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Abstract 
Structural systems are responsible for a significant portion of embodied carbon emissions in buildings. 
A potential path to increase sustainability is to integrate circular economy principles in structural de-
sign, which advocate for prioritizing the reuse of structural materials to extend their service life, limiting 
their physical transformation to locational and functional changes. In this way, structural projects of the 
past can not only serve as an inspiration for the future, but the material itself can also be reappropriated. 
Recently, computational approaches for material reuse have gained traction. This paper extends previ-
ous work by comparing several algorithmic formulations for reuse-driven design, introducing a new 
Grasshopper-based tool that implements them, and demonstrating their application on a case study. 

1 Introduction 
The Intergovernmental Panel on Climate Change (IPCC) states that the building sector needs to be 
“zero-carbon” by 2050 to meet the targets set by the Climate Agreement and avoid extreme climate 
catastrophes. The construction sector, accounting for 13% of the world’s GDP [1], uses 50% of all 
materials [2], [3], generates 36% of the waste [4], and emits up to 12% of global greenhouse gas emis-
sions for building material extraction, manufacturing, and construction, counting only Europe [5]. This 
is due to the sector’s linear model, which extracts, produces, uses, and disposes of building materials 
and resources. To remediate this detrimental condition, worldwide, a transition to a circular repair-
reuse-recycling model is urgently needed in today’s construction sector [6], [7]. A circular model would 
extract maximum value from building materials by extending their service life or reusing them at the 
end of their service life as new resources, while minimizing their environmental impact. Due to rapid 
urbanization, it has become more attractive to demolish buildings and rebuild new ones rather than 
deconstructing them and reusing their materials. Global implementation on a large scale of a circular 
model in the construction sector has not yet been successful. The fragmented supply chain in the Ar-
chitecture, Engineering and Construction (AEC) sector prevents both the broad application of circular 
strategies in construction practice. This could be addressed through the uptake of digital tools such as 
computational design tools and databanks of materials. This paper proposes new algorithms and design 
methods that enable the use of buildings instead of the earth as material mines and depots. 

Building on recent developments in computational approaches for helping designers reuse materials 
[8], [9], this paper considers the design of structures built with reused materials. The proposed method 
assesses the capacity of a newly generated design to use materials from a stock of available materials 
from reuse. To test and validate the algorithm and method, the linear timber structure elements of a 
conventional house are inventoried and reused in the design of geodesic domes (Fig. 1), which are clad 
and used as greenhouses. This illustrates how algorithmic matching of reused materials can be inte-
grated into the design workflow of architects and engineers through quick computational feedback. The 
case study in this paper uses timber elements as working with this material is accessible to most con-
structors with relatively simple tools. 

2 Material reuse approaches 
Many inspiring projects have illustrated the feasibility of material reuse in various contexts: the reuse 
of 180 pieces of bent glass from the Centre Pompidou's façade in Maximum's architectural project in 
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Paris, France [10]; the use of waste material as lost formwork in filler slabs such as the 2000 Wall 
House project by Anupama Kundoo in India [11]; to name a few. 

 

  
 

Fig. 1 A geodesic dome example built with renewable materials (Credit: N. Petit-Barreau, Anku). 

2.1 Computational methods for material reuse 
Despite these contemporary examples, material reuse is not the norm in today’s design and construction 
practices. This is partly due to the added challenges that working with existing, often irregular material 
resources bring. Instead of designing in an unconstrained manner with an assumption of infinite mate-
rial supply, architects and engineers who wish to reuse existing material must devote time, creativity, 
and flexibility to devising form and space with a geometrically and structurally constrained kit of parts 
of limited size. These challenges may be surmountable in boutique projects, but are hard to address at 
scale in everyday construction. 

One response to these challenges is the use of computational methods, which can use automation 
to assist in designing with a fixed material inventory. Already common in architectural design for non-
reuse cases, computational design methods such as parametric design space exploration and rule- or 
grammar-based design approaches can be productive generative tools for material reuse. While there 
are a variety of methods used in previous literature and discussed in this section, there are two funda-
mental design philosophies.  

