
ETH Library

Personalized prediction of
rehabilitation outcomes in multiple
sclerosis: a proof-of-concept using
clinical data, digital health metrics,
and machine learning

Journal Article

Author(s):
Kanzler, Christoph ; Lamers, Ilse; Feys, Peter; Gassert, Roger ; Lambercy, Olivier

Publication date:
2022-01

Permanent link:
https://doi.org/10.3929/ethz-b-000516966

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
Medical & Biological Engineering & Computing 60(1), https://doi.org/10.1007/s11517-021-02467-y

Funding acknowledgement:
688857 - Synergy-based Open-source Foundations and Technologies for Prosthetics and RehabilitatiOn (SBFI)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0003-1214-8347
https://orcid.org/0000-0002-6373-8518
https://doi.org/10.3929/ethz-b-000516966
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11517-021-02467-y
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


https://doi.org/10.1007/s11517-021-02467-y

ORIGINAL ARTICLE

Personalized prediction of rehabilitation outcomes in multiple
sclerosis: a proof-of-concept using clinical data, digital
health metrics, andmachine learning

Christoph M. Kanzler1,2 · Ilse Lamers3,4 · Peter Feys3 · Roger Gassert1 ·Olivier Lambercy1

Received: 31 August 2020 / Accepted: 6 November 2021
© The Author(s) 2021

Abstract
Predicting upper limb neurorehabilitation outcomes in persons with multiple sclerosis (pwMS) is essential to optimize
therapy allocation. Previous research identified population-level predictors through linear models and clinical data. This
work explores the feasibility of predicting individual neurorehabilitation outcomes using machine learning, clinical data,
and digital health metrics. Machine learning models were trained on clinical data and digital health metrics recorded pre-
intervention in 11 pwMS. The dependent variables indicated whether pwMS considerably improved across the intervention,
as defined by the Action Research Arm Test (ARAT), Box and Block Test (BBT), or Nine Hole Peg Test (NHPT).
Improvements in ARAT or BBT could be accurately predicted (88% and 83% accuracy) using only patient master data.
Improvements in NHPT could be predicted with moderate accuracy (73%) and required knowledge about sensorimotor
impairments. Assessing these with digital health metrics over clinical scales increased accuracy by 10%. Non-linear
models improved accuracy for the BBT (+9%), but not for the ARAT (-1%) and NHPT (-2%). This work demonstrates
the feasibility of predicting upper limb neurorehabilitation outcomes in pwMS, which justifies the development of more
representative prediction models in the future. Digital health metrics improved the prediction of changes in hand control,
thereby underlining their advanced sensitivity.

Keywords Prognostic factors · Neurorehabilitation · Digital biomarkers · Assessment · Upper limb

1 Introduction

Multiple sclerosis (MS) is a chronic neurodegenerative
disorder with 2.2 million prevalent cases worldwide [1].
It disrupts a variety of sensorimotor functions and affects
the ability to smoothly and precisely articulate complex
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multi-joint movements, involving, for example, the arm
and hand [2]. This strongly affects the ability to perform
daily life activities, leads to increased dependence on
caregivers, and ultimately reduced quality of life [3]. Inter-
disciplinary neurorehabilitation approaches combining, for
example, physiotherapy and occupational therapy have
shown promise to reduce upper limb disability [4–6]. This
is reflected by a reduction in sensorimotor impairments
and an increase in the spectrum of executable activities, as
defined by the International Classification of Functioning,
Disability, and Health (ICF) [7].

One of the active ingredients to ensure successful
neurorehabilitation is a careful adaptation of the therapy
regimen to the characteristics and deficits of an individual
(i.e., personalized therapy) [5, 6, 8]. For this purpose,
predicting whether a patient is susceptible to positively
respond to a specific neurorehabilitation intervention is of
primary interest to researchers and clinicians, as it can help
to set more realistic therapy goals, optimize therapy time,
and reduce costs related to unsuccessful interventions [9–
12]. In addition, it promises to define homogenous and
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responsive groups for large-scale and resource-intensive
clinical trials.

Unfortunately, knowledge about predictors determining
the response to neurorehabilitation is limited in pwMS
[13–15]. So far, most of the approaches focused on
establishing correlations between clinical variables at
admission and discharge on a population level. This
allowed the identification of, for example, typical routinely
collected data (e.g., chronicity) and the severity of
initial sensorimotor impairments as factors determining
the efficacy of neurorehabilitation [5, 13–15]. However,
identifying trends on a population level has limited
relevance to actually inform daily clinical decision-making.

Predicting therapy outcomes at an individual level
promises to provide more clinically relevant information
[9–12], but requires appropriate modeling and evaluation
strategies that go beyond the commonly applied linear
correlation analyses. More advanced approaches are nec-
essary to account for potentially non-linear relationships
and the high behavioral inter-subject variability commonly
observed in neurological disorders. In addition, the sever-
ity of sensorimotor impairments is often not characterized
in a sensitive manner, which might limit their predictive
potential. This stems from assessments of sensorimotor
impairments that are commonly applied in clinical research
(referred to as conventional scales) providing only coarse
information, as they usually rely on subjective evaluation
or purely timed-based outcomes that are not sufficiently
capturing behavioral variability [16, 17].

