse
texture scene

(e) AreaEventNumber on dense tex-
ture scene

(f) AreaEventNumber on sparse tex-
ture scene with

Figure 3.4: Comparison between event slices generated by three methods.

3.2 abmof algorithm 49

the search radius, it means that the slice duration is too long, and so the
slice duration or event number is decreased. Otherwise, if D < r/2, then it
indicates the slices are too brief in duration, and the slice duration or event
number is increased. It is possible that slice durations that are too brief or
lengthy result in OF results of very small matching distance that are the
result of a bias in the search algorithm towards zero motion (small match
distance). Stability is improved by limiting the slice duration range within
application-specific limits. For the control policy, we so far used bang-bang
control. A fixed factor of ±5% adjusts the slice duration, where the sign of
the relative change of duration is the sign of r/2− D. More sophisticated
control policies are clearly possible, since the value of the error is directly
predictive of the necessary change in the duration.

(a) OF result’s match distance

(b) Feedback on slice event count

Figure 3.5: Feedback on slice event number. (a) shows the OF result’s real match
distance and its desired match distance. (b) represents the slice event
count number.

50 abmof

Since the principle of feedback control on event number and slice du-
ration is similar, we show only an example of feedback control on event
number k here. The data in Fig. 3.5 shows an example of event number
control using the AreaEventNumber rotation policy with a feedback control
of k. Fig. 3.5(a) shows the average OF match distance D. The feedback
control of the event number holds D at its r/2 value of about 2.5 pixels.
Fig. 3.5(b) shows the event number k. It has a steady state value of about
1000. Around packet 100 (1st arrow), k was manually perturbed to a large
value, resulting in a increase in D, but it rapidly returns to the steady state
value. At around packet 200 (2nd arrow), k was manually reduced to a
small value, resulting in a small D of about 1 pixel. Again, D returns to
the steady state value. This data shows the stability of the event number
control with this feedback mechanism.

3.2.3 Search method

The implementation of BMOF searched only the target block and its 8 near-
est neighbors. An improvement is offered by extending the search range to
a larger distance range r. The block matching search method can be done
by exhaustive full search. It has the best search accuracy but is expensive
since the cost grows quadratically with r. A more efficient method is dia-
mond search [143], which we implemented. It makes a trade-off between
computation and accuracy. Our results show that it has about 90% chance
to hit on the best matching block with a cost 14X less than the full search,
for r = 12. Using the diamond search improves the algorithm’s real-time
performance significantly.

3.2.4 Multi-scale and multi-bit event slices

A limitation of the approach described so far is the limited dynamic speed
range of the method, since matching can only cover a spatial range of
square radius r around the reference location. One way to increase the
search range by a factor of 2s with only s linear increase in search time is
to use a multi-scale pyramid [144]. In this method, events are accumulated
into a stack of time slices. Each slice in the stack subsamples the origi-
nal event addresses in x and y directions by a factor of 2 more than the
previous scale. I.e., if s = 0 means the original full resolution scale, then
events are accumulated into scale s by first right shifting the event x and
y addresses by s bits, and then accumulating the resulting event into the

3.2 abmof algorithm 51

scale s slice, which has only 1/2s as many pixels for each dimension. For
example, in the s = 1 scale slice, each pixel accumulates events from a 2x2

pixel region in the full resolution original pixel address space. To prevent
saturation, we use multiple bits g for each value; for example g = 3 allows
up to 7 unsigned events for each pixel when we ignore the event polarity,
or up to ±2 events when we use polarity. Thus, the total slice memory
required for an N pixel sensor is 3Ng ∑s−1

m=0 2−m bits.
To compute the OF, each event is processed independently for each scale.

The match that has the minimum SAD is selected as the OF. Using multiple
scales is beneficial particularly in noisy situations, where the event flow is
sparse. The binning of events helps to find good matches.

3.2.5 Adaptive event skipping

For high speed or densely textured scenes, the event rate becomes high.
If we still compute OF for each event the real-time performance will be
influenced dramatically and the algorithm quickly falls behind the actual
incoming event rate. To address this problem in software, we propose an
event skipping method. If the processing time is higher than a threshold
we set, the following events do not have their OF calculated. However, they
are still accumulated to the current slice. By doing this, we can get a trade-
off between the OF density and the real-time performance. The adaptive
event skipping algorithm uses a skip parameter p, which is increased or
decreased depending on the frame rate. If the actual frame rate is slower
than the desired frame rate set by the user, it means it takes too much
time to process the event, then p increases. Otherwise, it decreases. On
a Corei7-975 PC in Java 1.8, the ABMOF implementation requires about
15 us per event with the default parameters in Table 3.1 and p = 1. With
p = 1000, the time drops to an average of about 260 ns/event; there is some
overhead for each packet and for slice rotation, which is why it only drops
by only a factor of 600X. For hardware ABMOF implementation on FPGA,
which we will show in Chapter 6, it is fast enough to process every event
in most cases. Even if in the extreme case, it is also easy to implement this
mechanism on hardware. A FIFO forms a buffer for the incoming events.
The event skipping will be designed as a switch and will be connected to
the FIFO half-full flag. If the FIFO is half-full, it means the processing time
is falling behind, and event skipping will be enabled.

52 abmof

3.2.6 Sparsity checking

To improve the accuracy, we developed sparsity checking to filter out OF
results with poor matching quality. We use two parameters to reject the
blocks that are too sparse. One parameter is validPixOccupancy; it deter-
mines the percentage of valid pixels in two blocks that will be compared.
Valid pixels are the pixels where events were accumulated. The reason for
setting this parameter is sometimes the blocks are too sparse, which makes
the distance metric get a meaningless result. By only calculating matching
for blocks that are filled with sufficient valid pixels, we can reject mislead-
ing results.

A second parameter is called maxAllowedSadDistance. The minimum
distance between the reference block and the candidate block must be
smaller than maxAllowedSadDistance, otherwise the OF event will be re-
jected. Thus, the best matching search block may actually be a poor match,
and maxAllowedSadDistance allows rejecting the best matches if the match
distance is too large.

The effect of these parameters is shown in example data in Fig 3.6 from a
simple case of a black bar moving up and to the the right. The flow results
are visibly cleaner using these outlier rejection criteria.

Both mechanisms are easily implemented in hardware. For example, the
valid pixel occupancy can be realized by pixel subtraction units that output
a large value if both operands are zero. The confidence threshold can be
realized by a comparator on the final best match output result that flags a
distance that is too large.

(a) Without outliers rejection (b) With outliers rejection

Figure 3.6: Example of outlier rejection using maxAllowedSadDistance

and validPixOccupancy. (a): without outlier rejection. (b):
using outlier rejection with maxAllowedSadDistance=0.5 and
validPixOccupancy=0.01.

3.3 experimental results 53

3.3 experimental results

In this section, we first describe the dataset we recorded for the experiment
in 3.3.1. It is called ABMOF18.

3.3.1 ABMOF18 dataset

ABMOF18 is a DAVIS optical flow (OF) dataset which has a variety of com-
plicated real scenes. It is recorded using a latest DAVIS camera DAVIS346

which has 346x260 pixel resolution and integrated on-chip APS readout cir-
cuits, allowing a maximum APS frame rate of about 50Hz. This DAVIS346

has pixels with integrated microlenses, optimized photodiodes, and an-
tireflection coating, which together increase the effective quantum effi-
ciency to about 24% compared with the previous DAVIS240C QE of 7%.
It also includes its own IMU that measures camera rotation and accelera-
tion. For movement with only camera rotation, the IMU can be used as a
method to obtain the ground truth optical flow. The ABMOF algorithm is
implemented in jAER as the event filter PatchMatchFlow and can be ex-
plored and compared with other algorithms; see the previous benchmark-
ing dataset DVSFLOW16 [115]. ABMOF18 dataset could be downloaded
using a tool called Resilio sync. The link is provided in the Appendix
Sec. A.7.

3.3.1.1 recordings

We provide two types of data. The first type of data is recorded originally
using jAER. It consists of two datasets: gravel, and office running. Gravel
is recorded outdoor in which the camera is downwarding to the gravel
and the camera is rotated around a point in the scene to cause the scene
to both rotate and translate. Both rotation and translation movement are
recorded in this dataset. Office running is an indoor dataset. It is recorded
by a person holding the DAVIS346 running through our laboratory. Both
of these datasets provide IMU data. This is provided for IMU groundtruth,
when it is possible for pure camera rotation. For details about event-based
IMU optical flow (OF) ground truth, see [115].

The second type of data is originally from the Robotics and Perception
Group at the Univ. of Zurich. For the details of this dataset, refer to http://

rpg.ifi.uzh.ch/davis_data.html. The format of this dataset is in rosbag.
We convert it to .aedat format using a conversion tool. The converted files

http://rpg.ifi.uzh.ch/davis_data.html
http://rpg.ifi.uzh.ch/davis_data.html

54 abmof

are provided here. They contain only DVS data; IMU and APS frames are
not converted.

3.3.1.2 Matlab scripts

The Matlab scripts provide a method to convert OF global translation re-
sult to VO for dataset which has known groundtruth. The main file is
plotGlobalVelocity.m. In Matlab, first enter the folder containing the script,
and then simply run plotGlobalVelocity. When it’s started, it will ask the
user to select a folder that needs to be converted.

Figure 3.7: Folder structure of the matlab scripts folder.

Calib.txt and groundtruth.txt are provided by the original dataset. Users
should provide the depth in depth_properties.m and OF global translation
result file.

The software implementation of the algorithm is open source. It is called
PatchMatchFlow [145] in jAER [146]. In this section, we show several ex-
periments to validate the ABMOF algorithm. They can be classified into
two types. Type I are the experiments with ground truth OF using two
datasets. The first dataset slider_hdr_far is from [1]. It shows a flat poster
scene with a fixed depth of 58 cm where the camera is moved laterally by
a motorized cart, resulting in uniform flow of about 90 pixels per sec-
ond (pps). It was recorded with high lighting contrast. The second dataset
pavement_fast is a scene with extremely fast flow of 34k pps recording
from a car, with a down-looking camera recording an asphalt pavement.

3.3 experimental results 55

The files converted to jAER aedat format are included in ABMOF18 dataset.
We show both the qualitative and quantitative results in these experiments;
see Sec. 3.3.2

In type II experiment, we test our algorithm on several complex scenes.
They consist of camera rotation over gravel (gravel), flow through an in-
door office environment (office), and uniform flow created by a variety
of shapes (shapes, from [1]). The dataset is provided1 to support the tests
for other future algorithms. Due to the unknown ground truth in these
files, we show only a comparison between the ABMOF and Lukas Kanade
results using the generated slices for these data; see Sec. 3.3.3.

For the slider_hdr_far data, the groundtruth camera position is pro-
vided for each time point and the scene has provided uniform depth. By
using the camera calibration data and pinhole camera model, we converted
the pose groundtruth data to a global optical flow groundtruth.

For pavement_fast, we manually measured the flow using a jAER [146]
software filter called Speedometer, which allows using the mouse to mark
a moving feature point at different time points and measures the distance
and time between these marks.

3.3.2 Type I experiment result

We show the results of type I experiments in this subsection. We measured
four metrics to evaluate the algorithms. They are Event Density (ED), trans-
lational Global Flow (GF), AEE and AAE. ED is the fraction of DVS events
that result in OF results. DVS events are skipped because block matching
fails to pass the density checking tests; we set p = 1 for these tests. ED
relates to the density of the flow computation. LK has very low density
because it relies on features. An ED of 100% means that all pixel bright-
ness changes result in OF events. AAE and AEE are defined for DVS OF
in [115].

Besides the ABMOF, we also implemented the LK OF calculation based
on our generated adaptive event slices using OpenCV and we call it AB-
MOF_LK. ABMOF_LK uses our algorithm to set the time slice duration,
and these generated slices are treated as conventional gray scale image
frames. In ABMOF_LK, corners are first extracted by Shi-Tomasi corner
detector [147] and then they are are passed to the LK tracking algorithm
implemented in OpenCV [148]. LK estimates the OF result based on these
features.

1 http://tiny.cc/itpauz

http://tiny.cc/itpauz

56 abmof

We also compared the AMBOF OF methods with previously published
implementations from [115]: DirectionSelectiveFlow (DS) [117], the event-
based LucasKanadeKFlow (EBLK) [118], and LocalPlanesFlow (LP) [120].

3.3.2.1 slider scene

Fig. 3.8 shows the qualitative results of ABMOF and ABMOF_LK on the
slider_hdr_far data. This is a high dynamic range scene of a flat poster
with uniform flow about about 90 pps. Because of the lighting contrast, the
APS images are sometimes extremely over- or underexposed, but the DVS
events respond to local brightness changes. Table 3.2 and Table 3.2 report
the quantitative comparison. By the VO groundtruth to OF groundtruth
conversion, we can compare them over time, as shown in Fig. 3.9. Table 3.2
shows that ABMOF_LK’s GF error on the slider_hdr_far data is less than
1pps and ABMOF’s GF error is less than 4pps. ABMOF_LK is more accu-
rate than ABMOF, but has much lower ED. Fig. 3.9(a) shows a very clear
periodic oscillation in vx for both ABMOF methods, which is caused by
the simple bang-bang control of the slice duration coupled with match dis-
tance quantization. This oscillation is confirmed by the trace ABMOF fixed
with 45ms, where we fixed d = 45ms; its vx flow is a bit too small because
of the quantization of the match distance. The conventional LK method on
the frames also obtains the average correct flow (and does not have the
controller oscillation), but as seen in Fig. 3.8(c), this estimate is sometimes
based on a single keypoint. That is the cause the outliers for Frame_based
LK in Fig. 3.9(b) around 5s and 6s where the frame LK method suffered
large aperture error.

This experiment validates that the slice rotation methods result in quan-
titative flow magnitude that is the same as from frame-based LK . The
ABMOF methods are oscillatory using the current k controller, but have
much higher density than the frame-based LK method. All ABMOF meth-
ods are all much more accurate and less noisy than the prior DS, EBLK,
and LP methods.

3.3.2.2 pavement_fast scene

Fig. 3.10 shows the results of a very high speed experiment on pavement_fast,
which was recorded from a car with a down-looking camera aimed at
the asphalt pavement road surface. The global flow is an extremely fast
32k pps, which means that a pixel crosses the 346-pixel array in about
10 ms. Figs. 3.10(a) - 3.10(b) compares ABMOF and ABMOF_LK on DVS

3.3 experimental results 57

(a) ABMOF (b) ABMOF_LK

(c) APS image 2 and LK result (d) DS

(e) EBLK (f) LP

Figure 3.8: Result of ABMOF, ABMOF_LK and standard LK on image frames
on slider_hdr_fast. For 3.8(a) and 3.8(b), we use AreaEventNumber
with feedback enabled, r = 4, and s = 2, and used standard LK on
successive APS images in 3.8(c).

58 abmof

(a) vx for slider_hdr_far

(b) vy for slider_hdr_far

Figure 3.9: Comparison of measured and ground truth flow between OF meth-
ods on slider_hdr_far

3.3 experimental results 59

Method Event density Global flow (pps) AEE (pps) AAE (◦)

Groundtruth - [90.50, 0]± [0.43, 0] - -

ABMOF_LK 0.39% [89.75, 0.44]± [6.30, 3.56] 8.75±27.51 2.95±3.41

ABMOF 37.96% [86.85, 0.17]± [8.46, 1.25] 12.68±16.28 3.66±8.31

Frame_based_LK - [89.51, 0.20]± [3.203.48] 5.47±42.07 1.30±4.72

DS ([115, 117]) 49.86% [74.97, 2.98]± [17.42, 4.79] 57.71±53.31 21.46±39.13

EBLK ([115, 118]) 17.53% [28.06,−0.11]± [4.09, 1.32] 60.32±15.92 13.52±25.51

LP ([115, 120]) 83.88% [161.14, 11.69]± [8.67, 12.13] 99.00±75.86 16.99±24.41

Table 3.2: Comparison of algorithm’s overall accuracy on slider_hdr_far.

time slices, and Fig. 3.10(c) shows conventional LK on successive DAVIS
APS images (the 2nd image is shown under the flow result). Both ABMOF
and ABMOF_LK correctly measure the true flow using a slice duration of
only 450 us, equivalent to a frame rate of 22 kHz and a 14 pixel displace-
ment between slices. The consecutive APS image frames were collected at
the maximum frame rate of 50 Hz, but because the motion is so fast, even
the short DAVIS global shutter exposure of 0.7 ms resulted in visible im-
age blur of several pixels. And since the consecutive frames are separated
by 20ms, the images are completely uncorrelated and the resulting flow is
meaningless as seen in Fig. 3.10(c).

3.3.3 Type II experiment result

The final experiments are from natural scenes that contain a range of di-
rections and speeds. Since we lack the ground truth OF for these natu-
ral scenes, we only show the qualitative comparison of ABMOF and AB-
MOF_LK. These results are shown in Fig 3.11. We use vectors to represent
the OF result; color also shows the direction. For clarity, we set p = 1000 for
ABMOF. The ABMOF and ABMOF_LK produce very similar OF for these
natural scenes. For shapes, ABMOF flow is quite dense along object edges
and the large block size of 21 pixels results in true OF rather than normal
flow. For this same scene, ABMOF_LK attaches OF only to object corners;
ABMOF_LK misses the OF on the upper right ellipse, but the overall flow
is more uniform.

60 abmof

(a) ABMOF (b) ABMOF_LK

(c) APS image 2 and LK result

Figure 3.10: Result of ABMOF, ABMOF_LK and standard LK on image frames
on pavement_fast. For 3.10(a) and 3.10(b), we fixed d = 450 us, r =
12, and s = 3, and used standard LK on successive APS images in
3.10(c).

3.4 summary and discussion

Based on BMOF, we described an improved version ABMOF in this chap-
ter. It is a semi-dense method that computes flow at points where bright-
ness changes. Similar to BMOF, the event representation used in ABMOF
is still the event slice. An event slice could be interpreted as a collapsed
cuboid. The duration of an event slice is thus defined as the interval be-
tween the start timestamp and the end timestamp of this cuboid. ABMOF
uses a compressing algorithm called block-matching for OF estimation.
“Block" here is actually a set of events that are spatial close on the event

3.4 summary and discussion 61

(a) ABMOF for gravel (b) ABMOFLK for gravel

(c) ABMOF for office (d) ABMOF_LK for office

(e) ABMOF for shapes (f) ABMOF_LK for shapes

Figure 3.11: Result of the algorithms on different scenes. All scenes were cap-
tured using identical s = 2 scales, block size b = 21 pixels, using
diamond search, with search distance r = 4 pixels and using feed-
back control of AreaEventNumber k. OF color and angle represents
direction according to the color wheel and vectors’ length means OF
speed relative to the scale shown at bottom left of each frame. The
histogram above each color wheel shows the OF distribution and
mean match distance (green circle). The white arrow from center
of image shows global average flow. The white statistics text shows
the number of OF events for each scale, the number of OF events,
the current skip count p, and the last slice duration d.

62 abmof

slice. The method defines two “blocks" and a similarity metric SAD dis-
tance to compare them. It manages to find the best block candidate within
a finite search area for every incoming event. It is assumed that the appear-
ance of event frames does not change significantly for short times.

Compared with BMOF, we have several improvements. The most im-
portant improvement of ABMOF is the adaptive mechanism slice duration
of the event slice. This makes ABMOF very robust to the real dynamic
scene. The adaptive mechanism consists of two aspects. The first aspect is
we proposed a new feed-forward method called AreaEventNumber. It ad-
justs the slice duration based on the local movement rather than the global
motion. We compared our generated adaptive slices with the constant time
duration slices and it shows that AreaEventNumber is more robust than Con-
stantDuration. The second aspect is that the feedback mechanism for slice
duration makes the average displacement between two slices close to the
half of the search distance. Another improvement is that we use SAD to
replace HD in the BMOF design. The last improvement is that multi-scale
rather than single-scale is used in ABMOF. Using multi-scale bitmaps al-
lows a larger range of movement speeds to be economically computed and
makes the operation more robust to noisy sensor data. All improvements
on the basic BMOF achieve a good trade-off between good quality of opti-
cal flow estimation and a low computation cost.

The reason we implemented the ABMOF_LK and show the results here
is to show the event slices generated by our adaptive method are robust to
different scenes and can provide better grayscale images for frame-based
algorithms to process. Although ABMOF_LK clearly produces more accu-
rate OF, it is a frame-based OF method that must process every pixel in
each frame and produces very sparse output. The gradient-based LK al-
gorithm is also much more difficult and expensive to implement in logic
circuits compared with ABMOF.

The result shows that the accuracy of the algorithm mainly depends on
the quality of the generated slices. By using the rather large block dimen-
sion r = 21, ABMOF avoids most aperture problems except on extended
edges longer than the block dimension.

The dynamic range of speeds allowed by ABMOF is determined by the
search distance r, the number of scales s and the range of slice duration
d. The minimum speed could be detected is determined by the maximum
d which is 100ms. The maximum speed could be detected is determined
by the minimum d which is 1ms and the maximum search range. In any
one moment, the range of match distances spans from 0 to r2s pixels along

3.4 summary and discussion 63

each axis, e.g., with search distance r = 4 and s = 3 scales the OF can span
0 to ±32 pixels, although the speed resolution decreases as the scale in-
creases. Therefore, the dynamic range of speed is from 10 pixels/s to 32k
pixels/s. In our experience, this is a sufficient range to cover real scenes
where the camera is rotating, or translating through a cluttered environ-
ment with nearby and far objects. With the adaptive slice duration, fast
motion can result in slice durations that are fractions of a millisecond, as in
the pavement_fast example of Sec 3.3.2.2, allowing measurement of speeds
> 10k pps. This result was previously only the domain of high-end gaming
mouse sensors such as [149]; these are capable of up to several thousand
FPS but require active illumination and have less than 50x50 pixel arrays
that are more than a 100 times fewer pixels than the DAVIS used here; also,
they only measure global translational flow.

By extrapolating the FPGA hardware implementation costs from [114],
we estimate that ABMOF can be implemented on a medium sized FPGA
fabric. The resulting IP block could later be integrated together with the
sensor in a custom digital core.

The most widely used applications of OF are in optical mouse and video
compression, where probably at least a billion ICs have been produced that
estimate motion based on block matching. In robotics, most VOD pipelines
do not currently use OF, but an economical implementation could enable
direct OF based on DVS in hardware, rather than the impressive but expen-
sive software solutions [39, 42, 150]. Recent success in combining DVS with
CNNs by using constant event number frames [151–154] also can benefit
from the smarter ABMOF slice methods, and the OF could provide useful
input channel information to better enable dynamic scene analysis.

Although there is an event skipping mechanism presented in ABMOF,
it is a random selection. In the next chapter, we will present the hardware
implementation of an event-based corner detector to perform a selection
of more informative events.

4
F I R S T H A R D WA R E I M P L E M E N TAT I O N O F A N
E V E N T- D R I V E N C O R N E R D E T E C T O R 5

“When someone says ‘I want a programming language
in which I need only say what I wish done,’ give him
a lollipop."
— Alan Perlis, 1982, “Epigrams on Programming"

4.1 introduction

In chapter 3, we introduced a novel block-matching-based optical flow
algorithm for event-based cameras. It works quite well with some high-
speed motion. It is very robust and adaptive to dynamic scenes. Neverthe-
less, there are remaining problems that need to be addressed. ABMOF com-
putes optical flow for every event. It has two disadvantages. First, when
the event occurs at edges, only the normal component of optical flow can
be measured; a local measurement of OF based on gradient can only mea-
sure the normal component of flow at edges; the optical flow component
along the edge is ambiguous, leading to the aperture problem. Second, some
events are noise events. Processing them wastes computation power and
increases the latency. Therefore, it is unnecessary to process every event.
Moreover, it is impossible to process every event in some extreme cases,
such as for some superfast motions, such as panning the image across
densely textured scenes, when the rate goes above 10MHz. Although a
sparsity checking and event-skipping mechanism could filter out some of
them, it is not enough. We should have a more informative selection of
relevant events on which to compute flow.

In the frame-based vision community, researchers use keypoints (essen-
tially corners) to mitigate the aperture problem. Based on the above facts,
we thought we might only detect some key events on par with keypoints
to compute subsequent information around these events. Therefore, we
implemented in hardware a simple but efficient event-based corner detec-
tor. This corner detector is designed as a general preprocessing real-time

5 Part of the content of this chapter is from CVPRW 2019 demo [155] and our under-review
TCSVT paper on EDFLOW. Copyright © 2019 IEEE.

65

66 hardware efast

hardware logic module IP1 for event-based algorithms, further to reduce
the latency and CPU load on the host processor. We chose EFAST [18] as
the algorithm and implemented it on MiniZed FPGA using Vivado SD-
SoC. The power consumption of the whole system is less than 4W, and the
hardware EFAST consumes about 0.9W. Our hardware EFAST implementa-
tion processes at most 10M events per second and achieves a power-speed
improvement factor product of more than 30X compared with CPU im-
plementation of EFAST. This embedded component could be suitable for
integration to applications such as drones and autonomous cars that pro-
duce high event rates.

4.1.1 Corner detectors

In the Computer Vision (CV) community, corners are often referred to as
distinct points in the scene. Corner or keypoint detection is a basic but
important topic in the CV community, and it is widely used as a pre-
processing step for many CV problems. It extracts the most important
information from the image data to avoid processing all pixels and thus
decreases the latency and quality of subsequent processing. It underlies
many OF, VOD, and SLAM methods. In the conventional CV community,
it is well studied, and many popular methods are still used nowadays, such
as Harris, FAST, and Scale Invariant Feature Transform (SIFT).

Event-based corner detectors. For event cameras like DVS, similar ap-
proaches also have been proposed in recent years. Here we give a brief
review on event-based corner detection algorithm. Clady [156] in 2015 re-
ported the first event-based corner detector. It detected intersections of
local planes fitted to the Timestamp Image (TI). Vasco [17] reported event-
based Harris in 2016. It adapted the frame-based Sobel-filter Harris detec-
tor to binary event patches. Muggler [18] in 2017 reported EFAST. It detects
corners on the TI with frame-based FAST. In 2019, Mandersheid [20] pro-
posed a method called Speed Invariant Learned Corners (SILC) using a
new TI called Speed Invariant Time Surface (SITS), which achieves a high
contrast around the edge regardless of the scene speed. A random forest
classifier detects corners. By using SILC, they decreased the reprojection
error by 2X compared to using the normal TI. In 2021, Li [157] posted a
Smallest Univalue Segment Assimilating Nucleus) (SUSAN)-based corner
detector. It also provides a useful summary of software denoising methods.

1 IP is used in the logic design community for “intellectual property" block.

4.2 efast 67

However, the above methods were software developments and used tran-
scendental floating-point serial CPU computation, making them difficult
to realize in efficient FPGA logic circuits. For hardware event-based corner
detectors, to our knowledge, there is no prior work. As a preprocessing
step, corner detection should be done quickly since it is applied to all
events. We choose EFAST as our first corner detector hardware implemen-
tation because Mueggler et al. [18] showed that this algorithm is simple
and effective. We found, however, that an even simpler algorithm which
we developed and we called SFAST, provides better OF accuracy and its
hardware implementation is reported in chapter 6.

The chapter is organized as follows. Sec.4.2 describes the algorithm of
EFAST. Sec. 4.3 presents the key points of the methodology of building
the accelerator, especially focusing on the transformation strategies. Sec.
4.4 provides the experimental results of the corner detector and Sec. 4.5
concludes the chapter.

4.2 efast

FAST is a popular corner detection method in frame-based computer vi-
sion. It is widely used because of its good real-time performance. FAST
checks if there is a contiguous arc streak whose intensity differences to the
center pixel are larger or smaller enough than all other non-streak pixels.
If this streak exists, the center pixel is a corner. EFAST originated from
FAST. Instead of extracting the corners from the intensity image, EFAST
uses the image of the latest timestamps called TI [14] or Surface of Active
Events (SAE) in [18]. By using this representation, it is not necessary to
accumulate events to mimic a conventional intensity image. Therefore, the
data-driven characteristic of the DVS is preserved. Similar to FAST, EFAST
also tries to find a corner streak pattern on the TI for every incoming event.
A moving corner tends to create a TI of nearby timestamps. Past the corner,
the timestamps are older, and hence there is a surface that is like the edge
of a cliff with a corner.

To make the algorithm more robust, EFAST uses two circles for checking
rather than one circle for normal FAST. To avoid making the image messy,
we only show the value of inner circle and outer circle in Fig. 4.1. The inner
circle consists of the pixels located on a Bresenham circle with a radius of
3 pixels, and the outer Bresenham circle radius is 4 pixels. Cyan streaks
on the inner circle and the outer circle represent that they have the highest
timestamps on the corresponding circles. If we can find these streak pat-

68 hardware efast

204 16

640

894

331

161

595

629361420

638

6

269

716

359

363

273 658

490

836

615

267

546

236

330

944251395

619

771

874

331

666

62

936

865

977

971

984

975

981

976

977

990

SAE
Current Event
Inner Circle
Outer Circle
Corner Pattern

Figure 4.1: A simple illustration of the EFAST. In this example, we show a simple
situation for a corner event. The cyan streaks on the inner circle and
the outer circle means they have higher timestamps than all the rest
pixels of the circle. To make the figure clear, only the time stamps of
the inner circle and the outer circle are shown here.

terns (cyan streaks shown in the figure) on both circles, we call this event a
corner event. The length of the streak ranges from 3 to 6 for the inner circle
and 4 to 8 for the outer circle.

EFAST does not have any complicated mathematical operations such
as derivative or floating-point calculation. Only comparators, adders, and
some logic gates are required. This makes it suitable for implementation
in hardware logic circuits.

4.3 fpga implementation

We use MiniZed as our FPGA hardware platform. The MiniZed is a very
small and low-cost board. The FPGA on this board is xc7z007sclg225 which
mainly targets very light applications. It has the least resources among
Xilinx Zynq 7000 family chips. The tool we used to program the FPGA is
Vivado SDx. SDx is a tool that is used in SDSoC workflow. SDSoC is more
convenient and faster for developing a hardware IP required to work on
a Linux system rather than standalone. In this work, our target platform
MiniZed needs to access DVS via USB and send the result to a host via
WiFi. Therefore, the Linux system is necessary for development, because it
provides built-in drivers for the most common USB and WiFi devices. We

4.3 fpga implementation 69

thus choose Vivado SDSoC in this work. In this section, we first give an
introduction about Vivado SDSoC and Vivado HLS, and then we explore
the important strategies to transform a baseline implementation to achieve
an efficient hardware design. Finally, we show the memory layout and
optimization of this design.

4.3.1 Introduction of Vivado SDSoC and HLS

This section introduces the two tools used in this work: Vivado SDSoC first
and then Vivado HLS.

4.3.1.1 Vivado SDSoC

Vivado SDSoC is a recent tool provided by Vivado to build a more compact
design flow for users. The official manual [158] describes SDSoC as follows.
“The SDSoC Development Environment is a heterogeneous design envi-
ronment for implementing embedded systems using the Zynq SoC and
MPSoC. It enables the broader community of embedded software devel-
opers to leverage the power of hardware and software programmable de-
vices, entirely from a higher level of abstraction. The SDSoC environment
provides a greatly simplified embedded C/C++ application programming
experience, including an easy-to-use Eclipse IDE and a comprehensive de-
velopment platform. The SDSoC compiler transforms programs into com-
plete hardware/software systems based on user-specified target platforms
and functions within the program to compile into programmable hard-
ware logic. It builds upon customer-proven design tools from Xilinx in-
cluding Vivado Design Suite, Vivado HLS, Vivado Software Development
Kit (SDK), Petalinux, and SDx."

Before the whole system design, a complete SDSoC platform needs to be
prepared in advance. It consists of two parts: the hardware platform and
the software platform. The hardware platform is generated by Vivado de-
sign, and the software platform requires Vivado SDK and Petalinux. Petal-
inux is only required for Linux support. More details about how to build
a customized SDSoC platform for MiniZed is described in Appendix A.1.

Fig 4.2 compare two workflows for designing a customized IP using the
normal workflow and SDSoC workflow.

The normal design flow has three stages:
First, use Vivado (Verilog or VHDL) or Vivado HLS (C++) to generate

the customized IP and then integrate the hardware IP to a basic hardware

70 hardware efast

hardware
platform

customized
IP

Software platform

Standalone Linux

Data-movers and
interface adapters

Drivers for
data-movers

and IP

Applications

Final output

(a) Normal workflow

hardware
platform

IP + standalone +
applications

Software platform

Linux

Final output

(b) SDSoc workflow

Vivado design

Petalinux

HLS SDK

SDx

Tools:

Figure 4.2: Comparison between normal workflow and SDSoC workflow. Col-
ors are used to mark which tool is used in the design. Adapted
from [158].

design (usually a block design) for a specific hardware platform. This basic
hardware design is written as a hardware platform in Figure 4.2(a).

Second, insert data-movers for data exchange between PL and PS manu-
ally with Vivado design and write the drive code for data-movers and the
customized IP with Vivado SDK. Data-movers are used to exchange data
between external memory and IP.

Third and last, develop the ARM software applications to exchange data
between hardware IPs and user applications using Vivado SDK.

4.3 fpga implementation 71

By Benefiting from Xilinx’s latest tool SDx, SDSoC combined all these
three stages. As shown in Fig 4.2a, the design of the normal workflow re-
quires three stages and four tools for Linux applications and three tools for
standalone applications. The SDSoC workflow, which is shown in Fig 4.2b
only requires one stage and three tools for Linux applications and two
tools for standalone applications. In the SDSoC workflow, SDx can gener-
ate data-movers and interface adapters automatically. Since sometimes the
interface provided by the hardware platform is not compatible with the IP,
interface adapters are thus required. The drivers for these data-movers and
interface adapters are also generated by SDx. SDx provides many prim-
itives, also called pragmas, to help advanced users guide the process to
generate user-specific data-movers. Interested readers can refer to [159] for
more details.