The first, bottom-up design, starts with available material objects and algorithmically aggregates 
them into architectural assemblies. Computationally, it has its origins in shape grammars [12] and more 
recent work in making grammars [13], and uses predefined rules to automate and control the process 
of aggregation. This approach has the advantage of a guaranteed geometric fit of the existing material 
into the new design, and more naturally follows a non-computational physical workflow, e.g. building 
with blocks. The challenge of this approach is that it can be very hard to control the resulting design, 
and to meet any additional design intentions, such as overall formal, spatial, and structural goals. This 
approach is also more easily adapted to inventories of self-similar parts, e.g. dimensional lumber, than 
truly diverse material stocks that are of interest in reuse. Examples of this method include [14]–[16]. 

The second philosophy, followed in this paper and others before it, is top-down design. This ap-
proach has its roots in conventional parametric design and optimization, and starts with a “target” de-
sign concept model. An inventory of available construction elements is algorithmically searched, and 
parts are selected and matched to the target, ideally in terms of both geometrical fit and structural ca-
pacity. Typically, the matching is not perfect, and the inventory elements must be processed in some 
way to be used in the final construction. Various algorithms have been used to conduct and optimize 
this matching process (and minimize processing and waste), as shown in Table 1. Heuristic algorithms 
such as Greedy Search are simpler to implement but not guaranteed to result in the best match. More 
rigorously formulated optimization algorithms can be slow. 

If the matching process is fast enough, it can be used within or in addition to other design consid-
erations, such as overall form. Then, the overall design can be modified or optimized to most closely 
fit the available material inventory. This has both practical and conceptual appeal as it has a similar 
philosophy to traditional form-finding, which attempts to minimize material mass; rather than imposing 
their abstract formal ideas on architectural problems, designers can discover geometries that meet im-
portant performance goals. In previous work, this has been demonstrated in [9], [17], [18]. 



Conceptual Design of Structures 2021 

  
3 

 

 

Table 1 Summary of previous work in computational assignment optimization of reclaimed struc-
tural elements. *N/A means that structural capacities of the inventory elements are not con-
sidered in the matching. 

Reference Structural appli-
cation 

Problem Geometric 
and structural 
matching 

Algorithm 

Fujitani and 
Fujii 2000 
[19] 

Frames with lin-
ear elements 

Inventory matching with 
structural mechanics 

Separated Genetic Algo-
rithm 

Mollica and 
Self 2017 
[20] 

Arched truss with 
tree fork connect-
ors 

Inventory matching *N/A Greedy Search 

Bukauskas 
et al. 2017 
[22] 

Trusses with lin-
ear elements 

Inventory matching with 
structural mechanics 
and cutting stock opti-
mization 

Separated Greedy Search 

Brütting et 
al. 2018[17] 

Trusses with lin-
ear elements 

Inventory matching with 
structural mechanics 

Simultaneous  Mixed Integer 
Linear Pro-
gramming 
(MILP) 

Lokhand-
wala et al. 
2018 [24] 

Funicular shells 
with planar polyg-
onal panels 

Inventory matching (2D 
polygonal packing) 

N/A Dynamic Re-
laxation 

Larsson et 
al. 2019 [21] 

Interlocking grid 
shells with linear 
elements 

Inventory matching Separated Hungarian  
Algorithm 

Allner et al. 
2020 [14] 

Grid shells with 
tree fork connect-
ors 

Inventory matching Separated Greedy Search 

Brütting et 
al. 2020 [8], 
[23] 

Trusses/frames 
with linear ele-
ments 

Inventory matching with 
structural mechanics 
and cutting stock opti-
mization 

Simultaneous  Mixed Integer 
Linear Pro-
gramming 
(MILP) 

Amtsberg et 
al. 2021 [9] 

