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Abstract
Bacteria constantly monitor their environment to adapt their
inner makeup. Beyond providing chemical sustenance, meta-
bolism provides most of the feedback on the cellular environ-
ment via metabolite binding to regulatory proteins or mRNA.
Although first metabolite-protein interactions were discovered
more than 60 years ago, identification of new interactions is still
technically challenging and time-consuming. Here, we
compiled and quantified the current knowledge on metabolite-
protein interactions and review recent advances in the identi-
fication of interactions and in understanding how metabolites
act as signals to transcription factors, two-component systems,
protein kinases, and riboswitches. New systematic methods of
metabolite-protein identification and omics integration will
accelerate the pace of discovery, a remaining challenge is
understanding of functionality and the coordination of local and
global metabolic signals across different regulatory layers.
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Introduction
From a microbial perspective, the world is a fiercely
competitive place with continuously changing conditions.

Reacting in time is therefore essential for microbes to
maintain their highly dynamic states and rapidly adapt to
environmental cues. Various levels of intertwined regula-
tion act on different time scales, from the slower
www.sciencedirect.com
transcriptional regulation to faster translational or post-
translational regulation driven by dedicated regulatory
proteins such as transcription factors or protein kinases.
These regulators respond to various input signals that
include binding to other proteins or small molecules [1].
Because there are many more conditions that need to be
sensed than there are regulatory proteins, many input
signals are intermediates of cellular metabolism that

integrate awide range of environmental perturbations into
a smaller set of defined intracellular signals [2e6]. Such
internal metabolic signals can trigger transcriptional,
translational, or post-translational regulation, but the un-
derlying metabolite-protein interactions are fleeting in
nature and therefore difficult to measure experimentally
[5,7,8]. Consequently, we do not know the input signals
for many regulators, and those that we do know are typi-
cally not well understood in quantitative terms.

Here, we review recent progress in identifying and un-

derstanding metabolic input signals into microbial
regulation systems. Because direct allosteric regulation
of metabolic enzymes through small molecules was
recently reviewed [9], we focus on small-molecule
binding to transcription factors (TFs), two-component
systems (TCSs), protein kinases and other regulatory
proteins, and riboswitches d highlighting the role of
intracellular metabolism as a signal generator (Figure 1).
Transcription factors
With the arguably best-studied transcriptional regulatory
network, Escherichia coli has more than 300 predicted TFs
in its genome [10], 75% of which encode a small-
molecule-binding domain [11] whose ligands may be
metabolic intermediates. By mining the specialized da-
tabases RegulonDB [12], EcoCyc [13], and the literature,

we identified 124 effectors with experimental evidence of
binding 93TFs, a number way below the expected 75% of
TFs potentially binding small molecules. Most evidence
for the known effector-TF interactions is based on in vitro
studies, and the low number of identified effectors can be
attributed to the time-consuming nature of these tech-
niques. Recent examples are the identification of 2-
oxoglutarate binding to NifA in Herbaspirillum seropedicae
[14], arachidonic acid binding to FadR in enter-
ohemorrhagic E. coli [15], and L-ascorbate and a-D-galac-
turonate binding to PlaR (previously YiaJ) in E. coli
K12 [16].
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Figure 1

Metabolites as signals. Metabolism provides signaling inputs into various
cellular regulatory systems that in turn have an effect on the metabolic
composition of the cell, thus maintaining homeostasis.

2 Metabolic Networks
The first systematic approach to identify metabolite-TF
interactions combined transcriptomics and metab-
olomics data from E. coli shifted between growth and

starvation [17]. Functional metabolite-TF interactions
were identified by inferring the activity of 209 TFs
through network component analysis [18] and
comparing it to the abundances of 123 metabolites to
pinpoint the metabolite-TF pairs that approximated
Hill kinetics. Twelve out of 26 known metabolite-TF
interactions were recovered, and 39 were newly
predicted for 30 TFs, three of which were further vali-
dated in vitro. Although this discovery method likely has
a high false-positive rate, and predictions still require
validation, combining in vivo and in vitro evidence helped
not only to identify interactions but also demonstrated
their functional relevance in the cell. Key to learning
causal interactions was the use of dynamic data as was
also recently demonstrated for TF-gene relationships
[19], because molecules rapidly responding to a
perturbation are more likely to be directly related than
slower responders that often result from indirect con-
sequences. With the vast majority of gene expression
studies focusing on the network below the TFs, the
progress of effector-TF identification has so far been
slow albeit steady. Approaches like the abovementioned

hold promise for making systematic identification of
metabolite signals more common and significantly
increasing the pace of discovery, thereby putting us on a
road to eventually fathom the entire process from signal
Current Opinion in Systems Biology 2021, 28:100404
recognition to the regulated processes, which in turn
will often affect the input signals again.

