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Prof. Dr. Andreas Kääb, University of Oslo, Norway

Prof. Dr. Devis Tuia, EPFL, Switzerland

2021





Abstract

Lake ice monitoring is a topical problem in remote sensing of the environment. The

continuous observation of lake ice phenology, including important events such as ice-on

and ice-off dates, along with the estimation of the corresponding long-term trends, pro-

vides useful cues on local and global climate, and hence, is beneficial for the research of

climate change and global warming. Consequently, the Global Climate Observing Sys-

tem has identified lake ice (as part of lakes) as an essential climate variable. Moreover,

monitoring lake ice is important for developing winter tourism, planning freshwater trans-

portation and hydro-power generation, and understanding the various physical, chemical,

and biological aspects of freshwater systems.

Existing methodologies for lake ice monitoring largely rely on a top-down knowledge-

driven design. This thesis approaches the problem from a different perspective. The

objective is to monitor lake ice in a data-driven manner, without the need for physics-

inspired models, by employing supervised, statistical machine learning. The spatio-

temporal extent of ice cover in lakes is estimated from satellite imagery and terrestrial

webcams. Lake ice detection is formulated as a pixel-wise semantic segmentation prob-

lem. The models are trained using ground truth generated by visual interpretation of

images from public webcams and optical satellites that monitor the target lakes.

This thesis investigates the potential of various single- and multi-sensor method-

ologies and presents a satellite sensor-fusion approach. First, classical machine learn-

ing methodologies such as Support Vector Machines are used to survey ice in small-to-

medium-sized mountain lakes from low-spatial resolution (250m–1000m) optical satellite

imagery such as MODIS and VIIRS. For higher-resolution SAR imagery from Sentinel-1,

we turn to deep, convolutional neural networks. Unlike optical satellite imagery, SAR

has the advantage that no data loss occurs due to clouds. In addition, the potential of

close-range webcam images (again in combination with convolutional networks) is studied

as a possible alternative to satellite imagery, particularly as a stand-alone data source to

monitor small lakes that cannot be easily observed using MODIS and VIIRS. Further-

more, a new dataset of webcam images with lake ice annotations is presented. Finally, a

deep data fusion methodology is proposed to fuse the information from both optical and

radar satellite sensors to improve the temporal resolution for lake ice monitoring.

Results are reported for four selected lakes located in the Swiss Alps: Sihl, Sils,

Silvaplana and St. Moritz. The primary focus lies on the analysis of two winters, 2016-17

and 2017-18. Moreover, a 20-winter time series using optical satellite imagery (MODIS)

is established to derive long-term lake ice trends. Detailed experiments are performed to

assess model performance, including spatial as well as temporal generalisation.
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Kurzzusammenfassung

Die Beobachtung der Seevereisung ist ein aktuelles Problem der Umweltfernerkundung.

Eine kontinuierliche Beobachtung der Eisphänologie, einschliesslich wichtiger Ereignisse

wie der ice-on und ice-off und deren langfristiger Trends, liefert wichtige Hinweise auf

das lokale und globale Klima und ist daher nützlich für die Erforschung des Klimawan-

dels. Folglich hat das Global Climate Observing System Seeeis (als Unterkategorie von

Lakes) als eine Essential Climate Variable definiert. Darüber hinaus ist die Überwachung

von Seeeis auch wichtig für den Wintertourismus, für die Planung von Wassertransport

und Wasserkraft, sowie für das Verständnis verschiedener physikalischer, chemischer und

biologischer Aspekte von Süsswassersystemen.

Bestehende Methoden für die Überwachung von Seeeis beruhen meist auf einem wis-

sensbasierten top-down-Ansatz. Die vorliegende Arbeit behandelt die Aufgabe aus einer

anderen Perspektive. Ziel ist es, Seeeis mit einem datengetriebenen Ansatz zu überwachen,

d.h., statistisches maschinelles Lernen einzusetzen, ohne auf physikalisch inspirierte Mo-

delle zurückzugreifen. Der räumliche und zeitliche Umfang der Eisdecke von Seen wird

aus Satellitenbildern und terrestrischen Webcams geschätzt. Die Erkennung von Seeeis

wird dabei als pixelweise semantische Segmentierung formuliert. Die entsprechenden Mo-

delle werden mit Referenzdaten trainiert, die durch visuelle Interpretation von Bildern

öffentlicher Webcams und von optischen Satellitenbildern gewonnen wurden.

Die Arbeit untersucht das Potenzial verschiedener Einzel- und Multisensor-Methoden

und stellt einen Ansatz zur Datenfusion von Satellitensensoren vor. Zunächst werden

klassische maschinelle Lernmethoden wie die Support Vector Machine verwendet, um

in optischen Satellitenbildern mit geringer räumlicher Auflösung (MODIS und VIIRS,

250m–1000m GSD) das Eis auf kleinen bis mittelgrossen Bergseen zu detektieren. Als al-

ternative zu optischen Satellitenbildern werden für die Analyse von SAR-Bildern (Sentinel-

1) tiefe convolutional neural networks eingesetzt, um Datenverlust durch Wolken zu ver-

hindern. Des Weiteren wird das Potential von Nahbereichsbildern öffentlicher Webcams

untersucht, insbesondere als Datenquelle zur Überwachung kleiner Seen, die mit MODIS

und VIIRS kaum beobachtbar sind (ebenfalls unter Einsatz von convolutional networks).

Dazu wird auch ein neuer Datensatz von Webcam-Bildern mit annotierten Referenzdaten

für die Seevereisung zur Verfügung gestellt. Schliesslich wird eine auf deep learning basie-

rende Methode zur Datenfusion vorgeschlagen, um die Informationen aus optischen und

Radarsensoren zu kombinieren, mit dem Ziel, die zeitliche Auflösung bei der Beobachtung

von Seeeis zu verbessern.

Es werden Ergebnisse für vier ausgewählte Seen in den Schweizer Alpen präsentiert:

Sihlsee, Silsersee, Silvaplanersee und St. Moritzersee. Das Hauptaugenmerk liegt auf der

Analyse von zwei Wintern, 2016/17 und 2017/18. Darüber hinaus wurde mit Hilfe von
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MODIS eine Zeitreihe über 20 Winter erstellt, um langfristige Vereisungstrends abzulei-

ten. Die Qualität der entwickelten Modelle wird in detaillierten Experimenten analysiert,

inklusive ihrer Fähigkeit zur räumlichen und zeitlichen Generalisierung.
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1 Introduction

1.1. Motivation

Climate change is one of the fundamental challenges that humanity encounters today.

Understanding the extent of environmental damage occurring due to climate change and

global warming is essential to devise efficient mitigation plans to protect the environment

for future generations. Lake ice is an important climate change indicator (
”
sentinel“).

Investigating the underlying patterns in lake freezing and thawing processes provides

valuable insights into the regional and global climate system. Hence, as part of Lakes,

the Global Climate Observing System (GCOS) recognised lake ice cover as an Essential

Climate Variable (ECV, https://gcos.wmo.int/en/essential-climate-variables/

lakes).

Past study (Hendricks Franssen and Scherrer, 2008) on eleven lakes (Biel, Murten,

Sempach, Hallwil, Baldegg, Sarnen, Aegeri, upper lake Zurich, Greifen, Pfaeffikon, Un-

tersee) in Switzerland (with an area of 3.2 - 39.8 km2 and altitude of 397 - 724 m) has

reported freezing in fewer lakes and for shorter periods. Earlier attempts to record and

document lake ice were largely independent and not necessarily coordinated and primarily

came from sporadic sources such as onshore observers, regional authorities, hobby enthu-

siasts etc. Additionally, the lack of large-scale automated monitoring capabilities limited

these observations to regional levels. Furthermore, such ground-based observations re-

duced significantly in the past few decades, which effectively increased the relevance of

satellite-based remote sensing of lake ice (Duguay et al., 2015). In this context, tak-

ing advantage of the available data sources to develop an automated visual monitoring

system can be helpful, especially to extend the lake ice documentation to country- or

world-level. This thesis proposes to use and integrate various sensors and methodologies

to move closer to this long-term goal.

Regarding the monitoring of lake ice, several initiatives are underway. An example

is the National Snow and Ice Data Centre (NSIDC) database in Colorado (https://ns

idc.org) that consolidates data on various Lake Ice Phenological (LIP) events for 865

lakes from across the globe. Several operational lake ice products already exist, such

as the Climate Change Initiative (CCI) Lake Ice Cover (LIC) product (Crétaux et al.,

2020), and Copernicus Lake Ice Extent (LIE) product (https://land.copernicus.

eu/global/products/lie). However, these dedicated lake ice products do not cover

the target lakes. The MODIS snow product (Hall and Riggs, 2016) and VIIRS snow

product (https://nsidc.org/sites/nsidc.org/files/technical-references/V

IIRS-snow-products-user-guide-final.pdf) are relevant too. All these products

differ from this work in that they primarily rely on various indices (NDSI, NDWI etc.)

and threshold-based algorithms. On the other hand, this thesis attempts to learn lake
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1. Introduction

ice monitoring from data by utilising contemporary developments in the field of artificial

intelligence. Though many studies estimated the spatio-temporal extent of ice in big

lakes across the globe, smaller mid-latitude mountain lakes that freeze have not been

sufficiently investigated. This thesis aims to fill that research void.

In the last few decades, satellite data analysis has made several breakthroughs for

environment monitoring applications. Machine Learning (ML) has also progressed in

recent decades, especially the advancements in Deep Learning (DL) in the past decade.

This thesis tries to leverage the best of these two worlds for the specific application of

lake ice monitoring. Several satellite data sources are explored, both optical and radar.

Additionally, this dissertation delves into the possibilities of non-satellite imagery such

as publicly available webcams for the geospatial data analysis task at hand.

The algorithms presented in this thesis have been developed as part of two projects

(2016-2020) funded by the Swiss Federal Office of Meteorology and Climatology Me-

teoSwiss in the framework of GCOS Switzerland. The first project was a feasibility study

that analysed and compared the effectiveness of optical satellite imagery, webcam data

and in-situ temperature measurements for monitoring lake ice (Tom et al., 2019). Target-

ing systematic and steady observation, the second project integrated data from several

sensors and methodologies for lake ice observation (Tom et al., 2020b). Inspired by these

projects, this thesis focuses on lake ice estimation over longer time periods in the past

and methods that will enable reliable and long time series monitoring in the future.

1.2. Research objectives and challenges

Though there have been some key research developments in the area of lake ice monitoring

in the past few decades in the form of various index- and threshold-based approaches,

the potential of artificial intelligence has not been explored much. The main goal of this

thesis is to fill this research gap by approaching the problem from a different perspective

by unfolding the possibilities of ML, especially DL and Convolutional Neural Networks

(CNNs). State-of-the-art approaches in computer vision and ML are applied to address

the remote sensing challenges of monitoring ice in selected lakes located in the Swiss Alps.

Three lakes (Sils, Silvaplana, St.Moritz) which freeze consistently every year are chosen

in addition to lake Sihl which freezes during most of the winters. The target is to detect

the spatio-temporal extent of ice cover and the crucial LIP events such as Freeze-Up Start

(FUS), Freeze-Up End (FUE), Break-Up Start (BUS), and Break-Up End (BUE), with

a focus on the integration of various input data and processing methods. The long-term

vision is to put forward an automated visual lake ice monitoring system that meets the

GCOS requirement: daily observation with an accuracy of +/-2 days in estimating the

critical LIP events. Regarding sensors, in addition to close-range webcams, the data from

optical and radar satellites are used. Besides developing various single-sensor approaches,

multi-modal satellite data fusion for robust lake ice observation is also proposed.

In essence, this thesis explores answers to the following overarching research ques-

tions:

1. What role can ML, including the recent advances in DL, play for single-and multi-

2



1.2. Research objectives and challenges

sensor lake ice observation?

2. What are the trade-offs between spatial and temporal resolution of satellite imagery

when monitoring ice in small- and medium-sized mountain lakes?

3. Can terrestrial webcams complement or even replace satellite observations, espe-

cially to survey ice in small lakes?

4. Can lake ice detection in SAR imagery be learnt from data using DL?

5. Is it viable to construct a unified, joint representation for multiple (optical and

SAR) sensors to support lake ice monitoring with higher temporal frequency?

6. To what extent do local lake ice trends correlate with climate indicators such as

temperature, precipitation, sunshine etc.?

In the quest for answers to these questions, several challenges have been identified.

For the target regions, no custom datasets (and corresponding ground truth) exist that

are tailored to solve the problem of interest. One of the major bottlenecks in any learning-

based system is the time and effort needed to consolidate the dataset and gather reliable

ground truth (usually done manually) at an acceptable granularity level (image-wise,

instance-wise, pixel-wise etc. depending on the problem). This challenge is even more

intense if the models are fully supervised and/or if the processing pipeline relies on data-

hungry deep neural networks. The ground truth labels needed are primarily generated

by interactive visual interpretation of RGB webcam imagery. This annotation process is

labour intensive, and pixel-wise labelling is difficult, especially for webcams with very high

spatial resolution. While delineating the ground truth using the freely available webcam

images, the human operator should deal with obstacles like low image quality, compression

artefacts, poor radiometric and spectral resolution. Additional bottlenecks during the

annotation process are inter-class appearance similarities due to oblique viewing angles,

adverse lighting conditions like fog, sun reflections, shadows from the nearby mountains

and/or clouds etc. Specifically for the problem of lake ice labelling, water vs thin ice

inter-class similarity could confuse even the experts.

The primary task of monitoring lake freezing patterns is to detect lake ice from optical

(MODIS and VIIRS) and radar (Sentinel-1 SAR, S1-SAR) satellite imagery, and webcam

images. One big challenge with satellite imagery analysis is the spatio-temporal-spectral

resolution trade-off. Since the GCOS requirement is daily observation with an accuracy

of +/-2 days for the LIP events, the optimum optical satellite choices for the problem are

MODIS and VIIRS imagery with daily temporal resolution. The spectral resolution is

also good for these two satellite sources. However, their spatial resolution (250-1000m) is

satisfactory, making it difficult to survey the relatively small lakes. Note that, the lakes

that freeze in Switzerland are generally small in area. However, this thesis investigates

how these two satellite images are useful for detecting lake ice in such small lakes. When

these low spatial resolution (large Ground Sampling Distance, GSD) satellite images are

used to analyse the small- or medium-sized lakes, a new problem arises: the scarcity of

pixels, which makes it difficult to train a robust data analysis system. Additionally, in

those scenarios, absolute geolocation errors of the satellite sensors become critical, making

it essential to correct them. However, even the most efficient correction methodologies
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still leave behind an error of up to half a pixel post-correction, which is critical for the

target lakes with a relatively small area (0.78− 11.3 km2). Other freely available optical

satellite imagery options such as Sentinel-2 and Landsat-8 have a better spatial resolution

but worse temporal resolution, which is insufficient to meet the GCOS criteria. Hence,

such options are not considered.

An inherent vulnerability of optical satellite sensors is the inability to penetrate

clouds, resulting in data loss. More critical is when the clouds occur during/near the cru-

cial freeze-up and/or break-up periods. Compared to the optical counterparts, S1-SAR

imagery offers a better spatio-temporal resolution trade-off for the target application,

thanks to the microwave sensor’s ability to see through clouds and better spatial resolu-

tion. However, it is not easy to manually interpret SAR imagery, unlike optical satellite

images. Furthermore, the temporal resolution is not enough for the regions of interest

(and in general for regions outside the Arctic) to meet the GCOS criteria. Hence, this

thesis additionally explores the possibilities of multi-sensor data fusion. However, the

huge spatial resolution difference between MODIS/VIIRS and S1-SAR, and the large

gap between the optical and radar domains pose additional challenges while performing

data fusion.

Two main challenges are expected in webcam-based lake ice monitoring. Firstly,

achieving full lake coverage using a single webcam might be nearly impossible, especially

for medium-sized (and larger) lakes. In practice, matching the images and outputs from

multiple webcams might be needed to circumvent this problem. Secondly, the placement

of freely available webcams are typically driven by other considerations and not optimised

for ice monitoring and hence does not always deliver the images with settings optimal for

lake ice detection. Considering all these challenges, this thesis investigates in detail the

possibility of using webcams as an alternative for satellite data.

Semantic segmentation is one of the core research areas in the fields of computer

vision and pattern recognition. The underlying task is pixel-wise classification, i.e., to

generate an output map by assigning a label to each pixel in an input image from an

already known set of classes. Some surveys on semantic segmentation already exist in

the literature (Thoma, 2016, Zhu et al., 2016, Garcia-Garcia et al., 2017). Semantic

segmentation of remotely sensed images has also been of interest in Earth observation

research, see Section 2.3. This thesis applies the same for lake ice monitoring.

1.3. Outline and contributions

This dissertation is presented as a ”cumulative doctoral thesis”, complying with the

Doctoral Ordinance (ODS Art. 26 to 29 and RIPO 10.b) by the Department of Civil,

Environmental, and Geomatics Engineering at the ETH Zurich. The key scientific con-

tributions of this thesis are described in Chapters 3, 4, 5 and 6 which each constitute a

separate, unaltered scientific paper. The individual related works discussed in these chap-

ters cover in detail all the literature (including the latest publications) relevant to lake

ice monitoring. A synopsis of proposed methodologies and contributions are presented

in sub-sections 1.3.1 - 1.3.4. An introduction (Chapter 1), some theoretical background
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(Chapter 2) and, conclusions and outlook (Chapter 7) are also incorporated.

1.3.1. Optical satellites and webcams for lake ice

monitoring (Tom et al., 2020c)

Chapter 3 presents two independent approaches for lake ice monitoring in selected Swiss

lakes using multi-temporal optical satellite images and terrestrial webcams. ML-based

image analysis is used as a tool to determine the spatio-temporal extent of ice, including

the ice-on and ice-off dates, from both MODIS and VIIRS imagery, and RGB webcam

data. Lake ice monitoring is formulated as a per-pixel semantic segmentation problem.

Empirical evidence demonstrates that the proposed satellite- and webcam-based methods

produce consistently good results when tested on the data from multiple winters and lakes,

including the notable spatio-temporal generalisation performance.

Contributions

1. This chapter investigates the potential of ML-based image analysis in combina-

tion with various image sensors to retrieve lake ice. So far, such an approach has

rarely been explored, especially for the many small mid-latitude lakes on Earth

(particularly in mountainous regions). However, it can be a valuable source of

information that is largely independent of in-situ observations and models of the

freezing/thawing process.

2. An easy-to-use, Support Vector Machine (SVM)-based approach is put forward to

detect lake ice in low spatial resolution (250 - 1000 m) but high temporal resolution

(1 day) satellite imagery from the optical sensors MODIS and VIIRS.

3. A new state-of-the-art is set for webcam-based lake ice monitoring, using the Deep-

U-Lab network. Additionally, in that context, the detection of lake outlines is

automated as a further step towards operational monitoring with webcams.

4. A new benchmark webcam dataset (Photi-LakeIce) is introduced and made avail-

able, which includes data from two winters (2016–17, 2017–18) and three cameras

that monitor lakes St. Moritz and Sihl, along with pixel-accurate annotations.

5. The DL model pre-trained on the Photi-LakeIce dataset is made public to the re-

search community that can be fine-tuned on new webcams with different conditions

and for other environmental monitoring applications.

1.3.2. Recent lake ice trends: 20-year analysis of MODIS

imagery (Tom et al., 2021b)

In Chapter 4, the critical LIP events (freeze-up, break-up and freeze duration) are ob-

served across two decades in selected Swiss lakes from optical satellite images. The

long MODIS time series is analysed and cross-checked with VIIRS data when available.

Long-term LIP trends are derived by estimating spatially resolved maps of lake ice with

supervised ML. The results are validated against the operational MODIS and VIIRS
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snow products and the ground truth derived by visual interpretation of webcam images

(whenever available). The estimated freezing and thawing trends are correlated with

climate data measured at the nearby meteorological stations.

Contributions

1. A 20 winter (2000-2019) long time series is established for monitoring ice in selected

lakes in south-eastern Switzerland, primarily based on MODIS imagery.

2. The limits of MODIS data are pushed for the analysis of small-to-medium-sized

high-alpine lakes. This work shows that it is possible to derive meaningful cor-

relations between the 20-winter LIP trends and climate indicators (temperature,

sunshine and precipitation), even for such lakes.

3. The dedicated ML scheme maps lake ice more accurately than the classical index-

and threshold-based approaches.

4. As expected, the results point towards later freeze-up, earlier break-up and reduced

temporal freeze extent. A change in Complete Freeze Duration (CFD) of -0.76 and

-0.89 days per annum (d/a) for lakes Sils and Silvaplana, respectively, are found.

1.3.3. Lake ice monitoring from Sentinel-1 SAR data (Tom

et al., 2020a)

Chapter 5 proposes to use a deep neural network for lake ice detection using S1-SAR data.

Frequent cloud cover was the main bottleneck in the past studies that performed lake ice

monitoring from optical satellite data. The presented algorithm overcomes this hurdle,

leveraging microwave sensor’s potential to penetrate clouds and monitor the lakes irre-

spective of the weather and illumination conditions. The semantic segmentation problem

is solved with a state-of-the-art CNN architecture: Deeplab v3+ (Chen et al., 2018b).

The results are reported on two winters (2016-17 and 2017-18) and three Swiss lakes.

Contributions

1. The problem of lake ice detection from S1-SAR data is addressed as an alternative

to optical satellite imagery to bypass the problem of missing data due to clouds.

2. At a technical level, the chapter shows that a DL model pre-trained on an optical

RGB dataset can nevertheless be reused successfully as initialisation for fine-tuning

the network parameters on radar data.

3. The model pre-trained on the proposed SAR dataset is made public to the commu-

nity and can be fine-tuned for specific target regions and other geoscience applica-

tions.
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1.3.4. Learning a joint embedding for multiple satellite

sensors (Tom et al., 2021a)

The fusion of space-borne SAR and optical data is of special interest for geospatial data

analysis and processing. Chapter 6 proposes to use deep neural networks for combining

the imagery from heterogeneous satellite sensors such as S1-SAR, MODIS and VIIRS. A

deep feature space representation or ’satellite embedding’ is learnt to perform the infor-

mation fusion. Additionally, a case study of lake ice monitoring is performed to confirm

the efficacy of the proposed deep satellite data fusion methodology for an application

task.

Contributions

1. A DL framework is proposed that learns a joint embedding to fuse MODIS, VIIRS,

and S1-SAR satellite data.

2. The proposed methodology can be used to perform both optical-optical and optical-

SAR fusion.

3. The presented approach achieves good cross-winter and cross-lake generalisation

performance.

4. A new state-of-the-art is set in estimating the ice-on/off dates for many of the target

lakes, closely meeting the GCOS requirement.

1.4. Technical relation of the chapters

Optical satellite imagery analysis is performed in Chapters 3, 4 and 6. While Chapter 3

describes the preliminary lake ice detection results using MODIS and VIIRS data from

two back to back winters (2016–17, 2017–18), Chapter 4 presents the detailed results of

MODIS data processing from all available winters to date. In Chapter 6, in addition

to optical imagery, radar satellite data is used for lake ice monitoring. Additionally,

Chapter 5 discusses radar satellite data analysis. However, webcam image analysis is

only discussed in Chapter 3.

While Chapters 4 and 5 investigate the feasibility of single-sensor approaches, a

multi-sensor fusion methodology is presented in Chapter 6. Though it is not the primary

focus of Chapter 3, the fusion of MODIS and VIIRS data (at a decision level) is also

discussed. While Chapters 3 and 4 describe the use of more traditional ML approaches,

Chapters 3, 5 and 6 employ DL.

1.5. Relevance to science and society

This dissertation is the outcome of four years of cooperation with MeteoSwiss, the Fed-

eral government agency tasked with implementing and maintaining the GCOS objectives
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for Switzerland. The goals of this thesis also align with the following interest of Me-

teoSwiss: to enhance and strengthen the Swiss climate observing system by promoting

the development and integration of existing and emerging observation methods.

Analysing the decreasing LIP trends across several winters and correlating them with

the climate patterns is significant for climate change quantification and global warming

research. The findings of this thesis in Chapter 4 show that, in the Swiss lakes Sils and

Silvaplana, a significant loss of ice happened in the past two decades. As the global

temperature is on the rise, these lakes will probably lose further ice in the future years.

Estimating the changing duration of ice cover helps to understand the various phys-

ical, chemical, and biological processes of freshwater systems. It has many economic

implications as well, such as for hydroelectric power generation, efficient freshwater trans-

portation etc. Furthermore, efficient surveillance of lake ice is useful for the development

of winter tourism. E.g. there exists the Snow Polo World Cup (since 1985, worth many

hundreds of millions of dollars) and White Turf International Horse Race (since 1907) or-

ganised every winter in frozen lake St. Moritz in Switzerland. For such events, automated

monitoring of lake ice is useful for better long-term planning. Furthermore, monitoring

the duration of lake ice cover is significant for recreational activities such as snowmobil-

ing, ice cricket (St. Moritz), ice skating (e.g., in lake Louise in Canada or lake Baikal in

Russia) and ice-fishing (e.g., lakes Sils and Oeschinen in Switzerland). Such activities are

of large economic importance to the regional communities, bringing in supplies and/or

significant tourism during the winter season.

The methodologies proposed in this thesis can potentially, with little effort, be

adapted to other Earth observation tasks. Some options are mapping and monitoring

sea ice, river ice, polar ice sheets, snow cover, glacial lakes, glaciers, and other applica-

tions that observe the Earth’s cryosphere. The webcam images made available as part

of the Photi-LakeIce dataset (Chapter 3) can be directly used for computer vision appli-

cations such as outdoor scene understanding (especially under bad weather scenarios),

semantic segmentation, fog modelling etc., and other environmental monitoring applica-

tions such as lake water level prediction. Further applications foreseen for webcam-based

analysis are water quality prediction, estimation of lake surface water temperature (using

thermal and RGB cameras), monitoring the phenology of blue-green ecosystems (e.g.,

the EAWAG-WSL blue-green biodiversity research initiative, https://www.eawag.ch/e

n/department/surf/projects/phenology-of-blue-green-ecosystems/), methane

hole detection etc. Though Chapter 6 proposes to learn a satellite embedding for lake ice

monitoring, this DL-based approach is generic. It can be easily adapted to other Earth

science applications that demand multi-sensor satellite data fusion, especially the fusion

of optical and SAR data.

Open-source. Relevant source code and the Photi-LakeIce webcam dataset, im-

plemented and developed in the course of this thesis, are made publicly available under

an open-source license at https://github.com/czarmanu/lake-ice-ml to facili-

tate the easy reproducibility of this research. The backbone chapters (3, 4, 5 and 6) in

this dissertation stem from two publications and two submissions in open access jour-

nals/conferences which the research community can access free of cost.
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2 Background

2.1. Machine and deep learning

The foundations of ML, a sub-field of AI, fundamentally stem from statistical analysis.

This section introduces the underlying concepts and principles of ML methodologies

applied for lake ice monitoring and is hence relevant for this thesis, particularly the

DL approach using CNNs.

Learning can be designed in supervised, unsupervised or even semi-supervised for-

mats. The former can perform reliable classification as well as regression by training a

model from annotated data. On the other hand, in unsupervised learning, data is clus-

tered using a distance measure or similarity score to learn the underlying distribution from

an unlabelled dataset. Partly-annotated data is only needed in semi-supervised learning

which takes a middle ground between the supervised and unsupervised approaches.

Since supervised learning methodologies have proved to be highly effective for remote

sensing image analysis, they are adopted in this thesis (Chapters 3-6) too. However,

learning from a limited amount of labelled training data is a perennial problem in Earth

observation research because reference data tends to be scarce. Semi-supervised learning

could potentially stand out with the possibilities of big data. However, it never did

quite fulfil its promise even for generic ML problems, and geospatial data analysis is no

exception. Yet another possibility is unsupervised pre-training, which for images still did

not bring a breakthrough, but in language models it did, for example, BERT (Devlin

et al., 2019), GPT3 (Brown et al., 2020) etc. However, it might at some point in the

future also establish itself for images.

In this big data era, massive volumes of data already exist in both offline and online

platforms in various formats from different sources and this volume is rapidly increasing

each day. This is also true for satellite data, for example, the huge online archives of both

optical and radar imagery from various sensors. Hence, training even the data-hungry DL

models for Earth observation applications is not really an issue in terms of data volume,

these days. However, the bottleneck is that such data are generally unlabelled and are

hence not directly usable. Annotation of data at a per-pixel granularity level to train

parameter-heavy deep networks is a tedious process that often involves a time-consuming

manual visual interpretation process.

2.1.1. Classical learning approaches

Feature engineering-based classical learning methodologies were heavily used for image

understanding tasks before DL techniques took over. Extracting the features must be
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done with expert knowledge for the former approaches while the latter learns the feature

extractor. In some applications the raw data or simple combinations of them may already

be good features, refer to Chapters 3 and 4. The classical approaches are still enough to

solve many problems in geospatial data analysis either when a huge amount of reliable

ground truth data is unavailable to train deep networks or when a sophisticated neural

network is not necessary especially in cases when contextual information cannot be learnt.

Additionally, the classical methodologies are easily trainable since they need relatively

less amount of training data. This sub-section presents some details of the concepts

behind three such techniques that were successfully employed for lake ice monitoring.

In both classification and regression, false assumptions during the learning process

could induce a bias error while sensitivity to variations in the training set can lead to

variance error. High bias could result in underfitting while high variance causes the model

to overfit. To train an optimum model which fits well on the training data as well as

generalises well on unseen test data, a right trade-off between bias and variance need to

be attained.

Support vector machines (Cortes and Vapnik, 1995). SVM is a discriminative

ML approach that learns a hyperplane that best separates the data points in a feature

space into different classes by the concept of maximising a margin (distance from the

learnt hyperplane to the closest feature points). Such feature points (support vectors)

that lie on/inside the margin are relevant in learning the hyperplane using an optimisation

strategy that maximises the margin, formulated as a convex optimisation problem and

hence it is possible to find the global optima.

If the input data points are not linearly separable in the original feature space, map-

ping to a higher dimensional space by kernel trick could make the data linearly separable

in the new space. The kernel trick can be applied whenever dot products exist and the

kernels used can be non-linear such as Radial Basis Function (RBF), polynomial etc.

Choosing the right kernel is however very important and also can be dataset dependent.

SVMs are also applicable for other complex data types such as sequences, graphs etc.

However, appropriate kernels need to be tailored to such data. Note that, SVMs can be-

come very slow in case of an increased number of support vectors and/or computationally

expensive kernels.

Random forest (Breiman, 2001, RF) is an ensemble learning approach that relies

on bagging (bootstrap aggregation) of decision trees constructed from the data.

In a decision tree, each node denotes an attribute and each branch of the tree defines

a possible value of the attribute. A tree can be either binary or multi-valued depending on

the number of splits possible at each node. Though simple decision trees often produce

interpretable outcomes, they generally result in noisy and weak classifiers that do not

generalise well. Very shallow trees have high bias and low variance and hence tend to

underfit while deep trees have low bias and high variance and overfit on the training data.

In RF, multiple decision trees are produced from a different bootstrapped subset
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(sampling with replacement) of the training dataset. In addition, randomness is infused

into the trees in many ways which make each tree weaker (depriving it of some data, split

variables etc.). However, the ensemble gets stronger in total through randomness. Only

a subset of the input features is randomly selected during each split, while creating the

decision trees, to minimise the correlation between the trees in the forest. The predictions

of the individual trees are averaged to avoid overfitting.

Trees in RF typically have low bias and high variance. Each tree in the forest

should have a low bias since the RF classifier effectively has the same bias as that of

any individual tree (since the trees are identically distributed). High variance is however

acceptable since the averaging step reduces the classifier variance.

RF classifier can be trained relatively fast and also typically generalises very well

on unseen data. On the contrary, it has a high memory footprint and is ideal when the

training dataset size is not that large.

Extreme gradient boosting (Chen and Guestrin, 2016) or XGBoost (XGB) is

an ML methodology fundamentally based on gradient boosted decision trees. Gradient

boosting is also an ensemble-based technique that sequentially learns/adds trees to the

ensemble which predicts and corrects the errors of previous trees. Many such trees are

iteratively combined to create the final predictor. When new trees are added, the loss

is minimised using the gradient descent strategy. XGB is highly scalable and is sparsity

aware.

Though both XGB and RF are based on decision trees, the depth of the trees involved

in each case is very different. Typically, the trees in RF are deeper. On the contrary,

XGB trees are shallow with high bias and low variance. This is because, whenever a

new tree is added in XGB, though the model complexity rises, the overall bias reduces,

irrespective of the tree size. However, the variance remains the same.

More details about SVM, RF and XGB hyperparameters are discussed in Chapter 4.

2.1.2. Deep neural networks

Though DL (LeCun et al., 2015, Goodfellow et al., 2016) research has significantly pro-

gressed in the past decade, it is constantly undergoing development and has still not

saturated. On the one hand, deep, multi-layer neural networks have redefined the state-

of-the-art in various sub-fields of AI research, including but not limited to Earth obser-

vation. On the other hand, scientists are still trying to understand how these approaches

work so well. There are a set of problems in research and engineering for which such

techniques offer excellent solutions. However, deploying DL tools blindly on all sorts of

research problems is not a recommendable practice.

One caveat is that training the deep networks is cumbersome especially given the fact

that they are extremely data-greedy and consume a huge amount of computational re-

sources and time. However, with the advent of big data and powerful Graphics Processing

Units (GPUs), such networks have become unparalleled image recognition tools. Never-

theless, it seems that hyperparameter (optimiser, learning rate, choice of non-linearity,
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number of hidden layers etc.) selection matter a lot while applying such networks for

real-world problems. In the next paragraphs, this thesis delves deep into the underlying

concepts of CNNs.

Convolutional neural networks CNNs (or ConvNets) are specially designed feed-

forward neural networks particularly useful to analyse data having a grid-like topology,

such as time series (1D), images (2D), videos (3D) etc. Such networks are capable to

perform end-to-end learning, for eg., mapping from a raw input image to an outcome

which could be a predicted point estimate, semantic segmentation map, learnt feature

vector etc., depending on how the problem has been formulated.

CNNs typically consist of multiple convolutional and pooling layers, and non-linear

activations. Depending on the problem being solved, there can be fully connected layer(s)

too. The first layer is always convolutional. The sequence of convolution, non-linear

activation and pooling operations is equivalent to a feature extractor that can ”learn”

optimal features for the problem and dataset at hand. Deep CNNs stack multiple such

feature extractors in such a way that the higher layers learn more global, invariant features

such as shapes, object parts, and sometimes even full objects. On the contrary, the lower

layers learn simple patterns like edges, blobs, colours etc.

There exist many popular off-the-shelf CNN architectures such as LeNet (Lecun

et al., 1998), AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan and Zisserman,

2015), GoogLeNet (Szegedy et al., 2015), ResNet (He et al., 2016), Xception (Chollet,

2017), MobileNetV2 (Sandler et al., 2018) etc. An example LeNet-type CNN architecture

with two convolutional and pooling layers each, and three fully connected (dense) layers,

is shown in Fig. 2.1. The following paragraphs will discuss some details about different

type of layers and activations generally used in CNNs.

Conv Max Pool Conv Max Pool Dense

1@128x128 6@96x96
6@48x48

16@36x36 16@18x18 1x256
1x128

1x32

Figure 2.1.: Example LeNet-style CNN architecture. Conv, Max Pool and Dense repre-
sent convolution, max pooling and fully connected layers respectively.

In a convolutional layer, an input image is convolved (discrete) with the filter kernels

that are learnt and feature maps (one channel per filter kernel) are generated. For eg., in

Fig. 2.1, six and sixteen feature maps are produced in the first and second convolution

layers respectively. The convolution weight kernel is a linear filter and the concept of

weight sharing applies, i.e., the filter parameters are shared between different spatial

locations on the input image, thereby substantially curtailing the number of network

parameters.