Grid shells with 
tree fork connect-
ors 

Inventory matching with 
implicit structural me-
chanics 

N/A Hungarian  
Algorithm 

this paper Grid shells with 
linear elements 

Inventory matching with 
structural mechanics 

Separated Hungarian 
Algorithm 

2.2 Research gap 
This paper extends previous work by introducing a new computational approach to design for material 
reuse in a flexible, interactive, designer-driven workflow. Central to this approach is the use of the 
classical Hungarian Algorithm, first introduced in 1955 [25], which has only been applied to the mate-
rial reuse problem twice before in previous literature [21], [9]. This paper is the first to demonstrate the 
Hungarian Algorithm as implemented in a free, open-source tool for Grasshopper, which is used to-
gether with recently introduced tools for design space exploration, including sampling and single- and 
multi-objective optimization. Compared to previous work, which has formulated the reuse problem in 
mathematically rigorous but rigid ways, this paper proposes a modular approach that can be adjusted 
iteratively and quickly based on the evolving priorities of the design team. This workflow is tested and 
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analyzed in a case study design problem to further understanding of algorithmic material reuse for 
sustainable architecture. 

3 Methodology and case study 
The reuse approach proposed by this paper is summarized in Fig. 2. Source material is identified and 
digitally processed into an inventory, and a parameterized design model is created and linked to struc-
tural analysis to generate possible target designs with computed axial forces. A cost matrix is assembled 
that includes all possible pairwise matches between the inventory and target, considering both geometry 
(member length) and structural mechanics (tensile and compressive demand and capacity). The Hun-
garian Algorithm takes the cost matrix as an input and returns the optimal global match and a matching 
cost, which can be used with the parameterized design model in shape optimization and related ap-
proaches. More details of each of these steps are given below. 

 
Fig. 2 Material reuse workflow conceptual overview. 

3.1 Inventory processing and cost matrix computation 
The first input is a BIM-like 3D model of existing material to be reused. This paper focuses on reuse 
of linear timber elements, and assumes the stock material comes from a timber-framed house (discussed 
specifically in Section 4.1). Elements in the house model are digitally catalogued and processed so that 
they can be matched to a target design, using the process discussed in the following section. 

A cost matrix D of dimension a and b is computed by comparing each of the a elements in the target 
design to each of the b elements in the inventory. Each pairwise cost in the matrix is computed in 2D 
Euclidean space using the L2 norm; the two dimensions of this space correspond to member length and 
axial load capacity/demand. As shown in Fig. 3, the axial load capacity is computed specifically for 
each pair, dependent on the target element’s length and axial load sign (tension or compression). The 
load demands are computed by performing a 3D frame finite element analysis on the dome, with a 
fixed, pre-specified cross section and material property. A large penalty value is added to the cost meas-
ure when the inventory element is insufficient in length or capacity, as a way to ensure that matched 
elements are geometrically and structurally feasible. Other types of distance function, e.g. a weighted 
L2 norm can also be used here to address specific preference.  

Matching Cost

Hungarian 
Algorithm

Form Optimization

Inventory Processing

FEA

frequency

scale

ith design
 element

Cij

jthinventory 
element
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Fig. 3 Assembly of cost matrix for all pairwise combinations of inventory and target elements. 

3.2 Optimal matching algorithm 
Given a cost matrix D defined in the previous section, with a target elements and b inventory elements, 
the optimal matching problem can be formulated as follows: 

!"#!	%(') 	= * +"#	'"#
$,&

",#'(
 

,. .. ∑ 	'"#$
"'( ≤ 1, ∀	3	 ∈ {1, … , 8}  

							∑ 	'"#&
#'( = 1, ∀	"	 ∈ {1, … , :} 

																																						'"# ∈ {0, 1}, ∀	"	 ∈ {1, … , :}, 3	 ∈ {1, … , 8}  

(1) 

where the design variables are the entries Tij
 of the assignment matrix T, where Tij = 1 means in-

ventory element j is assigned to target element i, and 0 otherwise. The first inequality constraint ensures 
that each inventory element j can be assigned to at most one target element. The second equality con-
straint enforces that exactly one inventory element is used at target element i. The third constraint en-
forces that the assignment matrix is binary. The cost matrix D  encodes the cost of assigning element j 
to i, computed as described in Section 3.1. An optimal matching T* is the assignment that minimizes 
the total matching cost c(T). In this paper, the matching cost of a given design is defined to be c(T* ). 

