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INTRODUCTION

Sustainable and resilient agriculture with a low impact on the environment is pivotal to ensure
food security for a growing global population. This is of particular importance faced with
the unprecedented challenge of climate change (FAO., 2017) for crop production. Sustainable
intensification or currently rather the conservation of yield (Rosenqvist et al., 2019) requires
the consideration of the entire crop production pipeline, ranging from breeding and identifying
varieties adapted to specific environmental conditions, to improving agricultural landmanagement
(agriculture 5.0, Saiz-Rubio and Rovira-Más, 2020). An essential aspect of these efforts is the
quantitative assessment of the plant traits contributing to increased, reliable production and the
efficient use of resources, such as nutrients or water. Faced climate change and the appearance of
more frequent and intense stress events, there is a need for resilient breeding lines, as summarized
in the review of Razzaq et al. (2021). Besides drought stress, heat stress is expected to have a major
negative impact on yield in Europe (Semenov and Shewry, 2011).

In this context, two areas of research, plant phenotyping and remote sensing, are becoming
increasingly important. Field phenotyping refers to a quantitative description of a plant’s
phenotype—i.e., its anatomical, ontogenetical, physiological, and biochemical properties—in its
natural environment (Walter et al., 2017). Remote sensing in the agricultural context is the
observation of vegetation by a remote device and the retrieval of its qualitative or quantitative
properties. While remote sensing and plant phenotyping researchers are both interested in the
interaction of plant growth with the environment (including management practices), the two
fields have a different focus. Traditionally, remote sensing is used to estimate spatial trends across
the landscape, while plant phenotyping aims to remove spatial effects in their data in order to
investigate the genetic effects of different plant varieties in response to the prevailing environmental
conditions. Nevertheless, both disciplines are united in their efforts to estimate plant traits and
explain apparent differences in the phenotype precisely (Aasen and Herrera, (under review)).

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.749374
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.749374&domain=pdf&date_stamp=2021-10-22
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:miriam.machwitz@list.lu
https://doi.org/10.3389/fpls.2021.749374
https://www.frontiersin.org/articles/10.3389/fpls.2021.749374/full


Machwitz et al. Bridging the Gap Between Remote Sensing and Plant Phenotyping

Driven by the need for new concepts in sustainable
agriculture, an increased use of remote sensing approaches in
field phenotyping and vice versa has been observed over the
last decade. On one hand, field phenotyping has increasingly
deployed imaging instruments traditionally used in remote
sensing (Johansen et al., 2019) to meet the need for increased
throughput in field phenotyping (Araus and Cairns, 2014). The
analysis of remote sensing data by non-experts without full
knowledge of the sensing principles hampers the exploitation of
the full potential of the methods at hand. On the other hand,
remote sensing scientists have started to estimate plant traits
and analyze data from breeding experiments (Yang et al., 2017).
However, their findings are often not interpreted in light of the
physiological processes that shape the relation of a crop within
the environment. Additionally, there are differences in input
data, acquisition protocols, plant trait definitions, and retrieval
models that hinder close cooperation between the two disciplines
(Figure 1).

Facilitating exchange between the two disciplines offers
possibilities to trigger cross-fertilization: An improved
understanding of the target traits will allow the remote sensing
community to develop more precise and ultimately more useful
tools. Likewise, establishing state-of-the-art remote sensing
methods as plant phenotyping tools will allow an improved
understanding and modeling of crops in dynamic environments.
Ultimately, this exchange has the potential to stimulate growth
in both communities and their interconnection may lead to
new developments toward more sustainable agriculture. There
is a need for multiple stress-resilient breeding lines combined
with a need for multi-site and multi-regional testing (Rosenqvist
et al., 2019). Breeders and plant phenotyping need to provide
breeding lines that are able to cope with unprecedented stress
conditions. To target sustainable and resilient agriculture, we
propose that remote sensing should develop toward near-real
time monitoring of certain traits on large scales under several
environmental conditions (climate, soil etc.) as a global multi-site
experiment. The current work on real-time observations (for
example, special issue of MPDI remote sensing in 2021: “Near
Real-Time (NRT) Agriculture Monitoring” https://www.mdpi.
com/journal/remotesensing/special_issues/NRT_agriculture_
monitoring) offers, on the one hand, the possibility to give timely
management advice, which again could be optimized through
joint research between the two communities. On the other
hand, the remotely sensed information on plant traits and their
actual condition could be directed back to field phenotyping
experts to optimize the breeding lines with respect to certain
environmental constraints. A similar concept for forests was
proposed by Dungey et al. (2018).