Machine learning allows accurate and data-driven mod-
eling of complex non-linear relationships, which offers high
potential for a precise and personalized prediction of reha-
bilitation outcomes [18, 19]. Similarly, digital health metrics
of sensorimotor impairments allow answering certain lim-
itations of conventional scales by providing objective and
fine-grained information without ceiling effects [20]. Such
kinematic and kinetic metrics have found first pioneer-
ing applications in pwMS, allowing to better disentangle
the mechanisms underlying sensorimotor impairments [21–
29]. So far, neither of these techniques has been applied
for a personalized prediction of rehabilitation outcomes in
pwMS.

The objective of this work was to explore the feasibility
of predicting upper limb rehabilitation outcomes in individ-
ual pwMS by combining clinical data, digital health metrics,
and machine learning (Fig. 1). For this purpose, clinical
data including routinely collected information (e.g., age
and chronicity) and conventional assessments were recorded
pre- and post-intervention in 11 pwMS that participated in
a clinical study on task-oriented upper limb rehabilitation
[6]. In addition, digital health metrics describing upper limb
movement and grip force patterns were recorded using the
Virtual Peg Insertion Test (VPIT), a previously validated

technology-aided assessment of upper limb sensorimotor
impairments relying on a haptic end-effector and a virtual
goal-directed object manipulation task [24, 28, 30].

We hypothesized that (1) machine learning models
trained on multi-modal data recorded pre-intervention could
inform on the possibility to yield a considerable reduction
in upper limb disability due to a specific rehabilitation inter-
vention. Further, we assumed that (2) non-linear machine
learning models enable more accurate predictions of reha-
bilitation outcomes than the more commonly applied linear
regression approaches. Lastly, we expected (3) digital health
metrics of sensorimotor impairments to provide predictive
information that goes beyond the knowledge gained from
conventional assessments. Successfully addressing these
objectives would make an important methodological con-
tribution towards the development of prediction models in
pwMS and might allow to speculate about the mechanisms
orchestrating sensorimotor recovery. This will pave the way
for further research in this area, which could ultimately
help optimizing neurorehabilitation planning in pwMS and
provide further evidence on its efficacy for healthcare prac-
titioners.

2Methods

2.1 Participants

The data used in this work was collected in the context
of a clinical study in which the VPIT was integrated
as a secondary outcome measure [6]. The study was
a pilot randomized controlled trial on the intensity-
dependent effects of technology-aided task-oriented upper
limb training at the Rehabilitation and MS centre Pelt
(Pelt, Belgium). For this purpose, participants were block
randomized based on their disability level into three groups
receiving either robot-assisted task-oriented training at 50%
or 100% of their maximal possible intensity as defined by
their maximum possible number of repetitions of a goal-
directed task, or alternatively conventional occupational
therapy. The training lasted over a period of 8 weeks with
5h of therapy per week. In addition, participants received
standard physical therapy focusing on gait and balance. In
total, 11 pwMS that successfully performed the VPIT before
the intervention were included in the present work. Other
study participants did not complete the VPIT protocol due
to severe upper limb disability or strong cognitive deficits.
Exclusion criteria and details about the study procedures can
be found in previous work describing the clinical outcome
of the trial [6]. The study was registered at clinicaltrials.gov
(NCT02688231) and approved by the responsible Ethical
Committees (University of Leuven, Hasselt University, and
Mariaziekenhuis Noord-Limburg).
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Fig. 1 Approach for prediction
of neurorehabilitation outcomes
in persons with multiple
sclerosis. Eleven persons with
multiple sclerosis were assessed
before and after eight weeks of
neurorehabilitation. Multiple
linear and non-linear machine
learning models were trained on
different feature sets with data
collected before the intervention.
This included information from
conventional clinical
assessments about activity
limitations and impairments,
clinical routine data, and digital
health metrics collected with the
Virtual Peg Insertion Test
(VPIT). The dependent variable
of the models defined whether a
considerable improvement in
activity limitations occurred
across the intervention or not.
The quality and generalizability
of the models were evaluated in
a leave-one-subject-out
cross-validation

11 persons with multiple sclerosis: task-oriented neurorehabilitation for 8 weeks

Dependent variables

Independent variables

Retrospective data:
Did a considerable

improvement occur for
an individual?

yes/no

Evaluation:
leave-one-out

cross-validation

Personalized model-based prospective predictions: 
A considerable improvement will occur for an individual: yes/no

Linear & non-linear
machine learning

models

Conventional assessments: 
activity limitations

Conventional assessments: 
activity limitations

& impairments

Conventional assessments: 
activity limitations

Digital health metrics:
Virtual Peg Insertion Test 

(VPIT)