A pooling layer operates on each feature map separately and reduces the spatial

dimensions, targeting to lower the number of parameters. Furthermore, the pooling
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layers impart small translation invariance and can additionally model context relations by

effectively increasing the receptive field. It is to be mentioned in this context that strided

convolutions with stride > 1 (equivalent to downsampling after convolution with unit

stride) also increases the receptive field. Different types of standard pooling operations

are: max and mean. A study exists in the literature which deals with the theory of

selection of the best pooling strategy for vision problems (Boureau et al., 2010). The most

widely used technique is max pooling where the maximum pixel value in a rectangular

window is chosen. An example max pooling operation with 2× 2 filter kernel and stride

2 between the pools, when applied on a 4 × 4 image is demonstrated in Fig. 2.2, where

the input size is reduced by a factor of two in both x- and y-directions. It can be seen in

Fig. 2.1 that two max pooling layers (2 × 2 kernel with stride 2) exist in the delineated

CNN architecture and the spatial dimensions are halved after the input is passed through

these layers: 96× 96 to 48× 48, and 36× 36 to 18× 18, after the first and second pooling

layers respectively.

Figure 2.2.: Example max pooling operation on a 2× 2 image with 2× 2 filter and stride
2 generating a 2× 2 image as output.

Within each node in any layer in a neural network, a transfer function (a.k.a. acti-

vation function) decides how the output is generated from the weighted sum of the input.

Non-linearity is a necessary property for activation functions so that the model could

learn complex input-output relationships. Some commonly used non-linear activation

functions are: sigmoid, tanh, Rectified Linear Unit (ReLU) and softmax, see also Fig. 2.3

and equations 2.1-2.4. For an input x, the sigmoid transfer function g(x) is defined as:

g (x) = σ(x) =
1

1 + e−x
(2.1)

Since the sigmoid output lies in the range (0,1), it is particularly useful for models that

predict probability. Additionally, it is differentiable. On the other hand, the hyperbolic

tangent (tanh) function produces values between -1 and 1. Furthermore, unlike sigmoid,

the tanh output is zero-centred, which makes learning relatively easier. tanh is also

differentiable and is defined as follows:

g (x) = tanh(x) = 2σ(2x)− 1 (2.2)

Though ReLU (Jarrett et al., 2009, Nair and Hinton, 2010) activation is non-linear by

definition, see equation 2.3, its properties are pseudo-linear in many aspects. As a re-
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sult, the gradients can be propagated easily during the training which results in faster

convergence. Since ReLU maps many values to zero, it typically results in sparse rep-

resentations, i.e., only a subset of neurons will be active and the computations will be

linear within this subset (Glorot et al., 2011). Furthermore, the computation overhead

is less than sigmoid and tanh. Moreover, the networks with ReLU activation generalise

very well. Hence, it became the de-facto standard for deep neural networks. ReLU is

mathematically expressed as:

g (x) = max {0, x} (2.3)

New advanced varieties of ReLU such as leaky ReLU (Maas et al., 2013), ELU (Clevert

et al., 2016) etc., also have been proposed.

Softmax is an interesting activation function since the output lies in the range (0,1)

which sum to 1, making it apt to predict probabilities. Equation of softmax activation is

given by:

g (x) =
e−xi∑
j e
−xj

(2.4)
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Figure 2.3.: Different non-linear activation functions commonly used in deep neural net-
works.

In the example CNN displayed in Fig. 2.1, three dense (fully connected) layers that

learn 256-, 128- and 32-dimensional feature vectors respectively are shown. In a dense

layer, each neuron obtains as input the output of every neuron in the previous layer, see

Fig.2.4, making the dense layer similar to a convolution layer with a receptive field as big

as the entire input layer. Consequently, the spatial information is lost.
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Figure 2.4.: An example fully connected layer with 7 input nodes and 3 output nodes.

Training the network. Neural networks are trained using a procedure called backprop-

agation. For each image in the training dataset, the output is determined in a forward pass

which is then compared with the ground truth to estimate the error. The error derivatives

(gradients) are then computed in each hidden layer and propagated backwards through

the network, one layer at a time. The trainable network weights (parameters) in each

layer are then modified according to the individual contribution to the total error. These

steps are repeated for all the images in the training set. One complete pass through the

whole training dataset is called an epoch. Many such epochs are usually needed to train

a robust neural network model.

Loss functions. Learning the optimal set of network weights that can make good

predictions is done by minimising an objective (loss) function iteratively. However, since

the loss function is non-convex, convergence to the global minimum is very unlikely, just

because of the sheer number of local minima of the loss landscape. Though there are

several other factors involved too, choosing the loss function depends primarily on how

the problem is defined, such as classification or regression. Another factor is: whether

the dataset has a class imbalance or not? Depending on the loss function, the output

layer structure also changes. Some example classification loss functions are cross entropy

loss, hinge loss etc., and regression loss functions include mean squared (L2) loss, mean

absolute (L1) loss etc.

Cross entropy loss for a multi-class problem with M classes is given by:

Lce = −
M∑
c=1

yt,c log(pc) (2.5)

where yt,c and pc are the ground truth label and softmax probability of the cth class

respectively. For a binary classification problem (ytε {0, 1}), the cross entropy loss boils

down to:

Lce = −[yt log(p) + (1− yt) log(1− p)] (2.6)
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Mean squared loss (Lmse) is given by:

Lmse =
1

N

N−1∑
0

(yp − yt)2 (2.7)

Learning rate is a hyperparameter that has considerable influence on the model per-

formance, which essentially regulates the extent to which the model parameters are up-

dated based on the computed error. It is hard to find the ideal learning rate since it is

problem- and dataset-dependent, and is often fixed by trial and error. A too-large value

could overlook the local minima and might ”jump” too fast to a sub-optimal solution, or

sometimes even delay/prevent the convergence. On the contrary, a too-small value might

result in very slow learning and the whole training process could even get stuck to a worse

solution. Reducing the learning rate with time is useful for better convergence and hence

pre-declared learning rate scheduling (exponential decay, step decay etc.) is often used to

adjust the learning rate over time. Some optimisation strategies such as Adam (Kingma

and Ba, 2015), Adagrad (Duchi et al., 2011) etc. have shown that adapting the learning

rate on the fly during the training process is also effective to achieve rapid convergence.

Optimisation strategies. In neural network training, the loss is minimised using an it-

erative procedure. The choice of optimiser depends on the problem being solved. Stochas-

tic Gradient Descent (SGD) is the most commonly used optimiser, where the weights are

updated as follows:

w
′
= w − lr ∗ g (2.8)

where w
′
, w, lr, and g are the updated weight, previous weight, learning rate and gradient

respectively. Aiming faster convergence, the concept of momentum (Polyak, 1964) is often

used which allows to increase the velocity v (movement in the parameter space) in the

direction with constant gradient descent. When the momentum m > 0, the weight update

happens as follows:

w
′
= w +m ∗ v − lr ∗ g (2.9)

Besides SGD, several other iterative minimisation strategies such as Nesterov momen-

tum Sutskever et al. (2013), Adam (Kingma and Ba, 2015), Adagrad (Duchi et al., 2011),

Adadelta (Zeiler, 2012) etc. have also been proposed.

Mini-batch learning In batch learning, to estimate the gradient, the entire dataset is

collectively processed while in stochastic learning each image in the dataset is processed

independently. Mini-batch learning takes a middle ground, where a small batch of images

is jointly processed, thereby offering the best of both worlds.

Augmented learning Data augmentation is a standard DL practice in which the

images in the original training dataset are tweaked to produce more images. These newly

synthesised images are added to the existing training dataset, effectively increasing the

volume of data on which a more robust model can be learnt and invariance against all

predictable transformations can be ensured. This technique is effective in reducing the
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overfitting of the models, especially for the parameter-rich networks, thus achieving better

generalisation capability. Example transformations for image data include operations

such as rotation, flipping, translation, scaling, cropping, zooming in and out, brightness

adjustment, noise addition etc. Augmenting the dataset has proved very useful especially

for object recognition problems in computer vision, and for speech recognition.

Transfer learning. It is possible to transfer the knowledge across domains (tasks,

datasets etc.) using an ML strategy called transfer learning. An illustration is shown

in Fig. 2.5. The model weights trained for one task are reused as the starting point

to train a new model for a different task. For example, a deep model pre-trained on

a very large (generic) computer vision database like Imagenet (Deng et al., 2009) for

an object recognition task (with more than 100 class categories) can be reused for an

Earth observation task such as lake ice monitoring (with 2-4 classes, depending on the

formulation) from satellite images for which relatively very less labelled data is available

to train such a deep network. Essentially, the transfer of learnt knowledge (features,

parameters etc.) happens from the source to the target domain.

Figure 2.5.: Transfer learning.

Transfer learning is particularly effective when there is significantly more amount

of labelled data available to train the first task/setting compared to the second. As

opposed to training a network from scratch using the potentially small target dataset,

this method substantially reduces the computation overhead by just fine-tuning on the

target dataset and usually results in superior performance. The network trained on the

big source dataset usually learns very generic image features (especially the initial layers)

which can directly be transferred. Fine-tuning of the pre-trained weights in all layers

(or a subset) can be done using the target data. However, it is usually recommended to

freeze the initial layers which learn very general features and tune just the higher layers.
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2.2. Deeplab network

Deeplab v3+ network has been extensively used in Chapters 3, 5 and 6 of this dissertation.

Therefore, this section discusses some of the corresponding details.

Deeplab is a state-of-art deep CNN-based semantic segmentation network architec-

ture for which many different versions: v1 (Chen et al., 2015), v2 (Chen et al., 2018a),

v3 (Chen et al., 2017), and v3+ (Chen et al., 2018b), were proposed in literature. Deeplab

v1 applied the atrous (or dilated) convolution, see Fig. 2.6, in order to regulate the learnt

feature resolution (output stride). In deeplab v2, efficient multi-scale object segmen-

Figure 2.6.: Atrous convolution in 1D. Image courtesy of Chen et al. (2018a).

tation was presented using an Atrous Spatial Pyramid Pooling (ASPP) module which

comprised of filters with numerous sampling rates and hence various receptive fields, see

Fig. 2.7. Deeplab v3 acquired longer-range knowledge by augmenting the ASPP mod-

Figure 2.7.: An example ASPP module. Image courtesy of Chen et al. (2018a).

ule with image-level features. The batch normalisation technique was also applied during

training. Deeplab v3+ brought further improvement, especially by learning accurate class
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boundaries by adding a simple but useful decoder module in an encoder-decoder archi-

tecture (see Fig. 2.8b). In such networks, at first, the encoder employs a series of pooling

(downsampling) and strided convolution layers to generate low spatial-dimensional fea-

ture representations targeting to increase the size of the receptive field and to achieve

some translation invariance. Then, the decoder upsamples these features using a sequence

of unpooling and deconvolution operations. To preserve higher-resolution information,

skip connections are used. Encoder-decoder networks are particularly useful for the task

of semantic image segmentation.

Figure 2.8.: Deeplab v3+. Image courtesy of Chen et al. (2018b).

By exploring the incoming features with various stages of filters or pooling opera-

tions, a network with inbuilt spatial pyramid pooling modules (refer Fig. 2.8a) encodes

multi-scale contextual knowledge. On the other hand, networks with encoder-decoder ar-

chitecture learn fine class borders by gradually regaining spatial knowledge. Deeplab v3+

blends both these mechanisms, see Fig. 2.8c, and performs semantic image segmentation.

One of the main reasons why CNNs perform well on semantic segmentation tasks is

that such networks are capable to learn contextual relationships over large receptive fields.

However, high-frequency details are often lost as a byproduct of spatial downsampling

occurring due to pooling and convolution operations, which results in inaccurate learning

of the class boundaries. Encoder-decoder architecture with built-in skip connections can

however curtail this issue to a large extent.

2.3. Deep learning in remote sensing

After the huge success of DL in computer vision, especially for image recognition, deep

networks have been applied for solving Earth science problems as well. A handful of

comprehensive reviews (Zhu et al., 2017, Ma et al., 2019, Yuan et al., 2020) discussed the

challenges and recent advances of DL methodologies applied to remote sensing problems.

Additionally, some approaches are reviewed in Chapters 3, 4, 5, and 6. The following two

paragraphs summarise few prominent works, not included in those chapters.
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Some notable works that used CNNs were proposed for the semantic segmentation of

remote sensing images. Volpi and Tuia (2017) learnt hierarchical feature representations

using CNNs (”downsample-then-upsample architecture”) to perform per-pixel land-cover

classification in very high spatial-resolution imagery. To learn the accurate semantic

labels, rough downsampled spatial maps were first generated using convolution opera-

tions followed by upsampling them back to the original resolution using deconvolution

operations. This approach produced excellent results on two tested datasets (Potsdam

and Vaihingen with 5cm and 9cm spatial resolution respectively). While Volpi and Tuia

(2017) demonstrated their approach using aerial imagery, Maggiori et al. (2017) per-

formed per-pixel classification on Pléiades satellite imagery. In addition to proposing an

end-to-end CNN architecture that accurately learnt semantic labels, this work presented

an improved training strategy using a two-step procedure to efficiently handle the case

with imperfect training data. First, the CNN was trained on inaccurate reference data,

followed by fine-tuning on a small dataset with correct labels. Another contribution of

this work was that they used a multi-scale neuron module that precisely learnt class

boundaries. Later, Marmanis et al. (2018) proposed an end-to-end deep CNN for se-

mantic segmentation of aerial imagery. This approach utilised semantically aware edge

detection to improve the segmentation performance on Vaihingen and Potsdam datasets

and demonstrated experiments using two different CNN architectures.

Marmanis et al. (2016) proposed to use transfer learning for aerial scene recognition.

A CNN model pre-trained on the Imagenet database was transferred and fine-tuned in

a supervised manner on the relatively smaller UCML benchmark dataset and convincing

results were achieved. Xiao et al. (2018) used fully convolutional Densenets (Jégou et al.,

2016) to perform lake ice monitoring with freely available terrestrial webcam imagery

and produced excellent results including good cross-winter generalisation. However, the

cross-camera generalisation performance was just satisfactory. This thesis proposes a

solution in Chapter 3 to mitigate this shortcoming.

2.4. Lake ice physics and remote sensing

According to Michel and Ramseier (1971), three layers (primary, secondary and superim-

posed) can be spotted in lake ice. The unique structure of the crystals and the impurity

content (gas bubbles) makes each layer different. The secondary layer develops below

the primary layer and comprises relatively big crystals (Leppäranta and Kosloff, 2000).

On the other hand, the superimposed layer appears above the primary layer and mainly

contains a snow-water mixture (Palosuo, 1965, Michel and Ramseier, 1971).

Except for minor fractures and cracks, ice cover remains static in small lakes. In large

lakes, ice displacements triggered by wind might occur. In medium-sized lakes, the ice is

normally static in cold winters and mobile in mild winters (Burda, 1999, Kondratyev and

Filatov, 1999, Wang et al., 2006). Kirillin et al. (2012) discussed the physical properties

of lake ice cover, including the dynamics of ice freeze-up and break-up periods. Various

factors such as air temperature, lake inflows, internal waves, depth, heat flow and storage

etc., have an impact on the ice formation process during freeze-up. On the other hand,

ice thawing during the break-up period is primarily steered by air temperature (Brown
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and Duguay, 2010). For more details on lake ice physics, refer to Kirillin et al. (2012).

Lake ice remote sensing can be roughly classified into two categories: optical and

radar remote sensing. The latter can be further subdivided into active and passive remote

sensing. For a general overview of remote sensing of lake ice, refer to Duguay et al. (2015).

As opposed to open water, lake ice (and snow on ice) reflects back a large amount of

radiation at the near-infrared and visible wavelengths. Hence, the corresponding spectral

bands have cues to distinguish frozen and non-frozen lake pixels (Oke, 1987, Kirillin

et al., 2012, Svacina et al., 2014, Wu et al., 2021a). Additionally, parameters such as

impurity content in ice, surface coarseness, snow wetness and snow age affect the amount

of energy reflected back (Wynne and Lillesand, 1993). Existing approaches for optical

remote sensing of lake ice are discussed in Sections 3.1, 4.2, 5.2 and 6.1.

Though passive optical satellite sensors are useful for lake ice detection, they are

not effective in cloudy scenarios and during the nighttime as they depend on the Sun’s

energy reflected back from the Earth’s surface (Arp et al., 2013, Murfitt and Duguay,

2021). For the high-latitude lakes, low solar elevation during the winter months poses an

additional challenge to detect lake ice using optical sensors (Latifovic and Pouliot, 2007).

The cloud issue can be counteracted by remotely sensing lake ice using active and passive

microwave sensors. Typically, L, C, X and Ku radar bands (with wavelengths ≈ 25cm,

≈ 5.6cm, ≈ 3.1cm, and ≈ 2.2cm respectively) are used for lake ice observation. Vital cues

on brightness temperatures are significant to monitor lake ice using passive microwave

sensors. (Lemmetyinen et al., 2009). However, according to a recent survey (Murfitt and

Duguay, 2021), active microwave remote sensing (including Synthetic Aperture Radar

[SAR]) is the most widely adopted technology to monitor lake ice. Details on SAR

backscatter properties of lake ice, water and snow are discussed in Section 5.3. Some

previous studies for lake ice observation using radar data are reviewed in Sections 5.2

and 6.1.
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Abstract

Continuous observation of climate indicators, such as trends in lake freezing, is impor-

tant to understand the dynamics of the local and global climate system. Consequently,

lake ice has been included among the Essential Climate Variables (ECVs) of the Global

Climate Observing System (GCOS), and there is a need to set up operational monitoring

capabilities. Multi-temporal satellite images and publicly available webcam streams are

among the viable data sources capable of monitoring lake ice. In this work we investi-

gate machine learning-based image analysis as a tool to determine the spatio-temporal

extent of ice on Swiss Alpine lakes as well as the ice-on and ice-off dates, from both

multispectral optical satellite images (VIIRS and MODIS) and RGB webcam images.

We model lake ice monitoring as a pixel-wise semantic segmentation problem, i.e., each

pixel on the lake surface is classified to obtain a spatially explicit map of ice cover. We

show experimentally that the proposed system produces consistently good results when

tested on data from multiple winters and lakes. Our satellite-based method obtains mean

Intersection-over-Union (mIoU) scores > 93%, for both sensors. It also generalises well

across lakes and winters with mIoU scores > 78% and >80% respectively. On average,

our webcam approach achieves mIoU values of ≈87% and generalisation scores of ≈71%

and ≈69% across different cameras and winters respectively. Additionally, we generate

and make available a new benchmark dataset of webcam images (Photi-LakeIce) which

includes data from two winters and three cameras.
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3. Lake ice monitoring from optical satellites and webcams

3.1. Introduction

Climate change is one of the main challenges for humanity today and there is a great

necessity to observe and understand the climate dynamics and quantify its past, present,

and future state (Rolnick et al., 2019, Sharma et al., 2019). Lake observables such as ice

duration, freeze-up, and break-up dynamics etc. play an important role in understanding

climate change and provide a good opportunity for long-term monitoring. Lake ice (as

part of lakes) is therefore considered an Essential Climate Variable (ECV, https://pu

blic.wmo.int/en/programmes/global-climate-observing-system/essential-c

limate-variables) of the Global Climate Observing System (GCOS). In addition, the

European Space Agency (ESA) encourages climate research and long-term trend analysis

through the Climate Change Initiative (CCI, https://www.esa.int/Applications/O

bserving the Earth/Space for our climate/ESA s Climate Change Initiative).

This consortium recently addressed the following variables: Lake water level, lake water

extent, lake surface water temperature, lake ice, and lake water reflectance. Recent

research also emphasises the socio-economic and biological role of lake ice (Knoll et al.,

2019). Moreover, according to an analysis of data from 513 lakes, winter ice in lakes is

depleting at a record pace due to global warming (Sharma et al., 2019). That study also

underlined the importance of lake ice monitoring, observing that a comprehensive, large-

scale assessment of lake ice loss is still missing. The vanishing ice affects winter tourism,

cold-water ecosystems, hydroelectric power generation, water transportation, freshwater

fishing, etc., which further emphasises the need to monitor lake ice in an efficient and

repeatable manner (Schindler et al., 1990). Interestingly, an investigation of the long-

term ice phenological patterns in Northern Hemisphere lakes (Magnuson et al., 2000)

observed trends towards later freeze-up (average shift of 5.8 days per 100 years) and

earlier break-up (average shift of 6.5 days per 100 years), which was also confirmed by

another overview (Duguay et al., 2015). However, a previous 50-year (1951–2000) study

(Duguay et al., 2006) based on Canadian lakes confirmed the earlier break-up trend but

reported less of a clear trend for freeze-up dates.

The idea of monitoring lake ice for climate studies is not new in the cryosphere

research community. A main requirement for monitoring lake ice is high temporal resolu-

tion (daily) with an accuracy of ±2 days for phenological events such as ice-on/off dates

(according to GCOS). Among the data sources that fulfil this requirement are optical

satellite images such as MODIS and VIIRS. In the following, we delve deeper into the

literature on using optical satellite images and webcams for monitoring lake ice.

3.1.1. Optical satellite images for lake ice monitoring

At present, satellite images are the only means for systematic, dense, large-scale monitor-

ing applications. Satellite observations with good temporal as well as spatial resolution

are ideal for the remote sensing of lake ice phenology. Optical satellite imagery such as

MODIS and VIIRS offer very good temporal resolution and satisfactory spatial resolu-

tion, making them a good choice. On the other hand, although sensors such as Landsat-8

and Sentinel-2 have a good spatial resolution, the insufficient temporal resolution rules

them out as main sources for monitoring lake ice. Some literature exists which uses op-
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tical satellite data for lake ice analysis. Inter-annual changes in the temporal extent and

intensity of lake ice and snow cover in the Alaska region have been studied using MODIS

imagery (Spencer et al., 2008). In addition, studies by Brown and Duguay (2012) and

Kropáček et al. (2013) demonstrated that MODIS data is effective for surveying lake ice.

The former approach used MODIS and Interactive Multi-sensor Snow and Ice Mapping

System (IMS) snow products to monitor daily ice cover changes. The latter derived ice

phenology of 59 lakes (area larger than 100 km2) on the Tibetan Plateau from MODIS

8-day composite data for the period 2001–2010. The estimated area of open water was

compared against the area extracted from high-resolution satellite images (Landsat, En-

visat/ASAR, TerraSAR-X and SPOT) and achieved a Root Mean Square (RMS) error

of 9.6 days. Recently, Qiu et al. (2019) derived the daily lake ice extent from MODIS

data by employing the snowmap algorithm (Hall and Riggs, 2016). The results of this

approach were consistent with the reference observations from passive microwave data

(AMSR-E and AMSR2, average correlation coefficient of 0.91). Additionally, the MODIS

daily snow product was used to derive the lake ice phenology of more than 20 lakes in

China (Xinjiang territory) using a threshold-based method (Cai et al., 2020). On average,

the estimated freeze-up start and break-up end dates were respectively 7.33 and 4.73 days

different (mean absolute error) compared to the reference dates derived from passive mi-

crowave data (AMSR-E and AMSR2). Very recently, another threshold-based technique

(Zhang and Pavelsky, 2019) was also proposed using MODIS data which achieved a mean

absolute error of 5.54 days and 7.31 days for break-up and freeze-up dates respectively.

Lake Ice Cover (LIC), a sub-product of the newly released CCI Lakes (Crétaux

et al., 2020) product, provides the spatial cover (spatial resolution of 250 m) of lake ice

and the associated uncertainty at a daily temporal resolution. At present, LIC is only

available for 250 lakes spread across the globe. However, none of the target lakes in

Switzerland are included in this list. Hence, a direct comparison with our results is not

feasible. Lake Ice Extent (LIE, https://land.copernicus.eu/global/products

/lie) is one of the Copernicus Global Land Service near-real-time products derived by

thresholding the Top-of-Atmosphere reflectances from Level 1B calibrated radiances of

Terra MODIS (Collection 6) for snow-covered ice, snow-free ice, and water. The 250 m

resolution product has been validated against ice break-up observations over 34 Finnish

lakes spanning four years (2010–2013). However, the LIE product has high uncertainty

during the lake freezing period due to low light conditions in the higher latitudes as well

as uncertainty in cloud cover detection. In addition, the LIE differs by an average of 3.3

days compared to the in-situ ground truth, not quite meeting the GCOS specification.

MODIS snow product (Hall and Riggs, 2016, version 6, https://modis-snow-ice.gsf

c.nasa.gov/uploads/snow user guide C6.1 final revised april.pdf, version 6.1)

maps snow and ice cover (including ice on large, inland lakes) at a relatively coarse spatial

resolution of 500 m and daily temporal resolution using Earth Observation System (EOS)

MODIS data. A comparison of specifications of our machine learning-based product with

the operational products is shown in Table 3.1.

Though in many aspects VIIRS and MODIS imagery are similar (Trishchenko and

Ungureanu, 2017, Trishchenko, 2019), the former has not been leveraged much to study

lake ice. Previously, Sütterlin et al. (2017) proposed to use VIIRS data to retrieve lake

ice phenology in Swiss lakes using a threshold approach. Another algorithm (Liu et al.,
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Table 3.1.: Comparison of specifications of our machine learning-based product with the
operational products such as CCI Lake Ice Cover (CCI LIC), Lake Ice Extent
(LIE), MODIS Snow Product (MODIS SP), and VIIRS Snow Product (VIIRS
SP).

CCI LIC LIE MODIS SP VIIRS SP Ours

Temporal resolution 1 day 1 day 1 day 1 day 1 day
Spatial resolution (GSD) 250 m 250 m 500 m 375 m 250 m

Input data MODIS MODIS MODIS VIIRS MODIS, VIIRS

2016) used VIIRS to detect inland lake ice in Canada. Using VIIRS as well as MODIS,

Trishchenko and Ungureanu (2018) constructed a long time series over Canada and neigh-

bouring regions. They also developed ice probability maps using both sensors. Various

approaches have been proposed using the Landsat-8 and/or Sentinel-2 optical satellite

images (Miles et al., 2017, Barbieux et al., 2018, Pointner et al., 2018, Williamson et al.,

2018). However, we do not go into the details since our work is focused on sensors with

at least daily coverage.

3.1.2. Webcams for lake ice monitoring

To some extent, satellite remote sensing can be substituted by close-range webcams (Ja-

cobs et al., 2009), especially in cloudy scenarios. As far as we know, the FC-DenseNet

(Tiramisu) model (Jégou et al., 2016) of Xiao et al. (2018) used terrestrial webcam images

for the first time for lake ice monitoring application, followed by a joint approach (Tom

et al., 2019) which used in-situ temperature and pressure observations, and a satellite-

based technique in addition to webcams. We note that these two works presented results

only on cameras that capture a single lake (St. Moritz) and the generalisation perfor-

mance was poor, especially for cross-camera predictions. In this work we achieve better

prediction performance using webcams compared to such approaches. In addition, we

report results on data from two lakes (St. Moritz, Sihl) and two winters (2016–2017,

2017–2018).

3.1.3. Machine (deep) learning approaches for lake ice

monitoring

The literature on lake ice monitoring is vast. However, most works make use of elemen-

tary threshold-based or index-based methodologies. While, machine learning approaches

have been successfully leveraged for various remote sensing and environment monitoring

applications, their use for lake ice detection remains under explored. We intend to fill this

research gap in our paper. To our knowledge, the previous version of our satellite-based

method (Tom et al., 2018) and Xiao et al. (2018) applied machine learning techniques for

the first time to detect ice in lakes. Very recently, we also proposed a preliminary version

of our webcam-based methodology (Prabha et al., 2020). In this paper, we extend our

works (Tom et al., 2018, 2019, Prabha et al., 2020) and perform thorough experimen-

tation, targeting an operational system for lake ice monitoring. For completeness, we
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mention that, very recently, we have also explored the possibility to detect lake ice using

Sentinel-1 SAR data with deep learning (Tom et al., 2020a).

3.1.4. Motivation and contributions

Existing observations and data on lake ice from local authorities, fishermen, ice-skaters,

police, internet media, publications, etc. are not well documented. Additionally, there

has been a significant decrease in the number of such field observations in the past two

decades (Lenormand et al., 2002, Duguay et al., 2015). At the same time, the potential of

different remote sensing sensors has been demonstrated to measure the occurrence of lake

ice. In this context we note that, for our target region of Switzerland, the database at the

National Snow and Ice Data Centre (NSIDC) currently includes only the ice-on/off dates

of a single lake (St. Moritz), and only until 2012. Given the need for automated, continu-

ous monitoring of lake ice, we propose to explore the potential of artificial intelligence to

support an operational system. In this paper, we put forward a system which monitors

selected Alpine lakes in Switzerland and detects the spatio-temporal extent of ice and

in particular the ice-on/off dates. Though satellite data is the best operational input

for global coverage, close-range webcam data can be very valuable in regions with large

enough camera networks (including Switzerland). Firstly, we use low spatial resolution

(250–1000 m) but high temporal resolution (1 day) multispectral satellite images from two

optical satellite sensors (Suomi NPP VIIRS, https://ncc.nesdis.noaa.gov/VIIRS/,

Terra MODIS, https://terra.nasa.gov/about/terra-instruments/modis). Here,

we tackle lake ice detection using XGBoost (Chen and Guestrin, 2016) and Support Vec-

tor Machines (Cortes and Vapnik, 1995, SVM). Secondly, we investigate the potential of

images from freely available webcams using Convolutional Neural Networks (CNN), for

the independent estimation of lake ice. Given an input webcam image, such networks are

designed to predict pixel-wise class probabilities. Additionally, we use webcam data for

the validation of results from satellite data.

3.2. Materials and methods

3.2.1. Definitions used

By definition, ice-on date is the first day a lake is totally or in great majority frozen

(≈90%), with a similar day after it [this is the same definition as in Hendricks Franssen

and Scherrer (2008), i.e., end of freeze-up]. Ice-off is used here as the symmetric of ice-on,

i.e., the first day after having all or almost all lake frozen, when any significant amount

of clear water appears and in the subsequent days this water area increases. We point

out that our ice-off date marks the start of melting (break-up), such that the two dates

symmetrically delimit the fully frozen period. As far as we know there is no universally

accepted definition of ice-on/off dates. Hence, in the scientific cooperation we had with

MeteoSwiss we adopted the above definition which is consistent throughout this work.

Ice thickness plays no role in this definition. In very rare cases, in Switzerland, there

may be more than one such date. In those cases we use the latest ice-on and the earliest

ice-off dates. Some researchers, especially in North America and in the NSIDC database,
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define ice-off as the end of break-up, when almost everything is water (Duguay et al.,

2015). That date can also be retrieved with our scheme, without any changes to the

methodology. Clean pixels are those that are totally within the lake outline. In all

subsequent investigations with satellite image data, only the cloud-free clean pixels are

used. Additionally, non-transition dates are the days when a lake is mostly (≈90% or

above) frozen (ice, snow) or non-frozen (water) while the partially frozen days are termed

as transition dates.

3.2.2. Target lakes and winters

Using satellite images, we processed the Swiss Alpine lakes: Sihl, Sils, Silvaplana, and

St. Moritz, see Fig. 3.1. To assess the performance, the data from two full winters

(16–17 and 17–18) are used, including the relatively short but challenging freeze-up and

break-up periods. In each winter, we processed all available dates from the beginning of

September until the end of May. The target lakes exhibited moderate to high difficulty,

with a variable area (very small to mid-sized), altitude (low to high), and surrounding

topography (flat/hilly to mountainous), and they freeze more or less often. More details of

the target lakes are shown in Table 3.2, including the details of the nearest meteorological

stations. For completeness, the temperature and precipitation data near the observed

lakes were also plotted (see Fig. 3.2 for 2016–2017 winter months). Additionally, we

processed three different webcams monitoring lakes St. Moritz and Sihl from the same

two winters. For satellite images, the lake outlines are digitised from Open Street Map

(OSM) and have an accuracy of ≈25–50 m. For webcams, our algorithm automatically

determines the lake outline.

Table 3.2.: Characteristics of the target lakes (data mainly from Wikipedia). Latitude
(lat, ◦North), longitude (lon, ◦East), altitude (alt, m), area (km2), volume
(vol, Mm3), and the maximum and average depth [depth(M,A)] in m are
shown. Additionally, for each lake, the nearest meteorological station (MS) is
shown together with the corresponding latitude, longitude, and altitude.

Lake Lat, Lon, Alt Area, Vol Depth (M, A) Remarks MS, Lat, Lon, Alt

Sihl 47.14, 8.78, 889 11.3, 96 23, 17 frozen most years Einsiedeln, 47.13, 8.75, 910
Sils 46.42, 9.74, 1797 4.1, 137 71, 35 freezes every year Segl-Maria, 46.43, 9.77, 1804

Silvaplana 46.45, 9.79, 1791 2.7, 140 77, 48 freezes every year Segl-Maria, 46.43, 9.77, 1804
St. Moritz 46.49, 9.85, 1768 0.78, 20 42, 26 freezes every year Samedan, 46.53, 9.88, 1708

3.2.3. Data

We use data from three different type of sensors for lake ice monitoring. Parameters of

all these data types are shown in Table 3.3.

Optical satellite images

Both MODIS (aboard Terra [https://terra.nasa.gov] and Aqua [https://aqua.nas

a.gov/modis] satellites) and VIIRS (Suomi NPP, https://www.nasa.gov/mission pag
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Figure 3.1.: On the first row, left image shows the orthophoto map of Switzerland (source:
Swisstopo (https://www.swisstopo.admin.ch/)). Regions around the four
target lakes (shown as blue and yellow rectangles on the map) are zoomed in
and shown on the right side of the map (lake Sihl on the left, region around
lakes Sils, Silvaplana, St. Moritz on the right). On the second row, the image
footprints of two webcams monitoring lake St. Moritz are displayed (Camera
0 and 1 images were captured on 14 December 2016 and 13 December 2016
respectively when the lake was partially frozen). Best if viewed on screen.

Table 3.3.: Parameters of the used data (GSD = Ground Sampling Distance).

MODIS VIIRS Webcams

Temporal resolution 1 day 1 day 1 hour (typically)
Spatial resolution (GSD) 250–1000 m 375–750 m ca. 4 mm to 4 m

Spectral resolution 36 bands 22 bands RGB
(0.41–14.24 µm) (0.41–12.01 µm)

Radiometric resolution 12 bits 12 bits 8 bits
Costs free free free

Availability very good very good depending on location
Cloud mask issues slight slight NA
Cloud problems severe severe negligible

es/NPP satellite) images are freely available and have high temporal resolution. Due to

the lower quality of Aqua imagery we used Terra images in our analysis. Additionally,

following the approach of Tom et al. (2018), we used only 12 MODIS bands and discarded

the rest. For our MODIS analysis, we downloaded the following products: MOD02

(calibrated and geolocated radiance, level 1B), MOD03 (geolocation), and MOD35 (48-

bit cloud mask) from the LAADS DAAC (Level-1 and Atmosphere Archive & Distribution

System Distributed Active Archive Center, https://ladsweb.modaps.eosdis.nasa.g
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Figure 3.2.: Bar graphs of mean monthly air temperature 2 m above ground (top) and
total monthly precipitation (bottom) in winter 2016–2017, recorded at the
meteorological stations closest to the respective lakes. Data courtesy of Me-
teoSwiss.

ov/) archive. Note that, only the I-bands are used in our VIIRS analysis. See Fig. 3.3

for the spectral range of MODIS and VIIRS bands used in our approach.

Figure 3.3.: Spectral range of MODIS (left) and VIIRS (right) bands used in our anal-
ysis. The start and end wavelengths are shown for each band.

Technicalities about the processed satellite data are shown in Tables 3.4 and 3.5. It

can be seen that we analysed relatively less data in winter of 17–18 as opposed to the

previous winter, due to the fact that winter 17–18 was more cloudy than 16–17 in the

regions of interest. We only processed the dates when a lake was at least 30% cloud-

free, which effectively lowered the temporal resolution from 1 day to approximately 2
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days. The effective temporal resolution varies across sensors and winters (see Table 3.5).