4.3.1.2 Vivado HLS

FPGA programming is very complicated. In the early days, FPGA program-
mers used to implement their design using very low level HDLs. Two most
well-known HDLs are Verlilog and VHDL. In recent years, people have
made various efforts to develop high-level compilers for FPGA program-
ming. Some of the emerging high-level compilers manage to hide many
of the low-level details of hardware design and enable users to describe
the hardware design using a high-level language, such as C++. Vivado
HLS [160] is an Electronics Design Automation (EDA) tool developed by
Xilinx based on this background.

Vivado HLS is a bridge that allows hardware engineers to extend to
some algorithm acceleration, and software engineers to accelerate their al-
gorithms on FPGA. However, the programming model of HLS is still sub-
stantially different from the programming languages commonly used in
software programming, such as C/C++, Java. In software programming,
the logic and control operations are written sequentially. The HLS C++
code is more like writing a description of a hardware design, which means
that the whole system might not run in the same order that we write the
code. The goal of an efficient system is always to make several circuit parts
work in parallel. The programmer must specify each unit’s input and out-
put variables and the timing schedule between different signals. The differ-
ent mindsets bring significant difficulties for ordinary users, who are usu-
ally more into the software programming mindset, to map their designs
into the FPGA’s streaming architecture. To generate Verilog/VHDL that

72 hardware efast

could produce the correct hardware, you must first picture the hardware
you want to produce.

Some rules can be helpful to generate an efficient hardware design while
writing C/C++ on Vivado HLS. First, although RTL level circuit knowl-
edge is unnecessary, the designer still needs to understand some hard-
ware architectures very well, such as memory partition, memory layout,
interfaces, etc. Second, designers should always have an overall framework
for the whole system. Some critical resources should be controlled. Third,
the designers should fully understand how to read the final design report
produced by Vivado. The report includes a timing report and a resource
report. By reading these reports, the problems/bottlenecks that influence
the final performance can be found, and a solution to solve them should be
obtained after the report diagnosis. Finally, to achieve the best result, i.e.,
high performance and low area, designers should always keep in mind the
hardware architecture and primary resource units the target provides and
use them as a guidance to construct the code.

[161] presents parallel programming on FPGA in detail, and it uses
many applications as examples to show the common optimization tech-
niques. [162] provide an overall review of the common tricks used to trans-
form software code to hardware-friendly HLS code. For readers who are
interested in this part, we suggest referring them to get more details. In
many cases, it is not enough to achieve the desired performance by only de-
pending on HLS directives. Code restructuring is often required. Finding
the best code restructuring requires not only understanding the algorithm
but also having a sense of the architecture that would be generated by the
HLS process [163, 164]. For more details and some optimization tips, see
Appendix A.2.

In the first step, we will show the weakness of using the baseline imple-
mentation as the HLS code directly. In the second step, we will show how
to achieve higher memory utilization by changing the memory layout.

4.3.2 Baseline implementation

To obtain an efficient Vivado HLS design, we start from a baseline imple-
mentation and explain why this implementation is not hardware friendly.
This naive baseline design referred the source code from the GitHub repo2.
Although the very naive baseline design often cannot satisfy the perfor-
mance requirement, it is possible for two usages. First, it might be used

2 https://github.com/uzh-rpg/rpg_corner_events

https://github.com/uzh-rpg/rpg_corner_events

4.3 fpga implementation 73

as the entry point for later optimization. Second, it could be used as the
testbench for final C and RTL simulation. We show the pseudocode of the
baseline implementation in Algorithm 1.

Algorithm 1: EFAST software algorithm (part)

Data: current event e, Surface of Active Events SAE[2][240][180]
Result: corner check result f oundStreak

1 x, y, ts, pol ← e;
2 SAE[pol][x][y]← ts;
3 f oundStreak← f alse;
4 InnerCircleLoop: for i← 0 to 16 by 1 do
5 for streak_size← 3 to 6 by 1 do
6 if streak boundary < neighbors then
7 continue

8 minTS← minimum o f streak;
9 didBreak← f alse;

10 if minTS < pixel not on the streak then
11 didBreak← true;
12 break;

13 if !didBreak then
14 f oundStreak← true;
15 break;

16 return f oundStreak;

To simplify it, we only show the pseudo-code of the original software
implementation to check the inner circle in Algorithm 1. The outer circle
checking is similar to the inner circle. From Algorithm 1, we can see that
there are too many conditional branches. It has three disadvantages. The
first one is that it is not efficient on hardware as it requires hardware re-
sources for all conditional branches even though some of the conditionals
are satisfied very few times, making it difficult to share resources. The
extra control logic is also required to guide the circuit to switch between
different branches. The second disadvantage is that it is not possible to
pipeline the module due to the different hardware structures for different
iterations. The final problem is that it uses a highly complex process to fin-
ish all calculations. This is not good for dataflow optimization and results
in hardware resource sharing difficulties since only one instance is im-

74 hardware efast

plemented on the hardware. Dataflow is a parallel technique in hardware
design; similar to pipeline in the operation level, dataflow runs on a higher
level, often referring to the function level or module level. By comparing
directive dataflow and pipeline, it is clear that it is a function-level pipeline
process while the pipeline directive handles resource sharing at the lower
level. Check Appendix A.2.2 for more details about dataflow. Therefore,
a good architecture of the HLS implementation is that the whole IP con-
sists of several simple processes/functions and is arranged in a producer-
consumer order. A process or function is a Processing Elements (PE) in the
final hardware. Every process might be only responsible for a tiny function.
And the pipeline directive can be used inside the PE, and dataflow could
be used as a system parallel pipeline to connect all PEs. This is why it is
important to make the final system could be guided by the dataflow direc-
tive. To address these problems, we redesigned the algorithm from scratch.
The rewritten structure of the code is very similar to SFAST, which will be
introduced in the next chapter (see Chapter 6).

4.3.3 Memory layout and optimization

How to efficiently use the basic 18K Block RAM (BRAM) to form an ar-
bitrary size memory is a very interesting question in FPGA implementa-
tion. The memory layout of EFAST is 4086x288 bits. These two numbers
(4086 and 288) might look strange because the actual size of DAVIS240 is
240x180, and the bit width of the timestamp used in this design is 32 bits.
Before explaining the details of why we use this memory layout, some ba-
sic BRAM information about Xilinx Zynq FPGA is required. BRAM is an
FPGA IP composed of Static RAM (SRAM). It is a memory block which
is designed to be used in many different configurations. The Zynq series
FPGA memory resource is the same as the Virtex7 series. The BRAM in
Xilinx 7 series FPGAs stores up to 36 Kbits of data and can be configured
as either two independent 18 Kb RAMs or one 36 Kb RAM. Each 36 Kb
block RAM can be configured as 64K x 1 (when cascaded with an adjacent
36 Kb block RAM), 32K x 1, 16K x 2, 8K x 4, 4K x 9, 2K x 18, 1K x 36, or
512 x 72 in dual-port mode. Each 18 Kb block RAM can be configured as
16K x 1, 8K x2 , 4K x 4, 2K x 9, 1K x 18, or 512 x 36 in simple dual-port
mode [165]. The BRAM can be reshaped using an array_reshape directive.

An example of the array_reshape is illustrated in Table 4.1. The choice
of array_reshape is a trade-off. If this value is a power of 2, the address
generator consumes less resources since it can be achieved simply by shift

4.3 fpga implementation 75

Reshape

factor

Memory layout

(width*height*depth)

18K Block

RAMs

Utilization

(%)

1 240*180*4 16 58.59

2 240*90*8 16 58.59

4 240*45*16 16 58.59

5 240*36*20 20 46.88

6 240*30*24 12 78.13

8 30*180*32 16 58.59

9 240*20*36 18 52.08

10 240*18*40 20 46.88

12 240*15*48 12 78.13

15 240*12*60 15 62.50

16 15*180*64 16 58.59

18 240*10*72 18 52.08

20 240*9*80 20 46.88

24 10*180*96 11 85.23

30 240*6*120 14 66.96

48 5*180*192 11 85.23

36 240*5*144 16 58.59

90 240*2*360 10 93.75

120 2*180*480 14 66.96

180 240*1*720 20 46.88

240 1*180*960 27 34.72

Table 4.1: How array_reshape changes the memory layout and utilization of
FPGA BRAMs for a memory of size 240x180x4. The column of uti-
lization represents the real occupied percentage of the memory in the
whole BRAMs. The red value means that if we set reshape factor 90,
it generates a memory layout which only consumes 10 BRAMs and
therefore has the highest memory utilization.

operations. Otherwise, a multiplier or even a modulus operator would be
inferred. In Table 4.2 we show an example that sets the reshape factor to

76 hardware efast

Reshape

factor

Memory layout

(width*height*bitsPerPixel)

18K Block

RAMs

Utilization

(%)

1 256*256*4 16 58.59/88.89

2 256*128*8 16 58.59/88.89

4 256*64*16 16 58.59/88.89

8 256*32*32 16 58.59/88.89

16 256*16*64 16 58.59/88.89

32 256*8*128 15 62.50/94.81

64 256*4*256 15 62.50/94.81

128 256*2*512 15 62.50/94.81

256 256*1*1024 29 32.32/49.04

Table 4.2: How it changes the memory layout and utilization of FPGA BRAMs
when we expand a memory of 240x180x4 to 256x256x4. The red value
means that if we set reshape factor to 32, 64 or 128, it generates a
memory layout which consumes the least BRAMs and therefore has
the highest memory utilization. The utilization has two parts, the first
value has the same meaning as Table 4.1. The second value means the
utilization of the expanded memory.

power values of 2. However, to apply the directive correctly, the width
and height of the memory are expanded from 240x180x4 to 256x256x4. If
we check the utilization, it consists of two values. The first value calcu-
lates the utilization of the original memory, and the second value means
the utilization of the expanded memory. It is evident that the expanded
memory used fewer logic resources and could adapt to higher resolution
applications. However, the highest utilization for the original memory is
only 62.5% in Table 4.2 which is far less than 93.75% in Table. 4.1. There-
fore, the choice of array_reshape is a trade-off between logic resources and
memory utilization.

A value that is easy to calculate with subtraction and shift register should
be chosen to save resources. For example, we choose 448 here because 448

= 512-64. Thus, if some number x is multiplied by 448, it can be calculated
by x*512 - x*64, and it means that we can use subtract and shift registers to
obtain the multiplication result. The reason we use 454 here is for memory
utilization because the maximum allowed number here is 455.

4.4 experimental results 77

1 #pragma HLS array_partition partition variable=A cyclic factor=4

Listing 4.1: An array_partition example.

An array of HLS is implemented using block RAMs which can at most
have two read ports. By partitioning the array, we have independent read
ports for each partition, which makes parallelization possible. That is the
directive array_partition used for. This directive results in implementing
several separate memories. As shown in Listing 4.1, this pragma would
guide the compiler to generate four separate memories from array A, each
of which contains a portion of the array contents. We can think that this op-
timization provides four times the number of memory accesses each clock,
but this is only possible if each memory access can be assigned to precisely
one of the memory partitions. For example, a random array access A[i] for
arbitrary i could access data stored in any partition, while an array access
A[4*i+2] would only access data in the third partition. More complex logic,
often called memory banking, can resolve a number of independent ac-
cesses A[i], A[i+1], A[i+6], A[i+7] and perform these accesses in the same
clock cycle [161]. Memory banking requires additional crossbar logic to
route these simultaneous accesses in a circuit since i can be arbitrary. At
compile time, we can guarantee that the constant offsets of these accesses
will hit different banks, but the actual banks cannot be determined until
it is known. However, more complex logic could implement stalling logic,
enabling a set of unrelated accesses to complete in a single clock cycle if
they hit different banks. If all accesses happen to hit in the same bank, then
the stalling logic can delay the progress of the circuit for several clocks un-
til all accesses have been completed. Lastly, multiport architectures have
been designed that can allow a number of guaranteed access completions
every clock cycle [166, 167] by replicating data across normal memory on
one or two physical ports.

However, using many ports also makes the logic more complicated and
thus consumes more logic resources. Similar to array_reshape, it is also a
trade-off between memory utilization and logic resources.

4.4 experimental results

4.4.1 MiniZed platform

Fig. 4.3 is the architecture of the whole system. The system consists of
two parts: one is the software part that is implemented on the Processing

78 hardware efast

DVS

PS
ARM

PL
HW EFAST

Xilinx Zynq xc7z007s

DDR3

MiniZed

libcaer
libcaer

Bus

DMA

Figure 4.3: System Architecture

System (PS) with its ARM Cortex A9, and the other is the hardware Pro-
grammable Logic (PL) part which is a Virtex FPGA. Software on the ARM
is mainly used to communicate with the DVS and send the result to the
PC. We use libcaer to acquire data from the camera, but libcaer depends on
libusb, requiring Linux support. A basic and small Linux system is then
compiled and run on the ARM. Thanks to Xilinx’s Petalinux tool, a Linux
kernel for this specific hardware could be compiled efficiently. Data ex-
change between the PS and PL is based on DDR3. Direct Memory Access
(DMA) is used to control data access between PL and DDR3. They are
implemented as different types of data-movers according to the interface
or set by the directive manually, including AXIFIFO, AXIDMA_SG, and
AXIDMA_SIMPLE [158].

Detected corners cannot be rendered on MiniZed because no interface
on the MiniZed can connect to the external display. We send the result to
a laptop by WiFi connection using a dedicated router for the laptop and
MiniZed to reduce the transfer latency. The compiled Linux kernel also
has built-in driver support for the WiFi chip on the MiniZed board. The
laptop hosts a UDP server for the display of the corner detector and DVS
data. The laptop is only used for rendering results and providing power.

4.4 experimental results 79

4.4.2 Server setup

The setup of the experiment is shown in Fig 4.4. It consists of four parts:
a DAVIS240C, a MiniZed, a router, and a host PC. DAVIS’s event packet
data is sent to the ARM and stored in the onboard DDR3. The PL reads
the data from DDR3 and perform the corner detection and sends the result
back to the DDR3 memory. Finally, the corner event stream is sent to the
host PC for rendering by the PS via WiFi in a local area network provided
by the router.

Figure 4.4: Setup of the experiment

4.4.3 Quantitative result

We use the baseline C++ software version as the testbench for RTL simu-
lation. Vivado HLS generates the test vectors based on the input and con-

80 hardware efast

verts them to the Verilog test file automatically. After the RTL simulation
is validated as correct, we deploy it to the MiniZed.

To validate our method’s accuracy, we compare it with the software ver-
sion. We used the original EFAST GitHub 3 software code as the reference
implementation. Both the software version and the hardware version ran
on the MiniZed. These two methods use the DAVIS240’s live event stream
as the input and generate their own output corner event streams separately.
Then we compared the hardware results with the software result. We found
that our hardware implementation has the identical result to the software
implementation. Thus the hardware EFAST has the same accuracy as the
software EFAST.

We measured the processing time and power consumption on the MiniZed
and compared it with EFAST running on a Ubuntu 16.04 PC with a quad-
core 2.3GHz CPU (i5-8259U). EFAST on the PC used the implementation
of [18], which runs inside Robot Operating System (ROS). It can output
the average processing time per event after every packet is processed.

For the power consumption measurement, we use a power meter for
MiniZed and the software tool powertop4 for the laptop. We first measured
the static power without running EFAST on both of them. After starting
the algorithm, the differential value of the power meter and powertop is
the power consumption resulting from EFAST.

Resources BRAM_18K FF LUT

Total 57 3038 6046

Avaiable 100 28800 14400

Utilization 57% 10% 43%

Table 4.3: Resources comsumption of all the modules

The resource utilization percentage of every module and the total num-
ber of resources consumed are shown in Table 4.3. It is seen that most
resources in this IP are used by memory. This result is still based on the
TI with only one polarity of event. The bit width number of the timestamp
value here used is 32 bits. If this IP is integrated with other IPs that also

3 https://github.com/uzh-rpg/rpg_corner_events
4 https://github.com/fenrus75/powertop

https://github.com/uzh-rpg/rpg_corner_events
https://github.com/fenrus75/powertop

4.4 experimental results 81

require block memory on the MiniZed, the possible solution would be to
decrease the bit width number of the timestamp value.

Platform FPGA PC Comparison

Processing time/us 0.1-0.2 0.6-30 >6x faster

EFAST power/W 0.9 5 5x more efficient

Total power/W 3.7 17.5 5x more efficient

Table 4.4: Comparison between EFAST on FPGA and PC

Results are shown in Table 4.4. There are three metrics: processing time,
EFAST power, and total system power. EFAST power only takes into account
the EFAST. Total power counts all the parts (DAVIS and MiniZed, or laptop).
EFAST running on this small platform is more than 6× faster than running
on PC and requires 5× less power consumption. Therefore, the FPGA im-
plementation achieves a power× speed improvement product that is more
than 30× higher in FPGA than PC. With a 100MHz clock, the processing
time for each event is either 100ns or 200ns (depending on the local con-
text), which means that this system handles up to 10M events per second
which are sufficient for most real applications. The EFAST implementation
utilized 43% Lookup tables (LUTs), 10% Flip-Flops (FFs) and 57% Block
RAMs on the MiniZed.

4.4.4 EFAST performance in dark environments

To test EFAST’s performance in a very dark environment, we did an ex-
periment where an iPhone smartphone screen light was used as the only
light source in a darkened room at night. The smartphone was displaying
its normal home screen. The blinds were closed on the window and the
computer monitor was shut off during the data capture. The average dis-
tance of the scene from the smartphone screen averaged about 3m. The
DVS used a lens with an aperture ratio of f/1.3. A light meter was not
available, but I estimate, based on my inability to read printed text under
these conditions, that the scene illumination was under 1 lux.

The qualitative result is shown in Fig. 4.5. It is obvious to see that even
though the event slice generated in a dark environment is very sparse and

82 hardware efast

Figure 4.5: Two light conditions are used to test EFAST performance. One is the
normal indoor condition in the night as shown in the left bottom,
the other is the light condition which is only shined by an iPhone
XR screen as shown in right bottom. The top row from left to right
are the EFAST results. White points overlay on the event slices are
the detected corners.

not as clear as the normal condition, EFAST can still detect valid corners
and thus proves its robustness in the low light environment.

4.5 summary

In this chapter, we presented a real-time EFAST corner detector for an
event-based camera. We used SDSoC as our development platform and
provided a detailed description of this platform and the design flow. Ad-
ditionally, we also presented the disadvantages of the software baseline

4.5 summary 83

implementation and how to achieve the highest memory utilization using
an HLS code transformation. The EFAST IP could process up to 10MHz
event rate. It could serve as a useful preprocessing module for many CV
problems requiring real-time performance such as OF, VOD and SLAM.
We released this IP for free noncommercial use (see Appendix A.7).

We implemented EFAST on the MiniZed. As we discussed in Sec. 4.4.3,
if we want to integrate more IPs, the BRAM resources on the board would
be not enough. The next chapter will introduce a customized powerful
hardware platform DAVIS346Zynq.

5
H A R D WA R E C A M E R A P L AT F O R M D AV I S 3 4 6 Z Y N Q

"Computers are useless. They only give you
answers."

— Pablo Picasso, 1968

5.1 introduction

In Chapter 2, we presented a hardware implementation of BMOF on an
Opal Kelly XEM6310MT development board. In Chapter 4, we used a
MiniZed FPGA as the hardware platform. The hardware BMOF does not
connect to a DVS/DAVIS sensor directly; its data is from a sequencer
board which receives jAER files as input. The MiniZed is connected to
a DAVIS240C via USB and has limited resources. Constrained by their lim-
ited resources, both of these platforms are not suitable for implementing
a more complicated optical flow estimator and a corner detector and even
more IPs in the future. It is thus important to select a new hardware plat-
form which we call the DAVIS346Zynq camera platform.

So far, existing commercial event cameras such as DAVIS240C or DAVIS346

provide practically no on-board computing (the USB microcontroller actu-
ally has no access to the data, which flows directly through the USB IC’s
endpoint FIFOs). They have small CPLDs or FPGAs on their boards. These
chips usually have limited resources. Therefore, they can only handle the
AER protocol and event timestamp generation [168, 169]. Data processing
is limited to simple denoising.

One possible solution is using external computing resources. These em-
bedded event-based systems consist of a DVS/DAVIS camera and a power-
ful embedded computer board (most of the MCUs on the board are ARM)
such as Raspberry Pi or XODROID, etc. The camera is connected to the
computing platform via USB. However, this approach has limitations: First,
USB transmission introduces latency and more power consumption, typi-
cally at least 1/8 ms latency and power consumption of about 500 mW.
Second, many reports show that power consumption of data movement is
the highest in the whole system. Third, USB has a bandwidth bottleneck.

The other solution is to increase the onboard computing resource or the
near-sensor computing capability. The concept of near-sensor processing

85

86 hardware camera platform davis346zynq

means that raw data is not transmitted outside on USB directly. There-
fore, it does not suffer from the USB bandwidth bottleneck. The following
two aspects also make near-sensor computing increasingly urgent. On one
hand, DVS/DAVIS’s resolution has increased from 128x128 to the latest
1280x960 [170], which require more bandwidth for raw data transferring.
On the other hand, event cameras are widely used in high-speed applica-
tions such as robotics. Therefore, high throughput and low latency while
compact and low power consumption methods or algorithms are required.

By placing a powerful computing unit along with the sensor, the raw sen-
sor data could be processed immediately, reducing the latency and power
consumption further. Processed output data such as corner locations or OF
results are far smaller than the raw data, which decreases the bandwidth
requirement. Thus, we design a more powerful camera than the state-of-
the-art. It is based on Xilinx SoC Zynq 7100. Since the sensor used in this
design is DAVIS346, the camera is called DAVIS346Zynq. Sensors send the
data to FPGA via AER, and FPGA returns the result data to the outside for
rendering or further processing. Raw data is sent to be processed onboard,
such as the hardware IPs on our platform. Processed data that includes
more specific information such as corners or OF results are then sent out
via USB.

DAVIS346Zynq targets not only the traditional CV processing but also
the deep learning hardware accelerator. The algorithms we introduced in
the previous chapters, including ABMOF, EFAST, SFAST which will be
introduced in Chapter 6, would use this platform as the test platform.

This chapter is organized as follows: Sec. 5.2 reviews event-based com-
puting platforms. Sec. 5.3 introduces the details of this DAVIS346Zynq plat-
form and Sec. 5.4 concludes this chapter.

5.2 prior development boards for event-based cameras

Robotic and Technology of Computers Lab at the University of Seville de-
signed the first development platform for event-based cameras in [171].
In [171], they designed three AER tools mainly for debugging, including a
sequencer (PCI to AER), a mapper, and a monitor. The sequencer is used to
generate events from synthetic data by PC. The mapper is used for event
stream remapping, and the monitor is used to display the event stream
on some external device such as a VGA screen. At first, they developed a
board based on the PCI interface. The PCI-AER is not very convenient as
a portable device, so they develop a new board based on USB and call it

5.2 prior development boards for event-based cameras 87

USB-AER board. PCI-AER board only supports sequencing and monitor-
ing, while USB-AER could support all these three modes. The USB-AER
board is featured with a Spartan-II 200 Xilinx FPGA and a 512K*32 12ns
SRAM memory. The board uses a Silicon Laboratories C8051F320 micro-
controller to implement the USB and the MMC/SD interface. A simple
VGA monitor interface is also provided to allow the board to act as a mon-
itor (frame grabber) [171]. By configuring the FPGA with different logic
programming files, it could be set to several modes [171]:

• Mapper: 1 event to 1 event and 1 event to several events.

• Monitor (frame-grabber): using either USB or VGA as output. For the
VGA output, there are two possibilities: B/W VGA, using the VGA
connector of the board. And Gray VGA, using a VGA-DAC board
connected to the out-AER connector of the board.

• Sequencer: generate live event streams from software.

• Datalogger: allows to capture sequences of up to 512K events with
timestamps and send them to the PC offline through the USB bus.

• Player: to play up to 512K events with their timestamps.

The main disadvantage of this board is that the RAM is too small (only
2MB), which can only be used for a short recording. Besides PCI-AER and
USB-AER boards, they also developed an AER-Switch board. AER-Switch
board supports 1 to 4 or 4 to 1 AER interface conversion.

In a master project, Raphael Berner designed a useful USBAERmini2
board whose IP served as the basis for all the subsequent logic used in
DAVIS cameras [138]. The mini USB-AER board is a simplified version of
the standard USB-AER board. It does not have FPGA and MMC/SD on
board. This means that the board’s function is in the software implementa-
tion, making it slower than the standard USB-AER board. This simple and
low-cost board was used in many INI projects subsequently as a handy
way to monitor and sequence events.

A comparison among the above development platforms for the event-
based camera is presented in Table 5.1.

In 2015, [173] designed a new FPGA-based platform for event process-
ing. This hardware platform featured a Lattice ECP3 FPGA with 17K logic
gates, an ADC, an IMU and a Cypress FX3 USB 3.0 Super-Speed microcon-
troller. They also provided the hardware implementation of two low-level
algorithms on this platform. The two algorithms consist of a time-spatial

88 hardware camera platform davis346zynq

Features
Debugging USB AER Tools

USBAERmini2 [138] USB-AER [171] AER Opal Kelly board [172]

Capacity N/A 2M bytes 128M bytes

Event width 16 bits 16 bits 16/32 bits

Monitor 5Mevps (Peak 6Mevps) N/A 6.5Mevps (Peak 8Meps)

Player N/A 3.75Mevps 6.5Mevps

Logger N/A 12Mevps 20Mevps

Power (mA) 60mA 30mA 32mA

Table 5.1: Comparison between different development boards for event-based
camera.

correlation denoise algorithm and a simple tracking algorithm. And they
use a USB3.0 interface for event transfer to the laptop/PC.

In 2016, [172] presented a new AER Opal Kelly board that integrated
sequencing, logging, monitoring, playback, and merging, forming an all-in-
one package. Additionally, the onboard memory was increased. In 2017, [174]
reviewed the computing platforms for neuromorphic vision sensors, and
provided a comprehensive survey of neuromorphic computing platforms.

In 2019, [175] gave a detailed report on the FPGA implementation of
several event-based algorithms that consist of Background Activity for de-
noising, Mask Filter for hot pixel removing, Rectangle cluster for track-
ing, and Object Motion Detection on two FPGA platforms. These two plat-
forms are Xilinx FPGA-based AER-Node [176] and Lattice FPGA-based
DevBoardUSB3. And they showed that the hardware implementation is
up to 570% faster while the power consumption is 5x more efficient than
the software implementations in jAER running a 2.2GHz i7 CPU. All hard-
ware interfaces of these algorithms on AER-Node are compatible with the
AER protocol, but DevBoardUSB3 uses a word-serial protocol.

All previous boards/platforms suffer from either small memory stor-
age [171] or a low/middle-grade computing unit [172, 173, 175, 176], this
work DAVIS346Zynq uses 512MB Double Data Rate (DDR)3, 1GB flash and
the highest grade SoC of Xilinx Zynq family.

5.3 davis346zynq 89

Power (AXP228)

UART

GPIO
Extension

SD Card

DDR3:
2 * H5TQ2G83CFR-

H9C (2Gb)

MB to DB
interface

AER From DB

Interfaces

Programmable
Logic (PL)

Processing
System (PS)

Xilinx Zynq 7100

NAND Flash:
1 * MT29F8G08ADA-

ITX (8Gb)

Memory and flash

USB PHY

VGA DAC

USB 2.0

VGA

To jAER

To Screen

Figure 5.1: Hardware block diagram of the mother board on DAVIS346Zynq. It
mainly consists of the following parts: power, interfaces, SoC(PS and
PL), and memory.

5.3 davis346zynq

My DAVIS346Zynq was manufactured with a 6-layer PCB and assembled at
a cost of about $3k for 4 samples, it holds a DAVIS346 sensor chip [177],
the most powerful SoC FPGA of the Xilinx Zynq 7000 family (XC7Z1001),
a USB2.0 high-speed PHY (USB3320C), 512MB of H5TQ2G83CFR− H9C
Dynamic RAM (DRAM), an Secure Digital (SD) card slot, the power mod-
ule, and 1GB of MT29F8G08 NAND flash. This Zynq 7100 SoC has a
Kirtex-7 FPGA on the PL and a dual-core 800 MHz ARM Cortex-A9 on
the micro-processor PS.

This section introduces the whole system architecture first and then de-
scribes the power circuit, DDR3 controller, flash, GPIOs, and customized
circuits, including DAVIS controller, VGA, and USB.

1 Costing about $500

90 hardware camera platform davis346zynq

5.3.1 Hardware architecture

DAVIS346Zynq includes two parts: Mother Board (MB) and Daughter Board
(DB). The hardware architecture of this camera’s MB is shown in Figure 5.2.
The DB uses the existing DAVIS346 camera’s DB. The MB connects to the
DB through MB to DB interface. AER data is sent to the FPGA, and the
AER state machine in the FPGA PS processes it and sends it to other IPs for
further processing. The PS part is mainly responsible for interface control,
memory access, and human-machine interaction.

By providing SD card access, recording the live stream is supported by
DAVIS346Zynq. Previously, the DAVIS240 or DAVIS346 cannot record data
by itself. When using them to record data, another embedded computer
such as Raspberry Pi running with cAER or a bulky laptop running with
jAER is required. DAVIS346Zynq can record data by itself.

It also supports a VGA display. With VGA support, we do not need
to connect the camera to the PC first and then use jAER to visualize it
while debugging. It can show the generated DVS event video on a monitor
very conveniently. This built-in VGA circuit render function makes it more
independent.

512MB DDR3 memory on the board makes it possible to run Linux sys-
tems on the board. Some system-level functions or packages, such as ROS,
are then possible to be deployed.

The customized USB 2.0 IP is entirely written in Verilog and supports
the high-speed mode. For regular USB controller ICs such as Cypress
FX2/FX3, it integrates an ARM and the USB circuit, so the software is
required to respond correctly to the USB host. However, in this design, all
functions are implemented in the hardware circuit, and thus no PS inter-
vention is required.

Other features include 1 UART for debugging, several buttons and LEDs
as simple human-machine interfaces, and 1GB Nand flash to store some
start-up applications and record the live stream online.

The schematics of this design and the FPGA code, including USB and
SPI master for DVS configuration, are released as an open-source project;
see Appendix A.7.

5.3.2 Power and storage circuits

The power circuit. The power circuit is a core part of the system. It func-
tions as the "heart" of the board. This circuit should be very stable. Xilinx

5.3 davis346zynq 91

AXP228

Power jack

USB

Li-battery

1.0V_PS

1.0V_PL

1.8V_PLL
1.8V_AUX

3.3V_IO

DB_1.2

DB_1.8
DB_3.3

1.5V_DRAM

Figure 5.2: Power circuit block in DAVIS346Zynq.

Zynq 7000 series requires multi-power supply channels, including 1.0V for
PS and PL core circuit, 1.8V digital power for the auxiliary circuit of PS and
PL, 1.8V analog power for PLL circuit on the chip, 3.3V for IO, and 1.5V for
DRAM controller on SoC and memory chip. The power-on sequence is im-
portant. The recommended power-on sequence for the PS part is the core
circuit, then auxiliary and PLL circuits together, then the I/O supplies to
achieve the minimum current draw and ensure that the I/Os are 3-stated at
power on [178]. The recommended power-on sequence for PL is similar to
PS. To satisfy the power requirement for the board, we choose AXP228 as
the power supply chip. AXP228 is a highly integrated Power Management
IC targeting applications that require multichannel power conversion out-
put designed by XPower company. It accepts three types of power input:
external input from a power jack, USB power input, and Li-battery power
input. The Li-battery power input gives the system more portability than
the regular event-based camera. The accepted input voltages range from
−0.3V to 11V. For output, it supports at most 20 channels power outputs,
including 6 channel bucks. The maximum output current for these 6 bucks
ranges from 1.8A to 6A. All voltages can be dynamically adjusted by pro-
gramming via I2C protocol. The power sequence can also be programmed.
To ensure the security and stability of the power system, it provides multi-
ple channel 12-bit ADCs for voltage/current/temperature monitor and in-
tegrates protection circuits such as over-voltage protection, under-voltage
protection, over-temperature protection, and over-current protection. Be-
sides, AXP228 features an intelligent power select circuit to transparently

92 hardware camera platform davis346zynq

choose the power path between USB and Li-battery. The control and status
registers residing on the chip can be easily accessed by I2C bus. AXP228
proves it a very suitable power chip for DAVIS346Zynq.

DDR3 controller Xilinx Zynq 7000 SoC supports DDR2, DDR3, and
DDR3L devices and consists of three major blocks: an AXI memory port
interface, a core controller with transaction scheduler, and a controller with
digital PHY [179]. Thanks to the integrated DDR controller, we do not
need to take care of the complicated communication protocol too much.
However, there is one thing that is essential when designing the circuit: It
is important to ensure the distance from the memory chip to the SoC is
as close as possible since the clock on the bus is 666MHz. To improve the
anti-interference while running at this high frequency, the physical layer of
the bus uses differential lines for transmission. Therefore, the wire lengths
for all data signals, clock signals, and control signals should be identical
(see Sec A.6). In this work, DDR3 is the 2x2 Gb(512MB)H5TQ2G83CFR
manufactured by Hynix.

GPIOs PS has limited IO pins, and they are called multipurpose IOs. All
IO pins can be used as a general-purpose IO pin and configured as a ded-
icated function pin. The dedicated functions include UART, SPI, SD Card,
NAND flash and Ethernet, etc. But specific care should be taken when
using an SD Card as the boot device. In this case, the SD memory card
must be connected to SDIO areas belonging to pins 40-47. For more details
about IO and boot device configuration, we refer the readers to [179]. The
IO configuration used for this design includes 1 SD Card, 1 NAND flash,
1 USB, and 2 UARTs.

Flash memory Flash memory is a critical device for the system because
the SOC does not provide large on-chip non-volatile storage. All configura-
tion and applications or operation systems must be stored in flash. In this
work, we use the NAND flash as our boot-up device. Some rules should
be obeyed if using it as the boot-up device.

