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Abstract. The configuration model is the most natural model to gener-
ate a random multigraph with a given degree sequence. We use the notion of
dense graph limits to characterize the special form of limit objects of convergent
sequences of configuration models. We apply these results to calculate the limit
object corresponding to the dense preferential attachment graph and the edge re-
connecting model. Our main tools in doing so are (1) the relation between the
theory of graph limits and that of partially exchangeable random arrays (2) an
explicit construction of our random graphs that uses urn models.

1. Introduction

The notion of dense graph limits was introduced in [10] and has been
further developed over the years, see [9] for a recent survey. Heuristically,
the theory of dense graph limits gives a compact way to characterize the
statistics of a randomly chosen small subgraph of a large dense graph. In [5]
the graph limits of various sequences of random dense graphs were calculated
and in this paper we proceed with the investigation of this topic.

Our objects of study are multigraphs rather than simple graphs, i.e. we
allow parallel and loop edges: this choice makes the definition of the limit
objects of convergent multigraph sequences (multigraphons) slightly more
complicated than the limit objects of simple graph sequences (graphons),
but on the other hand the multigraph models defined below are easier to
study than the corresponding simple graph models.
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MULTIGRAPH LIMIT OF THE DENSE CONFIGURATION MODEL 197

The simplest way to generate a random multigraph with a prescribed
degree sequence is called the configuration model: we draw d(v) stubs (half-
edges) at each vertex v and then we uniformly choose one from the set
of possible matchings of these stubs. In this paper we call such random
multigraphs edge stationary (for reasons that will become clear later) and in
Theorem 1 we characterize the special form of limiting multigraphons that
arise as the limit of random dense edge stationary multigraph sequences.
Rougly speaking, our theorem states that the number of edges connecting
the vertices v and w has Poisson distribution with parameter proportional
to d(v)d(w).

We also investigate two random graph models which have different defi-
nitions but turn out to have the same distribution:

• The edge reconnecting model is a random multigraph evolving in time.
Denote the multigraph at time T by Gn(T ), where T = 0, 1, 2, . . . and n =

|V (
Gn(T )

) | is the number of vertices. We denote by m = |E(
Gn(T )

) | the
number of edges (the number of vertices and edges does not change over
time). Given the multigraph Gn(T ) we get Gn(T + 1) by uniformly choosing
an edge in E

(
Gn(T )

)
, choosing one of the endpoints of that edge with a coin

flip and reconnecting the edge to a new endpoint which is chosen using the
rule of linear preferential attachment: a vertex v is chosen with probability
d(v)+κ
2m+nκ , where d(v) is the degree of vertex v in Gn(T ) and κ ∈ (0,+∞) is
a fixed parameter of the edge reconnecting model. We look at the unique
stationary distribution of this multigraph-valued Markov chain which is a
random multigraph on n vertices and m edges.

• In Section 3.4 of [5] a random multigraph called preferential attachment
graph with n nodes and m edges (briefly PAG(n,m)) is defined. We slightly
generalize the definition to obtain PAGκ(n,m) where κ ∈ (0,+∞) is a fixed
parameter: let V = {v1, . . . , vn} be a set of vertices. We create a sequence
v∗
1, . . . , v

∗
2m with elements from V by starting with the empty sequence and

appending random elements of V one by one. If the current length of the
sequence is L then we choose the next element v∗

L+1 to be equal to v ∈ V

with probability d(v)+κ
L+nκ , where d(v) is the multiplicity of v in the sequence

v∗
1, . . . , v

∗
L. Now we create the random multigraph PAGκ(n,m) on the vertex

set V by adding the edges of form {v∗
2k−1, v

∗
2k } for each k = 1, . . . , m.

Lemma 2.1 states that the above described two random multigraphs have
the same distribution. In Theorem 2 we give the limiting multigraphon of
this random multigraph when n → ∞ and m ≈ 1

2ρn2, where ρ ∈ (0,+∞) is a
fixed parameter of the model called the edge density. Roughly speaking, the
limiting multigraphon can be described as follows: it is edge stationary, and
the rescaled degrees of vertices have Gamma distribution with parameters
depending on κ and ρ.
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198 B. RÁTH and L. SZAKÁCS

The precise statements of these theorems along with the necessary nota-
tions can be found in Section 2. We end the Introduction with mentioning
a few related results:

The configuration model is a random multigraph, but if we condition it
to have no multiple and loop edges, then the resulting random simple graph
is uniformly distributed given its degree sequence. In [6] the description
of the limiting graphon of such sequences of simple dense graphs (and a
continuous version of the Erdős–Gallai characterization of degree sequences)
is given.

In [13] we give a characterization of the time evolution of the edge re-
connecting model, viewed through the prism of the theory of multigraphons:
roughly speaking, if we start the edge reconnecting model from an arbitrary
initial multigraph, then we have to run our process for n2 � T steps until
Gn(T ) becomes “edge stationary” and run it for n3 � T steps until Gn(T )
becomes “stationary”.

Acknowledgement. The authors thank László Lovász for posing the
research problem that became the subject of this paper. The research of
Balázs Ráth was partially supported by the OTKA (Hungarian National
Research Fund) grants K 60708 and CNK 77778, Morgan Stanley Analytics
Budapest and Collegium Budapest and the grant ERC-2009-AdG 245728-
RWPERCRI. The research of László Szakács was partially supported by the
OTKA grant NK 67867.

2. Notation and results

Denote N0 = {0, 1, 2, . . . }, [n] := {1, . . . , n} and [k..n] := {k, . . . , n}. If
H1 and H2 are arbitrary sets, denote by f : H1 ↪→ H2 a generic injective
function from H1 to H2. Denote by M the set of undirected multigraphs
(graphs with multiple and loop edges) and by Mn the set of multigraphs
on n vertices. Let G ∈ Mn. The adjacency matrix of a labeling of the
multigraph G with [n] is denoted by

(
B(i, j)

)n

i,j=1
, where B(i, j) ∈ N0 is the

number of edges connecting the vertices labeled by i and j. B(i, j) = B(j, i)
since the graph is undirected and B(i, i) is twice the number of loop edges
at vertex i (thus B(i, i) is an even number).

Denote the set of adjacency matrices of multigraphs on n nodes by An,
thus

An =
{

B ∈ N
n×n
0 : BT = B, ∀ i ∈ [n] 2 | B(i, i)

}
.

The degree of the vertex labeled by i in G with adjacency matrix B ∈ An

is defined by d(B, i) :=
∑n

j=1 B(i, j), thus d(B, i) is the number of stubs at i
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MULTIGRAPH LIMIT OF THE DENSE CONFIGURATION MODEL 199

(loop edges count twice). Let

m = m(G) = m(B) =
1
2

n∑

i,j=1

B(i, j) =
1
2

n∑

i=1

d(B, i)

denote the number of edges. Denote by Am
n the set of adjacency matrices

on n vertices with m edges.
An unlabeled multigraph is the equivalence class of labeled multigraphs

where two labeled graphs are equivalent if one can be obtained by relabel-
ing the other. Thus M is the set of these equivalence classes of labeled
multigraphs, which are also called isomorphism types.