Pre Post

Clinical routine data

2.2 Conventional assessments

A battery of established conventional assessments was
performed to capture the effects of the interventions.
On the ICF body function & structure level, impaired
sensation in index finger and thumb were tested using
Semmes-Weinstein monofilaments (Smith & Nephew Inc.,
Germantown, USA) [31]. The results of both tests were
combined into a single score (2: normal sensation; 12:
maximally impaired sensation). Weakness when performing
shoulder abduction, elbow flexion, and pinch grip was
rated using the Motricity Index, leading to a single score
for all three movements (0: no movement; 100: normal
power) [32]. The severity of intention tremor and dysmetria
was rated during a finger to nose task using Fahn’s
Tremor Rating Scale and summed up to a single score
describing tremor intensity (0: no tremor; 6: maximum
tremor) [33]. Fatigability was evaluated using the Static
Fatigue Index that describes the decline of strength during
a 30 s handgrip strength test (0: minimal fatigability;

100: maximal fatigability; [34]). Cognitive impairment was
described using the Symbol Digit Modality Test, which
defines the number of correct responses in 90 s when
learning and recalling the associations between certain
symbols and digits [35]. Lastly, the Expanded Disability
Status Scale (EDSS; 0: neurologically intact; 10: death) was
recorded as an overall disability measure [36].

On the ICF activity level, the Action Research Arm Test
(ARAT) evaluated the ability to perform tasks requiring the
coordination of arm and hand movements and consists of four
parts focusing especially on grasping, gripping, pinching,
and gross movements (0: none of the tasks could be completed;
57: all tasks successfully completed without difficulty) [37].
Further, the ability to perform fine dexterous manipulations
were described with the time to complete the Nine Hole
Peg Test (NHPT) [38, 39]. The capability to execute gross
movements was defined through the Box and Block Test
(BBT), which defines the number of blocks that can be
transferred from one box into another within 1 min [37, 40].
The outcomes of the NHPT and the BBT were defined as
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z-scores based on normative data to account for the
influence of sex, age, and the tested body side [40, 41].

2.3 Digital healthmetrics describing upper limb
movement and grip force patterns with the Virtual
Peg Insertion Test (VPIT)

The VPIT is a technology-aided assessment that consists
of a 3D goal-directed manipulation task (video at https://
youtu.be/TyJyd5uVN68). It requires cognitive function
as well as the coordination of arm movements, hand
movements, and power grip force to insert nine virtual
pegs into nine virtual holes [28, 42]. The task is performed
with a commercially available haptic end-effector device
(PhantomOmni or GeomagicTouch, 3D Systems, USA), a
custom-made handle able to record grasping forces, and
a virtual reality environment represented on a personal
computer. The end-effector device provides haptic feedback
that renders the virtual pegboard and its holes. The VPIT
protocol consists of an initial familiarization period with
standardized instructions followed by five repetitions of the
test (i.e., insertion of all nine pegs five times), which should
be performed as fast and accurately as possible.

We previously established a processing framework
that transforms the recorded kinematic, kinetic, and
haptic data into a validated core set of 10 digital
health metrics that were objectively selected based on
their clinimetric properties [28]. These were defined by
considering test-retest reliability, measurement error, and
robustness to learning effects (all in neurologically intact
participants), the ability of the metrics to accurately
discriminate neurologically intact and impaired participants
(discriminant validity), as well as the independence of
the metrics from each other. The kinematic metrics were
extracted during either the transport phase, which is defined
as the gross movement from picking up a peg until inserting
the peg and requires the application of a grasping force of at
least 2 N, or the return phase, which is the gross movement
from releasing a peg into a hole until the next peg is picked
up and does not require the active control of grasping force.
Further, the peg approach and hole approach phases were
defined as the precise movements before picking up a peg
and releasing it into a hole, respectively.

In the following, the definition and interpretation of the
ten core metrics of the VPIT are briefly restated (details in
previous and related work [20, 28, 43, 44]). The logarithmic
jerk transport, logarithmic jerk return, and spectral arc
length return are measures of movement smoothness, which
is expected to define the quality of an internal model
for movement generation producing appropriately scaled
neural commands for the intended movement, and leads
to bell-shaped velocity profiles in neurologically intact
participants. The jerk-based metrics were calculated by

integrating over the third derivative of the position trajectory
and by normalizing the outcome with respect to movement
length and duration. The spectral arc length was obtained
by analyzing the frequency content of the velocity profile.
Further, the path length ratio transport and path length
ratio return described the efficiency of a movement by
comparing the shortest possible distance between start and
end of the movement phase and relating this to the actually
traveled distance. Additionally, the metric velocity max
return describes the maximum speed of the end-effector.
The metric jerk peg approach was calculated to capture the
behavior during precise movements when approaching the
peg. Lastly, three metrics were calculated to capture grip
force coordination during transport and hole approach. In
more detail, the force rate number of peaks transport (i.e.,
number of peaks in the force rate profile) and the force rate
spectral arc length transport described the smoothness of the
force rate signal and were expected to describe abnormal
oscillations in the modulation of grip force during gross arm
movements. Additionally, the force rate spectral arc length
metric was calculated during the hole approach phase.