The first rule is to tie the bootstrapping pins in the correct state. These
pins affect boot configuration options. Immediately after the reset is fin-
ished, the SoC samples the bootstrap pins and optionally enables the PS
clock PLLs. Then, the PS begins executing the BootROM code in the on-
chip ROM to boot the system [179]. After executing BootRom code, the
hardware will handle the system control to the flash device. Which flash
device would be selected is according to the strapping pin hardware sam-
pling. Therefore, it is essential to tie the strap pins to the correct value to
make the flash chosen as the boot device.

5.3 davis346zynq 93

The second rule is to choose a compatible flash. A flash could be read
and written by the SoC during normal operation, but it might not be com-
patible with the boot operation. It is important to check if the flash used is
officially supported. Supported flash device list can be checked on Xilinx
website2.

Two common types of flashes are QSPI flash and NAND flash. QSPI
flash has fewer wires and thus more convenient, but the memory density
is often low. NAND flash has higher memory density but has more pins
and complicated protocol. For DAVIS346Zynq, we selected NAND flash as
our boot device and chose MT29F8G08A manufactured by Micron. This
flash is an 8Gb (1GB) flash, and the data bit width is 8bit.

5.3.3 DAVIS controller

5.3.3.1 AER protocol

AER [169, 180] is an asynchronous communication protocol used to trans-
fer data between two bio-inspired systems/devices/chips. It was first pro-
posed by Sivilotti [180] in his Ph.D. thesis in 1991. AER is inspired by the
transmission of neural information in a biological neural system by an elec-
trical spike. Currently, it is widely used in the neuromorphic engineering
community for the spiking sensors and SNNs, such as DVS, DAS [181] and
Dynapse [182, 183].

Two sets of signals are used in this protocol: data signals, and the asyn-
chronous handshaking signals. Data signals are 11 bits for DAVIS346 sen-
sor chip. All current iniVation DAVIS sensors employ a word-serial data
format, meaning that the x(column) and y (row) addresses can not output
concurrently, but separately one after the other. The Most Significant Bit
(MSB) of the data is used to distinguish between row address and column
address. The sensors employ a row-wise readout scheme, so a y address
will always be followed by a series of one or more x addresses. The col-
umn address also contains the polarity information bit. The handshaking
consists of two signals: REQ and ACK.

5.3.3.2 Hardware architecture

The hardware architecture of the DAVIS controller is shown in Figure
5.3. It started from the logic developed in EU SeeBetter and Visualize
projects [169, 184]. It consists of several state machines, including DVS

2 https://www.xilinx.com/support/answers/50991.html

https://www.xilinx.com/support/answers/50991.html

94 hardware camera platform davis346zynq

DAVIS
daughter
board

USB

FIFO
to

SPISPI master

DVS state
machine

APS state
machine

IMU state
machine

multiplexer
state

machine

AER

FPGA

DAVIS controller
data path

config path

Events
data

APS
 data

IMU
 data

PC

Figure 5.3: The hardware architecture of the DAVIS controller.

Idlestart Differential
RowCol

Capture
Row Write Row

Write ColCapture
ColAER AckFIFO Full

REQ=1
& FIFO not full IsRowAddr = 1

Not fullREQ = 1 &
FIFO full

FIFO full

REQ=0 IsRowAddr = 0

Figure 5.4: DVS state machine.

state machine, APS state machine, IMU state machine, and multiplexer
state machine. All these state machines could be configured by an SPI mas-
ter. A PC can control all state machines via the USB interface. The USB
is also implemented on FPGA in Verilog. The details of the USB part are
shown in Sec. 5.3.5. DVS state machine, APS state machine, and IMU state
machine read the data output from the DAVIS DB. The multiplexer state
machine selects the data source according to the hardware configuration.
It also generates the timestamps, packs the events/APS/IMU and times-
tamps in a specific format, and sends them to the USB controller.

5.3 davis346zynq 95

The state transition of the DVS state machine is presented in Figure
5.4 [184]. It is mainly used to respond to the AER protocol correctly. In the
Idle date, both REQ and ACK are deasserted. When the sender asserts the
REQ line, the state machine checks if the event data FIFO is full. If it is
full, then this data will be skipped and change to FIFO Full state. It can
only jump back to the Idle state unless the FIFO is not full again. Since
the row address and column address share the same bus, there is a state
called Differential RowCol. It changes to the read row address and column
address according to the MSB. The Capture Row andWrite Row states are
used to read and store the row address data to the FIFO. Similarly, Capture
Col and Write Col are used to read and store the column address data to
the FIFO. AER Ack confirms having read the data by asserting the ACK
line. It would jump back to Idle if there is no more data request.

Maximum event rates. We estimate the maximum event rate according
to the DVS state machine and the multiplexer state machine. We consider
the two most extreme cases in which events are triggered simultaneously:
i) they are on the same row; ii) they are not on the same row. First, they
are in the same row. The events would be generated in order as following:
timestamp, y1, x1, x2, x3..., xn. In this case, there are n events generated, and
all these three events have the same row address y1. The interval between
the first two events is 5 cycles. The intervals between all other events are
8 cycles. Second, they are from different rows. The events would be gener-
ated in the order: timestamp, y1, x1, y2, x2, ..., yn, xn. In this case, there are n
events generated, and they are from different rows. The intervals between
every two events are 20 cycles. All state machines are running at 100MHz.
Therefore, in the first case, the maximum event rate is 20Meps, and in the
second case, the maximum event rate is 5Meps.

5.3.4 VGA for events rendering

VGA is a video standard proposed by IBM in 1987. It is mainly used for
transferring a PC’s graphics card video signal to an external monitor. It
is widely used in not only CRT devices but also modern LCD monitors.
Different from the latest HDMI, VGA uses an analog signal. Early neuro-
morphic chips directly drove a multisync VGA monitor to display their
output, e.g., the retina, motion chip, stereo chip, or audio chip pixel array
state [185]. To make the DAVIS346Zynq could visualize the event stream
more conveniently, we implemented a VGA inteface. The details of the
VGA protocol and timing diagram are shown in Appendix A.3.

96 hardware camera platform davis346zynq

5.3.4.1 The schematic of VGA

;

Figure 5.5: The VGA schematic in Vivado.

Fig. 5.5 shows the VGA schematic. It consists of four blocks: EventStream-
ToConstantCntFrameStream, AXI Video Memory Access, Video Timing Controller
and AXI4-Stream to Video Out.

EventStreamToConstantCntFrameStream is used to convert the event stream
to a fake frame stream for rendering. They are accumulated in a constant
duration. The default value is 10ms, but it can be changed by register set-
ting. It supports three display modes: event slice mode, TI mode, and cus-
tomized mode. The event slice mode sets the event count as the pixel value.
This mode is the default display mode. The TI mode sets the most re-
cent timestamp as the pixel value. The user could also set the customized
data such as optical flow results as the pixel value. Three modes could
be switched at any time. This EventStreamToConstantCntFrameStream IP is
written in Vivado HLS C++ code. The source code is released on github3.

Xilinx provides the other 3 IPs. AXI Video Memory Access is a DMA that
copy the frames to the DDR3. There is a specific area on DDR3 used for
display memory. It outputs the data in a AXI4 stream format. Video Timing
Controller provides the VGA timing as we shown in Fig. A.7 and Table A.1.
It supports a variety of resolutions. The configuration window of Video
Timing Controller is shown in Fig. 5.6. We used 800× 600 as our resolution.
AXI4-Stream to Video Out generates the HS and VS according to the timing.
The data is sent to the VGA DAC board for digital-to-analog conversion.

3 https://github.com/wzygzlm/hls_abmof/tree/master/EventStreamToFrameStream

https://github.com/wzygzlm/hls_abmof/tree/master/EventStreamToFrameStream

5.3 davis346zynq 97

;

Figure 5.6: VGA timing settings for Video Timing Controller IP.

5.3.5 Reimplementation of the USB controller

USB is a modern serial bus for communication between PC and its pe-
ripherals proposed by Intel, IBM, Microsoft, etc. It is widely used in PCs,
phones, and other embedded devices and has almost become a standard in-
terface because of its plug-and-play and few wires connections. Although
the PS on the SoC has a built-in USB controller, it does not work on the
board due to some mistakes in the schematic. Therefore, in this work, we
reimplemented a USB 2.0 controller circuit on FPGA. It supports the USB
2.0 high-speed mode (480Mbit/s). Compared with the existing USB so-
lution (Cypress FX2) on DAVIS240C which uses software to handle the
complex enumeration process, DAVIS346Zynq responds by the circuit auto-
matically and does not require the software’s intervention, which makes it
more convenient. This effort took quite a significant amount of time. The

98 hardware camera platform davis346zynq

groundwork of our design is an open-source project Ultraembedded4. For
the details of the USB 2.0 protocol, see Appendix A.4.

UTMI

ULPI ULPI

UTMI

Hi-Speed
transceivier

usb_cdc_core
D+

D-

FPGA
(7z100)

USB PHY
(USB3320C)

ULPI
interface

ulpi_wrapper

USB IP

EP0 protocol
controllerEP2

DVS status and
configuration

Events data

Figure 5.7: The hardware architecture of the USB device.

5.3.5.1 Hardware architecture

The hardware architecture of the designed USB device is shown in Fig-
ure 5.7. It consists of four parts: USB protocol controller, USB Transceiver
Macrocell Interface (UTMI) [186], UTMI+Low Pin Interface (ULPI) [187]
and USB PHY. The first three parts are digital circuits, but the PHY circuit
is a mixed-signal circuit, and thus we implemented the first 3 parts on
FPGA, and USB PHY is implemented using a small development board.
The small development board is also shown in Figure 5.8. The board used
here is USB3330 accessory board designed by waveshare5. This board acts
as the USB high-speed external PHY device for the ULPI interface and
features USB3300. ULPI is a reduced version of UTMI because UTMI has
more than 50 pins which makes it not convenient to communicate with
other chips, but ULPI has only 12 pins. That is the reason why a ULPI
wrapper is added at the bottom of the USB IP. From Figure 5.7, we can
see that the protocol controller and UTMI are implemented together as
usb_cdc_core and the ULPI is implemented in another independent IP
ulpi_wrapper.

4 https://github.com/ultraembedded/core_usb_cdc
5 https://www.waveshare.com/wiki/USB3300_USB_HS_Board

https://github.com/ultraembedded/core_usb_cdc
https://www.waveshare.com/wiki/USB3300_USB_HS_Board

5.3 davis346zynq 99

The protocol controller is responsible for implementing the USB protocol.
This work used two endpoints: endpoint 0 (EP0 in Figure 5.7) for sending
USB/DVS configuration and reading USB/DVS status; endpoint 2 (EP2 in
Figure 5.7) for sending event data to the PC. However, in the original im-
plementation, it only supports standard requests, which means it is easy to
send the configuration to the USB device and read the USB’s status. How-
ever, configuring DVS or obtaining status from DVS is impossible; we thus
add the vendor request support for the endpoint 0 to the original design.
Since this device only supports the FIFO interface while the DVS configu-
ration supports only the SPI interface, a module called USBFifoToDVSSPI
(see Figure 5.3) is used to convert the interfaces between them is designed.
Endpoint 2 reads the data generated from the AER logic handler and then
packets it according to the USB transfer type. The output packet data is
then sent out via the UTMI interface.

Ulpi_wrapper converts the UTMI interface to the ULPI interface. USB
PHY interprets the data from the ULPI interface and then encodes them
and sends it out. USB PHY is the transceiver chip, and it is responsible for
converting the digital signal to Non-Return-to-Zero Inverted Code (NRZI)
and then transferring them to the corresponding electrical waveforms.

5.3.6 Final PCB

The final assembled board is shown in Fig.5.8. DAVIS controller handles
AER handshaking, timestamp generation, and USB interfacing with jAER.
The PS runs a bare-metal program that lets us program registers over the
UART port, but it is otherwise idle. Details about the UART configura-
tion are described in Appendix A.5. Until now, hardware IPs such as AB-
MOF and SFAST has been implemented on PL, along with a customized
USB2.0 IP and other IPs such as a USBFifoToDVSSPI and a SPI master for
DVS configuration. A few cells are designed as logic schematics (VGA) or
VHDL/verilog (DAVIS controller, USB controller, USBFifoToDVSSPI, and
SPI master). Benefit from its plentiful resources, it is possible to incorporate
more hardware IPs in the future. The evaluation result of DAVIS346Zynq

including resources utilization and power consumption is shown in Chap-
ter 6.

100 hardware camera platform davis346zynq

 DAVIS346

FPGA

USB PHY DAVIS346

DAVIS
Controller

SFAST ABMOF

USB Device
Controller

USB PHY

FPGA

SD card

�ash

JTAG
module

Figure 5.8: The prototype Davis346Zynq event camera platform. It consists of
three parts: DVS as the input, FPGA as the hardware processing
and USB as the output. SFAST and ABMOF are the two event-based
hardware IPs shown in chapter 6.

5.4 summary and discussion

In this chapter, we show a novel powerful camera called DAVIS346Zynq. It
features a 346x260 DAVIS sensor and a powerful Xilinx Zynq Soc 7100.
For peripherals, it supports UART for configuration, SD Card for storing
event data, and NAND flash for system boot and large applications or
operation systems. This camera benefits from the USB and VGA interfaces
to support output data either via USB or VGA to an external screen display.
It supports two play modes: live mode and playback mode (sequencer).
Plenty of resources on the PL part of the SoC make it possible to test and
verify many algorithms. This board supports the most common interfaces
and has a powerful ARM, FPGA, and large memory storage. It is enough
to be a general platform for a neuromorphic vision system. For the future,
a necessary improvement will be to make the board smaller, lighter, and
more mechanically robust so that it can be more suitable for an embedded
neuromorphic computing platform for drones and robotics.

The debugging for this board was a time-consuming task. During this
process, I met many problems such as SoC could not be recognized by PC
via FPGA, reading and writing mistakes for the DDR3 memory test, USB
protocol circuit design at the lowest level, and the system could not boot

5.4 summary and discussion 101

from NAND flash, etc. However, it is a really painful but happy process.
However, I indeed obtained a more profound understanding of these cir-
cuits during the debug process. More details about the debugging story
are shown in Appendix A.6.

The next chapter will show the hardware implementation of two event-
based algorithms (an optical flow estimator and a corner detector) on
DAVIS346Zynq.

6
H A R D WA R E I M P L E M E N TAT I O N O F A D A P T I V E B L O C K
M AT C H I N G F L O W A N D C O R N E R D E T E C T O R O N
D AV I S 3 4 6 Z Y N Q ¶

(b) exposed event slice
(a) 3d DVS event cloud (c) SFAST keypoint detection

(d) with corners overlaid

Corner
Event?

(f) snapshot of optical flow output

(g) feedback control of area event number

(e) ABMOF block-matching optical flow estimation

yes no
skip

New event

Best matching target
block in slice t-δ2

Resulting flow vector
(vx,vy)=(dx,dy)/δt

Search area in
slice t-δ2

Reference block
in slice t-δ1

Slice t-δ2

Slice t-δ1
Slice t
(currently accumulating)

δt

Figure 6.1: Overview of the entire EDFLOW camera. (a) 50 ms 3D space-time
DVS event cloud from a camera mounted on a car dashboard. (b)
Automatically exposed slice of brightness change events1 with mag-
nification of one corner. (c) The 3D shape on the event count slice
for the keypoint. (d) The slice with all detected keypoints overlaid.
(e) Illustration of the basic (single-scale) block-matching optical flow.
(f) Snapshot of final optical flow vector output computed at the de-
tected keypoints of 50ms slice. (g) feedforward and feedback control
flow diagram of slice exposure duration.

6.1 introduction

In Chapter 4 we have mentioned that computing flow on every event is
not efficient and it might also suffer from the aperture problem. To compute

¶ The substantial content of this chapter has been submitted to TCSVT.
1 Generated by run1_test/Davis346B-2016-12-15T11-54-56+0100-00INX006-0 back from air-

port.aedat sequence from DDD20 [188] at time 213.7s.

103

104 edflow

on more informative events, we used EFAST as the corner detector and
implemented it on FPGA. The measurement of OF is more robust at the
locations of corner-like features called keypoints. At keypoints, the OF can
be unambiguously determined. The algorithm first detects keypoints and
then measures OF only at these reliable keypoints. These same keypoints
are used in semidense VOD and SLAM pipelines, and OF can help the
matching processing converge faster and more reliably. One significant
drawback of EFAST is it operates on TIs while ABMOF operates on event
slices. It makes EFAST not compatible with ABMOF. We thus proposed an
improved corner detector called SFAST 6.3.2 based on EFAST.

Combining SFAST with ABMOF, we built EDFLOW, which outputs along
with the original events a stream of keypoints and the OF of these key-
points on the powerful new camera platform described in Chapter 5. Fig. 6.1
illustrates EDFLOW. It consists of two main parts: a keypoint detector and
an OF estimator. Corner events drive OF estimation at informative loca-
tions and thus reduce the data rate for OF estimation so that even high
event rates such as those encountered during high speed mobile robotics
can be processed in real time without skipping informative events for OF.
It has two advantages. The first is that by filtering out a lot of noncorner
events, it saves bandwidth for later OF computation. The second is that it
helps mitigate aperture problems.

EDFLOW uses SFAST for corner detection and ABMOF for OF estima-
tion. Instead of calculating optical flow on all 3 scales like ABMOF, SFAST
only detects keypoints on the coarse scale, which is important for reducing
the cost of the implementation.

In Chapter 2, we presented a basic DVS BMOF FPGA implementation
that does not support adaptive duration event slice or multiscale BM, and
described the improved ABMOF software algorithm in Chapter 3. This
chapter greatly extends the hardware implementation in Chapter 2 to sup-
port all the advanced ABMOF features for a sensor with with 5X more
pixels. Additionally, we combine the hardware ABMOF with an SFAST
corner detector for better accuracy than with EFAST corner detection.

The rest of this chapter is organized as follows. Sec. 6.2 reviews the prior
hardware OF implementations. Sec. 6.3 shows the architecture of the algo-
rithm of EDFLOW. Sec. 6.4 explains the hardware implementation details
and Sec. 6.5 shows the experimental results. Sec. 6.6 discusses our results
and concludes the chapter.

6.2 hardware optical flow 105

HW

implementation

Aung

et al. [189]

Huang

et al. [190]

Haessig

et al. [191]

BMOF

[114]
This work

Algorithm LP
Gradient

-based
DS0 BMOF

ABMOF

(+SFAST)

Hardware
DVS→
FPGA

Celex→
FPGA

DVS→
Truenorth→

CPU

USB DVS→
FPGA

DVS→
FPGA

Latency

us/event
0.36 NA NA 0.22 1 (0.06-0.1)

OF radius1
2 1 1 4

2
21

Denoising3 X × × × X

Keypoints × × × × (X)4

AEE (px/s) 99± 765 NA 58± 535 NA 13± 16
0 Uses 4 Barlow-Levick DS cells [192]; OF computed by CPU. Shown accuracy is based
on time-of-flight DS from [115].
1 The radius of neighbors considered for each OF output.
2 [114] used only binary event slices, 9x9 blocks, and HD with 1-pixel search distance.
3 [189] denoises with a local spatio-temporal correlation check [117] and imposes a
refractory period before LP OF. [114] denoises with keypoint detector and minimum
event density check in OF.
4 Keypoints are optional.
5 From [142] using models from [115] and evaluated on sequence slider_hdr_far
from [1]. [189] and [191] reported accuracy only on a simple rotating bar.

Table 6.1: EDFLOW compared with prior DVS OF hardware implementations.

6.2 hardware optical flow

Most current event-based OF methods (see 2.1.2) are based on the tradi-
tional Von-Neumann architecture and they are implemented on CPU or
GPU, consuming at least tens of watts and large areas of expensive sili-
con. Computing OF quickly, close to the sensor maintains the efficiency
and low-latency advantages of event cameras. Hardware implementations
of BMOF for standard video have been claimed to compute more accu-
rate OF than LK methods when the hierarchical matching results are reg-
ularized [193], but most implement LK or other nearest-neighbor estima-
tion [194–203], See [193] for a useful summary of hardware BMOF for con-
ventional video OF.

Neuromorphic vision chips over 1986-2000 implemented various models
of DS cells from biology [204–208].

106 edflow

Neuromorphic processing ASICs have also been used to compute OF. In
2018, Hassig et al. [191] implemented a spike neural network that modeled
the Barlow-Levick DS neuron in biology using a DVS and IBM TrueNorth
system. However, software are still required to interpret output spikes. The
other problem is the accuracy of DS method is poor, like the original hand-
crafted feature-based methods.

[135, 209] are the SNN methods for event-based optical flow. and [209]
is adapted from Ev-flownet [121, 210].

Fei [128] is another work based on LP fitting. The most important contri-
bution of this work is that they proposed an optimization method based on
Prim’s algorithm to find the optimal event sets for plane fitting and thus
improve the accuracy. They simplify the original SAE model [120] by im-
posing more constraints on the incoming event and make it a non-iterative.
A brief introduction of how to implement it on hardware efficiently is also
reported in this work. However, it cannot solve the essential problem that
the original LP faced which is that the result is still the normal flow and
still suffers from the aperture problem.

Table 6.1 compares EDFLOW with other DVS OF implementations that
directly output the flow vectors in pixels per second, including our first
BMOF implementation [114]. The LP method was implemented in FPGA
in [189]. This work cleverly uses LUTs to avoid matrix inverse and di-
vides the 5× 5 plane into 9 subplanes for parallel 3× 3 plane fitting with
timestamp outlier checking. They report that they can process up to 2.75M
events per second. However, the accuracy is also limited by the 3× 3 planes
and only a 5× 5 area around each event, which is much smaller than the
43× 43 total search area of EDFLOW. For example, [142] showed that on
the slider_hdr_far scene from [1], LP produced AEE of 99 px/s which is
nearly 8 times more error than dense ABMOF (Table 6.1).

Pivezhandi et al. [211] uses the delta value between the adjacent times-
tamps to compress the timestamp array and save memory. The background
activity filter is also included to remove the noise. Their circuit does not
compute OF, but rather its input, a 2D event histogram using the con-
stant duration method, which loses many advantages of activity-driven
sampling of DVS.

Huang et al. [190] used the Celex camera and added a part called Pixel
Rendering Module (PRM) to the existing DVS pixel circuit. The PRM helps
communication between the center pixel and its 4 neighbour pixels, so it
can quickly output the DVS event timestamp and logarithmic intensity for
these 5 pixels. Thus they easily can compute local gradients and OF on the

6.3 the architecture of the edflow algorithm 107

attached FPGA, however, they only provide a couple of figures showing
simple flow and patent applications [212, 213]. The PRM requires 5 times
the sensor output bandwidth, and estimating the gradient from only 4
neighbours is sensitive to noise. And the prototype is really small, only
have 64x64. It is difficult for large-scale applications.

ABMOF

Figs. 6-9

SFAST

Figs. 3-5

Event
Stream Corner Stream OF Stream

Multi-scale
slice RAMs

 Coarse:
86x70

 Medium:
173x130

 Fine:
346x260

DVS

EDFLOW

(t,x,y,p) (t,x,y,p,c) (t,x,y,p,c,f)c

f

t

t-δ2
t-δ1

Clearing

 Coarse
(for SFAST)

Input: 346x260

Figure 6.2: Top level diagram of EDFLOW SFAST corner detection and ABMOF
implementation.

6.3 the architecture of the edflow algorithm

Fig, 6.2 is a top-level diagram of EDFLOW. ABMOF algorithm [142] is
a semidense method that computes the OF at points where DVS events
signal that the brightness has changed. The event representation used in
ABMOF is the event slice.

By analogy with photography, we define the exposure of an event slice
as the event accumulation time between the start timestamp and the end
timestamp. To make the chapter self-explained, we first give a brief wrap-
up of ABMOF and then show the details of SFAST.

108 edflow

A brief summary of ABMOF. ABMOF uses a BM algorithm inherited
from video compression for OF estimation. A block is a square region in
the event slice. The method defines two blocks and uses the similarity
metric SAD of the pixel values between the two blocks to compare them.
Thus, the OF problem is posed as finding the displacement vector that best
matches (by minimum SAD) a Reference Block (RB) centered on the event
location to a Target Block (TB) within a target Search Area (SA). Fig. 6.12

on page 122 illustrates these blocks. It is assumed that the appearance
of event slices does not change significantly for short times. A multiscale
search follows a CTF trajectory to find the best matching TB, following a
simple version of displacement estimation by hierarchical BM [214].

The most important contribution of ABMOF is the adaptive slice expo-
sure, which uses the area event count method (See Sec. 3.2.2.1) as a feed-
forward slice exposure controller and the average block matching distance
davg as a feedback controller on the slice rotation number k (See Sec. 3.2.2.2).
Together, they dynamically control the inter-slice time interval δt to op-
timize the slice feature quality. These capabilities makes ABMOF robust
to dynamic scenes with varying motion speeds and scene structure. Slice
FPS can vary from less than 10 FPS for slow surveillance scenes to over
1 kFPS for fast mobile robotic scenes. This feature is important because
BMOF methods have a dynamic range of speed that is determined by the
slice interval and multiscale search distance. And the area event count
method—in contrast to counting the total number of events—makes the
slice more invariant to the spatial density of scene contrast [142] and its
computational cost is practically zero compared to DNN-based [215] or
iterative consistency methods [216]. Since block matching requires only
adders rather than expensive multipliers, it is suitable for accelerating on
parallel hardware such as FPGA. For more details of the algorithm, we
refer readers to Chapter 3.

For detecting keypoint corners, we use a novel method called SFAST,
which is adapted from FAST. In this section, we first introduce why we
propose SFAST in Sec. 6.3.1. The details of the SFAST algorithm are shown
in Sec. 6.3.2 and the difference between EFAST and SFAST from the soft-
ware aspect is presented in Sec. 6.3.3. SFAST and ABMOF parameters that
are used in this chapter are summarized in Table 6.2.

6.3 the architecture of the edflow algorithm 109

Symbol Description Value (default)

w× h width × height of pixel array 346x260

fclock clock frequency 100 MHz

(vx, vy) OF result px/s (pps)

SFAST keypoint detection (Sec. 6.4.2)

rin Inner circle radius for SFAST 1

rout Outer circle radius for SFAST 2

skin Inner streak length for SFAST 3-7

skout Outer streak length for SFAST 3-11

KPthr min. ev. count diff. for streak 1-15 (3)

ABMOF block matching (Sec. 6.4.3)

bc, bm, b f dimension of course,medium,fine blocks 7,13,25

r search radius for ABMOF 3

(δx, δy) OF displacement vector ±21 pixels

Bsparsity,max maximum sparsity of blocks 10%

SADoverlap,min minimum block overlap for SAD 10%

SADmax maximum SAD value (% of possible) 50%

d block match distance
√

δ2
x + δ2

y 0-29.7

davg average match distance during last slice

ABMOF area event slice exposure (Sec. 6.4.3)

k area event number kmin–kmax (700)

kstep step change ratio of k 1± 1/8

kmin, kmax min,max k 100,2000

a area dimension subsampling 5 bits (32x32)

s # slice scales 3

g # bits for slice counts 4

δt inter-slice interval between δ1 and δ2

δt,min, δt,max min,max slice exposure durations 1 ms,100 ms

dtarg target match distance for adaptive k 6.3

Table 6.2: EDFLOW symbols, description, and values.

110 edflow

TBRBEFAST shape

Figure 6.3: EFAST successful case. From left to right is the shape of EFAST, RB
and TB on coarse scale.

RB TBEFAST shape

Figure 6.4: EFAST failure case. From left to right is the shape of EFAST, RB and
TB on coarse scale..

Event Slice
Current Event
Inner Circle
Outer Circle
Corner Pattern

3

1 3 11 12

0 2 2 10 13

0 1 1 0 2

2 0 1

accumulated events

Streaks
1415

12

Figure 6.5: This example shows a corner event detected by SFAST. The circle
radius of 1 and 2 are evaluated on the coarse-scale event slice. See
Sec. 6.3.2 for explanation.

6.3.1 Why SFAST?

In Chapter 4, we introduced EFAST and its hardware implementation on
FPGA. While combing ABMOF and EFAST together, there are some prob-

6.3 the architecture of the edflow algorithm 111

Algorithm 2: SFAST software algorithm (part)
Data: current event e, threshold KPthr, slice memory

slice[2][346][260]
Result: corner check result f oundStreak

1 x, y, ts, pol ← e;
2 slice[pol][x][y]← slice[pol][x][y] + 1;
3 f oundStreak← f alse;
4 InnerCircleLoop: for i← 0 to 8 by 1 do
5 for streak_size← 7 to 2 by 1 do
6 if streak boundary < neighbors then
7 continue

8 minStreakVal ← minimum o f streak;
9 maxNonStreakVal ← maximum o f non - streak;

10 didBreak← f alse;
11 if minStreakVal < maxNonStreakVal − KPthr then
12 didBreak← true;
13 break;

14 if !didBreak then
15 f oundStreak← true;
16 break;

17 return f oundStreak;

lems. EFAST operates on TI but ABMOF operates on event slice. As a result,
some events might be considered to be "fake" corners in EFAST. Fig 6.3 and
Fig 6.4 shows a successful case and a failure case of EFAST. In these two
figures, the left parts of them show the block shapes of the current event
on the TI. The middle parts of the figures are RBs on the coarse scale of the
ABMOF slices. The right parts are TBs on the coarse scale. If we only check
it on TI with EFAST, it is obvious that both of them are clear corners. How-
ever, Fig 6.4 shows a failure case. On TI, it is indeed a corner, but it is not a
real corner on ABMOF event slice. On the ABMOF slices, they are actually
two parallel bars, and these patterns would cause an aperture problem. To
solve this problem and inspired from the fact that both FAST and ABMOF
are patch based methods, we proposed a method called SFAST.

112 edflow

SFAST shape RB TB

Streak
start

Streak
end

Streak length = 5

Figure 6.6: SFAST false positive corner detection that is prevented by further
checking, showing the shape and the slice RB and TB.

6.3.2 SFAST algorithm introduction

SFAST is adapted from FAST. FAST is a popular corner detection method
in frame-based computer vision because of its robustness and speed [217].
To use FAST on event-based data, we accumulate an event count image
in the event slice and treat it as an intensity image. Because both SFAST
and ABMOF are block-based methods, we can use the same event slice
generated by ABMOF to detect corners. However, to simplify the design
and increase the bandwidth, we use a separate copy of the event slice as
a dedicated memory for SFAST. Since SFAST only operates on the coarse
scale, this extra copy needs only a few BRAM blocks. The steps follow-
ing the conclusion of the exposure of an event count image are similar to
FAST, but we improved the robustness for the relatively low precision of
event count images, whose 4-bit counts are quite quantized compared to
conventional 8-bit gray scale images.

Fig. 6.5 illustrates SFAST. It shows the slice pixel array of accumulated
event counts neighboring the current event. Since DVS event ON and OFF
polarity is ignored, the event count is a 4-bit unsigned saturating value.
The red pixel in the center is the current event. To detect a corner, SFAST
checks both the inner circle and outer circle centered on the current event.
The cyan streaks on the inner circle and the outer circle mean they have the
highest event counts in the corresponding circle. If this streak is found on
both circles, the current event is called a corner event. This pattern should
satisfy several conditions.

1. The minimum event count of these streak pixels should be suffi-
ciently larger than the maximum of the rest of the count values in
the same circle. The gap between the minimum of cyan streaks and
the maximum of the rest of the values is called thr. Here the length of

6.3 the architecture of the edflow algorithm 113

the streak or streak_length can range from 2 to 7 for inner circle and 3

to 11 for outer circle.

2. If Condition 1 is satisfied, then we might get several streaks with
different streak_length. Among them, we start from the streak with
maximum streak_length. This process will check the relationship be-
tween the start position of the streak and the streak_length, to en-
sure the streak is valid. The relationship checked here is that if the
streak_length is an even number, the coordinate difference between
the streak start position and the streak end position should be big-
ger than 2. For streaks of odd streak_length, the coordinate difference
should be bigger than 1.

The further check in Condition 2 removes some corners that are falsely
detected from moving edges. An example is shown in Fig. 6.6. This edge
produces a streak that otherwise satisfies the conditions, but it is not really
a corner. The additional checks remove corners whose two ends are co-
aligned as shown here.

The pseudocode of SFAST is shown in Algorithm 2.

6.3.3 Differences between software SFAST and software EFAST

SFAST has a similar idea with EFAST which means that it also does not
require to compare the difference between the circle pixels and the center
pixel. One crucial difference is the “intensity" images they are operating on.
For EFAST, the “intensity" image is the timestamp slice, while for SFAST,
it is the event slice generated from ABMOF. The corner checking opera-
tion is then performed on ABMOF slices directly. Thus, it is not necessary
to create an extra 2D timestamp surface/image to detect corners. This is
very useful for hardware because the timestamp surface consumes a lot of
memory. After all, the timestamp for every pixel is usually 32bits or more.
But for SFAST, according to our experiment, 4 bits per pixel is enough for
most cases. The other advantage is that checking the streak directly on
the slice is more robust. We also found that in some cases only one cir-
cle instead of two circles is enough. And this circle’s radius is 2, which is
even smaller than the inner circle of EFAST. This could help reduce the
hardware resource further since fewer pixels on one circle; fewer compara-
tors are needed. But to make it more general, we implemented two circles
checking in our final implementation. The final change is that no threshold
is used in the EFAST method, meaning that there is no hyper parameter.

114 edflow

But in SFAST, we introduced a threshold value as in the normal FAST. This
threshold (KPthr) is used to determine if the minimum of the streak pixel
values (M) is larger enough than the maximum of the non-streak pixel
values (m). The relationship between M, m and KPthr is: M − m > KPthr.
In EFAST, KPthr could always be treated as 0. The other difference is the
further check (Condition 2) in SFAST. EFAST does not have this checking.