Suppose F ∈ Mk, G ∈ Mn and denote by A ∈ Ak and B ∈ An the adja-
cency matrices of F and G. If g : M → R then we say that g is a multigraph
parameter. Let g(A) := g(F ). Conversely, if g :

⋃∞
k=1 Ak → R is constant

on isomorphism classes, then g defines a multigraph parameter.

2.1. Multigraphons and multigraph convergence. We define the
induced homomorphism density of F into G by

t=(F, G) := t=(A,B) :=
1
nk

∑

ϕ: [k]→[n]

11[∀ i, j ∈ [k] : A(i, j) = B
(
ϕ(i), ϕ(j)

)
].

(1)

The notion of convergence of simple graph sequences and several equiv-
alent characterizations of graphons (limit objects of convergent graph se-
quences) were given in [10]. In [8] a natural generalization of the theory of
dense graph limits to multigraphs is given (see also [12] for similar results
in a more general setting). We say that a sequence of multigraphs (Gn)∞

n=1
is convergent if for every k ∈ N and every multigraph F ∈ Mk the limit
g(F ) = limn→∞ t=(F,Gn) exists, moreover we have

∑
A∈ Ak

g(A) = 1. The
limit object of a convergent multigraph sequence is a measurable function
W : [0, 1] × [0, 1] × N0 → [0, 1] satisfying

(2) W (x, y, k) ≡ W (y, x, k),
∞∑

k=0

W (x, y, k) ≡ 1, W (x, x, 2k + 1) ≡ 0.

Such functions are called multigraphons. For every multigraphon W and
multigraph F ∈ Mk with adjacency matrix A ∈ Ak define

(3) t=(F,W ) := t=(A,W ) :=
∫

[0,1]k

∏

i�j�k

W
(
xi, xj ,A(i, j)

)
dx1 dx2 . . . dxk.

Acta Mathematica Hungarica 136, 2012



200 B. RÁTH and L. SZAKÁCS

We say that Gn → W if for every k ∈ N and every F ∈ Mk we have
limn→∞ t=(F, Gn) = t=(F,W ). Theorem 1 of [8] states that if a sequence
of multigraphs (Gn)∞

n=1 is convergent then Gn → W for some multigraphon
W and conversely, every multigraphon W arises this way. The limiting
multigraphon of a convergent sequence is not unique, but if we define the
equivalence relation W1

∼= W2 by ∀ F ∈ M : t=(F,W1) = t=(F,W2) then ob-
viously Gn → W1, Gn → W2 implies W1

∼= W2. For other characterisations
of the equivalence relation ∼= for graphons, see [4].

For a multigraphon W and x ∈ [0, 1] define the average degree of W at x
and the edge density of W by

D(W,x) :=
∫ 1

0

∞∑

k=0

k · W (x, y, k) dy,(4)

ρ(W ) :=
∫ 1

0

∫ 1

0

∞∑

k=0

k · W (x, y, k) dy dx.(5)

If ρ(W ) < +∞ then D(W,x) < +∞ for Lebesgue-almost all x.
Given a multigraphon W define the degree distribution function of W by

(6) FW (z) =
∫ 1

0
11

[
D(W,x) � z

]
dx, z � 0.

Indeed, FW (·) is a probability distribution function on [0, ∞), i.e. it is non-
negative, right continuous, increasing and satisfies limz→∞ FW (z) = 1. It is
easy to see that ρ(W ) =

∫ ∞
0 z dFW (z). Denote

(7) F −1
W (u) := min

{
z : FW (z) � u

}
, u ∈ (0, 1).

2.2. Random multigraphs and random adjacency matrices. De-
note a random element of An by Xn. We may associate a random multi-
graph Gn to Xn by taking the isomorphism class of Xn.

We say that a sequence of random multigraphs (Gn)∞
n=1 converges in

probability to a multigraphon W (or briefly write Gn
p−→ W ) if for every

multigraph F we have t=(F, Gn)
p−→ t=(F,W ), i.e.

(8) ∀ F ∈ M ∀ ε > 0 : lim
n→∞

P(
∣∣ t=(F, Gn) − t=(F,W )

∣∣ > ε) = 0.

We say that Xn
p−→ W if Gn

p−→ W holds for the associated random multi-
graphs.

Note that the definitions of the edge reconnecting model and the PAGκ

(see Section 1) in fact naturally give rise to a random labeled graph, i.e.
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MULTIGRAPH LIMIT OF THE DENSE CONFIGURATION MODEL 201

a random element Xn of An. The edge reconnecting Markov chain is eas-
ily seen to be irreducible and aperiodic on the state space Am

n , thus the
stationary distribution is indeed unique.

We say that the distribution of Xn is edge stationary if the conditional
distribution of Xn given the degree sequence

(
d(Xn, i)

)n

i=1
is the same as

that of the configuration model (see Section 1) with the same degree se-
quence.

Recall the formulas defining the Poisson and Gamma distributions:

p(k, λ) := e−λ λk

k!
(9)

g(x, α, β) := xα−1 βαe−βx

Γ(α)
11[x > 0].(10)

We say that a nonnegative integer-valued random variable X has Poisson
distribution with parameter λ (or briefly denote X ∼ POI (λ)) if P(X = k)
= p(k, λ) for all k ∈ N. We say that a nonnegative real-valued random vari-
able Z has gamma distribution with parameters α and β (or briefly denote
Z ∼ Gamma (α, β)) if P(Z � z) =

∫ z
0 g(x, α, β) dx.

For a real-valued nonnegative random variable X define

E(X;m) := E
(
X · 11[X � m]

)
.

2.3. Statements of main results. First we state our theorem char-
acterizing the form of multigraph limits of edge stationary multigraph se-
quences:

Theorem 1. Let W denote a multigraphon with ρ(W ) < +∞. If Xn is
an An-valued edge stationary random variable for all n ∈ N, Xn

p−→ W for
some multigraphon W , and the sequence (Xn)∞

n=1 satisfies

lim
m→∞

sup
n∈N

1
(
n
2

)
∑

i<j�n

E
(
Xn(i, j);m

)
= 0(11)

lim
m→∞

sup
n∈N

1
n

n∑

i=1

E
(
Xn(i, i);m

)
= 0,(12)
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202 B. RÁTH and L. SZAKÁCS

then the limiting multigraphon W can be rewritten in the form Ŵ ∼= W where

(13) Ŵ (x, y, k)
(7),(9)
:=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p

(

k,
F −1

W (x)F −1
W (y)

ρ(W )

)

if x 
= y,

11[2 | k] · p

(
k

2
,
F −1

W (x)F −1
W (y)

2ρ(W )

)

if x = y.

Now we state our results describing the multigraph limit of the
PAGκ(n,m) and the stationary distribution of the edge reconnecting model.

For an adjacency matrix B ∈ An denote by m′(B) =
∑n

i=1

∑i−1
j=1 B(i, j)

the number of non-loop edges of the corresponding graph.

