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Abstract

We present Korali, an open-source framework for large-scale Bayesian uncertainty quantification and stochastic optimization.
he framework relies on non-intrusive sampling of complex multiphysics models and enables their exploitation for optimization
nd decision-making. In addition, its distributed sampling engine makes efficient use of massively-parallel architectures while
ntroducing novel fault tolerance and load balancing mechanisms. We demonstrate these features by interfacing Korali with
xisting high-performance software such as APHROS, LAMMPS (CPU-based), and MIRHEO (GPU-based) and show efficient

scaling for up to 512 nodes of the CSCS Piz Daint supercomputer. Finally, we present benchmarks demonstrating that Korali
outperforms related state-of-the-art software frameworks.
© 2021 Elsevier B.V. All rights reserved.

Keywords: High-performance computing, Bayesian uncertainty quantification, Optimization

1. Introduction

Over the last thirty years, High-Performance Computing (HPC) architectures have enabled high-resolution
imulations of physical systems ranging from atoms to galaxies. HPC has also reduced the cost and turnaround time
f such simulations, making them invaluable predictive and design tools across all fields of science and engineering.
ultiple simulations at resolutions that would have been impossible a decade ago are routinely employed in

ptimization and design. The transformation of these simulations into actionable decisions requires the quantification
f their uncertainties. In recent years, HPC has become central in the way that we conduct science with massive
mounts of data. Such data are used to develop and calibrate physical models as well as to quantify the uncertainties
f their predictions. The integration of data and physical models has a history of over 300 years, dating back to
aplace and Copernicus and to the framework known as Bayesian inference. However, due to its computational
ost, the application of Bayesian inference has been, until recently, limited to simple models or through inexpensive
pproximations.
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Bayesian inference requires sampling of distributions with dimensionality greater than or equal to the number of
odel parameters. The sampling necessitates numerous evaluations, making the process computationally demanding,

articularly when the underlying model requires hundreds of compute hours per evaluation. Moreover, special care is
ecessary to develop sampling algorithms that harness the capabilities of modern supercomputers [1]. The sampling
nvolved in Bayesian inference serves as a bridge to stochastic optimization algorithms [2] that aim to identify
he probability distribution of the parameters that maximize a particular cost function. Stochastic optimization
lgorithms such as CMA-ES, MBOA and Natural Gradient Optimization [3,4] are non-intrusive, thus they operate
ithout knowledge or modification of the physical models, through input/output relations.
The need for efficient deployment of optimization and uncertainty quantification algorithms has motivated to

he development of several statistical frameworks [5–11]. However, to the best of our knowledge, only a few
uch frameworks are well-suited for deployment in massively parallel computer architectures [12,13]. In this
aper, we present Korali, a new framework for Bayesian uncertainty quantification (UQ) and optimization. The
ramework enables efficient large-scale sampling while providing mechanisms for fault-tolerance, load balancing,
nd reproducibility, which are essential requirements for emerging supercomputers [14]. We demonstrate these
apabilities guided by three motivating studies. First, a high-dimensional optimization study of the shape of fluid
ransporting pipes. Second, a hierarchical Bayesian analysis of the dissipation parameter of human RBC membranes.
astly, a Bayesian study on the parameters of a coarse-grained (CG) water model. In addition, we provide a synthetic
enchmark that compares the performance of Korali with that of other state-of-the-art frameworks for optimization
n up to 512 nodes of the CSCS Piz Daint supercomputer.

The rest of this paper is organized as follows: in Section 2, we present the principles behind the unifying
ramework; in Section 3, we present the framework’s design; in Section 4, we present the results of three
xperimental cases; in Section 5, we discuss state of the art UQ frameworks and compare their efficiency, and;
n Section 6, we present conclusions and future work.

. Unified approach to optimization and sampling

We designed Korali to exploit the common patterns in Bayesian optimization and sampling while exposing a
nifying interface. Consider a computational model, represented by a function f , that depends on parameters ϑ with

unknown values and possibly other parameters x with known values. We wish to infer the values for the parameters
ϑ such that the model evaluated at known parameters xi will approximate given values yi for i = 1, . . . , N . The
variables yi are called the data and usually correspond to experimental measurements. Since the measurements are
typically affected by random errors, a probabilistic model links the measurements yi with the model evaluations
f (ϑ, xi ). This model is represented by a known probability density function p( y|ϑ; x⃗) where y = {y1, . . . , yN } and
x⃗ = {x1, . . . , xN } and summarizes our assumptions about the origin of the data. For fixed x⃗ and y the density is a
function of the parameters ϑ and is called the likelihood function. Furthermore, any information on the parameters ϑ

that is known prior to observing any data is encoded in a density function p(ϑ). The distribution of the parameters
conditioned on the known values yi is given by Bayes’ theorem: p(ϑ | y; x⃗) ∝ p( y|ϑ; x⃗)p(ϑ). The posterior

ensity function can either be optimized or sampled.
By optimizing the posterior density we obtain a single value for the vector ϑ that represents the value of the

arameters with the highest probability. If the derivatives of the posterior with respect to ϑ are available, a local
ptimization method can be used, e.g., the Adam algorithm [15]. Otherwise, a derivative free optimization algorithm
an be used, e.g., evolution strategy (ES) algorithms. At every iteration, this type of algorithms draw samples from
parametrized distribution family and rank them from highest to lowest value. For example, the CMA-ES [2] uses

his ranking and the history of the evolution to update the mean and the covariance matrix of a normal distribution.
n the limit, the normal distribution converges to a Dirac distribution located at an optimal value. The covariance
t each iteration can be interpreted as scaled approximation of the Hessian of the objective function at the mean of
he normal distribution.

If we sample the posterior distribution instead of optimizing it, we obtain a set of samples that represent the
olume of the distribution in the parameter space. This extended information, compared to the single parameter
btained with optimization, allows us to estimate the uncertainty in the inference of the parameters. Moreover, the
ncertainty can be propagated to quantities of interest of the computational model, assessing this way the uncertainty
n the predictions of the model. If derivatives are available, algorithms like Hamiltonian Monte Carlo (HMC) [16]
an be utilized that accelerate the sampling and are efficient in high-dimensional spaces. In the opposite case,
2
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Fig. 1. Generation-based workflow of the sampling engine. The solver module generates samples Si . The problem module pre-processes the
amples into S′

i and passes them to a computational model. The results of the computational model f (S′

i ) are collected and post-processed
by problem into ℓ(Si ). Thereafter the derived quantities ℓ(Si ) are relayed to the solver and the state of the solver is updated according to
the rules of the algorithm.

derivative-free algorithms, similar to Metropolis–Hastings, nested sampling (NS) [17] or Transitional Markov chain
Monte Carlo (TMCMC) [18] can be utilized. In particular, the NS and the TMCMC algorithms benefit from a
parallel evaluation of samples, allowing the acceleration of sampling of problems that involve computationally
demanding models.