We initiated a discussion betweenmore than 130 experts from
the remote sensing and plant phenotyping community in the
context of a joint workshop (https://www.senseco.eu/working-
groups/wg3-sensor-synergies/) of the COST action SENSECO
“Optical synergies for spatiotemporal SENsing of Scalable
ECOphysiological traits” (https://www.senseco.eu/) and the
ESFRI plant phenotyping infrastructure EMPHASIS “European
Infrastructure for Plant Phenotyping” (https://emphasis.plant-

phenotyping.eu/). During the discussion, we identified the
following key areas for future collaboration:

(i) transferring and harmonizing knowledge on protocols,
methods, and data between the two communities;

(ii) optimizing quantitative trait estimation by using new
sensors, and integrating data from different spectral
domains and spatial resolutions, preferably in real-time;

(iii) linking existing and new modeling approaches and recent
developments in artificial intelligence to bridge different
observation scales through space and time.

DATA EXCHANGE AND PROTOCOL
STANDARDIZATION

Plant phenotyping and remote sensing collect a large
amount of data, including spectral observations and
biochemical/biophysical plant traits. However, the exchange
of these data requires the standardization of measurement
protocols and harmonization of measurement procedures.
Thus, a broad exchange of measuring concepts for plant trait
assessments should be initiated, complemented by an open
data policy allowing for the broader use and re-use of data
(Fiorani and Schurr, 2013; Reynolds et al., 2019). In particular,
plant phenotyping scientists are developing a large number of
solutions to address a diversity of crops, traits, and treatments.
Since there is no one-size-fits-all solution, existing hardware
and software solutions often need to be adapted, even for the
same traits of interests in different crops. This has led to both a
“Phenotyping Dilemma” as stated by Rosenqvist et al. (2019) and
the need for harmonization. This was addressed within COST
action FA1306, “The quest for tolerant varieties – phenotyping
at plant and cellular level” (Phenomen-All) and the EU-funded
projects EPPN and EPPN2020 leading to the ESFRI research
infrastructure entitled EMPHASIS. Plant phenotyping will never
be able to measure all genotypes under all relevant conditions,
thus, further integration of the community and the use and
development of existing synergies, such as those between remote
sensing and phenotyping, are key to achieving the required
impact of improved plant production in times of climate change.
It is therefore vital to develop FAIR data approaches (Wilkinson
et al., 2016) that link the communities, and sharing phenotyping
data (Danilevicz et al., 2021) will benefit plant and crop sciences
at large.

In remote sensing, standards for metadata collection
by scientists often mainly regard information on sensor
performance or geolocation, while auxiliary data about
vegetation is often limited to the traits in focus. But, plant
status is only a small function of just one individual co-variable
and requires additional information on the biotic and abiotic
environment and genetic makeup of the plant, thus, such an
approach may result in an oversimplified interpretation of the
remote sensing signal (Galieni et al., 2021). In contrast, explicit
geolocation is essential to link the signal to the field observation
and needs to be considered in field phenotyping data collection.
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FIGURE 1 | A closer collaboration of remote sensing and plant phenotyping has the potential to foster research for a sustainable and resilient agriculture. Common

topics between the two communities (gray arrows) have been identified for collaboration and cutting-edge research. In the left and right columns, differences between

remote sensing and plant phenotyping are listed regarding the three topics. In blue, the potential for future collaboration is indicated.

The phenotyping community has developed the Minimum
Information About a Plant Phenotyping Experiment (MIAPPE)
as a bottom-up standard of metadata required to adequately
describe a plant phenotyping experiment with well-defined
data models and make the data reusable (Papoutsoglou et al.,
2020). Such standards or developed recommendations and
guidelines (Manfreda et al., 2018; Tmušić et al., 2020), like
in the COST action CA16219 Harmonious (Harmonization
of UAS techniques for agricultural and natural ecosystems
monitoring, https://www.cost.eu/actions/CA16219/ and https:/
/www.costharmonious.eu/), essentially represent a checklist of
how to describe an experiment and could be adapted and
extended by including the considerations of both communities
to improve the interpretability, reusability, and transferability of
data. This would also allow the exchange of data between the
two communities and extrapolate results from one experiment to
another. In particular, the phenotyping community could benefit
from traits estimated within the landscape by remote sensing,
while the remote sensing community could use data from the

field phenotyping community to improve model development
(c.f. section New Sensors for Quantitative Trait Estimation From
the Plot and the Ecosystem Scale).