The problem described in equation (1) is an unbalanced linear assignment problem, a well-studied 
combinatorial optimization problem in the literature and widely used in various practical contexts [26]. 
Because of the discrete nature of the problem, Greedy Search algorithms (also called best-first search 
algorithms) have been shown to be practically effective [22]. However, despite their simplicity of im-
plementation, the assignments obtained from the greedy search algorithms are generally not globally 
optimal. In this paper, the Hungarian Algorithm, a combinatorial optimization algorithm specifically 
developed for solving the linear assignment problem, is used to solve it to the global optimality in 
polynomial time [25]. 

The formulation in eq. (1) is an instance of integer linear programming (ILP) problems, and one 
can use more generic ILP machinery (e.g. the branch-and-bound algorithm [27]) to solve it. Moreover, 
eq. (1)’s constraint matrix is totally unimodular, a mathematical property that guarantees that the opti-
mal solution is integral even if the binary constraint is relaxed [27]. Thus, linear programming algo-
rithms designed for continuous problems (e.g. the simplex algorithm [26]) can be directly applied, re-
laxing the binary constraint, but still leads to integral solutions. In summary, the linear assignment 
problem is an integral linear programming problem with a very special mathematical structure, and 
algorithms with very different inner workings can be applied to solve it. In Table 2, empirical runtime 
data for these algorithmic options is presented. The Hungarian algorithm is about 60 times faster than 
the other two options. 

Table 2 Runtime for solving a linear assignment problem with randomly generated 100*500 cost 
matrix. ILP and LP solved using Gurobi [28] via JuMP.jl [29], Hungarian using Hungar-
ian.jl [30] with the Julia programming language [31]. All algorithms converge to the same 
optimal solution. 

Lj Lj

Li

Fy , A

aj bj

Aj

Fdem
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Fcap
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load

Fdem
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Li
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load
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Integer Linear Programming (ILP) Linear Programming (LP) Hungarian Algorithm 

312.5 ms 234.1 ms 5.2 ms 

Prior work in assignment optimization for material reuse uses a mixed-integer linear programming 
(MILP) formulation, additionally introducing continuous design variables for the structural nodal dis-
placements and member forces so that structural analysis and assignment are treated simultaneously 
[17], [23]. 

In contrast, the formulation presented in this paper relaxes the MILP formulation by removing the 
structural analysis and stock length constraint. This relaxation has its advantages and disadvantages. 
The relaxation turns a MILP problem into a linear assignment problem and thus enables very efficient 
algorithmic treatment (see Table 2). However, since the structural capacity and stock length constraints 
are encoded as penalties in the objective function, instead of enforced as hard constraints, global opti-
mality in terms of structural capacity is not guaranteed. Since the FEA is performed before the material 
matching with pre-assigned values, the load demand calculation is conservative, compared to the accu-
rate load demand calculation used in the simultaneous design and analysis framework enabled by the 
MILP formulation [23]. However, the lower-bound theory of plasticity (e.g. as discussed in [32]) guar-
antees that the results are structurally safe. This approach also trades in hard constraint enforcement. 
This is a classic trade-off in constrained optimization formulation, and its unconstrained counterpart 
with penalty. Furthermore, while it is easy to extend the MILP formulation to solve the cutting-stock 
problem where one inventory element can be partitioned into more than one structure members, the 
Hungarian algorithm can only compute a one-to-one assignment. Such constraints can limit the solution 
of equation (1) to be sub-optimal compared to the cutting-stock MILP formulation when reducing cut-
off waste [23]. Despite these disadvantages, this paper values the flexibility and independence of pro-
prietary MILP solvers to enable a rapid and interactive computational design experience. 

In order to facilitate the use of this research in both academia and industry, a Grasshopper script is 
made freely accessible online [33], released under the MIT license. For the matching part, a C# backend 
is provided that works out-of-the-box, using an existing open-source implementation [34]. To further 
improve the computational efficiency, an alternative matching backend is provided, written in the Julia 
programming language [31] using the Hungarian.jl package [30], which requires slightly more instal-
lation overhead but is at least an order of magnitude faster. 