Additionally, for lakes Sihl and St. Moritz, there were more transition days in winter 17–

18. Throughout, we used the non-transition dates for training the SVM model as referred

to in Section 3.3.1. This factor along with class-imbalance explains why the decrease in

data is more evident for the class frozen. Note also that the transition dates are more

likely to occur near the freezing and thawing periods. One can note class imbalance in

the dataset of both winters. In each winter, we processed all available acquisitions during

the period from September till May, while the lakes were typically fully (or mostly) frozen

during only a small subset of these dates. Moreover, the class imbalance was alarmingly

high for lake Sihl. This is because Sihl had a moderate freezing frequency compared to

the other three lakes, because of its lower altitude and larger area, see Table 3.2. Note

also that the presence of a dam near the northern part of lake Sihl makes its freezing

pattern relatively less natural.

Even after collecting data from a full winter, very few pixels are available to train a

machine learning-based system using MODIS imagery, due to the low spatial resolution.

For instance, in every acquisition, there exist only four clean pixels for lake St. Moritz,

refer to Table 3.5. This problem is even worse for VIIRS where there is no clean pixel

at all for the same lake (see Table 3.5). Note that from Table 3.4, the total number

of VIIRS (clean) pixels processed is significantly less compared to MODIS mainly due

to the lower spatial resolution (see also Table 3.5). A challenge for machine learning is

the scarcity of lake pixels. Note also that the small number of pixels per lake makes

a correction of the lake outlines’ absolute geolocation a necessity (refer Section 3.2.4).

Furthermore, it is highly probable during the transition periods that both frozen and non-

frozen classes coexist within a single clean pixel (mixels). For this reason, we also generate

the probability for each pixel to be frozen as an end result, especially targeting such mixels

during the transition periods. Note also that data hungry deep learning approaches

cannot be deployed, as they cannot be reliably trained with such small datasets.

Table 3.4.: Total number of clean, cloud-free pixels on non-transition dates from MODIS
(M) and VIIRS (V) sensors (at least 30% cloud-free days) used in our exper-
iments. Fr and N-Fr represent frozen and non-frozen respectively.

Winter
Sihl Sils Silvaplana St. Moritz Total

M V M V M V M V M V

Fr 16–17 4137 1919 2345 894 1736 739 157 — 8375 3552
N-Fr 16–17 13568 4598 3019 1051 1965 765 191 — 18743 6414

Fr 17–18 1005 198 1858 722 1169 591 124 — 4156 1511
N-Fr 17–18 11804 4311 2435 784 1574 621 140 — 15953 5716

Total 30514 11026 9657 3451 6444 2716 612 — 47227 17193

Webcam images

We reported our results on various cameras with different intrinsic and extrinsic parame-

ters, which are freely available. For the experiments, we manually removed some unusable
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Table 3.5.: Dataset statistics. M/V format displays the respective numbers of
MODIS/VIIRS. Both transition (trans) and non-transition (non-trans) days
are shown. Fr and N-Fr represent frozen and non-frozen respectively. The
effective temporal resolution (shown as ‘resolution’) and fraction of transition
dates over all processed dates (Trans fraction) are also shown. #Pixels (clean)
displays the number of clean pixels per acquisition.

Lake
#Pixels

Winter
Non-Trans Days Trans Resolution Trans

(Clean) N-Fr Fr Days (Days) Fraction

Sihl 115/45
16–17 98/87 32/33 12/11 1.9/2.1 0.09/0.08
17–18 90/88 8/6 24/22 2.2/2.4 0.20/0.19

Sils 33/11
16-17 70/73 57/59 33/30 1.7/1.7 0.21/0.19
17–18 60/57 49/48 25/32 2.0/2.0 0.19/0.23

Silvaplana 21/9
16–17 66/66 63/59 33/34 1.7/1.7 0.20/0.21
17–18 58/58 43/54 27/31 2.1/1.9 0.21/0.22

St. Moritz 4/0
16–17 79/— 65/— 14/— 1.7/— 0.09/—
17–18 64/— 58/— 16/— 2.0/— 0.12/—

images, examples are shown in Fig. 3.4. We point out that for oblique webcam view-

points, the GSD varied greatly between nearby and distant parts of a lake, as does the

angle between the viewing rays and lake surface. As a consequence, webcam images are

hard to interpret in the far field, in practice usable distances tend to be up to ≈1 km.

We note that the usable distance also depends on the surface material, e.g., snow on ice

can be detected at further distances where it is already impossible (for humans as well

as machines) to distinguish black ice from water.

Figure 3.4.: Example images that were discarded from the dataset due to bad illumination
(left), sun over-exposure (middle), and thick fog (right).

We make available (https://github.com/czarmanu/photi-lakeice-dataset) a

new webcam dataset, termed Photi-LakeIce, for lake ice monitoring and report our results

on it. Sample images and details of the dataset are presented in Fig. 3.5 and Table 3.6

respectively. RGB images (and the corresponding ground truth annotations) from two

lakes (Sihl and St. Moritz) and two winters (2016–2017, 2017–2018) are included in the

dataset. Though the camera mounted at Hotel Schweizerhof in St. Moritz is rotating,

in our analysis we consider it as two different fixed cameras (camera 0 and camera 1,

see Fig. 3.6). The major difference between these two streams is image scale: Camera 0

captures images with larger GSD compared to camera 1. Another camera that monitors

Sihl is non-stationary, but captures the lake at the same scale (refer Fig. 3.5 row 3).

Hence, we consider it as a single rotating camera (camera 2). Our dataset is not limited

to but includes images with different lighting conditions (due to the sun’s angle, time of
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the year, presence of clouds, etc.), shadows (from both clouds and nearby mountains), fog

conditions (we remove the extreme cases but keep the images from slightly foggy days),

wind scenarios, etc.

Table 3.6.: Details of the Photi-LakeIce dataset. Lat and Long respectively denote lat-
itude (◦North) and longitude (◦East) of the approximate camera location.
#16–17 and #17–18 represent the total number of images from winters 16–
17 and 17–18 respectively. Res stands for resolution and H and W represent
height and width of the image in pixels (after cropping).

Name Lake (Lat, Long) Model #16–17 #17–18 Res (H × W)

Camera 0 St. Moritz (46.50, 9.84) AXIS Q6128-E 820 474 324 × 1209
Camera 1 St. Moritz (46.50, 9.84) AXIS Q6128-E 1180 443 324 × 1209
Camera 2 Sihl (47.13, 8.74) unknown 500 600 344 × 420

Camera 0(w) Camera 0(w + i) Camera 0(s + c) Camera 0(s)

Camera 1(w) Camera 1(w + i) Camera 1(s + c) Camera 1(s)

Camera 2(R1, w) Camera 2(R2, s) Camera 2(R3, w) Camera 2(R4, w)

Figure 3.5.: Photi-LakeIce dataset. Rows 1 and 2 display sample images from cameras 0
and 1 (St. Moritz) respectively. Row 3 shows example images of camera 2
(Sihl, non-stationary, and some rotations [R1, R2, etc.] are also displayed).
State of the lake: water(w), ice(i), snow(s), and clutter(c) is also displayed
in brackets.

To study the class imbalance in our dataset, we plot the class distribution, individ-

ually for each camera and winter, see Fig. 3.7. It can be inferred that the classes are

highly imbalanced in most of the sub-datasets, where ice and clutter classes suffer the

most. In Fig. 3.7, we show the percentage of the class background in addition to the four

main classes. Note that the percentage of clutter in camera 0 is less compared to camera
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1. Note also, camera 1 has almost zero background while the lake area (foreground) to

background ratio for Sihl is too low, making it a very challenging case. Additionally,

the number of ice pixels is consistently low in all the cameras across all years. It will

not be surprising if the performance of classes clutter and ice are not good in a relative

sense. Note that the background class frequencies differ from one year to another even

for the same camera, since in each year the foreground-background separation was done

by different human experts. The difference is even more so for camera 2 (Sihl), since it

is rotating.

Figure 3.6.: Two webcams monitoring lake St. Moritz along with their approximate cov-
erage. Image courtesy of Google.
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Figure 3.7.: Bar graphs displaying class imbalance (including the class background) in our
dataset. Ice and clutter are the under-represented classes.

Ground truth generation for webcam analysis

The main difficulty in designing a machine (deep) learning system is the requirement

for accurately labelled data. However, to generate pixel-wise labels, the interpretation

of webcam images is challenging for several reasons. Image quality is limited and off-

the-shelf webcams only offer poor radiometric and spectral resolution and are subject to

adverse lighting conditions like fog, which makes the image interpretation process difficult

even for humans (see Fig. 3.8). Besides the limitations of the sensor itself, the cameras are
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mounted with a rather horizontal viewing angle such that large parts of the water body

can be observed. As a result, large differences in GSD within a single image are present.

Significant intra-class appearance differences exist throughout image sequences. This is

caused by different ice structures, partly frozen water surfaces, waves, varying illumination

conditions, reflections, and shadows. Furthermore, inter-class appearance similarities

exist, which impedes automatic interpretation. In fact, even manual interpretation for

some examples is impossible without using additional temporal cues. Pixel-wise ground

truth annotations are produced by human operators by labelling polygons within the

input images using the LabelMe tool (https://github.com/wkentaro/labelme). For

the lake detection task, each pixel is either labelled as foreground (lake) or background.

Foreground pixels are further annotated as water, ice, snow, and clutter for lake ice

segmentation.

s i i + w w w

Figure 3.8.: Inter-class similarities and intra-class differences of states snow (s), ice (i),
and water (w) in our webcam data.

Ground truth generation for MODIS and VIIRS analysis

To generate the ground truth for our satellite image analysis, for each day, a human expert

visually interpreted the state of a lake (completely frozen, partly frozen, completely non-

frozen, or partly non-frozen) using webcam images of the same. Note also that most

of the freely-available webcams are not optimally installed to monitor lakes. Hence,

besides webcam images, we interpret cloud-free Sentinel-2 images whenever available.

Additionally, we attempted to use online media reports to enrich the generated ground

truth, which however only provided limited information. In our analysis, webcams have

ground truth at a better granularity level (hourly, per pixel label) compared to satellite

images (daily, global label). Accurately registering webcam pixels with satellite image

pixels is beyond the scope of this work, hence we did not transfer the webcam-based

per-pixel ground truth to the satellite images.

3.2.4. Methodology

Satellite image analysis

Pre-processing of MODIS data (re-sampling to UTM32N coordinate system, re-projection)

is done using MRTSWATH (https://lpdaac.usgs.gov/tools/modis reprojectio

n tool swath) software. Similarly, VIIRS imagery data is pre-processed (assembling of

data granules, re-sampling to UTM32N, and mapping) with the SatPy (https://satpy.

readthedocs.io/) package. VIIRS cloud masks are extracted with H5py (https://ww

w.h5py.org) and re-sampled using Pyresample (https://resample.readthedocs.io)
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and GDAL (https://gdal.org/) libraries. Among the 12 selected MODIS bands (refer

Section 3.2.3), the lower resolution bands (500 m and 1000 m GSD) were upsampled to

250 m resolution using bilinear interpolation. This step is not necessary for VIIRS anal-

ysis, since we use only the I-bands (≈375 m GSD). For both VIIRS and MODIS, we only

analysed the images with at least 30% cloud-free clean pixels. In MODIS images, there

are also some pixels marked as invalid, which were masked out. For MODIS, we merged

the cloudy and uncertain clear bits to construct a binary cloud-mask from the standard

cloud-mask product. Similarly, a VIIRS pixel is considered non-cloudy only if it is ei-

ther confidently clear or probably clear. After Douglas–Peucker generalisation (Douglas

and Peucker, 1973), the outlines were further backprojected from the ground coordinate

system onto the satellite images to steer the estimation of lake ice. In addition, just the

clean pixels were analysed, after rectifying the outlines for absolute geolocation shifts,

and backprojecting onto the VIIRS band I2 (≈375 m GSD), respectively MODIS band B2

(250 m GSD) as in Tom et al. (2018). For MODIS, the mean offsets in x and y direction

were 0.75 and 0.85 pixels, respectively. For VIIRS, the mean offsets were 0 and 0.3 pixels

in x, respectively y direction.

Fig. 3.9 displays the block diagram of the proposed lake ice monitoring system using

satellite images. Our semantic segmentation methodology is generic and is applicable to

both VIIRS and MODIS imagery. Here, we formulated ice detection as a supervised pixel-

wise classification problem (two classes: Frozen and non-frozen). To assess the inter-class

separability of different bands, we carried out a supervised variable importance analysis

using the XGBoost feature learning system (Chen and Guestrin, 2016). The training of

that method, a gradient boosting approach based on ensembles of decision trees, makes

explicit variable importance conditioned on the class labels. The outcome (F-score) in-

dicates how valuable each feature is in the formation of the boosted (shallow) decision

trees within the model. The more a feature (in our case a band) is used to make correct

predictions with the decision trees, the higher its relative importance. Though XGBoost

is also a classifier by default, we only used the built-in variable selection to automatically

determine the most informative bands. For the actual classification based on the selected

channels we employed a support vector machine (Cortes and Vapnik, 1995, SVM) classi-

fier, mainly because with SVM it is straight-forward to compare a linear and a non-linear

variant.

SVM Classifier

Class label

Confidence

Feature 
selection

Ground
truth

Pre-processing

Input data (MODIS, VIIRS)

Figure 3.9.: Block diagram of the proposed lake ice detection approach using satellite
data.
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The 12 usable MODIS bands and 5 I-bands of VIIRS were independently analysed

with XGBoost. All data from winter 16–17 (see Table 3.4) was used to perform this

analysis and the results for both MODIS and VIIRS are shown in Fig. 3.10 (left and

right respectively). Bands I1 and B1 attained the best scores among the analysed MODIS

and VIIRS bands respectively. Furthermore, we plotted the gray-value histograms (see

Fig. 3.11) in order to double-check the results generated by XGBoost. Due to space

limitations, only the histograms for VIIRS are shown. Similar histograms for MODIS

can be found in Tom et al. (2017). It can be judged from Fig. 3.11 that the two classes

are almost similarly separable in the two near-infrared bands I1 and I2. Since those two

bands have a similar spectrum and are highly correlated, XGBoost picks only one among

them. The same holds for the two near-infrared MODIS bands B1 and B2.
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Figure 10. Block diagram of the proposed lake ice detection approach using satellite data.
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Figure 11. Bar graphs for MODIS (left) and VIIRS (right) showing the significance of each of the
selected bands (12 for MODIS, 5 for VIIRS) for frozen vs. non-frozen pixel separation using the XGBoost
algorithm [12]. All non-transition days from winter 16-17 are included in the analysis.
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a supervised variable importance analysis using XGBoost feature learning system [12]. The training of274

that method, a gradient boosting approach based on ensembles of decision trees, makes explicit variable275
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the formation of the boosted (shallow) decision trees within the model. The more a feature (in our case a277

band) is used to make correct predictions with the decision trees, the higher its relative importance. Though278

XGBoost is also a classifier by default, we only use the built-in variable selection to automatically determine279

the most informative bands. For the actual classification based on the selected channels we employ a support280

vector machine (SVM, [13]) classifier, mainly because with SVM it is straight-forward to compare a linear281

and a non-linear variant.282

The 12 usable MODIS bands and 5 I-bands of VIIRS are independently analysed with XGBoost. All283

the data from winter 16-17 (see Table 4) is used to perform this analysis and the results for both MODIS284

and VIIRS are shown in Fig. 11 (left and right respectively). Bands I1 and B1 attain the best scores among285

the analysed MODIS and VIIRS bands respectively. Furthermore, we plot the grey-value histograms (see286

Fig. 12) in order to double-check the results generated by XGBoost. Due to space limitations, we show287

only the histograms for VIIRS. Similar histograms for MODIS can be found in Tom et al. [56]. It can be288

judged from Fig. 12 that the two classes are almost similarly separable in the two near-infrared bands I1 and289

I2. Since those two bands have similar spectrum and are highly correlated, XGBoost picks only one among290

them. The same holds for the two near-infrared MODIS bands B1 and B2.291

Post-processing: Multi-temporal analysis (MTA). It is very likely that the physical state of a lake292

pixel is the same on subsequent days (except during the highly dynamic freezing and thawing periods).293

Hence, as a post-processing step, for each pixel, a moving average of the SVM scores (class probabilities) is294

computed along the time dimension. The average is computed within a fixed window length (smoothing295

Figure 3.10.: Bar graphs for MODIS (left) and VIIRS (right) showing the significance of
each of the selected bands (12 for MODIS, 5 for VIIRS) for frozen vs. non-
frozen pixel separation using the XGBoost algorithm (Chen and Guestrin,
2016). All non-transition days from winter 16–17 are included in the anal-
ysis.

It is very likely that the physical state of a lake pixel is the same on subsequent

days (except during the highly dynamic freezing and thawing periods). Hence, as a post-

processing step, multi-temporal analysis (MTA) is applied. For each pixel, a moving

average of the SVM class scores is computed along the time dimension. The average

is computed within a fixed window length (smoothing parameter) that is determined

empirically. Choosing the smoothing parameter is critical, as too-high values can easily

wash out the critical dynamics during the transition days. Since the pixels from each

MODIS (or VIIRS) acquisition are predicted independently by the trained SVM model,

MTA is expected to improve the SVM results by leveraging on the temporal relationships.

We test three different averaging schemes: Mean, median, and Gaussian.

Webcam image analysis

Similarly to satellite analysis, we formulated our webcam approach as supervised seman-

tic segmentation problem. Here, we made use of the prominent high-performance deep

learning architecture, Deeplab v3+ (Chen et al., 2018b), with the Xception65 encoder

branch, see Fig. 3.12 (left). That method has a proven track record on other semantic seg-

mentation benchmarks such as PASCAL VOC (Everingham et al., 2015) and Cityscapes

(Cordts et al., 2016). Our network classified each pixel in the RGB webcam image as

water, ice, snow, or clutter. The clutter class incorporates man-made objects on the lake,
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3. Lake ice monitoring from optical satellites and webcams

Figure 3.11.: VIIRS grey-value histograms for sanity check (Bands I1, I2, I3, I4, I5 are
respectively shown from left to right).

e.g., structures built for sport events (such as tents in St. Moritz), boats, etc. Note that,

as for satellite images, lake ice segmentation is done only for foreground (lake) pixels.

By integrating the spatial pyramid pooling technique as well as atrous convolution

into the standard encoder-decoder architecture, the Deeplab v3+ network encodes rich

contextual information at arbitrary scales and retrieves segment boundaries more pre-

cisely. Spatial convolution was applied independently to each channel, followed by 1 ×
1 (point-wise) convolution to combine the per-channel outputs. This markedly reduces

the computational complexity without any noticeable performance drop. Where needed,

these depthwise separable convolutions employ stride 2 in the spatial component, making

separate pooling operations obsolete. Note that the atrous (dilated) convolution effec-

tively increases the receptive field without blurring the signal. Using multiple atrous rates

makes sure that features are extracted at various spatial scales.

Inspired from U-net (Ronneberger et al., 2015), and with an aim to sharpen the class

boundaries, in addition to the single skip connection used in Deeplab v3+ per default,

we introduced three more from different flow blocks (entry and mid-level flow) of the

Xception65 encoder to the decoder. We call this new variant Deep-U-Lab, see Fig. 3.12

(right). The new feature maps thus generated are concatenated along with the existing

ones, for better preservation of high frequency information at the class boundaries.

In order to deal with the shortage (in deep learning terms) of labelled data, we made

use of transfer-learning that allows one to re-use knowledge gained from other similar

tasks. To do so, we employed a model pre-trained on the PASCAL VOC benchmark

dataset (for both lake detection and ice segmentation tasks) rather than starting from

scratch. The weights in all layers were fine-tuned since tuning just the final layer did not

work, emphasising the fact that even low-level texture characteristics differ between our

webcam images and the PASCAL dataset and must be adapted.

In previous works (Xiao et al., 2018, Tom et al., 2019), the lake pixels were manually

delineated before inferring their class. Locating the lake pixels makes the job easier for
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Figure 3.12.: Deeplab v3+ (left) and Deep-U-Lab (right) architectures. The “?” symbol
indicates the additional skip connections for Deep-U-Lab.

the classifier as it does not have to deal with the spectral appearance outside of the lake.

We propose to automate this step, in order to make lake ice observation more practical

in operational scenarios. Automated lake detection is very useful especially when scaling

up the webcam network to also include non-stationary cameras. Hence, we formulate

lake detection as a two-class (background, foreground) segmentation problem and train

yet another instance of our Deep-U-Lab model. Then, a fine-grained classifier predicts

the state (water, ice, snow, and clutter) of lake pixels.

With the intention to minimise overfitting of the model, we performed data augmen-

tation, i.e., more synthetically generated variations were added to the training dataset.

This was done by applying random rotations, zooming, up-down, and left-right flipping.

3.3. Results

For our evaluation we use the following error metrics: Recall, precision, overall accuracy,

Intersection over Union (IoU, a.k.a. Jaccard index), and mean IoU across classes (mIoU).

3.3.1. Experiments with satellite images

Unless explicitly specified, the experimental settings are the same (but independent) for

both MODIS and VIIRS. The time series is divided into two parts: Transition and non-

transition dates. During the partially frozen transition days, ground truth annotation

was very challenging, as one has to discriminate thin transparent ice from water. Hence,

the quantitative results are reported only on non-transition dates. However, qualitative

analysis was done on all the available dates. Furthermore, with VIIRS only three lakes

(Sihl, Sils, Silvaplana) were processed since there exists no clean pixel for lake St. Moritz

(see Table 3.5).
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3. Lake ice monitoring from optical satellites and webcams

Four-fold cross validation

As a first experiment, the data of all the lakes were combined from the two winters (16–17

and 17–18) and 4-fold cross validation was performed in order to figure out the optimum

SVM parameter settings for detailed experimentation. We did a grid-search for the

two main hyperparamaters of SVM (the cost of a misclassification and the kernel width

gamma) and found that, for both sensors, the best results with Radial Basis Function

(RBF) kernel are obtained with values 10 and 1 for cost and gamma, respectively. With

linear kernel, value 0.1 as cost works best for both MODIS and VIIRS. We notice that

classification of our dataset using the RBF kernel is fairly sensitive to the selection of

hyperparameters, while the linear kernel provides consistent results. Note also, optimum

hyperparameters might vary from one dataset to another. Quantitative results of 4-fold

cross validation experiments with the optimum parameters are displayed in Table 3.7.

For MODIS, the best results were obtained when all 12 bands are used as feature vector

(and for VIIRS with all 5 bands). In addition, our results show that the performance of

RBF kernel is a bit better compared to the linear counterpart. Additionally, we tested

variants that use fewer bands, down to a single band with the highest F-score as selected

by XGBoost (B1 for MODIS and I1 for VIIRS, refer Fig. 3.10). Since it does not make

sense to run an RBF kernel with a single input band, only the linear kernel was tested for

this experiment. Even with a single band and a simple linear kernel the results are fairly

decent. The results are even better when using the top-five bands of MODIS, but slightly

worse than the full 12-band feature vector. Multi-temporal analysis (MTA) improves

the results by a very small margin. For both MODIS and VIIRS, MTA with Gaussian

kernel (smoothing parameter 3) gives the best results and is therefore used in all further

experiments. For the best setting, we show the results in more detail in Table 3.8.

Table 3.7.: The 4-fold cross validation results on MODIS and VIIRS data from two win-
ters (16–17 and 17–18). For the same SVM setup, results without and with
multi-temporal analysis (MTA) are shown.

Sensor Feature Vector SVM Kernel with MTA Overall Accuracy mIoU

MODIS B1 Linear No 0.91 0.78
MODIS Top 5 bands Linear No 0.93 0.83
MODIS All 12 bands Linear No 0.93 0.84
MODIS All 12 bands Linear Yes 0.93 0.84
MODIS Top 5 bands RBF No 0.96 0.90
MODIS All 12 bands RBF No 0.99 0.98
MODIS All 12 bands RBF Yes 0.99 0.99

VIIRS I1 Linear No 0.93 0.84
VIIRS All 5 I-bands Linear No 0.95 0.88
VIIRS All 5 I-bands Linear Yes 0.95 0.88
VIIRS All 5 I-bands RBF No 0.97 0.93
VIIRS All 5 I-bands RBF Yes 0.97 0.93

We note that feature selection may be beneficial especially with very small training

sets. Ideally, SVM automatically prioritizes the more important dimensions in the feature

vector, but when only few examples are available, the danger of spurious correlations in
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Table 3.8.: Detailed results on MODIS (left) and VIIRS (right) data for the best cases
of 4-fold cross validation on combined data from two winters. Acc denotes
accuracy. Fr and N-Fr represent classes frozen and non-frozen respectively.

Recall Precision IoU

Fr 0.99 0.99 0.98
N-Fr 0.99 0.99 0.99
Acc 0.99

mIoU 0.99

Recall Precision IoU

Fr 0.93 0.97 0.90
N-Fr 0.99 0.97 0.96
Acc 0.97

mIoU 0.93

less discriminative bands increases. For lake ice detection, where few channels carry most

of the information, we recommend the use of automatic feature selection in case the SVM

over-fits.

For a practically useful and efficient learning-based monitoring framework, a model

should be trained using annotated data from a handful of lakes as well as a few winters,

but should be able to predict for lakes and winters not seen during training. To test

the performance of our approach in such scenarios, we perform the leave one lake out,

respectively leave one winter out cross validation experiments. In all the following exper-

iments, we used all 12 (5) bands of MODIS (VIIRS), optimum hyperparameters chosen

by grid-search (cost 10 and gamma 1 for RBF kernel, cost 0.1 for linear kernel), and MTA

with Gaussian kernel (smoothing parameter 3).

Leave one lake out cross validation

This experiment evaluates the across-lake generalisation capability of the classifier. We

used the SVM model trained on pixels of all but one lake (from both winters) and test

on the pixels from the remaining lake, in round-robin mode. MODIS and VIIRS results

are presented in Tables 3.9 and 3.10, respectively. As per the results, our models fair

well even when trained using only pixels from different lakes. Using both RBF and linear

kernels, our algorithm gives excellent results on lakes Sils and Silvaplana consistently

with both VIIRS and MODIS data. Table 3.2 shows that both these lakes are similar in

many aspects. It is expected that for a learning-based system, predictions are better if

the test data is more similar to the training data. The performance of RBF kernel on

lakes St. Moritz and Sihl is also good, but not as good as Sils and Silvaplana. Recall that

St. Moritz has just four clean pixels per MODIS acquisition (see Table 3.5) and that the

absolute geolocation accuracy could be critical for such a small lake. It appears that for

St. Moritz, the linear kernel does not generalise unlike other lakes, but we do not draw

any firm conclusions based on these results as the lake is too small. Lake Sihl is slightly

different compared to the other lakes (altitude, area etc., refer Table 3.2) and hence the

SVM encounters a more generalisation loss. Still a mean IoU of 0.78 (corresponding to

93% correctly classified pixels) for MODIS, respectively 0.85 (95%) for VIIRS is a rather

good result. For both sensors, the performance of the linear kernel on Sihl is better

compared to RBF. Given the fact that Sihl has a somewhat different geography than the

other lakes, it appears that the linear kernel generalises better.
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3. Lake ice monitoring from optical satellites and webcams

Table 3.9.: MODIS leave one lake out results. Numbers are in A/B format where A and
B represent the results using Radial Basis Function (RBF) and linear kernels,
respectively. The better kernel for a given experiment is shown in black, worse
kernel in grey.

Lake Sihl
Recall Precision IoU

Fr 0.82/0.79 0.63/0.78 0.55/0.65
N-Fr 0.90/0.95 0.96/0.96 0.87/0.92
Acc 0.89/0.93

mIoU 0.71/0.78

Lake Sils
Recall Precision IoU

Fr 0.89/0.88 0.97/0.95 0.86/0.85
N-Fr 0.98/0.97 0.92/0.92 0.90/0.89
Acc 0.94/0.93

mIoU 0.88/0.87

Lake Silvaplana
Recall Precision IoU

Fr 0.91/0.81 0.96/0.97 0.88/0.79
N-Fr 0.97/0.98 0.93/0.86 0.90/0.85
Acc 0.94/0.91

mIoU 0.89/0.82

Lake St. Moritz
Recall Precision IoU

Fr 0.85/0.64 0.93/0.96 0.80/0.63
N-Fr 0.95/0.98 0.88/0.76 0.84/0.75
Acc 0.90/0.83

mIoU 0.82/0.69

Table 3.10.: VIIRS leave one lake out results. Numbers are in A/B format where A and B
represent the results using RBF and linear kernels, respectively. The better
kernel for a given experiment is shown in black, worse kernel in grey.

Lake Sihl
Recall Precision IoU

Fr 0.87/0.87 0.73/0.85 0.66/0.76
N-Fr 0.92/0.97 0.97/0.97 0.90/0.94
Acc 0.91/0.95

mIoU 0.78/0.85

Lake Sils
Recall Precision IoU

Fr 0.93/0.89 0.97/0.99 0.90/0.88
N-Fr 0.98/0.99 0.94/0.91 0.92/0.90
Acc 0.95/0.94

mIoU 0.91/0.89

Lake Silvaplana
Recall Precision IoU

Fr 0.91/0.87 0.97/0.98 0.88/0.86
N-Fr 0.97/0.98 0.92/0.89 0.90/0.88
Acc 0.94/0.93

mIoU 0.90/0.87

Leave one winter out cross validation

To investigate the adaptability of a model to the potentially different conditions of an

unseen winter, we trained the classifier using pixels from one of the two available winters

(from all lakes), and tested on the data from the other winter. The results for MODIS

and VIIRS are shown in Tables 3.11 and 3.12, respectively. Comparing these results with

Table 3.7, it can be inferred that, across winters, the SVM does encounter a generalisation

loss, especially with the RBF kernel. The loss with the linear kernel is minimal. Appar-

ently, the RBF overfitted to the data characteristics of the specific winter and did not

generalise as well as its linear counterpart. Note also, it is possible that freezing patterns

could vary across winters even for the same lake, and learning-based systems might fail

in case a pattern appears while testing that was not encountered during training. It is
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encouraging that the linear kernel does not seem to overfit much, owing to its relatively

lower capacity. Still, the results hint that the annotated data from more than one winter

should be present in the training set when setting up an operational system.

Table 3.11.: MODIS leave one winter out results. The numbers are shown in A/B format
where A and B represent the outcomes using RBF and linear kernels, re-
spectively. The better kernel for a given experiment is shown in black, worse
kernel in grey. Left is winter 16–17, right is winter 17–18.

Recall Precision IoU

Fr 0.72/0.77 0.90/0.91 0.67/0.72
N-Fr 0.96/0.97 0.89/0.91 0.86/0.88
Acc 0.89/0.91

mIoU 0.76/0.80

Recall Precision IoU

Fr 0.73/0.84 0.64/0.85 0.52/0.73
N-Fr 0.89/0.96 0.93/0.96 0.83/0.92
Acc 0.86/0.94

mIoU 0.68/0.83

Table 3.12.: VIIRS leave one winter out results. The numbers are shown in A/B format
where A and B represent the outcomes using RBF and linear kernels respec-
tively. The better kernel for a given experiment is shown in black, worse
kernel in grey. Left is winter 16–17, right is winter 17–18.

Recall Precision IoU

Fr 0.83/0.79 0.92/0.99 0.77/0.78
N-Fr 0.96/0.99 0.91/0.89 0.88/0.89
Acc 0.91/0.92

mIoU 0.82/0.84

Recall Precision IoU

Fr 0.87/0.90 0.77/0.79 0.69/0.72
N-Fr 0.93/0.94 0.97/0.97 0.90/0.91
Acc 0.92/0.93

mIoU 0.79/0.82

Timeline plots and qualitative results

Fig. 3.13 shows the results of lake Sihl from a full winter (September 2016 till May 2017),

listed in chronological order on the x-axis. For each cloud-free day (at least 30% of the

lake pixels non-cloudy), the SVM result is shown on the y-axis (in the top and middle

timelines) as the percentage of cloud-free clean pixels that are classified as non-frozen.

In the bottom timeline, we display the MODIS snow product (100 means no snow and 0

means fully snow covered). The webcam-based ground truth is shown as a cyan colour

line in all timeline plots, with four levels (100 for fully non-frozen, 75 for more snow or

more ice days, 25 for more water and 0 for fully-frozen). For each sensor, the combined

training data of all available lakes from two winters (except Sihl from 16–17) is used for

these timeline plots. It can be seen from both MODIS and VIIRS timelines that thin ice

vs.water confusion exists for both MODIS and VIIRS. This is because during the freeze-

up period (late December), the model classifies a set of consecutive days as completely

non-frozen, while the ground truth asserts more ice, probably thin ice floating on water.

In this paper, we compare our results of lake Sihl from winter 2016–2017 with the

MODIS snow product (Hall and Riggs, 2016). It can be inferred from Fig. 3.13 that

except for very few days, our MODIS results are in agreement with the MODIS snow
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product. Although the newly added MOD10A1F (collection 6.1) seems to be a better

option with the ’cloud gap filled’ feature, we use the MOD10A1 product (Hall and Riggs,

2016, collection 6, daily cloud-free snow cover derived from the Terra MODIS) since the

former product is not yet available for winter 2016–2017. Note that the MODIS product

has a relatively coarse spatial resolution of 500 m as opposed to our results at 250 m

resolution.

Fig. 3.14 displays exemplary qualitative results (lake Sihl, MODIS data, winter 16–

17). Three non-transition dates (27 September 2016, 3 January 2017, and 28 March

2017) and a transition date (14 March 2017) are shown. The first and second rows

portray the classification results and the confidence of the classifier (soft probability

maps) respectively. In row 1, a clean pixel is shown as blue if the classifier estimates it

as frozen, and red if non-frozen. In the second row, more blue/less red colour denotes

a higher probability of being frozen. A pixel is not processed if it is cloudy. All except

the fourth column show successfully classified days. In column 4, we present the results

of an actually fully non-frozen day (27 September 2016) that was detected as almost

fully frozen. Note the missing cloudy pixels in this image. This example shows that

erroneous cloud masks (especially the false negatives) also induce errors in our predictions.

Similar effects can be observed for the end of April (MODIS) and early October (VIIRS).

Confusion due to undetected clouds is also the reason why a few days were estimated as

non-frozen during mid-winter (see VIIRS timeline, February).

3.3.2. Experiments with webcam images

The neural network is implemented in Tensorflow (https://www.tensorflow.org/).

We extracted square patches (crop size, see Table 3.13) from the images and train the net-

work by minimising the weighted cross-entropy loss, giving more attention to the under-

represented classes to compensate imbalances in the training data. Testing is performed

at full image resolution without cropping. More details about the hyperparameters used

are shown in Table 3.13.

Table 3.13.: Hyperparameters for the Deep-U-Lab model.

Name Lake Detection Lake Ice Segmentation

Crop size 500, 500 321, 321
Optimiser stochastic gradient descent stochastic gradient descent
Atrous rates (dilation) 6, 12, 18 6, 12, 18
Output stride 16 16 (training), 8 (testing)
Base learning rate 1 × 10−5 1 × 10−5

Batch size 4 8
Epochs 100 100

For the task of lake detection, we collected image streams from four different lakes,

see Table 3.14. The cameras near lakes Sihl and St. Moritz are rotating while the others

are stationary. Performance of the network for lake detection is assessed only on summer

images in order to sidestep the complications in winter due to the presence of snow in
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Figure 3.13.: MODIS (top) and VIIRS (middle) timeline results of lake Sihl for full
winter 16–17 using linear kernel. A timeline of the MODIS snow and ice
product (bottom) is also plotted for comparison with our results and the
webcam-based ground truth. In all timelines, the x-axis shows all dates
that are at least 30% cloud-free in chronological order and the respective
results [% of Non-Frozen (NF) pixels] are plotted on the y-axis.

and around the lake. A score of ≥0.9 mIoU is achieved, see Table 3.14. However, the

IoU for the lake (class foreground, FG) is somewhat lower because of the severe class

imbalance. Note that IoU is a rather strict measure, e.g., detection with 80%, recall at

80%, and precision results in an IoU of 60%. Qualitative results are displayed in Fig. 3.15.

The first three rows show successful cases while the last row displays a case with some

misclassification. Note that on such a low visibility day, even humans find it difficult to

spot the transition from lake to sky. Whereas our network detected the lake even in the

presence of challenging sun reflections (row 2) and when the foreground lake area is very

small (row 3).