NEW SENSORS FOR QUANTITATIVE TRAIT
ESTIMATION FROM THE PLOT AND THE
ECOSYSTEM SCALE

The availability of remote sensing data has increased significantly
over the last decade. Satellites with a high temporal, spectral, and
spatial resolution like the Sentinel-2 sensors or Hyperspectral
Precursor and Application Mission (PRISMA) allow for
new or improved agricultural applications. Moreover, the
advent of nano-satellites further improves revisit times and
spatial resolution of satellite systems. Developments in sensor
technology, measurement procedures, and data correction
workflows have matured UAVs to reliable quantitative remote
sensing systems (Aasen et al., 2018) and initiated a new era in

Frontiers in Plant Science | www.frontiersin.org 3 October 2021 | Volume 12 | Article 749374

https://www.cost.eu/actions/CA16219/
https://www.costharmonious.eu/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Machwitz et al. Bridging the Gap Between Remote Sensing and Plant Phenotyping

the remote sensing of crops (Zarco-Tejada, 2008; Herrmann and
Berger, 2021). Today, a variety of (hyper) spectral, thermal, sun-
induced fluorescence, and 3D/LiDAR instruments are available
for UAVs. Consequently, they have also become a common tool
for (high-throughput) field phenotyping (Yang et al., 2017) and
have been proposed as a “game-changer in precision agriculture”
(Maes and Steppe, 2019). Traits such as plant height/growth,
pigments, canopy cover, and temperature, which are highly
relevant for the vitality and performance of crops (Tattaris
et al., 2016), can now be derived from UAV remote sensing
data (Zarco-Tejada et al., 2012; Aasen and Bareth, 2018; Roth
et al., 2018; Perich et al., 2020). Moreover, imaging spectroscopy
from UAVs is able to capture data with a viewing geometry
closer to the hemispherical-directional reflectance factors of
satellite products (Aasen and Bolten, 2018) and thus may bridge
the gap between field phenotyping experiments and landscape
monitoring (Aasen and Herrera, (under review)). However, UAV
flights need careful planning, consideration of regulations, and
realistic estimation of manpower (Reynolds et al., 2019).

Another example where we expect that the increasing
availability of UAV-based sensors will bridge the spatial
gap for a better understanding of plant mechanisms is the
assessment of photosynthesis (Quirós-Vargas et al., 2020). The
analysis can be performed based on solar-induced fluorescence
(SIF) in combination with established hyperspectral indices
like the photochemical reflectance index (PRI) from remote
sensing platforms (Rascher et al., 2015). SIF imaging provides
information that could be used to identify genotypes that
maintain a high level of photosynthetic activity under stress
conditions. With the start of the FLEX mission (https://earth.esa.
int/eogateway/missions/flex), global SIF data will be available to
test stress resilience under varying environmental conditions, as
stated in the introduction.

Furthermore, a combination of large-scale information with
plant phenotyping, using high spatial and temporal trait
measurement may help to identify different stress factors, in
order to assess the stress stage and underlying mechanisms. For
recent examples related to the identification of genotypes capable
of tolerating biotic and abiotic stress, see recent reviews (Araus
et al., 2018; Watt et al., 2020).

Thanks to the flexibility of remote sensing systems, the
dynamic developments of plant traits can be assessed by
standardized measurements with little effort. However, for more
complex traits, such as the identification of biotic and abiotic
crop stress, the selection of the most suitable sensor combination
is challenging (Galieni et al., 2021; Berger et al., (in prep)).
Nevertheless, remote sensing platforms such as UAVs and micro-
satellites are overcoming traditional trade-offs between spatial,
temporal, and spectral resolutions. Moreover, applying low-
altitude and close-range remote sensing methods in combination
with radiative transfer models (RTMs, c.f. section Bridging
Observation Scales With Physically-Based Radiative Transfer
Models and Machine Learning for Improved Trait Estimation)
for field phenotyping allows several of the insights gained to be
scaled to the ecosystem where they can be used for more precise
field management (Velumani et al., 2021). In conclusion, the
combined usage of different sensors may lead to an improved

understanding of the actual carbon and water fluxes and to
finding cultivars with higher resilience.

BRIDGING OBSERVATION SCALES WITH
PHYSICALLY-BASED RADIATIVE
TRANSFER MODELS AND MACHINE
LEARNING FOR IMPROVED TRAIT
ESTIMATION