After the calculation of the metrics, the data processing
framework includes the modeling and removal of potential
confounds, including age, sex, whether the test was
performed with the dominant hand or not, and stereo
vision deficits. Lastly, the metrics are normalized with
respect to the performance of 120 neurologically intact
participants and additionally to the neurologically impaired
subject in the VPIT database that showed the worst task
performance according to each specific metric. This leads
to continuous outcome measures in the unbounded interval
]−∞%, +∞%[, with the value 0% indicating median
task performance of the neurologically intact reference
population and 100% the worst task performance of the
neurologically affected participants.

2.4 Data analysis

In order to predict neurorehabilitation outcomes, several
machine learning models of different complexity were
trained on different feature sets (independent variables,
details in Table SM3) recorded pre-intervention [45].
Knowledge about whether a participant yielded a consider-
able reduction of disability on the activity level across the
intervention or not was used as the dependent variable for
the models (i.e., supervised learning of features with binary
ground truth) [45]. A considerable reduction in activity
limitations was defined by comparing the change of conven-
tional assessments (ARAT, BBT, or NHPT) to their smallest
real difference (SRD) [46]. The SRD defines a range of val-
ues for which the assessment cannot distinguish between
measurement noise and an actual change in the measured
physiological construct. Hence, changes across above the
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SRD were defined as considerable improvements. Conven-
tional assessments describing activity limitations were used
and preferred over a characterization of body functions &
structures, as improving the former is more commonly the
primary target during neurorehabilitation, and conventional
assessments of activity limitations provide more sensi-
tive scales (often continuous time-based) than conventional
assessment of body functions (often ordinal) [5]. The SRD
for the ARAT, BBT, and NHPT were previously defined for
neurological subjects as 5.27 points, 8.11 min−1, and 5.32
s respectively [47–49]. Separate machine learning models
were trained for each of these conventional assessments,
given that individuals might change only selectively in a
subset of these.

The data-driven machine learning models allow generat-
ing a transfer function that might be able to associate the
value of the independent variables recorded pre-intervention
to the rehabilitation outcomes (expected reduction in activ-
ity limitations: yes or no). The predictive power of the
models was evaluated by comparing the ground truth (i.e.,
whether a subject significantly reduced its activity limita-
tions across the intervention) with the model estimates for
each pwMS via a confusion matrix and the balanced accu-
racy (i.e., the average of sensitivity and specificity) [50].
This metric was chosen as a primary performance indicator,
as it has been recommended as a mathematically robust esti-
mator of a models’ performance and generalizability, even
for inbalanced datasets, and allows a concise representa-
tion of performance with a single value [50]. For the best
performing models, we further reported the sensitivity (true
positives over condition positive), specificity (true negatives
over condition negative), and precision (true positives over
predicted condition positive) to provide a multi-dimensional
evaluation of model performance.

As complex machine learning models can theoretically
perfectly fit to any type of multi-dimensional data, the
models were tested on data that were not used for its
training. For this purpose, a leave-one-subject-out cross-
validation was applied to train the model on data from
all participants except one (i.e., both body sides were
removed from the training set). Subsequently, this hold-
out dataset was used to test the generalizability of
the model. This process was repeated until all possible
permutations of testing and training set were covered
and is expected to provide a performance evaluation of
the model that is more generalizable to unseen data
(i.e., assessments on new patients). In addition, the
models were specifically evaluated on individuals that have
considerable activity limitations pre-intervention but do
not show a positive response to neurorehabilitation (i.e.,
unexpected non-responders), as such patients are of high
interest from a clinical perspective. As we hypothesized
that different predictive factors influence rehabilitation

outcomes, multiple feature sets (i.e., a combination of
multiple independent variables) were defined. In more
detail, six basic feature sets containing patient master
data (MS type, chronicity, age, sex), intervention group,
disability level (EDSS and disability information used for
block randomization), sensorimotor impairments assessed
with conventional scales (motricity index, static fatigue
index, monofilament index, symbol digit modality test,
Fahn’s tremor rating scale), sensorimotor impairments
assessed with the VPIT (ten digital health metrics),
and activity limitations assessed with conventional scales
(ARAT, BBT, NHPT). Separate machine learning models
were trained on these basic feature sets and selected
combinations thereof. All feature sets only contained
information collected before the intervention.

Four types of machine learning models were used
to enable comparisons between linear and non-linear
approaches and to ensure the robustness of the results to
the model choice. For this purpose, simple models were
chosen as these have high interpretability and could be
used with standard parameter values to avoid the need for
additional parameter validation and to prevent potential
overfitting to the dataset. More specifically, decision trees
were applied, consisting of multiple nodes that involve the
binary testing of a feature based on a threshold, branches
that define the outcome of the test (value of feature above or
below the threshold), and multiple leaf nodes that indicate
a classification label (considerable improvement or not)
[51]. The number of nodes, the metric that is tested at
each node, and the thresholds are automatically chosen
based on a recursive statistical procedure that attempts
to minimize the overlap between the distributions of the
two classes (considerable improvement or not). This model
was chosen due to its simplicity, intuitive interpretability,
and high generalizability. In addition, k-nearest neighbor
(classification based on normalized Euclidean distances)
and random forest (combination of multiple decision
trees) models were applied [45]. Finally, a standard
linear regression approach was used to establish baseline
performance values, given that these are the simplest models
and are predominantly used in literature [13–15]. For this
approach, the model outputs were rounded to adhere to the
binary classification problem. This was preferred over a
logistic regression approach, which would be more suitable
for binary variables, but would challenge the comparability
to existing literature.