Despite these challenges, the compendium of effector
interactions is much larger for TFs than for other types
of proteins; for example, TFs represent only 5% of
E. coli’s encoded proteins but constitute w60% of the
proteins with experimental evidence for allosteric

regulation by small molecules (Figure 2, Supplementary
file 1). Carbohydrates, metal ions, and organic acids
account for half of the known effectors, and nucleosides,
nucleotides, and amino acids make up an additional
23%. More than 60% of the TFs have only one known
effector, and the vast majority of effectors bind only one
TF, with zinc as the exception of binding four regulators:
ZntR; Zur; NrdR; and NikR. The lack of systematic
approaches to identify effector-TF interactions makes it
impossible to assess whether the high percentage of TFs
binding only one effector represents a general principle

or rather reflects our limited knowledge.

Once an interaction has been identified, the question
that arises is how does effector binding impacts gene
expression? For the most part, effector binding alters the
TF conformation, and consequently the effector-TF
complex associates with or dissociates from DNA
[15,20e22]. An alternative mechanism is a TF whose
conformation is altered in the presence of its effector
but does not dissociate from DNA. For example, struc-
tural studies demonstrated that OxyR from Corynebac-
terium glutamicum binds to DNA through two-binding
sites, and interaction with H2O2 promotes the release of
only one of them, which is enough to allow polymerase
binding and activation of gene expression [23]. The
relationship between effector concentration and gene
expression has been commonly described by a Hill
equation [24], which is in a fragile equilibrium. A recent
study of 105 random mutations on the E. coli TF LacI
demonstrated that substitutions within 7 Å of the
ligand-binding pocket have a 67% probability of turning
the LacI repressor into an activator in the presence of its
inducer [25]. Moreover, only two substitutions are

enough to alter the wild-type sigmoidal shape of the Hill
equation. Instead of the inducer concentration corre-
lating linearly with gene expression for a continuous
range of concentrations, linear correlations appeared at
low and high inducer concentrations but not in middle
ranges, suggesting that bound monomeric and fully-
bound dimeric LacI had regulatory activity but not
dimeric LacI with only one inducer molecule bound.
These results highlight the flexibility of the effector-
TF-gene interaction that enables rapid evolutionary
innovation with most transcriptional research focusing

on TFs and their downstream targets, it is often over-
looked that most gene expression changes depend on
the cell’s rate of growth, so-called global regulation, in E.
coli affecting about 85% of the promoters [26] and
explaining about 70% of the measured expression
www.sciencedirect.com
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Figure 2

E. coli proteins with experimental evidence of allosteric regulation compared with all encoded proteins in E. coli. Although transcription factors (TFs)
represent only 5% of total proteins, they account for 64% of known metabolite-protein interactions. Subpanel shows the chemical classes of 124 TF-
binding effectors. Total proteins were extracted from EcoCyc [13], metabolic proteins were extracted from the study reported by Orth et al. [80], TFs and
two-component systems (TCSs) (from RegulonDB, protein kinase classification was extracted manually from the literature. Chemical classification of
metabolites was obtained from the study reported by Wishart et al. [81]. All information is available on supplementary file 1.
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changes in central metabolism [27]. For any type of
quantitative understanding of gene expression, the
interplay between global regulation and TFs must be
considered. One such example was demonstrated for the
specific case of arginine biosynthesis in E. coli, where
binding of the effector arginine to the repressor ArgR is
responsible for the on/off switch of gene expression, but
the magnitude of the expression during the on phase is
dependent on global regulation [28]. ArgR belongs to
the class of best-studied TFs where the presence of an
amino acid or nutrient induces its transport and re-

presses its biosynthesis or induces its catabolism [29].
Although the functional relevance of these TFs is easy
to explain, quantitative understanding of their regula-
tory dynamics has been so far achieved in only few cases.
A recent example is a theoretical analysis of XapR from
E. coli [30], demonstrating that its on/off switch behavior
depends on the presence of two-binding sites upstream
of the genes coding for the transporter and catabolizer of
its effector xanthosine. Achieving such understanding is
even harder for more complex regulons such as those
controlled by CRP or Cra that jointly regulate 555 genes