3.3 Parametric design model and optimization 
In order to explore the full potential of the material inventory, a dome collection is parameterized in a 
flexible way that allows the number of domes, the radius of each dome, and the subdivision (called 
density in this paper) of each dome to vary, illustrated in Fig. 4. Geodesic dome designs are generated 
individually using the RhinoPolyhedra [35] Grasshopper plugin. Two NURBS curves are parameter-
ized by a set of control points; whose vertical positions become the main design variables. The curves 
are sampled n times along their lengths, where n is the total number of domes. The vertical coordinate 
of the sampled point is used to define the radius or density parameter for each dome. The total number 
of variables is 9 (4 control points on 2 curves, plus n). 

Several objective functions are possible to create a performance design space to be explored. The 
total matching cost, introduced in 3.2, is one important performance metric; a minimal matching cost 
means that surplus material in offcuts and structural capacity are minimized. As noted in 3.1, a one-
sided penalty term is used to enforce length and capacity constraints. A second related objective func-
tion is inventory utilization, which computes the amount of structural material used from the inventory 
compared to the total available. A maximal inventory utilization indicates that the inventory is being 
used as fully as possible, and offcuts and extra stock is minimized. If an invalid match is returned by 
the Hungarian Algorithm, the inventory utilization is 0. Finally, the total floor area of the domes is an 
important objective to be maximized, which reflects the functional value of the reused materials’ con-
figuration. Notice that while the first objective, the total matching cost, is computed by solving an inner 
optimization problem (equation (1)) using the Hungarian Algorithm, minimizing the matching cost or 
finding its trade-off with the other two objectives involves running an outer optimization loop using 
single-objective or multi-objective optimization machineries. 
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Fig. 4 Dome collection parametrization by mapping discretized points’ coordinate on NURBS 

curves parameterized by control points to dome geometry attributes. 

These objectives are used together and separately in a number of design space exploration experiments, 
using the free Design Space Exploration (DSE) plugin for Grasshopper [36], [37]. These include design 
space sampling, single-objective optimization, and multi-objective optimization. 

4 Results 
Using the methods described above, a series of design space exploration experiments can reveal a va-
riety of opportunities for material reuse, discussed briefly in this section. 

4.1 Inventory processing 
First, the inventory of available stock material is digitally processed from a BIM model (in this case, 
from a publicly available model of a wood-framed house [38]). Individual linear framing elements are 
catalogued and digitally “cut” lengthwise to create a stock of elements with square cross sections, based 
on the construction and connector logic of the geodesic dome greenhouses that inspire this research 
(Fig. 1). In total, the processed inventory contains 2371 elements, organized into 13 types (roof rafter, 
wall stud, etc.). The minimum, maximum, median, and mean lengths are 0.2 m, 10.6 m, 3 m, and 3.62 
m respectively. There are four different cross sections: 25 mm2, 50 mm2, 60 mm2, and 100 mm2. In this 
paper, all timber elements are assumed to have the same allowable strength and elastic modulus, 6.5 
MPa and 10500 MPa respectively. The inventory is summarized visually in Fig. 5. 

The large size of the inventory was found to make fast execution of the Hungarian algorithm chal-
lenging. Therefore, a decomposition strategy is implemented in which the original inventory is binned 
into two inventories of similar size and character in an automated process. The following results demon-
strate possible constructions with one-half of the total inventory from the original house; the other half 
of the inventory could be used to construct similar arrays of domes. 