The common pattern between optimization and sampling algorithms is the iterating cycle of evaluation of the
posterior density function. Additionally, for algorithms like ES, NS and TMCMC many function evaluations can
be executed in parallel within the same iteration.

3. Framework design

The framework is specially tailored for the execution of massively parallel population-based algorithms that rely
on generating and evaluating sets of parameters (samples) iteratively. At each iteration, a set of n samples Si are
evaluated by a statistical model ℓ. The statistical model to use is given by the choice of problem, e.g., Optimization, to
search the optimum of an objective function; Sampling, to sample an unnormalized density function, and; Bayesian
Inference, to sample the posterior distribution and uncertainty of an inverse Bayesian problem. The statistical model
evaluation may require the execution of a computational model ( f ) representing, e.g., the simulation of a physical
system.

To solve a given problem, the framework runs an experiment (see Fig. 1). Experiments are user-defined (for a
etailed description of the user interface, see Appendix A) and contains the required configuration for the problem,
he solver algorithm, and the variable space. The variable space represents the range of values within which the
olution is to be identified. Variables are uniquely identified by their name and can be restricted either through an
pper and a lower bound, or described by a prior distribution.

Experiments run under the control of the framework’s sampling engine. The engine will coordinate the exchange
f samples between the experiment and the computational model until the solver terminates. Fig. 1 shows the
orkflow of the engine when executing a given experiment. A generation represents a cycle in which the experiment

produces and evaluates a population of samples. We define a sample Si as a particular selection of values within
the feasible variable space.

The first generation starts when the user runs k.run(e), where e is the user-defined experiment object and
represents an instance of the engine. The first step in every generation is to check whether any of the defined

ermination criteria has been met. If not, the engine yields execution to the solver algorithm, which generates an
nitial population of samples {Si }

n
i=1 and relays them to the problem module for pre-processing. During this stage,

he samples are transformed to the correct input format for the computational model. The samples (S′

i ) are then
assed on to the computational model for evaluation ({ f (S′

i )}
n
i=1).

Upon receiving the results from the computational model, the problem module calculates a derived quantity,
.g., the log-likelihood ℓ(S) for a problem of type Bayesian inference, and passes it back to the solver module.
he solver uses these quantities to update its internal state and produce partial results, which serve as the basis for
reating the next sample population during the next generation.
3
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3.1. Distributed sampling engine

The sampling engine supports the parallel evaluation of multiple computational models using message passing
nterface (MPI). To enable parallel sampling, the user runs multiple instances of the Korali application, typically via
he mpiexec command.1 The engine determines the number k of processes that have been instantiated and assigns
oles to them. The first process assumes the role of the engine, managing sample production and evaluation, as
hown in Fig. 1. The rest of k − 1 processes assume the role of workers, whose task is to wait for incoming
amples, run the computational model f , and to return their results.

The distribution of samples and collection of results is managed by a distribution conduit module between the
xperiment and the computational model. This conduit keeps track of the state of each worker (i.e., idle, working,
ending), and assigns incoming samples workers that are in the idle state. As soon as a sample is received, a
orker transitions to busy state, during which it executes the model f . When the worker finishes executing f ,

t returns the results and sets its state to pending, indicating that the engine can collect the result. The worker
tate transitions back to idle only after the conduit has retrieved the result. The engine employs an opportunistic
trategy for work distribution in which it maintains a common queue of pending samples from which all workers
re served. The conduit distributes samples on a one-by-one basis, in real-time, as soon as a worker becomes idle.

The engine also supports the evaluation of parallel (MPI-based) models. For this case, the execution conduit
reates a set of worker teams, each assigned a subset of MPI ranks. All ranks from the same team work together in
he evaluation of incoming samples. Users define the number of MPI ranks per team (m) through the ‘‘Ranks Per

Worker Team’’ configuration parameter. For a run with N MPI ranks (as specified in the MPI launch command), the
conduit assigns one rank to the sampling engine, and creates k worker teams, each with ⌊(N − 1)/m⌋ ranks. Every
worker team owns their private MPI communicator, which allows message passing between the ranks contained
therein. Any MPI-based computational model passed to Korali should use this team-specific communicator for
message exchanges. To identify the ranks in a given team, the conduit module appends an MPI Communicator

field to the sample indicating which group corresponds to the receiving worker. With this value, the model can
determine the m number of ranks in the team and the rank identifiers therein. The model can then operate like a
regular MPI application and produce a result collaboratively.

A novelty in the sampling engine is the ability to execute multiple independent experiments concurrently. The
goal is to maximize the pool of pending samples at any moment during execution, maximizing worker utilization in
the presence of load imbalance, i.e. an uneven distribution of work among workers (see Section 4.2). Fig. 2 shows
the engine’s dataflow when executing two experiments simultaneously (e0, and e1) on a supercomputer cluster. The
engine switches its execution context between both experiments, continuously polling whether either is ready to
advance to the next generation or return partial results for storage. During execution, each experiment produces and
evaluates its own set of samples (S′ for e0 and T ′ for e1).

The distribution conduit manages each of the experiment’s samples independently, distributing them among the
common set of workers. Depending on which experiment has issued the sample, the conduit indicates to the worker
which computational model to run. In this case, f , if the sample belongs to e0, or; g, if the sample belongs to e1.

he results are asynchronously returned to the collection module, which distributes them back to the corresponding
xperiment. The engine evaluates each experiment’s termination criteria after the given experiment reaches the
nd of its current generation. Experiments advance independently from each other, storing their results in separate
olders, and the engine returns when all of them complete.

.2. Modularity and fault-tolerance

The framework can be extended by adding new problem types and solver modules. To integrate a new module,
evelopers create a new folder in the source code, containing three files: the module’s base C++ class declaration
eader (.hpp) file, its method definitions in the source (.cpp) file, and a configuration (.config) file. Although
he module class may contain any arbitrary number of method definitions, it must satisfy a common interface of
bstract virtual methods. These methods are necessary to run a generation-based paradigm and depend on whether
he new module is of problem or solver type.

1 For systems that do not support MPI, the Concurrent execution mode can be used to run with multiple concurrent processes using a
fork/join strategy instead.
4
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Fig. 2. Dataflow of the framework’s sampling engine running two experiments, e0 and e1, concurrently. Samples from both experiments are
passed through the distribution conduit, which assign them to any available idle worker. Here, workers represent teams of m MPI ranks,
which collaborate to compute an assigned sample. Workers evaluate the model corresponding to the sample’s experiment (f, for e0, or; g,
or e1). Upon receiving results, the distribution conduit assigns them to the corresponding experiment.

Fig. 3. Korali’s source pre-processor takes the module’s .cpp and .hpp files as inputs and appends to them automatically-generated class
ttributes and serialization routines, based on its .config file. The output source is compiled into an object file and linked to the framework.