3 Results

The 11 pwMS (7 female) used for the analysis were
of age 56.7±14.8 years and had an EDSS of 6.1±1.3,
(mean±standard deviation; detailed information in Table 1).
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Table 1 Clinical information on persons with multiple sclerosis

ID Time Side Age Sex MS type Chronicity Interv. EDSS ARAT BBT NHPT

yrs yrs 0–10 0–57 1/min s

01 Pre Left 52 F RR 29 1 7 37 22 45.25

01 Post Left 52 F RR 29 1 – 49 33 41.14

01 Pre Right 52 F RR 29 1 7 47 31 24.75

01 Post Right 52 F RR 29 1 – 56 47 23.43

02 Pre Right 69 M PP 19 1 7.5 44 20 140.27

02 Post Right 69 M PP 19 1 – 41 26 216.4

03 Pre Left 25 F RR 6 2 6 52 45 29.35

03 Post Left 25 F RR 6 2 – 57 57 23.78

03 Pre Right 25 F RR 6 2 6 53 43 29.62

03 Post Right 25 F RR 6 2 – 55 52 23.81

04 Pre Left 42 F RR 1 1 4 56 39 27.81

04 Post Left 42 F RR 1 1 – 56 57 23.52

04 Pre Right 42 F RR 1 1 4 54 40 20.48

04 Post Right 42 F RR 1 1 – 55 65 20.92

05 Pre Left 56 F SP 10 2 7 49 38 33.72

05 Post Left 56 F SP 10 2 – 54 44 35.3

05 Pre Right 56 F SP 10 2 7 29 25 89.79

05 Post Right 56 F SP 10 2 – 40 28 70.24

06 Pre Left 65 M SP 19 2 8 52 34 39.9

06 Post Left 65 M SP 19 2 – 54 34 44.13

07 Pre Left 63 F RR 8 2 4.5 57 60 20.84

07 Post Left 63 F RR 8 2 – 57 49 22.28

07 Pre Right 63 F RR 8 2 4.5 54 47 35.04

07 Post Right 63 F RR 8 2 – 55 45 27.3

08 Pre Left 76 F RR 38 1 5 43 42 27.01

08 Post Left 76 F RR 38 1 – 54 56 24.61

08 Pre Right 76 F RR 38 1 5 34 43 34.46

08 Post Right 76 F RR 38 1 – 54 49 23.46

09 Pre Left 60 M PP 21 1 7 52 44 31.48

09 Post Left 60 M PP 21 1 – 54 49 35.66

09 Pre Right 60 M PP 21 1 7 53 51 25.29

09 Post Right 60 M PP 21 1 – 55 48 41.93

10 Pre Left 46 M PP 11 2 5.5 55 32 30.58

10 Post Left 46 M PP 11 2 – 56 43 39.08

10 Pre Right 46 M PP 11 2 5.5 56 35 23.23

10 Post Right 46 M PP 11 2 – 56 53 20.83

11 Pre Left 70 F RR 37 3 6 53 45 29.86

11 Post Left 70 F RR 37 3 – 55 39 35.28

11 Pre Right 70 F RR 37 3 6 45 42 53.21

11 Post Right 70 F RR 37 3 – 52 41 46.19

Subject 2 was defined as a unexpected non-responder, as he had the strongest activity limitations at admission, but did not respond positively to
neurorehabilitation. ID: participant identifier. F: female. M: male. Intervention (interv.) group: task-oriented high intensity (1), task-oriented low
intensity (2), control (3). RR: relapse remitting. PP: primary progressive. SP: secondary progressive. EDSS: Expanded Disability Status Scale.
NHPT: Nine Hole Peg Test. BBT: Box and Block Test. ARAT: Action Research Arm Test. VPIT: Virtual Peg Insertion Test
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Given that all participants except two successfully com-
pleted all assessments with both upper limbs, 20 datasets
were available for analysis. Six, nine, and six of these
datasets showed considerable improvements in the ARAT,
BBT, and NHPT, respectively. One participant (ID 02) was
an unexpected non-responder, as he had strong activity
limitations (admission: ARAT 44, BBT 20 min−1, NHPT
140.27 s), but did not make considerable improvements
during neurorehabilitation (discharge: ARAT 41, BBT 26
min−1, NHPT 216.4 s).

The performance evaluation for machine learning models
trained on different feature sets and different conventional
scores can be found in Table 2 (k-nearest neighbor),
Table SM4 (linear regression), Table SM5 (decision tree),
and Table SM6 (random forest). Table 3 provides a detailed
evaluation of the best performing models.