6.4 edflow hardware implementation of abmof and sfast

Fig. 6.2 shows the top level EDFLOW diagram. It has 4 major IP blocks:
DVS, SFAST, ABMOF, and multiscale RAMs. SFAST accepts the normal
DVS event stream as input, writes the SFAST and ABMOF slices and out-
put events that have been detected as corners. ABMOF estimates OF on this
corner stream and outputs the final OF stream. Sec. 6.4.1 describes the mul-
tiscale event slice accumulation and rotation method, Sec 6.4.2 describes
implementation of SFAST, and Sec. 6.4.3 describes the implementation of
ABMOF.

6.4.1 Multiscale slice event accumulation

Events are accumulated in the current slice t, while slices t − δ1 and t −
δ2 are used for corners and OF. For simpler logic design and concurrent
access, SFAST duplicates the coarse slice RAM. The cost is low since it is
the coarse scale. A spare slice of each scale is cleared by a dedicated state
machine while the t slice accumulates events. ABMOF requires all 3 scales,
but SFAST only uses one coarse scale. There are thus a total of 16 slice
RAM blocks.

The slice RAM memory controller increments the slice pixel values in
the current slice at all 3 scales. For scales 1 and 2 (medium and coarse),
the x and y addresses are right shifted by 1 or 2 bits for subsampling. DVS
ON and OFF event polarity is rectified (i.e., ignored) in this design based
on our earlier study [142]. To make the blocks have about the same size in
the DVS pixel address space among 3 scales, different block dimensions bc,
bm, b f are used, listed in Table 6.2. SFAST only checks for corners on the
coarse scale, because this scale accumulates the most events and provides
the most robust, large-scale corners. ABMOF then uses all three scales
following a CTF search to find the best OF vector. Each coarser OF result is
used as an initial value of the next finer scale search. Before calculating the
final OF, ABMOF performs density checking (Sec. 6.4.3) on all three scales,

6.4 edflow hardware implementation of abmof and sfast 115

which guarantees both the RB and TB are not too sparse and have sufficient
overlap. Only after all three scale OF results pass density checking is the
summed OF vector from each scale multiplied by 1, 2 and 4 to form the
final OF vector, which is output along with the DVS event.

Hardware memory slice reset. Besides the memory layout, the other
difference between the software implementation we did in jAER and this
hardware implementation is in the memory slice number. On the software
side, we use 3 slices which are slice t, slice t − δ1 and slice t − δ2. When
an incoming event triggers a slice rotation in the software, the t− δ2 slice
will be first cleared, and then it is set as the new slice t to accumulate
events. That operation is straightforward in software and memory clearing
operations are highly optimized on CPUs. However, using hardware to
reset a whole memory slice is a time-consuming task. For example, if we
use a dual RM port memory and adopt the optimized memory layout as
we have shown in Sec. 4.3.3, it takes about 4086 cycles to finish the reset
operation. This means that during these 4086 cycles, it is not possible to
accept a new event. For a system running at 100MHz, it is around 41us.
The temporal resolution of the camera is 1us, according to the estimate
maximum event rate 20M event per second (Sec.5.3.3), 41us might skip
more than 800 events. Therefore, we add an extra memory slice. This slice
is cleared by a dedicated state machine while the other slices are being
processed (accumulating or reading data from memory slices). Once a slice
rotates, an empty slice has already been prepared and no reset operations
are required before accumulating. This hardware saves a lot of time for
slice rotation.

6.4.2 SFAST hardware keypoint detector

Fig. 6.7 shows the workflow of the hardware SFAST. The input of the sys-
tem is the event stream. Event stream means the raw data stream. The
stage corner stream is an intermediate result stream. It first checks the in-
ner circle. If the inner circle satisfies the corner condition, then it checks the
outer circle. Otherwise, it outputs false immediately. Only it passes both
stages checking, it reports a true corner. No matter in inner circle or outer
circle checking, SFAST tries to search the specific pattern on the circle. The
output is the maximum streak length. If it is less than 3, then it is not a
corner.

The SFAST corner check consists of a slice memory controller, a sorting
unit, and a contiguous index detector. The first part accumulates incoming

116 edflow

Slice RAMs controller

Check inner circle:
Is it a corner?

Sorting unit
StreakRanker

Contiguous index detector
StreakDetector

Yes

Continue checking
outer circle

Output

N
o

Corner Stream

Event Stream

SFAST

Slice RAMs
(Coarse)

Figure 6.7: The workflow of the hardware SFAST corner detector. See Sec. 6.4.2
for explanation.

events to the slices and reads the SFAST circle data from the slice. The sec-
ond and third part are designed as two PEs: StreakRanker and StreakDetector.
The principle and circuit of these two PEs are explained in this section.

Considering that the only difference between inner circle and outer cir-
cle checking is the circle radius, we designed a general circuit to save re-
sources.

First, StreakRanker sorts the accumulated counts to a list of event count
ranks; i.e., each entry of the list is the rank of event counts, with the largest
rank corresponding to the pixel with the largest event count. Then a second
circuit StreakDetector detects streaks of the pixels with the largest event
counts by detecting the longest contiguous set of ranks starting from the

6.4 edflow hardware implementation of abmof and sfast 117

1 12 10 0 3 1 2

StreakRanker

1 7 65 0 4 1 3

StreakDetector
SM Fig. S6 part a, b

SM Fig. S6 part c, d, e
StreakDetector

0 1 1 1 0 0 0 0

0 1 1 1 0 1 0 0

0 1 1 1 0 1 0 1

0 1 1 1 0 1 0 1

1 1 1 1 0 1 1 1

 = 3; >= 5
streak length, min rank

InnerCond register array

Circle
event counts

32bit

Count ranks
32bit

3

 = 4; >= 4

 = 5; >= 3

 = 6; >= 2

 = 7; >= 1

Invalid streak by
event count difference
check thr

Valid streak of
contiguous pixels

11

Figure 6.8: Simplified architecture of the SFAST StreakRanker and StreakDetector
blocks that detect a keypoint streak on the FAST circles. For SFAST,
the input is the array of event counts on inner or outer ring. The ex-
ample shows a streak consisting of 3 pixels. StreakRanker returns the
rank of the corresponding input data in the sorted list. StreakDetector
first returns an inner condition array which stores the comparison
results for different streak lengths and minimum accumulated event
count. The maximum length of the streak which has enough con-
tiguous pixels is returned by StreakDetector. In this example, the data
marked by a blue ellipse is a streak with the maximum streak length
that satisfies the corner condition. Its minimum count ranking is 5,
which also satisfies the condition.

largest rank. This contiguous set represents a potential streak: If all event
counts for this set are sufficiently large, then it is regarded as a streak.
Fig. 6.8 shows an example to illustrate the detection of the streak on the
inner circle of Fig. 6.5. The data list on the top is the circle data but unrolled
as an linear data list for better illustration, but is implemented as a circular
buffer; the last data of the line is the neighbour of the first data in the

118 edflow

list. This data list is read by RWSlices from the coarse event slice t − δ1.
StreakRanker returns the rank of the corresponding input data in the sorted
list and packs the results in a wide bit depth value. The inner circle has
8 values and every value has 4 bits, so it is efficiently packed as a 32-bit
value. Fig. 6.8 shows that the second data of the result is 7, which means
that the corresponding entry event count 12 is the maximum value in the
input list. The schematic of StreakRanker is shown in Fig. 6.10.

Second, StreakDetector finds the valid streak with the maximum streak
length. All streak lengths to be checked for the inner circle are shown in
Fig. 6.8. The check is best explained by an example: Suppose the check is
for 3 contiguous largest counts on the 8-pixel circle, and the ranks of these
8 pixels have been computed by StreakRanker. The check ensures that all
ranks of these 3 pixels are larger than 5 and is done in parallel. Similarly,
a check for 4-pixel long streaks only needs to ensure all ranks are larger
than 4. Among these valid streaks, StreakDetector returns the maximum
streak length. If no valid streaks are found, StreakDetector returns 0. The
schematic of StreakDetector is shown in Fig. 6.11.

The circuits of StreakRanker and StreakDetector shown in Fig. 6.8 check
only one data per clock cycle. Therefore, 8 cycles are required for the inner
circle and 12 cycles are required for the outer circle checking. If both stages
are processed, 20 cycles are required. To decrease the latency, we used 4
copies to parallelize the check, to process 4 data per cycle and so the check
requires at most 5 clock cycles. Most events are not corners, and thus re-
quire only 6 clock cycles, resulting in a peak throughput of 16.6 Mevents/s.

6.4.2.1 Schematic of StreakRanker and StreakDetector

When dividing wide-bit data into several narrow-bit data and then out-
putting them one by one in order, such as converting a 32-bit to 8 4-bit
data and outputting them from the Least Significant Bit (LSB) to MSB, a
typical circuit is shown in Fig. 6.9. In Fig. 6.9, the counter part generates a
control signal and increases itself 1 every clock. This control signal is used
to select one 4-bit data output from all the eight 4-bit data inputs. The
resource consumed here is an adder, a Flip-flop and a MUX. Actually, a
more efficient circuit could be designed as the data is output one by one in
a specific order. This circuit is shown in Fig. 6.10 part a. It uses a 4-bit cycle
right shifter to shift the input data 4 bits every cycle. In this design, only a
4-bit cycle shifter and a Flip-flop are required. It is worth noting that shift
operation on the hardware does not consume any resources. By using this
cycle shift read method, we can avoid using multipliers that consume a lot

6.4 edflow hardware implementation of abmof and sfast 119

idxDataMUX
32

4
4
4
4
4
4
4
4

idxWide
Data

D Q

clk

44

4

1

Counter

Figure 6.9: The principle of PE StreakRanker part a.

of LUTs. This circuit is also used as the input part circuit of StreakDetector
in Fig. 6.11. The output of StreakRanker (Fig. 6.10 part c) adopts the similar
idea to save the resources.

clk
D Q

32

32

bit0

bit3

4-bit cycle
right shifter

4
4
4
4
4
4
4
4

innerWide
Data

32

4

。
。
。

。
。
。

+
D Q

idxWide
Data

3232

32

4

4-bit right
shifter

a. Cycle shift
read b. Comparators c. Right shift write

Figure 6.10: The circuit of StreakRanker. Inner circle is used here as the example.
It consists of three parts. Part a reads the input 4-bit data one by one.
Comparators compare the input 4-bit data with rest of the data. The
last part right shift write is for output.

As shown in Fig. 6.10, we use inner circle as an example here to show
how it is implemented on hardware. This PE consists of 3 parts: Cycle shift
read, comparators and right shift write. The input of this PE is a wide data
consisting of 8 values since the inner circle’s size is 8. Because every data
has 4 bits, the bit width of the input is 32 bits. Cycle shift read reads the

120 edflow

idxWide
Data idxData

clk

D Q

32

32 bit0

bit3

4-bit cycle
right shifter

4

5

innerCond00

innerCond10

innerCond20

innerCond01

innerCond11

innerCond21

innerCond31

。

。

。

innerCond04

innerCond14

innerCond24

innerCond34

innerCond44

innerCond54

innerCond64

4

1

。
。
。

idxData

4

innerCond10
innerCond20

innerCond00
innerCond11
innerCond21

innerCond01

innerCond31

innerCond04
innerCond14
innerCond24
innerCond34
innerCond44
innerCond54
innerCond64

 。。。

Streak
threshold

check

Streak
threshold

check

Streak
threshold

check

 。。。

 。。。

 。。。

3 0 4 0 7 0

Max

isCornerOutput

AN
D

AN
D AN
D

AND AND AND

MUX MUX MUX

c. 1st check

d. 2nd check

e. output

a. Cycle shift read

b. Comparator arrays

Figure 6.11: The circuit of StreakDetector. Inner circle is used here as the example.
It consists of 5 parts. Part a is for cycle reading and reads input. Part
b converts the index to a binary list. Part c checks if there is an un-
interrupted streak. Part d further checks if the threshold condition
is satisfied. Part e returns the satisfied streak with maximum streak
length. Otherwise 0 is returned.

least significant 4 bits from the wide data input. After reading, the input
data is shifted right 4 bits. This shift makes sure that in the following clock
cycle, the next data is read. The input data is then sent as a common input
of 8 comparators. Other inputs of these 8 comparators are the whole 8 data.
If the input data is smaller than the rest data, the comparator returns 0. By
summing all these results together, we can get the rank of these data in
the whole data list as we shown in Fig. 6.8. The output of this PE is the
ordered index of the input data list. To make the next PE be able to use
cycle shift reads rather than multipliers, we add a right shift write part to
the output of the result in a wide data format.

StreakDetector: Fig. 6.11 shows the circuit that detects streaks from the
ranked accumulated event counts. This circuit is used for both inner cir-
cle and outer circle SFAST checking. The input of this PE is similar to
StreakRanker. It also uses the cycle shift read to get the origin data from
the wide input data. This data idxData is compared with some constants.
The constants range from 5 to 1 and it is corresponding to the streak length
range from 3 to 7. Part b generates an Innercond register array. Every col-

6.4 edflow hardware implementation of abmof and sfast 121

umn of this array corresponds to a specific streak length. An example of
this column can be found in the bottom list of Fig. 6.8. The register array
is then sent to a list of AND gates. The outputs from the same column or
same streak length connect to the same AND gate. After the first check,
the second condition checks if the maximum of the streak is bigger than
the minimum of the nonstreak. The output of the second check is used as
the selected signal of the final output part. If the output is 1, it means it is
a valid streak and the corresponding streak length is selected, otherwise 0

is selected. By combining the result of these MUXs and a Max module, the
streak with maximum streak length is output. If there is no valid streak on
the circle, StreakDetector outputs 0.

6.4.2.2 Difference between hardware EFAST and hardware SFAST

In Sec. 6.3.3, we showed the software difference between EFAST and SFAST.
In this section, we will compare them from the point of view of hardware.
The whole framework of the hardware SFAST is almost the same as the
hardware EFAST except the circle size, circle number and threshold check-
ing. For these differences, no more new PEs are required. Only a few logic
on some PEs are required to be modified. However, for the wrong pattern
checking (Condition 2 in Sec. 6.3.2), a new PE is created. This PE takes the
result of the StreakDetector as the input and output the final checking result.
The implementation of this new PE consists of a few logic gates and it is
not very complicated. Even though one more PE is required for EFAST, but
as shown in the previous context, SFAST checks on smaller circles and thus
finally the total resources for SFAST are less than SFAST. Besides LUTs, the
memory resources consumed decrease significantly. EFAST uses TI which
has 32 bits for every pixel while SFAST adopted the ABMOF event slice
that has only 4 bits per pixel. It decreases the bit width from about 32 to 4
and thus the whole BRAM consumed on FPGA is about 8 times less than
in the EFAST implementation.

6.4.3 ABMOF hardware design

Fig. 6.12 is the architecture of the ABMOF hardware IP block. It has three
types of modules: PE, RAMs, and FIFOs. Each of the 7 PEs is a small
computation unit that has a specific function. The RAMs store the t, t −
δ1, and t − δ2 event slices, each at 3 spatial scales. In order to use the
memory in a more efficient way, the algorithm used a mechanism called
slice rotation to make the memory could be reused. The FIFOs buffer data

122 edflow

Event stream
with corner flags

1. Extract x, y address

2. Rotate slices?

3. Read and Write Slices

4. Sum column SADs

5. Sum block SADs

6. Find SAD min

7. Slice rotation k feedback

FIFO

FIFO

OF Stream

Multi-scale CTF
BMOF

Final
OF

vector

SA
TB

RB

m
ed

iu
m

co
ar

se

SA
TB

RB

fin
e TB

RB

x4

x2
x1

t
t-δ1

t-δ2
Corner

event

Figure 6.12: Adaptive block matching optical flow PEs (ABMOF).

to synchronize between PEs with different data rates. Due to different PEs
have different initial latency, all PEs cannot be connected directly. To solve
this problem, FIFOs are added between every two PEs and make the whole
IP work in a consumer-producer way. The faster PEs will stall until valid
data is generated from the slow PEs. In this way, PEs having different
initial latency could be synchronized and work in parallel. All PEs are
controlled by the same clock source, which is the global logic clock running
at 100MHz.

1. DVSInterface receives and parses AER data from the DVS and writes
a FIFO that buffers variable rate DVS events.

6.4 edflow hardware implementation of abmof and sfast 123

This IP makes an interface conversion over an AXI4 Stream (AXIS) proto-
col. AXIS is a communication protocol by ARM. The simplest form of AXIS
is similar to FIFO and includes three mandatory ports: TVALID, TREADY
and TDATA. TVALID means the data is valid and TREADY indicates that
the receiver or slave is ready for new input accept. TDATA and TVALID
are inputs and TREADY is the output for AXIS slave. The data can be read
by the master only when both TVALID and TREADY are high. The full
AXIS protocol has 4 other extra optional ports: TUSER, TLAST, TKEEP
and TSTROBE. These 4 optional ports are not used in this IP. For details
about AXIS, we refer readers to [218]. The reason we use AXI4 as the inter-
nal data protocol for all the IPs in this platform is because of its simplicity
and address-free feature which can save a lot resources. It is also a very
natural model for events since events are generated in a sequence like a
stream.

The other function of this module is to filter out boundary events. Be-
cause for every event, we require a certain area around this event for pro-
cessing. To remove the bias effect, events that are very close to the bound-
ary is removed in this PE. PE 1 also filters out events that are too close to
the boundary for OF computation.

2. SliceRotator generates the rotation flag signal to the slice memories
using the area event count method, using feedback from PE 7 that controls
the area event number k [142]. It divides the whole 346x260 fine-scale event
slice to 12 by 9 32× 32-pixel blocks; if the total event count of any block
exceeds k, it triggers the slice rotation. k is changed by fixed steps to control
davg towards dtarg. We impose hard limits kmin ≤ k ≤ kmax and δt,min ≤ δt ≤
δt,max. k = 100 roughly equates to 1 event per 3× 3 pixels in the area. The
most important function of this PE is to read the column data from the
RAMs and update the latest RAM slice according to the current event’s
location and polarity.

3. RWSlices is a slice RAM controller. The dataflow directive in Xilinx
design environment Vivado HLS requires that global values such as global
registers or memory should only be written or read in one PE. By encap-
sulating the memory IO in RWSlices, we avoid the competition caused by
several PEs trying to access or update the same memory location simul-
taneously. PE 3 updates the current event slices at each scale for every
incoming event. As shown in Fig.6.13, RWSlices reads out the data from
the slice t− δ1 and slice t− δ2 and then stores them in the internal register
array as RB and SA. RWSlices outputs the data in two FIFOs column by
column in a specific order illustrated in Fig.6.13.

124 edflow

Block matching and multiscale SAD considerations: The work in Chapter 2

was a basic FPGA implementation of event-based block-matching OF. In
that work, the sensor was only 128 × 128 pixels, the block size was 3 ×
3, and the search distance was only 1 pixel. The total Binary Hamming
Distance (BHD) operation only consumed 81 gates so we could implement
the binary slice memory as registers and the BHD as gates to compute the
BHD in a single cycle. By replacing the HMD with SAD and considering
that SAD for each pixel would require one subtract and one absolute value
selector, it would consume 81× 2 = 162 adders and 81 selectors which is
an easy case for a small-scale FPGA. We could unroll it completely and
make it possible to get the minimum SAD value in one cycle very easily.
However, in this work, we have 3 scales and the block size for different
scales is different. For the fine scale, the block size is up to 25× 25 and
the search distance is also increased to [−3, 3]. This means that if we still
finish the whole SAD operations in one cycle and unroll it completely, then
it will consume at least 25× 25× 25× 7× 7× 2 = 61250 adders and 30625
selectors. Here, the slice memories are much larger and use 4-bit event
counts and 3 scales. The search distance is ±3 slice pixels at each scale.
Register implementation would consume hundreds of thousands of gates.
This consumes hundreds of thousands of LUTs only for the block SAD
part. And to calculate the block SAD in one cycle, the two blocks used
for calculation would need to be accessed in one cycle. In [114], the slice
memory was binary with 128x128 resolution, so we could use flip-flops to
build this memory.

Here the slice image is increased to 346× 260 with 4 bits per pixel and
so we need to use the FPGA block memory. Thus, there is no way to read
the whole block in one cycle due to the memory ports limitation. Since the
throughput performance of a system is limited by the slowest part, it is not
possible to ready the IP for the next input in less cycles than is required to
read out all the target block data from the event slice memory. The number
of clock cycles before the function can accept new inputs is also called the
Initial Interval (II). II is generally the most critical performance metric in
any system. II of this hardware ABMOF is determined by the maximum II
of all PEs. The hardware design is thus a trade-off between throughput and
resources. Therefore, here we used FPGA BRAM, and divided the process
to construct the minimum block SAD into 3 subprocesses and designed
them as 3 PEs: ColSad, RowSummer and FindStreamMin. For each scale start-
ing from the coarse scale, it reads the RB and SA into register memory and
pipelines the SAD computations for the 7x7 SA. By careful partitioning

6.4 edflow hardware implementation of abmof and sfast 125

of the slice block memories, the entire BMOF computation requires only
about 100 clock cycles, which is 1 us at our 100 MHz clock frequency. The
maximum search distance is ±21 pixels in x and y directions. It enables
BM results from large block dimensions equivalent to about 25× 25 DVS
pixels at each scale.

OuterBlock

InnerBlock

Inner Block Column FIFO

Outer Block Column FIFO

9

8

6 9

0

7

10

0

11

6

0

12

8

6

11

12

21

15

6

7

6

8

17

15

12

21

15

Column SAD FIFO

Clock 1236 5 4789

-6

0

4

-4

-1

1

-1

0

-2

PE3: RWSlices

-3 -6 0 2 -1

5

0

-6

7

-6

0

4

3

-4

-1

1

3

-1

0

-2

7

-1

-7

0

0

-6

0

4

-4

-1

1

-1

0

-2

-6

0

4

-4

-1

1

-1

0

-2

-6

0

4

-4

-1

1

-1

0

-2

-1

-1

-7

0

0

-3

5

0

-6

7

-6

-6

0

4

3

0

-4

-1

1

3

-6

-6

0

4

3

0

-4

-1

1

3

2

-1

0

-2

7

0

-4

-1

1

3

2

-1

0

-2

7

Clock 1236 5 4789

PE4:
col-

Stream-
ToCol-
Sum

A B C D E

a b c

t − 2d
t − d

Read order:
A->B->C->B->C->
D->C->D->E
a->b->c->a->b->c
->a->b->c

Figure 6.13: The column SAD computation of the Fig. 6.12 PEs 3+4. Two gray
rectangles here represents the DVS memory slice of t− δ1 and t− δ2.
The blue SA and red RB are centered on the current event. Here we
choose b = 3 and r = 1 for illustration (the actual values are b = 7
and r = 3). The first FIFO data is the right column and the last data
is the left column.

4. ColSad returns the column SAD value, i.e., the SAD values for columns
from the RB and entire SA. It takes the columns generated by RWSlices as
input and calculates the column SAD one by one. The calculation process
of PE 4 is like this: There are 2 ∗ r + 1 column SADs, where r is the search
radius (Table 6.2). In this example, r = 1, so 2 ∗ r + 1 = 3. Thus ColSad
accepts 2 input data with size b = 3. The first column of the RB is [4, 0, -6]
and the first column of the SA is [7, -6, 0, 5, -3]. To calculate the SAD be-
tween these two columns, which with different lengths, the second column
is split to 3 subcolumns, by shifting from top to bottom: [7, -6, 0], [-6, 0, 5]
and [0, 5 ,-3]. ColSad outputs the SADs between these subcolumns and the
first column. To save LUTs, part of the accumulate operations of ColSad are
implemented on DSPs. Therefore, 3 output data are generated as shown
in the figure as [15, 21, 12]. The rest of the columns are calculated in the
same way. These results are input to a FIFO connected to PE 5. Finally,
(2 ∗ r + 1) ∗ b columns are generated for one event.

5. RowSummer (Fig. 6.14) sums the rows of column SADs to compute
the final block SAD. The input data stream is the column SADs generated
from ColSad as shown in Fig 6.13. Every b = 3 columns are summed to-

126 edflow

6

9

8

9

0

7

10

0

11

6

0

12

8

6

11

12

21

15

6

7

6

8

17

15

12

21

15

Column SAD FIFO

25

9

26

26

27

38

26

45

36PE5:
RowSummer

Figure 6.14: PE 5 RowSummer sums rows of the PE 4 ColSad output to result in
final block SAD result. In this example, every 3 columns in the same
row generate a block SAD.

gether. Therefore, 2 ∗ r + 1 = 3 data is calculated and every b = 3 data
makes up a column. The final result is stored in a FIFO with 2 ∗ r + 1 = 3
columns and b = 3 data per column. Data of offset (x, y) on the output
array corresponding to a block SAD result between the RB and the block
offset with (x, y) in the SA. Block SAD results obtained from RowSummer
are sent to PE 6.

9 26 26
26 38 36
9 27 45
25 26 26

PE6:
Find-

StreamMin

Figure 6.15: The principle of FindStreamMin. It reads the block SAD value col-
umn by column and return the minimum SAD in each column.

6. FindStreamMin. PE 6 (Fig. 6.15) finds the best matching block with
minimum SAD. There is a global minimum stored in a register. On every
cycle, FindStreamMin reads one column of data from the FIFO, computes
its minimum value and compares the minimum with the global register
value. It stores the possible new minimum and its offset in two registers. It
finally outputs the offset OF result and and SAD for density checking.

Block search: The block search uses a CTF strategy: Fig. 6.12 shows how
the search starts at the corner event location in slice t. At each scale the
RB from slice t − δ1 centered on the previous scale best match location
is compared with TBs in slice t − δ2 over the SA. The block size varies
over the scale to keep nearly the same 25× 25 block size in the DVS pixel
array. Each search is an exhaustive full search over the entire 7 × 7 SA;

6.4 edflow hardware implementation of abmof and sfast 127

many implementations use a sparser search strategy [219] but we found,
like [193] that a sparser search strategy such as Diamond Search [143]
as we did in software has too many conditional branches, which makes
it difficult and inefficient to implement in hardware. For details refer to
Sec. 4.3.2. The search can be aborted if either the source or target best
match is too sparse. In case the OF search completes, the OF output is a
(δx, δy) OF displacement vector which is the scaled sum of the OF at each
scale. The length of this vector is the match distance d.

7. DensityCheckAndFeedbackControl. PE 7 has two functions: First, it
checks for sufficient BM feature density. If the final minimum SAD value
is larger than the threshold SADmax, or the non-zero area of RB or TB is
too sparse (Bsparsity,max), or there is insufficient RB and TB non-zero overlap
(SADoverlap,min), then the OF is flagged invalid. Second, it provides area
event number feedback control (See Sec. 3.2.2.1). It calculates the actual
average block match distance davg during the slice rotation period, and
compares it with the target dtarg. This feedback value Ed is sent back to PE 2
to adapt k to the dynamic environment. If the error signal Ed = davg/dtarg
is larger than 1, k is reduced by factor kstep, otherwise it is increased.

Density checking: Density checking is used to check if the RB and the TB
are too sparse or have insufficient overlap. It checks three conditions: First,
it calculates the percentage of nonzero values of RB and SA and checks if
this percentage is lower than a specific threshold Bsparsity,max (10% in this
design). Second, it checks the percentage of their nonzero intersection area.
The nonzero intersection area represents that the event counts on both of
RB and TB are positive. The threshold SADoverlap,min of this check is also
set to 10%. Third, it checks that the final minimum SAD value is not larger
than SADmax. A sparse event flag signalling invalid OF is set if any if these
conditions are true.

To implement the density checking on hardware, one essential part is to
count the zero values on RB, TB and their intersecting areas. In software,
it is calculated after we get the whole block. However, we use a column-
by-column method in this design. We do not have a complete block for
counting. Therefore, we proposed a similar way as we do in calculating
the block SAD. For every column from RB and TB, we count the num-
ber of zeros in the column. These numbers are sent to the next PE along
with the column SAD value. Comparison with the threshold parameters
(Bsparsity,max and SADoverlap,min) is checked in PE 7.

128 edflow

6.4.4 Unroll trick used in the hardware design to increase parallelism

As shown in PE 4 (Sec.6.4.3), there are (2 ∗ r + 1) ∗ b columns generated
for every event. To maintain the block shape consistency among the three
scales, the block dimension is varied. The fine scale has the largest block di-
mension b f = 25, so it should have the longest II. Substitute b with b f and
r = 3, the columns generated by the fine scale is 7× 25 = 175. If only one
column is processed every cycle, the II would be more than 175. The max-
imum II limits the II of the whole system. Our goal is to achieve a system
with II around 100. Therefore, we should decrease the II for the fine scale.
As we said before, the hardware design is a trade-off between throughput
and resources. To increase the throughput (decrease II), more resources
would be consumed. Here, we use a pretty common trick called unroll
in the hardware design. Unroll would duplicate the hardware and thus
increase parallelism. In the fine scale, 175 columns need to be processed.
Moreover, they are divided into 7 loops; every loop needs processing 25
columns. If we partially unroll the loop, such as a factor 2, one loop could
be finished within 25/2 = 13 cycles instead of 25 cycles. Therefore, the
total cycles would be changed to 7× 13 = 91 cycles. By using the unroll
technique, we can make the system satisfy our goal. The loop could be un-
rolled completely (one loop only requires one cycle), but it means 25 units
would be duplicated. The unroll factor should be chosen carefully to bal-
ance the resource and II. The unroll factor is also called Number of Parallel
Computation (NPC). StreakRanker and StreakDetector also adopt this unroll
technique.

6.5 experimental results

To evaluate the performance of EDFLOW, we tested them on the Davis346Zynq
platform (See chapter 5). We also implemented EFAST to compare its per-
formance with SFAST. Details of EFAST hardware implementation are in
Chapter 4. Quantitative and qualitative results on the accuracy and speed-
up of processing time are in Sec. 6.5.1 and 6.5.2.

6.5.1 OF accuracy on baseline dataset

To evaluate the performance of combining ABMOF with corner detection
methods EFAST (ABMOF+EFAST) and SFAST (ABMOF+SFAST), we first
tested it on the baseline dataset DVSFLOW16 using the test sequence trans-

6.5 experimental results 129

box [115], recorded from a DAVIS240C camera that is panned over a scene
with several boxes. Since the camera is panning around its own axis, the OF
ground truth is uniformly horizontal and is obtained from the built-in IMU.
The qualitative result of ABMOF and its variants on this baseline is shown
in Fig. 6.16 and the quantitative result is shown in Table 6.3. Fig. 6.16 shows
that the original ABMOF has the densest output, but it is clear that there is
some noise in the result. Both ABMOF+EFAST and ABMOF+SFAST show
sparser but cleaner results. To quantify the performance, we use AEE, out-
lier percentage and event density as the metrics. AEE is a common metric
for OF evaluation. The outlier metric was introduced in the KITTI bench-
mark 2015 [220], which defined it as a flow vector result with an endpoint
error larger than 3 pixels or 5% of the Ground Truth (GT) magnitude. We
define the event density as the fraction of events that are processed for
OF. Table 6.3 shows that the original ABMOF is the most dense method.
However, it is still less than 100% because the density checking filters out
some events in ABMOF. It rejects the event if the block around the event
is too sparse. The accuracy of ABMOF+EFAST and ABMOF+SFAST are
almost the same, but ABMOF+SFAST is more dense. It can also be ob-
served from Fig. 6.16. The other thing we can learn from Fig. 6.16 is that
corners extracted by SFAST are more concentrated while EFAST are more
distributed, meaning there are more “isolated corners". Many of these are
the failure cases we show in Fig. 6.4. Generally, we observe that SFAST
produces fewer errors.

6.5.2 OF accuracy on more complicated dynamic scenes

We also tested EDFLOW on more complex indoor drone flying and out-
door nighttime driving scenes from MVSEC [24]. Here we also compared
ABMOF methods with the CNN OF estimation method Ev-Flownet [129].
MVSEC has two main scenes: indoor flying and outdoor driving. MVSEC
combines several sensors and capture systems such as stereo frame-based
camera, LIDAR, IMU, motion capture, GPS, and a stereo DAVIS346B. Al-
though it does not provide OF ground truth directly, it provides OF GT
indirectly based on the direct depth and camera pose ground truth data.
For indoor flying sequences, the whole background is static and only the
drone is moving. In this situation, OF GT is accurate enough. However,
for outdoor driving sequences, since OF GT is obtained from camera ego
motion, the converted OF GT has some errors on the independent moving
objects such as pedestrians or cars on the street.

130 edflow

AEE/px % Outlier % Event density # Events

transbox

ABMOF 0.78 3.31 55.56 137973

ABMOF+EFAST 0.73 0 2.84 7059

ABMOF+SFAST 0.73 0.76 6.88 17083

indoor_flying1

Ev-Flownet 1.03 2.2 100

ABMOF 2.04 21.8 67.2 9458979

ABMOF+EFAST 2.04 21.2 1.1 153624

ABMOF+SFAST 1.90 18.6 4.1

indoor_flying12

Ev-Flownet 1.72 15.1 100

ABMOF 3.74 45.4 66.4 16619321

ABMOF+EFAST 4.09 47.9 1.20 301742

ABMOF+SFAST 2.74 33.4 3.37 845062

indoor_flying3

Ev-Flownet 0.55 11.9 100

ABMOF 3.06 38.23 67.58 16220988

ABMOF+EFAST 3.24 40.42 1.02 245729

ABMOF+SFAST 2.45 30.31 4.41 105932

outdoor_night1

Ev-Flownet 0.49 0.2 100

ABMOF 2.58 27.1 69.8 60797614

ABMOF+EFAST 2.28 24.4 4.5 3959042

ABMOF+SFAST 2.47 27.5 5.9 5161382

Table 6.3: ABMOF and its variants accuracy comparison.