Lemma 2.1. The unique stationary distribution of the edge reconnecting
model with linear preferential attachment parameter κ and state space Am

n

has the same distribution as PAGκ(n,m). If Xn has this distribution then
for all B ∈ Am

n

P(Xn = B) =

∏n
i=1

∏d(B,i)
j=1 (κ + j − 1)

∏2m
j=1(κn + j − 1)

m!2m′(B)

(
∏n

i=1

∏i−1
j=1 B(i, j)!)(

∏n
i=1

B(i,i)
2 !)

.

(14)

At the end of Section 3.4 of [5] the following theorem is stated:
Let SPAG (n,m) denote the simple graph obtained from PAG (n,m) by

deleting loops and keeping only one copy of the parallel edges. Then

SPAG
(

n,
n2

2
·
(
ρ + o(1)

))
p−→ Ws,(15)

Ws(x, y) := 1 − exp
(

− ρ ln (x) ln (y)
)
,

where (analogously to (8)) the symbol
p−→ denotes convergence in probabil-

ity of a sequence of random simple graphs to a (simple) graphon.
It is easy to see that (15) is a corollary of the following theorem:

Theorem 2. Let us fix κ, ρ ∈ (0,+∞). If Xn is a random element of
Am(n)

n with distribution (14) for n = 1, 2, . . . , moreover the asymptotic edge
density is

lim
n→∞

2m(n)
n2

= ρ,
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then Xn
p−→ W where

(16) W (x, y, k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p
(

k,
F −1(x)F −1(y)

ρ

)
if x 
= y

11[2|k] · p
(

k

2
,
F −1(x)F −1(y)

2ρ

)
if x = y

and F −1 is the inverse function of F (z) =
∫ z
0 g(y, κ, κ

ρ) dy, see (10).

Note the similarity of the multigraphons appearing in (13) and (16): as
we will see later, this is a consequence of the fact that the distribution of
PAGκ(n, m) is edge stationary.

The proofs of the above stated theorems rely on the following ideas:
• We relate our random graph models to urn models with multiple colors

(e.g. the well-known Pólya urn model): the number of balls is 2m and they
are colored with n possible colors. Each ball corresponds to a stub, each
color corresponds to a labeled vertex and the edge set of the multigraph
depends on the positions of balls in the urn.

• We make use of the underlying symmetries of the distributions of our
random graphs by relating the theory of graph limits to the theory of par-
tially exchangeable arrays of random variables, a connection first observed
in [7].

The rest of this paper is organized as follows. In Section 3 we introduce
the notion of random, vertex exchangeable, infinite adjacency matrices as
well as W -random multigraphons and deduce some useful results relating
the convergence of these objects to graph limits. In Section 4 we relate the
notion of edge stationarity to the ball exchangeability of the corresponding
urn models and prove the convergence results stated above.

3. Vertex exchangeable arrays

In this section we introduce random infinite arrays X =
(
X(i, j)

) ∞
i,j=1

that arise as the adjacency matrices of random infinite labeled multigraphs
and give probabilistic meaning to the homomorphism densities t=(F,W ) by
introducing W -random infinite multigraphs XW . We also introduce the no-
tion of the average degree D(X, i) of a vertex i in an infinite, dense, vertex
exchangeable multigraph.

In Subsection 3.1 we give a useful alternative characterisation of
Gn

p−→ W using exchangeable arrays and prove that under certain tech-
nical conditions the average degrees of Gn converge in distribution to the
average degrees D(XW , i) of the limiting W -random infinite array.
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204 B. RÁTH and L. SZAKÁCS

Let AN denote the set of adjacency matrices
(
A(i, j)

) ∞
i,j=1

of countable
multigraphs:

AN =
{

A ∈ N
N×N

0 : ∀ i, j ∈ N A(i, j) ≡ A(j, i), ∀ i ∈ N 2 | A(i, i)
}

.

Consider the probability space (AN, F ,P) where F is the coarsest sigma-
algebra with respect to which A(i, j) is measurable for all i, j and P is a
probability measure on the measurable space (AN, F ). We are going to de-
note the infinite random array with distribution P by X =

(
X(i, j)

) ∞
i,j=1

.
We use the standard notation X ∼ Y if X and Y are identically distributed
(i.e. their distribution P is identical on (AN, F )).

If X is a random element of AN, let X[k] be the random element of Ak

defined by X[k] :=
(
X(i, j)

)k

i,j=1
.

Definition 3.1 (W -random infinite multigraphons). Let (Ui)
∞
i=1 be

independent random variables uniformly distributed in [0, 1]. Given a
multigraphon W define the random countable adjacency matrix XW =(
XW (i, j)

) ∞
i,j=1

as follows: Given the background variables (Ui)
∞
i=1 the ran-

dom variables
(
XW (i, j)

)
i�j∈N

are conditionally independent and

P
(
XW (i, j) = m | (Ui)

∞
i=1

)
= W (Ui, Uj ,m),

that is if A ∈ Ak then we have

(17) P(X[k]
W = A | (Ui)

∞
i=1) :=

∏

i�j�k

W
(
Ui, Uj , A(i, j)

)
.

In plain words: if i 
= j and Ui = x, Uj = y then the number of multi-
ple edges between the vertices labeled by i and j in XW has distribution(
W (x, y, k)

) ∞
k=1

and the number of loop edges at vertex i has distribution(
W (x, x, 2k)

) ∞
k=1

(these are indeed proper probability distributions by (2)).
For every multigraphon W and multigraph F ∈ Mk with adjacency ma-

trix A ∈ Ak we have

(18) t=(F,W )
(3), (17)

= P(X[k]
W = A).

Recalling (4) and (5) we have

(19) D(W,x) = E(XW (1, 2) | U1 = x), ρ(W ) = E
(
XW (1, 2)

)
.

If ρ(W ) < +∞ then D(W,U1) < +∞ almost surely.
We say that a random infinite array X =

(
X(i, j)

) ∞
i,j=1

is vertex ex-
changeable if

(20) (X
(
τ(i), τ(j)

)
)

∞
i,j=1

∼
(
X(i, j)

) ∞
i,j=1
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MULTIGRAPH LIMIT OF THE DENSE CONFIGURATION MODEL 205

for all finitely supported permutations τ : N → N. We call X =(
X(i, j)

) ∞
i,j=1

dissociated if for all m,n ∈ N the An-valued random variable
(
X(i, j)

)n

i,j=1
is independent of the Am-valued random variable

(
X(i, j)

)n+m

i,j=n+1
.

In our case an infinite exchangeable array can be thought of as the ad-
jacency matrix of a random multigraph with vertex set N: the adjacency
matrix of this random infinite multigraph is vertex exchangeable if and only
if the distribution of the random graph is invariant under the relabeling of
the vertices and dissociated if and only if subgraphs spanned by disjoint
vertex sets are independent.