The decision tree models that performed best (i.e.,
models with maximum balanced accuracy that also correctly
predicted the unexpected non-responder) predicted changes
in ARAT and BBT with a cross-validated balanced accuracy
of 88% and 83%, respectively, and relied only on patient
master data. The best decision tree predicting changes
in NHPT relied purely on digital health metrics of
sensorimotor impairments, yielding a balanced accuracy of
49%. The best linear regression model achieved a balanced
accuracy of 89% for the ARAT (independent variables:
patient master data and conventional scales of activity),
74% for the BBT (patient master data and intervention
group), and 73% for the NHPT (digital health metrics).
The best k-nearest neighbor models achieved a balanced
accuracy of 83% for the ARAT (independent variables:
patient master data and intervention type), 80% for the

Table 2 Predicting intervention outcomes using data collected pre-intervention and a k-nearest neighbor model

Machine learning: k-nearest neighbor model

Feature sets All participants Unexpected non-responder

Outcome prediction for Outcome prediction for

ARAT BBT NHPT ARAT BBT NHPT

Balanced accuracy (%) Correct (yes/no)

1 55 63 43 y y y

2 49 28 54 n n y

3 52 37 43 y y y

4 43 53 40 n n y

5 77 66 71 y y y

6 80 63 64 n y n

1, 2 83 80 43 y y y

1, 3 60 25 50 y y y

1, 4 55 46 63 y y y

1, 5 69 55 64 y y y

1, 6 93 59 33 n y n

1, 2, 3 71 35 50 y y y

1, 4, 6 68 42 48 n y n

1, 5, 6 85 60 68 n y y

1, 4, 5, 6 64 69 61 n y n

1, 2, 3, 4, 5, 6 68 59 64 n y y

Multiple machine learning models were trained using different feature sets (independent variables, 1–6). The training label indicated whether a
considerable change across intervention was observed in a specific conventional score (dependent variable; ARAT, BBT, or NHPT). The models
were evaluated in a leave-one-out cross-validation and specifically tested for one individual with strong activity limitations who did not show
improvements across neurorehabilitation (referred to as unexpected non-responder). Feature set nomenclature: (1) patient master data (ms type,
chronicity, age, sex); (2) intervention group; (3) disability (EDSS, disability group); (4) conventional scales of body functions (motricity index,
static fatigue index, monofilament index, symbol digit modality test, Fahn’s tremor rating scale); (5) digital health metrics of sensorimotor
impairments (ten VPIT metrics); (6) Conv. scale of activity (ARAT, NHPT, BBT). The best performing (accuracy and unexpected non-responder)
models relying on the least amount of features are highlighted in bold for each conventional scale. ARAT: Action Research Arm Test. BBT: Box
and Block Test. NHPT: Nine Hole Peg Test. VPIT: Virtual Peg Insertion Test
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Table 3 Predicting intervention outcomes in ARAT, BBT, and NHPT using data collected pre-intervention — detailed performance of best
performing models

Best performing models and feature sets

Model Feature set Balanced accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

ARAT Linear regression 1, 6 89 100 79 67

BBT Decision tree 1 83 67 100 100

NHPT Linear regression 5 73 67 79 57

Best performing models were selected according to the balanced accuracy and their ability to correctly identify the
unexpected non-responder. Feature set nomenclature: (1) patient master data (ms type, chronicity, age, sex); (2) intervention group; (3) disability
(EDSS, disability group); (4) conventional scales of body functions (motricity index, static fatigue index, monofilament index, symbol digit
modality test, Fahn’s tremor rating scale); (5) digital health metrics of sensorimotor impairments (ten VPIT metrics); (6) conventional scale of
activity (ARAT, NHPT, BBT)

BBT (patient master data and intervention type), and 71%
for the NHPT (digital health metrics). The best random
forest models achieved a balanced accuracy of 71% for the
ARAT (independent variables: patient master data), 83%
for the BBT (patient master data), and 67% for the NHPT
(patient master data, conventional scales of body function
and activity, digital health metrics).

Non-linear machine learning models had similar predic-
tive or did slightly improve predictive performance com-
pared to linear models (ARAT -1%, BBT +9%, NHPT -2%).
For models predicting changes in NHPT that relied solely
on conventional scales of body function or digital health
metrics, the ones relying on digital health metrics improved
predictive accuracy by +11% for decision tree, +24% for
linear regression, +31% for k-nearest neighbor, and -8% for
random forest models.

The best performing model (balanced accuracy and non-
responder) for predicting changes in the NHPT that relied
on conventional scales of body functions but not digital
health metrics achieved an accuracy of 63% (k-nearest
neighbor, patient meta data and conventional scales of
body function). The best performing model for predicting
changes in the NHPT that relied on digital health metrics
but not on conventional scales of body functions achieved an
accuracy of 73% (linear regression, digital health metrics).