6.5 experimental results 131

Fig. 6.17 shows the qualitative result on outdoor_night1. All ABMOF vari-
ants reproduce the expanding GT flow field, but the ABMOF+SFAST de-
tects more keypoints than ABMOF+EFAST. Quantitative results of all in-
door flying sequences and outdoor driving sequence are also reported in
Table 6.3. The accuracy of Ev-Flownet is taken from [129]. It is not sur-
prising that Ev-Flownet has the best accuracy. ABMOF+SFAST achieves the
best AEE accuracy of the ABMOF methods for almost all situations ex-
cept in the outdoor flying sequence. Without corner filtering, ABMOF is
obviously the most dense method. Comparing only ABMOF+SFAST and
ABMOF+EFAST, ABMOF+SFAST detects more corners and the corners are
more concentrated, and ABMOF+EFAST has more noise corners. This ob-
servation is the same as in the baseline result. Detecting more corners is
useful if the OF is used as a base method for higher-level applications such
as VOD or SLAM because it can help build a more dense map.

There are several reasons for the accuracy gap between the ABMOF se-
ries methods and Ev-Flownet. The main ones are that the CNN method
can tune hundreds of thousands more parameters and thus better handle
complicated scenes and nonidealities. Moreover, the multilayered convolu-
tional CNN can compute consistent, smooth OF and thus have far fewer
outliers.

6.5.3 Adaptive slice exposure control

As discussed in Secs. 6.3 and 6.4.3, ABMOF controls the slice exposure
using the rotation area event count number k, which can itself be put un-
der feedback control to center the average BMOF matching distance in the
range of possible match distances. We observed that the feedback control
of k does not always produce a correct k value. For example, if k is too
large, then the slices are “overexposed” and have a lot of motion blur, or
the displacement can exceed the maximum search distance. Even if the dis-
placement is not too large, the motion blur results in poor BMOF. Likewise,
if k is too small, then the slices are “underexposed” and provide insuffi-
cient event density for matching, or the displacement is so small that the
flow is excessively quantized. The hard limits on k and δt help ensure that
the exposures result in meaningful flow, but we sometimes find that it is
better to fix k.

Using adaptive k is useful when speed varies a lot over time. Fig. 6.18

shows an experiment with a rotating dot covering a speed range of more
than 2 decades. Feedback control was activated. Fig. 6.19(a) shows AB-

132 edflow

Gray frame Event slice

Ground truth flow ABMOF

ABMOF+EFAST ABMOF+SFAST

Figure 6.16: Snapshot of 40 ms of OF from ABMOF and its variants on trans-
box [115]. Color wheel shows OF direction. It is also applicable to
Fig. 6.17. Color brightness indicates speed.

MOF quantities. We can observe that as a result of feedback control, the
k is controlled starting from an initial value of 1 kev (thousand events)
down to about 300 ev as the dot speeds up. We can see that the feedback
control results in an average matching distance davg that stabilizes around
dtarg ≈ 7 px. Fig. 6.19(b) plots k and δt versus the dot speed. We can ob-

6.5 experimental results 133

Gray frame Event slice

Ground truth flow ABMOF

ABMOF+EFAST ABMOF+SFAST

Figure 6.17: ABMOF and its variants ABMOF+EFAST and ABMOF+SFAST on
outdoor_night1 from [129]. Best viewed in color.

serve that using the feedforward area event count makes δt vary inversely
with dot speed over most of the speed range. The k feedback control makes
k decrease approximately as the square root of dot speed, i.e., it makes δt
decrease faster with speed more than it would without feedback control
(where k is fixed). Fig. 6.19(c) shows that using adaptive k improves the

134 edflow

Figure 6.18: Rotating dot input (adapted from [221]).

accuracy of flow. We measured the GT speed of the dot using a tracker. Us-
ing a fixed k = 600 is OK for low speed, but when the dot moves quickly,
the flow results are much less accurate than when k adapts davg towards
dtarg. In summary, when the input scene dynamics varies over time, the
feedback control of k can stabilize the BMOF vectors in the middle of their
dynamic range.

Table 6.4 lists the processing time (computational latency) of ABMOF
and its variants compared with [189] 2. The dense ABMOF can process
dense OF using only 1 us/event, or at rate of 1 MHz. It is about the same
speed as [189]. The sparser ABMOF+EFAST and ABMOF+SFAST are more
than 10X faster and can process event rates up to 16.6 MHz.

Xilinx Vivado reports that the EDFLOW IP blocks consume about 1W
(Fig. 6.20). EDFLOW is thus about 75X times more energy efficient for

2 The processing time per event for Ev-Flownet is not a valid metric because it uses a con-
stant FPS event volume input representation. Its processing cost is constant; the time per
frame is 40 ms using the smaller Ev-Flownet network variant on an NVIDIA 1050 GPU with
a power consumption of 75W. For a CNN that uses “constant count” event voxel grid in-
put [11](Sec. 3.1, Fig. 3), then we could assume e.g., 10k events per input and compute that
the time per event would be 40ms/10 kev=4 us/ev.

6.5 experimental results 135

(a) ABMOF area event number k feedback control vs. time

(b) Rotating dot

(c) ABMOF area event number k feedback control vs. time

Figure 6.19: ABMOF feedforward and feedback control of slice event count. (a)
Rotating dot input (adapted from [221]). (b) Plots of ABMOF quan-
tities over time. (c) Slice interval and area event number versus dot
speed. (d) Comparison of accuracy of dot speed vs time with and
without adaptive k.

136 edflow

ABMOF and more than 450X more energy efficient for ABMOF+SFAST
than the CNN.

ABMOF (full) 1

ABMOF+EFAST 0.06 - 0.1

ABMOF+SFAST 0.06 - 0.1

Aung [189] 0.72-1.19

Table 6.4: Computational latency comparison. Time per DVS event in microsec-
onds.

others
4.8%

PS
43.4%

ABMOF
30.3%

EDFLOW
1.03WSFAST

4.6%
VGA 17.0%

Figure 6.20: The composition of dynamic power consumption in the Zynq
XC7Z100 SoC. Total power is 2.96W and the EDFLOW IP burns
1.03W. Wall plug power measured from power strip is 10.1W and
includes the power pucks, the FPGA power board, USB, DAVIS346,
VGA driver, DRAM, and other PCB components. Total power varies
about 400mW depending on activity.

Table 6.5 summarizes EDFLOW FPGA resources. EDFLOW uses about
the same logic as [193], and more logic and memory than [189], but only
a fraction of the whole FPGA. We see that the largest usage is of BRAMs
(25%) and DSPs (33%). The adders in the DSPs are used for the SAD com-
putations.

6.6 summary and discussion

In this chapter, we use SFAST as the keypoint detector for ABMOF. By
calculating OF only on “corner events", ABMOF solves the aperture prob-
lem better and thus improves OF accuracy, with the tradoff of lower OF
density. We compared two corner detection methods EFAST and SFAST.
The results show that SFAST achieves more accurate OF than EFAST. The

6.6 summary and discussion 137

Module LUTs FFs BRAM_18Ks DSP48Es

AER 2147 (1%) 4845 10 (1%) 0

SFAST 5806 (2%) 3987 32 (2%) 0

ABMOF 45501 (16%) 25323 348 (23%) 669 (33%)

Total 53450 (19%) 34160 390 (26%) 669 (33%)

Aung et al. [189] 15180 30350 138 16

Seyid et al. [193] 36430 42500 NA 48

Table 6.5: XC7Z100 FPGA resources for main IPs.

Figure 6.21: Optical flow computed by adaptive block matching optical flow
(ABMOF) and its variants. Top row from left to right is the gray
input frame captured by DAVIS’s APS part, event slice with events
accumulated for 50ms and the optical flow ground truth. Bottom
row from left to right is the pure ABMOF result, ABMOF estima-
tion result only on timestamp image EFAST corners and ABMOF
estimation result only on accumulated event count SFAST corners.
Tested on indoor_flying_1 from [121]. Best viewed in color.

use of keypoints is optional, and EDFLOW includes the semidense AB-
MOF mode where all events that can be processed without overflowing

138 edflow

the pipeline are processed, and with OF vectors labeled as keypoint OF
events.

Comparing the ABMOF variants with CNN-based OF, ABMOF is hun-
dreds of times quicker and more power efficient, but is also less accurate.
Compared with previous DVS OF methods, ABMOF uses a complex mul-
tiscale CTF BMOF method that matches complex patterns; however com-
pared to state of the art video compression methods like HEVC, ABMOF
is simple [222]. Our work does not exploit the gray-scale frame APS out-
put available from the DAVIS [8, 177]. Future work could fuse its DVS and
APS output.

Although it can be argued that EDFLOW does not make use of the pre-
cise DVS event timing, Fig. 10 from [5] shows that DVS event timing jitter
can exceed 1 ms, which makes methods like LP work poorly. However, ED-
FLOW retains the activity-driven computation initiated by the DVS bright-
ness change detection. All the OF computations done by EDFLOW are
initiated by events, and EDFLOW’s event slice rotation is determined by
the highest local event rate. Although the global event slices have the draw-
back that they can be too sparse in low-activity regions, their synchronous
timing makes the logic design much simpler, and they are free of motion ar-
tifacts like those seen in rolling shutter imagers. EDFLOW’s activity-driven
computing is the main ingredient of efficient brain computing that is in-
creasingly being exploited by sparsity-aware DNN accelerators [223–227].

All modules were implemented on the Davis346Zynq prototype cam-
era. Accounting for the operations only in ABMOF, EDFLOW achieves
123 GOp/s at a clock frequency of only 100MHz, i.e., the equivalent of
1230 Op/clock cycle3. This massive parallelism of the SAD computations
is obtained by pipelining and block memory organization.

EDFLOW uses no multipliers and mostly 4-bit arithmetic. The FPGA im-
plementation of ABMOF+SFAST uses a lot of BRAM (855 KB) and many
DSPs (669). The 48-bit DSPs very inefficiently implement the SAD accu-
mulators. The actual total SRAM usage is less than 300 KB4. As an ASIC,
EDFLOW could be tightly coupled to the DVS and use a higher clock
frequency. For a larger DVS, e.g., 1 MPixel, ABMOF would require a sig-
nificant 3.2 MB of memory, so it would be worth understanding if off-chip
DRAM IO could be scheduled to use the required burst IO with event-

3 One SAD computation requires 3 math operations: subtract, absolute and accumulate. The
total number of SADs to be computed is (25× 25 + 13× 13 + 7× 7) ∗ 49 = 41307 SAD. Thus,
the total operations are 41307× 3 = 123921 Op. All of them are finished within 100 cycles.

4 Memory usage of ABMOF for the 346 times260-pixel DAVIS346 is dominated by slice memory:
346× 260 pixels× (1 + 1/4 + 1/16) scales× 4 slices× 4 bits/pixel = 1.9 Mb = 283 kB.

6.6 summary and discussion 139

driven BMOF. In ASIC, the power consumption would be reduced by
more than 10X based on our experience [224]. EDFLOW would be straight-
forward to implement as an ASIC IP block, where the logic and memory
blocks could be more tightly integrated and the SRAM could be optimized.
The main difficulty is using HLS for the ASIC since HLS is not popular for
ASIC design (Sec. 7.2.6).

The main limitation of a hand-crafted method like ABMOF is that it can-
not model real world data like DNN methods. The large block size that
EDFLOW uses also has difficulty detecting motion borders, which are in-
formative for object versus background segmentation. Additionally, a local
method like EDFLOW invariably has a larger number of outliers. How-
ever, it may not be necessary to use a large DNN for accurate end-to-end
OF since OF is an intermediate result. It usually drives further processing
such as VOD or SLAM. The inclusion of EDFLOW in the camera could
enable a complete VOD pipeline, or it could simply offload low-level key-
point detection and OF to the camera. The OF could then serve as infor-
mative elaborated features, including further DNN processing. One could
envision a future event camera that integrates the sensor, EDFLOW, and
a sparsity-aware DNN accelerator. The size of the DNN could be reduced
by using the informative low level computation done by EDFLOW.

This chapter concludes the technical content of the thesis. The next chap-
ter summarizes the thesis work and concludes with an outlook for future
work.

7
C O N C L U S I O N A N D O U T L O O K

"The brain is imagination, and that was exciting to
me; I wanted to build a chip that could imagine
something."

— Misha Mahowald, 1986

7.1 conclusion

In this thesis, we introduced, to the author’s knowledge, the first event-
based hardware OF system that use corner detectors. The algorithms con-
sist of a block-matching-based method ABMOF and a corner detector SFAST.
Additionally, we also designed a new powerful general hardware platform
that has the capacity to be extended to an event-based navigation or SLAM
system for drones or robotics in the future.

ABMOF (see Chapter 3) extends from BMOF (see Chapter 2). BMOF is
inspired from a network media processor LSI Logic DoMiNo™ . LSI Logic
and other companies used BMOF in mass production video compression
architectures since the 1990s [228, 229]. A local gradient measurement such
as that used by LK is relatively cheap to compute, but it cannot account
for nonlocal structures. For better OF estimation, video compression algo-
rithms use BM in BMOF to match blocks of pixels between frames using a
hierarchical CTF search. BMOF is not popular for software OF because it
requires many operations that must be computed serially on a CPU. The
key requirement for BMOF with DVS events is to collect DVS frames with
high quality features.

ABMOF algorithm was introduced to adaptively vary the DVS event
slice exposure for good block matching quality. The event slices are adap-
tively rotated based on the input events and OF results. The area event
number slice rotation method, which adapts to scenes with varying lev-
els of spatial sparsity, is used to accumulate events in rotating event slices.
The slice rotation event count number is feedback controlled by the aver-
age optical flow matching distance. Compared with other methods such
as gradient-based OF, ABMOF can efficiently be implemented in compact
logic circuits. Results show that ABMOF achieves comparable accuracy to
conventional standards such as LK. The main contributions of ABMOF are

141

142 conclusion and outlook

new adaptive time-slice rotation methods that ensure the generated slices
have sufficient features for matching, including a feedback mechanism that
controls the generated slices to have an average slice displacement within
the block search range. The CTF strategy makes it more robust to the large
displacement motion, and the multiscale block match size is 25× 25 pix-
els, and the flow vectors span up to 30-pixel match distance. The ABMOF
shows a good accuracy result on various natural data scenes, including
sparse and dense texture, high dynamic range, and fast motion exceeding
30,000 pixels per second.

Computing every event is not an efficient way. Additionally, some edge
events would result in the aperture problem. Therefore, we implemented pre-
viously reported corner detector algorithm called EFAST [18] on MiniZed
(see Chapter 4). EFAST originates from FAST. SFAST detects the corners by
checking if a continuous pixel streak on the circle is centered on the event.
Corners are detected by streaks of accumulated events on event slice rings
of radius 3 and 4 pixels. It does not have any derivate operations and
thus only adders and comparators are required. The maximum processing
event rate is 10M eps. However, since it operates on a 32-bit TI, it requires a
lot of memory for storage. It is also very compatible with ABMOF. SFAST
is thus proposed.

SFAST (See Sec.6.4.2) is improved from EFAST. Similar to EFAST, it also
tries to find the continuous streaks on the circles centered on the event. But
it has several differences. First, it checks on the event count slices rather
than TI. Second, it uses smaller circles whose radius are 1 and 2 pixels
respectively. Third, it has a more strict hyper parameter to control the dif-
ference between the minimum of streak and the maximum of the non-
streak. Fourth, it has an extra condition to check the streak shape. Both
SFAST and ABMOF use event count slices, but SFAST only operates on
the coarse-scale and thus saves a lot of memory. Comparing SFAST with
EFAST, that improves the accuracy while saving at least 8X memory.

To implement and verify ABMOF and SFAST on hardware, a new power-
ful event-based camera platform DAVIS346Zynq (See Chapter 5) is designed.
It has 512MB memory and 1G NAND flash. SD card is also supported. It
supports two play modes: live mode and playback mode. It can read files
from the SD card directly and then sequence them into the real live event
stream for playback mode. It has a customized USB 2.0 high-speed and
VGA interface. The DAVIS controller is also integrated on FPGA.

Combining hardware ABMOF and SFAST, the EDFLOW (See Chapter 6)
is build. Flow vectors are only estimated at the corners. The EDFLOW

7.2 outlook 143

camera processes events at rates up to 16.6MHz for corner detection. At
the corners, flow vectors are computed in 1 us at 100 MHz clock frequency.
EDFLOW processes the sum-of-absolute distance block matching at 123
GOp/s, the equivalent of 1230 Op/clock cycle. EDFLOW is eight times
more accurate than the previous best DVS FPGA optical flow implemen-
tation. Although it is less accurate than CNN-based optical flow, it burns
about 100 times less power and is ten times quicker. EDFLOW also pro-
vides an easy way to change some parameters such as SFAST threshold
and area event number threshold and output the real-time status such as
corner event number statistic for the hardware IPs on the board. Other
hardware configurations can also be changed very conveniently, such as
skip corner detection, live mode selection, etc. The configuration process
is done with a UART interface (see Appendix A.5).

7.2 outlook

Event-based camera has been in development for the last decade. Com-
pared with the traditional frame-based camera’s history, it is still a very
new thing. However, in recent years, it has attracted increasing attention.
There are still many problems required to be solved by the event-based
vision community. This section shows some opinions and outlook of the
author of this thesis work and the event-based community.

7.2.1 Accuracy improvement

When computer science researchers design an algorithm such as the optical
flow algorithm for a computer vision problem, the accuracy usually has
the highest priority. However, in the robotics community, real-time is also
a critical factor to be considered. Like one coin has two sides, accuracy and
speed are the two sides of an algorithm. Moreover, it is always a trade-
off between them. Higher accuracy usually means heavier computation.
EvFlownet achieves very high accuracy in the event-based OF area, but
it is based on a desktop GPU solution. Compared with EvFlownet, the
algorithms of EDFLOW, especially ABMOF, still needs to be improved
in the future on the aspect of accuracy. Based on the real-time principle,
several interesting directions could be tried:

• As shown in [193], current smooth constraints or regularisation items
usually require derivative and floating-point computation; one possi-
ble direction is to explore some more hardware-friendly constraints.

144 conclusion and outlook

• OF results still have many large outliers. Some spatial-temporal corre-
lation filters or even RANdom SAmple Consensus (RANSAC) [154]
could be tried in the future.

• The tracking process for the frame-based camera usually consists
of three steps: feature detection, feature description, and matching.
SFAST is only able to do the first step. Additionally, Brox and Ma-
lik [70, 230] show that an extra feature description stage as the refine-
ment could improve the optical flow performance a lot. Therefore,
combining with some event-based feature descriptors [231] with ED-
FLOW would also be an exciting direction.

7.2.2 Optical flow as features for DNN accelerators

When talking about computer science, a topic that cannot be avoided is
deep learning. The wave of deep learning progress has impacted almost all
subjects. How to improve this work in a deep learning direction? The most
straightforward answer would be to design an event-based OF hardware
accelerator based on DNN. However, from the viewpoint of the author, it
might not be so good. OF is always used as a low-level processing method
in the CV community. Although many works solve this problem with the
popular deep learning method, the author does not think a deep-learning-
based OF has too many applications. The reason is that OF often is not
used as an independent application like VOD, SLAM, or action recognition.
Most of the time, it servers as a preprocessing module in the system. In this
case, a light-resource-consuming with moderate accuracy method would
be a better solution.

However, it is still possible to combine it with deep learning methods.
As shown in Figure 7.1, it uses OF as a low-level feature, and then the out-
put features are fed into some hardware accelerators. In the robotics area,
researchers have explored this direction, such as [232, 233]. In their work,
they use OF results to estimate the displacement and rotation between
two frames. The OF result image is treated as a color-coded image using
the standard mapping of flow image to color and then fed into a CNN
to extract the visual odometry information. Compared with training from
scratch [234], OF provides more additional information and thus improves
the accuracy of the system a lot.

7.2 outlook 145

Time (80ms)

Dot

DAVIS frames and events

Hardware optical �ow Hardware accelerated CNN

Input
“Dot”
“Rotating right”“Center: 0,0”

Output

Figure 7.1: Use OF as a feature for other hardware accelerators.

7.2.3 Combine with other sensors for sensor fusion

The camera is a bearing sensor, which means it is not very accurate for
distance measurement, and it is possible to recover the scale for monocu-
lar vision. To improve the accuracy and recover the scale, the event-based
camera could be integrated with other sensors. Based on the current DAVIS
camera including an IMU onboard, one quick possible direction is fusing
the camera and the IMU. For example, EDFLOW only measures the flow
on the 2D image, but with the help of IMU acceleration output, the depth
(the missing scale) could be recovered by geometry methods. It could then
be used in 3D reconstruction, VOD, or SLAM. [235] is a frame-based work
for VOD based on OF and IMU. [29] explored tracking using OF and IMU-
based on event-based cameras. [236] is another work that converts event-
based OF to VOD. Nevertheless, there are still relatively few works for
event-based cameras fusing 2D OF with IMU to obtain scene flow or other
applications. In this area, two possible directions could be explored further.
The first one is to improve the algorithm further, and the second one is to
extend the EDFLOW. Compare and select from some existing hardware-
friendly Visual-Inertial Odometry (VIO)algorithms based on OF and IMU,
and then implement them on DAVIS346Zynq. This could make the low la-
tency and low power consumption but fully self-navigation system possi-
ble for the event-based camera.

146 conclusion and outlook

Figure 7.2: The screenshot of MPI-Sintel benchmark website at the time of writ-
ing.

7.2.4 Event-based optical flow benchmark

The frame-based optical flow community has established a complete set of
benchmarks for optical flow estimation. The three most popular among
them are Middlebury [90], MPI-sintel [91] and KITTI [93]. Researchers
could publish their results on these three datasets and show the rank-
ings and nice visualization results on the websites. Fig. 7.2 is the latest
screenshot of the MPI-Sintel benchmark dataset. The table on the website
clearly shows the accuracy ranking, the metrics used, and a button for vi-
sualizing results. It helps the researchers know the state-of-the-art on this
dataset quickly and clearly. However, for the event-based optical flow com-
munity, such kind of benchmark has not existed yet. To date, MVSEC [24]
is probably the largest event-based optical flow dataset providing ground
truth. However, this dataset is not targeting solely optical flow. Addition-
ally, there is not a standard metric as their frame-based counterparts. It is
not easy for people to compete on the same dataset and know the rank-
ing quickly. Creating a pure event-based optical flow dataset and propos-
ing some standard metrics to publish their results quickly and show their
rankings could be a big step to promote this area further. Since making an

7.2 outlook 147

event-based optical flow dataset with labeled ground truth is difficult, one
possible solution might use state-of-the-art simulation tools such as [23]
to convert the frame-based popular datasets to event-based datasets. This
could help establish the benchmark more quickly, and provide a way to
compare with the frame-based methods.

7.2.5 Event representation

Event representation is also a very interesting question to be explored. Un-
like the frame-based camera, the data is formed by a fixed size frame and
generated in a fixed sample one by one. The output of the event camera is
only a stream, and one event usually contains little information. Therefore,
organizing these events to form a meaningful representation is always a
very core question for event-based data processing. In ABMOF, we use the
event count slice as the representation. However, to make it more robust,
we use a method called area event number and a feedback mechanism to
dynamically adjust the duration of an event slice. EFAST uses the TI as the
event representation. There are many other event representation methods
used in the research. Such as in [237], they use a four-dimension tensor
for the event representation. In [237] they also compared some common
representation methods in the community and show how different repre-
sentation affects the performance of the DNN. It finds that the event spike
tensor with time stamp measurements has the highest accuracy on the test
set for both N-Cars [238] and N-Caltech101 [239] for object recognition
task [237]. Refer to [237] to check more details about different event rep-
resentations. Therefore, in the future, exploring some different event rep-
resentation methods for ABMOF and SFAST would also be an interesting
direction.

7.2.6 ASIC silicon area/power estimates

To make EDFLOW more compact and lower power consumption, ASIC
would be a step further, but ASIC affordability comes with volume. Cus-
tom architectures are usually part of the niche market and can be ill-fitting
for ASIC design. Here, we make a brief estimation about the cost for this.
We assumed that an upcoming stacked, back-illuminated vision sensor
technology would be used for an advanced DAVIS and that it would use a
28nm digital process and attempted to estimate the silicon area and power
for implementing EDFLOW. The main difficulty has proved to be the HLS

148 conclusion and outlook

memories; the output of HLS conversion is Verilog HDL, but it includes
many uses of particular BRAM macros. The other difficulty is the timing
issue. When HLS generates the RTL circuit from the C++ code, it can han-
dle the timing problem automatically. It can generate the circuit under the
user’s satisfaction without too much user intervention. However, this prob-
lem requires to be considered very carefully in the ASIC design, especially
when there is a BRAM macro. Our development is currently partially com-
plete, but we do not have easy access to an SRAM memory compiler to
overcome this hurdle.

7.2.7 Is the event camera at the dawn of a new computer vision era?

When thinking about commercial applications for event-based cameras,
one important factor cannot be ignored is the price. Until now, these sen-
sors from all manufacturing companies are still sold at a very high price.
Some of them are even comparable to a super-high-speed frame-based
camera. This prevents a wide usage in the industry and, on the other hand,
increases the entrance threshold for researchers. This forms a bad loop:
the high price (caused mainly by small scale production) makes few re-
searchers in the community, which results in few applications, and makes
it more difficult to be accepted by the market and thus keeps the price high.
Some good news is that in recent years, increasing event-based datasets are
released, and research could be done even without a real event-based cam-
era on hand. On the other hand, from [1, 22] to the most recent [23], the
model of DVS simulators has also become increasingly realistic.

This scene makes us think about a similar historical situation. At the
dawn of motion pictures, Edward Muybridge was interested in photogra-
phy as a tool for capturing data. It only secondarily was taken up by others
as a sensational entertainment medium. However, it has always advanced
the purposes of science, and it will continue to do so until the last producer
has choked on his last cigar. This is the second revolution. The second revo-
lution occurred when CMOS technology was first introduced in the image
sensor. The CMOS camera has bigger noise, low resolution and is more ex-
pensive than the CCD camera during the early time. However, the CMOS
camera is the mainstream technology in the image sensor area today. Now
event-based camera comes to a similar threshold point, will it be the dawn
of the event-based camera’s bright future?

To sum up, the event cameras DVS and DAVIS provide high tempo-
ral resolution, sparse, low-latency data. It can work in a higher-dynamic-

7.2 outlook 149

range environment and consume several mWs. As discussed before, it is
a potential sensor for high-speed applications, such as drones or robotics.
Nevertheless, there are still some limitations to these cameras. The major
obstacle for DVS or DAVIS is that the resolution is still low compared to
the mainstream frame-based camera. Currently, the largest spatial resolu-
tion published on the event camera is about 1 Mpixel (1280x960) [170]. This
is almost nothing even compared to a phone’s camera.

However, the author believes that the price could drop precipitously
once this technology enters mass production. Moreover, it attracts increas-
ing interest from investors and giant players in recent years, such as the
acquisition by OmniVision Technologies of Celepixel and the acquisition by
Sony Semiconductors of insightness. From the author’s view, event cam-
eras would follow a similar success as their counterpart, frame-based cam-
eras, though it will require effort in time and energy of talented people
worldwide.

A
A P P E N D I X

a.1 building a minized sdsoc platform

As we described in Chapter 4, we should prepare a SDSoC platform be-
fore we use SDx. This platform consists of two parts. One is the software
part. This part provides the bootloader, Linux image, and libraries. The
software part is built by a tool called Petalinux, which is also from Xilinx.
The other is the hardware part. This part is described by a Device Support
Archive (DSA) file. This file is generated from a basic hardware design
using Vivado.

This section shows how to build an SDx platform for the MiniZed board.
The source files for building this platform are released on GitHub. This
repo is called mz_petalinux_SDx. The versions of Vivado tools used in this
thesis are 2018.1.

Check https://github.com/wzygzlm/mz_petalinux_SDx to obtain all
building files.

a.1.1 Hardware

There are three folders “board_vivado", “minized_petalinux_prjs" and “sdx"
under the root folder of the repository.

Figure A.1: The content of “board_vivado" folder.

151

https://github.com/wzygzlm/mz_petalinux_SDx

152 appendix

Fig. A.1 shows the files in the folder “Board_vivado". It mainly contains
two tcl files: mz_petalinux_board.tcl and set_properties_.tcl. The sdx folder
contains the complete pre-built-in platform files.

Mz_petalinux_board.tcl is used to generate the basic hardware Vivado
projects. Source mz_petalinux_board.tcl can generate a predefined Vivado
project for MiniZed. Alternatively, users can also create their own hard-
ware projects from scratch. After synthesis, implementation, and generat-
ing the bitstream, source the second file “set_properties.tcl" to describe
what resources this platform provides. The properties include platform
name, clock, AXI ports, interrupts, etc. The last step is to generate the
(DSA) file. It archives the board tcl files, initial hardware scripts, IP files
used in the design, etc. SDSoC could reconstruct the hardware design
based on this DSA file.

Figure A.2: The folder structure of a typical petalinux project.

a.1.2 Software

A typical petalinux project contains two folders: components and project-
proc. Components contain some built-in headers and libraries from Xilinx.
The Project-spec folder stores the customized configuration by users. It has
three subfolders: configs, hw-description, and project-spec.

The configs folder contains two subfolders: config and rootfs_config. The
first subfolder is for system configuration. Rootfs_config stores the configu-
ration for Rootfs. Rootfs is a file system based on RAM.

The hw-description folder has the files for the hardware. Most of them
can be extracted from the DSA file we mentioned above. One file called
Hardware Description File (.hdf) could be exported from Vivado.

A.1 building a minized sdsoc platform 153

(a) Hw-description folder. (b) Meta-user folder.

Figure A.3: Hw-description and meta-user folder.

Meta-user folder has several subfolders: conf, recipes-apps. recipes-BSP,
recipes-connectivity, recipes-BSP, recipes-core, recipes-kernel, recipes-modules, and
recipes-multimedia. Petalinux uses Yocto as the builder. Conf folder stores
the configuration for the builder. Yocto adopts layers to manage the pack-
ages to be built. Every package is stored in a format of .bb file. All other
folders with a prefix “recipes" contain customized packages. E.g., recipes-
kernel has user’s modifications or patches to the kernel. Recipes-core stores
all applications added by the user. Remember to update petalinux-image.bbappend
in this folder after modifying recipes-app.

After configuration, the next step is to build. The command is petalinux-build.
It takes a while ranging from one hour to several hours. Make sure to pre-
pare enough space for the intermediate artifacts. It can consume up to even
more than 100GB. Details about petalinux tools are in [240].

If everything goes well, the result of petalinux includes a Linux kernel
image file, bootloader, and rootfs file. Copy all these files to the software
folder of a SDSoC platform. In conjunction with the DSA file from the
hardware part, a complete SDSoC platform is finished constructing.

154 appendix

a.2 some tricks of hls optimization

Although Vivado HLS uses C++ as input, there are some techniques or
tricks that might be useful while writing the code.

 float point multiplier

Figure A.4: The float matrix multiplication problem. There is a float point mul-
tiplier on the hardware with an initial interval I I and Latency L.

a.2.1 Interleaving technique

The data interleaving technique is a very popular technique used in hard-
ware architecture. It is primarily used to solve loop-carried dependency.
Loop-carried dependency means the input of a computation loop depends
on the result of its previous computation loop. This makes the next loop
cannot be started until the previous loop is finished. To solve the loop-
carried dependencies, we need to make the interval between these two
loops have enough time. Here we use the float matrix multiplier as an
example to show how to optimize the code using interleaving.

Fig. A.4 shows the float matrix multiplication problem. The timing per-
formance of the basic hardware unit float point multiplier is also shown in
Fig. A.4.

The first solution we used is writing the code as a typical software design
as shown in Listing A.1 which is we first computing a11 × b11 and then

A.2 some tricks of hls optimization 155

a12 × b21 and so on. Its computing order and the timing block are shown
in Fig. A.5(a). Due to the loop-carrying dependency (line 11 in Listing A.1),
the initial interval of the design could only achieve L instead of I I.

Code is rewritten in Listing A.2. The difference between this code and
the original code is that the k loop and m loop are switched. Therefore, the
computing order is changed. a11 × b11 is followed by a21 × b12 instead of
a12 × b21. Fig. A.5 (b) shows the computing order and timing block after
optimization. This design could achieve the initial interval as the same
value as the basic float point multiplier. The reason is by changing the
computing order, a11 × b11 and a12 × b21 are reordered in different loops
and their interval is changed to (M− 1) ∗ I I + L which is far more than L.
The loop-carried dependency is thus solved.

1 void FloatMatrixMul(float A[N][K], float B[K][M], float C[N][M])

2 {

3 for(int n = 0; n < N; n++)

4 {

5 for(int m = 0; m < M; m++)

6 {

7 float acc = 0;

8 for(int k = 0; k < K; k++)

9 {

10 #pragma HLS PIPELINE

11 acc += A[n][k] * B[k][m];

12 }

13 C[n][m] = acc;

14 }

15 }

16 }

Listing A.1: Float matrix calculation in the normal order.

1 void FloatMatrixMulInterleaving(float A[N][K], float B[K][M], float C[N][M])

2 {

3 for(int n = 0; n < N; n++)

4 {

5 float acc[M];

6 for(int k = 0; k < K; k++)

7 {

8 float a = A[n][k];

9 for(int m = 0; m < M; m++)

10 {

11 #pragma HLS PIPELINE

12 float prev = (k == 0) ? 0 : acc[m];

13 acc[m] = prev + a * B[k][m];

14 }

15 for(int m = 0; m < M; m++)

156 appendix

16 {

17 C[n][m] = acc[m];

18 }

19 }

20 }

21 }

Listing A.2: Float matrix calculation in an interleaving order.

Time

(a). The timing of Listing A.1. Compute in a normal
order

(b). The timing of Listing A.2. Compute in an interleaving
order

Figure A.5: The timing diagram of the float matrix multiplication code before
and after using interleaving.

This is a quite useful trick when encountering the loop-carried depen-
dency. By transposing the inner loop and outer loop, The two items that
are neighbors within the same loop could be reordered into different loops
and thus improve the throughput.