The purpose of the configuration file is to automatize and enforce the generation of serialization routines, which
rite the entire state of a module into a .json file. The engine calls these routines at the end of every generation to

ave the internal state of a module. The state file serves as a checkpoint from which the execution can be resumed
n case of failure or to split large jobs into shorter stints. The engine also stores the internal state of all random
umber generators to guarantee that the same intermediate and final results are obtained in case of resuming from
file. This approach guarantees reproducible results in long-running experiments that require more than one job to

omplete.
The engine’s source pre-processor creates the serialization routines automatically before compilation, based on

he fields declared in the configuration file, as shown in Fig. 3. The pre-processor enforces that no class members
re declared in the header (.hpp) file. Instead, class members should be inserted as entries in the configuration file
pecifying a member name, a C++ datatype, a description text, and a default value. In this way, the framework
nsures that the entire internal state of the module is accounted for during serialization. The pre-processor adds
hese configuration fields as class members to the module’s base .hpp header file automatically, so that they can
5
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Fig. 4. Pipe shape parametrized by width and radial offset, marked with numbers 1 to 5, along five equiangular directions indicated by
traight dashed lines. Offsets are relative to the baseline shape (dashed lines U-turn). The overall shape of the pipe results from interpolation.
ircles show the initial positions of bubbles and the arrows indicate the flow direction.

e referenced from the .cpp file. The declaration and definition of the serialization methods are automatically
enerated and added to the module’s source. A secondary product of code pre-processing is the automatic production
f documentation pages for the module’s entry in the user manual [19].

. Experimental evaluation

We tested Korali on three research studies. First, an optimization study of the shape of fluid transporting pipes.
his study shows the use of Korali on a large-scale, high-dimensional optimization job. Second, a hierarchical
ayesian analysis of the dissipation parameter of human RBC membranes. This study exemplifies the efficiency
ains due to scheduling simultaneous experiments in the presence of load imbalance. Lastly, a Bayesian study
n the parameters of a coarse-grained water model. This study demonstrates the fault-tolerance mechanisms and
eproducibility mechanisms in Korali.

As computational platform, we used both XC40 and XC50 partitions of Piz Daint [20], a Cray supercomputer
ocated at the Swiss National Supercomputing Centre (CSCS). The XC40 partition comprises 1’813 compute nodes,
ach equipped with two Intel Xeon E5-2695-v4 18-core processors running at 2.10 GHz and 128 GB RAM. The
C50 partition comprises 5’704 compute nodes, each equipped with a single Intel Xeon E5-2690-v3 12-core
rocessor, running at 2.60 GHz and 64 GB RAM, and an NVIDIA “Tesla” P100 graphics processing unit (GPU)
ith 16 GB of device memory. In Appendix B, we provide all resources required to reproduce the results presented

n this paper.

.1. Study 1: Fluid transporting pipes

Pipe networks are commonly used to convey flowing substances at various scales ranging from microfluidics to
ndustrial facilities. The flow pattern in a pipe is determined by its shape and the flow conditions. Here we apply
orali to optimize the shape of a two-dimensional pipe which transports liquid with bubbles. The pipe consists of

wo straight segments connected with a U-turn, as illustrated in Fig. 4, where circulating bubbles can coalesce into
arger bubbles. We consider three cases of optimization with different objectives: (i) minimize the transport time of
ubbles, i.e., the time for all bubbles to exit the pipe; (ii) maximize the maximum bubble volume at the time when
t exits the pipe, and; (iii) minimize the maximum bubble volume and therefore achieve a state without coalescence.

The shape of the pipe is defined by 10 parameters that specify the width and radial offset of the U-turn along five
irections used as knots of two cubic splines. The flow parameters are the Reynolds number Re = wVρl/µl = 100
nd the capillary number Ca = µl V/σ = 0.1 defined from the liquid density ρl , liquid viscosity µl , surface

ension σ , pipe width w, and mean inlet velocity V . The gas density and viscosity are set to 0.1ρl and 0.1µl .

6
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Fig. 5. Visualization of the baseline pipe shape and the results for the three optimization cases. The vorticity field is shown in blue, for
clockwise, and; red, for counterclockwise. The snapshots are taken at time tV/w = 14. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

We find the optimal shape of the pipe for the three cases using CMA-ES as optimization algorithm, with
a population size of 32 samples per generation. As computational model, we used a finite-volume solver
(APHROS [21,22]) with embedded boundaries [23] to treat complex geometries and a particle method [24] for
surface tension forces. Each instance of APHROS ran on 4 nodes (72 cores) of the XC40 partition, a total of 128
nodes (2’304 cores) per case. Each case ran for an average of 15 h and consumed approximately 2k node hours.

Results of the optimization are shown in Fig. 5. Case (i) results in a shape where the U-turn contracts and then
expands to redirect the bubbles towards the centerline, where velocity is maximized. The transport time of the
optimized shape has decreased by a factor of 2.1 compared to the baseline. Case (ii) forms a cavity at the end of
the U-turn where the flow stagnates and all bubbles except one coalesce into one elongated bubble. Finally, case
(iii) results in a wide shape where bubbles circulate in parallel lanes, achieving a state without coalescence.

4.2. Study 2: Red blood cell membrane viscosity

RBCs are highly deformable objects that incur complex dynamical transitions in response to external distur-
bances. These transitions lay the foundation for understanding the rheology of blood in flows through capillaries,
vascular networks, and medical devices. There is still significant uncertainty in the choice of the mechanical law to
describe the RBC properties, as well as in the parameter values of each model [27].

In this study, we infer the membrane viscosity which controls the relaxation time of an RBC membrane. Here,
the RBC membrane is modeled as a collection of particles placed on the nodes of a triangular network [28]. We
used data from five experimental observations (four from Hochmuth,Hochmuth1979 and one from Henon [29]),

n the relaxation of a stretched RBC to its equilibrium shape in order to infer the posterior distribution of the
embrane viscosity (ηm , see Fig. 6), and its associated uncertainty (σ ). Due to the presence of heterogeneous data,
e employed a hierarchical Bayesian model. The sampling of the posterior distribution is approximated by a two

tage importance sampling algorithm. A detailed description of the statistical model, the experimental data, and the
esults of the hierarchical model can be found in a previous work [26].

Here, we analyze the performance of the framework during the first stage, where the parameters were sampled

ndividually, conditioned on each experimental data set. For sampling, we employed BASIS, a reduced bias

7
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Fig. 6. Relaxation of a RBC from an initially elongated state to the biconcave resting shape. The time evolution of the length and width of the
BC are non-dimensionalized following [25], with the dimensionless RBC size following an exponential decay. Time is non-dimensionalized
y the characteristic relaxation time, tc = ηm/µ, with µ the elastic shear modulus and ηm the RBC (2D) membrane viscosity. The latter

can be inferred given a set of experimental measurements [26].