To assess lake ice segmentation, we experimented exhaustively for the two lakes

(St. Moritz, Sihl) and two winters (16–17, 17–18) annotated in the Photi-LakeIce dataset.

The evaluation includes experiments for segmentation within the same camera, across

cameras, across winters, and across lakes.

For same camera experiments, we employed a 75%/25% train-test split. Corre-

sponding quantitative results are presented in Table 3.15. Note that, in all comparable

experiments, we surpass previous state-of-the-art (Tom et al., 2019) by a significant mar-

gin. They produced results only on two cameras monitoring St. Moritz. We demonstrate
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3 January 2017 28 March 2017 14 March 2017 27 September 2016

Frozen Non-Frozen Transition Non-Frozen

Figure 3.14.: MODIS qualitative results using the linear kernel. Top and bottom rows
show classification results and corresponding confidence respectively. Re-
sults of cloudy pixels are not displayed. First, second, and third columns
show success cases while the fourth column displays a failure case. In the
second row, more red means more non-frozen and more blue means more
frozen. The dates and ground truth labels are shown below each sub-figure
in the first and second rows respectively.

Table 3.14.: Lake detection results (mIoU). The four cameras that monitor lake Silvaplana
are indicated as S0, S1, S2, and S3. BG and FG denote background and
foreground (lake area) respectively. #Im represents the number of images.

Training Set Test Set BG FG
mIoU

Lakes #Im Lake #Im (IoU) (IoU)

S0, S1, S2, S3, Sils, St. Moritz 9104 Sihl 448 0.95 0.60 0.93
S0, S1, S2, S3, St. Moritz, Sihl 7477 Sils 2075 0.95 0.60 0.93
S1, S2, S3, Sils, St. Moritz, Sihl 8041 S0 1511 0.96 0.59 0.94
S0, S2, S3, Sils, St. Moritz, Sihl 8676 S1 876 0.92 0.58 0.90
S0, S1, S3, Sils, St. Moritz, Sihl 7906 S2 1646 0.98 0.44 0.95
S0, S1, S2, Sils, St. Moritz, Sihl 7652 S3 1900 0.98 0.55 0.95
S0, S1, S2, S3, Sils, Sihl 8456 St. Moritz 1096 0.93 0.80 0.92

our system also on a new lake (Sihl, camera 2) with images that are significantly harder

to classify (see Fig. 3.5 and Table 3.6) due to poor spatial resolution, image compression

artefacts, frequent unfavourable lighting, etc. Additionally, the foreground to background

pixel ratios in Sihl images are very low, which poses an additional challenge, and magni-

fies the influence of very small misclassified areas on the quantitative error metrics. As

a result, the performance on lake Sihl is not as good as for St. Moritz. Nevertheless,
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St. Moritz (46.50◦N, 9.84◦E) Our prediction Ground truth

Sihl (47.13◦N, 8.74◦E) Our prediction Ground truth

Silvaplana (46.51◦N, 9.81◦E) Our prediction Ground truth

Sihl (47.13◦N, 8.74◦E) Our prediction Ground truth

Colour code

Figure 3.15.: Lake detection results. Both success (rows 1,2,3) and failure (row 4) cases
are shown. The colour code used to visualise the results is also displayed.
The first column shows the lakes being monitored, along with the approxi-
mate location (latitude, longitude) of the webcam.

the predictions have a mean IoU > 74%. The images with a mix of classes, like water

with some ice or partially snow-covered ice are the most difficult ones to classify in part

due to the fact that the ice class is especially rare and therefore under-represented in the

training data, as snow that falls on the ice does not melt away for a long time.

All results shown so far are for networks trained with data augmentation. To quantify
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Table 3.15.: Results (IoU) of same camera train/test experiments. We compare our re-
sults with Tiramisu Network (Tom et al., 2019, shown in grey). Cameras 0
and 1 monitor lake St. Moritz while camera 2 captures lake Sihl.

Training Set Test Set
Water Ice Snow Clutter mIoU

Camera Winter Camera Winter

Camera 0 16–17 Camera 0 16–17 0.98/0.70 0.95/0.87 0.95/0.89 0.97/0.63 0.96/0.77
Camera 0 17–18 Camera 0 17–18 0.97 0.88 0.96 0.87 0.93
Camera 1 16–17 Camera 1 16–17 0.99/0.90 0.96/0.92 0.95/0.94 0.79/0.62 0.92/0.85
Camera 1 17–18 Camera 1 17–18 0.93 0.84 0.92 0.84 0.89
Camera 2 16–17 Camera 2 16–17 0.79 0.62 0.81 — 0.74
Camera 2 17–18 Camera 2 17–18 0.81 0.69 0.86 — 0.79

the influence of this common practice, we also report results without augmentation for

camera 0, which are 2 percent points lower, see Table 3.16. Additionally, in order to study

Table 3.16.: Effect of data augmentation (IoU values) on the same camera train/test
experiment (camera 0).

Experiment Water Ice Snow Clutter mIoU

Without augmentation 0.97 0.93 0.91 0.96 0.94
With augmentation 0.98 0.95 0.95 0.97 0.96

how quickly the network learns, the mIoU is plotted on the training set against the number

of training iterations. For that study, we use the example of lake St. Moritz (camera 0)

from winter 16–17. Results are shown in Fig. 3.16. The (smoothed) learning curve is

very steep initially (<10 k steps) but does not completely saturate, which indicates that

more training data could probably improve the results further.

Figure 3.16.: Evolution of mean IoU (mIoU) against the number of training steps (camera
0, St. Moritz, winter 2016–2017). Dark red curve represents a smoothed
version of the original (light red) curve.

The generalisation performance (across cameras and winters) of the best webcam

model reported in previous work (Tom et al., 2019) is still unsatisfactory, especially for

48



3.3. Results

the cross-camera case. As can be seen from our cross-camera results (within St. Moritz

cameras, refer Table 3.17), the Deep-U-Lab model trained using data from one camera

works well on a different camera, meaning that our method generalises well across cameras

with totally different viewpoints, image scales, and lighting conditions. Note that, we

indeed improve over prior state-of-the-art (Tom et al., 2019) significantly (gain of 35–40

percent points), which implies that Deep-U-Lab has the capacity to learn generalisable

class appearance, without overfitting to a specific camera geometry or viewpoint. Our

results for winter 17–18 are not as good as 16–17, primarily due to complicated lighting

and ice patterns (e.g., black ice) which appeared only in that winter. In addition, the

scores for the ice and clutter classes are low, primarily due to lower sample numbers. A

comparison to prior work is not possible for winter 17–18, as that season has not been

processed before.

Table 3.17.: Results (IoU) of cross-camera experiments. We compare our results with the
Tiramisu Network (Tom et al., 2019, shown in grey). Both cameras 0 and 1
monitor lake St. Moritz.

Training Set Test Set
Water Ice Snow Clutter mIoU

Camera Winter Camera Winter

Camera 0 16–17 Camera 1 16–17 0.76/0.36 0.75/0.57 0.84/0.37 0.61/0.27 0.74/0.39
Camera 0 17–18 Camera 1 17–18 0.62 0.66 0.89 0.42 0.64
Camera 1 16–17 Camera 0 16–17 0.94/0.32 0.75/0.41 0.92/0.33 0.48/0.43 0.77/0.37
Camera 1 17–18 Camera 0 17–18 0.59 0.67 0.91 0.51 0.67

Deep-U-Lab performs superior to prior state-of-the-art in cross-winter experiments,

too (Table 3.18), outperforming Tom et al. (2019) by about 14–20 percent points. How-

ever, it does not generalise across winters as well on lake Sihl.

Table 3.18.: Results (IoU) of cross-winter experiments. We compare our results with
the Tiramisu Network (Tom et al., 2019, shown in grey). Cameras 0 and 1
monitor lake St. Moritz while camera 2 captures lake Sihl.

Training Set Test Set
Water Ice Snow Clutter mIoU

Camera Winter Camera Winter

Camera 0 16–17 Camera 0 17–18 0.64/0.45 0.58/0.44 0.87/0.83 0.59/0.40 0.67/0.53
Camera 0 17–18 Camera 0 16–17 0.98 0.91 0.94 0.58 0.87
Camera 1 16–17 Camera 1 17–18 0.86/0.80 0.71/0.58 0.93/0.92 0.57/0.33 0.77/0.57
Camera 1 17–18 Camera 1 16–17 0.93 0.76 0.86 0.65 0.80
Camera 2 16–17 Camera 2 17–18 0.61 0.14 0.35 — 0.51
Camera 2 17–18 Camera 2 16–17 0.41 0.18 0.45 — 0.50

For a more complete picture of the cross-winter generalisation experiment, we also

plot precision-recall curves (refer Fig. 3.17). Similar curves for same camera and cross-

camera experiments can be found in Prabha et al. (2020). As expected, segmentation

of the two under-represented classes (clutter and ice) is less correct. Additionally, for

the class clutter, a considerable amount of the deviations from ground truth occur due

to improper annotations rather than erroneous predictions. As drawing pixel-accurate

ground truth boundaries around narrow man-made items placed on frozen lakes such as
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tents, poles, etc. is time-consuming and tedious, the clutter objects are often annotated

with rough summary masks that include considerable snow/ice background. This greatly

exaggerates the (relative) number of clutter pixels in the annotations, thus increasing

the relative error. According to Fig. 3.17, operating points around 85% recall are a good

Precision-recall for class Ice (area = 0.91)
Precision-recall for class Snow (area = 0.95)
Precision-recall for class Clutter (area = 0.58)
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Figure 3.17.: Precision-recall plots (St. Moritz) of cross-winter experiments. Best if
viewed on screen.

trade-off for cross-winter segmentation, if not every single pixel must be labelled. A more

extreme test is generalisation across lakes, with different spatial resolution, image quality,

reflection, and lighting patterns, shadows, etc. To our knowledge our work is the first

one to try this. See Table 3.19 for results. Before training the models, we remove the

clutter pixels from camera 0, since camera 2 does not have any clutter that could serve as

training data. Classifying images from a lake with different characteristics and acquired

with a different type of camera proves challenging. In one case, the results are acceptable

for the more frequent classes despite a noticeable drop, as for the case camera 2→camera

0. In the other case camera 0→camera 2 the attempt largely fails. The images of lake

Sihl (camera 2) are of clearly lower quality and more difficult to classify, challenging even

human annotators. Consequently, training on St. Moritz does not equip the classifier to

deal with them.

Table 3.19.: Results (IoU) of cross-lake experiments. Cameras 0 and 2 monitor lakes
St. Moritz and Sihl respectively.

Training Set Test Set Water Ice Snow mIoU

Camera 0 (16–17) Camera 2 (16–17) 0.40 0.23 0.42 0.35
Camera 2 (16–17) Camera 0 (16–17) 0.85 0.25 0.68 0.60

In a further experiment, we divide the Photi-LakeIce dataset into six folds, see Table

3.20. This makes it possible to perform experiments with a larger amount of training

data, given that in previous experiments the loss had not fully saturated. As expected
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from a high-capacity statistical model, more training data improves the results i.e., it

seems feasible to build a practical system if one is willing to undertake a bigger (but still

reasonable and realistic) annotation effort. An exception in this experiment is lake Sihl

(camera 2), where the performance drops. This confirms the observation above that this

camera is the most difficult one to segment in our dataset, and the domain gap from

St. Moritz to Sihl is too large to bridge without appropriate adaptation measures. One

solution might be fine-tuning with at least a small set of cleverly picked samples from the

target lake, but this is beyond the scope of the present paper.

Table 3.20.: Results (IoU) of leave one dataset out experiments. Cameras 0 and 1 monitor
lake St. Moritz while camera 2 captures lake Sihl.

Training Set Test Set Water Ice Snow Clutter mIoU

Camera 0 (17–18), Cameras 1 and 2 (2 winters) Camera 0 (16–17) 0.98 0.90 0.96 0.62 0.86
Camera 0 (16–17), Cameras 1 and 2 (2 winters) Camera 0 (17–18) 0.83 0.78 0.95 0.59 0.78
Camera 1 (17–18), Cameras 0 and 2 (2 winters) Camera 1 (16–17) 0.99 0.92 0.91 0.69 0.87
Camera 1 (16–17), Cameras 0 and 2 (2 winters) Camera 1 (17–18) 0.92 0.81 0.96 0.55 0.81
Camera 2 (17–18), Cameras 0 and 1 (2 winters) Camera 2 (16–17) 0.35 0.25 0.46 — 0.35
Camera 2 (16–17), Cameras 0 and 1 (2 winters) Camera 2 (17–18) 0.66 0.30 0.36 — 0.44

To assess the lake ice segmentation visually, we depict qualitative webcam results for

cameras 0 and 1 in Fig. 3.18. Deep-U-Lab successfully segments correctly in challenging

scenarios. For instance, our network performed well even when shadows appeared on the

lake either from clouds or nearby mountains (Fig. 3.18 row 1). To determine how well the

Deep-U-Lab predictions follow the ground truth, especially during freezing and thawing

periods, we plot time series results that include all the transition as well as non-transition

days from a full winter (17–18, see Fig. 3.19). Per image, we sum the numbers of ice and

snow pixels and divide by the sum of all lake pixels. The resulting fractions of frozen

pixels are aggregated into a daily value by taking the median. Optionally, the daily

values are further processed with another 3-day median to improve temporal coherence.

The daily fractions of frozen pixels (y-axis) are displayed in chronological order (x-axis),

for the ground truth, daily prediction, and smoothed prediction. Smoothing across time

improves the final results by ≈3%.

3.3.3. Ice-on/off results

We go on to estimate the ice-on and ice-off dates using our satellite- and webcam-based

approaches, results are shown in Table 3.21. A comparison with the ground truth dates

(estimated by visual interpretation of webcams by a human operator) is also provided.

Additionally, we compare our results with the in-situ temperature analysis results re-

ported in Tom et al. (2019). We can only show the results for one winter (16–17), since

ground truth is not available for 17–18.

Prior to the estimation of the two dates, we combine the time series results of both

MODIS and VIIRS (Fig. 3.13) in order to minimise data gaps due to clouds, by simply

filling in missing days in the VIIRS time series with MODIS results, whenever the latter

are available. Even after merging the two time series, some gaps still exist during the

critical transition periods. Note that the presence of gaps near the ice-on/off dates could
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Camera 0 (St. Moritz) Our prediction Ground truth

Camera 1 (St. Moritz) Our prediction Ground truth

Colour code

Figure 3.18.: Qualitative lake ice segmentation results on webcam images. The colour
code is also shown.

affect the accuracy and confidence in the estimated dates. This is one of the risks when

using optical satellite image analysis and where webcams could constitute a valuable

alternative, if sufficient coverage can be ensured for a lake of interest.
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Figure 3.19.: Cross-camera time series results (winter 17–18) of lake St. Moritz using
Deep-U-Lab. Results for camera 1 (when trained on camera 0 data) is
displayed. All dates are shown in chronological order on the x-axis and the
respective results (percentage of frozen pixels) are plotted on the y-axis.
Data lost due to technical failures are shown as red bars.

Table 3.21.: Ice-on/off dates (winter 16–17). Ground truth dates are shown in the order
of confidence in case of more than one candidate.

Dates Ground Truth Satellite Approach Webcam Approach In-Situ [T] (Tom et al., 2019)

ice-on (Sihl) 1 January 2017 3 January 2017 4 January 2017 28–29 December 2016
ice-off (Sihl) 14 March 2017, 15 March 2017 10 March 2017 14 February 2017 16 March 2017
ice-on (Sils) 2 January 2017, 5 January 2017 6 January 2017 - 31 December 2016
ice-off (Sils) 8 April 2017, 11 April 2017 31 March 2017 - 10 April 2017

ice-on (Silvaplana) 12 January 2017 15 January 2017 - 14 January 2017
ice-off (Silvaplana) 11 April 2017 30 March 2017 - 14 April 2017
ice-on (St. Moritz) 15–17 December 2016 1 January 2017 14 December 2016 17 December 2016
ice-off (St. Moritz) 30 March–6 April 2017 7 April 2017 18 March–26 April 2017 5–8 April 2017
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We estimate the ice-on/off dates from the combined time series and show them as

“satellite approach” in Table 3.21. The best results are obtained with an RBF kernel for

St. Moritz and with a linear kernel for rest of the lakes. In most cases the ice-on/off dates

have an offset of 1–4 days from the ground truth. Exceptions are the ice-off dates of Sils

and Silvaplana. Note that data from only one winter (of the lake being tested) is present

in the corresponding training set. It appears that training data from more winters is

critical to estimate accurate ice-on/off dates. We note that there could also be noise in

the ground truth ice-on/off dates due to human interpretation errors. Using the satellite

approach, significant errors in ice-on/off estimation exist for St. Moritz. Recall that the

daily decision for lake St. Moritz is taken based on just four pixels and based only on

cloud-free days in MODIS. This clearly points to the fact that MODIS (and even more,

VIIRS) imagery is not the best choice for very small lakes. The results obtained with

webcams show a higher accuracy for lake St. Moritz (see Table 3.21 and Fig. 3.19). Here,

we use camera 0 to estimate the two phenological dates, since it has a better coverage of

the lake than camera 1. Note that no data is available between 18.03.2017 and 26.04.2017

due to a technical problem with the camera, and ice-off unfortunately occurred during

that period. While we obtain excellent results for St. Moritz with webcams, the accuracy

of ice-on/off for lake Sihl is not good, primarily because of the limited image quality with

low spatial resolution (see Table 3.6), compression artefacts, and acute view angles (see

Fig. 3.5).

3.4. Discussion

3.4.1. VIIRS and MODIS analysis

The optical satellite sensors such as MODIS and VIIRS can clearly serve as a basis for rou-

tine monitoring of lake ice (especially for global coverage) and the results achieved show

a high level of accuracy. One weakness is their inability to penetrate clouds, especially

during lake freeze-up and break-up. The main advantage of MODIS is the availability of

longer time series data. In addition, MODIS has useful bands in various areas of the elec-

tromagnetic spectrum. However, there are several disadvantages too. The radiometric

quality is not that good, moreover, the sensor is very old and its absolute geolocation is

less accurate than that of VIIRS (more important for small lakes). Furthermore, MODIS

data is expected to eventually be discontinued, whereas VIIRS operation is guaranteed

over a longer future period (JPSS-1/NOAA-20 until 2024; JPSS-2 with same suite of

sensors will be launched in 2021 with designed life time of 7 years; JPSS-3 and -4 are in

the planning phase).

Poor spatial resolution (particularly for VIIRS), makes it impossible to operate our

satellite methodology on small-size lakes up to at least 2 km2. Another issue is the

significant confusion between (thin) ice and water since the similar reflectance of these

two classes can confuse the classifier. Unfortunately there exist very few non-transition

dates with no clouds, snow-free ice, mixture of thin ice, and water in both the MODIS

and VIIRS datasets, such that training a reliable model for these situations still remains a

challenge. Moreover, the presence of label noise in the ground truth impacts the training.

Such noise occurs mainly because most of the webcams are not optimally configured and
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it is very difficult to capture the whole lake in a single webcam frame. This problem is

even bigger for larger lakes. Integrating the visual interpretations from multiple cameras

observing a lake is cumbersome as well as challenging. One possible solution for the noise

problem could be to not train on dates near the transition period, for which label noise

in the ground truth is more likely. It is, however, equally possible that this would even

aggravate the problem, as the conditions seen in the training set would become even

less representative of the transition periods. Large-scale in-situ measurements are an

alternative to webcam-based ground truth, but are not realistic for wide-area coverage.

Furthermore, imperfections of the cloud-masks bring in more errors in the high-accuracy

range where our method operates.

Regarding our SVM-based methodology, the RBF kernel tends to not generalise as

well as its linear counterpart. However, this behaviour may depend on the available

training data. Under our current experimental conditions, the linear kernel overall has

the upper hand, but this assessment could still change when using data from multiple

winters.

3.4.2. Webcam analysis

For webcam data featuring sufficient spatial resolution, we see a great potential for lake

ice monitoring. We do note that webcam placement is restricted by practical consid-

erations. Selecting and/or mounting webcams for lake ice monitoring will normally be

a compromise between the ideal geometric configuration and finding a place where the

device can be installed with reasonable effort. For the ideal placement, the usual perspec-

tive imaging rules apply, most importantly viewing directions from above are preferable

over grazing angles, and viewing directions directly towards the sun should be avoided

as much as possible.

One question that still remains unanswered is: What is the reason that results in

Deep-U-Lab outperforming the Tiramisu lake ice network (Jégou et al., 2016, Xiao et al.,

2018, Tom et al., 2019)? One possible explanation is that our model profits from the

smarter dilated convolutions and multi-scale pyramid pooling at the feature extraction

stage, effectively letting the network grasp a relatively broader context as opposed to the

Tiramisu network. Additionally, our model heavily benefits from the pre-trained weights

to learn with still limited training data for the lake ice task. Our Deep-U-Lab model

did not converge when we tried to train it without transfer learning whereas pre-trained

weights for FC-DenseNet are not available, so that we can not at the moment quantify

the influence of pre-training.

Regarding the computational efficiency of the CNN approach, (off-line) training for

100k steps on camera 0 (820 images) takes ≈24 h on a PC equipped with a NVIDIA

GeForce GTX 1080 Ti graphics card (for cross-camera experiment, lake St. Moritz, winter

16–17). Testing takes ≈10 minutes for the 1180 images of camera 1.
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3.5. Conclusion

We investigated the potential of machine-learning based image analysis, in combination

with various image sensors to retrieve lake ice. So far such an approach has rarely

been explored, especially with regard to the many small lakes on Earth (particularly

in mountainous regions), but it can be a valuable source of information that is largely

independent of in-situ observations as well as models of the freezing/thawing process. We

put forward an easy-to-use, SVM-based approach to detect lake ice in MODIS and VIIRS

satellite images and show that it delivers conclusive results. Additionally, we set a new

state-of-the-art from webcam-based lake ice monitoring, using the Deep-U-Lab network,

and have in that context also automated the detection of lake outlines as a further step

towards operational monitoring with webcams. Finally, we introduced a new, public

webcam dataset with pixel-accurate annotations.

To detect lake ice from MODIS and VIIRS optical satellite imagery, we proposed

a simple, generic machine learning-based approach that achieves high accuracy for all

tested lakes. Though we focused on Swiss Alpine lakes, the proposed approach is very

straight-forward and hence the results could hopefully be directly applied to other lakes

with similar conditions, in Switzerland and abroad, and possibly to other sensors with

similar characteristics. We demonstrated that our approach generalises well across winters

and lakes (with similar geographical and meteorological conditions). In addition to the

lake ice detection from space, we have proposed the use of free data from terrestrial

webcams for lake ice monitoring. Webcams are especially suitable for small lakes (ca.

up to 2 km2), which cannot be monitored by VIIRS-type sensors. Despite the limited

image quality, we obtained promising results using deep learning. Webcams have good

ice detection capability with a much higher spatial resolution compared to satellites.

However, one has no control over the location, orientation, lake area coverage, and image

quality (often poor) of public webcams. In addition, there are no, or too few, webcams

for some lakes. On the positive side, webcams are largely unaffected by cloud cover. For

continental/global coverage, satellite-based monitoring is clearly the method of choice,

again confirming the advantage of satellite observations for large-scale Earth observation.

For focused, local campaigns and as a source of reference data at selected sites, the

webcam-based monitoring method may be an interesting alternative. Note also, it may

in certain cases be warranted to install dedicated webcams (respectively, surveillance

cameras) with pan, tilt and zoom functionalities optimised for lake ice monitoring.

One way to circumvent the problem of clouds with optical satellite sensors is to use

microwave data. In particular, Sentinel-1 SAR data (GSD 10 m, freely available) looks

very promising (Tom et al., 2020a). Optical sensors such as Sentinel-2 and Landsat-8 are

visually easier to interpret w.r.t. lake ice than Radar, and have a better spatial resolution

than MODIS and VIIRS. Although they are not suitable as a stand-alone source for lake

ice monitoring due to their low temporal resolution (under ideal conditions five days),

they may still in certain cases be useful to fill gaps in VIIRS/MODIS results.

We consider our satellite-based approach as a first step and ultimately hope to pro-

duce a 20-year time series, using MODIS data since 2000. It will be interesting to correlate

the longer-term lake freezing trends with other climate time series such as surface temper-

ature or CO2 levels. We expect that such a time series will be helpful to draw conclusions
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about the local and global climate change.

One technical finding of our study is that the prior learning-based approaches (Xiao

et al., 2018, Tom et al., 2019) did not fully leverage the power of deep CNNs to observe

lake ice. At the methodological level, we clearly demonstrated the potential of machine

(deep) learning systems for lake ice monitoring, and hope that this research direction will

be pursued further. Given the good cross-winter and cross-camera generalisation of the

models and computational efficiency at inference time (on GPU for the CNN part), an

operational deployment is within reach. Our results show that employing the state-of-the-

art CNN frameworks was highly effective for ice analysis, especially during the transition

periods. What still needs improvement is cross-lake generalisation. We do expect that a

Deep-U-Lab model trained using data from a couple of winters could consistently reach

>80% IoU on the four major classes. From the segmentation results we were in many

cases able to determine the ice-on and ice-off dates to within 1–2 days and for that

task the relatively better quality webcams were particularly helpful, as satellite-based

segmentation was less reliable during the transition periods. An interesting direction

may be to reduce the one-time effort for ground truth labelling with techniques such as

domain adaptation or active learning.

For monitoring small lakes, integrating the webcam results with in-situ temperature

measurements seems to be a possible future direction. Additionally, for such lakes, usage

of UAVs equipped with both thermal and RGB cameras could be a plausible option, but

may be difficult to operationalise due to the need for accurate geo-referencing, lack of

robustness in cold weather, as well as legal flight restrictions. An intriguing extension of

the webcam-based approach could be to use crowd-sourced imagery for lake ice detection.

We published some preliminary results in one of our recent works (Prabha et al., 2020).

A large, and exponentially growing, number of images are available on the internet and

social media. With the advance of smartphones equipped with cameras and the habit of

selfies, many personal images show a lake in background. Still regular coverage of a given

site is hard to ensure, and accurate geo-referencing of such images is challenging.

3.6. Acknowledgements

This research was funded mainly by the Swiss Federal Office of Meteorology and Clima-

tology MeteoSwiss (in the framework of GCOS Switzerland) and partially by the Sofja

Kovalevskaja Award of the Humboldt Foundation. The APC was funded by ETH Zurich.

We express our gratitude to all the partners in our MeteoSwiss projects for their support.

Additionally, we acknowledge Mathias Rothermel, Muyan Xiao, and Konstantinos Fokeas

for their contributions in collecting and annotating the images of Photi-LakeIce dataset.

We also thank Hotel Schweizerhof for providing the webcam data of lake St. Moritz.

56



4 Recent Ice Trends in Swiss

Mountain Lakes: 20-year

Analysis of MODIS Imagery

Manu Tom, Tianyu Wu, Emmanuel Baltsavias, Konrad Schindler

Under review

Abstract

Depleting lake ice can serve as an indicator for climate change, just like sea level rise or

glacial retreat. Several Lake Ice Phenological (LIP) events serve as sentinels to understand

the regional and global climate change. Hence, it is useful to monitor long-term freezing

and thawing patterns of lakes. In this paper we report a case study for the Oberengadin

region of Switzerland, where there are several small- and medium-sized mountain lakes.

We observe the LIP events, such as freeze-up, break-up and ice cover duration, across

two decades (2000-2020) from optical satellite images. We analyse time series of MODIS

imagery by estimating spatially resolved maps of lake ice for these Alpine lakes with su-

pervised machine learning (and additionally cross-check with VIIRS data when available).

To train the classifier we rely on reference data annotated manually based on publicly

available webcam images. From the ice maps we derive long-term LIP trends. Since the

webcam data is only available for two winters, we also validate our results against the

operational MODIS and VIIRS snow products. We find a change in Complete Freeze

Duration (CFD) of -0.76 and -0.89 days per annum (d/a) for lakes Sils and Silvaplana,

respectively. Furthermore, we observe plausible correlations of the lake freezing and

thawing trends with climate data such as air temperature, sunshine and precipitation

measured at nearby meteorological stations. We notice that mean winter air tempera-

ture has negative correlation with the freeze duration events and break-up events, and

positive correlation with the freeze-up events. Additionally, we observe strong negative

correlation of sunshine during the winter months with the freeze duration and break-up

events. Furthermore, we note that increased precipitation in the months January to May

(likely to be predominantly snow), favours later break-up.
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4.1. Introduction

Scientists around the globe strive to understand the changing climate, to find ways to

mitigate the impact of associated extreme weather conditions, and to protect the en-

vironment for future generations (Rolnick et al., 2019). The repercussions of climate

change are foreseen to amplify in the next few decades. Furthermore, the latest climate

models underline the need for urgent mitigation (Forster et al., 2020). ”Human activities

are estimated to have caused approximately 1.0◦C of global warming above pre-industrial

levels, with a likely range of 0.8◦C to 1.2◦C. Global warming is likely to reach 1.5◦C

between 2030 and 2052 if it continues to increase at the current rate”, said the IPCC

special report on impacts of global warming (Masson-Delmotte et al., 2018).

Many studies have reported on the response of LIP trends to climate variations

(Duguay et al., 2006, Howell et al., 2009, Brown and Duguay, 2010, Kang et al., 2012,

Surdu et al., 2014, Sharma et al., 2019). Local weather patterns and lake ice formation

processes are inter-connected. Hence, monitoring the long-term LIP trends can provide

integral cues on the regional and global climate. Increasing temperatures cause decreasing

trends in the lake ice formation process. Air temperature in the vicinity of a lake affects

the ice formation process within the lake and vice versa. Moreover, there are potential

positive feedbacks, as frozen lakes have higher albedo (especially when covered with snow),

and thus lower absorption and evaporation (Wang et al., 2018c, Slater et al., 2021). In

addition to its usefulness for climate studies, lake ice monitoring is also crucial to organise

safe transportation especially in lakes that freeze only partially, to conserve freshwater

ecology, to trigger warnings against ice shoves caused by wind during the break-up period,

and for winter tourism.

In the present case study, we aim to monitor lakes of the Oberengadin region in

the Swiss Alps (which reliably freeze every winter) on a daily basis during the winter

months, to derive the spatio-temporal extent of lake ice.1 Specifically, we estimate the

four important LIP events: Freeze-Up Start (FUS), Freeze-Up End (FUE), Break-Up

Start (BUS) and Break-Up End (BUE). Using these four dates, we also estimate the

Complete Freeze Duration (CFD) and Ice Coverage Duration (ICD), refer to Table 4.1

for definitions. Some publications have termed FUE and BUS as ice-on and ice-off dates,

respectively (Hendricks Franssen and Scherrer, 2008, Tom et al., 2020c). However, other

researchers (and the NSIDC database, https://nsidc.org/) consider BUE as ice-

off (Duguay et al., 2015). Regarding the ice-on/off dates, the Global Climate Observing

System (GCOS) requirements are daily observations at an accuracy of ±2 days (https:

//gcos.wmo.int/en/essential-climate-variables/lakes/ecv-requirements).

In this work, we focus on estimating the spatio-temporal extent of the ice cover

from optical satellite data.2 Compared to other sensors, MODIS and VIIRS satellite

data have several advantages such as wide area coverage, good spectral and fine temporal

resolution (daily), free availability etc. Additionally, compared to other optical satellites

such as Landsat-8, Sentinel-2 and the like, MODIS and VIIRS offer the best spatio-

temporal resolution trade-off for the application of single-sensor lake ice monitoring, even

1Note that we do not include the ice thickness.
2we have previously also used webcams (Xiao et al., 2018, Tom et al., 2020c) and Sentinel-1 Synthetic

Aperture Radar (Tom et al., 2020a, SAR) for lake ice monitoring.
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though the spatial resolution is moderate (250-1000m Ground Sampling Distance, GSD).

In addition, the global coverage is beneficial to eventually scale up to country- or world-

wide monitoring. On the other hand, cloud cover is a bottleneck for optical satellite data

analysis. An important asset is the availability of large time series, e.g., MODIS data

is available for the entire period since 2000, contrary to other sensor data like airborne

or terrestrial photography, webcams etc. This makes it possible to implement a 20-year

analysis and to derive LIP trends.

The last decades have seen the rise of Machine Learning (ML) as a tool for data

analysis in remote sensing and the Earth sciences. That is, large-scale statistical data

analysis is used to capture the complex input-output relationships in a data-driven man-

ner. ML is a powerful tool to recognise the underlying patterns in data where mecha-

nistic models are lacking or too complicated. We leverage it to create a 20 year time

series of ice cover in Swiss mountain lakes primarily using the Terra MODIS (https:

//terra.nasa.gov/about/terra-instruments/modis) data, and show empirically

that the ice formation indeed follows a decreasing trend. We cast lake ice detection as

a 2-class (frozen, non-frozen) per-pixel supervised classification problem. Class frozen

represents both snow-on-ice and snow-free-ice pixels, while non-frozen denotes open wa-

ter. As part of our study, we compare the performance of three popular ML methods:

Support Vector Machine (Cortes and Vapnik, 1995, SVM), Random Forest (Breiman,

2001, RF), and XGBoost (Chen and Guestrin, 2016, XGB). Additionally, we assess the

sensitivity of these classifiers to the respective hyper-parameters. We find that a linear

SVM offers the best generalisation across winters and lakes for our data, and derive LIP

from the resulting time series by fitting a piece-wise linear model per winter.

4.1.1. Operational lake ice / snow products

To our knowledge, the only operational lake ice product at present is the Climate Change

Initiative Lake Ice Cover (Crétaux et al., 2020, CCI LIC). A comparison of our results

with CCI LIC is however not possible, since none of our target lakes are included in

the list of 250 lakes covered by the product. A second product, Copernicus Lake Ice

Extent (LIE, https://land.copernicus.eu/global/products/lie), is still in pre-

operational stage due to accuracy issues, and coverage only starts in 2017. Though not

designed for lake ice, the MODIS Snow Product (Hall and Riggs, 2016, MSP) and VIIRS

Snow Product (VSP, https://nsidc.org/sites/nsidc.org/files/technical-re

ferences/VIIRS-snow-products-user-guide-final.pdf) are also possible options

for comparison, since lakes in the Alps are typically snow-covered for most of the frozen

period. We cross check our results with these two snow products, see Section 4.5.2. More

details on all the mentioned products can be found in Table B.1 (Appendix B).

4.1.2. Definitions used

We exclude mixed pixels and work only with pixels that lie completely inside a lake,

termed clean pixels. Non-transition dates are the days when a lake is either completely

frozen or completely non-frozen, the remaining days in a winter season are termed tran-

sition dates. By winter season, we denote all dates from September till May for our
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purposes.

4.2. Related work

4.2.1. LIP trend analysis studies

The LIP trends of several lakes with different geographical conditions have been studied

and reported in the literature. Though most of them use information from various ice

databases (e.g., NSIDC), some studies directly derived the trends from radar and optical

satellite data. In the following we focus on studies that, like ours, analyse MODIS and/or

VIIRS optical satellite imagery to examine trends over multiple winters.

Šmejkalová et al. (2016) extracted the LIP trends (2000–2013) for 13,300 Arctic

lakes (area >1 km2) using MODIS imagery, and earlier break-up trends were noticed.

They reported a mean shift in BUS in the range: -0.10 d/a (Northern Europe) to -1.05

d/a (central Siberia), and BUE in the range: -0.14 d/a to -0.72 d/a. Kropáček et al.

(2013) studied the LIP trends of 59 lakes on the Tibetan Plateau from 2001 to 2010

using MODIS data. However, the estimated LIP trends varied across the target lakes

and it was concluded that 10 year time span is too short to draw firm conclusion about

LIP trends. Gou et al. (2015) analysed the ice formation trends (2000–2013) in lake Nam

Co (Tibet, area 1920 km2) using MODIS and in-situ data and found strong correlations

with air temperature and wind speed patterns. This study found that high wind speeds

during winter time could potentially expedite the freeze-up process. Additionally, this

work reported a significant reduction of the total freeze duration. Gou et al. (2017)

later analysed Nam Co for the period 2000 till 2015 using multiple MODIS products

(MOD11A1, MYD11A1, MOD09GQ, MYD09GQ, and MOD10A1) and reported delayed

FUS (0.58 d/a) as well as BUS (0.09 d/a), and reduced ice duration (-0.49 d/a) trends.