In field phenotyping studies, parametric regression approaches
are typically applied to link vegetation indices derived from
multispectral data with plant traits. These models are easy to
implement and require little expert knowledge. However, large
datasets are needed for calibration and validation and still face
the limited transferability of the establishedmodels to other crops
and different environmental conditions. Moreover, especially
when hyperspectral data are used, parametric regressions tend
to under-exploit the comprehensive information content hidden
in the contiguous spectral data (Verrelst et al., 2019). Therefore,
remote sensing scientists have developed radiative transfer
models (RTMs) simulating the interactions of the full optical
wavelength range with leaves and canopies based on physical
laws. Beyond the widely used one-dimensional (1-D) RTMs,
which are suitable for homogenous canopy architectures, three-
dimensional RTMs open up opportunities to analyze data
generated by high-throughput field phenotyping experiments
over row crops (Weiss et al., 2020). Thereby, remote sensing
could provide spatio-temporal information on specific functional
traits of interest. In combination with process modeling and
data assimilation strategies, remote sensing could help to
understand the processes in plants. One example in the context
of sustainable agriculture is the estimation of nitrogen (N) use
efficiency. Usually, N content is quantified indirectly from remote
sensing data via the chlorophyll content (Chlingaryan et al.,
2018) and very often still by a parametric regression based
on vegetation indices. However, the quantification of the N
content is challenging due to the unstable relation of N and
chlorophyll, the very subtle spectral signals of proteins, and the
dilution phenomenon, which often seems to be neglected in
N concentration studies (Bossung et al. (under review)). Novel
RTMs developed within the remote sensing community now
allow the use of more flexible non-parametric models in the
estimation N, which also take into account proteins and provide
uncertainty estimations (Berger et al., 2020). Better estimating
the plant N by combining information on plant physiology
from plant phenotyping with new hyperspectral sensors giving
a near-real-time estimation can provide input for optimized
management strategies to reduce N applications and thus protect
the water resources.

The integration of information from different spectral
domains is complex and challenging. Models and tools have
been developed to observe photochemistry and energy fluxes
of the canopy. These include for example the SCOPE model
where VIS/NIR data and fluorescence data are integrated (Van
der Tol et al., 2009) but are still not perfect and are not widely
used. Models and toolboxes are a big asset for the understanding
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of the interaction between vegetation and the environment.
Further developments and interdisciplinary work are desirable
to optimally combine the information from different sensors to
fully describe the different traits, their interactions and the linked
environmental triggers.

To obtain functional traits or to indirectly assess crop stress
from the diversity of spectral data, a modeling framework
should be defined. We propose the use of (shallow) machine
learning (ML) regression algorithms combined with RTMs, such
as SCOPE coupled with leaf optical properties models (Féret
et al., 2021). Within these hybrid methods, training data sets
are generated by the RTM and are then learned by the ML
algorithm to build the specific retrieval model. Also, deep
learning algorithms could be employed, in particular when a
large number of different data sets are available and to better
describe the highly non-linear relationship between remotely
sensed signals and traits of interest. As an additional feature, the
quality of training data can be enhanced by implementing active
learning heuristics, which recently achieved outstanding results
in the estimation of specific traits (Berger et al., 2021; Verrelst
et al., 2021). All in all, these hybrid workflows may become a
cornerstone for precision agriculture and an essential element
for the development of new breeding strategies (Lammerts van
Bueren and Struik, 2017).

CONCLUSIONS AND FUTURE
PERSPECTIVES

Plant phenotyping and remote sensing work with
complementary measurements and concepts, but address
the same challenge – namely, the quest for a more sustainable
agriculture. Facilitating exchange between the two disciplines
offers possibilities to trigger cross-fertilization: An improved
understanding of target traits will allow the remote sensing
community to develop more focused and precise tools. Likewise,
establishing state-of-the-art remote sensing methods as plant
phenotyping tools will allow improved understanding and
modeling of crops in dynamic environments.

Working on harmonization and implementing open data
standards allow the use and re-use of the data for a broader
community. Further, bridging scales and concepts offers unique
and promising approaches to address major long-term challenges
identified both on national and large-scale levels: food security
in changing climate conditions, resilient agriculture countering
land degradation and erosion, sustaining biodiversity and
ecosystem functions, and agro-ecological transition. UAVs are

one important common tool that is bridging the technical gap
between the two research domains. A huge challenge hereby
is the careful (not only short-term price-driven) selection of
sensors and appropriate spectral domains to obtain a maximum
of information. Along with extensive trait measurements, remote
sensing and crop growth models can be advanced, increasing our
understanding of plant performance in a dynamic environment.
This would result in remote sensing techniques becoming more
reliable, increasing their usefulness for practical applications in
precision farming.

We anticipate that there is a need to further stimulate
cooperation and we advocate initiating projects and network
activities between the remote sensing and plant phenotyping
communities. Ultimately, this exchange has the potential to
stimulate growth in both communities and their interconnection
may lead to new developments toward more sustainable
agriculture. These interactions may substantially contribute to
the European strategic research agenda and the relevant topics
are contributing to prominent parts of the EUGreenDeal (“From
farm to fork” and “EU Biodiversity Strategy”).
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