Fig. 7. Core usage timelines of Korali during sampling of the experimental datasets, starting from Henon (darkest shade), Hochmuth01,
ochmuth02, Hochmuth03, and ending on the right with Hochmuth04 (lightest shade). The figure shows two timelines: on top, with

equentially scheduled BASIS experiments, and; on bottom: multiple experiments scheduled simultaneously. The horizontal axis represents
he elapsed time (minutes) from the start of the experiment. On the vertical axis, each line represents a different node. Solid lines represent
he execution of the model. Blank spaces represent times where a node is idle. The black line indicates the cumulative sampling efficiency
e) across time. A higher efficiency reflects a better node usage. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)

ariant of the TMCMC algorithm for the sampling of the posterior distribution. BASIS is a sampling algorithm
ailored for Bayesian uncertainty quantification and targeted to parallel architectures [30]. We configured BASIS
o run a population size of 512 samples per generation. For the computational model, we used MIRHEO [31], a

high-performance GPU-based library for microfluidic simulations.
We ran the five experiments on 512 nodes of the XC40 partition using 512 MPI ranks, each running an instance

of MIRHEO per node. In a previous work [26], we had found that the RBC membrane relaxation model shows a
high variance in running times (40 ∼ 100min per sample). This variance caused a workload imbalance among the
workers, with detrimental impact on the performance of the BASIS algorithm. The effect can be appreciated when
running each of the five BASIS sampling experiments individually, as shown in Fig. 7 (top). The five experiments
took 48.1 h to complete on 512 nodes, requiring a total of 24.6k node hours. This approach yielded sampling
8
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Table 1
Performance comparison between the two scheduling strategies employed in the RBC stretching
experiment: Single, with individually scheduled experiments, and; Multiple, with all experiments
scheduled simultaneously. Here, e represents sampling efficiency. The energy usage measurements
were obtained from Piz Daint’s job scheduler.

Scheduling Time Node Hours e Energy

Total Idle

Single 47.32 h 24227 6604 72.7% 10.45 GJ
Multiple 34.78 h 17809 186 98.9% 7.80 GJ

Fig. 8. The Lennard-Jones potential is a function of the distance (r ) between two water molecules, represented as solid spheres. It is repulsive
or distances less than rmin and attractive for larger distances. The potential is parametrized by ε that controls the depth of the well (Vmin),
nd by σ that controls the change from repulsion to attraction point.

fficiency2 (e) of 72.7%. It follows that nodes remained idle 27.3% of their running time. Table 1 (row: Single)
hows that only this resulted in a loss of 6.6k (idle) node hours. In total, the energy usage, as reported from Piz
aint’s job scheduler, was of 10.45 GJ.
To alleviate the effect of load imbalance, we configured Korali to schedule all five experiments simultaneously.

he timeline in Fig. 7 (bottom) shows that nodes remained busy during most of the run with the multi-experiment
ariant. The results, summarized in Table 1, indicate that this approach yields a superior efficiency (98.9%)
ompared to the former approach, wasting much fewer node hours (186), as well as requiring less energy (7.80
J). Furthermore, it also reduced the run-to-completion time from 47.32 to 34.78 h.

.3. Study 3: Coarse-grained water model

In this study, we apply Bayesian inference on the assumed Lennard-Jones potential between particles with two
arameters (ε and σ ) for a coarse-grained water model where a single water molecule is represented by a solid sphere
see Fig. 8). We reproduced the computational setup of a previous work [32], where the parameters of the model are
alibrated to experimental data (density, dielectric constant, surface tension, isothermal compressibility, and shear
iscosity) at fixed temperature and pressure. To find the parameters that maximize the posterior distribution of the
arameters, we use CMA-ES as optimization algorithm, with a population size of 16 samples per generation. For
he computational model, we used LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) [33],

well-known molecular dynamics simulation library that models atoms or ensembles of particles in solid, liquid

2 Calculated as the ratio between busy and total runtime, i.e. busy and idle time combined.
9
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Fig. 9. Evolution of the parameter values that maximize the posterior distribution of the Bayesian problem, showing: in solid lines, the
run in which CMA-ES was uninterrupted, and; in markers, the run which was interrupted every 15 min. Vertical grid lines indicate the
generations at which the interrupted run was restarted.

or gaseous state. We run the experiment using 16 compute nodes of the XC50 partition and two workers per node.
Each worker ran an instance of LAMMPS using 2 MPI ranks over 12 OpenMP threads.

Here, we validate the framework’s fault-tolerance and reproducibility by running the same study twice. For the
rst run, we allow Korali to complete without interruptions. For the second run, we allow it to run for only 15 min
t a time before forcing the job scheduler to terminate it. To reach the final results with the interrupted run, we
e-schedule its launcher job after each interruption, reloading the internal state of CMA-ES upon restart. Since both
uns use the same random seed, we expect to observe the exact same intermediate and final results. Fig. 9 shows
he comparison of the per-generation evolution of parameter optima between the single-run execution (continuous
ine), and the interrupted execution (markers) for the two optimization parameters. In the figure, vertical grid lines
ndicate the generation at which the interruptions occurred for the latter, for a total of 16 restarts. Results show that
he optimal parameters and their convergence path was identical for both runs.

. Related work

Many of the problems and solver methods currently implemented in Korali can also be recognized across
ther statistical UQ softwares. These include ABC-SysBio [7], APT-MCMC [8,34], BCM [35,36], BioBayes [37],
akota [13], EasyVVUQ [38], Π 4U [12], MUQ [39], PSUADE [9], QUESO [10], ScannerBit [40] (a GAMBIT [41,
2] module), which are standalone applications; Chaospy [43], Uncertainpy [44,45], UQ Toolkit [46], UQPy [47],
hich are publicly available Python packages; Stan [11], a programming language for statistical inference; and
QLab [5], a MATLAB framework.
Here, we analyze in further detail the Π 4U and Dakota frameworks as they offer support for distributed sampling

nd thus relate closer to Korali’s goal. The Π 4U [12] framework is one of the first efforts in providing support
f distributed UQ experiments and, to the best of our knowledge, the only to have reported detailed performance
etrics at scale. Π 4U employs the TORC tasking library [48] to distribute the execution of samples to workers.
akota,dalbey2020dakota is a well-established C++-based framework for uncertainty quantification, that interfaces
ith simulation software through a multi-level MPI-based parallelism interface. Dakota is used in a wide-range of
pplications for the US Department of Energy [49].