4 Discussion

The objective of this work was to explore the feasibility
of predicting the response of individual pwMS to specific
upper limb neurorehabilitation interventions by applying
machine learning to clinical data and digital health metrics
recorded pre-intervention. For this purpose, patient master
data, conventional scales describing body functions and
activities, as well as upper limb movement and grip
force patterns were recorded in 11 pwMS that received

eight weeks of neurorehabilitation. Four commonly applied
machine learning models (decision tree, random forest, k-
nearest neighbor, linear regression) were trained on six
different feature sets and combinations thereof. The models
were evaluated based on their ability to correctly predict
the presence of changes in activity limitations across
the intervention and based on their ability to accurately
anticipate outcomes for one subject with strong activity
limitations at admission but without significant gains across
intervention (i.e., an unexpected non-responder).

In summary, changes in ARAT or BBT could be
accurately predicted (88% and 83% balanced accuracy,
respectively) by only relying on patient master data (namely
age, sex, MS type and chronicity). Moreover, changes
in NHPT could be predicted with moderate accuracy
(73% balanced accuracy), but only when providing the
models with information about sensorimotor impairments.
Assessing these with digital health metrics as provided
by the VPIT improved predictive performance by +10%
compared to conventional assessments.

4.1 Machine learning enables a personalized
prediction of rehabilitation outcomes in pwMS

These results successfully demonstrate the feasibility of
predicting the response of individual pwMS to specific neu-
rorehabilitation interventions using machine learning and
multi-modal clinical and behavioral data. This work espe-
cially makes an important methodological contribution, as
it is the first attempt towards a personalized prediction
of neurorehabilitation outcomes in pwMS. So far, such
approaches were rather employed to predict natural disease
progression in pwMS [52–57]. Previous work in neurore-
habilitation of pwMS focused on predicting adherence to
telerehabilitation [58] or identifying population-level pre-
dictors of therapy outcomes through linear regression [13–
15]. For the latter, the models were commonly evaluated by
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comparing the amount of variance explained by the model
with the overall variance, which only provides population-
level information and challenges comparisons across mod-
els trained on different dependent variables [59, 60]. The
presented methodology expands this work by applying
an in-depth evaluation with accepted performance met-
rics (primary: balanced accuracy; secondary: sensitivity,
specificity, and precision) that can be directly related to
the predictive performance for an individual patient and,
thus, have higher clinical relevance. The high sensitivity
(100%) but moderate precision (67%) for the ARAT mod-
els suggests that they tend to overestimate the recovery
potential of a patient. For the BBT models, the opposing
behavior was observed (67% sensitivity, 100% precision),
suggesting too conservative predictions. For the NHPT,
specificity was moderate (79%), but sensitivity (67%)
and precision (57%) remained low. This highlights that
changes in fine hand control are most challenging to pre-
dict and underlines the potential for follow-up studies with
more representative datasets to further optimize predictive
performance.

Further, the non-linear machine learning models applied
in this work were able to selectively improve (+9% for
the BBT) the predictive accuracy compared to linear
regression approaches. This suggests the relevance of
advanced modeling techniques to explore potential non-
linearities between predictors and rehabilitation outcomes.

The four machine learning models were selected based
on their robustness, as they are known to perform well
on rather small datasets [45]. In addition, these models do
not require the optimization of specific input parameters
or model architectures, as compared to, for example,
more complex neural network-based models [45, 61].
Hence, this promises that other researchers can easily
adopt the presented methodology. In addition, it should
be emphasized that all models were generated in a data-
driven manner. In the presented context, such data-driven
approaches are preferable over models that require the
manual definition of a mathematical formula (e.g., non-
linear mixed effect models), which can introduce bias and
require advanced knowledge about expected patterns of
recovery that is unfortunately often not available.

4.2 Clinical applicability andmechanismsunderlying
the prediction of neurorehabilitation outcomes

Patient master data was sufficient to accurately predict
changes in the ARAT and BBT. Given that this infor-
mation is typically available for every patient undergoing
neurorehabilitation, such a model could be easily integrated
into daily clinical decision-making. Therein, the objective
output of the model could complement other, often more

subjective, information that is used by healthcare practi-
tioners to define patient-specific therapy programs and set
rehabilitation goals [4, 5]. As the proposed models seem
to be able to identify non-responders to a restorative neu-
rorehabilitation intervention strategy, this could allow to
rather focus, for such individuals, on approaches aiming
at learning compensatory strategies in order to improve
their spectrum of activities, their quality of life and partic-
ipation in the community. On the other hand, individuals
identified as responders might instead benefit from therapy
aimed at the neuroplastic restoration of impaired body func-
tions [11, 62]. While the specific mechanisms underlying
the predictive power of patient master data remain unclear,
we speculate that these data affect multiple aspects that
determine the success of neurorehabilitation, for example,
the biological substrates for neuroplasticity, participation in
therapy, and learned non-use [11, 58, 62, 63]. The latter
might play an especially important role, given that indi-
viduals with higher chronicity showed significantly larger
gains in the ARAT (r = 0.58, p < 0.001, Figure SM1).
Surprisingly, younger pwMS showed significantly larger
gains in the BBT (r = −0.52, p < 0.001, Figure SM1),
whereas both age and chronicity did not have a significant
effect on changes in the NHPT. In the future, this selective
and partially opposing effect of age and chronicity needs
to be fully elucidated in adequate samples. Also, knowl-
edge of the intervention type (i.e., task-oriented therapy at
high or moderate intensity, or occupational therapy) did
not considerably improve predictive performance. While
stronger intensity-dependent effects were found in the clin-
ical analysis of this trial [6], its rather minor impact in the
analysis presented here might be explained by the reduced
number of datasets being available for this work, with
only two of them belonging to the occupational therapy
group.