A.2 some tricks of hls optimization 157

a.2.2 Apply dataflow to several simple PE

While designing the core part of hardware ABMOF, we divided the SAD
into three small PEs: ColSAD, RowSummer and FindStreamMin (See Chap-
ter 6). This section gives an elaborated explanation of this technique.

This technique firstly partitions a complex function into several simple
PEs and then arranges them in a dataflow architecture. Dataflow [160] is a
very powerful tool in Vivado HLS. Similar to the pipeline, this directive is
also used to decrease II to increase the system’s throughput. The difference
between them is that dataflow has a higher level than pipeline. It is always
used at the function level. The dataflow directive is used on the top-level
function, so all submodules are connected one by one via FIFO, making
the whole system more efficient. Dataflow makes every submodule are
established with a consumer-producer model. It guarantees that the con-
sumer module cannot start until the producer’s output is ready by using
ping-pong RAM or FIFO to synchronize among modules. Every process
circuit could work in parallel with this mechanism, and the consumer unit
will not get fake data. The dataflow makes the whole system work like a
streamlined factory in which every process unit produces and consumes
data simultaneously. This consumer-producer model results in the II of the
whole system are determined by the submodules’ maximum instead of the
sum of all submodules.

memory

PE

memory

PE PE PE PE PE PE

100ns100ns 5 Million
Op/s

30 Million
Op/s

(a) System with only one PE (b) 6 same PEs are connected togethers

Figure A.6: Dataflow machnism. Adapte from [241].

Dataflow in HLS is similar to the concept of systolic system [241]. Dif-
fering from the systolic array that arranges many instances of the same
PE units, dataflow can connect different PEs, which makes it more flexible.
One of the most critical parts of the Tensorflow Processor Unit (TPU) is
based on the systolic array [242].

158 appendix

Fig.A.6 illustrated the advantage of the systolic system intuitively. The
delay of reading from and access to the memory is assumed 100ns. If only
one PE is used as shown in Fig. A.6(a), the throughput is almost only
determined by the delay between the PE and the memory. The maximum
of the throughput of the system thus is 5 million Operations Per Second
(OPS) at most. In Fig. A.6(b), six same PEs are connected, and the data
is fed into all PEs in sequence as if a data stream flows into the PE array.
This hardware structure is called the systolic system. The same data could
be reused six times, which means the throughput of this system could be
six times higher than the system in Fig. A.6(a). Hence 30M OPS could be
achieved.

Back to the example that we mentioned at the beginning of this section.
Let us take scale 0 as an example for calculation. The II for these three
PEs are db f ÷ NPCe × (2 ∗ r + 1), db f ÷ NPCe × (2 ∗ r + 1) and (2 ∗ r + 1)
respectively. For details of NPC, check Sec.6.4.4. Substitute the value from
Table 3.1 with b f = 25, r = 3 and NPC = 2, the real values are 91, 91

and 7. If we simply contacted these three PEs ColSAD, RowSummer, and
FindStreamMin in one module. The II of this complicate module is about
91 + 91 + 7 = 189. However, if we divided into three independent PEs as
we did, the II is the maximum, which is around 91. It thus helps increase
the throughput a lot.

To summarise, in contrast to conventional pipelining, PEs arranged in
a dataflow architecture are scheduled separately when synthesized by the
HLS tool. There are multiple benefits to this [162]:

• Different functionality runs at different schedules. For example, is-
suing memory requests, servicing memory requests, and receiving
requested memory can all require different pipelines, state machines,
and even clock rates.

• Smaller components are more modular, making them easier to reuse,
debug, and verify.

• The effort required by the HLS tool to schedule code sections in-
creases dramatically with the number of operations that need to be
considered for the dependency and pipelining analysis. Scheduling
logic in smaller chunks is thus beneficial for compilation time.

• Large fan-out/fan-in is challenging to route on real hardware (i.e.,
1-to-N or N-to-1 connections for large N). This is mitigated by parti-
tioning the components into smaller parts and adding more pipeline
stages.

A.2 some tricks of hls optimization 159

a.2.3 Miscellaneous tips

This section presents some more useful tips for HLS optimization. Some
of them help increase the throughput, and some of them might be used
to save resources. Hardware design is a balance art between speed and
resources. Apply them according to your requirements. More optimization
tips we recommend readers to refer to [162, 243].

Duplicate instances to increase Parallelism. HLS synthesize the C/C++
code as follows: Top-level function arguments synthesize RTL I/O ports.
C/C++ functions synthesize into blocks in the RTL hierarchy. If the C/C++
code includes a hierarchy of modules or entities with one-to-one corre-
spondence with the original C hierarchy, all instances of a function use the
same RTL implementation or block. The user could also implement several
instances of the same function to make the system run in parallel if the re-
source is enough by setting the correct directive. This idea is similar to the
concept NPC in Sec.6.4.4.

Try different block-level protocols. Every IP generated by Vivado HLS
will have a block-level protocol to be accessed/controlled by other circuits.
The default protocol is the ap_hls protocol. It is vital to choose an approx-
imate block-level protocol for the IP since the resources consumed will
significantly differ when integrated into the system. After choosing the
block-level protocol, the port-level protocol is also required to be deter-
mined. HLS will generate all C driver files for this IP to be easily used in
SDx or Vivado circuit design.

Be careful to use allocation directive. Vivado HLS provide a directive
called allocation to increase the reusability of some resources. Sometimes,
allocation does not reduce the LUTs since sharing also increases the mul-
tiplex, and some registers will be stored in several stages and consume
more LUTs. As a result, the number of LUTs saved by allocation might be
compensated by the number increased by its side effect, and sometimes
the side effect is more substantial.

Remove abundant bits. For example, if the counter of one loop only
requires 8bits, then use the necessary bit width. If int type is used, then
HLS will synthesis a register with 64bits width, and it will increase a lot of
area in some cases.

Make the bid width of data to multiple of 18. This tip only applies to
Xilinx’s hardware. The reason is that most of the BRAMs units on Xilinx’s
FPAG are 18-bit width. Set the data bit width as the multiple of 18 could
help increase the utilization of BRAMs.

160 appendix

Use HLS Stream as much as possible. Vivado HLS provides a data type
called stream to mimic the stream data such as video streams and event
streams in the natural world. The stream could be easily implemented as
FIFOs on hardware. FIFO does not require an address. Small FIFOs can
even be implemented with shift registers and do not consume BRAMs.
Therefore, FIFO is a very cheap resource on hardware.

On-chip data exchange. The bottleneck of many algorithms implemented
on FGPA is the data exchange between the PL and the PS. How to exchange
data faster between PS and PL is also a very hot topic in neural network
accelerator [244]. If the buffer or temp memory is not big, instantiating
them on the FPGA would be better.

Avoid float computing and try to replace them with bit shift. One ex-
ample is from designing the feedback mechanism on ABMOF. The control
factor is a decimal number. For jAER, this value is 0.05. We approximate it
to 1/16 on hardware since this value does not have to be fixed to 0.05.

Use cycle shift read and write for reading narrow data from a wide
data. The details and example of this tip check Sec.6.4.2.1.

a.3 vga protocol and timing diagram

The interface of VGA consists of 15 pins and is distributed in 3 rows with
5 pins per row. Among them, 3 pins are used for brightness and 2 for syn-
chronization signals. It carries three-color analog components RGB (red,
green, and blue) and two synchronization signals for controlling the trans-
fer. The other 5 ground pins form a loop with the above signal pins. One
synchronization is for horizontal synchronization, and the other is for ver-
tical. Formerly, 4 pins carried Monitor ID bits and a +12V DC pin. VESA
DDC redefined these 5 pins. 3 pins were used for the I2C interface of the
EEPROM. It includes a +5V DC pin for the EEPROM power supply, a I2C
data pin, and a I2C clock pin. The remaining 2 pins are reserved. VGA is
transferred in analog form. We used a VGA DAC board to convert the dig-
ital signals to analog signals. The 2 synchronization signal pins control the
transfer order among the 5 signal pins, and they determine the resolution.

The timing diagram of these 2 synchronized signals is shown in Fig. A.7.
In Fig. A.7, VS is the vertical synchronization signal, and HS is the hori-
zontal synchronization signal. a is the horizontal synchronize pulse, b is
the horizontal back porch, c is the horizontal active time, d is the horizon-
tal front porch, e is the horizontal total time. o is the vertical synchronize
pulse, p is the vertical back porch, q is the vertical active time, r is the ver-

A.4 usb 2.0 protocols introduction 161

。。。

。。。

a

o

b c d

p q r

e

s

VS

HS

CLK

Figure A.7: VGA HS and VS timing

tical front porch, s is the vertical total time. The above values in different
resolutions are shown in Table. A.1.

Display

mode

Clock

(MHz)

Horizontal timing

(#clocks)

Vertical timing

(#lines)

a b c d e o p q r s

640x480@60 25.175 96 48 640 16 800 2 33 480 10 525

640x480@75 31.5 64 120 640 16 840 3 16 480 1 500

800x600@60 40.0 128 88 800 40 1056 4 23 600 1 628

800x600@75 49.5 80 160 800 16 1056 3 21 600 1 625

1024x768@60 65 136 160 1024 24 1344 6 29 768 3 806

1024x768@75 78.8 176 176 1024 16 1312 3 28 768 1 800

1280x1024@60 108.0 112 248 1280 48 1688 3 38 1024 1 1066

1280x800@60 83.46 136 200 1280 64 1680 3 24 800 1 828

1440x900@60 106.47 152 232 1440 80 1904 3 28 900 1 932

Table A.1: VGA refresh rate for various resolutions

a.4 usb 2.0 protocols introduction

USB uses a tiered-star topology. Every USB system has only one USB host.
Host and all devices share the same bus. Every USB device on the bus has

162 appendix

SOP SYNC Packet Content EOP

PID Address Frame number Data CRC

8 bits 11 bits 11bits 0-1024 bytes 5 bits

Figure A.8: The bit field of the USB packet.

Raw Data

Bit Stuffed Data

NRZI
Encoded Data

Data Encoding Sequences:

SYNC pattern Packet data

SYNC pattern Packet data

SYNC pattern Packet data

Stuffed Bit

Six Ones

Idle

Figure A.9: Data encoding sequence with bit stuffing.

its own address. The maximum device number on a bus is 127. Within the
USB device, there are many endpoints. The maximum of endpoints a USB
device can have is 15. Endpoints can be categorized into control and data
endpoints. Every USB device must provide at least one control endpoint
at address 0 called the default endpoint or Endpoint0. This endpoint is
bidirectional. That is, the host can send data to the endpoint and receive
data from it within one transfer. The purpose of a control transfer is to
enable the host to obtain device information, configure the device, or per-
form control operations that are unique to the device. Data endpoints are
optional and used for transferring data. They are unidirectional, have a
type (control, interrupt, bulk, isochronous) and other properties. All those
properties are described in an endpoint descriptor.

Encoding of the data transmission on the bus follows the bit stuffing and
NRZI. NRZI is a method of mapping a binary signal to a physical signal

A.4 usb 2.0 protocols introduction 163

PID Type Value Name Description

Token

0001B OUT
Address + endpoint number

in host-to-device transcaction

1001B IN
Address + endpoint number

in device-to-host transaction

0101B SOF
Start-of-Frame marker and

frame number

1101B SETUP
Address + endpoint number in

host-to-device transaction for

SETUP to a control pipe

Data

0011B DATA0 Data packet PID event

1011B DATA1 Data packet PID odd

0111B DATA2

Data packet PID high-speed, high

bandwidth isochronous transaction

in a microframe

1111B MDATA
Data packet PID high-speed for split

and high bandwidth isochronous

transactions

Handshake

0010B ACK Receiver accepts error-free data packet

1010B NAK
Receiving device cannot accept data or

transmitting device cannot send data

1110B STALL
Endpoint is halted or a control

pipe request is not supported

0110B NYET No response yet from receiver

Special

1100B PRE
(Token) Host-issued preamble.

Enables downstream bus traffic

to low-speed devices.

1100B ERR
(Handshake) Split Transaction Error

Handshake (reuses PRE value)

1000B SPLIT (Token) High-speed Split Transaction Token

0100B PING
(Token) High-speed flow control probe for a

bulk/control endpoint

0000B Reserved Reserved PID

Table A.2: USB packet types and its PID number and description. Adapted
from [245].

164 appendix

for transmission over some transmission medium. It uses ‘0’ to a signal
transition and ‘1’ for no change. To avoid the voltage on the transmission
line staying constant for too long, bit stuffing is introduced to solve this
problem. It requires that if there are six consecutive ‘1’s occur on the bus,
an additional ‘0’ should be appended. For the decoding process, if detected
six consecutive ‘1’ and followed by a ‘0’, the last ‘0’ would be removed. An
example of the USB data encoding is shown in A.9.

Signal
Line

state
Description

Low speed

(D-

pull up)

Full speed

(D+

pull up)

D+ D- D+ D-

J
Same as

idle line

state

This is present during a

transmission line transition.

Alternatively, it is waiting

for a new packet.

low high high low

K
Inverse

of J state

This is present during a

transmission line transition.
high low low high

SE0

Single-

ended

zero

Both D+ and D- is low.

This may indicate an end

of packet signal or a

detached USB device.

low low low low

SE1

Single-

ended

one

This is an illegal state and

should never occur.

This is seen as an error.

high high high high

Table A.3: Some terminology used to represent some common USB line states.
Adapted from [245].

Some terminology used for USB data transmission encoding is shown
in Table A.3. The minimum data unit on the USB transmission unit is a
packet. The bit field of a packet is shown in Figure A.8. It usually has 4
sections: Start of Packet (SOP), SYNC, packet content, and End of Packet
(EOP). SOP means the start of a packet. A USB packet begins with an 8-bit
synchronization sequence, 00000001B. This sequence is called the SYNC
field. That is, after the initial idle state J, the data lines toggle KJKJKJKK.
The final 1 bit (repeated K state) marks the end of the sync pattern and the
beginning of the USB frame. The packet begins with a 32-bit synchroniza-

A.4 usb 2.0 protocols introduction 165

tion sequence for high-bandwidth USB, which is 32 ‘0’s following by one
‘1’.

In the packet section, it usually has the following fields: Packet Identifier
(PID), address, frame number, data, and Cyclic redundancy check (CRC).
PID indicates the type of the packet. The meaning of PID field is shown in
Table A.2. Address filed is an 11-bit field, and it consists of a 7-bit device
address and a 4-bit endpoint address. The frame number is an 11-bit field
to indicate the frame number of the packet. The data field holds the actual
data to be transferred, and its size is variant according to the transfer type.
The max size is 1026 bytes. CRC is used to make sure the packet is correct.
Packet content’s fields vary among different packets. OUT/IN/SETUP to-
ken packets do not have frame numbers and data. SOF toke packet does
not have an address and data. Data packets do not have an address and
frame number. Handshake packets only have a PID field in the packet
content section.

EOP is indicated by the transmitter driving 2-bit times of SE0 and 1-bit
time of J state. For more details about the bit field of every packet, refer
to [245].

Host packets Device packets

SETUP

DATA0

ACK/NAK/
STALL

Token

Data

Handshake

IN

DATA0/1

ACK/NAK/
STALL

OUT

DATA0/1

ACK/NAK/
STALL

setup transaction input transaction output transaction

idle idleidle

Figure A.10: USB transaction procedure.Texts in the blocks means the packet
type. Check Table A.2 for packet detail.

Several packets make up a transaction. Packets and transactions cannot
be interrupted and must be finished within a frame. All packets that be-
long to the same transaction should be transferred consecutively. For high-
speed devices, the frame period is 125us. For full-speed and low-speed

166 appendix

. . .

setup . . .

DATA0

input input input output

outputsetup output output input

DATA0

setup

setup stage

Control transfer
(write)

input

status stage

setup stage data stage status stage

DATA1 DATA0 DATA0/1 DATA0

DATA1 DATA0 DATA0/1 DATA1

DATA0 DATA1

Control transfer
(read)

Control transfer
(no data)

output

input

output output output

input input input

. . .

. . .

Bulk transfer
(write)

Bulk transfer
(read)

DATA0 DATA1

DATA0 DATA1

DATA0

DATA0

DATA0/1

DATA0/1

setup transaction

input transaction
output transaction

Figure A.11: USB setup and bulk transfer procedure.

devices, the frame period is 1ms. USB transaction has 3 types: input, out-
put, and setup. An illustration of these three is shown in Figure A.10. All
of them have three types of packets: token, data, and handshake. Two dif-
ferences among them are the token packet and the data direction.

A transfer is made up of several transactions. USB has four transfer
types: Bulk transfer, isochronous transfer, interrupt transfer, and control
transfer. Figure A.11 illustrates two of them: control transfer and bulk
transfer. Interrupt transfer is similar to bulk transfer except that it does not
support PING packets. The isochronous transfer has the highest priority,
so it does not require a handshake part for input and output transactions,
which also means it does not have a resend mechanism. This transfer thus
has the best real-time performance but does not guarantee that the data is
correct. Control transfer is a little more complicated than bulk transfer. A
control transfer has three stages: setup, data, and status. The setup stage
has only one setup transaction. The data stage has several out/in transac-
tions for write/read. Packet DATA0 and DATA1 are switched one by one
during the data stage. No data stage for control transfer without data such
as set/clear feature request [245]. The last status stage is used to mark the
end of a transfer. It has the opposite direction to the data stage for write
and read control transfer. For no data control transfer, the status stage is

A.5 davis346zynq configuration 167

fixed using an input transaction. No matter the transaction in the status
stage is an input or output transaction, the data packets during this trans-
action always have zero-length data.

a.5 davis346zynq configuration

Figure A.12: The configuration console of DAVIS346Zynq.

168 appendix

The interface of the IP is AXI4Lite, which is a widely used communica-
tion bus in SoC systems to interconnect modules. With this bus, the ARM
on the SoC can easily access the IP at any time. The PS runs a bare-metal
firmware that lets us program registers over the USB port, but it is oth-
erwise idle. The firmware interprets the user command sent via UART
and sends it to the appropriate IP using AXI4Lite. Moreover, the firmware
can send DVS events to the DAVIS346Zynq logic from the SD card for test-
ing. DVS events along with key points and OF are transmitted to the host
computer, where we can capture them and used them to verify they are
identical to the output from the software ABMOF algorithm1.

Fig. A.12 is a screenshot of the configuration console of DAVIS346Zynq.
It consists of seven sections. The first section is “Play mode". This cam-
era supports two modes: live mode and playback mode. It can show the
current play mode and change it at any time.

The second section is “Display mode". It supports three display modes:
jAER mode, VGA mode, and mixed mode. In jAER mode, events are only
sent to jAER via USB. In VGA mode, events are only displayed on a VGA
monitor. For the mixed mode, events are sent to both of them simultane-
ously.

The third section is “Event Statistics". This mode returns the current
event rate and the maximum event rate.

The fourth section is “ABMOF status and configuration". This section
is used to configure ABMOF and show its running status. It can control
whether to estimate the optical flow for all events or only corners. The
area event number threshold k (See Table 3.1) could be adjusted by the
user at any time. It also supports toggling feedback in the ABMOF.

The fifth section is “SFAST status and configuration". It can configure
SFAST threshold (See Table 3.1). It supports returning the corner event
statistic.

The sixth section is “ SD Card configuration". It can configure how many
events are used to form an event packet. The other function is to select
which file for sequencing.

The last section is a miscellaneous section. It has two options: show avail-
able keys and toggle verbose mode.

1 ABMOF Java source code in jAER on GitHub (PatchMatchFlow.java)

https://github.com/SensorsINI/jaer/blob/master/src/ch/unizh/ini/jaer/projects/minliu/PatchMatchFlow.java

A.6 hardware debugging story 169

a.6 hardware debugging story

Debugging software and hardware is a totally different experience. Soft-
ware debugging usually would not break hardware. Besides, it is almost
possible to solve all software problems with powerful breakpoint tools.
However, hardware debugging might break devices, and there are no break-
points that could be used in hardware, especially in FPGA debugging.
Most of the time, there are just some LEDs on board. When one LED is
turned on, it indicates that the Verilog/VHDL code has hit some specific
line. However, to use the LEDs, there is a prerequisite: the FPAG could be
detected by the PC so that the PC could download the firmware to the
FPGA. If we call the time that we could use a PC to communicate with the
FPGA “historical time", this section tells a story of the “prehistoric time".

After receiving the assembled DAVIS346Zynq board, I powered on my
board and connected the USB to the PC. An item was supposed to appear
on the menu of the hardware target manager in Vivado. But nothing was
there. The first reaction that occurred to me was to check the USB-JTAG
bridge. There was an onboard USB-JTAG bridge module that could con-
vert the Joint Test Action Group (JTAG) to USB. I had some experience
with JTAG before. Nevertheless, this was the first time to use this module.
For this problem, I guessed there were two possible possibilities. One was
that the module was broken. The other was that the schematic designed
to connect to the module might be wrong. To exclude the first possibil-
ity, I tested it on another board. The result was the same. These modules
were brand-new. I then started to check the second possibility. Replacing
the module required disassembling and re-soldering. There were two inter-
faces for JTAG wires. One was connected to the USB-JTAG bridge module,
and the other was connected to a parallel interface directly. The parallel in-
terface was a standard 14-pin interface and was widely used in many early
embedded systems. But more and more recent designs adopted USB-JTAG
modules because of their convenience and portability.

Fig. A.13 shows the 14-pin JTAG interface. Since the ARM and the FPGA
on the Xilinx Zynq 7100 SoC share the same JTAG bus, I used an ARM
JTAG simulator. There are only 5 valid pins for a 14-pin JTAG interface as
shown in Fig. A.13. JTAG is usually the first interface circuit that should
work after the chip is powered on. The primary purpose of JTAG is to ver-
ify the design and test the wire connections on the chip and PCB. Nowa-
days, it is also widely used as a debugging tool for MCUs. Most of the
time, users do not need to care about the protocol behind JTAG because it

170 appendix

JTAG

2 GND
4 GND
6 GND
8 GND
10 GND
12 nSRST
14 GND

1VDD
3nTRST
5TDI
7TMS
9TCK
11TDO
13VDD

Figure A.13: The 14-pin interface of JTAG.

is only used as a communication tool between MCUs and PCs. The mini-
mum requirement to enable JTAG is usually quite simple. If the PC cannot
recognize the SoC, this board is a “rubbish" board. I had no choice but to
try all possibilities to make it work. The first thing I did was to go through
the details of the JTAG protocol and compare it with the waveforms I ob-
tained from an oscilloscope. The waveform indeed showed something but
in a short time. At last, I knew that was a waveform of the IDCODE. This
IDCODE was hardcoded to the circuit register when they were fabricated.
I compared the output IDCODE with the user manual of Zynq 7100. It
proved that it was a valid output. The TDO pin of the JTAG could shift
out the IDCODE correctly. It seemed that the output of JTAG functioned
correctly. Then I did an experiment. I used a JTAG controller 2 to configure
the JTAG into a bypass mode. And then, I used the controller to generate
different test vectors and patterns to simulate the input pin TDI of JTAG. If
everything went as I hoped, the TDO pin should shift the output as same
as the input. However, there was nothing except the IDCODE. At that time,
I started to doubt other circuits on the board.

According to my previous experience with the MCU, the problem should
not be from the JTAG interface circuit. It is known to hardware designers
that power and clock circuits are the two most essential circuits on the
board. Most of the time, if the power and clock circuits work well, then it
usually satisfies the minimum condition that a MCU requires. I turned my
attention to these two circuits. The clock circuit was easy to check. There
were two oscillators on the board. One was 24MHz used by the USB PHY
circuit. We do not need to care about this. The other 50MHz clock provides

2 https://www.jtaglive.com/

https://www.jtaglive.com/

A.6 hardware debugging story 171D

C

B

A

654321

A

B

C

D

654321

Title

File:
Date:

Size Number

Sheet of
Drawn By:

Revision

POWER SUPPLY CIRCUIT

3.0V@200mA

2V8@200mA

Rc

Rd

Vout=0.6*(1+Rc/Rd)

The power options are 3:

1. 5VEXT via PWR_JACK

2. BAT via LIPO_BAT

3. +5V_OTG_PWR via USB_OTG
(External 5VDC power source)

(External 4.2VDC battery)

(External 5VDC driven by any USB)

1.1V@100mA

VCC-3V3

VDD-PL

1.0V@0.6A

3.0V@800mA

1.0V@2.5A

VDD-PS

3.0V@600mA

VCC-DRAM

1.5V\1.2V@2A

3.0V@30mA

1.0V@300mA

2.5V@300mA

3.3V@200mA

1.8V@400mA

3.3V@100mA

1V8@200mA

3.3V@100mA

2.8V@100mA

1V2@400mA

Notice: Change the default ouput voltage to 1.0V for -1LI and 0.95V for -2PLI

To: FPGA Bank 500 and 501

For connecting with external power module

BAT

R50

1R
R51

1R

C93 10uF/6.3V

C94 10uF/6.3V

C97 10uF/6.3V

C99 10uF/6.3V

C102 10uF/6.3V

C92 10uF/6.3V

C95 10uF/6.3V

C96 10uF/6.3V

1256
7

3

48

T1

WPM1481

TEST6

TEST4

R
59

0.
01

R

R
60

0.
01

R

C107

1uF

C106
1uF

L5 1.5UH

R53 2KLED2YELLOW

D3
R47 0R

C100 10uF/6.3V

C101 10uF

C91 10uF/6.3V

C98 10uF/6.3V

C90 10uF/6.3V

R49 2K2_1 1_1
PWR_BUT1

C104 100nF

R54 10K

R58 1RR48 243R

R61 10K

TEST2
GND R56 243R

R52 2.2K
R55 2.2K

L6

1.5uH

TEST8

C13010uF/6.3V
C13110uF

C13210uF

C12010uF

C11510uF

C10910uF

C12510uF

C11810uF/6.3V

C11610uF/6.3V

C12910uF/6.3V

C11010uF

C12710uF

C11110uF
C11310uF
C11410uF/6.3V
C11710uF

C11910uF
C12110uF/6.3V
C12210uF/6.3V
C12310uF/6.3V
C12410uF/6.3V

C12610uF/6.3V
C12810uF/6.3V
C11210uF/6.3V

L10

1.5uH

TEST12
1.0V_SYS

L9

1.5uH
TEST101.0V_CPU

L8

1.5uH
TEST11

L7

1.5uH

TEST13 2.8V_CSI

TEST14 3.3VA

R65 0R

R66 0R

+

-
--

PWR_JACK1

PWRJ-2mm(YDJ-1136)

R46 0R

C
10

3
22

uF
/6

.3
V

C
10

5
22

uF
/6

.3
V

TEST3
5VEXT

C108

22uF/6.3V
C133 1uF

R57
2K

PW
R

1
LE

D
/R

ED
/0

60
3

TEST5

R62
100K

G S

D

pm
os

FET1

IRLML6402

D4
1N5822

TEST7

+5V

R63
8.25K

R64
1.1K

L11

2.2uH

D5

4EN

3 FB 2GND

5IN1 LX

6 NC

U9

SY7208

1
2

LIPO_BAT1

DW02R

C89

22uF/6.3V

1 2
DOE1 Open

A
C

C
A

D
2

SM
B

J6
.0

A

C53

100nF

C54

4.7uF

C55

100nF

C56

4.7uF

C57

100nF

C58

4.7uF

C59

100nF

C60

4.7uF

C61

100nF

C62

4.7uF

C63

100nF

C64

4.7uF

C65

C65 100nF

C66

4.7uF

C67

C67 100nF

C68

C68 4.7uF

C69

C69 100nF

C70

C70 4.7uF

C71

100nF

C72

4.7uF

C73

C73 100nF

C74

4.7uF

C75

100nF

C76

C76 4.7uF

2_1 1_1
RESET3A1 GNDA1

A11 GNDA2
A21 GNDA3
AA1 GNDA4

AA10 GNDA5
AA11 GNDA6
AA21 GNDA7
AA5 GNDA8

AB11 GNDA9
AB18 GNDA10
AB28 GNDA11
AB3 GNDA12
AB7 GNDA13
AC1 GNDA14

AC11 GNDA15
AC15 GNDA16
AC25 GNDA17
AC5 GNDA18
AC9 GNDA19

AD11 GNDA20
AD12 GNDA21
AD22 GNDA22
AD3 GNDA23
AD7 GNDA24
AE1 GNDA25

AE11 GNDA26
AE19 GNDA27
AE29 GNDA28
AE5 GNDA29
AE9 GNDA30

AF11 GNDA31
AF16 GNDA32
AF26 GNDA33
AF3 GNDA34
AF7 GNDA35
AG1 GNDA36

AG11 GNDA37
AG13 GNDA38
AG23 GNDA39
AG5 GNDA40
AG9 GNDA41

AH11 GNDA42
AH20 GNDA43
AH3 GNDA44

AH30 GNDA45
AH7 GNDA46
AJ1 GNDA47

A
J1

1
G

N
D

B
1

A
J1

7
G

N
D

B
2

A
J2

7
G

N
D

B
3

A
J5

G
N

D
B

4
A

J9
G

N
D

B
5

A
K

11
G

N
D

B
6

A
K

14
G

N
D

B
7

A
K

24
G

N
D

B
8

A
K

3
G

N
D

B
9

A
K

7
G

N
D

B
10

B
18

G
N

D
B

11
B

28
G

N
D

B
12

B
8

G
N

D
B

13
C

15
G

N
D

B
14

C
25

G
N

D
B

15
C

5
G

N
D

B
16

D
12

G
N

D
B

17
D

2
G

N
D

B
18

D
22

G
N

D
B

19
E1

9
G

N
D

B
20

E2
9

G
N

D
B

21
E9

G
N

D
B

22
F1

6
G

N
D

B
23

F2
6

G
N

D
B

24
F6

G
N

D
B

25
G

13
G

N
D

B
26

G
23

G
N

D
B

27
G

3
G

N
D

B
28

H
10

G
N

D
B

29
H

20
G

N
D

B
30

H
30

G
N

D
B

31
J1

7
G

N
D

B
32

J2
7

G
N

D
B

33
J7

G
N

D
C

46
K

14
G

N
D

C
45

K
24

G
N

D
C

44

K4GNDC43
L11GNDC42
L21GNDC41
M1GNDC40
M14GNDC39
M18GNDC38
M2GNDC37
M28GNDC36
M3GNDC35
M4GNDC34
M5GNDC33
M6GNDC32
M7GNDC31
M8GNDC30
M9GNDC29
N1GNDC28
N11GNDC27
N13GNDC26
N15GNDC25
N17GNDC24
N19GNDC23
N25GNDC22
N5GNDC21
N9GNDC20
P12GNDC19
P16GNDC18
P18GNDC17
P20GNDC16
P22GNDC15
P3GNDC14
P7GNDC13
R1GNDC12
R11GNDC11
R13GNDC10
R17GNDC9
R19GNDC8
R29GNDC7
R5GNDC6
T10GNDC5
T12GNDC4
T16GNDC3
T18GNDC2
T20GNDC1

T2
6

G
N

D
D

32
T3

G
N

D
D

31
T8

G
N

D
D

30
U

1
G

N
D

D
29

U
11

G
N

D
D

28
U

13
G

N
D

D
27

U
17

G
N

D
D

26
U

19
G

N
D

D
25

U
23

G
N

D
D

24
U

5
G

N
D

D
23

V
12

G
N

D
D

22
V

14
G

N
D

D
21

V
16

G
N

D
D

20
V

18
G

N
D

D
19

V
20

G
N

D
D

18
V

3
G

N
D

D
17

V
30

G
N

D
D

16
V

8
G

N
D

D
15

W
1

G
N

D
D

14
W

11
G

N
D

D
13

W
13

G
N

D
D

12
W

15
G

N
D

D
11

W
17

G
N

D
D

10
W

19
G

N
D

D
9

W
27

G
N

D
D

8
W

5
G

N
D

D
7

Y
14

G
N

D
D

6
Y

16
G

N
D

D
5

Y
18

G
N

D
D

4
Y

24
G

N
D

D
3

Y
3

G
N

D
D

2
Y

7
G

N
D

D
1

U1-Q
XC7Z100

AA6 MGTAVCC1
AB8 MGTAVCC2

AC10 MGTAVCC3
AC6 MGTAVCC4
AD8 MGTAVCC5

AE10 MGTAVCC6
AE6 MGTAVCC7
AF8 MGTAVCC8

AG10 MGTAVCC9
AH8 MGTAVCC10
AJ10 MGTAVCC11

N6 MGTAVCC12
P8 MGTAVCC13
R6 MGTAVCC14
U6 MGTAVCC15
W6 MGTAVCC16
Y8 MGTAVCC17

AA2 MGTAVTT1
AB4 MGTAVTT2
AC2 MGTAVTT3
AD4 MGTAVTT4
AE2 MGTAVTT5
AF4 MGTAVTT6
AG2 MGTAVTT7
AG6 MGTAVTT8
AH4 MGTAVTT9
AJ2 MGTAVTT10
AJ6 MGTAVTT11

AK4 MGTAVTT12
AK8 MGTAVTT13

N2 MGTAVTT14
P4 MGTAVTT15
R2 MGTAVTT16
T4 MGTAVTT17
U2 MGTAVTT18
V4 MGTAVTT19
W2 MGTAVTT20
Y4 MGTAVTT21
T7 MGTVCCAUX1
V7 MGTVCCAUX2

M13VCCINT1
M15VCCINT2
N12VCCINT3
N14VCCINT4
P13VCCINT5
R12VCCINT6
R16VCCINT7
T13VCCINT8
U12VCCINT9
U16VCCINT10
V13VCCINT11
V15VCCINT12
W12VCCINT13
W14VCCINT14
W16VCCINT15
Y17VCCINT16
M11VCCAUX1
N10VCCAUX2
R10VCCAUX3
U10VCCAUX4
W10VCCAUX5
Y11VCCAUX6
P11VCCAUX1_IO_G0
T11VCCAUX2_IO_G0
V11VCCAUX3_IO_G0
V17VCCBRAM1
V19VCCBRAM2
W18VCCBRAM3
W20VCCBRAM4
N20VCCPAUX1
P19VCCPAUX2
R20VCCPAUX3
U20VCCPAUX4
N16VCCPINT1
P17VCCPINT2
R18VCCPINT3
T17VCCPINT4
T19VCCPINT5
U18VCCPINT6
N18VCCPLL

U1-R
XC7Z100

R67

120R

C
13

4
10

uF

C
13

5
0.