It follows from Definition 3.1 that XW is vertex exchangeable and dis-
sociated and by Aldous’ representation theorem (see Theorem 1.4, Proposi-
tion 3.3 and Theorem 5.1 in [1]), the converse holds: a random element X
of AN is vertex exchangeable and dissociated if and only if X ∼ XW for
some multigraphon W . Although the notion of the W -random graph (see
Definition 3.1) is already present in [10], the connection of Aldous’ represen-
tation theorem with the theory of graph limits was first observed in [7]. See
also Theorem 3.1, Theorem 3.2, Proposition 3.4 of [11]. For a self-contained
proof of this representation theorem for multigraphons, see Theorem 1 and
Theorem 2 in [8].

For a vertex exchangeable infinite array X satisfying E
(
X(1, 2)

)
< +∞

define the average degree of X at vertex i by

(21) D(X, i) := lim
n→∞

1
n

n∑

j=1

X(i, j).

The sum 1
n

∑n
j=1 X(i, j) indeed almost surely converges to a random variable

as n → ∞ by de Finetti’s theorem (see Section 2.1 of [2]) and the conditional
strong law of large numbers. From (4), Definition 3.1 and (19) we get

(22) D(XW , i) = lim
n→∞

1
n

n∑

j=1

XW (i, j) a.s.= D(W, Ui).

3.1. Convergence of exchangeable arrays. In this subsection we
state and prove two lemmas: in Lemma 3.1 we relate convergence of dense
random multigraphs to convergence of the probability measures of the cor-
responding random arrays, and in Lemma 3.2 we give sufficient conditions
under which convergence of dense random multigraphs imply convergence of
the degree distribution of these graphs.

We say that a sequence of random infinite arrays (Xn)∞
n=1 converges in

distribution to a random infinite array X (or briefly denote Xn
d−→ X) if
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206 B. RÁTH and L. SZAKÁCS

X[k]
n converges in distribution to X[k] for all k ∈ N, i.e.

(23) ∀ k ∈ N, A ∈ An : lim
n→∞

P(A = X[k]
n ) = P(A = X[k]).

If Xn is vertex exchangeable for all n, then X is also vertex exchangeable.
Let Xn denote a random element of An. We say that the distribution

Xn is vertex exchangeable if for all permutations τ : [n] → [n] and B ∈ An

P
(

∀ i, j ∈ [n] : B(i, j) = Xn(i, j)
)

(24)

= P(∀ i, j ∈ [n] : B(i, j) = Xn

(
τ(i), τ(j)

)
),

that is
(
X(i, j)

)n

i,j=1
∼ (X

(
τ(i), τ(j)

)
)

n

i,j=1
holds.

If Xn is a random element of An then X[k]
n =

(
Xn(i, j)

)k

i,j=1
is well-

defined for k � n, thus we might define Xn
d−→ X (where X is a random

element of AN) by (23). It is easy to show that if Xn is vertex exchangeable
for each n ∈ N then X inherits this property.

Also note that by (18) we have Xn
d−→ XW if and only if for all k ∈ N

and for all A ∈ Ak we have limn→∞ P(X[k]
n = A) = t=(A, W ).

Lemma 3.1. Let Xn =
(
Xn(i, j)

)n

i,j=1
be a random, vertex exchangeable

element of An for all n ∈ N. The following statements are equivalent:
(a) Xn

p−→ W , that is ∀ k ∀ A ∈ Ak : t=(A,Xn)
p−→ t=(A, W ),

(b) Xn
d−→ XW , that is ∀ k ∀ A ∈ Ak : limn→∞ P(X[k]

n = A) = t=(A,W ).

Proof. We are going to use the fact limn→∞
n·(n−1)...(n−k+1)

nk = 1 many
times in this proof.

We first prove (a) =⇒ (b):

lim
n→∞

P(X[k]
n = A)

(24)
= lim

n→∞
(n − k)!

n!

∑

ϕ: [k]↪→[n]

P
(
(Xn

(
ϕ(i), ϕ(j)

)
)

k

i,j=1
= A

)
(25)

= lim
n→∞

1
nk

∑

ϕ: [k]→[n]

P
(
(Xn

(
ϕ(i), ϕ(j)

)
)

k

i,j=1
= A

)

(1)
= lim

n→∞
E

(
t=(A,Xn)

) (a)
= t=(A, W ).

Now we prove (b) =⇒ (a): The idea of this proof comes from Lemma
2.4 of [10].
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From (b) we get E
(
t=(A,Xn)

)
→ t=(A, W ) for all A by the argument

used in (25). In order to have t=(A,Xn)
p−→ t=(A,W ) we only need to show

lim
n→∞

D2
(
t=(A,Xn)

)
= lim

n→∞
E

(
t=(A,Xn)2

)
− t=(A, W )2 = 0.

This follows by the computation

lim
n→∞

E
(
t=(A,Xn)2

)

(1)
= lim

n→∞
1

n2k

∑

ϕ: [2k]→[n]

P
(
A = (Xn

(
ϕ(i), ϕ(j)

)
)

k

i,j=1
,

A = (Xn

(
ϕ(i), ϕ(j)

)
)
2k

i,j=k+1

)

= lim
n→∞

(n − 2k)!
n!

∑

ϕ: [2k]↪→[n]

P
(
A = (Xn

(
ϕ(i), ϕ(j)

)
)

k

i,j=1
,

A = (Xn

(
ϕ(i), ϕ(j)

)
)
2k

i,j=k+1

)

(24)
= lim

n→∞
P(A =

(
Xn(i, j)

)k

i,j=1
, A =

(
Xn(i, j)

)2k

i,j=k+1)

(b)
= P(A =

(
XW (i, j)

)k

i,j=1
, A =

(
XW (i, j)

)2k

i,j=k+1)
(∗)
= t=(A, W )2.

In the equation (∗) we used the fact that XW is dissociated and (18). �
Recall that for a real-valued nonnegative random variable X we denote

E(X; m) := E
(
X · 11[X � m]

)
. A sequence of real-valued nonnegative ran-

dom variables (Xn)∞
n=1 is uniformly integrable (see Ch. 13 of [15]) if

lim
m→∞

max
n

E(Xn;m) = 0.

Now we state and prove a lemma which gives sufficient conditions under
which X̃n

d−→ X implies 1
nd

(
X̃n, i

) d−→ D(X, i). Note that some extra con-
ditions are indeed needed, because it might happen that very few pairs of
vertices of X̃n with a huge number of parallel edges between them remain
invisible if we only sample small subgraphs of X̃n, but still cause a sigif-
icant distortion in the distribution of the degrees of vertices in X̃n. This
phenomenon is related to the fact that weak convergence of a sequence of
random variables Xn

d−→ X does not necessarily imply the convergence of
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the means of Xn to that of X : the uniform integrability of (Xn)∞
n=1 is a

sufficient (and essentially necessary) condition that rules out pathological
behavior.

Lemma 3.2. (i) If (Xn)∞
n=1 is a sequence of infinite vertex exchangeable

arrays, the sequence
(
Xn(1, 2)

) ∞
n=1

is uniformly integrable and Xn
d−→ X,

then for all k ∈ N we have

(26) (X[k]
n ,

(
D(Xn, i)

)k

i=1)
d−→ (X[k],

(
D(X, i)

)k

i=1).