in E. coli. Here, it is already difficult to say how many
signals and regulated genes are necessary to orchestrate
a particular adaptation and how this is coordinated. For
E. coli central metabolism, a combination of reporter
genes, metabolomics, and a mathematical model of
metabolite-TF interactions demonstrated that 70% of
the gene expression changes can be explained by global
regulation and only two signal inputs, that is, binding of
www.sciencedirect.com
cAMP and fructose 1,6-bisphosphate to CRP and Cra,
respectively [27]. The unexpected negative effect of
catabolism promoting cAMP-CRP activity on anabolic
promoters that were not CRP targets [27] was later
explained by an indirect mechanism that may be the
competition for limited capacity of the expression ma-
chinery [32]. The cAMP-CRP signal appears to mediate
a total glycolytic flux feedback that is also one key driver
of sequential consumption of certain carbon substrates
[33]. Collectively, these findings support a model where
few metabolites mediate global, heuristic responses that

compensate for many possible perturbations at the same
time, as opposed to evolving a precise regulatory circuit
in response to each environmental challenge that E. coli
may encounter. Thus, first principles are being unrav-
eled for smaller subsystems, but we struggle with
quantitative understanding of signals and expression
coordination at the whole genome level.

Even less studied is signal integration when multiple
effectors act on the same TF. Existing evidence comes
almost exclusively from structural studies of TFs bound

to their effectors where it was observed that different
effectors promote different DNA affinities. For
example, Helicobacter pylori’s NikR structure bound to
nickel and zinc showed that the dynamic range of
conformational states of the TF decreases in the pres-
ence of nickel, favoring a DNA-bound state [34]. The
presence of zinc promotes an unstable interaction with
DNA, consistent with the previously observed inability
Current Opinion in Systems Biology 2021, 28:100404
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4 Metabolic Networks
of the NikRezinc complex to induce gene expression
[35]. In the absence of systematic studies on multi-
effector TFs, we do not even know whether effectors act
competitively, additively, or synergistically. Addressing
these questions is challenging because they require
in vivo evidence of the effector impact on the TF regu-
latory activity. The most direct evidence that can be
obtained nowadays is based on correlations between

effector abundance and promoter activity of the TF-
regulated genes. Although the current paradigm of TF
activity assumes that all target genes are regulated at the
same time, as is exemplified by methods to infer TF
targets or activity through transcriptomics data [18,36],
it has been observed that only 25% of TFs regulate
genes involved in the same biological process [37].
Hence, effectors might be adding a layer of coordination
by selectively activating a subset of regulon genes under
very specific conditions.
Two-component systems
Bacteria can sense environmental changes through so-
called TCSs, consisting of a membrane-bound sensor
histidine kinase that phosphorylates a downstream
response regulator, typically acting as a TF [38]. Input

signals are extracellular or intracellular, propagating
either through direct interaction with the kinase or
indirectly via accessory proteins that respond to signals
[1]. In model bacteria, the induction signals are
frequently known or linked to general environmental
conditions, such as pH, osmotic pressure, or nutritional
deprivation, but for most bacteria, the specific signaling
molecules and the sensing mechanisms remain largely
uncharacterized [39]. Here, we summarize recent work
on deciphering metabolic effectors of TCS activity.

Many studies focused on intestinal pathogens and their

interaction with the host. The first butyrate-sensing
bacterial TCS was identified in Campylobacter jejuni,
enabling it to spatially orient in the gut by monitoring
metabolic signals and preferentially infect the lower in-
testine via BumSR that senses butyrate indirectly and
promotes the expression of colonization factors [40]. For
Salmonella enterica serovar Typhimurium, a mechanism of
lldPRD operon regulation induced by host-derived L-
lactate and oxygen was proposed [41]. In Staphylococcus
aureus, ArlRS was hypothesized to be activated by
increased levels of 3-phosphoglycerate or 1,3-

bisphosphoglycerate [42]. Several studies focused on
the ubiquitous bacterial second messenger cyclic-di-gua-
nosine-50-monophosphate (cyclic-di-GMP). The transi-
tion between virulence and swimming motility of
phytopathogenic bacterium Xanthomonas campestris has
been demonstrated to be allosterically regulated by cyclic-
di-GMPbinding to a sensor kinase, RavS, which enhances
phosphorylation of response regulator RavR [43]. In
Mycobacterium smegmatis, cyclic-di-GMP mediates adapta-
tion to low-nutrient environments by binding to the
Current Opinion in Systems Biology 2021, 28:100404
sensor kinase PdtaS [44] and promotes oxidative stress
tolerance by directly binding to the response regulator
DevR, thereby enhancing its phosphorylation through the
sensor kinaseDevS [45]. ForE. coli, it has been shown that
depending on its concentration pyruvate activates either
the low-affinity PyrSR or high-affinity BtsSR, controlling
different sets of target genes [46,47]. Overall, these new
insights highlight the importance ofmetabolite-mediated

TCS signaling in pathogenesis. Given the diversity of
bacterial TCSs and their activating stimuli, the current
knowledge of specific metabolites sensed by TCSs is
probably just the tip of the iceberg, and we can expect
many more metabolic ligands to be discovered in
the future.