47
uF

1
2
3
4
5
6
7
8

P2

header8

32ALDO1
34ALDO2
36ALDO3

33ALDOIN

22DC1SW

4DC5LDO
10DC5SET

21DCDC1

28DCDC2

38DCDC3

67DCDC4

5DCDC5

19DLDO1
17DLDO2
16DLDO3
20DLDO4

18DLDOIN

68ELDO1
2ELDO2
3ELDO3

1ELDOIN

14LX1

24LX2A
25LX2

40LX3A
41LX3

65LX4

7LX5A
8LX5

15PGND1

26PGND2A
27PGND2

42PGND3

66PGND4

6PGND5

13VIN1

23VIN2

39VIN3

64VIN4

9VIN5

55 ACIN0
56 ACIN

49 BATSENSE

52 CHGLED/MOTORDRV

58 CHSENSEN

57 CHSENSEP

69 GND

37 GPIO0/LDOIO0

31 GPIO1/LDOIO1/PWREN

53 IPSOUT0
54 IPSOUT

29 IRQ/WAKEUP

50 LOADSENSE

60 LX_CHG0
61 LX_CHG

51 N_BATDRV

11 N_VBUSEN

59 PGND_CHG

43 PWROK
12 PWRON

44 SCK
45 SDA

30 TS

48 VBUS

46 VCC_RTC

47 VINT

62 VIN_CHG0
63 VIN_CHG

35 VREF

U8

APX221

TEST1

VCC-RTC

C77

C77 100nF

C78

C78 4.7uF

C82

C82 4.7uF

C83

C83 100nF

C84

C84 4.7uF

C85

C85 100nF

C86

4.7uF

C87

C87 100nF

C88

C88 4.7uF

C79

C79 100nF

C80

C80 4.7uF

C81

100nF

C136

C88 4.7uF

TEST15

MGTAVCC_1_0V

IPSOUT

IPSOUT

IPSOUT

IPSOUT

IPSOUT

IPSOUT

CHGLED

VCC-LCD(3V0)

MGTAVCC_1_0V
2_5V_ALDO2
3_0V_ALDO3

DLDO1
DLDO2
DLDO3
DLDO4

1_1V_CPUS

+5V
MGTAVCC_1_0V

1_8V_ELDO2
3_0V_ALDO3
2_5V_ALDO2
1_2V_ELDO1

DLDO1
1_2V_ELDO1

VCCPLL_1_8V

1_0V_PS

VCCPLL_1_8V

1_0V_PL

VCCPLL_1_8V

1_0V_PL

VCCPLL_1_8V

MGTAVCC_1_0V
VCCPLL_1_8V

5VEXT

BAT

AXP-RESET#

USB0-DRVVBUS

AXP-NMI#
3_3V

PMU-SCK
PMU-SDA

3_3V

1_0V_PL

VCCPLL_1_8V

1_0V_PS

1_5V

3_3V

+5V_OTG_PWR

VCC_RTC0

VCC_RTC0

AXP_PWRON

5VEXT

+5V

3_3V

BAT

1_
2V

_E
LD

O
1

1_
8V

_E
LD

O
2

2_5V_ALDO2

IPSOUT

1_5V

IPSOUT

IPSOUT

IPSOUT

IPSOUT

IPSOUT

IPSOUT

IPSOUT

3_3VA

VCC_RTC

VCC_RTC

MGTAVCC_1_0V

DLDO1

3_0V_ALDO3

IPSOUT

IPSOUT

MGTAVCC_1_0V

1_0V_PL

1_
0V

_P
S

MGTAVCC_1_0V

Figure A.14: The wrong power supply for PLL circuit of the SoC. Marked in
red.

the system clock. From the oscilloscope, it can generate a very nice 50MHz
square wave. The clock circuit was good.

The left possibility was to check the power circuit. The power circuit was
not easy to check. As shown in Sec. 5.3.2, there were multiple power rails
on the board. I decided to use an ablation study. However, before that, I
need to find the minimum operation condition that an SoC could work. I
had a MiniZed board on hand. Although the SoC between the MiniZed
and DAVIS346Zynq is different, they were from the same family series. I
disassembled components on the MiniZed until the PC can not recognize
this board. Unexpectedly, even a clock was not required. The correct power
circuit was the only condition. Then I used the power supplied by MiniZed
to power on my board. My DAVIS346Zynq board was recognized by the PC
successfully. This finding was really inspiring.

Similar to the process of finding the minimum condition, I used a com-
bination power method to supply my board and then removed the power
rail from the MiniZed one by one. Finally, I localized the error power rail.
Phase-locked loops (PLL) on the chip was not powered. The error is shown
in Fig. A.14. The decoupling capacitors were series-connected on the path
from the power to the chip. However, they were supposed to be connected
in a parallel connection. I fixed the error on the board and assembled all re-
moved components back on the board. Actually, one SoC broke during the
combination power supply test due to the wrong power-off sequence. That
is why I say hardware debugging might break devices at the beginning
of this section. But the good news was that the basic setup for the board
was done. Both ARM and the FPGA were detected by the PC successfully.
Until then, more than one month was passed.

It is a story caused by a small error. During that period, I was very
desperate and did not know what I should do next. I was entirely not

172 appendix

sure if I can solve the problem. Sometimes, I thought I should give up.
Fortunately, I did not give up and managed to solve the problem.

Follow-up stories. Of course, this problem was not the only problem.
In the following time, I encountered another three significant problems:
DDR3 reported many reading and writing problems, NAND flash boot
problems, and the USB on the PS did not work. The DDR3 problem was
caused by the super-high-speed design. DDR3 is a super-high-speed mem-
ory. To satisfy the signal’s integrity, it has strict regulations on the signals’
wire length. I did constrain all data signals to have an identical length.
However, I ignored the control signals. This problem took me a while to fix.
The straightforward solution is to redesign the board. But I am not sure if
the other remaining problems on board and redesigning costs more money
and more time. At last, I found a solution that did not require redesigning
the board. Thanks to the on-chip DCI, it could dynamically adjust the ter-
mination resistor to compensate for the control signals’ timing delay. The
details of stories about the NAND flash and USB are not described here.
The final solutions for them were the following: The NAND flash problem
was solved by replacing it with another chip from a different company.
For the USB, I did not use the USB provided by the PS and designed a
customized USB controller on FPGA (See Sec. 5.3.5).

Writing the stories is fast, but the time spent behind the stories is not like
writing. Luckily, I did not give up, and thus it was possible to finish the
EDFLOW work. I learned three lessons from hardware debugging. One
important lesson I learned from hardware debugging is that you can never
check the power supply too much. The power circuit is the fundamental
and core circuit for PCB design. If the power circuit dies, the whole board
dies. Another lesson is to pay enough attention to all aspects of the super-
high-speed signals on the board, from the schematic, the placement, and
the routing. The third lesson is to extend all wires from the chip to the
connector interfaces as much as possible. Like JTAG interface I used in
this design, it helped me observe the waveforms from the chip directly. To
sum up, hardware debugging is a painful but happy process. Through the
unforgettable debugging, I also learned a lot of things about the interface
circuits. I have a deeper understanding of the protocols of JTAG, DDR3,
NAND flash, and USB.

A.7 dataset and source code repository 173

a.7 dataset and source code repository

ABMOF18 dataset data link (use Resilio Sync to download):
http://tiny.cc/htpauz

ABMOF dataset README link:
http://tiny.cc/itpauz

Petalinux project source code for npp board:
https://github.com/wzygzlm/minized_petalinux_prjs

SDx project for NPP board:
https://github.com/wzygzlm/nnp_OF_SDx

Petalinux project source code for MiniZed:
https://github.com/wzygzlm/minized_petalinux_prjs

MiniZed SDx platform files:
https://github.com/wzygzlm/mz_petalinux_SDx

jAER project:
https://github.com/SensorsINI/jaer

DAVIS346Zynq Vivado project, including VGA, USB, SPI:
https://github.com/wzygzlm/7z100All

EDFLOW HLS project:
https://github.com/SensorsINI/EDFLOW

http://tiny.cc/htpauz
http://tiny.cc/itpauz
https://github.com/wzygzlm/minized_petalinux_prjs
https://github.com/wzygzlm/nnp_OF_SDx
https://github.com/wzygzlm/minized_petalinux_prjs
https://github.com/wzygzlm/mz_petalinux_SDx
https://github.com/SensorsINI/jaer
https://github.com/wzygzlm/7z100All
https://github.com/SensorsINI/EDFLOW

B I B L I O G R A P H Y

1. Mueggler, E., Rebecq, H., Gallego, G., Delbruck, T. & Scaramuzza, D.
The event-camera dataset and simulator: Event-based data for pose
estimation, visual odometry, and SLAM. The International Journal of
Robotics Research 36, 142 (2017).

2. Phantom high speed cameras https://www.phantomhighspeed.com//.

3. Freely WAVE https://freeflysystems.com/wave//.

4. Chronos https://www.krontech.ca/chronos-2-1-resources//.

5. Lichtsteiner, P., Posch, C. & Delbruck, T. A 128 x 128 120 dB 15 µs La-
tency Asynchronous Temporal Contrast Vision Sensor. IEEE Journal
of Solid-State Circuits 43, 566 (2008).

6. Liu, S.-C., Delbruck, T., Indiveri, G., Whatley, A. & Douglas, R. Event-
Based Neuromorphic Systems 450 pp. (John Wiley and Sons Ltd., UK,
2015).

7. Delbruck, T., Linares-Barranco, B., Culurciello, E. & Posch, C. Activity-
Driven, Event-Based Vision Sensors in Proceedings of 2010 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS) Proceedings of 2010

IEEE International Symposium on Circuits and Systems (ISCAS)
(Paris, 2010), 2426. doi:10.1109/ISCAS.2010.5537149.

8. Brandli, C., Berner, R., Yang, M., Liu, S.-C. & Delbruck, T. A 240x180

130 dB 3 us Latency Global Shutter Spatiotemporal Vision Sensor.
IEEE Journal of Solid-State Circuits 49, 2333 (2014).

9. Li, C., Brandli, C., Berner, R., Liu, H., Yang, M., Liu, S.-C. & Del-
bruck, T. An RGBW Color VGA Rolling and Global Shutter Dynamic
and Active-Pixel Vision Sensor in 2015 International Image Sensor Work-
shop (IISW 2015) 2015 International Image Sensor Workshop (IISW
2015) (imagesensors.org, Vaals, Netherlands, 2015), 393.

10. Posch, C., Matolin, D. & Wohlgenannt, R. An asynchronous time-based
image sensor in IEEE International Symposium on Circuits and Systems,
2008. ISCAS 2008 IEEE International Symposium on Circuits and
Systems, 2008. ISCAS 2008 (2008), 2130. doi:10.1109/ISCAS.2008.
4541871.

175

https://www.phantomhighspeed.com//
https://freeflysystems.com/wave//
https://www.krontech.ca/chronos-2-1-resources//
http://dx.doi.org/10.1109/ISCAS.2010.5537149
http://dx.doi.org/10.1109/ISCAS.2008.4541871
http://dx.doi.org/10.1109/ISCAS.2008.4541871

176 bibliography

11. Gallego, G., Delbruck, T., Orchard, G., Bartolozzi, C., Taba, B., Censi,
A., Leutenegger, S., Davison, A., Conradt, J., Daniilidis, K., et al.
Event-based vision: A survey. arXiv preprint arXiv:1904.08405 (2019).

12. Berner, R., Brandli, C., Yang, M., Liu, S. C. & Delbruck, T. A 240×
180 10mW 12us latency sparse-output vision sensor for mobile applications
in VLSI Circuits (VLSIC), 2013 Symposium on (2013), C186.

13. Liu, S.-C., Delbruck, T., Indiveri, G., Whatley, A. & Douglas, R. Event-
Based Neuromorphic Systems 450 pp. (John Wiley and Sons Ltd., UK,
2015).

14. Gallego, G., Delbruck, T., Orchard, G. M., Bartolozzi, C., Taba, B.,
Censi, A., Leutenegger, S., Davison, A., Conradt, J., Daniilidis, K. &
Scaramuzza, D. Event-based Vision: A Survey. IEEE Trans. Pattern
Anal. Mach. Intell. PP, 1 (2020).

15. Chin, T.-J., Bagchi, S., Eriksson, A. & van Schaik, A. Star Tracking
Using an Event Camera in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops (2019).

16. Bagchi, S. & Chin, T.-J. Event-based star tracking via multiresolution pro-
gressive Hough transforms in Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision (2020), 2143. doi:10.1109/
WACV45572.2020.9093309.

17. Vasco, V., Glover, A. & Bartolozzi, C. Fast event-based Harris cor-
ner detection exploiting the advantages of event-driven cameras in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (2016), 4144.

18. Mueggler, E., Bartolozzi, C. & Scaramuzza, D. Fast event-based corner
detection in British Machine Vis. Conf.(BMVC) 1 (2017).

19. Alzugaray, I. & Chli, M. Asynchronous corner detection and tracking
for event cameras in real time. IEEE Robotics and Automation Letters
3, 3177 (2018).

20. Manderscheid, J., Sironi, A., Bourdis, N., Migliore, D. & Lepetit, V.
Speed Invariant Time Surface for Learning to Detect Corner Points
with Event-Based Cameras. arXiv preprint arXiv:1903.11332 (2019).

21. Stoffregen, T. & Kleeman, L. Simultaneous Optical Flow and Seg-
mentation (SOFAS) using Dynamic Vision Sensor (2018).

22. Rebecq, H., Gehrig, D. & Scaramuzza, D. Esim: an open event camera
simulator in Conference on Robot Learning (2018), 969.

http://dx.doi.org/10.1109/WACV45572.2020.9093309
http://dx.doi.org/10.1109/WACV45572.2020.9093309

bibliography 177

23. Hu, Y., Liu, S.-C. & Delbruck, T. v2e: From Video Frames to Realistic
DVS Events in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops (2021), 1312.

24. Zhu, A. Z., Thakur, D., Özaslan, T., Pfrommer, B., Kumar, V. & Dani-
ilidis, K. The multivehicle stereo event camera dataset: An event cam-
era dataset for 3D perception. IEEE Robotics and Automation Letters 3,
2032 (2018).

25. Binas, J., Neil, D., Liu, S.-C. & Delbruck, T. DDD17: End-to-end
DAVIS driving dataset. arXiv preprint arXiv:1711.01458 (2017).

26. Scheerlinck, C., Rebecq, H., Stoffregen, T., Barnes, N., Mahony, R. &
Scaramuzza, D. CED: Color event camera dataset in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops
(2019), 0.

27. Calabrese, E., Taverni, G., Awai Easthope, C., Skriabine, S., Corradi,
F., Longinotti, L., Eng, K. & Delbruck, T. DHP19: Dynamic Vision Sen-
sor 3D Human Pose Dataset in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops (2019), 0.

28. Gallego, G. & Scaramuzza, D. Accurate angular velocity estimation
with an event camera. IEEE Robotics and Automation Letters 2, 632

(2017).

29. Zhu, A. Z., Atanasov, N. & Daniilidis, K. Event-based feature tracking
with probabilistic data association in Robotics and Automation (ICRA),
2017 IEEE International Conference on (2017), 4465.

30. Hadviger, A., Marković, I. & Petrović, I. Stereo dense depth tracking
based on optical flow using frames and events. Advanced Robotics, 1

(2020).

31. McGuire, K., De Croon, G., De Wagter, C., Tuyls, K. & Kappen, H.
Efficient optical flow and stereo vision for velocity estimation and
obstacle avoidance on an autonomous pocket drone. IEEE Robotics
and Automation Letters 2, 1070 (2017).

32. De Croon, G., Ho, H., De Wagter, C., Van Kampen, E., Remes, B. &
Chu, Q. Optic-flow based slope estimation for autonomous landing.
International Journal of Micro Air Vehicles 5, 287 (2013).

33. Hordijk, B. J. P., Scheper, K. Y. & de Croon, G. G. Vertical Landing
for Micro Air Vehicles using Event-Based Optical Flow. arXiv preprint
arXiv:1702.00061 (2017).

178 bibliography

34. Pijnacker Hordijk, B. J., Scheper, K. Y. & De Croon, G. C. Vertical
landing for micro air vehicles using event-based optical flow. Journal
of Field Robotics 35, 69 (2018).

35. Weikersdorfer, D. & Conradt, J. Event-based particle filtering for robot
self-localization in Robotics and Biomimetics (ROBIO), 2012 IEEE Inter-
national Conference on (2012), 866.

36. Zingg, S., Scaramuzza, D., Weiss, S. & Siegwart, R. MAV naviga-
tion through indoor corridors using optical flow in 2010 IEEE Interna-
tional Conference on Robotics and Automation (2010), 3361. doi:10.1109/
robot.2010.5509777.

37. Mueggler, E., Gallego, G. & Scaramuzza, D. Continuous-time trajec-
tory estimation for event-based vision sensors in Robotics: Science and Sys-
tems XI (2015).

38. Gallego, G., Lund, J. E., Mueggler, E., Rebecq, H., Delbruck, T. &
Scaramuzza, D. Event-based, 6-DOF camera tracking for high-speed
applications. arXiv preprint arXiv:1607.03468 (2016).

39. Zhu, A. Z., Atanasov, N. & Daniilidis, K. Event-based Visual Inertial
Odometry (2017).

40. Kueng, B., Mueggler, E., Gallego, G. & Scaramuzza, D. Low-latency
visual odometry using event-based feature tracks in 2016 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS) 2016

IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS) (2016), 16. doi:10.1109/IROS.2016.7758089.

41. Censi, A. & Scaramuzza, D. Low-latency event-based visual odometry in
2014 IEEE International Conference on Robotics and Automation (ICRA)
2014 IEEE International Conference on Robotics and Automation
(ICRA) (2014), 703. doi:10.1109/ICRA.2014.6906931.

42. Rebecq, H., Horstschaefer, T. & Scaramuzza, D. Real-time visualiner-
tial odometry for event cameras using keyframe-based nonlinear optimiza-
tion in British Machine Vis. Conf.(BMVC) 3 (2017).

43. Weikersdorfer, D., Hoffmann, R. & Conradt, J. Simultaneous localiza-
tion and mapping for event-based vision systems in International Confer-
ence on Computer Vision Systems (2013), 133.

44. Vidal, A. R., Rebecq, H., Horstschaefer, T. & Scaramuzza, D. Ulti-
mate SLAM? Combining events, images, and IMU for robust visual
SLAM in HDR and high-speed scenarios. IEEE Robotics and Automa-
tion Letters 3, 994 (2018).

http://dx.doi.org/10.1109/robot.2010.5509777
http://dx.doi.org/10.1109/robot.2010.5509777
http://dx.doi.org/10.1109/IROS.2016.7758089
http://dx.doi.org/10.1109/ICRA.2014.6906931

bibliography 179

45. Gibson, J. J. The ecological approach to visual perception: classic edition
(Psychology Press, 2014).

46. Torii, A., Imiya, A., Sugaya, H. & Mochizuki, Y. Optical flow compu-
tation for compound eyes: Variational analysis of omni-directional views
in International Symposium on Brain, Vision, and Artificial Intelligence
(2005), 527.

47. Chahl, J. S., Srinivasan, M. V. & Zhang, S.-W. Landing strategies in
honeybees and applications to uninhabited airborne vehicles. The
International Journal of Robotics Research 23, 101 (2004).

48. Baird, E., Boeddeker, N., Ibbotson, M. R. & Srinivasan, M. V. A uni-
versal strategy for visually guided landing. Proceedings of the National
Academy of Sciences 110, 18686 (2013).

49. Esch, H. & Burns, J. Distance estimation by foraging honeybees. Jour-
nal of Experimental Biology 199, 155 (1996).

50. Srinivasan, M. V. Honeybees as a model for the study of visually
guided flight, navigation, and biologically inspired robotics. Physio-
logical reviews 91, 413 (2011).

51. Schuster, R., Bailer, C., Wasenmüller, O. & Stricker, D. in Commercial
Vehicle Technology 2018 90 (Springer, 2018).

52. Yin, Z. & Shi, J. Geonet: Unsupervised learning of dense depth, optical
flow and camera pose in Proceedings of the IEEE conference on computer
vision and pattern recognition (2018), 1983.

53. Jain, M., Jégou, H. & Bouthemy, P. Better exploiting motion for better ac-
tion recognition in Proceedings of the IEEE conference on computer vision
and pattern recognition (2013), 2555.

54. Wang, H., Kläser, A., Schmid, C. & Liu, C.-L. Dense trajectories and
motion boundary descriptors for action recognition. International
journal of computer vision 103, 60 (2013).

55. Jakubowski, M. & Pastuszak, G. Block-based motion estimation al-
gorithms — a survey. Opto-Electronics Review 21, 86 (2013).

56. Cheng, J., Tsai, Y.-H., Wang, S. & Yang, M.-H. Segflow: Joint learning
for video object segmentation and optical flow in Proceedings of the IEEE
international conference on computer vision (2017), 686.

57. Ding, M., Wang, Z., Zhou, B., Shi, J., Lu, Z. & Luo, P. Every frame
counts: joint learning of video segmentation and optical flow in Proceedings
of the AAAI Conference on Artificial Intelligence 34 (2020), 10713.

180 bibliography

58. Geiger, A., Lenz, P. & Urtasun, R. Are we ready for autonomous driving?
the kitti vision benchmark suite in 2012 IEEE Conference on Computer
Vision and Pattern Recognition (2012), 3354.

59. Chao, H., Gu, Y. & Napolitano, M. A survey of optical flow tech-
niques for robotics navigation applications. Journal of Intelligent &
Robotic Systems 73, 361 (2014).

60. Crétual, A. & Chaumette, F. Visual servoing based on image motion.
The International Journal of Robotics Research 20, 857 (2001).

61. Giachetti, A., Campani, M. & Torre, V. The use of optical flow for
road navigation. IEEE transactions on robotics and automation 14, 34

(1998).

62. Sun, Z., Bebis, G. & Miller, R. On-road vehicle detection: A review.
IEEE transactions on pattern analysis and machine intelligence 28, 694

(2006).

63. Enkelmann, W. Obstacle detection by evaluation of optical flow
fields from image sequences. Image and Vision Computing 9, 160

(1991).

64. Miller, A., Miller, B., Popov, A. & Stepanyan, K. UAV landing based
on the optical flow videonavigation. Sensors 19, 1351 (2019).

65. Cheng, H.-W., Chen, T.-L. & Tien, C.-H. Motion estimation by hy-
brid optical flow technology for UAV landing in an unvisited area.
Sensors 19, 1380 (2019).

66. Wang, Z., Wang, B., Tang, C. & Xu, G. Pose and Velocity Estimation
Algorithm for UAV in Visual Landing in 2020 39th Chinese Control Con-
ference (CCC) (2020), 3713.

67. Horn, B. K. & Schunck, B. G. Determining optical flow. Artificial
intelligence 17, 185 (1981).

68. Lucas, B. D., Kanade, T., et al. An iterative image registration tech-
nique with an application to stereo vision (1981).

69. Black, M. J. & Anandan, P. The robust estimation of multiple mo-
tions: Parametric and piecewise-smooth flow fields. Computer vision
and image understanding 63, 75 (1996).

70. Brox, T., Bregler, C. & Malik, J. Large displacement optical flow in 2009
IEEE Conference on Computer Vision and Pattern Recognition (2009), 41.

bibliography 181

71. Mileva, Y., Bruhn, A. & Weickert, J. Illumination-robust variational op-
tical flow with photometric invariants in Joint Pattern Recognition Sympo-
sium (2007), 152.

72. Zimmer, H., Bruhn, A., Weickert, J., Valgaerts, L., Salgado, A., Rosen-
hahn, B. & Seidel, H.-P. Complementary optic flow in International Work-
shop on Energy Minimization Methods in Computer Vision and Pattern
Recognition (2009), 207.

73. Kerfa, D. & Belbachir, M. F. Star diamond: an efficient algorithm for
fast block matching motion estimation in H264/AVC video codec.
Multimedia tools and applications 75, 3161 (2016).

74. Lu, J. & Liou, M. L. A simple and efficient search algorithm for
block-matching motion estimation. IEEE Transactions on Circuits and
Systems for Video Technology 7, 429 (1997).

75. Li, R., Zeng, B. & Liou, M. L. A new three-step search algorithm for
block motion estimation. IEEE transactions on circuits and systems for
video technology 4, 438 (1994).

76. Zhu, S. & Ma, K.-K. A new diamond search algorithm for fast block-
matching motion estimation. IEEE transactions on Image Processing 9,
287 (2000).

77. Nie, Y. & Ma, K.-K. Adaptive rood pattern search for fast block-
matching motion estimation. IEEE Trans. Image Process. 11, 1442

(2002).

78. Black, M. J. Robust incremental optical flow PhD thesis (Verlag nicht
ermittelbar, 1992).

79. Brox, T., Bruhn, A., Papenberg, N. & Weickert, J. High accuracy optical
flow estimation based on a theory for warping in European conference on
computer vision (2004), 25.

80. Weinzaepfel, P., Revaud, J., Harchaoui, Z. & Schmid, C. DeepFlow:
Large displacement optical flow with deep matching in Proceedings of the
IEEE international conference on computer vision (2013), 1385.

81. Revaud, J., Weinzaepfel, P., Harchaoui, Z. & Schmid, C. Epicflow:
Edge-preserving interpolation of correspondences for optical flow in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition
(2015), 1164.

182 bibliography

82. Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov,
V., Van Der Smagt, P., Cremers, D. & Brox, T. Flownet: Learning optical
flow with convolutional networks in Proceedings of the IEEE international
conference on computer vision (2015), 2758.

83. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A. & Brox, T.
Flownet 2.0: Evolution of optical flow estimation with deep networks in
Proceedings of the IEEE conference on computer vision and pattern recog-
nition (2017), 2462.

84. Hui, T.-W., Tang, X. & Loy, C. C. Liteflownet: A lightweight convolu-
tional neural network for optical flow estimation in Proceedings of the IEEE
conference on computer vision and pattern recognition (2018), 8981.

85. Hui, T.-W., Tang, X. & Loy, C. C. A lightweight optical flow CNN Re-
visiting data fidelity and regularization. IEEE transactions on pattern
analysis and machine intelligence 43, 2555 (2020).

86. Ranjan, A. & Black, M. J. Optical flow estimation using a spatial pyramid
network in Proceedings of the IEEE conference on computer vision and
pattern recognition (2017), 4161.

87. Sun, D., Yang, X., Liu, M.-Y. & Kautz, J. Pwc-net: Cnns for optical
flow using pyramid, warping, and cost volume in Proceedings of the IEEE
conference on computer vision and pattern recognition (2018), 8934.

88. Savian, S., Elahi, M. & Tillo, T. in Deep biometrics 257 (Springer, 2020).

89. Fang, M., Li, Y., Han, Y. & Wen, J. A deep convolutional network
based supervised coarse-to-fine algorithm for optical flow measurement in
2018 IEEE 20th International Workshop on Multimedia Signal Processing
(MMSP) (2018), 1.

90. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M. J. & Szeliski,
R. A database and evaluation methodology for optical flow. Interna-
tional Journal of Computer Vision 92, 1 (2011).

91. Butler, D. J., Wulff, J., Stanley, G. B. & Black, M. J. A naturalistic open
source movie for optical flow evaluation in European conference on com-
puter vision (2012), 611.

92. Geiger, A., Lenz, P., Stiller, C. & Urtasun, R. Vision meets robotics:
The kitti dataset. The International Journal of Robotics Research 32, 1231

(2013).

93. Menze, M. & Geiger, A. Object scene flow for autonomous vehicles in
Proceedings of the IEEE conference on computer vision and pattern recog-
nition (2015), 3061.

bibliography 183

94. Mathur, R. Evaluation Datasets and Benchmarks for Optical Flow
Algorithms: A Review (2020).

95. Schröder, G., Senst, T., Bochinski, E. & Sikora, T. Optical flow dataset
and benchmark for visual crowd analysis in 2018 15th IEEE International
Conference on Advanced Video and Signal Based Surveillance (AVSS)
(2018), 1.

96. Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Dosovitskiy, A.
& Brox, T. A large dataset to train convolutional networks for disparity, op-
tical flow, and scene flow estimation in Proceedings of the IEEE conference
on computer vision and pattern recognition (2016), 4040.

97. Shugrina, M., Liang, Z., Kar, A., Li, J., Singh, A., Singh, K. & Fidler,
S. Creative flow+ dataset in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2019), 5384.

98. Fortun, D., Bouthemy, P. & Kervrann, C. Optical flow modeling and
computation: A survey. Computer Vision and Image Understanding 134,
1 (2015).

99. Hyneman, W., Itokazu, H., Williams, L. & Zhao, X. Human Face
Project in ACM SIGGRAPH 2005 Courses (Association for Computing
Machinery, Los Angeles, California, 2005), 5. doi:10.1145/1198555.
1198585.

100. Floreano, D. & Wood, R. J. Science, technology and the future of
small autonomous drones. Nature 521, 460 (2015).

101. Zufferey, J.-C., Beyeler, A. & Floreano, D. Autonomous flight at low
altitude using light sensors and little computational power. Interna-
tional Journal of Micro Air Vehicles 2, 107 (2010).

102. Fraundorfer, F., Heng, L., Honegger, D., Lee, G. H., Meier, L., Tan-
skanen, P. & Pollefeys, M. Vision-based autonomous mapping and explo-
ration using a quadrotor MAV in 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems (2012), 4557.

103. Ross, R., Devlin, J. & Wang, S. Toward refocused optical mouse sen-
sors for outdoor optical flow odometry. IEEE Sensors Journal 12, 1925

(2011).

104. Pallejà, T., Soler, E. R., Teixidó, M., Tresanchez, M., Del Viso, A. F.,
Sánchez, C. R. & Palacin, J. Using the optical flow to implement
a relative virtual mouse controlled by head movements. J. UCS 14,
3127 (2008).

http://dx.doi.org/10.1145/1198555.1198585
http://dx.doi.org/10.1145/1198555.1198585

184 bibliography

105. Honegger, D., Meier, L., Tanskanen, P. & Pollefeys, M. An open
source and open hardware embedded metric optical flow cmos camera for
indoor and outdoor applications in 2013 IEEE International Conference on
Robotics and Automation (2013), 1736.

106. Kendoul, F., Fantoni, I. & Nonami, K. Optic flow-based vision system
for autonomous 3D localization and control of small aerial vehicles.
Robotics and autonomous systems 57, 591 (2009).

107. Griffith, S., Saunders, J., Curtis, A., Barber, B., McLain, T. & Beard, R.
Maximizing miniature aerial vehicles—Obstacle and terrain avoid-
ance for MAVs. IEEE Robotics & Automation Magazine 13, 34 (2006).

108. Watman, D. & Murayama, H. Design of a miniature, multi-directional
optical flow sensor for micro aerial vehicles in 2011 IEEE International
Conference on Robotics and Automation (2011), 2986.

109. Chao, H., Gu, Y., Gross, J., Guo, G., Fravolini, M. L. & Napolitano,
M. R. A comparative study of optical flow and traditional sensors in uav
navigation in 2013 American Control Conference (2013), 3858.

110. Floreano, D., Zufferey, J.-C., Srinivasan, M. V. & Ellington, C. Flying
insects and robots (Springer, 2009).

111. Moini, A. Vision chips (Springer Science & Business Media, 1999).

112. Mead, C. Analog VLSI and neural systems (Addison-Wesley Longman
Publishing Co., Inc., 1989).

113. Stocker, A. A. Analog VLSI circuits for the perception of visual motion
(Wiley Online Library, 2006).

114. Liu, M. & Delbruck, T. Block-matching optical flow for dynamic vision
sensors: Algorithm and FPGA implementation in 2017 IEEE International
Symposium on Circuits and Systems (ISCAS) (2017), 1. doi:10.1109/
ISCAS.2017.8050295.

115. Rueckauer, B. & Delbruck, T. Evaluation of event-based algorithms
for optical flow with ground-truth from inertial measurement sensor.
Frontiers in neuroscience 10, 176 (2016).

116. Gallego, G., Rebecq, H. & Scaramuzza, D. A unifying contrast maxi-
mization framework for event cameras, with applications to motion, depth,
and optical flow estimation in (Salt City, 2018).

117. Delbruck, T. Frame-free dynamic digital vision in Proceedings of Intl.
Symp. on Secure-Life Electronics, Advanced Electronics for Quality Life
and Society (2008), 21.

http://dx.doi.org/10.1109/ISCAS.2017.8050295
http://dx.doi.org/10.1109/ISCAS.2017.8050295

bibliography 185

118. Benosman, R., Ieng, S.-H., Clercq, C., Bartolozzi, C. & Srinivasan, M.
Asynchronous frameless event-based optical flow. Neural Networks
27, 32 (2012).

119. Barranco, F., Fermüller, C. & Aloimonos, Y. Contour motion estima-
tion for asynchronous event-driven cameras. Proceedings of the IEEE
102, 1537 (2014).

120. Benosman, R., Clercq, C., Lagorce, X., Ieng, S.-H. & Bartolozzi, C.
Event-based visual flow. IEEE Trans Neural Netw Learn Syst 25, 407

(2014).

121. Zhu, A. Z., Yuan, L., Chaney, K. & Daniilidis, K. EV-FlowNet:
Self-Supervised Optical Flow Estimation for Event-based Cameras.
arXiv:1802.06898 [cs] (2018).

122. Barranco, F., Fermuller, C. & Aloimonos, Y. Bio-inspired motion es-
timation with event-driven sensors in International Work-Conference on
Artificial Neural Networks (2015), 309.