(ii) If X̃n is a random, vertex exchangeable element of An for each n ∈ N,
X̃n

d−→ X holds for some infinite vertex exchangeable array X and the se-
quences

(
X̃n(1, 1)

) ∞
n=1

and
(
X̃n(1, 2)

) ∞
n=1

are uniformly integrable, then for
all k ∈ N

(27)

(

X̃[k]
n ,

(
1
n

d
(
X̃n, i

))k

i=1

)
d−→ (X[k],

(
D(X, i)

)k

i=1).

Proof. (i) We first prove that (26) holds if we further assume
P

(
Xn(i, j) � m

)
≡ 1 for some m ∈ N. By the method of moments we only

need to show that for all μi,j ∈ N0, 1 � i � j � k and νi ∈ N0, 1 � i � k we
have

lim
n→∞

E
( ∏

i�j�k

Xn(i, j)μi,j ·
k∏

i=1

D(Xn, i)νi

)
(28)

= E
( ∏

i�j�k

X(i, j)μi,j ·
k∏

i=1

D(X, i)νi

)
.

For every i ∈ [k] choose J(i) � N such that for all i we have
∣∣J(i)

∣
∣ = νi

and J(i) ∩ [k] = ∅, moreover for all i 
= i′ we have J(i) ∩ J(i′) = ∅. In order
to prove (28) we first show that if P

(
X(i, j) � m

)
≡ 1 for some m ∈ N then

E
( ∏

i�j�k

X(i, j)μi,j ·
k∏

i=1

D(X, i)νi

)
(29)

= E
( ∏

i�j�k

X(i, j)μi,j ·
k∏

i=1

∏

j∈J(i)

X(i, j)
)

.
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Denote ν =
∑k

i=1 νi and ν :=
{

(i, l) : i ∈ [k], l ∈ [νi]
}

and X[k],μ :=∏
i�j�k X(i, j)μi,j . Using (21) and dominated convergence, the left-hand

side of (29) is equal to

lim
n→∞

E

(

X[k],μ
k∏

i=1

(
1
n

n∑

j=1

X(i, j)
)νi

)

= lim
n→∞

1
nν

∑

j: ν→[n]

E
(
X[k],μ

k∏

i=1

νi∏

l=1

X
(
i, j(i, l)

))

= lim
n→∞

1
nν

∑

j: ν↪→[k..n]

E
(
X[k],μ

k∏

i=1

νi∏

l=1

X
(
i, j(i, l)

)
)

(20)
= lim

n→∞
1
nν

∑

j: ν↪→[k..n]

E
(
X[k],μ

k∏

i=1

∏

j′ ∈J(i)

X(i, j′)
)

.

Now the right-hand side of the above equation is easily shown to be equal
to the right-hand side of (29).

Having established (29), our assumptions Xn
d−→ X and P

(
Xn(i, j) �

m
)

≡ 1 imply the equality (28): if we rewrite both the left and the right
hand side of (28) in the form corresponding to the right hand side of (29),
then we only need to check that the expected value of a polynomial function
of finitely many values of Xn converge, and this follows from the definition
of Xn

d−→ X (for details on d−→, see [3]).
Having established (26) under the condition P

(
Xn(i, j) � m

)
≡ 1 we

now prove (26) without assuming this condition. If we define the trun-
cated array Xm(i, j) := min

{
X(i, j),m

}
, then for each m ∈ N we have

Xm
n

d−→ Xm from which

(30) (Xm,[k]
n ,

(
D(Xm

n , i)
)k

i=1)
d−→ (Xm,[k],

(
D(Xm, i)

)k

i=1)

follows by the previous argument. By uniform integrability for every ε > 0
there is an m such that for all n we have

(31) E
(
D(Xn, i) − D(Xm

n , i)
) (19)

= E(X(1, 2) − min
{

X(1, 2),m
}
) � ε.

It follows from Fatou’s lemma that E
(
D(X, i) − D(Xm, i)

)
� ε also holds.
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In order to prove (26) we only need to check

lim
n→∞

E
(
f(X[k]

n ,
(
D(Xn, i)

)k

i=1)
)

= E
(
f(X[k],

(
D(X, i)

)k

i=1)
)

for any bounded and continuous f : Ak × [0,+∞)k → R. This can be easily
proved using (30), (31) and the ε/3-argument (see Ch. 1.5 of [14]). This
finishes the proof of (i).

(ii) For each n ∈ N let (ηn
i )∞

i=1 be i.i.d. and uniformly distributed on [n].
Define the infinite array Xn by Xn(i, j) := X̂n(ηn

i , ηn
j ). Now Xn is vertex

exchangeable and using the vertex exchangeability of X̃n we get

E
(
Xn(1, 2);m

)
=

(
1 − 1

n

)
E

(
X̃n(1, 2); m

)
+

1
n
E

(
X̃n(1, 1); m

)
,

and if we combine this with the assumptions of (ii) we get that
(
Xn(1,2)

) ∞
n=1

is uniformly integrable.
Note that by (21) and the law of large numbers D(Xn, i) = 1

nd
(
X̃n, ηn

i

)
.

Using the vertex exchangeability of X̃n the following two (Ak, R
k
+)-valued

random variables have the same distribution:
• (X[k]

n ,
(
D(Xn, i)

)k

i=1) under the condition
∣∣ {ηn

1 , . . . , ηn
k }

∣∣ = k,

•
(
X̃[k]

n , ( 1
nd

(
X̃n, i

)
)

k

i=1

)
.

Let us call this fact (∗).
Xn

d−→ X easily follows from X̃n
d−→ X, (∗) and

(32) lim
n→∞

P(
∣∣ {ηn

1 , . . . , ηn
k }

∣∣ = k) = 1,

so we can apply (i) to obtain (26). Now using (∗) and (32) again we ob-
tain (27). �

4. Random urn configurations and edge stationarity

In this section we define a way of constructing random adjacency matri-
ces using random urn configurations (the basic idea comes from Section 3.4
of [5]). This construction relates edge stationary random adjacency matri-
ces to ball exchangeable urn models and gives an easy proof of Lemma 2.1
using the fact that the distribution of the PAGκ(n,m) and that of the sta-
tionary state of the edge reconnecting model both arise from the Pólya urn
model via our construction.

In Subsection 4.1 we prove Theorem 1 and Theorem 2 using this ma-
chinery.
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Let n, m ∈ N. A random urn configuration with 2m balls of n different
colors is a probability distribution on [n][2m], that is a random function Ψ :
[2m] → [n]. If l ∈ [2m] we say that the l’th ball has color Ψ(l). Let d(Ψ, i) :=∑2m

l=1 11
[
Ψ(l) = i

]
for i ∈ [n] denote the multiplicity of color i in Ψ.

We say that a random urn configuration Ψ is ball exchangeable if for all
permutations τ : [2m] → [2m] we have

(
Ψ(l)

) 2m

l=1
∼ (Ψ

(
τ(l)

)
)
2m

l=1
.