Another study (Yao et al., 2016) also noted increasingly shorter freeze duration during

the period 2000–2011 when investigating the lakes in Hoh Xil region (Tibet, 22 lakes

with area > 100 km2), using MODIS, Landsat TM/ETM+, and meteorological data. In

addition, that work estimated late freeze-up and early break-up trends. They reported

that the FUS, FUE, BUS, BUE, CFD and ICD shifted on average by 0.73, 0.34, −1.66,

−0.81, −1.91, −2.21 d/a respectively. Cai et al. (2019) also analysed 58 lakes located on

the Tibetan Plateau during the period from 2001 till 2017 using both Terra and Aqua

MODIS imagery. For 47 lakes, a later FUS was noticed (0.55 d/a) while for the remaining

11 lakes an earlier FUS was observed (-0.44 d/a). For 50% of the target lakes, an earlier

BUE (-0.69 d/a) was observed, however, for the other half a later BUE (0.39 d/a) was

noted. Additionally, they reported a reduced ice cover duration for 40 lakes (-0.8 d/a),

while for 18 lakes an increase was observed (1.11 d/a).

Yang et al. (2019) used MODIS to estimate the LIP trends for 8 large lakes (106 -

3461 km2) in Northeastern China from 2003 to 2016. Later FUS (0.65 d/a), earlier BUE

(-0.19 d/a) and shorter freeze duration (-0.84 d/a) trends were noticed. Qi et al. (2020)

used AVHRR, MODIS, and Landsat data to extract the LIP of Qinghai lake (China, area

of 4294 km2) for the period 1980–2018. They estimated a shift of 0.16, 0.19, −0.36, and

−0.42 d/a for FUS, FUE, BUS and BUE respectively, also pointing towards progressively
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later freeze-up and earlier break-up. Additionally, they computed the decreasing patterns

in ICD (−0.58 d/a) and CFD (−0.52 d/a). The study also identified correlations between

the LIP and climate indicators like the Accumulated Freezing Degree-Days (AFDD), wind

speed, precipitation, etc. during the winter season. Cai et al. (2020) used a threshold-

based method to extract LIP trends from MODIS snow product for 23 lakes (2001-2018,

Xinjiang Uygur Region, area: 11 to 1004 km2) in China. They found that the ICD

decreased (-1.08 d/a) in 16 out of the 23 lakes and increased (1.18 d/a) for the rest. They

also reported later freeze-up (0.52 d/a) and earlier break-up (-0.51 d/a) in 17 and 18 lakes

respectively. Additionally, they found that the freeze-up events are more affected by lake-

specific factors such as area, mineralisation, etc.; while climatic factors like water surface

temperature have more influence on the break-up events. That work also emphasised

that lake surface water temperature has a stronger influence on the LIP events than air

temperature.

Latifovic and Pouliot (2007) used the historical data record of AVHRR satellite in

addition to in-situ measurements to perform long-term (1950-2004) trend analysis in

Canadian lakes, via an automated profile feature extraction procedure, confirming later

freeze-up (0.12 d/a) and earlier break-up (—0.18 d/a) for the majority of lakes that were

analysed. They suggested that their procedure to extract the LIP events is not sensor-

specific and could be applied to other satellite data, too. Murfitt and Brown (2017) also

used MODIS data, to extract lake ice trends (2001-2014) for the regions Ontario and

Manitoba in Canada. However, the discovered trends varied across regions. Zhang et al.

(2021) put forward a new LIP database (4241 lakes with a minimum area of 1 km2)

for Alaskan lakes covering the period 2000-2019. Ice-on/off dates and freeze duration

values included in this dataset were extracted from MODIS data using a threshold-based

method. Additionally, they estimated the following LIP trends: later freeze-up (0.29 d/a)

and earlier break-up (-0.55 d/a) were recorded for 289 and 440 lakes, respectively, while

earlier freeze-up (-0.33 d/a) and later break-up (0.75 d/a) were noticed only for 11 and

4 lakes, respectively.

Compared to MODIS, the literature on lake ice monitoring with VIIRS data is

limited. Sütterlin et al. (2017) estimated the LIP dates for winter 2016–17 in selected

Swiss lakes using the lake surface water temperature (LSWT) derived from visible and

near-infrared reflectances, and thermal infrared band (I5) of VIIRS data. Later, for winter

2016–17, Tom et al. (2020c) estimated the LIP dates of lakes Sihl, Sils, Silvaplana, and

St. Moritz from VIIRS and MODIS data. To our knowledge, no multi-winter LIP trend

analysis based on VIIRS data has been reported yet.

To summarise, most related works reviewed so far have found trends towards late

freeze-up, early break-up and declining freeze duration. The prevalent methods are

physics-inspired models based on empirical indices and thresholds. Most studies focus

on large lakes, often in the Arctic and sub-Arctic regions. Beyond analysing the lakes of

the Oberengadin region, in the present work we also show that supervised ML models

are able to detect lake ice with high accuracy, hoping that the outcome may be useful for

future research. To our knowledge, none of the earlier trend studies applied data-driven

ML methods to identify lake ice.

For Swiss lakes, a previous study (Hendricks Franssen and Scherrer, 2008) verified
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that the lake ice formation and surrounding air temperature are heavily correlated. They

deducted an empirical relationship between sum of negative degree days (same as AFDD)

and the lake ice formation process, and modelled the probability of ice cover via binomial

logistic regression. Though this approach gathered and used the temperature data from

1901–2006 to study eleven lakes in the lower-lying Swiss plateau, none of the target

mountain lakes were included. Our case study focuses on the Oberengadin region, with

three main lakes: Sils, Silvaplana and St. Moritz (with the latter very small for the GSD

of MODIS). Moreover, we include another Alpine lake Sihl to check generality.

Our goal in this work is lake ice monitoring using only image data from optical

satellites, which provides a direct, data-driven observation not influenced by model as-

sumptions about the ice formation process. We see satellite imagery as an independent

information source and consider image analysis complementary to other methods of lake

ice modelling. Furthermore, compared to our satellite-based approach, which can easily

analyse the whole lake area, it is difficult to effectively derive the spatial extent of lake

ice from the temperature (point) observations recorded at one or a few nearby weather

stations, even if they are situated in the immediate vicinity of the lake (which is not

always the case). This is even more true in the Alpine terrain that we target, due to

strong micro-climatic effects.

4.2.2. Lake ice observation with machine and deep learning

ML algorithms have become a standard tool for several environmental remote sensing

research problems, including our earlier works on monitoring lake ice cover. In Tom et al.

(2018), we already investigated pixel-wise classification of the spatio-temporal extent of

lake ice from MODIS and VIIRS imagery with SVM. Each pixel was classified as either

frozen or non-frozen in a supervised manner. Though this approach achieved strong

results (including generalisation across winters and across lakes with similar geographic

conditions), the test set at the time did not have a complete winter of reference data

(including the critical freeze-up and break-up periods), due to technical problems. Later,

Tom et al. (2020c) presented extensive experiments on data from two full winters and

confirmed the efficacy of SVM for lake ice monitoring with MODIS and VIIRS. Both

these works dealt with small- and mid-sized Swiss mountain lakes. Xiao et al. (2018) and

Prabha et al. (2020) explored the potential of convolutional neural networks (CNNs) for

lake ice detection in terrestrial webcam images (RGB). They performed a supervised clas-

sification of the lake pixels using the Tiramisu (Jégou et al., 2016), respectively Deeplab

v3+ (Chen et al., 2018b) networks, into the four classes: water, ice, snow and clutter.

An integrated approach using both the satellite and webcam observations was discussed

in Tom et al. (2019) to estimate the ice-on and ice-off dates. Recently, Hoekstra et al.

(2020) proposed an automated approach for ice vs. water classification in RADARSAT-2

data, combining unsupervised Iterative Region Growing using Semantics (IRGS) and su-

pervised RF labelling. A deep learning approach to lake ice detection in Sentinel-1 SAR

imagery has been described in Tom et al. (2020a), and achieved promising results, includ-

ing generalisation across lakes and winters. Very recently, Wu et al. (2021b) compared the

capabilities of four different ML methodologies: Multinomial Logistic Regression (MLR),

SVM, RF, and Gradient Boosting Trees (GBT) for lake ice observation using the MODIS
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Top of Atmosphere (TOA) product. They modelled lake ice monitoring as a 3-class (ice,

water, cloud) supervised classification problem. The four classifiers were tested on 17

large lakes from North America and Europe with areas >1040 km2, and achieved >94%

accuracy. RF and GBT showed better generalisation performance on this dataset of large

lakes.

4.3. Study area and data

4.3.1. Study area

We process four small-to-medium-sized Swiss Alpine lakes: Sihl, Sils, Silvaplana and

St. Moritz, see Fig. 4.1 and Table B.2 (Appendix B). While most of the earlier works (Gou

et al., 2015, Yao et al., 2016, Qi et al., 2019, 2020) on long time series monitoring of lake

ice with MODIS concentrated on larger lakes, many lakes that freeze are actually small-

or medium-sized mountain lakes, especially outside the (sub-)Arctic regions. The lakes

we analyse are relatively small in area (0.78 - 11.3 km2), representative for this category.

SAM

SIA

EIN

±

0 70 14035 Kilometres
0 84 Kilometres

0 84 Kilometres

Figure 4.1.: MODIS orthophoto map (RGB composite, red: band 1, green: band 4, blue:
band 3) of Switzerland (left) captured on 7 September 2016. Red and amber
rectangles show the regions Einsiedeln (around lake Sihl) and Oberengadin
(with lakes Sils, Silvaplana and St. Moritz, from left to right) respectively.
Inside each zoomed rectangle on the right, the respective lake outlines are
shown in light green and the nearest meteorological stations (EIN, SIA and
SAM) are marked using pins.

The lakes were chosen according to the needs of two projects of the Swiss GCOS

office (Tom et al., 2019, 2020b). For the three small lakes in the region Oberengadin
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(Sils, Silvaplana, St. Moritz), located at an altitude > 1750 m, there are long in-situ

observation series (important for climate studies), and they are also included in the

NSIDC lake ice database (https://nsidc.org), although not updated recently. The

fourth lake (Sihl) from the region Einsiedeln has been chosen mainly to test generality,

as it is relatively larger, lies at a lower altitude on the North slope of the Alps, and

has different environmental conditions, see Table B.2 (Appendix B). The three lakes in

Oberengadin fully freeze every year, whereas lake Sihl does not (but still freezes in most

winters).

For these four lakes there is no reference freeze/thaw data available from the past

two decades. Hence, we study the weather patterns in the regions near the lakes. For

each lake, the temperature and precipitation data recorded at the nearest meteorological

stations are shown in Fig. 4.2. On the top and bottom rows, we plot the mean temperature

and total precipitation (solid curves) during the winter months on the y-axis, against the

winters on the x-axis in a chronological order. Additionally, in both rows, we plot the

linearly fitted trend curve (dotted line) for each station.
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Figure 4.2.: For the region near the lakes, the mean winter air temperature (row 1) and
total winter precipitation (row 2) are plotted (solid curve) on the y-axis
against the winters shown in a chronological order on the x-axis. The data
from nearest meteorological stations: EIN (Sihl), SIA (Sils and Silvaplana)
and SAM (St. Moritz) are used. The corresponding trends (linear fit, dotted
curve) are also shown with the same colour. Data courtesy of MeteoSwiss.

For lakes Sihl and St. Moritz, the nearest meteorological stations are Einsiedeln

(EIN) and Samedan (SAM) respectively as shown in Fig. 4.1 (see also Table B.2 in

Appendix B). Lakes Sils and Silvaplana are located next to each other and hence share

the same meteorological station: Segl Maria (SIA). The station Einsiedeln is located at a

relatively lower altitude and closer to the Swiss plateau, while the other two stations are

in the Engadin valley at higher altitudes. This explains why the absolute temperature
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is relatively higher for Einsiedeln. Additionally, the stations SIA and SAM are located

within 20 km from one another, see Fig 4.1, and hence have similar temperature and

precipitation values. Exceptionally high winter temperature was recorded at all three

stations in winter 2006–07.

It can be seen from Fig. 4.2 that during the past 20 winters, at all the three stations,

the mean temperature follows an increasing trend. On the other hand, precipitation

(snow+rain) has a decreasing pattern. While Meteoswiss (MCH) has reported a signif-

icant trend of temperature increase in the Swiss Alps since 1864, they have so far not

confirmed a significant precipitation trend (https://www.meteoswiss.admin.ch/ho

me/climate/climate-change-in-switzerland/temperature-and-precipitation

-trends.html). Over the shorter period of the past 20 winters, precipitation has been

slightly declining. Warmer winters at higher altitudes in Switzerland could be linked to

a decrease in precipitation, see Rebetez (1996). The pattern of precipitation over the

20-year period differs somewhat between Einsiedeln and the two other (similar) stations,

e.g., see the winters 08–09, 12–13.

4.3.2. Data

In our analysis, we use the data from Terra MODIS and Suomi NPP VIIRS (https:

//ncc.nesdis.noaa.gov/VIIRS/) satellites downloaded from the LAADS (https://la

dsweb.modaps.eosdis.nasa.gov) and NOAA (https://www.avl.class.noaa.gov/)

databases, respectively. For MODIS processing, we downloaded the MOD02 (geolo-

cated and calibrated radiance, level 1b, TOA), MOD03 (geolocation) and MOD35 L2

(cloud mask) products and pre-processed using MRTSWATH (https://lpdaac.usg

s.gov/tools/modis reprojection tool swath/, re-projection and re-sampling) and

LDOPE (Roy et al., 2002, cloud mask) software. For VIIRS, we downloaded the Sci-

entific Data Record (SDR) data for the imagery bands, IICMO and VICMO products

for the cloud masks, and GITCO (for image bands) and GMTCO (for cloud masks) for

terrain corrected geolocation. VIIRS pre-processing is done using the following software

packages: SatPy (https://satpy.readthedocs.io/) for assembling the data granules,

mapping and re-sampling, H5py (https://www.h5py.org) for cloud mask extraction,

PyResample (https://resample.readthedocs.io) and GDAL (https://gdal.org)

for re-sampling of cloud masks. As in Tom et al. (2020c), we use only twelve (five) se-

lected MODIS (VIIRS) bands to form the feature vector. The bands that offer maximum

separabilty for the task of lake ice monitoring were automatically chosen by the super-

vised XGB feature selection algorithm (Chen and Guestrin, 2016). The spectral coverage

of these bands is shown in Fig. B.1 (Appendix B) where MODIS (M) and VIIRS (V)

bands are displayed as blue and red bars, respectively. For each band, the bar width is

proportional to the corresponding bandwidth.

We analyse MODIS data from all winters since 2000–01 (20 winters), and VIIRS

data from all winters since 2012–13 (8 winters). In each winter, we process all the dates

from the beginning of September until the end of May on which at least 30% of a lake is

free of clouds, according to the mask. Fig. 4.3 displays more details of the MODIS and

VIIRS data that we use as a stacked bar chart (one colour per lake). For all target lakes,
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the total number of cloud-free, clean pixels in each winter is shown on the y-axis, against

the winters in chronological order on the x-axis.
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Figure 4.3.: First row displays the clean, cloud-free pixels (from transition and non-
transition dates) from the four target lakes (Sihl, Sils, Silvaplana, St. Moritz)
used in our experiments. Data from both MODIS (20 winters, 4 lakes) and
VIIRS (8 winters, 3 lakes) is displayed. Second row shows the percentage of
at least 30% Non-Cloudy (NC) days during each winter (derived from the
MODIS cloud mask). Winter 00–01 represents the dates from September
2000 till May 2001 (and similarly other winters).

In Fig. 4.3, note that some winters are relatively less cloudy. This explains why the

number of pixels vary across winters, even for the same lake and sensor. On average there

are 16558, 5899, 3972 and 329 MODIS pixels per winter for the lakes Sihl, Sils, Silvaplana

and St. Moritz respectively. Similarly, there are 5538, 1901 and 1606 VIIRS pixels for

the lakes Sihl, Sils and Silvaplana respectively. Due to its small size there exist no clean

pixel for St. Moritz in VIIRS imagery bands (Tom et al., 2020c), hence we exclude it

from the VIIRS analysis. The number of pixels per acquisition is proportional to the

lake area and hence varies across lakes even for a given sensor. Additionally, for a given

lake, the number of VIIRS pixels per acquisition is lower compared to MODIS, due to
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the higher GSD of VIIRS imagery bands (≈ 375m) compared to MODIS (250m). We

super-resolved all low resolution MODIS bands (500m, 1000m) to 250m using bilinear

interpolation prior to the analysis. This step is not required for VIIRS as all used bands

have the same GSD.

It can be inferred from Fig. 4.3 that in both VIIRS and MODIS plots, the cloud

patterns of lakes Sils, Silvaplana and St. Moritz are quite similar, due to geographical

proximity (see also Fig. 4.1). Minor differences exist (in few winters) between the two

very nearby lakes Sils and Silvaplana due to cloud mask errors (see also Section 4.4.1).

Lake Sihl has a different cloud coverage pattern compared to other three lakes, due to its

lower altitude and different surrounding topography. Both MODIS and VIIRS have daily

temporal resolution, but the data capture can happen at different times within a day.

Consequently, the cloud pattern (and hence the cloud masks) can differ even between

MODIS and VIIRS acquisitions from the same day. For all four lakes, Fig. 4.3 shows

the percentage of non-cloudy days (at least 30% cloud-free pixels) in each winter season.

It can be seen that ≈40 to ≈60% of all days are not usable due to clouds, significantly

reducing the effective temporal resolution. We notice that the data loss is worse for lake

Sihl located near the plateau.

Ground truth

We use the same ground truth as in Tom et al. (2020c), which is based on visual inter-

pretation of freely available high-resolution webcams monitoring the target lakes. One

label (fully frozen, fully non-frozen, partially frozen) per day is assigned. Two differ-

ent operators looked at each image, i.e., a second expert verified the judgement of the

first operator to minimise interpretation errors. When deciphering a webcam image was

difficult, additional images were used from other webcams viewing the same lake (if avail-

able), images from the same webcam but at other acquisition times on the same day, and

images of the same webcam for the days before and after the given observation day. We

also improved the webcam-based ground truth using sporadic information available from

media reports, and by visually interpreting Sentinel-2 images, whenever available and

cloud-free. No webcam data is available from the winters before 2016-17. Moreover, the

manual interpretation process is very labour intensive. Thus, ground truth is available

only for two winters (2016–17, 2017–18).

Even though visual interpretation is the standard practice, a certain level of label

noise inevitably remains in the ground truth, due to factors such as interpretation er-

rors, image compression artefacts, large distance and flat viewing angle on the lake, etc.

Furthermore, the webcams used are not optimally mounted for lake ice monitoring ap-

plication and hence do not always cover the full lake area (or even a major portion of it),

even for the smallest lake St. Moritz. Still, the ground truth serves the purpose, in the

sense that it has significantly fewer wrongly labelled pixels than the automatic prediction

results. We see no possibility to obtain more accurate, spatially explicit ground truth for

our task.
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4.4. Methodology

4.4.1. Pre-processing

We perform the same pre-processing steps as in Tom et al. (2020c). First, the abso-

lute geolocation error for both sensors (0.75, respectively 0.85 pixels x- and y-shifts for

MODIS; 0.0, respectively 0.3 pixels x- and y-shifts for VIIRS) are corrected. The gener-

alised (Douglas and Peucker, 1973) lake outlines are then backprojected onto the images

to extract the clean pixels. Binary cloud masks are derived from the respective cloud

mask products to limit the analysis only to cloud-free pixels. We noticed some errors in

both MODIS and VIIRS cloud masks. The most critical ones are false negatives, where

an actually cloudy pixel goes undetected. Such cases can corrupt model learning and

inference and introduce errors in the predicted ice maps.

4.4.2. Machine learning for lake ice extraction

We model lake ice detection in optical satellite images as a per pixel 2-class (frozen, non-

frozen) supervised classification problem. For each pixel, the feature vector is formed by

directly stacking the 12 (5) bands of MODIS (VIIRS), see Fig. B.1 (Appendix B). We

treat snow-on-ice and snow-free-ice as a single class: frozen. Class non-frozen denotes

the water pixels. The class distributions in winters 2016–17 and 2017–18 are shown in

Fig. B.2 (Appendix B). There is a significant class imbalance in our dataset, since we

include all cloud-free dates from September till May, of which only a minority is frozen.

We have tested four off-the-shelf ML classifiers: linear SVM [SL], SVM with Radial Basis

Function (RBF) kernel [SR], Random Forest [RF] and eXtreme Gradient Boosting [XGB]

to perform pixel-wise supervised classification in order to predict the state of a lake.

We recall that SVM is a linear large-margin classifier, which can be extended to

non-linear class boundaries with the kernel trick. The choice of kernel is critical and

depends on the data distribution. In our case we tested both linear and RBF kernels.

RF is an ensemble learning approach which relies on bagging (bootstrap aggregation)

of multiple decision trees constructed from the data, using randomisation to decorrelate

the individual trees. XGB is also an ensemble method based on (shallower) decision

trees, but iteratively learns the trees with gradient descent, such that each tree corrects

error of earlier ones. XGB is highly scalable and exploits sparsity. We note that several

comparison studies exist in the literature for other applications than ours, e.g., (Ogutu

et al., 2011, Wainer, 2016, Pham et al., 2020).

Note also, while there recently has been a strong interest in deep learning for remote

sensing tasks, it is not suitable for our particular application, due to the scarcity of

pixels with reliable ground truth. The lakes that we monitor are small and ground truth

is available for two winters (see Section 4.3.2, and Fig. B.2 in Appendix B), which is

too little to train data-greedy deep neural networks. Also, given the large GSD and

limited need for spatial context, we do not expect deep models to greatly outperform our

shallower ones, see Section 4.5.
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4.4.3. LIP estimation

In each winter, using the trained ML model, we process all available acquisitions that are

at least 30% cloud-free and generate pixel-wise classification maps (one per acquisition).

To recover the temporal evolution (per winter), the percentage of non-frozen pixels is

computed from each classification map and is plotted on the y-axis against the acquisition

time on the x-axis. Then, as in Tom et al. (2020c), multi-temporal smoothing is performed

as a post-processing step using a Gaussian kernel with standard deviation 0.6 days and

window width 3 days. An example MODIS results timeline for lake Sils from winter

2006–07 is shown in Fig. 4.4 (top). Results from different months are displayed with

different colours, see the legend. In addition, only the acquisitions which are at least 30%

non-cloudy are displayed.

Post-processed results timeline before curve fitting

After curve fitting

Figure 4.4.: Piece-wise linear (”U with wings”) curve fitting example. NF indicates Non-
Frozen.

In the post-processed timeline, we find all the potential candidates for the following

four critical dates: FUS, FUE, BUS and BUE, see Table 4.1 for the corresponding defini-

tions. Within a winter, it is possible that > 1 candidates exist per critical date which all

satisfy the respective definition. In order to weed out some obviously spurious candidates,

we enforce the constraint that the four dates must occur in the following chronological

order: FUS→FUE→BUS→BUE. Then we exhaustively search for the optimal set of four

dates among the remaining candidates. To that end, we fit a continuous, piece-wise linear

”U with wings” shape to the per-day values of percentage of non-frozen pixels, such that

the fitting residuals z are minimised (see example fit in Fig. 4.4 [bottom], shown in cyan
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Table 4.1.: Key LIP events.

Event Definition

FUS 30% or more of the non-cloudy portion of the lake is frozen
and the just previous non-cloudy day should be < 30% frozen

FUE 70% or more of the non-cloudy portion of the lake is frozen
and the just previous non-cloudy day should be < 70% frozen

BUS 30% or more of the non-cloudy portion of the lake is non-frozen
and the just previous non-cloudy day should be < 30% non-frozen

BUE 70% or more of the non-cloudy portion of the lake is non-frozen
and the just previous non-cloudy day should be < 70% non-frozen

ICD BUE - FUS
CFD BUS - FUE

colour). In detail, the loss function for the fit is defined as:

LLIP =
1

P
·
N∑
i=1

Hφ(z) (4.1)

where N is the total number of available acquisitions that are at least 30% cloud-free.

Hφ(z) =

{
z2 |z| ≤ φ

2φ|z| − φ2 |z| > φ
(4.2)

is the Huber norm of the residual. For the shape parameter φ, we use a constant value

of 1.35 which offers a good trade-off between the robust l1-norm for large residuals and

the statistically efficient l2-norm for small residuals (Owen, 2006).

Per lake, we assume that each critical date occurs only once per winter, which is

always true in Oberengadin. Lake Sihl does not always fully freeze. As it lies outside

of the target region and is included mostly to ensure generality of the ice classifier, we

do not extract the LIP events for Sihl. Moreover, we decide to exclude lake St. Moritz

since it is too small for the GSD of MODIS (only 4 clean pixels), making the fraction of

frozen pixels overly susceptible to noise. We thus prefer to study only the two main lakes

in Oberengadin, Sils and Silvaplana, in terms of long-term lake ice trends. These two

lakes fully freeze every year and typically have a single freeze-up and break-up period.

To further stabilise the LIP estimates we include a weak prior for each phenological date,

in the form of a diffuse Gaussian distribution.

The prior probability (P ) is given by:

P = Pfus · Pfue · Pbus · Pbue (4.3)

where Pfus, Pfue, Pbus, and Pbue are Gaussian normal distributions for the events FUS,

FUE, BUS and BUE, respectively. The prior formalises the knowledge that freeze-up

normally occurs around the end of December and takes around three days, and break-up

occurs around the end of April over a similar period, for both target lakes. In order not to
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bias the estimation, but only to minimise the risk of implausible results, we choose very

wide Gaussians (σ = 1 month). Furthermore, we impose a constraint that the duration

of freeze-up (FUE-FUS) and break-up (BUE-BUS) is not more than two weeks.

Inspired by Qi et al. (2020), we additionally compute further indicators that can be

derived from the four critical dates, namely ICD and CFD, see Table 4.1 for details. We

use 30% as the threshold to estimate the four dates. For example, a date is considered

as FUS candidate if 30% or more of the non-cloudy portion of the lake is frozen. Some

studies based on MODIS (Reed et al., 2009, Yao et al., 2016, Qi et al., 2020) have used

10% as threshold, while another approach (Kropáček et al., 2013) even employed 5%.

All of them monitored larger lakes (45 to 4294 km2 in area). We empirically found that

for our comparatively tiny lakes the above thresholds are too strict and a threshold of

30% is needed to ensure reliable decisions. To see why, consider that in the best case

(Sils, cloud-free) a lake has 33 clean pixels, but that number can go down to as few as 7

(Silvaplana at 70% cloud cover). Note also that on such small lakes a large portion of all

pixels is very close to the lake’s shoreline, where the residual absolute geolocation error

(in the worst case 0.5 pixel) may have a significant impact.

4.5. Results

In our experiments, we perform a comparison of the performance of various ML classifiers,

derive a 20-year time series of the key phenological dates, and perform correlation of

our results with the regional weather trends. In addition to the overall classification

accuracy (Acc), we report a stricter measure: mean intersection-over-union (mIoU) for

fair reporting of the results on a dataset with imbalanced class distribution. More details

can be found in the following sub-sections.

4.5.1. Choice of machine learning method

We first conduct experiments on the two winters 2016–17 and 2017–18, for which ground

truth is available. These experiments serve to compare the performance of the SVM, RF,

and XGB classifiers and determine which one is most suitable for our task and dataset.

We train the models and report quantitative results only on non-transition dates, since

per-pixel ground truth is not available for the transition dates.

Hyper-parameter tuning

In SVM, the two main hyper-parameters are cost and gamma (for the linear variant just

the cost) which indicate misclassification cost and kernel width respectively. Higher values

of cost means the model chooses more support vectors which effectively increases the

variance and decreases the bias and results in overfitting and vice versa. When gamma is

set to a high value, more weight is assigned to the points close to the hyperplane compared

to the far away ones. Higher gamma values also result in low bias and high variance thus

causing overfitting. For RF, num trees represents the number of trees in the forest while

num variables denotes the number of predictors (features) to select at random for each
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split. Note that the minimum leaf size is set to 1 in all our RF experiments. In XGB, the

three most important hyper-parameters are number of trees (num trees), learning rate

and the tree specific parameter: colsample bytree. Learning rate shrinks the contribution

of each new tree to make the boosting procedure more conservative and thus the resulting

model more robust. Colsample bytree controls the fraction of features (spectral bands)

to be used in each boosting iteration.

For each ML approach, the optimal hyper-parameters are first independently deter-

mined with a grid search. The best-performing hyper-parameters thus chosen are shown

in Table 4.2. We use these parameters in all further experiments. However, note that the

parameters are dataset-dependent, too. Overall, RF, XGB and SL exhibited fairly stable

results across a range of hyper-parameters, whereas SR was very sensitive.

Table 4.2.: Optimum hyper-parameters of each classifier and sensor estimated using grid
search.

Method Sensor Hyper-parameters

SL MODIS cost 0.1
SR MODIS cost 10, gamma 1
RF MODIS num trees 500, num variables 10

XGB MODIS num trees 1000, colsample bytree 1, learning rate 0.2

SL VIIRS cost 0.1
SR VIIRS cost 10, gamma 1
RF VIIRS num trees 500, num variables 3

XGB VIIRS num trees 500, colsample bytree 1, learning rate 0.3

Four-fold cross validation

As the first experiment, we combine the data (independently for MODIS and VIIRS)

of all the available lakes from winters 2016–17 and 2017–18 and perform 4-fold cross

validation and report the overall accuracy and mIoU, see Table 4.3. For both MODIS

and VIIRS, the performance of all classifiers except SL is more or less the same, with

accuracy differences below 1%. While SR performs marginally best on MODIS data,

XGB scores well on VIIRS. Though lower than other three classifiers, the performance

of SL is also very good on both sensors.

Generalisation experiments

In order to study how well the classifiers generalise across space and time, we train a

model on all except one lake (respectively, winter) and test on the held-out lake (winter).

Fig. 4.5 displays the results (bar graphs showing overall accuracy and mIoU) of the

four classifiers for leave-one-lake-out setting on MODIS (top row) and VIIRS (bottom

row) data. It can be seen that the performance varies across lakes and sensors. For

MODIS, XGB has, on average, a narrow advantage over SR and RF, with SL a bit
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4.5. Results

Table 4.3.: Four-fold cross-validation results (in %) on MODIS and VIIRS data. The data
from both winters 2016–17 and 2017–18 are used in this analysis. Overall
classification accuracy and mean intersection-over-union (mIoU) scores are
shown. The best results are shown in bold.

Sensor Feature vector Method Accuracy mIoU

MODIS All 12 bands SL 93.4 83.9
MODIS All 12 bands SR 99.4 98.5
MODIS 10 bands (random) RF 98.9 97.2
MODIS All 12 bands XGB 99.3 98.3

VIIRS All 5 bands SL 95.1 88.4
VIIRS All 5 bands SR 97.1 93.1
VIIRS 3 bands (random) RF 97.6 94.5
VIIRS All 5 bands XGB 97.7 94.5
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Figure 4.5.: Generalisation across lakes results on MODIS (top row) and VIIRS (bottom
row) data for the classifiers SL, SR, RF and XGB on lakes Sihl, Sils, Silva-
plana (Silv) and St. Moritz (Moritz). Both overall accuracy (left column)
and mIoU (right column) are shown.

behind. For VIIRS, on the other hand, RF marked the best performance closely followed

by SL, SR and XGB.

On both sensors, the best performance (especially in terms of mIoU) is achieved

for the lakes Sils and Silvaplana. This is likely due to them having the most similar

characteristics and imaging conditions, see Table B.2 (Appendix B). I.e., pixels from one

of them are representative also of the other one, such that the classifier trained in one

of the two generalises well to the other. Lake St. Moritz (only for MODIS) has too few

clean pixels per acquisition to draw any conclusions about generalisation. However, we

still include it in our processing to study how far lake ice monitoring with MODIS can

be pushed (in terms of lake area) – indeed, the classification is > 82.5% correct. Lake
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Sihl from the region Einsiedeln is different compared to other three lakes from the region

Engadin in terms of area, weather, surrounding topography etc., c.f. Section 4.3.1. Hence,

the performance on lake Sihl is interesting to assess geographical generalisation over longer

distances. It can be seen in Fig. 4.5 that for lake Sihl the SL classifier performs best on

both MODIS and VIIRS data, suggesting that the other (non-linear) models already

overfit to the specific local conditions of Oberengadin.

As a second generalisation experiment, more important for our time series analysis,

we check how well the trained classifiers can be transferred across different winters. We

train on one winter and test the resulting model on the held-out winter (leave-one-winter-

out), see Fig. 4.6. We only have data from two consecutive winters (2016–17, 2017–

18) to perform this analysis. Still, we believe that the experiment is representative for

generalisation to unseen years, since the weather conditions in different years are largely

uncorrelated (c.f. Fig. 4.2). In particular for the two available winters, 2017–18 was

markedly colder than the previous year, see Fig. 4.2.

Fig. 4.6 (top row) clearly shows for MODIS that SL adapts best to a new winter,

with significantly higher generalisation losses for XGB, RF, and SR. For VIIRS (Fig. 4.6,

bottom row), SL also copes best with generalisation across different years. Here RF can

keep up, whereas SR and XGB again suffer higher generalisation losses.
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Figure 4.6.: Generalisation across winters results on MODIS (top row) and VIIRS (bot-
tom row) data for the classifiers SL, SR, RF and XGB. Both overall accuracy
(left column) and mIoU (right column) are shown.

Overall, all classifiers exhibit a certain performance drop when having to generalise

beyond the exact training conditions. Table 4.4 shows the detailed performance drops

w.r.t. Table 4.3. Since mIoU is a stricter measure than accuracy, the drops are more

pronounced. It is interesting to note that in both generalisation experiments the most

robust (least affected) classifier is the (linear) SL. With all other classifiers the drop is

much higher for unseen winters than for unseen lakes. We conclude that SL is the safest

option four our task, where data from multiple different winters must be processed,
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and use it for all further experiments. Recall, though, that we only have a relatively

small dataset at our disposal from few small mountain lakes over two winters. It is

quite possible that the small volume and specific geographical conditions aggravate the

tendency to overfit, and that a higher-capacity, non-linear classifier will work best if a

larger and more diverse dataset were available, or if the conditions were less variable

(large lakes in smooth terrain).

Table 4.4.: Generalisation loss (across lakes / winters) encountered by each classifier: SL,
SR, RF and XGB. Drop (in % points) for overall accuracy and mIoU are
shown in black and grey respectively.

Sensor Loss type SL SR RF XGB

MODIS across lakes 3.7/5.1 7.6/16.0 7.3/15.0 7.4/15.8
MODIS across winters 1.3/2.8 12.0/26.6 10.7/23.6 9.9/22.4

VIIRS across lakes 1.1/1.5 3.6/7.4 3.5/7.5 4.3/8.9
VIIRS across winters 2.6/5.7 5.5/12.2 5.1/11.9 6.7/14.5

4.5.2. Experiments on MODIS data from 20 winters

Test-train split

So far, we have used only on parts of the available ground truth for training, so as to

evaluate the method. We now move on to the actual longer-term analysis, where we

process MODIS data from all the 20 winters since 2000–01 (inclusive). Details of the

training set for each tested winter is shown in Table 4.5. To avoid systematic biases in

the estimated ice maps due to overfitting to a particular year, we proceed as follows:

we train the SL model on all non-transition dates of 2016–2017 and use it to estimate

lake ice coverage for all days in 2017–2018 (including transition dates). We repeat that

procedure in the opposite direction, i.e., we train on all non-transition days of 2017–2018

and perform inference for all dates of 2016–2017. Then, we merge all non-transition

dates from both winters into a new, larger two-winter training set, which we further

augment with an auxiliary dataset. The latter contains all acquisitions of lakes Sils and

Silvaplana captured during the remaining 18 years in September (when the lakes are

never frozen) and in February (when the lakes are always frozen). The purpose of the

auxiliary dataset is to cover a wider range of weather and lighting conditions that might

not have been encountered in the two winters with annotated ground truth, for better

generalisation. Data of lake Sihl is not included in the auxiliary set, as it does not freeze

reliably, St. Moritz is ignored due to its negligible number of pixels. The two-winter and

auxiliary datasets are merged and used to train a SL model, which is then used to predict

ice cover maps for the 18 remaining winters.