10



S.M. Martin, D. Wälchli, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 389 (2022) 114264

c
a
i

o
r
t
o
4
t
w
t

w
e
c
r
(
l

Fig. 10. Weak scaling studies comparing the sampling efficiency (e) of Korali, Π 4U, and Dakota (three variants) for a synthetic benchmark
(left) without (Twait = 2.0), and (right) with load imbalance (Twait ∼ U (1.0, 3.0)) on 64, 128, 256, and 512 nodes. The efficiency is
alculated as the ratio of busy and total running time, i.e. busy and idle time combined. The colored bars highlight the median efficiencies,
nd the black intervals indicate the maximum and minimum. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)

To compare the efficiency between frameworks, we created a synthetic benchmark that runs a single-variable
ptimization experiment on a computational model that passively waits for a given number of seconds (Twait ) before
eturning a random result. By employing a passive wait, we can fix the running time of each sample, ruling out
ime variances common to compute-intensive computational models. To drive sampling, we employ evolutionary
ptimization algorithms (CMAES [50], for Korali and Π 4U, and; [51], for Dakota) configured to run 5 generations,
N samples per generation,3 where N is the number of workers, and one node per worker. This configuration allows

o conduct weak scaling studies, evaluating the impact of node scaling on efficiency, while keeping the workload per
orker constant. We configured average waiting times to add up to 40 s in total per experiment, which represents

heir ideal running time. We measure efficiency (e) for each framework by dividing the ideal time by its actual
running time.

We test the following 5 variants: Korali, Π 4U, Dakota-M (master/worker scheduler), Dakota-PS (static sched-
uler), and Dakota-PD (dynamic scheduler). We use the synthetic benchmark to run two weak scaling studies, with
and without load imbalance. To account for the effect of stochastic waiting times, we ran 10 repetitions of each
experiment. In Appendix B, we provide the experimental setup and data necessary to replicate the results.

The first study represents a scenario where there is no load imbalance (Twait = 2.0 seconds, for all samples). Here,
e measure the inherent efficiency of the frameworks in distributing samples to workers without the detrimental

ffect of imbalance. The gap between the attained and an ideal efficiency therefore illustrates the time spent on
ommunication, I/O operations, and scheduling overhead only. Fig. 10 (left) shows the results of weak scaling by
unning the 5 variants from 64 to 512 nodes of the Piz Daint supercomputer. All variants provide high efficiencies
86% < e < 97%) at smaller scales (64 and 128 nodes), with Korali as the most efficient by a small margin. At the
argest scale (512 nodes), the differences are evident, since both Π 4U (e = 62%) and Dakota (e = 67%) appear to

be especially susceptible to the increasing scheduling costs, compared to Korali (e = 86%).
The second study simulates experiments with a high load imbalance. Here, the waiting time for each sample is

drawn from a random variable Twait ∼ U(1.0, 3.0) seconds. We consider the same ideal case (in average, 40 s per
experiment) as basis for the calculation of efficiency. Fig. 10 (right) shows the results for this study. We observe
that load imbalance plays a detrimental effect on the efficiency of all variants. However, Korali is the least affected
of them throughout all scales. We observe the larger difference between the variants when running on 512 nodes
and the larger imbalance, where Π 4U and Dakota show a low efficiency (e = 41% and e = 52%, respectively),
while Korali sustains a higher performance (e = 78%).

3 For fairness, we verified that the generation pre- and post-processing times for all algorithms are negligible.
11
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6. Conclusions and future work

We introduced Korali, a unifying framework for the efficient deployment of Bayesian UQ and optimization
ethods on large-scale supercomputing systems. The software enables a scalable, fault-tolerant, and reproducible

xecution of experiments from a wide range of problem types and solver methods. The experimental results have
hown that Korali is capable of attaining high sampling efficiencies on up to 512 nodes of Piz Daint. Furthermore,

we have shown that running multiple experiments simultaneously on a common set of computational resources
minimizes load imbalance and achieves almost perfect node usage, even in the presence of high sample runtime
variance. We have also shown that the framework can run out-of-the-box libraries, such as LAMMPS, while
providing fault tolerance mechanisms. Finally, we demonstrate that Korali attains higher efficiencies than other
prominent distributed sampling frameworks.

We are currently integrating support for distributed Reinforcement Learning (RL) methods [52,53] that target the
incremental optimization of a policy for multiple concurrent agents exploring and acting in a virtual environment
to collect and maximize rewards. The architecture for these methods closely resembles the workflow provided
by Korali, thus making them suitable candidates for integration. We believe that a platform integrating stochastic
optimization, UQ and RL will be of great value for the broad scientific community.
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Appendix A. Interface design

Korali employs a descriptive interface, in which experiments are statically defined as a set of parameters.
This interface is mostly language-independent and requires only trivial knowledge of the underlying programming
language (e.g., Python or C++). Fig. A.11 shows an example of a Python-based4 application that solves the problem
of calibrating the parameters of a computational model on experimental data. We configured the example to describe
a Bayesian inference problem where the uncertainty in the parameters is quantified by sampling the posterior
distribution of the parameters conditioned on the data. To better explain the software interface, we define the
statistical problem first, and then show its correspondence with the code in Fig. A.11.

The vectors x⃗ and y correspond to the variables X and Y in the code of Fig. A.11 that are initialized in Lines 6
nd 7 through user defined functions. Korali works by defining and running an experiment. (Line 10) An experiment

consists of the description of a statistical problem to be solved, a description of the involved variables and their
distributions, and the configuration of the desired solver. In this application, all lines of code between Line 13 and
Line 40 that are required for the description of the problem, are made entirely via dictionary-tree accesses. The
rest of the code consists of importing libraries (Lines 1 and 4), initializing the experiment (Line 10), initializing the
engine (Line 43), and running Korali (Line 45). The type of the problem is defined in Line 13, and the likelihood
function is defined in Line 14. The observations Y are passed to Korali in Line 16 and the computational model
in Line 15. In top of Fig. A.12 an example of a computational model is given, where f (xi ; ϑ) = ϑ1xi + ϑ2.

ext, the variable vector ϑ is defined by the experiment’s variables. Each variable is defined by a unique name
nd represents one entry to the variable vector. The example code contains three variables, P1, P2 and Sigma, in
ines 19 to 21. The variables are passed in the user-defined model F and used to compute the likelihood function,
iven by the keywords ‘‘Reference Evaluation’’ and ‘‘Standard Deviation’’, respectively. To complete
he description of the problem, the variables require the definition of a prior distribution p(ϑ). Here, we specify

4 Although we use Python in the examples, Korali provides a similar C++-based interface that allows linking its engine against C++ and
Fortran computational models.
12
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Fig. A.11. Example of a Python-based Korali Application.

that the prior distribution of the variables corresponding to the parameters P1 and P2 is a normal distribution (Lines
2 and 23), and of the variable corresponding to the variable Sigma a uniform distribution (Line 24). Finally, we
et the solver to the TMCMC sampler [54].

.1. Computational model support

The user specifies the computational model by passing a function as part of the problem configuration. Such a
unction should expect the sample’s information as argument. In the example in Fig. A.11, the computational model
s passed as a lambda function that calls the computational model F, imported from the myLibrary module.

Functions passed as computational models do not return a value. Instead, they save their results into the sample
container. The expected results from the execution of the computational model depend on the selected problem
type. Fig. A.12 (Top) shows the function F, as specified in the example in Fig. A.11. A Bayesian inference problem,
where the likelihood is computed from reference data, requires that the model saves an evaluation of each of the
reference data points into a ‘‘Results’’ vector. Other problem types, such as derivative-free optimization, require
the model to store only a single numerical value corresponding to the function evaluation (‘‘F(x)’’) for the given
parameter(s), as shown in Fig. A.12 (Middle).