Although TCS response regulators are generally
considered to be regulated by their upstream kinase,
they can also be activated by alternative kinases or
directly by acetyl phosphate or inhibited by interaction

with proteins or metabolites [48]. As suggested previ-
ously for other response regulators, recent findings in
Mycobacterium tuberculosis show that acetyl phosphate can
nonenzymatically phosphorylate the response regulator
DevR and acetylate MtrA, both influencing the
pathogenicity-related regulons of dormancy [49,50].
Surprisingly, acetylation overrides the phosphorylation
of MtrA through its sensor kinase MtrB, suggesting that
the metabolic state of the cell, as reflected by intracel-
lular acetyl-phosphate levels, dominates over the
extracellular stimulus transmission. Cumulative evi-

dence for activation of numerous response regulators by
acetyl phosphate across various bacteria further
strengthens the role of metabolism in modulating TCS
signal transduction, independent of the sensor kinases.
Protein kinases
Beyond the primarily transcription-regulating TCSs,
bacteria also contain classical kinases that can post-
translationally modify many different proteins. Recent
phosphoproteomic experiments revealed phosphoryla-
tion of about 25% of all proteins in E. coli, suggesting
that phosphoregulation might be more important in
bacteria than previously considered [9,51]. Different
from TFs, the input signals to most kinases are unknown
even in the better characterized eukaryotic kinase net-
works [52], let alone in bacteria. Because the sensor
kinases of bacterial TCSs and several eukaryotic kinases

such as PKA, AMPK, and mTORC1 sense metabolites
[53,54], it is tempting to speculate that at least some of
the bacterial protein kinases also respond to metabolic
signals. Indeed, several recent studies unraveled meta-
bolic inputs into the modulation of kinase-mediated
processes in bacteria. Proteome-wide metabolite bind-
ing identified fructose-1,6-bisphosphate as an effector
of the bifunctional kinase/phosphorylase PpsR in E. coli
[55], and an in vitro study demonstrated that the YeaG
kinase phosphorylates isocitrate lyase only in the
www.sciencedirect.com
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presence of malate [56]. Similarly, the Legionella pneu-
mophila Lpg2603 protein kinase remains inactive until it
is allosterically activated by the host-derived inositol
hexakisphosphate on infection [57]. Accumulating evi-
dence thus suggests that many metabolite signal inputs
to protein kinases are yet to be discovered.

Beyond dedicated protein kinases, also the many

metabolic kinases could potentially exhibit moon-
lighting function as protein kinases, as was demon-
strated for pyruvate kinase, phosphoglycerate kinase 1,
and ketohexokinase in human cells [58]. In addition to
their canonical metabolic activity, they phosphorylate
various targets in vivo and regulate multiple cellular
processes, such as the Warburg effect, gene expression,
autophagy, and apoptosis. Although there is currently no
evidence that metabolic kinases phosphorylate also
protein substrates in E. coli, it is not unlikely that such
moonlighting activity can at least partially explain the

gap between around 3000 detected phosphosites and
less than 20 annotated kinases with serine/threonine/
tyrosine phosphorylation activity [9,59]. Given that
metabolic kinases are typically subject to allosteric
regulation by multiple metabolites, their putative
moonlighting activity might also respond to metabolite
input signals.
Metabolite interaction with other proteins
The vast majority of studies focus on identifying the
input signals to the various regulatory proteins, but
metabolites interact also with other proteins. A combi-
nation of limited proteolysis and mass spectrometry
identified 1447 novel, physical protein interactions be-
tween proteins present in whole-cell lysates and 20
central metabolites in E. coli, of which 28% involved
noncatalytic proteins and 21% proteins with unknown

function [55]. Subsequently, ligand-detected nuclear
magnetic resonance (NMR) screening of 29 central
E. coli enzymes exposed to 55 polar metabolites identi-
fied 76 new interactions with some proteins binding up
to 11 metabolites [60]. These results agree with a pre-
vious observation that protein regulation through
metabolite binding is ubiquitous [61]. An aggregation of
independently validated enzymeemetabolite in-
teractions in humans and E. coli showed that binding of
metabolites structurally similar to an enzyme’s sub-
strates is a common occurrence, but evolution has

selected strategies to avoid these interactions when
they are detrimental to the cell [61]. Together, these
results advocate for a scenario where plenty of
metabolite-protein interactions are waiting to be iden-
tified, even among proteins with no known function, and
new avenues of research will include the dynamics of
competing metabolites and the functional relevance of
the interactions.
www.sciencedirect.com
Riboswitches
Beyond proteins, metabolites can also bind to secondary