 
Fig. 5 House to inventory processing by element type 

4.2 Multi-objective optimization 
The digital inventory is linked to the parameterized geodesic dome models described in 3.3, with opti-
mal assignment to elements in the domes executed by the Hungarian Algorithm and tool described in 
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3.2. This creates a design space with multiple objective functions: matching cost (minimize), inventory 
utilization (maximize), and floor area (maximize). Using the MOO tool from DSE, the bi-objective 
plots in Figs. 6 and 7 are created; each takes about one hour on a standard laptop. Intuitively, there are 
trade-offs between some of objectives: a minimal matching cost will produce fewer domes with less 
total inventory material, to reduce waste. Inventory utilization and floor area are intuitively correlated, 
but not necessarily perfectly so. Fig. 6 reveals the first trade-off, with Pareto optimal and near-Pareto 
optimal designs highlighted. There is an increased total matching cost when material coverage is max-
imized, and the best matching option uses only 2% of the inventory (Fig. 6, bottom-left). The best 
option to choose depends on how much the design team wants to avoid offcuts and oversizing, and 
whether the unused inventory can be easily stored for future use. In this paper, offcuts are not considered 
for additional matching, but could be re-added to the inventory to make them easier to reuse. 

 
Fig. 6 Bi-objective plot for matching cost (minimize) and inventory utilization (maximize) 

 

 
Fig. 7 Bi-objective plot for matching cost (minimize) and total floor area (maximize) 

In Fig. 7, a similar trend is observed: more than 10x more floor area is achievable compared to the 
optimal matching cost design, with an increase in matching cost of approximately 5x. If the design team 
has a preferred number of domes, that could also be used to choose among the Pareto-optimal options. 
Interestingly, similar amounts of floors area can be achieved with a wide variety of dome counts by 
using fewer large domes or more small domes. 
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4.3 Design space sampling and feasible region analysis 
Design space sampling techniques can also be used to assess the effects of the length and strength 
constraints on the matching process. Fig. 8 shows the results of a Latin hypercube sample across mul-
tiple numbers of domes of varying radii with fixed density (=1), in terms of matching cost and inventory 
utilization (achieved using the Sampler and Capture tools in DSE in about one hour). Infeasible designs 
have very high matching costs and inventory utilizations of 0. The sampling results show that 42% of 
the generated designs are infeasible due to elements with no possible matches; these designs typically 
have long or highly stressed members. This type of analysis can be used to reveal the overlap between 
a parametric design space and a material inventory, and the design space can be adjusted to contain 
more feasible options. In this case, the feasible rate is considered acceptable and still allows for many 
possible designs. 

  
Fig. 8 Visualization of feasible regions in design subspaces for the geodesic dome example. As 

the number of domes increases, there is less flexibility on radius (scale). 

4.4 Single objective optimization 
Finally, conventional single-objective optimization can be used to find a preferred configuration of 
domes, using Improved Stochastic Ranking Evolution Strategy (ISRES) as the global optimizer and 
Constrained Optimization BY Linear Approximations (COBYLA) as the local optimizer via the Radi-
cal tool in the DSE suite. The stochastic, global optimization method is used to find a region of interest 
in the non-convex design space, the local optimization is used to fine-tune the final result. The total 
runtime is about 10 minutes. The objective function is a combination of two of the previous metrics 
discussed: matching cost divided by floor area, which balances the need for waste minimization with 
the desire to generate as much functional space as possible. The number of domes is held constant in 
this case to reduce the challenges of discrete variables; Fig. 9 shows the result for a single dome, and 
Fig. 10 shows the results for 15 domes. The results show that high-quality and flexible results can be 
generated quickly within a design workflow. 

  
Fig. 9 Single dome matching; number of design elements: 65, matching cost: 197, floor area: 29.6, 

material coverage: 0.04, objective: 6.67 
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Fig. 10 Number of design elements: 975, matching cost: 4316, floor area: 317.3, material coverage: 

0.39, objective: 13.71 

5 Conclusions 
This paper reviews and compares algorithmic formulations for reuse-driven design in existing compu-
tational approaches, and introduces a new Grasshopper tool to implement them. Both flexible design 
space exploration and efficient optimization are obtained by the use of the Hungarian Algorithm in a 
nested loop workflow. For small problems, the material reuse efficiency is computed in real time; for 
larger problems in a few seconds. The potential of this approach and tool are demonstrated on a real 
world case study that will be explored through physical experiments in future work. 
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