The interface accommodates legacy codes through a fork/join-based Concurrent execution mode that allows
instancing pre-compiled applications via shell commands and returns the results either through file or pipe I/O
13
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Fig. A.12. Examples of computational models. (Top): A model that has two parameters P1 and P2 and produces as result a vector of
evaluations, one for each value of the input vector X. (Middle): A model that requires a single variable X and produces a single function
evaluation f (x) = −x2, to be maximized using a derivative-free method. (Bottom): A model that executes an external application and returns
its output as result.

operations. The Concurrent mode can also be used to launch and gather results from large-scale distributed, e.g.,
MPI [55] applications. An example of such a model is given in Fig. A.12 (Bottom).

Appendix B. Experimental setup

We provide here the source code, configuration, and dependencies used to setup the experiments. We performed
the experiments on the GPU partition of Piz Daint [20], a Cray XC50 system running on SUSE Linux Enterprise
Server 15 SP1 (kernel v4.12). For compilation, we used a GNU-based programming environment, with gcc/8.3.0 as
C/C++ compiler. We used cray-mpich/7.7.15 for MPI support, and cray-python/3.8.2.1 support Python3. The system
uses SLURM 20.02 as its job scheduler. We employed open-source software for the experiments. The software
versions used are as follows:

• Korali v2.0.0 (github.com/cselab/korali)
• Π 4U v1.0 (github.com/cselab/pi4u)
• Dakota v6.12 (dakota.sandia.gov)
• LAMMPS v20.08 (lammps.sandia.gov)
• Mirheo v1.3.0 (github.com/cselab/Mirheo)
• Aphros (github.com/cselab/aphros).

The setup to reproduce the results from Section 4.1 can be found inside the
examples/study.cases/bubblePipe/ folder of the Korali source code; for Section 4.2, they can be found
inside the examples/study.cases/RBCStretc/ folder, and; for Section 4.3, they can be found inside the
examples/study .cases/LAMMPS/ folder. The jobs/ folder provides the respective SLURM job scripts used
for distributed runs.

The setup required to run the benchmarks from Section 5 can be found in the Github repository: github.com/cs
elab/korali benchmark. The folders korali/, pi4u/, and dakota/ contain the configuration used for each of the
frameworks tested. The code files in korali/ and pi4u/ need to be compiled with make prior to running the scripts.
Inside the common/ folder is the common wait script for the three frameworks to use during sample evaluations.
The scripts within the jobs/ folder contain variables that allow setting the experiment’s workload imbalance.

References
[1] S. Ashby, P. Beckman, J. Chen, P. Colella, B. Collins, D. Crawford, J. Dongarra, D. Kothe, R. Lusk, P. Messina, et al., The opportunities

and challenges of exascale computing, Summ. Rep. Adv. Sci. Comput. Advis. Comm. (ASCAC) Subcomm. (2010) 1–77.
14

http://github.com/cselab/korali
http://github.com/cselab/korali
http://github.com/cselab/korali
http://github.com/cselab/korali
http://github.com/cselab/korali
http://github.com/cselab/korali
http://github.com/cselab/korali
http://github.com/cselab/korali
http://github.com/cselab/korali
http://github.com/cselab/korali
http://github.com/cselab/korali
http://github.com/cselab/korali
http://github.com/cselab/korali
http://github.com/cselab/korali
http://github.com/cselab/korali
http://github.com/cselab/korali
http://github.com/cselab/korali
http://github.com/cselab/korali
http://github.com/cselab/korali
http://github.com/cselab/korali
http://github.com/cselab/korali
http://github.com/cselab/korali
http://github.com/cselab/korali
http://github.com/cselab/korali
http://github.com/cselab/pi4u
http://github.com/cselab/pi4u
http://github.com/cselab/pi4u
http://github.com/cselab/pi4u
http://github.com/cselab/pi4u
http://github.com/cselab/pi4u
http://github.com/cselab/pi4u
http://github.com/cselab/pi4u
http://github.com/cselab/pi4u
http://github.com/cselab/pi4u
http://github.com/cselab/pi4u
http://github.com/cselab/pi4u
http://github.com/cselab/pi4u
http://github.com/cselab/pi4u
http://github.com/cselab/pi4u
http://github.com/cselab/pi4u
http://github.com/cselab/pi4u
http://github.com/cselab/pi4u
http://github.com/cselab/pi4u
http://github.com/cselab/pi4u
http://github.com/cselab/pi4u
http://github.com/cselab/pi4u
http://dakota.sandia.gov
http://dakota.sandia.gov
http://dakota.sandia.gov
http://dakota.sandia.gov
http://dakota.sandia.gov
http://dakota.sandia.gov
http://dakota.sandia.gov
http://dakota.sandia.gov
http://dakota.sandia.gov
http://dakota.sandia.gov
http://dakota.sandia.gov
http://dakota.sandia.gov
http://dakota.sandia.gov
http://dakota.sandia.gov
http://dakota.sandia.gov
http://dakota.sandia.gov
http://dakota.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov
http://github.com/cselab/Mirheo
http://github.com/cselab/Mirheo
http://github.com/cselab/Mirheo
http://github.com/cselab/Mirheo
http://github.com/cselab/Mirheo
http://github.com/cselab/Mirheo
http://github.com/cselab/Mirheo
http://github.com/cselab/Mirheo
http://github.com/cselab/Mirheo
http://github.com/cselab/Mirheo
http://github.com/cselab/Mirheo
http://github.com/cselab/Mirheo
http://github.com/cselab/Mirheo
http://github.com/cselab/Mirheo
http://github.com/cselab/Mirheo
http://github.com/cselab/Mirheo
http://github.com/cselab/Mirheo
http://github.com/cselab/Mirheo
http://github.com/cselab/Mirheo
http://github.com/cselab/Mirheo
http://github.com/cselab/Mirheo
http://github.com/cselab/Mirheo
http://github.com/cselab/Mirheo
http://github.com/cselab/Mirheo
http://github.com/cselab/aphros
http://github.com/cselab/aphros
http://github.com/cselab/aphros
http://github.com/cselab/aphros
http://github.com/cselab/aphros
http://github.com/cselab/aphros
http://github.com/cselab/aphros
http://github.com/cselab/aphros
http://github.com/cselab/aphros
http://github.com/cselab/aphros
http://github.com/cselab/aphros
http://github.com/cselab/aphros
http://github.com/cselab/aphros
http://github.com/cselab/aphros
http://github.com/cselab/aphros
http://github.com/cselab/aphros
http://github.com/cselab/aphros
http://github.com/cselab/aphros
http://github.com/cselab/aphros
http://github.com/cselab/aphros
http://github.com/cselab/aphros
http://github.com/cselab/aphros
http://github.com/cselab/aphros
http://github.com/cselab/aphros
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://github.com/cselab/korali_benchmark
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb1
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb1
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb1


S.M. Martin, D. Wälchli, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 389 (2022) 114264
[2] N. Hansen, S.D. Muller, P. Koumoutsakos, Reducing the time complexity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES) nikolaus, Evol. Comput. 11 (1) (2003) 1–18.