Interestingly, information about sensorimotor impair-
ments was necessary to predict changes in the NHPT. This
indicates that, most likely, different mechanisms under-
lie the observed improvements in ARAT and BBT scores
compared to NHPT outcomes. While more advanced anal-
ysis and large-scale studies would be necessary to fully
unravel these mechanisms, we speculate that changes in the
ARAT and BBT are influenced by multiple factors such as
hand control, voluntary neural drive, weakness, fatigue, and
attentive deficits, whereas changes in the NHPT might more
reflect the recovery of sensorimotor function needed to per-
form fine dexterous finger movements. One could carefully
speculate that this dexterous hand function might be linked
to the integrity of the corticospinal tract, which has been
shown to be essential for sensorimotor recovery in other
neurological disorders [64, 65] and might also play a role in
pwMS [66].
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4.3 Digital healthmetrics outperformed
conventional scales for predicting changes
in the NHPT

The digital health metrics of sensorimotor impairments
extracted from the VPIT outperformed conventional scales
of sensorimotor impairments when predicting changes in
activity limitations, as measured by the NHPT. Hence, we
argue that the proposed digital health metrics allow, for this
specific application, a superior evaluation of sensorimotor
impairments than conventional scales. This is likely because
the former provide continuous fine-graded information on
ratio scales that might be beneficial for training the machine
learning models, compared to the more coarse ordinal
scales of conventional assessments. Also, the superiority
of digital health metrics for predicting rehabilitation
outcomes might be explained by none of the conventional
assessments being able to provide metrics specifically
capturing impaired grip force coordination as done by the
VPIT.

When comparing the VPIT to other technology-aided
assessments in pwMS, it becomes apparent that most of
them focus more on the evaluation of arm movements
with less focus on the hand [21–23, 25–27, 29], which
seems to be especially important for relating impairments
to their functional impact. Overall, the VPIT emerges as
a unique tool able to provide digital health metrics, which
complement the clinically available information about
impaired body functions. In addition, the assessments with
the VPIT can be performed within approximately 15 min
per upper limb, thereby showing high clinical feasibility.

4.4 Limitations

A major limitation of this work is the small sample size
included for the training and evaluation of the machine
learning models. In addition, given the slight imbalance
between numbers of pwMS with and without considerable
changes in activity limitations across the intervention,
it might be that the models slightly overfitted to the
group with more observations. Hence, it is unlikely that
the current models would accurately generalize to the
heterogeneous population of all pwMS. Further, it is unclear
whether the models would be able to predict the effect
of a different type of neurorehabilitation intervention or
whether therapy parameters would need to be integrated
into the model. As any related study, this work is also
limited by the specific conventional scales and digital health
metrics that were used to quantify impaired body functions
and activity limitations. Therefore, it is unclear whether
different trends would be observed when considering
other conventional or instrumented assessments. Lastly, the
predictive performance of the models needs to be further

optimized, especially with a focus on the precision of the
ARAT and NHPT predictions (Table 3).

5 Conclusions

This work successfully established the feasibility of an
individualized prediction of upper limb neurorehabilitation
outcomes in pwMS by combining machine learning
with multi-modal clinical and behavioral data collected
before a neurorehabilitation intervention. Information about
sensorimotor impairments was necessary to predict changes
in fine dexterous hand control. In these cases, conventional
scales of impaired body functions were outperformed
in terms of predictive power by digital health metrics,
thereby underlining their potential to provide a more
sensitive and fine-grained assessment. Ultimately, this
work has the potential to inform future research in the
prediction of neurorehabilitation outcomes in pwMS and
other neurological conditions.

Future work should focus on validating these results
in large-scale populations in order to build models that
are more representative of the heterogeneous population
of pwMS and can be seamlessly integrated into daily
clinical routine. These models should include more holistic
information on each individual, including for example
information about their psychological status and intrinsic
motivation, thereby promising higher prediction accuracies.
Also, pivoting from the proposed classification (binary
output) towards a regression (continuous output) approach
will allow providing a higher level of granularity in the
predicted outcomes. Lastly, the inclusion of additional
therapy parameters in the models could enable in silico
clinical trials, thereby allowing to predict the effects of
different therapies for each individual and support a more
optimal and data-driven clinical decision-making process.
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Multiple Sclerosis; SRD, Smallest Real Difference; VPIT, Virtual Peg
Insertion Test.
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