Ψ is ball exchangeable if and only if the following property holds: condi-
tioned on the value of the type vector

(
d(Ψ, i)

)n

i=1
, the distribution of Ψ

is uniform on the elements of [n][2m] with this particular type vector, more
precisely if ψ ∈ [n][2m] then

P(Ψ = ψ) =
P(

(
d(Ψ, i)

)n

i=1
=

(
d(ψ, i)

)n

i=1)(
(2m)!

Qn
i=1 d(ψ,i)!

) .

We say that Ψ is color exchangeable if for all permutations τ : [n] → [n]
we have

(
Ψ(l)

) 2m

l=1
∼ (τ

(
Ψ(l)

)
)
2m

l=1
.

To a random urn configuration Ψ we assign a random element X of Am
n

by defining

X(i, j) :=
m∑

e=1

11
[
Ψ(2e − 1) = i,Ψ(2e) = j

]
+ 11

[
Ψ(2e − 1) = j,Ψ(2e) = i

]
(33)

for all i, j ∈ [n]. In plain words: the colors of the balls correspond to the
labels of the vertices and if for any 1 � e � m we see a ball of color i at
position 2e − 1 and a ball of color j at position 2e then we draw an edge
between the vertices i and j in the corresponding labeled multigraph (and
if i = j then we draw a loop edge at vertex i).

With the definition (33) we have P
(
d(X, i) = d(Ψ, i)

)
= 1. It is easy to

see that all probability measures on Am
n arise this way.

If Ψ is color exchangeable then X is vertex exchangeable. All vertex
exchangeable probability measures on Am

n arise this way.
If Ψ is ball exchangeable then for all B ∈ Am

n we have

P(X = B) =
P(

(
d(X, i)

)n

i=1
=

(
d(B, i)

)n

i=1)(
(2m)!

Qn
i=1 d(B,i)!

)
m!2m′(B)

(
∏

i<j B(i, j)!)(
∏n

i=1
B(i,i)

2 !)

(34)
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where m′(B) denotes the number of non-loop edges. The first term in (34)
is P(Ψ = ψ) for some ψ that produces B via (33), the second term is the
number of elements of [n][2m] that produce B via (33).

Recalling the definition of the configuration model (see Section 1) we
can see that if we generate X using (33) from a ball exchangeable urn con-
figuration Ψ with a given degree sequence (di)

n
i=1 then we in fact uniformly

choose one from the the set of possible matchings of the stubs where the ver-
tex i ∈ [n] has di stubs. Thus (34) holds for a random element X of Am

n if
and only if the distribution of X is edge stationary. It is easy to see that all
edge-stationary probability distributions on Am

n arise from ball exchangeable
distributions on [n][2m] via (33).

Now we define two different dynamics on random urn configurations:
• The Pólya urn model: Fix κ ∈ (0,+∞). Let ΨL be a random ele-

ment of [n][L]. Given ΨL we generate a random element of [n][L+1] which
we denote by ΨL+1 in the following way: let ΨL+1(l) := ΨL(l) for all l ∈ [L]
and

∀ i ∈ [n] : P
(
ΨL+1(L + 1) = i | ΨL

)
=

d(ΨL, i) + κ

L + nκ
.

• The ball replacement model: Fix κ ∈ (0,+∞). Let ΨT be a random
element of [n][2m]. Given ΨT we generate a random element of [n][2m] which
we denote by ΨT+1 in the following way: let ξT denote a uniformly chosen
element of [2m]. For all l ∈ [2m] \ ξT let ΨT+1(l) := ΨT (l) and

(35) ∀ i ∈ [n] : P
(
ΨT+1(ξT ) = i | ΨT , ξT

)
=

d(ΨT , i) + κ

2m + nκ
.

It is well-known that if we start with an empty urn Ψ0 and repeatedly
apply the Pólya urn scheme to get ΨL for L = 1, 2, . . . , 2m, then the distri-
bution of Ψ2m is of the following form:

(36) ∀ ψ ∈ [n][2m] : P(Ψ2m = ψ) =

∏n
i=1

∏d(ψ,i)
j=1 (κ + j − 1)

∏2m
j=1(κn + j − 1)

.

Thus the distribution of Ψ2m is ball and color exchangeable. The PAGκ(n,m)
(defined in Section 1) is in fact the random multigraph obtained as the image
of the random urn configuration (36) under the mapping (33).

The ball replacement model is an [n][2m]-valued Markov chain, which
is irreducible and aperiodic with unique stationary distribution (36): if we
delete the ξT ’th ball from Ψ2m, then by ball exchangeability the distribution
of the resulting [n][2m−1]-valued random variable is the same as deleting the
2m’th ball: Pólya-Ψ2m−1. Thus replacing the removed ξT ’th ball with a new
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one according to (35) we get a [n][2m]-valued random variable with Pólya-
Ψ2m distribution again by ball exchangeability.

Now consider the ball replacement Markov chain ΨT , T = 0, 1, . . . with
Ψ0 being an arbitrary [n][2m]-valued random variable. If we use the mapping
(33) to create X(T ) from ΨT , then it is easily seen that the resulting Am

n -
valued stochastic process X(T ), T = 0,1, . . . evolves according to the rules of
the edge reconnecting Markov chain defined in Section 1. Some consequences
of this fact:

• If the distribution of Ψ0 is ball exchangeable then ΨT is also ball ex-
changeable for all T , thus if X(0) is edge stationary then so is X(T ) for all
T (hence the name “edge stationarity”).

• The distribution (36) is stationary for the ball replacement model, thus
the image of this distribution under the mapping (33) is the unique station-
ary distribution of the edge reconnecting model. Lemma 2.1 follows from
(36) and (34).

4.1. Limits of edge stationary multigraph sequences. The key re-
sult of this subsection is Lemma 4.1 which can be roughly summarized as
follows: in a large dense edge stationary random multigraph the number of
edges connecting the vertices v and w has Poisson distribution with param-
eter proportional to d(v)d(w). Given Lemma 4.1 the proof of Theorem 1 is
straightforward and the proof of Theorem 2 reduces to a limit theorem which
states that the rescaled number of balls with color 1, 2, . . . , k in the Pólya
urn model converge in distribution to i.i.d. random variables with Gamma
distribution.

Lemma 4.1. Let F : [0,+∞) → [0, 1] denote the cumulative distribu-
tion function of a nonnegative random variable Z. Let F −1(u) := min

{
x :

F (x) � u
}

. Let Z1, Z2, . . . be i.i.d. random variables with Zi ∼ Z ∼ F −1(Ui)
(where Ui are uniform on [0, 1]).

If Xn is an An-valued random variable for n = 1, 2, . . . , moreover the
distribution of Xn is vertex exchangeable and edge stationary, and

(37)
2m(Xn)

n2

p−→ ρ, n → ∞,

where 0 < ρ < +∞ is positive real parameter, moreover for all k ∈ N we have

(38)
(

1
n

d(Xn, i)
)k

i=1

d−→ (Zi)
k
i=1, n → ∞
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214 B. RÁTH and L. SZAKÁCS

then Xn
p−→ W where

(39) W (x, y, k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p
(

k,
F −1(x)F −1(y)

ρ

)
if x 
= y,

11[2|k] · p
(

k

2
,
F −1(x)F −1(y)

2ρ

)
if x = y.