[3] S. Kern, S.D. Müller, N. Hansen, D. Büche, J. Ocenasek, P. Koumoutsakos, Learning probability distributions in continuous evolutionary
algorithms –A comparative review, Nat. Comput. 3 (1) (2004) 77–112.

[4] Y. Akimoto, A. Auger, N. Hansen, Comparison-based natural gradient optimization in high dimension, in: Genetic and Evolutionary
Computation Conference GECCO’14, ACM, Vancouver, Canada, 2014, URL https://hal.inria.fr/hal-00997835.

[5] UQLab, 2019, https://www.uqlab.com, (2019-06-13).
[6] EasyVVUQ, 2019, https://easyvvuq.readthedocs.io/en/latest/, (2019-06-13).
[7] J. Liepe, C. Barnes, E. Cule, K. Erguler, P. Kirk, T. Toni, M.P. Stumpf, ABC-SysBio—approximate Bayesian computation in python

with GPU support, Bioinformatics 26 (14) (2010) 1797–1799.
[8] L.A. Zhang, A. Urbano, G. Clermont, D. Swigon, I. Banerjee, R.S. Parker, APT-MCMC, A C++/python implementation of Markov

chain Monte Carlo for parameter identification, Comput. Chem. Eng. 110 (2018).
[9] PSUADE, 2019, https://computation.llnl.gov/projects/psuade-uncertainty-quantification, (2019-06-13).

[10] E.E. Prudencio, K.W. Schulz, The parallel c++ statistical library ‘QUESO’: Quantification of uncertainty for estimation, simulation and
optimization, in: Euro-Par 2011: Parallel Processing Workshops, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 398–407.

[11] Stan, 2019, https://mc-stan.org, (2019-06-13).
[12] P. Hadjidoukas, P. Angelikopoulos, C. Papadimitriou, P. Koumoutsakos, Π 4U: A High performance computing framework for Bayesian

uncertainty quantification of complex models, J. Comput. Phys. 284 (2015) 1–21.
[13] K. Dalbey, M.S. Eldred, G. Geraci, J.D. Jakeman, K.A. Maupin, J.A. Monschke, D.T. Seidl, L.P. Swiler, A. Tran, F. Menhorn, et

al., Dakota A Multilevel Parallel Object-Oriented Framework for Design Optimization Parameter Estimation Uncertainty Quantification
and Sensitivity Analysis: Version 6.12 Theory Manual, Tech. rep., Sandia National Lab, 2020.

[14] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.-C. Andre, et al., The international exascale software project roadmap, Int.
J. High Perform. Comput. Appl. 25 (1) (2011) 3–60.

[15] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: Y. Bengio, Y. LeCun (Eds.), 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015, URL http://arxiv.
org/abs/1412.6980.

[16] M.D. Homan, A. Gelman, The no-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo, J. Mach. Learn. Res.
15 (1) (2014) 1593–1623.

[17] F. Feroz, M.P. Hobson, M. Bridges, Multinest: An efficient and robust Bayesian inference tool for cosmology and particle physics,
Mon. Not. R. Astron. Soc. 398 (4) (2009) 1601–1614, http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x, arXiv:https://academic.oup.
com/mnras/article-pdf/398/4/1601/3039078/mnras0398-1601.pdf.

[18] S. Wu, P. Angelikopoulos, C. Papadimitriou, P. Koumoutsakos, BayesIan annealed sequential importance sampling (BASIS): an unbiased
version of transitional Markov chain Monte Carlo, ASCE-ASME J. Risk Uncertain. Eng. Syst. B: Mech. Eng. 4 (1) (2018).

[19] Korali user manual, 2021, https://www.cse-lab.ethz.ch/korali/docs/, (2021-01-15).
[20] CSCS piz daint, 2019, https://www.cscs.ch/computers/piz-daint/, (30-10-2019).
[21] Aphros: parallel solver for incompressible multiphase flows, 2020, https://github.com/cselab/aphros.
[22] P. Karnakov, F. Wermelinger, S. Litvinov, P. Koumoutsakos, Aphros: High performance software for multiphase flows with large scale

bubble and drop clusters, in: Proceedings of the Platform for Advanced Scientific Computing Conference, 2020, pp. 1–10.
[23] P. Colella, D.T. Graves, B.J. Keen, D. Modiano, A cartesian grid embedded boundary method for hyperbolic conservation laws, J.

Comput. Phys. 211 (1) (2006) 347–366.
[24] P. Karnakov, S. Litvinov, P. Koumoutsakos, A hybrid particle volume-of-fluid method for curvature estimation in multiphase flows, Int.

J. Multiph. Flow. 125 (2020) 103209.
[25] R.M. Hochmuth, P. Worthy, E.A. Evans, Red cell extensional recovery and the determination of membrane viscosity, Biophys. J. 26

(1) (1979) 101–114.
[26] D. Wälchli, S.M. Martin, A. Economides, L. Amoudruz, G. Arampatzis, X. Bian, P. Koumoutsakos, Load balancing in large scale

Bayesian inference, in: Proceedings of the Platform for Advanced Scientific Computing Conference, in: PASC ’20, ACM, 2020, pp.
1–12.

[27] J. Sigüenza, S. Mendez, F. Nicoud, How should the optical tweezers experiment be used to characterize the red blood cell membrane
mechanics? Biomech. Model. Mechanobiol. 16 (5) (2017) 1645–1657.

[28] D.A. Fedosov, B. Caswell, G.E. Karniadakis, A multiscale red blood cell model with accurate mechanics, rheology, and dynamics,
Biophys. J. 98 (10) (2010) 2215–2225.

[29] S. Hénon, G. Lenormand, A. Richert, F. Gallet, A new determination of the shear modulus of the human erythrocyte membrane using
optical tweezers, Biophys. J. 76 (2) (1999) 1145–1151.

[30] S. Wu, P. Angelikopoulos, G. Tauriello, C. Papadimitriou, P. Koumoutsakos, Fusing heterogeneous data for the calibration of molecular
dynamics force fields using hierarchical Bayesian models, J. Chem. Phys. 145 (24) (2016).