123. Bardow, P., Davison, A. J. & Leutenegger, S. Simultaneous optical flow
and intensity estimation from an event camera in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2016), 884.

124. Gallego, G., Gehrig, M. & Scaramuzza, D. Focus is all you need: Loss
functions for event-based vision in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (openaccess.thecvf.com,
2019), 12280.

125. Stoffregen, T. & Kleeman, L. Event cameras, contrast maximization and
reward functions: an analysis in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2019), 12300. doi:10.1109/
cvpr.2019.01258.

126. Pan, L., Liu, M. & Hartley, R. Single Image Optical Flow Estimation
With an Event Camera in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2020), 1672.

127. Akolkar, H., Ieng, S. H. & Benosman, R. Real-time high speed motion
prediction using fast aperture-robust event-driven visual flow. IEEE
Transactions on Pattern Analysis and Machine Intelligence. doi:10.1109/
tpami.2020.3010468 (2020).

http://dx.doi.org/10.1109/cvpr.2019.01258
http://dx.doi.org/10.1109/cvpr.2019.01258
http://dx.doi.org/10.1109/tpami.2020.3010468
http://dx.doi.org/10.1109/tpami.2020.3010468

186 bibliography

128. Fei Low, W., Gao, Z., Xiang, C. & Ramesh, B. SOFEA: A Non-Iterative
and Robust Optical Flow Estimation Algorithm for Dynamic Vision Sen-
sors in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (2020), 82. doi:10 . 1109 / cvpr42600 .
2020.00174.

129. Zhu, A., Yuan, L., Chaney, K. & Daniilidis, K. EV-FlowNet: Self-
Supervised Optical Flow Estimation for Event-based Cameras in Proceed-
ings of Robotics: Science and Systems (Pittsburgh, Pennsylvania, 2018).
doi:10.15607/RSS.2018.XIV.062.

130. Ye, C., Mitrokhin, A., Fermüller, C., Yorke, J. A. & Aloimonos, Y. Un-
supervised Learning of Dense Optical Flow, Depth and Egomotion
from Sparse Event Data (2018).

131. Zhu, A. Z., Yuan, L., Chaney, K. & Daniilidis, K. Unsupervised event-
based learning of optical flow, depth, and egomotion in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (openac-
cess.thecvf.com, 2019), 989. doi:10.1109/cvpr.2019.00108.

132. Lee, C., Kosta, A. K., Zhu, A. Z., Chaney, K., Daniilidis, K. & Roy, K.
Spike-FlowNet: Event-based optical flow estimation with energy-efficient
hybrid neural networks in European Conference on Computer Vision
(2020), 366. doi:10.1007/978-3-030-58526-6_22.

133. Zihao Zhu, A., Yuan, L., Chaney, K. & Daniilidis, K. Unsupervised
Event-Based Learning of Optical Flow, Depth, and Egomotion in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition
(2019), 989.

134. Ye, C., Mitrokhin, A., Fermüller, C., Yorke, J. A. & Aloimonos, Y. Un-
supervised Learning of Dense Optical Flow, Depth and Egomotion from
Sparse Event Data in 2020 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS) (2020), 5831. doi:10.1109/IROS45743.
2020.9341224.

135. Paredes-Vallés, F., Scheper, K. Y. & de Croon, G. C. Unsupervised
learning of a hierarchical spiking neural network for optical flow es-
timation: From events to global motion perception. IEEE transactions
on pattern analysis and machine intelligence 42, 2051 (2019).

136. Conradt, J. On-board real-time optic-flow for miniature event-based vision
sensors in 2015 IEEE International Conference on Robotics and Biomimet-
ics (ROBIO) (2015), 1858.

http://dx.doi.org/10.1109/cvpr42600.2020.00174
http://dx.doi.org/10.1109/cvpr42600.2020.00174
http://dx.doi.org/10.15607/RSS.2018.XIV.062
http://dx.doi.org/10.1109/cvpr.2019.00108
http://dx.doi.org/10.1007/978-3-030-58526-6_22
http://dx.doi.org/10.1109/IROS45743.2020.9341224
http://dx.doi.org/10.1109/IROS45743.2020.9341224

bibliography 187

137. Agha, S. & Dwyer, V. M. Algorithms and VLSI architectures for
MPEG-4 motion estimation. Electronic systems and control Division Re-
search, 24 (2003).

138. Berner, R., Delbruck, T., Civit-Balcells, A. & Linares-Barranco, A. A
5 Meps $100 USB2.0 address-event monitor-sequencer interface in 2007
IEEE International Symposium on Circuits and Systems (2007), 2451.

139. PatchMatchFlow java source code https:jaerproject.nethttps:jaerproject.net.

140. Barjatya, A. Block matching algorithms for motion estimation. IEEE
Transactions Evolution Computation 8, 225 (2004).

141. Zhang, L., Zhang, Y., Tang, J., Lu, K. & Tian, Q. Binary code ranking
with weighted hamming distance in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2013), 1586.

142. Liu, M. & Delbruck, T. Adaptive Time-Slice Block-Matching Optical Flow
Algorithm for Dynamic Vision Sensors in British Machine Vision Confer-
ence (BMVC) 2018 BMVC 2018 (Nescatle upon Tyne, 2018), 12.

143. Zhu, S. & Ma, K.-K. A new diamond search algorithm for fast block match-
ing motion estimation in Information, Communications and Signal Pro-
cessing, 1997. ICICS., Proceedings of 1997 International Conference on 1
(1997), 292.

144. Lindeberg, T. Scale-space theory: A basic tool for analyzing struc-
tures at different scales. Journal of applied statistics 21, 225 (1994).

145. PatchMatchFlow java source code https://sourceforge.net/p/jaer/

code/HEAD/tree/jAER/trunk/src/ch/unizh/ini/jaer/projects/

minliu/PatchMatchFlow.java//.

146. Delbruck, T. Java AER Framework https://jaerproject.org.

147. Shi, J. et al. Good features to track in Computer Vision and Pattern Recog-
nition, 1994. Proceedings CVPR’94., 1994 IEEE Computer Society Confer-
ence on (1994), 593.

148. OpenCV: Optical Flow

149. PixArt Imaging Inc. PixArt PMW3360 Optical Gaming Navigation Sen-
sor 2014.

150. Vidal, A., Rebecq, H., Horstschaefer, T. & Scaramuzza, D. Ultimate
SLAM? Combining Events, Images, and IMU for Robust Visual
SLAM in HDR and High Speed Scenarios. Robotics and Autonomous
Letters (2018).

https:jaerproject.net
https://sourceforge.net/p/jaer/code/HEAD/tree/jAER/trunk/src/ch/unizh/ini/jaer/projects/minliu/PatchMatchFlow.java//
https://sourceforge.net/p/jaer/code/HEAD/tree/jAER/trunk/src/ch/unizh/ini/jaer/projects/minliu/PatchMatchFlow.java//
https://sourceforge.net/p/jaer/code/HEAD/tree/jAER/trunk/src/ch/unizh/ini/jaer/projects/minliu/PatchMatchFlow.java//
https://jaerproject.org

188 bibliography

151. Moeys, D. P. et al. Steering a predator robot using a mixed frame/event-
driven convolutional neural network in 2016 Second International Con-
ference on Event-based Control, Communication, and Signal Processing
(EBCCSP) (2016), 1. doi:10.1109/EBCCSP.2016.7605233.

152. Lungu, I.-A., Corradi, F. & Delbruck, T. Live Demonstration: Con-
volutional Neural Network Driven by Dynamic Vision Sensor Playing
RoShamBo in 2017 IEEE Symposium on Circuits and Systems (ISCAS
2017) (Baltimore, MD, USA, 2017).

153. Amir, A. et al. A Low Power, Fully Event-Based Gesture Recognition Sys-
tem in (2017), 7243.

154. Fischl, K. D. et al. Neuromorphic self-driving robot with retinomorphic
vision and spike-based processing/closed-loop control in 2017 51st Annual
Conference on Information Sciences and Systems (CISS) (2017), 1. doi:10.
1109/CISS.2017.7926179.

155. Liu, M., Kao, W.-T. & Delbruck, T. Live Demonstration: A Real-
Time Event-Based Fast Corner Detection Demo Based on FPGA in 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-
shops (CVPRW) (2019), 1678. doi:10.1109/CVPRW.2019.00212.

156. Clady, X., Ieng, S.-H. & Benosman, R. Asynchronous event-based
corner detection and matching. Neural Networks 66, 91 (2015).

157. Li, J., Guo, C., Su, L., Wang, X. & Hu, Q. SE-Harris and eSUSAN:
Asynchronous Event-Based Corner Detection Using Megapixel Res-
olution CeleX-V Camera (2021).

158. Xilinx, S. SDSoC environment Profiling and Optimization Guide 2018.

159. Xilinx, S. SDSoC environment User Guide 2018.

160. Xilinx, V.-H. Vivado Design Suite User Guide-High-Level Synthesis 2018.

161. Kastner, R., Matai, J. & Neuendorffer, S. Parallel programming for
fpgas. arXiv preprint arXiv:1805.03648 (2018).

162. Licht, J. d. F., Meierhans, S. & Hoefler, T. Transformations of High-
Level Synthesis Codes for High-Performance Computing. arXiv
preprint arXiv:1805.08288 (2018).

163. George, N., Lee, H., Novo, D., Rompf, T., Brown, K. J., Sujeeth, A. K.,
Odersky, M., Olukotun, K. & Ienne, P. Hardware system synthesis from
domain-specific languages in 2014 24th International Conference on Field
Programmable Logic and Applications (FPL) (2014), 1.

http://dx.doi.org/10.1109/EBCCSP.2016.7605233
http://dx.doi.org/10.1109/CISS.2017.7926179
http://dx.doi.org/10.1109/CISS.2017.7926179
http://dx.doi.org/10.1109/CVPRW.2019.00212

bibliography 189

164. Matai, J., Richmond, D., Lee, D. & Kastner, R. Enabling FPGAs for
the masses. arXiv preprint arXiv:1408.5870 (2014).

165. Xilinx, S. 7 Series FPGA Memory Resources, v1.13 2019.

166. Abdelhadi, A. & Lemieux, G. G. Modular multi-ported SRAM-based
memories in Proceedings of the 2014 ACM/SIGDA international sympo-
sium on Field-programmable gate arrays (2014), 35.

167. Laforest, C. E., Li, Z., O’rourke, T., Liu, M. G. & Steffan, J. G. Com-
posing multi-ported memories on FPGAs. ACM Transactions on Re-
configurable Technology and Systems (TRETS) 7, 16 (2014).

168. Boahen, K. A. Point-to-point connectivity between neuromorphic
chips using address events. IEEE Transactions on Circuits and Systems
II: Analog and Digital Signal Processing 47, 416 (2000).

169. Berner, R. Building-blocks for event-based vision sensors PhD thesis
(ETH Zurich, 2011).

170. Suh, Y., Choi, S., Ito, M., Kim, J., Lee, Y., Seo, J., Jung, H., Yeo, D.-H.,
Namgung, S., Bong, J., et al. A 1280× 960 Dynamic Vision Sensor
with a 4.95-µm Pixel Pitch and Motion Artifact Minimization in 2020
IEEE International Symposium on Circuits and Systems (ISCAS) (2020),
1. doi:10.1109/ISCAS45731.2020.9180436.

171. Rivas, M., Gomez-Rodriguez, F., Paz, R., Linares-Barranco, A., Vi-
cente, S. & Cascado, D. Tools for address-event-representation commu-
nication systems and debugging in International Conference on Artificial
Neural Networks (2005), 289.

172. Rios-Navarro, A., Dominguez-Morales, J., Tapiador-Morales, R.,
Gutierrez-Galan, D., Jimenez-Fernandez, A. & Linares-Barranco,
A. A 20Mevps/32Mev event-based USB framework for neuromorphic sys-
tems debugging in 2016 Second International Conference on Event-based
Control, Communication, and Signal Processing (EBCCSP) (2016), 1.

173. Linares-Barranco, A., Gomez-Rodriguez, F., Villanueva, V., Longinotti,
L. & Delbruck, T. A USB3. 0 FPGA event-based filtering and tracking
framework for dynamic vision sensors in 2015 IEEE International Sympo-
sium on Circuits and Systems (ISCAS) (2015), 2417.

174. Schuman, C. D., Potok, T. E., Patton, R. M., Birdwell, J. D., Dean,
M. E., Rose, G. S. & Plank, J. S. A survey of neuromorphic comput-
ing and neural networks in hardware. arXiv preprint arXiv:1705.06963
(2017).

http://dx.doi.org/10.1109/ISCAS45731.2020.9180436

190 bibliography

175. Linares-Barranco, A., Perez-Peña, F., Moeys, D. P., Gomez-Rodriguez,
F., Jimenez-Moreno, G., Liu, S.-C. & Delbruck, T. Low Latency Event-
Based Filtering and Feature Extraction for Dynamic Vision Sensors
in Real-Time FPGA Applications. IEEE Access 7, 134926 (2019).

176. Iakymchuk, T., Rosado, A., Serrano-Gotarredona, T., Linares-Barranco,
B., Jiménez-Fernandez, A., Linares-Barranco, A. & Jiménez-Moreno,
G. An AER handshake-less modular infrastructure PCB with x8 2.5 Gbps
LVDS serial links in 2014 IEEE International Symposium on Circuits and
Systems (ISCAS) (2014), 1556. doi:10.1109/iscas.2014.6865445.

177. Taverni, G., Moeys, D. P., Li, C., Cavaco, C., Motsnyi, V., Bello, D. S. S.
& Delbruck, T. Front and Back Illuminated Dynamic and Active Pixel
Vision Sensors Comparison in 2018 IEEE International Symposium on
Circuits and Systems (ISCAS) (accepted) (Florence, Italy, 2018).

178. Xilinx, S. Zynq-7000 SoC DC and AC Switching Characteristics 2018.

179. Xilinx, S. Zynq-7000 SoC Technology Reference Manual 2018.

180. Sivilotti, M. A. Wiring considerations in analog VLSI systems, with appli-
cation to field-programmable networks.

181. Liu, S.-C., Van Schaik, A., Minch, B. A. & Delbruck, T. Event-based 64-
channel binaural silicon cochlea with Q enhancement mechanisms in 2010
IEEE International Symposium on Circuits and Systems (ISCAS) (2010),
2027.

182. Moradi, S., Qiao, N., Stefanini, F. & Indiveri, G. A scalable multicore
architecture with heterogeneous memory structures for dynamic
neuromorphic asynchronous processors (DYNAPs). IEEE transac-
tions on biomedical circuits and systems 12, 106 (2017).

183. Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumis-
lawska, D. & Indiveri, G. A reconfigurable on-line learning spiking
neuromorphic processor comprising 256 neurons and 128K synapses.
Frontiers in neuroscience 9, 141 (2015).

184. Berner, R., Delbruck, T., Civit-Balcells, A. & Linares-Barranco, A. A
5 MEPs $100 USB2.0 address-event monitor-sequencer interface in 2007
IEEE International Symposium on Circuits and Systems (IEEE, New Or-
leans, LA, USA, 2007), 2451. doi:10.1109/iscas.2007.378616.

185. Mead, C. A. & Delbrück, T. Scanners for visualizing activity of ana-
log VLSI circuitry. Analog Integrated Circuits and Signal Processing 1,
93 (1991).

http://dx.doi.org/10.1109/iscas.2014.6865445
http://dx.doi.org/10.1109/iscas.2007.378616

bibliography 191

186. Specification, U. S. B. USB 2.0 Transceiver Macrocell Interface (UTMI)
Specification 2001.

187. Specification, U. S. B. UTMI+ Low Pin Interface (ULPI) Specification
2004.

188. Hu, Y., Binas, J., Neil, D., Liu, S.-C. & Delbruck, T. DDD20 End-
to-End Event Camera Driving Dataset: Fusing Frames and Events with
Deep Learning for Improved Steering Prediction in 2020 IEEE 23rd Inter-
national Conference on Intelligent Transportation Systems (ITSC) (ieeex-
plore.ieee.org, 2020), 1. doi:10.1109/ITSC45102.2020.9294515.

189. Tun Aung, M., Teo, R. & Orchard, G. Event-based Plane-fitting Optical
Flow for Dynamic Vision Sensors in FPGA in IEEE Int. Symp. Circuits
Syst. (ISCAS) (Florence, Italy, 2018).

190. Huang, J., Guo, M., Wang, S. & Chen, S. A motion sensor with on-
chip pixel rendering module for optical flow gradient extraction in 2018
IEEE International Symposium on Circuits and Systems (ISCAS) (2018),
1. doi:10.1109/iscas.2018.8351312.

191. Haessig, G., Cassidy, A., Alvarez, R., Benosman, R. & Orchard,
G. Spiking Optical Flow for Event-Based Sensors Using IBM’s
TrueNorth Neurosynaptic System. IEEE Trans. Biomed. Circuits Syst.
12, 860 (2018).

192. Barlow, H. B. & Levick, W. R. The mechanism of directionally selec-
tive units in rabbit’s retina. J. Physiol. 178, 477 (1965).

193. Seyid, K., Richaud, A., Capoccia, R. & Leblebici, Y. FPGA-Based
Hardware Implementation of Real-Time Optical Flow Calculation.
IEEE Trans. Circuits Syst. Video Technol. 28, 206 (2018).

194. Correia, M. V. & Campilho, A. C. Real-time implementation of an opti-
cal flow algorithm in Proc. 16th Int. Conf. Pattern Recognition 4 (ieeex-
plore.ieee.org, 2002), 247. doi:10.1109/ICPR.2002.1047443.

195. Campilho, A. C. Real-Time Implementation of an Optical Flow Algorithm
in Proceedings of the 16th International Conference on Pattern Recognition
(ICPR’02) Volume 4 - Volume 4 (IEEE Computer Society, USA, 2002),
40247. doi:10.1109/icpr.2002.1047443.

196. Diaz, J., Ros, E., Pelayo, F., Ortigosa, E. M. & Mota, S. FPGA-based
real-time optical-flow system. IEEE Trans. Circuits Syst. Video Technol.
16, 274 (2006).

http://dx.doi.org/10.1109/ITSC45102.2020.9294515
http://dx.doi.org/10.1109/iscas.2018.8351312
http://dx.doi.org/10.1109/ICPR.2002.1047443
http://dx.doi.org/10.1109/icpr.2002.1047443

192 bibliography

197. Mahalingam, V., Bhattacharya, K., Ranganathan, N., Chakravarthula,
H., Murphy, R. R. & Pratt, K. S. A VLSI Architecture and Algorithm
for Lucas–Kanade-Based Optical Flow Computation. IEEE Trans.
Very Large Scale Integr. VLSI Syst. 18, 29 (2010).

198. Wei, Z., Lee, D.-J., Nelson, B. E. & Archibald, J. K. Hardware-Friendly
Vision Algorithms for Embedded Obstacle Detection Applications.
IEEE Trans. Circuits Syst. Video Technol. 20, 1577 (2010).

199. Diaz, J., Ros, E., Agis, R. & Bernier, J. L. Superpipelined high-
performance optical-flow computation architecture. Comput. Vis.
Image Underst. 112, 262 (2008).

200. Seong, H.-S., Rhee, C. E. & Lee, H.-J. A Novel Hardware Architec-
ture of the Lucas–Kanade Optical Flow for Reduced Frame Memory
Access. IEEE Trans. Circuits Syst. Video Technol. 26, 1187 (2016).

201. Kunz, M., Ostrowski, A. & Zipf, P. An FPGA-optimized architecture
of Horn and Schunck optical flow algorithm for real-time applications in
2014 24th International Conference on Field Programmable Logic and Ap-
plications (FPL) (ieeexplore.ieee.org, 2014), 1. doi:10.1109/FPL.2014.
6927406.

202. Ishii, I., Taniguchi, T., Yamamoto, K. & Takaki, T. High-Frame-Rate
Optical Flow System. IEEE Trans. Circuits Syst. Video Technol. 22, 105

(2012).

203. Wei, Z., Lee, D.-J. & Nelson, B. E. FPGA-based real-time optical flow
algorithm design and implementation. J. Multimedia 2. doi:10.4304/
jmm.2.5.38-45 (2007).

204. Tanner, J. E. Integrated optical motion detection PhD thesis (California
Institute of Technology, 1986).

205. Benson, R. G. & Delbrück, T. Direction selective silicon retina that uses
null inhibition in Advances in Neural Information Processing Systems 4
(NIPS 1991) (eds Moody, J., Hanson, S. & Lippmann, R. P.) (Morgan-
Kaufmann, Vancouver, 1992).

206. Delbruck, T. Silicon retina with correlation-based, velocity-tuned pix-
els. IEEE Trans. Neural Netw. 4, 529 (1993).

207. Harrison, R. R. & Koch, C. A Robust Analog VLSI Motion Sensor
Based on the Visual System of the Fly. Auton. Robots 7, 211 (1999).

208. Liu, S.-C. A neuromorphic aVLSI model of global motion processing
in the fly. IEEE Transactions on Circuits and Systems II: Analog and
Digital Signal Processing 47, 1458 (2000).

http://dx.doi.org/10.1109/FPL.2014.6927406
http://dx.doi.org/10.1109/FPL.2014.6927406
http://dx.doi.org/10.4304/jmm.2.5.38-45
http://dx.doi.org/10.4304/jmm.2.5.38-45

bibliography 193

209. Lee, C., Kosta, A. K., Zhu, A. Z., Chaney, K., Daniilidis, K. & Roy, K.
Spike-flownet: event-based optical flow estimation with energy-efficient hy-
brid neural networks in European Conference on Computer Vision (2020),
366. doi:10.1007/978-3-030-58526-6_22.

210. Zhu, A. Z., Yuan, L., Chaney, K. & Daniilidis, K. Unsupervised event-
based learning of optical flow, depth, and egomotion in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2019), 989.

211. Pivezhandi, M., Jones, P. H. & Zambreno, J. ParaHist: FPGA Imple-
mentation of Parallel Event-Based Histogram for Optical Flow Calculation
in 2020 IEEE 31st International Conference on Application-specific Sys-
tems, Architectures and Processors (ASAP) (2020), 185. doi:10.1109/
asap49362.2020.00038.

212. Xiong, W. & Chen, S. U.S. pat. req. 20210042939:A1 (2021).

213. Chen, S. U.S. pat. req. US20210037202A1 (2021).

214. Bierling, M. Displacement estimation by hierarchical blockmatch-
ing. Visual Communications and Image Processing’88. doi:10.1117/12.
969046 (1988).

215. Li, J., Shi, F., Liu, W.-H., Zou, D., Wang, Q., Park, P. K. J. & Ryu,
H. Adaptive Temporal Pooling for Object Detection using Dynamic Vision
Sensor in BMVC (bmva.org, 2017). doi:10.5244/c.31.40.

216. Zhu, A. Z., Atanasov, N. & Daniilidis, K. Event-based feature tracking
with probabilistic data association in 2017 IEEE International Conference
on Robotics and Automation (ICRA) (ieeexplore.ieee.org, 2017), 4465.
doi:10.1109/ICRA.2017.7989517.

217. Rosten, E. & Drummond, T. Machine learning for high-speed corner de-
tection in European conference on computer vision (2006), 430. doi:10.
1109/icmlc.2014.7009151.

218. ARM. AMBA 4 AXI4, AXI4-Lite, and AXI4-Stream Protocol Assertions
User Guide, r0p1 2012.

219. Kuhn, P. Algorithms, Complexity Analysis and VLSI Architectures for
MPEG-4 Motion Estimation doi:10 . 1007 / 978 - 1 - 4757 - 4474 - 3

(Springer, Boston, MA, 1999).

220. Menze, M. & Geiger, A. Object Scene Flow for Autonomous Vehicles in
Conference on Computer Vision and Pattern Recognition (CVPR) (2015).
doi:10.1109/cvpr.2015.7298925.

http://dx.doi.org/10.1007/978-3-030-58526-6_22
http://dx.doi.org/10.1109/asap49362.2020.00038
http://dx.doi.org/10.1109/asap49362.2020.00038
http://dx.doi.org/10.1117/12.969046
http://dx.doi.org/10.1117/12.969046
http://dx.doi.org/10.5244/c.31.40
http://dx.doi.org/10.1109/ICRA.2017.7989517
http://dx.doi.org/10.1109/icmlc.2014.7009151
http://dx.doi.org/10.1109/icmlc.2014.7009151
http://dx.doi.org/10.1007/978-1-4757-4474-3
http://dx.doi.org/10.1109/cvpr.2015.7298925

194 bibliography

221. Liu, S.-C., Rueckauer, B., Ceolini, E., Huber, A. & Delbruck, T. Event-
Driven Sensing for Efficient Perception: Vision and Audition Algo-
rithms. IEEE Signal Process. Mag. 36, 29 (2019).

222. Sinangil, M. E., Sze, V., Zhou, M. & Chandrakasan, A. P. Cost and
Coding Efficient Motion Estimation Design Considerations for High
Efficiency Video Coding (HEVC) Standard. IEEE J. Sel. Top. Signal
Process. 7, 1017 (2013).

223. Chen, Y.-H., Krishna, T., Emer, J. S. & Sze, V. Eyeriss: An Energy-
Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks. IEEE J. Solid-State Circuits 52, 127 (2017).

224. Aimar, A., Mostafa, H., Calabrese, E., Rios-Navarro, A., Tapiador-
Morales, R., Lungu, I.-A., Milde, M. B., Corradi, F., Linares-Barranco,
A., Liu, S.-C. & Delbruck, T. NullHop: A Flexible Convolutional Neu-
ral Network Accelerator Based on Sparse Representations of Feature
Maps. IEEE Trans Neural Netw Learn Syst 30, 644 (2019).

225. Sze, V., Chen, Y.-H., Yang, T.-J. & Emer, J. S. Efficient Processing of
Deep Neural Networks: A Tutorial and Survey. Proc. IEEE 105, 2295

(2017).

226. Verhelst, M. & Moons, B. Embedded Deep Neural Network Process-
ing: Algorithmic and Processor Techniques Bring Deep Learning to
IoT and Edge Devices. IEEE Solid-State Circuits Mag. 9, 55 (2017).

227. Delbruck, T. & Liu, S. Data-Driven Neuromorphic DRAM-based CNN
and RNN Accelerators in 2019 53rd Asilomar Conference on Signals, Sys-
tems, and Computers (2019), 500. doi:10.1109/IEEECONF44664.2019.
9048865.

228. Richardson, I. E. H.264 and MPEG-4 Video Compression: Video Coding
for Next-generation Multimedia (John Wiley & Sons, 2004).

229. Komarek, T. & Pirsch, P. Array architectures for block matching al-
gorithms. IEEE Transactions on Circuits and Systems 36, 1301 (1989).

230. Brox, T. & Malik, J. Large displacement optical flow: descriptor
matching in variational motion estimation. IEEE transactions on pat-
tern analysis and machine intelligence 33, 500 (2010).

231. Li, R., Shi, D., Zhang, Y., Li, R. & Wang, M. Asynchronous event
feature generation and tracking based on gradient descriptor for
event cameras. International Journal of Advanced Robotic Systems 18,
17298814211027028 (2021).

http://dx.doi.org/10.1109/IEEECONF44664.2019.9048865
http://dx.doi.org/10.1109/IEEECONF44664.2019.9048865

bibliography 195

232. Costante, G., Mancini, M., Valigi, P. & Ciarfuglia, T. A. Exploring
representation learning with cnns for frame-to-frame ego-motion es-
timation. IEEE robotics and automation letters 1, 18 (2015).

233. Muller, P. & Savakis, A. Flowdometry: An optical flow and deep learning
based approach to visual odometry in 2017 IEEE Winter Conference on
Applications of Computer Vision (WACV) (2017), 624.

234. Konda, K. R. & Memisevic, R. Learning visual odometry with a convolu-
tional network. in VISAPP (1) (2015), 486.

235. Qin, T., Li, P. & Shen, S. Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator. IEEE Transactions on Robotics 34,
1004 (2018).

236. Khairallah, M. Z., Bonardi, F., Roussel, D. & Bouchafa, S. PCA Event-
Based Otical Flow for Visual Odometry. arXiv preprint arXiv:2105.03760
(2021).

237. Gehrig, D., Loquercio, A., Derpanis, K. G. & Scaramuzza, D. End-to-
end learning of representations for asynchronous event-based data in Pro-
ceedings of the IEEE International Conference on Computer Vision (2019),
5633.

238. Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X. & Benosman, R.
HATS: Histograms of averaged time surfaces for robust event-based object
classification in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2018), 1731.

239. Orchard, G., Jayawant, A., Cohen, G. K. & Thakor, N. Converting
static image datasets to spiking neuromorphic datasets using sac-
cades. Frontiers in neuroscience 9, 437 (2015).

240. Xilinx, S. PetaLinux Tools Documentation 2018.

241. Kung, H.-T. Why systolic architectures? Computer 15, 37 (1982).

242. Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa,
R., Bates, S., Bhatia, S., Boden, N., Borchers, A., et al. In-datacenter per-
formance analysis of a tensor processing unit in 2017 ACM/IEEE 44th An-
nual International Symposium on Computer Architecture (ISCA) (2017),
1.

243. De Fine Licht, J., Besta, M., Meierhans, S. & Hoefler, T. Transforma-
tions of high-level synthesis codes for high-performance computing.
IEEE Transactions on Parallel and Distributed Systems 32, 1014 (2020).

196 bibliography

244. Cavigelli, L. & Benini, L. Extended Bit-Plane Compression for Convo-
lutional Neural Network Accelerators. arXiv preprint arXiv:1810.03979
(2018).

245. Specification, U. S. B. USB 2.0 Specification 2000.

	Abstract
	 Abstract
	Zusammenfassung
	Acknowledgements

	 Acknowledgements
	Contents

	Acronyms
	1 Introduction
	1.1 From zoopraxiscope to event camera
	1.1.1 The man who stopped time
	1.1.2 Modern image sensors
	1.1.3 Dynamic vision sensors

	1.2 Introduction of optical flow
	1.2.1 Optical flow estimation methods for frame-based cameras

	1.3 Optical flow applications
	1.3.1 Use of optical flow in the film production
	1.3.2 Use of optical flow in computer mice
	1.3.3 Use of optical flow in microrobotics

	1.4 Optical flow sensors
	1.5 Thesis contributions
	1.6 Thesis structure

	2 A first event-based block-matching optical flow algorithm and its FPGA implementation
	2.1 Introduction
	2.1.1 Why event-based optical flow
	2.1.2 Prior DVS optical flow

	2.2 BMOF algorithm and its FPGA implementation
	2.2.1 System architecture
	2.2.2 Optical flow algorithm

	2.3 Experimental results
	2.3.1 Accuracy analysis
	2.3.2 Time complexity analysis

	2.4 Summary

	3 Adaptive Block Matching Optical Flow for event-based camera
	3.1 Introduction
	3.2 ABMOF algorithm
	3.2.1 Block-Matching DVS time slices
	3.2.2 Slice rotation methods
	3.2.3 Search method
	3.2.4 Multi-scale and multi-bit event slices
	3.2.5 Adaptive event skipping
	3.2.6 Sparsity checking

	3.3 Experimental results
	3.3.1 ABMOF18 dataset
	3.3.2 Type I experiment result
	3.3.3 Type II experiment result

	3.4 Summary and discussion

	4 First hardware implementation of an event-driven corner detector
	4.1 Introduction
	4.1.1 Corner detectors

	4.2 EFAST
	4.3 FPGA implementation
	4.3.1 Introduction of Vivado SDSoC and HLS
	4.3.2 Baseline implementation
	4.3.3 Memory layout and optimization

	4.4 Experimental results
	4.4.1 MiniZed platform
	4.4.2 Server setup
	4.4.3 Quantitative result
	4.4.4 EFAST performance in dark environments

	4.5 Summary

	5 Hardware camera platform DAVIS346Zynq
	5.1 Introduction
	5.2 Prior development boards for event-based cameras
	5.3 DAVIS346Zynq
	5.3.1 Hardware architecture
	5.3.2 Power and storage circuits
	5.3.3 DAVIS controller
	5.3.4 VGA for events rendering
	5.3.5 Reimplementation of the USB controller
	5.3.6 Final PCB

	5.4 Summary and discussion

	6 Hardware Implementation of adaptive block matching flow and corner detector on DAVIS346ZYNQ
	6.1 Introduction
	6.2 Hardware optical flow
	6.3 The architecture of the EDFLOW algorithm
	6.3.1 Why SFAST?
	6.3.2 SFAST algorithm introduction
	6.3.3 Differences between software SFAST and software EFAST

	6.4 EDFLOW hardware implementation of ABMOF and SFAST
	6.4.1 Multiscale slice event accumulation
	6.4.2 SFAST hardware keypoint detector
	6.4.3 ABMOF hardware design
	6.4.4 Unroll trick used in the hardware design to increase parallelism

	6.5 Experimental results
	6.5.1 OF accuracy on baseline dataset
	6.5.2 OF accuracy on more complicated dynamic scenes
	6.5.3 Adaptive slice exposure control

	6.6 Summary and discussion

	7 Conclusion and outlook
	7.1 Conclusion
	7.2 Outlook
	7.2.1 Accuracy improvement
	7.2.2 Optical flow as features for DNN accelerators
	7.2.3 Combine with other sensors for sensor fusion
	7.2.4 Event-based optical flow benchmark
	7.2.5 Event representation
	7.2.6 ASIC silicon area/power estimates
	7.2.7 Is the event camera at the dawn of a new computer vision era?

	A Appendix
	A.1 Building a MiniZed SDSOc platform
	A.1.1 Hardware
	A.1.2 Software

	A.2 Some tricks of HLS optimization
	A.2.1 Interleaving technique
	A.2.2 Apply dataflow to several simple PEProcessing Elements
	A.2.3 Miscellaneous tips

	A.3 VGA protocol and timing diagram
	A.4 USB 2.0 protocols introduction
	A.5 DAVIS346Zynq configuration
	A.6 Hardware debugging story
	A.7 Dataset and source code repository

	 Bibliography