Qualitative results

Exemplary qualitative results on some selected days (one per winter) of lake Sihl are

shown in Fig. 4.7. The respective dates are displayed below each sub-figure. The lake
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Table 4.5.: Test-train split for the MODIS data from 20 winters.

Test set Training set

winter 2016–17 winter 2017–18
winter 2017–18 winter 2016–17

winters till 2015–16, from 2018–19 winters 2016–17 and 2017–18, auxiliary set

outline overlaid on the MODIS band B1 is shown in green. Pixels detected as frozen

and non-frozen are shown as blue and red squares, respectively. The results include

fully-frozen, fully non-frozen and partially frozen days.

8 Nov 2000 1 Feb 2002 29 Apr 2003 29 Dec 2003 15 Oct 2004

1 Jan 2006 30 Mar 2007 8 Feb 2008 9 Jan 2009 23 Jan 2010

24 Mar 2011 2 Mar 2012 24 Apr 2013 10 Mar 2014 28 Jan 2015

22 Jan 2016 15 May 2017 21 Apr 2018 5 Feb 2019 20 Sep 2019

Figure 4.7.: MODIS qualitative classification results (overlaid on band B1 from the re-
spective day) for lake Sihl on selected dates from the past 20 winters using
the SL classifier. Blue and red squares are overlaid on the pixels detected as
frozen and non-frozen respectively.
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Additional check using VIIRS data from 8 winters

A direct quantitative analysis is not possible, since no ground truth is available for 18

out of the 20 winters. In order to validate our MODIS results, we additionally process

the VIIRS data from 8 winters (since winter 2012–13, inclusive) and compare the re-

sults to MODIS. Since a pixel-to-pixel comparison is not straight-forward due to different

GSDs, we fit the timelines per winter for each lake as described before (Fig. 4.4, top row)

and compute absolute differences (AD) between the daily estimates for the percentage of

frozen pixels. The AD is computed only on dates when both MODIS and VIIRS acquisi-

tions are present, and when the lake is at least 30% cloud-free. The ADs are then further

aggregated to obtain a Mean Absolute Difference (MAD) for each winter. Fig. 4.8 (top

row, left) shows, for each lake, the mean and standard deviation of the MAD across the 8

common winters. The low mean values (3.5, 5.8 and 4.3 percent respectively for Sihl, Sils

and Silvaplana) show that our MODIS and VIIRS results are in good agreement, espe-

cially considering that a part of the MAD is due to the difference in GSD between MODIS

(250m GSD) and VIIRS (≈375m GSD). Note also that, the acquisition times during the

day (and hence the cloud masks) can differ; and that, although the absolute geolocation

has been corrected for both sensors, errors up to 0.5 pixel can still remain (Aksakal, 2013)

and affect the selection of clean pixels near the lake shore.

Comparison with MODIS and VIIRS snow products

We compare our MODIS (20 winters) and VIIRS (8 winters) results to the respective op-

erational snow products: MSP (collection 6, MOD10A1), VSP (collection 1, VNP10A1F).

For the regions of interest, VSP has some data gaps, hence the comparison is done when-

ever VSP data is available. For actual snow cover mapping, errors of 7-13% have been

reported for MSP (Hall and Riggs, 2016). Our findings are in line with this: for the two

2016–17 and 2017–18 (non-transition days only) we observe an error of 14% w.r.t. our

ground truth, see Fig. 4.8 (middle row).

Similar to the evaluation methodology explained in Section 4.5.2, for each lake, we

first estimate the percentage of frozen pixels per day using our MODIS and VIIRS results.

Since a pixel-to-pixel registration is difficult in the presence of absolute geolocation shifts

and/or GSD differences, the daily percentage of frozen pixels is also computed from the

snow products and the MAD is estimated for each winter. See Fig. 4.8 (bottom row)

for our MODIS results vs MSP comparison. For the three lakes, the per-winter MAD is

shown on y-axis against the winters on x-axis. We again exclude lake St. Moritz because

of its minuscule area.

Overall, the 20-year time series inter-comparison (per-lake mean and standard devi-

ation of MAD, Fig. 4.8, top row, right) does not suggest large, systematic inconsistencies.

On average, our MODIS and VIIRS results deviate by mean MAD values of 14-18% and

12-19% respectively. These deviations are only a little higher than the estimated error of

the snow products, and relatively stable across different years.

It is important to point out that the snow products are an imperfect proxy for lake

ice, because a lake can be frozen but not snow-covered, especially near freeze-up when

it has not yet snowed onto the ice. Also, mixed ice and water cases go undetected in
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Figure 4.8.: Row 1 shows the comparison of our MODIS and VIIRS results for the 8
common winters (left sub-figure) and comparison of our MODIS (20 winters)
and VIIRS (8 winters) results with the respective snow products (right sub-
figure). Row 2 shows the deviations between the two snow products and our
webcam-based ground truth. Row 3 displays per-winter MAD (MODIS) for
each lake.

MSP (Hall and Riggs, 2016). Fig. 4.8 (middle row) shows that the snow products are

less consistent with the manually annotated ground truth than our ice maps. In fact,

most deviations between our estimates and the snow products occur around the transition

dates, mostly freeze-up. Additionally, MSP and VSP use a less conservative cloud mask

than we do (accepting not only confident clear and probably clear, but also uncertain

clear as cloud-free). Despite these issues, the inter-comparison provides a second check

for our results. For completeness, we note that our algorithm has similar issue and thin
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ice is sometimes confused with water: firstly, snow-free ice is rare and underrepresented in

the training set. Secondly, it appears predominantly near the transition dates (especially

freeze-up) when we do not have pixel-accurate ground truth. Thirdly, thin ice and water

are difficult to distinguish, we observed that even human interpreters at times confused

them when interpreting webcam images.

It is interesting to note that, for both sensors, the mean MAD is inversely propor-

tional to the lake area (see Fig. 4.8, row 1, right). This hints at residual errors in the

products’ geolocation, which would affect smaller lakes more due to the larger fraction of

pixels near the lake outline. Besides the < 0.5 pixel inaccuracy of our maps, inaccurate

geolocation of the snow products has been reported (more for MODIS, less for VIIRS)

especially for freshwater bodies, due to uncertainties in gridding, reprojection etc. (Hall

and Riggs, 2016).

LIP trends using MODIS data

As discussed in Section 4.4.3, we fit ”U with wings” polygon to each winter to estimate

the four critical dates: FUS, FUE, BUS and BUE. Sometimes, these phenological dates

are defined such that a second, consecutive day with similar ice conditions is required to

confirm the event. We do not enforce this constraint, because, quite often, the days after

a potential freeze-up or break-up date are cloudy, and looking further ahead runs the risk

of pruning the correct candidates.

Using the estimated LIP dates from 20 winters, we plot their temporal evolution for

lakes Sils (top) and Silvaplana (bottom) in Fig. 4.9. On the y-axis, all the dates from 1

December to 1 June (we skip September till November since no LIP events were detected

during these months), while on the x-axis we show the winters in a chronological order.

In each winter, the non-frozen, freeze-up, frozen and break-up periods are displayed in

cyan, red, yellow and dark green colours, respectively.

It can be seen from Fig. 4.9 that the freeze-thaw patterns of both lakes vary con-

siderably across winters. For lake Sils (Silvaplana), on average, the FUS occurred on 3

January (5 January) followed by a freeze-up period of 3 (3) days until FUE on 6 January

(8 January). Additionally, on average, the lake remained fully frozen (CFD) for 113 (108)

days until BUS on 29 April (26 April) and the break-up period lasted 1 (1) day until

BUE on 30 April (27 April). The average number of days from FUS to BUE (ICD) is

117 (112).

The Oberengadin region with lakes Sils and Silvaplana is a single valley (Fig. 4.1,

Table B.2 in Appendix B) and hence the two have similar weather conditions. Silvaplana

is relatively deeper but has smaller area than Sils, making them comparable in terms of

volume, too. So similar LIP patterns can be expected. However, the clouds above the

lakes (especially on partly cloudy days), and the associated cloud mask errors, can cause

small differences. In winter 2016-17, the ice-on date of the two lakes, confirmed by visual

interpretation of webcams, differ by 7 (low confidence) to 10 (medium confidence) days,

see also Tom et al. (2020c).

In most of the winters, the LIP characteristics of these lakes derived using our ap-
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Figure 4.9.: 20 winter temporal LIP characteristics of lakes Sils and Silvaplana estimated
from MODIS using SL classifier.

proach are in agreement, see Fig. 4.9. However, there are some outliers too (> 10 days

deviation). A notable outlier is the break-up period in winter 2009-10. For Sils (Silva-

plana), BUS and BUE were both estimated as 19 May (28 April). This drift primarily

happened because of a huge data gap due to clouds and cloud mask errors. During the

period from 28 April till 20 May, Silvaplana had > 30% cloud-free MODIS acquisitions

only on 28 April, 29 April, 8 May and 20 May, and the lake was detected as non-frozen on

all these dates. However, Sils had MODIS acquisitions on 28 April, 29 April, 5 May and

19 May. On 5 May the lake was detected as 100% frozen due to a false negative cloud

mask, although break-up had started on the two earlier dates (75%, respectively 60%

frozen) and the lake was ice-free on May 19. We also checked the Landsat-7 acquisitions

on 20 April 2010 and 22 May 2010 and found that both lakes were fully covered by snow

on the former date and fully non-frozen on the latter date. No cloud-free Landsat-7 data

is available in between these two dates. For Sils, the actual BUS probably happened on

29 April (> 30% non-frozen) and BUE soon after (likely on 30 April, since the BUE of

Silvaplana was detected as 28 April and Sils was detected <70% non-frozen on 29 April).

However, both dates went undetected until 19 May, because of the clouds in combination

with the maximum allowed duration of 2 weeks for the break-up.

In winter 03-04, the freeze-up periods of Sils (FUS on 1 January, FUE on 2 January)

and Silvaplana (FUS and FUE on 14 January) were also detected far apart, again due to
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a data gap because of clouds. Sils was estimated 68% and 90% frozen on 1 and 2 January,

respectively, so they were chosen as FUS and FUE. On lake Silvaplana, the sequence for

1-5 January was 4%→13%→0%→21%→0% frozen. Then 14 January and 21 January

were both found 100% frozen, so the fitting chose 14 January as both FUS and FUE. No

cloud-free MODIS data exist on the intermediate dates 6-13 January and 15-20 January,

and we could also not find any cloud-free Landsat-7 images between 21 December 2003

and 29 January 2004 (both inclusive) to check, but could confirm 0% ice cover on 20

December and 100% cover on 30 January. Connecting all the dots, we speculate that

FUS and FUE of Silvaplana occurred soon after 5 January.

In winter 2013-14, our method asserts FUE of Sils on 26 December and of Silvaplana

on 6 January. Between those dates there were a number of partially frozen dates, but

with more ice cover for Sils than Silvaplana. Additionally, 2-5 January were cloudy,

leading the fitting to chose the earlier date for the former, but the later one for the latter.

We again checked with Landsat-7 that on 15 December both lakes were fully non-frozen,

whereas on and 25 January both lakes were fully snow-covered. There exist no cloud-free

Landsat-7 image in between these two dates to pin down the dates more accurately.

In some winters, there is almost no freeze-up and/or break-up period detected by

our algorithm. This is partly a byproduct of the relatively loose threshold needed to

estimate the initial candidates for our small lakes (see Section 4.4.3), bringing the start

and end dates of the transition closer together; and also influenced by frequent cloud cover

during the critical transition dates (often more than half of all days c.f. Section 4.3c).

For instance, if a couple of adjacent dates are cloudy during break-up (and the real BUS

occurred during one of these dates) and on the next non-cloudy day, the lake is estimated

70.1% non-frozen, then our fitting will choose this date as both BUS and BUE.

We go on to analyse the freeze-up (FUS, FUE) and break-up (BUS, BUE) patterns,

by plotting time series of the four critical dates over the past 20 winters for lakes Sils

and Silvaplana, see Fig. 4.10. Here also, we plot all the dates from 1 December till 1

June in each winter on the y-axis and the winters in chronological order on the x-axis.

Additionally, per phenological date, we fit a linear trend. Progressively later freeze-up

and earlier break-up is apparent for both lakes.

In each winter, we also derive the remaining LIP events (ICD, CFD) listed in Ta-

ble 4.1. Their trends are shown in Fig. 4.11, with the duration in days on the y-axis and

the winters in chronological order on the x-axis. Obviously, ICD and CFD are decreasing

for both lakes.

Quantitative trend values that we estimated for all the LIP events of Sils and Sil-

vaplana are shown in Table 4.6. As explained above, we correct obvious failures of the

automatic analysis, and set the following corrections for lake Sils: BUS and BUE occurred

on 29 April and 30 April respectively in winter 2009–10. Similarly, for Silvaplana: FUS

and FUE occurred on 6 January in winter 2003–04 and FUE occurred on 26 December in

winter 2013–14. For completeness we also fit trends without the correction – these differ

only slightly and confirm that the corrections hardly impact the overall picture. The

trend towards earlier break-up (BUS, BUE) is more pronounced than the one towards

later freeze-up (FUS, FUE), for both Sils and Silvaplana. It is interesting to note that
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Figure 4.10.: 20 winter ice freeze-up (FUS, FUE) and break-up (BUS, BUE) trends for
lakes Sils and Silvaplana from MODIS estimated using SL classifier.

the decrease in freeze duration (ICD and CFD) is stronger for the slightly smaller lake

Silvaplana.

Table 4.6.: Estimated LIP trends (black). Results before manual correction of the auto-
matic results are shown in grey.

Lake FUS FUE BUS BUE ICD CFD

Sils 0.23 0.31 -0.46/-0.47 -0.32/-0.34 -0.55/-0.57 -0.76/-0.78
Silvaplana 0.45/0.37 0.38/0.36 -0.51 -0.45 -0.9/-0.82 -0.89/-0.87

Correlation of LIP events with meteorological data

We have also studied the (centred and normalised) cross correlation ∈ [−1, 1] between

the LIP events (corrected version) and climate variables such as temperature, sunshine,

precipitation and wind during the 20 winters. The results are shown in Fig. 4.12 for

the lakes Sils (top) and Silvaplana (bottom). Air temperature (measured at 2m above

ground) and precipitation data were collected from the nearest meteorological station

SIA. However, we used the sunshine and wind measurements at station SAM, since these

were not available for the complete 20 winters time span at SIA. We did not use the cloud

information (number of non-cloudy pixels) from MODIS data as a measure of sunshine
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Figure 4.11.: 20 winter ice duration (ICD, CFD) trends for lake Sils and Silvaplana from
MODIS estimated using SL classifier.

duration, since that would ignore the evolution throughout the day, and suffers from a

non-negligible amount of cloud mask errors.
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Figure 4.12.: Bar graphs showing the 20 winter correlation of the LIP events (Sils on top
row, Silvaplana on bottom) with climate variables.
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Mean Winter Temperature (MWT) corresponds to the air temperature (in ◦C) av-

eraged over the whole winter season (September till May). As expected, Fig. 4.12 shows

that MWT has strong negative correlation with the freeze durations CFD and ICD, neg-

ative correlation with the break-up events BUS and BUE, and positive correlation with

the freeze-up events FUS and FUE. We conclude that, indeed, as winters got warmer over

the past 20 years the lakes froze later and broke up earlier. For both lakes, the relation-

ship of MWT with CFD is shown in Fig. 4.13 (row 1). Further significant correlations

are displayed in Section B.5 (Appendix B).
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Figure 4.13.: Correlation of LIP events and weather variables: MWT (◦C) and CFD
(days) are shown in first row, AFDD (◦C) and FUS in second row, total
winter sunshine (hours) and CFD in third row, total precipitation (mm) in
the months January to May (J2M) and BUE in last row. Results for lakes
Sils and Silvaplana are displayed in left and right columns respectively.

AFDD represents the cumulative sum (of daily mean temperature) on the days with

average air temperature below the freezing point (0◦C) in a winter season. AFDD is a

popular proxy for the thickness of ice cover (Beyene and Jain, 2018, Qi et al., 2020). For

both Sils and Silvaplana, AFDD has strong positive correlations with ICD and CFD,

strong negative correlation with the freeze-up events FUS and FUE, and moderate pos-

itive correlation with ice break-up events BUS and BUE, see Fig. 4.12, again indicating
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that in colder winters (higher AFDD) the freeze-up occurs earlier and the break-up later,

leading to longer freeze duration. The relatively weaker correlation for the break-up in-

dicates that freeze-up play a larger role for that event. As an example, the correlation

with FUS is shown in Fig. 4.13, for further plots see Section B.5 (Appendix B).

To study the effect of sunshine on LIP events, we correlate the total winter sun-

shine (hours) with the freeze length events ICD and CFD, total sunshine in the months

September to December (S2D) with the freeze-up events FUS and FUE, and the total

sunshine from January to May (J2M) with the break-up events BUS and BUE. Here, we

assume that the sunshine in the months after freeze-up has no connection with freeze-up

events. Similarly, we assume that the sunshine in the early winter months (September till

December) does not affect the break-up events. We notice strong negative correlation of

the total winter sunshine with ICD, CFD and break-up events. The more sunshine in the

months near break-up, the earlier the ice/snow melts, which also reduces the total freeze

duration. An example correlation with CFD is visualised in Fig. 4.13, further significant

correlations are displayed in Section B.5 (Appendix B).

We also check the relationship between the LIP events and the total precipitation

(snow and rain) during the winter months. Similar to sunshine analysis, we correlate the

total precipitation during the months from September till December, January till May

and September till May to the freeze-up (FUS, FUE), break-up (BUS, BUE) and freeze

duration events (CFD, ICD) respectively, see Fig. 4.12. Notable are the break-up events

with good positive correlation. More precipitation in the months January to May (likely

to be predominantly snow), favours later break-up, and vice-versa. Correlation with BUE

is shown in Fig. 4.13 and with BUS in Section B.5 (Appendix B).

Finally, inspired by Gou et al. (2015), we also looked at the effect of wind on the LIP

events, which may also influence lake freezing. We correlated the mean winter wind speed

(km/h) with CFD and ICD, mean wind speed from September to December with FUE

and FUS, and mean wind speed from January to May with BUS and BUE. However, we

did not find any significant correlations, see Fig. 4.12.

4.5.3. Discussion

In any ML-based system, the variety in the training dataset has a critical influence on

the model being learnt. Our dataset consists of small lakes and has significant class

imbalance. This is a biased, but realistic scenario, representative of mountain lakes in

sub-Arctic and temperate climate zones. For supervised classification, proper ground

truth information is available only from the winters 2016–17 and 2017–18. Using the

data from these two winters, we first performed thorough experimentation with different

classifiers. Additionally, we did an inter-comparison of the individual performance of these

ML classifiers. For the four-fold cross validation experiment, the highest performance on

MODIS and VIIRS data were reported for SR and XGB classifiers respectively, see Table

4.3. However, SR, RF and XGB suffered a significant generalisation loss compared to

the SL counterpart. I.e., non-linear classifiers tended to overfit on our relatively small

dataset. We emphasise that it does not contradict the findings of Wu et al. (2021b) for a

dataset of larger lakes with many more training pixels. There, RF and GBT performed
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very well. We empirically selected SL as the most suitable classifier for our lakes of

interest, and we recommend to repeat the empirical exercise when moving to different

geographical conditions. Our MODIS and VIIRS results validate each other in a relative

sense (< 5.6 % MAD in the worst case, lake Sils), but could be subject to a common bias.

In the absence of ground truth there is no way to assess our absolute accuracy, but as an

external check against a methodologically different mapping scheme we inter-compared

our results against the respective operational snow products. The deviations were in the

expected range (MAD < 20 %).

Besides its advantages, like dense coverage, regular time series and homogeneous ob-

servation conditions, satellite data also has disadvantages. The trade-off between spatial

and temporal resolution makes it difficult to monitor smaller lakes – with 21 MODIS (9

VIIRS pixels) for lake Silvaplana and only 4 MODIS pixels for lake St. Moritz, our study

goes to the limit in that respect. A further, often-named obstacle for optical satellite ob-

servation are occlusions due to clouds, which significantly reduce the effective temporal

resolution and also cause irregular gaps in the time series. These unpredictable data gaps

are particularly troublesome for ice phenology, because the critical events occur over a

short time and at times of the year where cloud cover is frequent in sub-Arctic and mid

latitudes.

Data gaps due to clouds are the main source of error in our LIP estimation, besides

cloud mask errors, confusion between water and thin/floating snow-free ice, and quanti-

sation effects around hard thresholds. This makes phenological observations challenging

– in particular the uncertainties of our predictions are largest during freeze-up, because of

the frequent, but short-lived presence of snow-free ice. Still, it appears that our classifier

copes better with the reflectance of ice than simple index-based snow products, and it is

likely that more training data and, if available, additional spectral bands could further

improve its detection.

As said before, a limiting factor for small lakes is the GSD, as decision based on very

few pixels become overly unreliable and prone to statistical fluctuations, and even small

geolocalisation errors have a large effect. Our work is also on the challenging ends of the

spectrum in terms of local weather conditions: in a drier climate the observations would

be less affected by cloud cover (we process lakes with as little as 30% cloud-free area

to obtain sufficient temporal coverage), and fewer clouds also means fewer cloud-mask

errors.

4.6. Conclusion

In this paper, we have reported results from a case study in Southeastern Switzerland,

where we have retrieved lake ice phenology based on MODIS optical image time series.

On the one hand, we have tried to push the limits of MODIS data for the analysis of

small-to-medium-sized lakes, and have shown that even for such high-Alpine lakes it is

possible to derive meaningful correlations between the 20-winter lake ice phenological

trends and climate data. On the other hand, for the tested lakes, we have confirmed that

a dedicated machine learning scheme maps lake ice more accurately than the classical
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index- and threshold-based approaches.

As expected, our results point towards later freeze-up (FUS at a rate of 0.23 d/a

for lake Sils, respectively 0.45 d/a for Silvaplana and FUE at a rate of 0.31 d/a for

lake Sils, respectively 0.38 d/a for Silvaplana), earlier break-up (BUS: -0.46 d/a for lake

Sils, respectively -0.51 d/a for Silvaplana and BUE: -0.32 d/a for lake Sils, respectively

-0.45 d/a for Silvaplana) and decreasing freeze duration (ICD: -0.55 d/a for lake Sils,

respectively -0.9 d/a for Silvaplana and CFD: -0.76 d/a for lake Sils, respectively -0.89

d/a for Silvaplana). We also observed significant (but not surprising) correlations with

climate indicators such as temperature, sunshine and precipitation.

Our machine learning approach is generic and easy to apply to other sensors be-

yond MODIS and VIIRS (given training data). Importantly, the VIIRS sensor is pro-

jected to ensure continuity well into the future, opening up the possibility to establish

an even longer time series. One solution for the cloud issues of optical satellites is to

complement/replace them with radar observations, e.g., Sentinel-1 SAR. We have done

preliminary research in this direction (Tom et al., 2020a). SAR-optical data fusion holds

great promise, particularly in view of the GCOS requirement to monitor lake ice at daily

temporal resolution (with an accuracy of ±2 days).

In the future, it will be interesting to cross-check and validate existing temperature-

based models like Hendricks Franssen and Scherrer (2008) against our data-driven results.

Beyond a simple inter-comparison, temperature measurements could be used to eliminate

gross prediction errors, and to bridge temporal gaps in optical satellite image-based pre-

dictions that occur due to clouds or fog.

We expect that machine learning-based ice detection itself could still be further im-

proved with additional training data. I.e., pixel-accurate annotations during transition

dates, as well as for more winters and a wider variety of lakes. Unfortunately, gathering

such data is not only a considerable, tedious effort, but also poses its own challenges. In

most locations and for older data, no corresponding webcam data (or similar regular pho-

tography) is available; even when available, its coverage is almost invariably incomplete;

and even with usable webcam and satellite imagery, manual annotation is not trivial and

prone to mistakes exactly in the situations that are most critical also for computational

analysis (such as thin, black ice). We speculate that, given the enormous archive of unla-

belled satellite data, approaches such as unsupervised, semi-supervised or active learning

may be applicable and could improve the detector.

Yet another interesting research direction is to close the gap between knowledge-

driven, model-based top-down models of lake ice formation and data-driven, bottom-up

machine learning. Introducing expert knowledge about ice formation and associated

physical constraints into machine learning models could also reduce the need for training

data, and get the best of both worlds in terms of accuracy as well as interpretability of the

model (Camps-Valls et al., 2018, 2020). How to best bridge the gap between statistical

machine learning models and physical process models is an open question and an active

research direction in the Earth sciences and beyond.
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Abstract

Lake ice, as part of the Essential Climate Variable (ECV) lakes, is an important indicator

to monitor climate change and global warming. The spatio-temporal extent of lake ice

cover, along with the timings of key phenological events such as freeze-up and break-

up, provide important cues about the local and global climate. We present a lake ice

monitoring system based on the automatic analysis of Sentinel-1 Synthetic Aperture

Radar (SAR) data with a deep neural network. In previous studies that used optical

satellite imagery for lake ice monitoring, frequent cloud cover was a main limiting factor,

which we overcome thanks to the ability of microwave sensors to penetrate clouds and

observe the lakes regardless of the weather and illumination conditions. We cast ice

detection as a two class (frozen, non-frozen) semantic segmentation problem and solve

it using a state-of-the-art deep convolutional network (CNN). We report results on two

winters (2016-17 and 2017-18) and three alpine lakes in Switzerland. The proposed model

reaches mean Intersection-over-Union (mIoU) scores >90% on average, and >84% even

for the most difficult lake. Additionally, we perform cross-validation tests and show that

our algorithm generalises well across unseen lakes and winters.

5.1. Introduction

Climate change is one of the main challenges humanity is facing today, calling for new

methods to quantify and monitor the rapid change in global and local climatic conditions.

Various lake observables are related to those conditions and provide an opportunity for

long-term monitoring, among them the duration and extent of lake ice. Remote sensing

of lake ice also fits well with the Climate Change Initiative (CCI+, 2017) by the European
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Space Agency (ESA), where lakes and lake ice were newly included. Additionally, CCI+

promotes long-term trend studies and climate studies, as recognised by the Global Climate

Observing System (GCOS). Furthermore, lake ice influences various economic and social

activities, such as winter sports and tourism, hydroelectric power, fishing, transportation,

and public safety (e.g., winter and spring flooding due to ice jams). In addition, its impact

on the regional environment and ecological systems is significant, which further underlines

the need for detailed monitoring.

Satellites are a secure source for remote sensing of the cryosphere and for sustainable,

reliable, and long term trend analysis. Additionally, satellite images are currently the only

means to monitor large regions systematically and with short update cycles. This increas-

ing importance of satellite observations has also been recognised by the GCOS. Recently,

Tom et al. (2018) proposed a machine learning-based semantic segmentation approach

for lake ice detection using low spatial-resolution (250m-1000m) optical satellite data

(MODIS and VIIRS). Although the nominal temporal resolution of those sensors is very

good (daily coverage), the main drawback of this methodology is frequent data loss due to

clouds, which reduces the effective temporal resolution. This is critical, since important

phenological variables depend on frequent and reliable observation. In particular, the

ice-on date is defined as the first day when the lake surface is (almost) completely frozen

and remains frozen on the next day, and ice-off is defined symmetrically as the first day

where a significant amount of the surface is liquid water, and remains in that state for an-

other day (Hendricks Franssen and Scherrer, 2008). The GCOS accuracy requirement for

these two dates is ±2 days. Systems based on optical satellite data will fail to determine

these key events if they coincide with a cloudy period. Moreover, low spatial resolution

of MODIS and VIIRS is also a bottleneck for spatially explicit ice mapping. Higher

resolution optical sensors like Landsat-8 or Sentinel-2 do not provide a solution, due to

their low temporal resolution and susceptibility to clouds. On the contrary, Sentinel-1

represents a favourable trade-off between spatial and temporal resolution. Additionally,

Radar is unaffected by clouds, which in many regions is a considerable advantage.

Here we propose to use Sentinel-1 SAR data, which mostly meets the requirements

of lake ice monitoring, and additionally comes for free and with a commitment to ensure

continuity of the observations. Its spatial and temporal resolution (GSD ca. 10 m /

revisit period if 1.5 days) make it possible to derive high-resolution ice maps almost

on a daily basis. For completeness, we mention that, taking into account estimation

uncertainty, the temporal resolution of Sentinel-1 falls just short of the 1-day temporal

resolution requirement of lake ice monitoring, it can still provide an excellent “observation

backbone” for an operational system that could fill the gaps with optical satellite data

(Tom et al., 2018) or webcams (Xiao et al., 2018).

Converting a Sentinel-1 image to a lake ice map boils down to 2-class semantic seg-

mentation, i.e., assigning each lake pixel to one of two classes, frozen or non-frozen. We do

this with the Deeplab v3+ semantic segmentation network (Chen et al., 2018b). Examples

of Sentinel-1 SAR composites over the lake St. Moritz is visualised in Fig. 5.1, showing

the VV amplitude in the red channel, and the VH amplitude in the green channel. The

examples include the states non-frozen (01.09.2016, water), freeze-up (10.01.2017), frozen

(08.02.2017, snow on top of ice) and a break-up date (23.03.2017).
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(a) Non-frozen (01.09.2016) (b) Freeze-up (10.01.2017)

(c) Snow with skate tracks (08.02.2017) (d) Break-up (23.03.2017)

Figure 5.1.: Examples of RGB composites of Sentinel-1 SAR data (RGB = [VV, VH, 0 ])
of lake St. Moritz showing the lake in the four different states specified in the
sub-captions.

Target lakes and winters. We analyse three selected lakes in Switzerland (Sils,

Silvaplana, St. Moritz, see Table 5.1) over the period of two winters (2016-17 and 2017-18).

These three lakes are located close to each other in the same geographic region, referred to

as Region Sils. The lakes are comparatively small and situated in an Alpine environment,

and they are known to reliably freeze over completely every year during the winter months.

For the two winters 2016-17 and 2017-18, all available images were collected for the

nine months between September 1 and May 31. After back-projecting the digitised lake

outline polygons from Open Street Map (OSM) on to the SAR images, for each lake, we

extract the lake pixels which lie inside the lake outline. In low-spatial resolution satellite

images such as MODIS and VIIRS, only few such lake pixels are available (Tom et al.,

2018), which makes the analysis of very small lakes such as St. Moritz difficult or even

impossible. Thanks to the higher spatial resolution, the Sentinel-1 time series provides

us with millions of lake pixels, which makes it possible to train powerful deep learning

models for segmentation, which are extremely data-hungry.

Contributions. We address the problem of lake ice detection from Sentinel-1 SAR

data, as an alternative to optical satellite data which is impaired by clouds. In the

process, we show that a deep learning model pre-trained on an optical RGB dataset can

nevertheless be re-used successfully as initialisation for fine-tuning to Radar data. To our

knowledge, our work is the first one that utilises Radar data and deep learning for lake
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ice detection, though it has been used for sea ice analysis.

Table 5.1.: Characteristics of the target lakes. Altitude (L) and altitude (S) denote the
altitudes of the lake and nearest meteo station respectively. The distance to
station is also shown.

Sils Silvaplana St. Moritz

Area (km2) 4.1 2.7 0.78
Altitude (L) (m) 1797 1791 1768
Max. depth (m) 71 77 42

Meteo station Segl Maria Segl Maria Samedan
Dist. to lake (km) 0.5 1 5
Altitude (S) (m) 1804 1804 1709

5.2. Related work

Many studies discussed the trends in lake ice formation in different parts of the globe.

Duguay et al. (2006) presented the trends in lake freeze-up and break-up across Canada

for a long period from 1951 until 2000. Later, Hendricks Franssen and Scherrer (2008)

reported the decreasing tendency in lake freezing in several Swiss lakes. Then, Brown and

Duguay (2010) reviewed the response and role of ice cover in lake-climate interactions.

This paper observed that the ability to accurately monitor lake ice will be an important

step in the improvement of global circulation models, regional and global climate models

and numerical weather forecasting. Brown and Duguay (2011) used the Canadian Lake

Ice Model (CLIMo) to simulate lake ice phenology across the North American Arctic

from 1961–2100, using two climate scenarios produced by the Canadian Regional Climate

Model (CRCM). They projected changes to the ice cover using 30-year mean data between

1961–1990 and 2041–2070, which suggested a probable drift in freeze-up (0–15 days later)

and break-up (10–25 days earlier). Duguay et al. (2015) presented an overview of the

progress of remote sensing for lake and river ice. For lakes, that work reviewed a number

of topics, including ice cover concentration, ice extent and phenology, and ice types,

as well as ice thickness, snow on ice, snow/ice surface temperature, and grounded and

floating ice cover on shallow Arctic and sub-Arctic lakes.

Lake ice monitoring using Radar data. Duguay and Lafleur (2003) proposed

to determine the depth and thickness of ice in shallow lakes and ponds using the Landsat

Thematic Mapper and European Remote Sensing (ERS)-1 SAR data. Almost a decade

later, Surdu et al. (2014) conducted a study of the shallow lakes on the north slope of

Alaska to find the response of ice cover on the climate conditions using Radar remote

sensing and numerical analysis. A machine learning-based automated ice-vs-water classi-

fication was proposed by Leigh et al. (2014) using dual polarisation SAR imagery. Later,

Surdu et al. (2015) performed a study on the ice freezing and thawing detection in shal-

low lakes from Northern Alaska with spaceborne SAR imagery. Antonova et al. (2016)

monitored ice phenology in lakes of the Lena river delta using TerraSAR-X backscat-

ter. Du et al. (2017) performed an assessment of lake ice phenology in the Northern
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Hemisphere from 2002 to 2015. Pointner et al. (2018) studied the effect of the lake size

on the accuracy of a threshold-based classification of ground-fast and floating lake ice

from Sentinel-1 SAR data. Duguay and Wang (2019) presented various algorithms such

as thresholding, Iterative Region Growing with Semantics (IRGS) and k-means for the

generation of a floating lake ice product from Sentinel-1 SAR data for various permafrost

regions (Alaska, Canada and Russia). Geldsetzer et al. (2010) used RADARSAT-2 SAR

data to monitor ice cover in lakes during the spring melt period in the Yukon area of

the Canadian Arctic. They put forward a threshold-based classification methodology

and observed that the HH and HV backscatter from the lake ice have significant tem-

poral variability and inter-lake diversity. Murfitt et al. (2018) used the RADARSAT-2

imagery to develop a threshold-based method to determine lake phenology events for the

mid-latitude lakes in Central Ontario from 2008 to 2017. Wang et al. (2018a) also used

RADARSAT-2 imagery (dual polarised) for developing a lake ice classification system

acquired over lake Erie, with the IRGS method. Additionally, Gunn et al. (2018) used

the polarimetric RADARSAT-2 (C-Band) to observe the scattering mechanisms of bub-

bled freshwater lake ice. SAR data analysis is challenging, and deep learning could play

a significant role because of its ability to learn task-specific, hierarchical image features.

Lake ice monitoring with webcams. Xiao et al. (2018) described a system that

detects lake ice in webcam data with the help of a deep neural network. Public webcams

have two main advantages compared to optical satellite images. Firstly, they are usually

not affected by clouds, except for the comparatively rare case of dense fog. Secondly,

they have a very high temporal resolution (up to one image per 10 min). Although the

approach generated excellent results, it also has disadvantages. Webcams are usually

placed arbitrarily (e.g., too far away or covering a small lake area), and often only low

above the lake, leading to great scale differences between front and back of the lake

surface. Moreover, they are prone to hardware failure, and, being very cheap cameras,

they have poor spectral and radiometric quality with significant compression artifacts.