Proof. The infinite random array XW (see Definition 3.1) can be alter-
natively defined in the following way: Let

(
XW (i, j)

)
i�j

be conditionally in-

dependent given (Zi)i∈N
with conditional distribution XW (i, j) ∼ POI (ZiZj

ρ )
if i < j and XW (i,i)

2 ∼ POI (ZiZi

2ρ ).
If A ∈ Ak let A∗ denote the following modified matrix: A∗(i, j) := A(i, j)

if i 
= j but A∗(i, i) := A(i,i)
2 . Thus A∗(i, i) is the number of loop edges at

vertex i.
Let m[k] := 1

2

∑
i,j A(i, j). Define

p
(
A, (zi)

k
i=1, ρ

)

:= exp

(
−1
2ρ

( k∑

i=1

zi

)2
)

·
∏

i�j

1
A∗(i, j)!

·
k∏

i=1

(zi)
d(A,i) · ρ−m[k] · 2−

Pk
i=1 A∗(i,i).

By (17) and (39) we have

P(X[k]
W = A | (Zi)

k
i=1) =

k∏

i=1

k∏

j=i

p

(

A∗(i, j),
Zi · Zj

ρ ·
(
1 + 11[i = j]

)

)

(40)

= p
(
A, (Zi)

k
i=1, ρ

)
.

By Lemma 3.1 we only need to show that we have

(41) ∀ k ∈ N, ∀ A ∈ Ak : lim
n→∞

P(X[k]
n = A) = P(X[k]

W = A)

in order to prove Xn
p−→ W .

Let (di)
n
i=1 denote an arbitrary degree sequence with m = 1

2

∑n
i=1 di and

denote by

(42) zi :=
di

n
, ρn :=

2m
n2

.
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Fix ε > 0 and A ∈ Ak. We are going to prove that if

(43) ε � ρn � ε−1, ∀ i ∈ [k] : zi � ε−1

then

P
(
X[k]

n = A
∣
∣
∣
(
d(Xn, i)

)k

i=1
= (di)

k
i=1,

2m(Xn)
n2

= ρn

)
(44)

= p
(
A, (zi)

k
i=1, ρn

)
+ Err (n,A, ε)(45)

with limn→∞ Err (n,A, ε) = 0. We adapt the convention that the value of
Err (n, A, ε) might change from line to line.

First we assume that (44) = (45) holds under the condition (43), and
deduce (41) from it. Define the events Bε

n and Bε by

Bε
n :=

{
ε � 2m(Xn)

n2
� ε−1, ∀ i ∈ [k] :

1
n

d(Xn, i) � ε−1

}

Bε :=
{

ε � ρ � ε−1, ∀ i ∈ [k] : Zi � ε−1
}

.

Using the Portmanteau theorem and (37), (38) we obtain the inequality
lim sup

n→∞
P(Bε

n) � P(Bε).

|P(X[k]
n = A) − P(X[k]

W = A)| (40)
= |P(X[k]

n = A) − E(p
(
A, (Zi)

k
i=1, ρ

)
)|

(46)

�
∣∣
∣
∣∣
E

(

p

(

A,

(
1
n

d(Xn, i)
)k

i=1

,
2m(Xn)

n2

)

;Bn

)

− E(p
(
A, (Zi)

k
i=1, ρ

)
)

∣∣
∣
∣∣

(47)

+ Err (ε,A, n) +
(
1 − P(Bε

n)
)
.(48)

By (37), (38), limn→∞ Err (n,A, ε) = 0 and the fact that p
(
A, (·)k

i=1, ·
)

is a
bounded continuous function on the domain (43) we obtain

lim sup
n→∞

(47) � 1 − P(Bε) and lim sup
n→∞

(48) � 1 − P(Bε).

Now P(Bε) → 1 as ε → 0, from which (41) and the statement of the lemma
follows under the assumption that (43) implies (44) = (45). �
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Proof of (43) =⇒ (44) = (45). We are using random urn configura-
tions to generate Xn. Let Ψn denote the ball and color exchangeable [n][2m]-
valued random variable with

(
d(Ψ, i)

)n

i=1
= (di)

n
i=1, thus Ψn is uniformly

distributed on the set of urn configurations with this type vector. Xn can be
generated from Ψn via (33). To determine the distribution of X[k]

n we only
need to know the positions of the balls of color i ∈ [k]. We paint the rest of
the balls “grey”. Let

m[k] :=
1
2

∑

i,j

A(i, j), d[k] :=
k∑

i=1

di, mg := m − d[k] + m[k].

Thus mg denotes the number of edges of the multigraph spanned by grey
vertices.

In order to prove (44) = (45) we first give an explicit formula for (44).
The number of grey balls is 2m − d[k]. The number of all urn configurations
with type vector (d1, . . . , dk, 2m − d[k]) is

(49)
(2m)!

(
∏k

i=1 di!) · (2m − d[k])!

The number of urn configurations with type vector (d1, . . . , dk,2m − d[k])
for which X[k]

n = A is

(50)
m! · 2m−mg −

Pk
i=1 A∗(i,i)

(
∏

i�j A∗(i, j)!) · (
∏k

i=1

(
di − d(A, i)

)
!) · mg!

.

Thus (44) = (50)
(49) . Our aim is to prove (50)

(49) = (45): after dividing both sides

of this equality by
∏

i�j
1

A∗(i,j)! · 2−
P

i A∗(i,i) we only need to prove

m! · (
∏k

i=1 di!) · (2m − d[k])! · 2m−mg

∏k
i=1

(
di − d(A, i)

)
! · mg! · (2m)!

(51)

= exp

(
−1
2ρn

( k∑

i=1

zi

)2
)

·
k∏

i=1

(zi)
d(A,i) · ρ

−m[k]
n + Err (n,A, ε).(52)

Now we rewrite (51):

(51) =
( k∏

i=1

d(A,i)∏

l=1

(
di − d(A, i) + l

))
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·
( m−mg∏

l=1

(mg + l)
)

· 2m−mg

∏d[k]

l=1 (2m − d[k] + l)

=
( m−mg∏

l=1

2mg + 2l
2m − d[k] + l

)
·
∏k

i=1

∏d(A,i)
l=1

(
di − d(A, i) + l

)

∏m[k]

l=1 (2m − m[k] + l)
.(53)

We approximate various terms that appear on the right hand side of (53)
using our assumptions (43):

m−mg∏

l=1

2mg + 2l
2m − d[k] + l

=
( d[k]∏

l=1

2m − 2l
2m − l

)
·
(

1 +
1
n

Err (A, ε)
)

(54)

m[k]∏

l=1

(2m − m[k] + l) = (2m)m[k] ·
(

1 +
1
n2

Err (A, ε)
)

(55)

where 0 �
∣∣Err (A, ε)

∣∣ < +∞ is independent of n.
Let d∗ = min

{
di : i ∈ [k], d(A, i) > 0

}
. We consider two cases sepa-

rately: If d∗ � n1/2 then using (43) it is easy to see that (53) � Err (A,ε)n−1/2

and also p
(
A, (zi)

k
i=1, ρn

)
� Err (A, ε)n−1/2, so (51) = (52) holds when

d∗ � n1/2. If d∗ > n1/2 then we have

(56)
k∏

i=1

d(A,i)∏

l=1

(di − d(A, i) + l) =
( k∏

i=1

(di)
d(A,i)

) (
1 +

1√
n

Err (A, ε)
)

.