[31] D. Alexeev, L. Amoudruz, S. Litvinov, P. Koumoutsakos, Mirheo: High-performance mesoscale simulations for microfluidics, 2020,
[32] J. Zavadlav, G. Arampatzis, P. Koumoutsakos, BayesIan selection for coarse-grained models of liquid water, Sci. Rep. 9 (1) (2019)

1–10.
[33] S. Plimpton, Fast parallel algorithms for short – range molecular dynamics, J. Comput. Phys. 117 (1995) 1–19.
[34] APT-MCMC, 2020, https://apt-mcmc.readthedocs.io/en/latest/, (2020-02-27).
[35] B. Thijssen, T.M.H. Dijkstra, T. Heskes, L.F.A. Wessels, BCM: toolkit for Bayesian analysis of computational models using samplers,
BMC Syst. Biol. 10 (1) (2016) 100.

15

http://refhub.elsevier.com/S0045-7825(21)00575-2/sb2
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb2
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb2
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb3
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb3
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb3
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://hal.inria.fr/hal-00997835
https://www.uqlab.com
https://www.uqlab.com
https://www.uqlab.com
https://www.uqlab.com
https://www.uqlab.com
https://www.uqlab.com
https://www.uqlab.com
https://www.uqlab.com
https://www.uqlab.com
https://www.uqlab.com
https://www.uqlab.com
https://www.uqlab.com
https://www.uqlab.com
https://www.uqlab.com
https://www.uqlab.com
https://www.uqlab.com
https://www.uqlab.com
https://www.uqlab.com
https://www.uqlab.com
https://www.uqlab.com
https://www.uqlab.com
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
https://easyvvuq.readthedocs.io/en/latest/
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb7
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb7
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb7
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb8
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb8
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb8
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
https://computation.llnl.gov/projects/psuade-uncertainty-quantification
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb10
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb10
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb10
https://mc-stan.org
https://mc-stan.org
https://mc-stan.org
https://mc-stan.org
https://mc-stan.org
https://mc-stan.org
https://mc-stan.org
https://mc-stan.org
https://mc-stan.org
https://mc-stan.org
https://mc-stan.org
https://mc-stan.org
https://mc-stan.org
https://mc-stan.org
https://mc-stan.org
https://mc-stan.org
https://mc-stan.org
https://mc-stan.org
https://mc-stan.org
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb12
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb12
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb12
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb13
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb13
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb13
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb13
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb13
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb14
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb14
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb14
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb16
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb16
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb16
http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x
http://arxiv.org/abs/https://academic.oup.com/mnras/article-pdf/398/4/1601/3039078/mnras0398-1601.pdf
http://arxiv.org/abs/https://academic.oup.com/mnras/article-pdf/398/4/1601/3039078/mnras0398-1601.pdf
http://arxiv.org/abs/https://academic.oup.com/mnras/article-pdf/398/4/1601/3039078/mnras0398-1601.pdf
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb18
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb18
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb18
https://www.cse-lab.ethz.ch/korali/docs/
https://www.cscs.ch/computers/piz-daint/
https://github.com/cselab/aphros
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb23
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb23
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb23
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb24
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb24
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb24
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb25
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb25
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb25
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb26
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb26
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb26
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb26
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb26
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb27
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb27
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb27
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb28
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb28
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb28
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb29
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb29
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb29
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb30
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb30
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb30
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb31
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb32
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb32
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb32
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb33
https://apt-mcmc.readthedocs.io/en/latest/
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb35
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb35
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb35


S.M. Martin, D. Wälchli, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 389 (2022) 114264
[36] BCM, 2019, http://ccb.nki.nl/software/bcm/, (2019-06-14).
[37] V. Vyshemirsky, M. Girolami, BioBayes: A software package for Bayesian inference in systems biology, Bioinformatics 24 (17) (2008)

1933–1934.
[38] R.A. Richardson, D.W. Wright, W. Edeling, V. Jancauskas, J. Lakhlili, P.V. Coveney, EasyVVUQ: A library for verification, validation

and uncertainty quantification in high performance computing, J. Open Res. Softw. 8 (1) (2020).
[39] MUQ - MIT uncertainty quantification library, 2020, http://muq.mit.edu, (2020-02-27).
[40] G.D. Martinez, J. McKay, B. Farmer, P. Scott, E. Roebber, A. Putze, J. Conrad, Comparison of statistical sampling methods with

ScannerBit, the gambit scanning module, Eur. Phys. J. C 77 (11) (2017).
[41] The GAMBIT Collaboration, GAMBIT: The global and modular beyond-the-standard-model inference tool, Eur. Phys. J. C 77 (11)

(2017) 784.
[42] GAMBIT, 2019, https://gambit.hepforge.org, (2019-06-13).
[43] Chaospy, 2020, https://chaospy.readthedocs.io/en/master/tutorial.html, (2020-02-28).
[44] S. Tennøe, G. Halnes, G.T. Einevoll, Uncertainpy: A python toolbox for uncertainty quantification and sensitivity analysis in

computational neuroscience, Front. Neuroinformatics 12 (2018).
[45] Uncertainpy, 2019, https://uncertainpy.readthedocs.io, (2019-06-13).
[46] R. Ghanem, D. Higdon, H. Owhadi, Handbook of Uncertainty Quantification, Vol. 6, Springer, 2017.
[47] UQpy, 2019, https://github.com/SURGroup/UQpy, (2019-06-13).
[48] P.E. Hadjidoukas, E. Lappas, V.V. Dimakopoulos, A runtime library for platform-independent task parallelism, in: Proceedings of the

20th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, 2012, pp. 229–236.
[49] B.M. Adams, J.A. Stephens, Dakota Optimization and UQ: Explore and Predict with Confidence, Tech. rep., Sandia National

Laboratories, 2018.
[50] N. Hansen, The CMA evolution strategy: A tutorial, 2016, arXiv:1604.00772.
[51] W.E. Hart, An Introduction to the COLIN Optimization Interface, Tech. rep., Sandia National Laboratories, 2003.
[52] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria, V. Panneershelvam, M. Suleyman, C. Beattie, S. Petersen,

et al., Massively parallel methods for deep reinforcement learning, 2015, arXiv:1507.04296.
[53] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley, I. Dunning, S. Legg, K. Kavukcuoglu,

IMPALA: Scalable distributed deep-RL with importance weighted actor-learner architectures, 2018, arXiv:1802.01561.
[54] J. Ching, Y. Chen, Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model

averaging, J. Eng. Mech. 133 (7) (2007) 816–832.
[55] MPI forum, https://www.mpi-forum.org/.
16

http://ccb.nki.nl/software/bcm/
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb37
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb37
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb37
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb38
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb38
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb38
http://muq.mit.edu
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb40
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb40
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb40
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb41
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb41
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb41
https://gambit.hepforge.org
https://chaospy.readthedocs.io/en/master/tutorial.html
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb44
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb44
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb44
https://uncertainpy.readthedocs.io
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb46
https://github.com/SURGroup/UQpy
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb49
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb49
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb49
http://arxiv.org/abs/1604.00772
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb51
http://arxiv.org/abs/1507.04296
http://arxiv.org/abs/1802.01561
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb54
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb54
http://refhub.elsevier.com/S0045-7825(21)00575-2/sb54
https://www.mpi-forum.org/