Another practical problem with webcams is that it is difficult to operationalise them at

country- or even world-scale.

Optical data for lake ice monitoring. Tom et al. (2018) proposed a machine

learning-based methodology for lake ice detection using low resolution optical satellite

images. The main problem with optical satellite images is the data loss due to clouds.

However, the authors showed that the algorithm produces consistent results when tested

on data from multiple winters. In addition, Barbieux et al. (2018) used Landsat-8 multi-

spectral data for extraction of frozen lakes and water-vs-ice classification. Recently, Tom

et al. (2019) put forward a feasibility study, which targeted for a unified lake ice moni-

toring system that combines images from optical satellites, in-situ temperature data and

webcam images.

5.3. Data

Sentinel-1 SAR consists of two identical satellites (S1A and S1B) operational in space

with 180◦ phase shift, following a sun-synchronous, near-polar orbit. The two satellites

orbit the Earth at an altitude of 693 km and have a repeat cycle of 12 days at the equator
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(effectively 6 days with S1A and S1B). The same point on Earth is mapped several times

within one repeat cycle. Due to the large across-track area coverage of the satellites and

the latitude of our target area in Switzerland (and most other areas where lakes freeze),

the revisit time is further reduced. For Region Sils, it can bee seen from Table 5.2 that

the temporal resolution in winter 2017-18 is better than that of 2016-17. This is because

of missing data from S1B. Though S1B was launched in April 2016, the corresponding

data is fully available in the Google Earth Engine (GEE) platform (see Section “Data

Collection” below) only from March 2017. In addition, Sentinel-1 covers the Region Sils

in four orbits. See Table 5.3 for the details. Footprints of the four orbits are shown in

Fig. 5.2.

Table 5.2.: Dataset statistics. Non-transition days, on which a lake is almost fully frozen
/ non-frozen, and transition days (partially frozen) are shown. Lake pixels
are those which lie completely inside the lake polygon. # acq. denotes the
number of acquisitions.

Lake Winter Non-transition days Transition days Total Temporal resolution (days) # lake pixels
Non-frozen Frozen # acq.

Sils
2016-17 40 42 37 119 2.3 40908
2017-18 76 65 40 181 1.5

Silvaplana
2016-17 36 44 39 119 2.3 26563
2017-18 85 66 30 181 1.5

St. Moritz
2016-17 66 42 11 119 2.3 7521
2017-18 84 77 20 181 1.5

Table 5.3.: Details of four orbits scanning Region Sils such as orbit number, flight direc-
tion, acquisition time in Universal Coordinate Time (UTC), and approximate
incidence angle.

Orbit Flight dir. Acquisition time Incidence angle

15 ascending 17:15 41.0◦

66 descending 05:35 32.3◦

117 ascending 17:06 30.8◦

168 descending 05:26 41.7◦

The S1A and S1B satellites have the same SAR system on board which sends

out frequency-modulated electromagnetic waves (C-frequency band) and detects the

backscattered echoes of the surface. From the reflected signal, the SAR sensor mea-

sures the amplitude and phase. In our research, we use only the amplitude information.

We work with the Level-1 Ground Range Detected (GRD) product in Interferometric

Wide (IW) swath mode. That product has no phase information anymore, and has a

nearly square footprint (10m×10m per pixel). It also has good temporal resolution (see

Table 5.2) and four polarisations (VV, VH, HH, HV ). However, for the Region Sils, data

is acquired only in VV and VH modes. The distribution of backscatter values of frozen

and non-frozen pixels in these bands are shown in Fig. 5.3. Note that the separability in

VV appears better than in VH.

The radar backscatter is influenced in a complex manner by a variety of factors,

which can be grouped into two main categories. Firstly, the sensor parameters such as
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Figure 5.2.: The four Sentinel-1 orbits (15, 66, 17, 168) with the corresponding directions
(ascending or descending) which covers the Region Sils (shown as orange
filled rectangle).

(a) Distribution of VV (b) Distribution of VH

Figure 5.3.: Distribution of frozen and non-frozen pixels for VV and VH polarisations
(combined data from 3 lakes, 2 winters). Best if viewed on screen.

wavelength (5.54 cm), incident angle (20◦ to 46◦) and polarisation. Secondly, it depends

on surface parameters which can be either geometrical factors such as roughness, land-

scape topography, etc. or physical factors such as the permittivity of the surface material.

Significant factors for lakes are also wind speed and direction, and the water content in

snow. For smooth and plain water, almost all radiation is scattered away from the sensor

making it appear very dark. As the wind speed picks up, waves occur on the water surface

and significant scattering can occur. When perfectly plain water is covered by perfectly

plain ice, microwaves penetrate the ice without absorption and are reflected at the ice-

water interface away from the sensor, and the ice covered lake would in theory appear

completely black. In reality, cracks in the ice scatter some microwaves back to the sensor.

Therefore, visible and well located cracks are clear indicators for ice cover. Furthermore,

in reality, the ice-water interface is never completely smooth, therefore some scattering

can occur at these boundaries which, however, can be weak. The older the ice, the more

air bubbles are enclosed in it, which increase the backscatter within the ice volume by

direct backscattering and also by double reflection of microwaves at the air-bubbles and

the ice-water interface. With snow cover, the air-ice interface becomes increasingly rough
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which further increases the backscatter signal. Finally, with snow melt, the liquid water

content of the overlying snow pack increases and significantly reduces the backscatter sig-

nal, as the snow-water mixture of wet snow absorbs a significant fraction of the microwave

energy.

(a) VV, wind speed <5 Km/h (b) VH, wind speed <5 Km/h

(c) VV, wind speed >20 Km/h (d) VH, wind speed >20 Km/h

Figure 5.4.: Distribution of frozen and non-frozen pixels for VV and VH polarisations
in different wind speed conditions (combined data from 3 lakes, 2 winters).
Best if viewed on screen.

Data collection and pre-processing. GEE is a cloud-based platform for large-

scale geo-spatial data analysis (Gorelick et al., 2017). It stores and provides data of

various satellite missions, performs data pre-processing and makes them freely available

for education and research purposes. The Sentinel-1 backscatter coefficients (in decibels)

were downloaded from the GEE platform after several inbuilt pre-processing steps such

as GRD border noise removal which corrects the noise at the border of the images, ther-

mal noise removal for correcting the thermal noise between the sub-swaths, radiometric

calibration which calculates the backscatter intensity using the GRD metadata, terrain

correction to correct the side looking effects using the digital elevation model (SRTM,

30m), and log-scaling to transform the approximate distribution of the SAR responses

from Chi-squared to Gaussian (see Fig. 5.3). Note that we did not perform any abso-

lute geolocation correction, since the back-projected lake outlines suggested a sufficient

accuracy.

Transition and non-transition days. All the data from two winters was divided

into two categories: non-transition dates where the lake is almost fully frozen or fully
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non-frozen, and transition dates with partially frozen lake surface. Both freeze-up and

break-up dates belong to the transition category. The dataset statistics are shown in

Table 5.2. Note that, since lake St. Moritz is relatively small in area and volume, it

freezes and melts faster and has fewer transition days.

Ground truth. For each lake, one label (fully frozen / non-frozen, partially frozen

/ non-frozen) per day was assigned by a human operator after visual interpretation

of the visible part of the lake from freely available webcam data. The ground truth

thus generated was further enriched by visual interpretation of the Sentinel-2 images

whenever available. However, some remaining noise in the ground truth is likely due

to interpretation errors, as a result of overly oblique viewing angles of webcams and

compression artefacts in the images. During the transition days, ground truth estimation

was very difficult since we had partially frozen and non-frozen states and there was a

difficulty to discriminate transparent ice and water. Thus, transition days were not used

for quantitative analysis.

5.4. Methodology

Semantic segmentation. We define lake ice detection as a two class (frozen, non-

frozen) pixel-wise classification problem and tackle it with the state-of-the-art semantic

segmentation network Deeplab v3+ (Chen et al., 2018b). The non-frozen class comprises

of only water pixels. Whereas a pixel is considered to be part of the frozen class if it is

either ice or snow, since in the target region, the frozen lakes are covered by snow for

much of the winter. The standard procedures in machine learning-based data analysis

are followed. The dataset is first divided into mutually exclusive training and test sets.

The Deeplab v3+ model is then fitted on the training set. Lastly, the trained model is

tested on the previously unseen test dataset.

Deeplab v3+ (Chen et al., 2018b) is a deep neural network for semantic segmenta-

tion, which has set the state-of-the-art in multiple benchmarks, including among others

the PASCAL VOC 2012 dataset (Everingham et al., 2015). It combines the advantages

of both Atrous Spatial Pyramid Pooling (ASPP) and encoder-decoder structure. Atrous

convolution allows to explicitly control the resolution of the features computed by the

convolutional feature extractor. Moreover, it adjusts the field-of-view of the filters in

order to capture multi-scale information. Deeplab v3+ also incorporates depthwise sepa-

rable convolution (per-channel 2D convolution followed by pointwise 1 × 1 convolution)

which significantly reduces the model size. The network architecture is shown in Fig. 5.5.

Network parameters. We used the mobilenetv2 implementation of Deeplab v3+, as

available in TensorFlow. The train crop size was set to 129× 129 (effective patch size is

128 × 128) and the eval crop size to the full image resolution. All models were trained

for 40′000 iterations with a batch size of 8. Atrous rates were set to [1, 2, 3] for all experi-

ments. The cross-entropy loss function was minimised with standard stochastic gradient

descent, with a base learning rate of 10−3.

Transfer learning. Deep supervised classification approaches need lots of labelled

data and a large amount of resources to train a model from scratch. Such data volumes
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Figure 5.5.: Deeplab v3+ architecture. Best if viewed on screen.

are often not available. Even if they are, labelling them is costly and increases the

computational cost of model training. Transfer learning mitigates this bottleneck by

using an already trained model from some related task as a starting point. Given the

fact that the initial layers of a neural network learn rather generic local image properties,

a model trained on a huge image dataset can be re-utilised on a different dataset with

a much smaller amount of fine-tuning (re-training) to the specific characteristics of the

new data. We use a Deeplab v3+ model pre-trained on the PASCAL VOC 2012 close-

range dataset as the starting point and fine-tune it on the relatively small Sentinel-1 SAR

dataset (see Table 5.2). Surprisingly, we find that pre-training on RGB amateur images

of indoor scenes, vehicles, animals, humans etc. greatly enhances the performance even

on a data source as different as interferometric Radar, compared to training from scratch

only on the SAR data. Note, all weights were fine-tuned, we did not freeze any network

layers.

5.5. Experiments, results, and discussion

We use various measures to quantify performance, including recall, precision, overall

accuracy, and the IoU score (Jaccard index). In all experiments described in the paper,

we used only lake pixels from the non-transition dates to train the network and to compute

performance metrics. This is due to the lack of reliable ground truth during the transition

dates. Additionally, whenever the ground truth cannot be established for a non-transition

date due to foggy webcam images and/or clouds in Sentinel-2, it is exempted from the

training set. However, qualitative analysis is done on all the dates.

Quantitative results: Semantic segmentation. For developing an ideal opera-

tional system for lake ice monitoring, the data from a couple of lakes from a few winters

would have to be used to train the model, which can then be deployed on unseen lakes and

winters. However, generating ground truth for each lake is a tedious task. Nevertheless,

we make sure that the data from at least one lake from one full winter is in the training

set for the classifier to learn the proper class decision boundaries.

We employ Cross-Validation (CV), i.e., the data is partitioned into k folds, usually
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of approximately the same size. Then, the evaluation is done k times, each time using

one fold as test set and the union of all remaining folds as training set. Leave-one-out

cross-validation is the setting where the number of folds equals the number of instances

(in our case the number of winters/lakes) in the dataset.

The goal of leave-one-winter-out CV is to investigate the generalisation capability of

a model trained on one winter when tested on a different winter. The results are shown on

Table 5.4. It can be seen that we achieve excellent results for both winters with average

accuracies of 95.5% and 94.8% for 2016-17 and 2017-18 respectively. The results show

that the model generalises well across the potential domain shift caused by the specific

conditions of different winters, without having seen data from any day within the test

period.

Table 5.4.: Results for winter 2016-17 (top) and 2017-18 (bottom). Data from all the
three lakes from winter 2016-17 was used to train the model that was tested
on winter 2017-18, and vice versa. Confusion matrices are shown. Units are
in millions of pixels, except for precision, recall, and accuracy (bottom right
cell in each table).

True
Prediction

Non-frozen Frozen Recall

Non-frozen 3.06 0.01 99.7%
Frozen 0.29 2.89 90.8%
Precision 91.3% 99.6% 95.5%

True
Prediction

Non-frozen Frozen Recall

Non-frozen 5.77 0.19 96.7%
Frozen 0.44 4.59 91.1%
Precision 92.9% 95.8% 94.8%

We also report results of a leave-one-lake-out CV experiment to check the generalisa-

tion capacity of the model across lakes. The results are shown on Table 5.5. While testing

for all data of a lake (e.g., Sils) from two winters, the data from the other two lakes (e.g.,

Silvaplana, St. Moritz ) from the same two winters is used for training. The prediction

achieves >91.5% overall accuracy for all three lakes. See Table 5.6 for the per-class and

mean IoU values for each lake. The worst performance is noted for St. Moritz where the

lake itself is smaller than the size of a single patch (128× 128). Note also, St. Moritz has

the least mIoU, especially for class frozen. This is because of the presence of tents and

other infrastructure on the frozen lake St. Moritz, which is not present in the other two

lakes used in training. To assess the per-class performance in detail, we also report the

precision-recall curves in Fig. 5.6. For both the frozen and non-frozen classes, the area

under the curve is nearly optimal for lake Sils and very good performance is achieved on

lakes Silvaplana and St. Moritz.

Quantitative results: Time series. The ice-on and ice-off dates are of particular

interest for climate monitoring. From the per-day semantic segmentation results, we
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Figure 5.6.: Precision-recall (PR) curves for lakes Sils (left), Silvaplana (middle), and
St. Moritz (right) for winter 2017-18. The iso-f1 curve connects all points in
the PR space with same F1 score. Combined data of all 3 lakes from winter
2016-17 was used to train the model. Best if viewed on screen.

Table 5.5.: Results for lake Sils (top), Silvaplana (middle), and St. Moritz (bottom).
Confusion matrices are shown for the leave-one-lake-out cross-validation ex-
periment. Units are in millions of pixels, except for precision, recall, and
accuracy (bottom right cell in each table).

True
Prediction

Non-frozen Frozen Recall

Non-frozen 4.69 0.02 99.4%
Frozen 0.13 4.22 96.9%
Precision 97.3% 99.4% 98.3%

True
Prediction

Non-frozen Frozen Recall

Non-frozen 3.08 0.10 96.4%
Frozen 0.11 2.78 96.1%
Precision 96.4% 96.4% 96.4%

True
Prediction

Non-frozen Frozen Recall

Non-frozen 1.00 0.10 94.1%
Frozen 0.62 0.82 88.5%
Precision 94.1% 88.5% 91.5%

estimate the daily percentage of frozen surface for each observed lake. Thus, for each

available SAR image, we compute the percentage of frozen pixels, throughout the entire

winter. An example time series for lake Silvaplana in winter 2017-18 is shown in Fig. 5.7a.

Although we do not have per-pixel ground truth on the partially frozen transition days,

we know whether the lake has more water (shown with a value of 75% in the ground truth)

or more ice/snow (shown with a value of 25% in the ground truth). Even though some
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Table 5.6.: Per-class- and mean IoU values of frozen and non-frozen classes for each lake.
The data of a lake from two winters (2016− 17 and 2017− 18) is tested using
a model trained on the data from the other two lakes from both winters.

IoU
Lake

Sils Silvaplana St. Moritz

Non-frozen 96.7% 93.3% 85.6%
Frozen 96.4% 92.7% 82.9%
Mean 96.5% 93.1% 84.3%

miss-classifications exist during the transition days, the non-transition days are almost

always predicted correctly, likely because the network was trained solely on non-transition

days. For a comparison, we also plot the time series of temperature values (sliding window

mean of the daily median, window size 7 days) obtained from the nearest meteo station

in Fig. 5.7b. Sub-zero values in this graph correlate (with some time lag) with the period

in which the lakes are fully or partially frozen.

(a) Time series of percentage of non-frozen pixels for lake Silvaplana from winter
2017-18.

(b) Temperature (temporal moving average of daily median with window size of 7
days) from the nearest meteo station.

Figure 5.7.: Correlation of our results (winter 2017-18) on lake Silvaplana with the ground
truth and the auxiliary temperature data. Best if viewed on screen.

Qualitative analysis. Exemplary qualitative results are depicted in Fig. 5.8. We

show the classification results on frozen, non-frozen, and transition dates along with the

probability map (blue means higher probability of frozen, red means higher probability

of non-frozen). For better interpretation of the result, especially for the transition date,

we show the corresponding image from Sentinel-2.
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Figure 5.8.: Qualitative results for lake St. Moritz on a non-frozen day (row 1), lake
Silvaplana on a frozen day (row 2), and lake Sils on a transition day (row
3). For each lake we show the Sentinel-1 composite image (column 1), the
ground truth (column 2), the predicted frozen probability map derived from
the network logits (column 3), and the corresponding binary classification
map (column 4). Additionally, column 5 shows a corresponding Sentinel-2
image for better visual interpretation.

Miscellaneous experiments. In all the experiments reported so far, we used the

data from all four orbits (both ascending and descending) and both polarisations (VV

and VH). To study the individual effect of polarisations VV and VH, we drop either of

them and report the corresponding results on Table 5.7 (top). Note that mIoU drops by

almost 25% when VV is left out, while it drops by only 3.7% without VH, confirming

the significance of polarisation VV for lake ice detection. This finding also aligns with

the visual differences in Fig. 5.3. However, while VH appears to be less discriminative

overall, it is much less affected by wind speed – see Fig. 5.4. We believe that using also VH

may improve robustness in windy conditions, where discriminating water from ice/snow

should be particularly challenging because of increased surface roughness due to waves.

However, we do not have enough days with strong wind to quantitatively corroborate

this hypothesis. From our current data it appears that the system can handle calm

and moderately windy days practically equally well. In another experiment, we drop

VH but use VV from two temporally adjacent acquisitions (VV and VV prev), thus

simultaneously feeding the network with data from two different days. The mIoU rises

by 2%, see Table 5.7 (top). However, we noted some stability issues especially during

fully frozen days. We believe this is due to the fact we removed VH. We did another

experiment to check the effect of acquisition time. Here, we used the data from both

VV and VH. However, we drop the data from some orbits (see Table 5.3). Table 5.7

(bottom) shows that the mIoU drops by 7.1% and 5.7% respectively when the data from

only descending orbits (66 and 168) or only ascending orbits (15 and 117) were used.
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A final experiment was done to assess the influence of the (rectangular) training patch

size, see Fig. 5.9. Somewhat surprisingly, even the move from an already large context

of 64× 64 pixels to 128× 128 pixels (1.3× 1.3 km) still brought a marked improvement,

hence we always use that patch size in our system.

Table 5.7.: Per-class- and mean IoU values of frozen and non-frozen classes with different
polarisations (top table) and orbits (bottom table). Data from all three lakes
from winter 2016-17 was tested using a model trained on the data from all
three lakes from winter 2017-18. Asc and Dsc denotes ascending and descend-
ing orbits respectively.

IoU
Polarisation

VV, VH VH VV VV, VV prev

Non-frozen 91.0% 71.0% 87.7% 93.3%
Frozen 90.6% 60.1% 86.6% 91.9%
Mean 90.8% 65.9% 87.1% 92.6%

IoU
Direction

Asc, Dsc Dsc Asc

Non-frozen 91.0% 84.7% 85.9%
Frozen 90.6% 82.7% 84.3%
Mean 90.8% 83.7% 85.1%

Figure 5.9.: Mean IoU values obtained with different input patch sizes. The total time
taken to complete training and testing is also indicated, in hours (h). The
results are for all three lakes combined, training on 2016-17 and testing on
2017-18.

5.6. Conclusion and outlook

We have described a system for reliable monitoring of lake ice based on Sentinel-1 SAR

imagery, with the potential to retrieve long, consistent time series over many years (as-

suming continuity of the satellite mission). The proposed method has been demonstrated

for three different Swiss lakes over two complete winters, and obtains good results (mIoU
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90% on average, and >84% even for the most difficult lake), even when generalising to

an unseen winter or lake. Given the main advantage of SAR data for our purposes – its

ability to observe with very good spatial and temporal resolution independent of clouds

– we see the possibility to extend our method into an operational monitoring system. A

logical next step would be to process longer time series, which unfortunately is not yet

possible with Sentinel-1. It is quite possible that even a moderate time span, say 20 years,

would suffice to reveal trends in lake freezing patterns and perhaps also correlations with

climate change. Another future direction is an integrated monitoring concept, using SAR

together with optical satellite imagery and optionally images from webcams, to ensure

reliable identification of ice-on and ice-off dates within the GCOS specification of ±2

days.
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Abstract

Fusing satellite imagery acquired with different sensors has been a long-standing chal-

lenge of Earth observation, particularly across different modalities such as optical and

Synthetic Aperture Radar (SAR) images. Here, we explore the joint analysis of imagery

from different sensors in the light of representation learning: we propose to learn a satel-

lite embedding (feature representation) within a deep neural network. Our application

problem is the monitoring of lake ice on Alpine lakes. To reach the temporal resolution

requirement of the Swiss Global Climate Observing System (GCOS) office, we combine

three image sources: Sentinel-1 SAR (S1-SAR), Terra MODIS and Suomi-NPP VIIRS.

The large gaps between the optical and SAR domains and between the sensor resolu-

tions make this a challenging instance of the sensor fusion problem. Our approach can

be classified as a feature level fusion that is learnt in a data-driven manner. The pro-

posed network architecture has separate encoding branches for each image sensor, which

feed into a single latent embedding. I.e., a common feature representation shared by

all inputs, such that subsequent processing steps deliver comparable output irrespective

of which sort of input image was used. By fusing satellite data, we map lake ice at a

temporal resolution of <1.5 days. The network produces spatially explicit lake ice maps

with pixel-wise accuracies >91.3% (respectively, mIoU scores >60.7%) and generalises

well across different lakes and winters. Moreover, it sets a new state-of-the-art for deter-

mining the important ice-on and ice-off dates for the target lakes, in many cases meeting

the GCOS requirement.
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6.1. Introduction

Multi-modal satellite data analysis is an important capability and an active area of re-

search in remote sensing and Earth observation (Schmitt and Zhu, 2016). Its aim is to

combine the data acquired with different sensors. With the ever-increasing number of

operational satellites and the greater variety of imaging sensors, such a combined analysis

becomes even more important. One important advantage of combining (or ”fusing”) data

from multiple satellites is a higher temporal sampling frequency, so as to obtain denser

time series of dynamic processes.

A whole body of literature exists on combining satellite data from different sensors,

at various levels of processing (pixel level, feature level, decision level). In most cases

the fused data have comparable spatial resolution, e.g., S1-SAR and Sentinel-2 (S2),

TerraSAR-X and ALOS PRISM, etc. Here we aim to merge several sensors with high

temporal resolution, leading to a large gap in spatial resolution: while S1-SAR acquires

an image of our mid-latitude target area every 1.5-4.5 days at 10m Ground Sampling

Distance (GSD), optical sensors with similar revisit times have moderate spatial resolu-

tions (GSD of 250m for MODIS, respectively ≈375m for VIIRS). See Table 6.1. Due to

the large resolution gap we combine them at the feature level. This makes it possible to

use texture information from the high-resolution S1-SAR and circumvents pixel-accurate

matching and co-registration, which is challenging across different modalities with very

different radiometries and large changes in GSD, with associated uncertainties in absolute

geo-location and relative co-registration.

Our goal here is to analyse a time series composed of images from different sen-

sors. Intuitively, this problem is solved if we can transform all input images to the same,

sensor-invariant representation, while at the same time making sure that representation

preserves the information necessary for the intended downstream task, in our case the

detection of lake ice. We leverage the ability of deep neural networks to learn at the

same time a complex, non-linear mapping of the inputs into a latent feature representa-

tion, via sequences of convolutions and element-wise, non-linear activation functions; and

the subsequent mapping from that representation to the desired output variables. Our

proposed network includes a separate encoder branch with individual layout and weights

for each input sensor, to map its raw image values to predictive features. However, the

different encoders all share the same feature embedding, which forms the input for two

branches: an auxiliary branch that outputs a per-pixel classification into frozen (including

snow-covered ice and snow-free ice) or non-frozen (water) and background classes, and

serves mainly to train the representation; and a branch that regresses the fraction of the

lake covered by water (non-frozen pixels). The joint embedding means that the encoder

branches must learn to produce a single representation that is shared across all sensors

(respectively, branches), while at the same time being a suitable basis for the prediction

tasks.

Fusion of multi-source satellite data has been employed for a wide variety of Earth ob-

servation tasks, including land cover classification, object detection, change detection, etc.

For instance, SAR-optical fusion has been applied to sharpen (spatially) low-resolution

optical images by fusing them with high-resolution SAR images (Sanli et al., 2013), to

improve the information extraction by exploiting the complementary nature of radar and
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optical sensing (Schmitt and Zhu, 2016), and for cloud removal from optical images (Gao

et al., 2020, Meraner et al., 2020). In this paper, we use fusion to construct denser time

series from heterogeneous data, for the specific application of lake ice monitoring. To

that end we infer two outputs: a spatially explicit map of frozen and non-frozen lake

pixels at every time step; and a time series of the fraction of water, which serves as a

basis for estimating the critical events of lake ice phenology (LIP), such as ice-on and

ice-off dates.

Lake freezing and thawing are strongly correlated to local warming of the atmosphere

(Tom et al., 2021b, Qi et al., 2020), and Lake Ice Cover has been included in the list of

essential climate variables (https://public.wmo.int/en/programmes/global-climat

e-observing-system/essential-climate-variables). Hence, lake ice monitoring is

important to support climate science and cryosphere research, and ultimately to support

climate change mitigation (Rolnick et al., 2019).

For lake ice monitoring, the requirements of the Swiss GCOS office are daily obser-

vations and an accuracy of ±2 days for the critical ice-on/off dates (Tom et al., 2019).

Several papers have discussed lake ice observation with the help of machine learning, us-

ing a single satellite sensor (Tom et al., 2018, 2020a, Wu et al., 2021b), but unfortunately

none of those sensors has so far met the criteria of ±2 days. In earlier work (Tom et al.,

2020c) we have integrated MODIS and VIIRS data at the decision level, but still failed

to meet the GCOS target in most cases. Terrestrial webcams deliver image sequences

that would satisfy the GCOS criteria (Xiao et al., 2018, Prabha et al., 2020), but unlike

satellite-based methods, they are not suitable for systematic and large-scale monitoring,

since most lakes do not have webcams observing them, and even if there is a camera its

field of view rarely covers the entire lake surface.

In this work, we combine data from multiple satellite sources to improve the temporal

resolution, and thus the accuracy of the critical LIP events around the freeze-up and

break-up periods. MODIS and VIIRS satellite images are available daily, at the cost of

reduced spatial resolution. Still, the GSD is adequate for all but the smallest lake. The

main issue with optical satellite images is data loss due to clouds, which can significantly

decrease the effective temporal resolution. A case in point is our target application of

monitoring Alpine lakes, as they are frequently obscured by clouds, especially around the

important ice-on/-off dates. This means that adding further optical sensors, such as S2

or Landsat-8, will not solve the problem; as they are equally affected by clouds. On the

contrary, SAR will not be influenced by clouds. S1-SAR provides regular coverage (for

the target regions in Switzerland at least every 4.5 days, but in the best case even every

1.5 days, depending on the number of usable orbits as well as data availability in early

stages of the mission). See Table 6.1 for details. Contrary to the moderate-resolution

optical sensors, S1-SAR has a much higher spatial resolution. Therefore, texture analysis

becomes important, while at the same time the correct texture description for the task

is not obvious. A natural solution is to use a deep convolutional network. Note also,

the much higher resolution means many more pixels are available within the area of a

given lake, playing to the strength of data-hungry deep networks. Lake ice mapping with

S1-SAR has been shown to work rather well and has the added advantage that even

tiny lakes can be monitored, but by itself the revisit time is not sufficient to meet the
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GCOS specification (Tom et al., 2020a). Below we will show that, at least for our target

lakes, this target can in many cases be met with the combination of MODIS, VIIRS and

S1-SAR.

Table 6.1.: Details about the satellite data that we use.

MODIS VIIRS Sentinel-1 SAR

Satellite type optical optical radar
Spatial resolution 250–1000m 375–750m 10m
Temporal resolution 1d 1d 1.5–4.5d (for Switzerland)
Spectral resolution 36 bands 22 bands C-band (3.8–7.5cm),

(0.4–14.2µm) (0.4–12.0µm) 4 polarisations (mainly VV, VH)
Cloud problems severe severe nil
Cloud mask issues slight slight NA
Costs free free free
Availability very good very good very good

(via VIIRS continuity) (HV / HH only partially available)

6.1.1. Related work

Satellite data fusion has been a long-standing topic in remote sensing and beyond. Ar-

guably one of the most basic forms of data fusion is pan-sharpening, i.e., fusing an image

with high spectral, but low spatial resolution with one that has high spatial resolution

but only a single (normally broader) spectral band, eg., Ehlers et al. (2010). Related

are more complicated spectral-spatial fusion scenarios (Ranchin and Wald, 2000, Mel-

gani and Serpico, 2002, Huang and Song, 2012, Huang et al., 2013a,b, Lanaras et al.,

2017a,b, 2018) as well as spatio-temporal fusion techniques (Song et al., 2018, Zhu et al.,

2018). For readers looking for a general overview of remote sensing data fusion, there

are several well-crafted review papers (Zhang, 2010, Joshi et al., 2016, Schmitt and Zhu,

2016, Schmitt et al., 2017, Kulkarni and Rege, 2020) that discuss technical challenges,

solutions, applications, and trends.

Here, we will limit our review to directly related work, by which we mean recent

(deep) representation learning methods in the context of SAR-optical satellite data fusion.

Furthermore, on the application side we will review learning-based approaches to lake ice

monitoring.

Fusing optical and SAR satellite images with deep learning

Several authors have used Convolutional Neural Networks (CNNs) to integrate the com-

plimentary information in optical and SAR data, typically using the concept of two-stream

networks with two input branches (one for each modality). Mou et al. (2017) proposed to

use a two-stream pseudo-Siamese CNN (”SARptical Convolutional Network”) to match

patches of urban scenes in very high spatial resolution TerraSAR-X (1.25m pixel spac-

ing) and airborne UltraCAM optical imagery (20 cm GSD). They achieved an overall

accuracy of 97.48% at a 0.05% false alarm rate, on a relatively small dataset with 109

SAR and 9 optical images. Merkle et al. (2017) put forward another two-stream, Siamese
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CNN to extract features from both optical (PRISM, 2.5m GSD) and SAR (TerraSAR-X)

images, followed by a dot-product layer to compute similarities between the extracted

features. Their primary goal was to improve the geo-location of optical images, by pre-

cisely co-registering them with the corresponding SAR data. Scarpa et al. (2018) used

SAR imagery (S1-SAR), in conjunction with CNN-based data fusion, to estimate spectral

features for cloudy days where optical data (S2) is unusable.

A dataset ”SEN1-2” with image pairs from S1-SAR (VV polarisation) and S2 (only

RGB channels) has been proposed by Schmitt et al. (2018) to support research into

geo-spatial data fusion. As a follow-up, another curated dataset ”SEN12MS” of geo-

coded multi-spectral satellite imagery was also made available, which includes patch

triplets (dual-polarised S1-SAR, multi-spectral S2 and MODIS land cover) custom tai-

lored to the training of deep learning methods (Schmitt et al., 2019). In another recent

work (Bürgmann et al., 2019) ground control points are derived from high spatial resolu-

tion TerraSAR-X imagery (1.25m pixel spacing) to improve the absolute geo-location of

optical images (Pléiades, 0.5m and 2m GSD for panchromatic and multi-spectral bands,

respectively). That method used an adapted version of HardNet (Mishchuk et al., 2017)

pre-trained on the SEN1-2 dataset, which was then fine-tuned on the high spatial reso-

lution target data. Hoffmann et al. (2019) proposed a fully convolutional neural network

to predict the similarity metric between SAR and optical images, and reported large

improvements over standard metrics based on mutual information, for a subset of the

SEN1-2 data. Wang et al. (2018b) performed registration of Landsat, Radarsat and

SPOT imagery, also with a deep network. They explored transfer learning to save train-

ing time. Additionally, they utilised a self-learning trick to work around the lack of

labelled training data. Still concerning SAR-to-optical registration, Hughes et al. (2020)

designed a three-step framework, consisting of a ”goodness” network that localised image

regions suitable for matching, followed by a correspondence network that generated a

heatmap of matching scores, and a subsequent outlier rejection network.

Finally, there have also been some studies about the potential of Generative Adver-

sarial Networks (GANs). Hughes et al. (2018) matched TerraSAR-X and UltraCAM data.

To lower the rate of false positive matches, they mined hard negative samples and trained

a variational autoencoder (VAE) with an adversarial strategy, so as to learn the latent

distribution of the training data and synthesised realistic ”negative” patches. GANs were

also adopted to remove clouds from optical satellite images (Gao et al., 2020). In a first

step, a CNN estimates an optical image from the cloud-free SAR image (”image-to-image

translation”). In the next step, that synthesised image is fused with the original, cloudy

optical image to replace the cloud pixels, using a GAN. The method was demonstrated

on three different sensor pairs, namely S1/S2, Gaofen-3/2, and airborne SAR/optical

images.

Lake ice monitoring

The literature on ice monitoring is vast, as a diverse range of data sources and models

have been investigated. Here, we focus on research that used machine learning to derive

the relationship between image observations and presence of ice. In our own earlier

work (Tom et al., 2018) we have demonstrated semantic segmentation of MODIS and
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VIIRS data into frozen and non-frozen pixels, using Support Vector Machines (Cortes

and Vapnik, 1995) on the raw channel intensities. The two sensors were then combined via

decision-level fusion to extract the ice-on/-off dates for two winters (Tom et al., 2020c).

In many cases the critical dates were determined at an accuracy of 1-4 days. We also

confirmed that, for the same target lakes, a deep learning model [Deeplab V3+, Chen

et al. (2018b)] could perform the frozen/non-frozen segmentation of S1-SAR amplitude

images, but still failed to determine the ice-on/-off dates with sufficient accuracy (Tom

et al., 2020a).

Hoekstra et al. (2020) combined Iterative Region Growing Segmentation (IRGS) with

a Random Forest (RF) classifier (Breiman, 2001) to distinguish lake ice from open water

in RADARSAT-2 images of Great Bear Lake (Canada) from 2013 to 2016, attaining an

overall segmentation accuracy of ≈96%. Wu et al. (2021b) have recently compared the

performance of four popular machine learning classifiers (SVM, RF, Gradient Boosted

Trees [GBT], Multinomial Logistic Regression) for lake ice detection from MODIS, for 17

large lakes with areas >1040 km2, situated across Northern Hemisphere. They reported

the best performance with RF and GBT. For our small Alpine lakes, we have also per-

formed a similar comparison with SVM, RF and XGBoost (Chen and Guestrin, 2016),

but found that a linear SVM achieved the best generalisation across different lakes and

years (Tom et al., 2021b), due to non-linear methods over-fitting to the comparatively

small number of training pixels.

Beyond satellite images, there have been attempts to use webcam streams or even

crowd-sourced amateur photographs for lake ice monitoring (Xiao et al., 2018, Prabha

et al., 2020). To that end, state-of-the-art encoder-decoder network for semantic segmen-

tation of close-range images (Jégou et al., 2016) was retrained (with minor modifications)

to distinguish the relevant classes such as ice, snow and water. While ice detection based

on webcam images works rather well and largely is unaffected by cloud cover (although

a few images may have to be dropped because of excessive fog, rain or snowfall), it is

at this point unclear how to scale up such an approach, as only a small portion of all

relevant lakes are (often only partially) observed by webcams.