RNA structures of so-called riboswitches that are typically
located in the 5’ untranslated region (UTR) of coding
mRNAs. Metabolite binding induces conformational
changes that affect the transcription or translation rate of
the mRNA, for example, by obstructing access to the
Shine-Dalgarno sequence [62]. Most known riboswitches
regulate genes in pathways that involve the binding
metabolite, hence creating feedback inhibition. Ribos-
witches are classified depending on the structure they
adopt to bind their ligand. At least 38 classes have been
experimentally validated to bind 27 metabolites,

including coenzymes, nucleotide derivatives, second
messengers, amino acids, and others [63]. Computational
prediction of RNA regions that can potentially act as
riboswitches suggested hundreds of ‘orphan’
riboswitches yet without known ligands [64e66]. Iden-
tifying such putative ligands is hampered by the require-
ment of a priori hypotheses of interacting metabolites for
biochemical validation, which is challenging when the
regulated gene has no known function or obvious candi-
dates do not bind. Since 2004, ligands have been identi-
fied for only 16 previously orphan riboswitches [67], the

most recent are new classes of tetrahydrofolate [68],
guanidine [69,70] and glycine [71] riboswitches.Diversity
analysis suggested that riboswitch classes follow a power-
law distribution, where few classes have many members
that occur inmany different species, whereasmost classes
have few members and occur in only some species [72].
Current research supports this model and suggests that
there are hundreds of riboswitch classes still waiting to be
identified [66], presaging that we have only scratched the
surface of metabolite binding to riboswitches.

Conclusions
Accumulating knowledge of input signals into microbial
regulation systems supports the notion of metabolism as
an intracellular signal generator for TFs, TCSs, protein
kinases, and riboswitches. About 90% of the known
metabolite-protein interactions are with TFs and
metabolic enzymes that represent less than a quarter of

all encoded proteins (Figure 2), suggesting that our
knowledge originating primarily from biochemical work
on individual proteins may be biased. Although lagging
behind other interaction studies, the expanding port-
folio of systematic discovery methods in bacteria
[5,7,17,55,60] and eukaryotes [73,74] holds promise to
expand the regulatory interactome space. Although
higher-throughput approaches suffer from high rates of
false-positive hits, prioritization of candidates for vali-
dation, or choice of relevant conditions for screening,
first applications based on physical interactions [55] or

correlating dynamic metabolite levels with transcript
levels [17] already expanded the regulatory interaction
Current Opinion in Systems Biology 2021, 28:100404
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space substantially. The presented evidence suggests
that we are far from a comprehensive metabolite-protein
interactome in bacteria and even further from under-
standing functionality. In particular, the latter is
hampered by the highly dynamic nature of the weak
interactions between metabolites and macromolecules
and the many overlapping regulation processes, delin-
eation of which requires advanced computational

methods to integrate multiple data types [75,76], as was
demonstrated for identifying expression controlling
metabolites in E. coli [17,32,77]. To truly accelerate the
pace of understanding regulatory functionality, it will be
necessary to combine both in vivo and in vitro high-
throughput approaches for the same regulators, such
that functional and interaction evidence can be com-
bined and false positives kept to a minimum. Tedious
validation efforts can then focus on high confidence
cases. Inevitably, the ultimate demonstration of under-
standing requires some type of mathematical formula-

tion that quantitatively relates input signals to
regulatory output and is able to accurately capture the
dynamic transition to a new steady state, ideally with
predictive power.

Although the regulatory metabolite-protein interactome
is daunting, microbes appear to rely on relatively few
general metabolic signals that report on the global cell
state and control large modules [2,27,33,79]. Thus, there
is simplicity in the apparent complexity. Our increasing
knowledge on regulatory metabolic feedback is already

being exploited for devising dynamic control systems in
biotechnology [78] and is also crucial for pharmacological
interventions. Beyond identifying these general signals, a
remaining challenge is to understand the coordination of
local and global metabolic signals across different regu-
latory layers and time scales, which again will ultimately
require computational models to quantitatively demon-
strate the extent of our understanding.
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