Putting (54), (55) and (56) together we get

(53) =
( d[k]∏

l=1

2m − 2l
2m − l

)
·
∏k

i=1 (di)
d(A,i)

(2m)m[k]
·
(
1 + Err (n,A, ε)

)

(42)
=

( d[k]∏

l=1

1 − 2l
n2ρn

1 − l
n2ρn

)
·
∏k

i=1 (n · zi)
d(A,i)

(n2ρn)m[k]
·
(
1 + Err (n,A, ε)

)

(43)
= exp

(
−1
2ρn

( k∑

i=1

zi

)2
)

·
k∏

i=1

(zi)
d(A,i) · ρ

−m[k]
n + Err (n,A, ε).

This completes the proof of (51) = (52). �
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Proof of Theorem 1. Given Xn for every n ∈ N let us define the
vertex exchangeable random adjacency matrix X̃n in the following way: let
πn denote a uniformly distributed permutation πn : [n] ↪→ [n], independent
from Xn. Let

(57)
(
X̃n(i, j)

)n

i,j=1
:= (Xn

(
πn(i), πn(j))

n

i,j=1
.

Then X̃n is indeed vertex exchangeable, moreover P
(
t=(F, X̃n) = t=(F,Xn)

)

= 1 for every F ∈ M, so Xn
p−→ W is equivalent to X̃n

p−→ W , which is in
turn equivalent to X̃n

d−→ XW by Lemma 3.1. By (57) the conditions (11)
and (12) are equivalent to the uniform integrability of

(
X̃n(1, 2)

) ∞
n=1

and(
X̃n(1,1)

) ∞
n=1

, respectively, thus we can apply Lemma 3.2(ii) to deduce that
for all k ∈ N

(58)
(

1
n

d
(
X̃n, i

))k

i=1

d−→
(
D(XW , i)

)k

i=1
.

Note that by (6), Definition 3.1 and (22) we have that
(
D(XW , i)

)k

i=1
are i.i.d. with probability distribution function FW (z).

Now we are going to prove that 2m(X̃n)
n2

p−→ ρ(W ). In order to do so we
define the truncated adjacency matrix X̃l

n by X̃ l
n(i, j) := min

{
X̃n(i, j), l

}

and the truncated multigraphon W l which satisfies
(
XW l(i, j)

) ∞
i,j=1

∼ (min
{

XW (i, j), l
}
)

∞
i,j=1

.

Now we show that if we fix l ∈ N then 2m(X̃l
n)

n2

p−→ ρ(W l). The equations
marked by (∗) below are true by exchangeability:

lim
n→∞

E
(

1
n

n∑

i=1

1
n

d(X̃l
n, i)

)
(∗)
= lim

n→∞
E

(
1
n

d
(
X̃l

n, 1
))

(58)
= E

(
D(XW l , 1)

) (19)
= ρ(W l).

lim
n→∞

D2

(
1
n

n∑

i=1

1
n

d
(
X̃l

n, i
))

= lim
n→∞

1
n2

n∑

i,j=1

Cov
(

1
n

d
(
X̃l

n, i
)
,
1
n

d
(
X̃l

n, j
))

(∗)
= lim

n→∞

(
1
n
D2

(
1
n

d
(
X̃l

n, 1
)
)

+
n − 1

n
Cov

(
1
n

d
(
X̃l

n, 1
)
,
1
n

d
(
X̃l

n, 2
)))

(58)
= 0.
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Having established ∀ l : 2m(X̃l
n)

n2

p−→ ρ(W l), the relation 2m(X̃n)
n2

p−→ ρ(W ) fol-
lows from

lim
l→∞

ρ(W l) = ρ(W ),

∀ ε > 0 : lim
l→∞

sup
n∈N

P

(
2m(X̃n)

n2
−

2m
(
X̃l

n

)

n2
� ε

)
(11), (12)

= 0,

and the ε/3-argument. So conditions (37) and (38) are satisfied, thus we can
apply Lemma 4.1 to show that X̃n

p−→ Ŵ , where Ŵ is of the form (13). �

Proof of Theorem 2. The distribution (14) arises from the Pólya
Ψn

2m urn model (36) with 2m balls and n colors via (33). The distribu-
tion (36) is ball and color exchangeable, so Xn is vertex exchangeable and
edge stationary. If we want to prove Theorem 2 then by Lemma 4.1 we only
need to show that (38) holds for all k ∈ N where (Zi)i∈N

are i.i.d. with den-
sity function g(x, κ, κ

ρ ) (see (10)). We may use the method of moments to
prove convergence in distribution, since the Gamma distribution is uniquely
determined by its moments. Thus we need to show that if ν1, . . . , νk ∈ N

then

lim
n→∞

E
( k∏

i=1

(
1
n

d(Ψn
2m(n), i)

)νi
)

= E
( k∏

i=1

Zνi

i

)

=
k∏

i=1

(ρ

κ

)νi

·
νi∏

j=1

(κ + j − 1).

Fix k and νi, i ∈ [k]. Let ν =
∑k

i=1 νi and denote by ψ a particular element
of [k][ν] with type vector (ν1, . . . , νk). By the construction of the Pólya-Ψn

2m
distribution we have

P
(

∀ l ∈ [ν] : Ψn
2m(l) = ψ(l)

)
=

∏k
i=1

∏νi

j=1(κ + j − 1)
∏ν

j=1(κn + j − 1)
= O(n−ν)

Denote ν :=
{

(i, j) : i ∈ [k], j ∈ [νi]
}

. The number of functions f : ν → [2m]
with

∣∣ R(f)
∣∣ = N is O(

(
2m(n)

)N
) = O(n2N ) if 1 � N � ν.

lim
n→∞

E

(
k∏

i=1

(
1
n

d(Ψn
2m(n), i)

)νi

)
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= lim
n→∞

1
nν

∑

f : ν→[2m]

P(∀ (i, j) ∈ ν : Ψn
2m(n)

(
f(i, j)

)
= i)

= lim
n→∞

1
nν

∑

f : ν↪→[2m]

P(∀ (i, j) ∈ ν : Ψn
2m(n)

(
f(i, j)

)
= i)

+ lim
n→∞

1
nν

ν−1∑

N=1

O
(
n2N

)
O

(
n−N

)

(∗)
= lim

n→∞

∏ν
k=1

(
2m(n) − k + 1

)

nν
P

(
∀ l ∈ [ν] : Ψn

2m(l) = ψ(l)
)

(37)
=

k∏

i=1

(ρ

κ

)νi

·
νi∏

j=1

(κ + j − 1).

The equation (∗) holds true by ball exchangeability. �
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