6.1.2. Definitions used

Following Franssen and Scherrer (2008), we define ice-on as the first date on which a lake

is ”almost fully” frozen, and followed by a second day where this remains so; i.e., the

end of the freeze-up period, and ice-off as the first day on which a significant amount

of water re-appears and remains visible for another day; i.e., the start of the break-up

period.

All the pixels that fall completely inside the lake boundary (obtained from open-

streetmap.org, generalised) are considered as clean pixels and used for training and in-

ference, so as to sidestep the handling of mixed pixels and the influence of geo-location

errors. Moreover, we call non-transition days all (>30% cloud-free) days on which the

lake is either entirely frozen or entirely non-frozen. The remaining (again, >30% cloud-

free) days are referred to as transition dates. Only non-transition days are used to train

the segmentation, as spatially explicit labels for the transition days are difficult to obtain.
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Whereas the regression of the water fraction is trained on all the dates.

6.2. Target lakes, winters, and satellites

6.2.1. Target lakes and winters

For our case study, we monitor lake ice on four (mid-latitude, Alpine) lakes in Switzerland:

Sihl, Sils, Silvaplana and St. Moritz. See Fig. 6.1. Lake Sihl is located near the Swiss

plateau while the latter three lakes are located close to each other at higher altitude in

the Engadin valley, and share similar geographical and environmental conditions. More

details about these lakes can be found in Table C.1 (see Appendix C). For each lake,

we process all three satellite sources from two winters: 2016–17 and 2017–18. In each

winter, all available cloud-free dates between beginning of September and end of May are

analysed.

±

0 70 14035 Kilometres

0 94.5 Kilometres0 94.5 Kilometres

0 52.5 Kilometres

Figure 6.1.: On the orthophoto map of Switzerland, the geographic location of the target
Swiss lakes are marked as red and amber rectangles. RGB True Colour
Composite (TCC) of VIIRS (top left, R=I3, G=I2, B=I1, captured on 7
September 2016) and MODIS (top right, R=B1, G=B4, B=B3, captured on
7 September 2016) for the region Einsiedeln (lake Sihl) are shown in the
zoomed red rectangles. For the region Engadin (lakes Sils, Silvaplana and
St. Moritz, from left to right), the RGB TCC (R=VV, G=VH, B=0) of
Sentinel-1 SAR (captured on 13 September 2016) is shown in the zoomed
amber rectangle. Best if viewed on screen.
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6.2.2. Target satellites

Optical satellite data (MODIS and VIIRS)

We use Terra MODIS (https://terra.nasa.gov/about/terra-instruments/modis)

and Suomi NPP VIIRS (https://ncc.nesdis.noaa.gov/VIIRS/) data in our analy-

sis. For both these data types, we follow the download and pre-processing procedures as

described in Tom et al. (2020c), which include absolute geolocation correction, backpro-

jection of the generalised lake outlines onto the satellite images to extract clean pixels,

cloud filtering, and bilinear interpolation for low-resolution bands (upsampling the 500m

and 1km bands to 250m, only for MODIS). All cloud-free lake pixels in acquisitions with

>30% non-cloudy pixels are extracted and processed. We note that for VIIRS, after

absolute geolocation correction, there is no clean pixel available for lake St. Moritz.1 In-

stead of using all the available bands, 12 (5) out of 36 (22) spectral bands are selected

for MODIS (VIIRS) as suggested in Tom et al. (2018). For MODIS, this selection was

done after a visual check and 12 potentially useful bands without artefacts (stripes) or

saturation issues were picked. For VIIRS, all five imagery bands were selected. To gen-

erate images with uniform size (to be fed as input to the network), the lake pixels are

padded with background pixels to form 12×12 patches (input dimensions of 12×12×12,

respectively 12×12×5 for MODIS and VIIRS). Details about the optical images are

displayed in Table 6.1.

Radar satellite data (Sentinel-1 SAR)

We download already pre-processed dual polarisation C-band S1-SAR data as level-1

Ground Range Detected (GRD) scenes in Interferometric Wide (IW) swath mode from

the Google Earth Engine (GEE) platform (Gorelick et al., 2017). The GEE pre-processing

includes border and thermal noise removal, radiometric calibration, terrain correction, ab-

solute geolocation correction, and log scaling. Additionally, we resize the images spatially

to 128×128 resolution (covering all lake pixels and some background). Although the in-

strument can record four polarisations (VV, VH, HV, HH), only VV and VH are available

for the regions of interest around Einsiedeln and Engadin, in Switzerland. Hence, the

final input size for SAR images is 128×128×2. The temporal resolution varies across

regions as well as winters, ranging from 1.5-4.5 days. From winter 2017–18, the data

is available every 1.5 days for lakes in region Engadin (Sils, Silvaplana, St. Moritz) and

every 3 days for region Einsiedeln (Sihl). On the other hand, in 2016–17, it is 2.3 and

4.5 days respectively. Sentinel-1 (S1) scans region Engadin in four orbits, but region

Einsiedeln only in two orbits. This explains why the temporal resolution for Engadin is

relatively high for a given winter. In winter 2017–18, the data from both S1A and S1B

satellites are available. Additionally, even though the S1B was launched in April 2016,

the corresponding data is available only since March 2017, effectively offering a relatively

lower temporal resolution for winter 2016–17. More details on the S1-SAR data that we

use are also summarised in Table 6.1.

1We include this tiny lake mainly to assess the limits of satellite-based ice monitoring for very small
lakes.
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Satellite combination: effective temporal resolution

For the target lakes and winters, we compute the effective temporal resolution (average

number of days between cloud-free image acquisitions) separately for each input sensor

and for the combination, see Table 6.2. For the optical satellites, only the cloud-free (at

least 30%) days are counted while computing the effective temporal resolution. In any

winter, there can be days on which all three satellites have imaged the regions of interest,

days on which these regions were scanned more than once by the same satellite (rare),

and days with no S1-SAR acquisition and no available cloud-free MODIS and VIIRS

data.

Table 6.2.: Effective temporal resolution during the target winters in days, for different
sensors. S, M, V denote S1-SAR, MODIS and VIIRS respectively.

Lake Winter S M V S+M+V

Sihl
2016–17 4.5 1.9 2.1 1.5
2017–18 3.0 2.2 2.4 1.5

Sils
2016–17 2.3 1.7 1.7 1.3
2017–18 1.5 2.0 2.0 1.2

Silvaplana
2016–17 2.3 1.7 1.7 1.3
2017–18 1.5 2.1 1.9 1.3

St. Moritz
2016–17 2.3 1.7 - 1.4
2017–18 1.5 2.0 - 1.3

For a given lake and winter, different effective temporal resolution for MODIS and

VIIRS is possible since their overpasses occur at different times of day and the cloud

patterns may change. Additionally, in the presence of scattered clouds the cloud cover

can vary even between the lakes located in the same valley (Sils, Silvaplana, St. Moritz),

in the same overpass. Even though both optical satellites have daily acquisitions, the

effective temporal resolution for each sensor is greater than 1 day even at a low threshold

of <70% clouds. In the best case with zero clouds, both MODIS and VIIRS individually

would have daily temporal resolution and no fusion with SAR data is needed. However,

in practice, clouds are inevitable in the target regions and the chosen scenario of using

(S+M+V) is a realistic minimal setup: For the two winters of interest, the effective

temporal resolution after combining the data from three sensors is between 1 and 2 days.

See Table 6.2 (a day is counted only once if captured by more than one satellite). It can

be noted from Table 6.2 that winter 2017–18 was relatively more cloudy than 2016–17.

Still, the temporal resolution of the three sensors combined is better in 2017–18, due to

the extra data from the S1B satellite, which was not available in 2016–17.

6.2.3. Ground truth

The reference data was generated by visual interpretation of the images from freely avail-

able webcams located in the vicinity of the target lakes. The images were labelled inde-

pendently by a human operator, and independently confirmed by a second one. Whenever

there were doubts about the per-day label, the operators used more images from the same

webcam, other webcams monitoring the same lake (if available), information from ad-
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jacent days, and in some cases also the online media reports and interpretation of S2

satellite images (if available and cloud-free) to corroborate their final choice of label.

On non-transition days, only a binary label was assigned: fully-frozen (fraction of water

pixels 0) or fully non-frozen (fraction 1). Whereas on transition days the assigned labels

have higher granularity and also include the states: more frozen (0.25) and more non-

frozen (0.75). There is a price to pay, as these additional states cannot always be labelled

reliably and a significant amount of label noise must be expected. Due to interpretation

uncertainties and not clearly visible regions, as well as the fact that not the entire lake

surface is visible in the webcam images, the actual water area of a ”more frozen” lake is

likely to fluctuate in the range 60-90% of the lake surface. Moreover, due to interpretation

errors caused by bad lighting, compression artefacts of webcam streams, and low spatial

resolution especially in the far field, occasional confusions between adjacent states are

almost certainly present in the reference data. These issues can be hardly avoided, as

webcams are typically placed relatively low on shore, such that the lake surface is viewed

at acute angles and the image scale degrades rapidly with distance from the camera.

For training the segmentation task, only the non-transition dates are used, after

converting the per-image labels to spatially explicit maps with 100% frozen, respectively

non-frozen pixels inside the lake boundary. Pixels outside the lake are labelled as back-

ground.

6.3. Methodology

6.3.1. Data fusion model

We propose a 2-step model for deep satellite data fusion, see Fig. 6.2 for a depiction of

the network architecture. The two underlying steps are:

1. learn a satellite ”embedding” representation

2. use the learnt embedding as input for the interpretation task, in our case lake ice

monitoring

The first step transforms the inputs to a new feature space (a ”latent representation”). To

train that step, which should preserve and accentuate information about the local state

of the lake surface, we use the auxiliary task to explicitly segment the lake into three

semantic classes, frozen, non-frozen and background. The second step starts from the

resulting feature representation and regresses the fraction of water (non-frozen) pixels on

the lake, including a mechanism for multi-temporal analysis over a short period of time

around the day in question. In the following we describe each of the two steps in more

detail.

Step 1: satellite embedding learning

To perform fusion, the domain gap between the heterogeneous inputs that stem from

satellite sensors operating at very different wavelengths (optical, radar) and spatial res-

olutions (10 to 375m), need to be bridged. We achieve this by learning a shared, in-
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Figure 6.2.: Network structure of the proposed 2-step model. In step 1, the shared block
generates the satellite embedding (Emb). In step 2, the embedding learnt are
fused to learn the per-day fraction of non-frozen (water) pixels. Effectively,
two outcomes are predicted by the proposed model: 1) in step 1, the per-
pixel semantic segmentation of the lake (red=non-frozen, blue=frozen, here
we have shown an example non-frozen result for lake Sils), 2) in step 2, the
point estimate of the daily fraction of water pixels. Conv and FC represent
the convolution and fully connected layers respectively. Best if viewed on
screen.

termediate representation, along with individual encoders (a.k.a. ”embedding function”)

to transform the data of each sensor to that representation (the common ”embedding”,

abbreviated as ”Emb” in Fig. 6.2). The overall architecture consists of an individual

branch per sensor to map different inputs to a shared ”feature map” and a shared block

with the same weights for all sensors to further abstract that feature map into the final

representation that serves as the basis for the output predictions.

Encoders: At first, the input image is encoded into intermediate features that, on

the one hand, can be derived from any of the input sensors and, on the other hand,

preserve the information needed to differentiate the frozen and non-frozen states. For the

MODIS and VIIRS branches, with their low spatial resolutions that do not call for texture

analysis, we use a simple 1 × 1 convolution (conv) layer as encoder. On the contrary,

the S1-SAR branch has much higher spatial resolution and must be able to learn texture

and context features over spatial neighbourhoods of multiple pixels. Our encoder is a

CNN inspired by U-net (Ronneberger et al., 2015), with leaky ReLU (Xu et al., 2015)

activation. See Fig. 6.3.

Shared block: The per-sensor branches, which one might interpret as a ”pre-processing”

into a common feature space, are followed by a shared block to optimise the features for

the downstream task of lake ice monitoring. That block consists of a shallow network

with 1×1 convolution and concatenation layers, see Fig. 6.2. Also, in this block all weights

are learnt from data. Its output is the deep embedding (Emb), with a uniform size of

12×12×32. It serves as input for the second step, described in Section 6.3.1.

Training: The network weights in the first step of the 2-step model are trained on
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Figure 6.3.: U-net style SAR encoder architecture. Conv and FM represent convolution
layer and feature maps respectively. Best if viewed on screen.

the auxiliary task of spatially explicit semantic segmentation, as follows:

• First, the weights in the U-net style SAR encoder are pre-trained, starting from

”Glorot” uniform initialisation (Glorot and Bengio, 2010), by feeding the network

with S1-SAR data. The leakage rate (slope for values <0) of the leaky ReLU is set

as α = 0.1.

• Second, the MODIS and VIIRS encoders are pre-trained, along with the shared

block, again with ”Glorot” uniform initialisation (Glorot and Bengio, 2010). Optical

images are fed in alternating fashion, switching between one epoch with MODIS

data and one epoch with VIIRS data. This procedure is run for 40 epochs (20 each

for MODIS and VIIRS), thus priming the two branches and the shared block for

MODIS-VIIRS fusion.

• Third, the shared block weights are fine-tuned to make them compatible also with

SAR data. To that end the network is again fed with S1-SAR data, thus jointly

updating the pre-trained SAR encoder and shared block. This last step tunes the

shared block to also perform optical-SAR (MODIS-SAR, VIIRS-SAR) fusion.

In all above-mentioned training steps, the weights are optimised by minimising the

cross entropy loss over pixel-wise class labels, using the Adam optimiser (Kingma and

Ba, 2015). Details about hyper-parameters of the training are given in Table 6.3, columns

2-4.

In the proposed setup, the type and number of input branches is flexible. It is fairly

straight-forward to include further satellite sensors, by designing a suitable encoder and

fine-tuning the shared block to accommodate the new input data characteristics. In that

context note that convolution layer can handle varying input sizes, so input images of

varying size, respectively spatial resolution, can be used (in fact our inputs also do not

have the same pixel dimensions).
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Table 6.3.: Network parameter settings for various training stages in the proposed 2-step
model. Learning Rate (LR) decay refers to exponential scheduling. SGD
represents stochastic gradient descent.

2-step model
step 1 step 1 step 1 step 2

uNet-style SAR MODIS, VIIRS encoder pre-training, Shared block Regression
encoder pre-training Shared block pre-training fine-tuning

Epochs 500 MODIS (20), VIIRS (20) 250 100
Batch size 16 8 16 4

Loss cross entropy cross entropy cross entropy Lreg
Optimiser Adam Adam Adam SGD

LR 5e-05 5e-04 1e-05 5e-04
LR decay 375, 0.9 - 150, 0.9 -

(steps, rate)
window size - - - 7

Step 2: prediction based on the learnt embedding

The second step in our application task is a regression model that predicts what fraction

of the lake surface is covered by open water. This prediction is based on embedding from

multiple adjacent days, in order to exploit temporal sequence information and to smooth

out noise in the per-day features. The regression network starts with three convolutional

layers that operate independently on each per-day feature map, followed by a reshape

layer that aligns the information from a window of adjacent time steps (i.e., the time

and channel dimensions are collapsed into a single dimension). Three more convolution

layers then combine the information from all time steps in the window, and a final, fully

connected (FC) layer returns a single, scalar prediction, assigned to the central day in

the window. See Fig. 6.2.

The window size is a hyper-parameter that determines how many per-day embedding

are stacked into a local time series. E.g., when it is set to 7, a daily prediction is based

on feature maps from the previous 3, current and next 3 days.

For the regression model, the loss function Lreg is defined as

Lreg = Lmse + βLline + γLidc (6.1)

where Lmse, Lline and Lidc correspond to mean squared error loss, line loss, and intra-day

coherence loss respectively. We empirically fixed the weights β = 0.25 and γ = 0.08.

In step 2 also, the training starts from ”Glorot” uniform weight initialisation (Glorot

and Bengio, 2010). Further training settings for the regression model is shown in Ta-

ble 6.3 (column 5).

Lline penalises the deviations from a linear trend (mx+ c) computed locally for each

mini-batch b. Each batch is carefully selected so that the embedding from adjacent days

are present. The line loss is based on the assumption that the predictions of adjacent

dates should lie on a straight line, which acts as a smoothness prior and mainly helps to
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correct isolated outliers. First, the line is fitted as

m =
yl − yf

b
, c = yf (6.2)

with yf , yl the first and last prediction in the mini-batch. The deviation di of the ith

prediction yi from the line is then

di =
|mi+ c− yi|√

m2 + 1
(6.3)

There are a few days where more than one satellite imaged the region of interest. In

such cases, multiple embedding (one per satellite) will be generated by step 1. The loss

term Lidc computes the variance between predictions from the same day and penalises

it, thereby encouraging coherent outputs. The final output (fraction of water) for a day

with more than one sensor observation is the mean of the individual predictions.

6.4. Experiments, results and discussion

We perform experiments in the leave-one-out setting: the dataset is sub-divided into

different portions, and in each run one portion is left out and a model is trained on the

remaining data. The model thus trained is then tested using the left out portion. We

use two settings: Leave One Winter Out (LOWO) and Leave One Lake Out (LOLO), to

assess the model’s capability to generalise across time and space. For instance, ”LOLO-

Sihl” means training on the data of all lakes except Sihl (from both winters 2016–17

and 2017–18) and testing on the data of Sihl from both winters, and similar for other

combinations.

Using the proposed 2-step model, we generate embedding on all available dates, from

both non-transition and transition periods. To train the step 1 (semantic segmentation)

which require per-pixel labels, we use only data from non-transition days, because pixel-

wise ground truth is not available for the transition days. Step 2 (regression of water

fraction) needs only scalar per-day labels, hence we include data from all days in the

training set, despite the inevitably higher label noise during transitions (see Section 6.2.3).

Although an auxiliary task in our setup, we quantitatively assess segmentation per-

formance, in terms of overall classification accuracy and mean per-class Intersection-over-

Union (mIoU) score, see Section 6.4.1. For qualitative assessment, we visualise the learnt

embedding in Section 6.4.3. As an additional check we plot and visually inspect the

time series of predicted water fractions for each lake throughout the entire winter, see

Section 6.4.2. From those time series, we also derive the ice-on/-off dates and assess the

model’s ability to retrieve lake ice phenology, in Section 6.4.4.
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6.4.1. Quantitative results: semantic segmentation

To learn the embedding, our model is trained to perform pixel-wise semantic segmenta-

tion, which we assume to be a good proxy task for the retrieval of ice cover, but with a

stronger, spatially more explicit and more detailed supervision signal. This experiment

inspects the performance of the segmentation step (step 1). After training the model,

the data from each satellite sensor is fed to the respective input branch and is analysed

independently, for two reasons. On the one hand it allows us to separately quantify the

performance of the model for each satellite sensor. On the other hand the embedding is

trained jointly, but still computed features separately for each input image, and thus also

for each sensor – the mixing of features extracted from different sources only happens

when aggregating over time windows in the regression step. LOWO and LOLO results are

shown in Tables 6.4 and 6.5, respectively. To quantify the epistemic uncertainty (model

uncertainty due to imperfect training data), we also estimate the standard deviation of

the predictions, using an ensemble of five models with independent random initialisations.

The results support our assumption that a joint model with a single, shared embedding

can handle inputs from any single sensor. In more detail, it can be seen that the pro-

posed model achieves very good generalisation across different winters (mIoU >76.1%,

accuracy>94.6%). Overall, also the generalisation across different lakes is very good for

optical images (mIoU >79.8%, accuracy>91.6%), with a small decrease for the S1-SAR

data (mIoU >60.7%, accuracy>91.3%).

Table 6.4.: Semantic segmentation results (in %) of leave one winter out experiment. µ
and σ denote the mean and standard deviation for the results obtained using
five random initialisation.

Data Winter 2016–17 Winter 2017–18
Accuracy mIoU Accuracy mIoU
µ σ µ σ µ σ µ σ

MODIS 96.1 0.1 81.2 0.4 97.5 0.5 84.9 1.7
VIIRS 98.9 0.2 87.9 1.9 99.1 0.1 87.4 1.1
S1-SAR 94.6 0.3 76.1 1.0 95.2 0.1 79.1 0.4

Table 6.5.: Semantic segmentation results (in %) of leave one lake out experiment. µ and
σ denote the mean and standard deviation for the results obtained using five
random initialisation.

Data Sihl Sils Silvaplana St. Moritz
Accuracy mIoU Accuracy mIoU Accuracy mIoU Accuracy mIoU
µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

MODIS 91.6 2.5 79.8 3.3 98 0.2 89.2 0.9 98.1 0.3 85.7 2.0 99.8 0 80.9 1.6
VIIRS 98.3 0.3 87.8 1.8 99.5 0.1 90.9 1.3 99.5 0.1 89.3 1.6 - - - -

S1-SAR 91.3 0.6 60.7 1.4 92.2 0.5 70.3 1.4 92.5 0.4 72.6 1.1 93.9 0.3 72.8 1.1

6.4.2. Qualitative results: full winter time series

In each winter, after fusing the embedding from all three satellite sources, daily prediction

of the fraction of water (non-frozen pixels) are obtained for each lake and the time series
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is generated. Fig. 6.4 shows the sample results for lakes Sihl and Sils. Here, the model

is trained using the data from all the lakes from winter 2017–18. In each sub-figure, the

predicted fraction of water is shown on the y-axis against the acquisitions (dates) on the

x-axis displayed in chronological order from beginning of September until end of May.

Reference annotations are shown as a blue line, predictions are displayed as points with

a different colour per calendar month. Results for the remaining two lakes are shown in

Appendix C.2.

It can be inferred from Figs. 6.4 and C.1 (Appendix C) that the time series results

are good for the bigger lakes Sihl and Sils, satisfactory for Silvaplana, but not very good

for lake St. Moritz, especially during freeze-up. As said earlier, that lake is tiny (not a

single clean pixel in VIIRS, four clean pixels in MODIS) and has been included as an

extreme case to test the limits of high temporal-resolution satellite data for small lakes.

As expected, the results generally improve with increasing lake size, see also Table C.1

(Appendix C). There are several possible reasons. For low resolution sensors, there are

simply few pixels to learn the model, whereas for higher-resolution sensors like S1-SAR

there may be just enough pixels, but still only little context. Moreover, the portion

covered by mixed pixels along the lake boundary is relatively larger, and such boundary

effects are compounded by the fact that the mixed pixels are most affected by residual

geo-localisation errors. Moreover, quantisation and correspondence issues may play a role

when transferring ground truth annotations from webcams to satellite images, see also

Section 6.2.3. Finally, note that for St. Moritz only two sensors were fused as there are

no clean VIIRS pixels.

6.4.3. Qualitative visualisation: learnt embedding

We visualise the learnt embedding after dimension reduction with t-distributed Stochastic

Neighbour Embedding (Maaten and Hinton, 2008, t-SNE), for a visual impression of how

the data cluster in high-dimensional feature space. See Figs. 6.5 and C.2 (Appendix C). In

the illustration, the blue corresponds to a high likelihood of ice/snow, while yellow means

a high likelihood of water. It can be seen that the learnt embedding looks reasonable, in

the sense that the classes are separable. Reducing the dimension of the projection to only

2 (right column) reveals that clusters for different sensors can still be restored. I.e., the

joint feature spaces allows one to construct decision boundaries, respectively regression

coefficients, that are invariant w.r.t. the input type, but the features themselves are not

completely invariant.

6.4.4. Ice-on/off results

To compare the performance of the proposed approach with previous works which anal-

ysed the target lakes (Tom et al., 2020a,c, 2019), we extract the ice-on/off dates from the

daily predictions of water fraction, see Table 6.6. For robustness, those daily predictions

are again ensemble over five independently initialised networks. Furthermore, we perform

a comparison with the in-situ temperature analysis reported in Tom et al. (2019). The

comparisons are only possible for the winter 2016–17, as no other estimates are available

for 2017–18.
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Lake Sihl

Lake Sils

Figure 6.4.: Time series plots for lakes Sihl and Sils from winter 2016–17 using a model
trained on all the data (all four lakes) from winter 2017–18. Best if viewed
on screen.

Following Tom et al. (2021b), we opt for a higher freeze threshold of 30% to estimate

the two LIP events. I.e., ice-on is detected when <30% of the lake is not frozen, and

ice-off when >30% of it return to the non-frozen state after the freeze period. The choice

of threshold generally does not make a big difference, but the more conservative setting

of 30% is sometimes beneficial to compensate the higher uncertainty in remote sensing

estimates, as opposed to in-situ observations. For completeness we also show the results

for a threshold value of 10%. See Table 6.6. In the Table, ”M+V” refers to a decision-

level fusion of MODIS and VIIRS predictions obtained with Support Vector Machines, as

reported in Tom et al. (2020c). Similarly, ”Webcam” means the prediction results from

webcam images, obtained with the Deep-U-Lab network (Tom et al., 2020c). The ground

truth is determined by interactive visual interpretation. Outputs that meet the GCOS

target of ±2 days (relative to the ground truth annotations) are printed bold.

When comparing the results on Table 6.6 from different satellite remote sensing

methods (Tom et al., 2020a,c) methods, the joint embedding model, on average, deviates

least from the ground truth. However, the results of in-situ temperature analysis (Tom

et al., 2019), are better. As before, the predictions for the two (relatively) larger lakes Sihl
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Lake Sihl, dimension=3 Lake Sihl, dimension=2

Lake Sils, dimension=3 Lake Sils, dimension=2

Figure 6.5.: t-SNE representation of the embedding learnt (lakes Sihl and Sils, winter
2016–17) using the proposed 2-step approach with a model trained on all the
data from winter 2017–18. Water fraction refers to the predicted fraction of
non-frozen pixels. Best if viewed on screen.

and Sils are more accurate. The accuracy is inversely proportional to the lake area, see

also Table C.1 (Appendix C). For the tiny lake St. Moritz, all satellite-based predictions of

ice-on are wildly off, again showing the limits of satellite remote sensing and/or statistical

machine learning for very small geographic objects.

6.4.5. Runtime

On a computer equipped with NVIDIA GeForce GTX 1080 Ti graphics card (12 GB),

it takes ≈1 hour to train the whole 2-step model (including all pre-training steps) for

the LOWO 2016–17 experiment. Predictions for a complete winter take only a couple of

minutes.

6.5. Discussion and conclusion

We have developed a deep learning framework that learns a joint embedding in order

to fuse MODIS, VIIRS and S1-SAR satellite data into a task-specific, homogenised time

series. We have employed the proposed framework for lake ice monitoring, to estimate

the freezing state of four Swiss lakes and to determine their ice-on and ice-off dates.
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6.5. Discussion and conclusion

Table 6.6.: Ice-on/off dates (winter 2016–17) estimated with the 2-step model, with two
different thresholds. For comparison we show the ground truth (in chronolog-
ical order when more than one candidate exists), the earlier remote sensing
results: M+V (Tom et al., 2020c), Webcam (Tom et al., 2020c), S1-SAR (Tom
et al., 2020a), and the results of in-situ (temperature, T) analysis (Tom et al.,
2019). Results that meet the GCOS requirement are printed bold.

Date Ground 2-step 2-step M+V Webcam S1-SAR In-situ (T)
truth (10%) (30%)

Ice-on (Sihl) 1 Jan 3 Jan 3 Jan 3 Jan 4 Jan 11 Jan 28-29 Dec
Ice-off (Sihl) 14 Mar 6 Mar 10 Mar 10 Mar 14 Feb 28 Feb 16 Mar

15 Mar
Ice-on (Sils) 2 Jan 15 Jan 9 Jan 6 Jan - 6 Jan 31 Dec

5 Jan 15 Jan
Ice-off (Sils) 8 Apr 31 Mar 7 Apr 31 Mar - 12 Apr 10 Apr

11 Apr 6 Apr 12 Apr
11 Apr

Ice-on 12 Jan 16 Jan 15 Jan 15 Jan - 15 Jan 14 Jan
(Silvaplana)

Ice-off 11 Apr 7 Apr 7 Apr 30 Mar - 18 Mar 14 Apr
(Silvaplana) 12 Apr 13 Apr

Ice-on 15-17 Dec 17 Jan 6 Jan 1 Jan 14 Dec 25 Dec 17 Dec
(St. Moritz) 27 Jan 16 Jan

25 Jan
Ice-off 30 Mar - 6 Apr 7 Apr 7 Apr 7 Apr 18 Mar-26 Apr 30 Mar 5-8 Apr

(St. Moritz)

In our experiments the method has shown good generalisation across different winters

and across different lakes.

Notably, the data we fuse for our application example not only come from two

different imaging modalities, but also differ in resolution by an order of magnitude. At

least conceptually, the proposed multi-branch architecture is very generic. It should be

straightforward to extend it to further satellite sensors, by pre-training the corresponding

low-level branches and fine-tuning the shared block.

Although the proposed approach in many cases achieves promising results, there

is still room for improvement. In particular, we have used only rough, approximate

reference annotations for the transition days. Better ground truth will likely improve the

performance of the regression. Moreover, we expect that adding optical satellite images

with higher spatial resolution and not too long revisit times could improve the results.

Given the statistical nature of our approach, it is also likely that a larger and more diverse

training set would bring performance gains, but we leave this for future work, as it will

require annotations for additional lakes and/or winters. An interesting, but challenging

direction may be to fuse in also data from non-satellite sources (webcams, UAVs, etc.).

A caveat of our approach is that the the learnt embedding at this stage is perhaps

better described as equivariant, in the sense of delivering comparable output for different

image sources. But it is not truly invariant, as the latent vectors to some degree still

appear to cluster according to the different sensors.

In terms of application, while our focus was on lake ice, the proposed data fusion

methodology is generic and should be easily transferable to other geo-spatial data analysis

and Earth science applications.
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6. Satellite embedding learning

Finally, at the methodological level, it may in the longer term be necessary to shift

the focus to techniques that learn task-oriented data representations (i.e., embedding)

with minimal supervision, such as unsupervised, weakly supervised or self-supervised

learning. There exists a huge amount of unlabelled remotely sensed data, from various

sources (spaceborne, airborne, webcams, amateur images, etc.), and labelling reference

data for supervised learning is a critical bottleneck.
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7 Conclusions

7.1. Summary

This thesis proposed a future-oriented system for automated visual monitoring of lake ice

from space (satellites) and Earth (terrestrial webcams). The analysis primarily focused

on four selected small-to-medium-sized mid-latitude lakes located in the Swiss Alps. Data

from different sensors were integrated into the proposed system and analysed, such as

optical (MODIS, VIIRS) and radar (Sentinel-1 SAR) satellites, and close-range webcams,

which constituted a stable data source. A comparison of the various attributes of these

data is shown in Table 7.1.

Table 7.1.: Intercomparison of the properties of different input data.

MODIS VIIRS Sentinel-1 SAR Webcams

Spatial resolution 250–1000m 375–750m 10m (pixel spacing) ca. 4mm to 4m
Temporal resolution 1d 1d 1.5–4.5d 1 hour

(for Switzerland) (typically)
Spectral resolution 36 bands 22 bands C-band, RGB

(0.4–14.2 µm) (0.4–12.0 µm) (around 5.6 cm)
4 polarisations
(mainly VV, VH)

Cloud problems severe severe nil negligible
Cloud mask issues slight slight NA NA
Costs free free free free
Availability very good very good very good depending

(via VIIRS (HV / HH only on location
continuity) partially available)

Sensor type optical optical radar optical

In the processing chain, state-of-the-art machine learning methodologies were de-

ployed for lake ice monitoring. Such learning-based techniques have rarely been investi-

gated in the past, especially for monitoring various small mountain lakes on the planet,

which are the ones that freeze besides the Arctic lakes. Additionally, the proposed ap-

proaches have a big advantage given the fact that they are largely independent of in-situ

observations and models of the lake freezing and thawing processes. Spatio-temporal ice

maps were derived by casting lake ice retrieval as a supervised semantic segmentation

problem, and the critical LIP events were estimated using these maps. SVM-based clas-

sical ML methodology was applied on MODIS and VIIRS sensors, while deep CNN was

employed for S1-SAR and webcam data. Different aspects of the various single-sensor

methodologies that were proposed are compared in Table 7.2. Furthermore, the fusion
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of several satellite data (SAR and optical) was also studied. Detailed experimentation

was performed, including cross-validation and spatio-temporal generalisation tests. Ref-

erence data was primarily generated by interactive visual interpretation of freely available

webcam images. Technically, a huge amount of labelled data is needed to train all pro-

posed DL models from scratch. However, the training load was reduced with the transfer

learning trick, and only fine-tuning on the relatively smaller dataset was needed.

Table 7.2.: Intercomparison of the proposed methodologies for each input data type.

MODIS, VIIRS Sentinel-1 SAR Webcams

Training low medium (transfer medium (transfer
complexity learning decreases learning decreases

training load) training load)
Computation very low high, GPU required high, GPU required
complexity
Per-pixel not necessary not necessary necessary
ground-truth (fully-frozen or fully- (fully-frozen or fully-

non-frozen days used) non-frozen days used)
Pre-training not required required required
on external data
Near-real time yes feasible feasible
performance (excluding training) (excluding training)

For both MODIS and VIIRS sensors, the proposed SVM-based approach (Chapter 3)

achieved mIoU scores > 93%. It also marked good generalisation performance with mIoU

scores > 78% and > 80% across lakes and winters, respectively. Additionally, using the

same approach, a large time series (since 2000) of MODIS data was established to study

the LIP trends in two selected lakes in Switzerland (Chapter 4). As expected, later

freeze-up, earlier break-up, and shorter freeze duration trends were estimated from this

20-winter time series analysis. For the lakes Sils and Silvaplana, the change in complete

freeze duration were determined as -0.76 d/a and -0.89 d/a, respectively. In addition,

plausible correlations of LIP events and climate indicators such as temperature, sunshine,

and precipitation were observed. It was noticed that the mean winter temperature and

total winter sunshine have a strong negative correlation with the freeze duration events.

With empirical evidence, Chapters 3 and 4 showed that the classical ML models are

sufficient to accurately extract the spatio-temporal extent of lake ice in small-to-medium-

sized lakes from low-spatial resolution optical satellite imagery.

It was shown in Chapter 3 that terrestrial webcams could efficiently monitor very

small lakes such as St. Moritz that cannot easily be surveyed using VIIRS type data. A

state-of-the-art has been established for webcam monitoring using the proposed Deep-U-

Lab network. On average, the Deep-U-Lab methodology reached mIoU values of ≈ 87%

with generalisation scores of ≈ 71% and ≈ 69% across different cameras and winters,

respectively. Furthermore, automated detection of lake outlines from webcams was pre-

sented using the same network. Moreover, a new freely available webcam dataset with

per-pixel ground truth information has been published.
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Chapter 5 investigated and demonstrated that deep neural networks could learn

to observe lake ice from SAR satellite data. The deeplab v3+ model on S1-SAR data

produced good generalisation performance across lakes and winters and attained mIoU

scores > 84% for the most challenging lake, and > 90% on average. One key finding of

this chapter is that the weights of a deep neural network trained on close-range optical

amateur photographs can be reused as a starting point to train a network that works well

on radar satellite data.

Besides single-sensor approaches, a data fusion methodology was presented in Chap-

ter 6 which showed that optical satellite data, supplemented by SAR imagery, may be

a good trade-off for operational estimation of lake ice from space. The proposed deep

satellite data fusion technique achieved scores that are of practical interest (accuracy and

mIoU scores >91% and >60% respectively) in addition to attaining good cross-winter

(mIoU >76%) and promising cross-lake (mIoU >60%) generalisation results. Further-

more, it marked a new state-of-the-art in estimating the critical ice-on and ice-off dates,

in many cases meeting the GCOS temporal resolution criteria.

7.2. Limitations

The quantitative and qualitative analysis presented in this dissertation has shown that

machine learning is a valuable and practical tool for lake ice monitoring from terrestrial

and satellite sensors. However, there are some shortcomings too, and this thesis would be

incomplete without discussing them. The following sub-sections discuss the limitations

of the input data and proposed methodologies.

Optical satellite data analysis. Compared to the non-transition days, the perfor-

mance of the proposed optical satellite methodology (Chapters 3, 4) is less reliable during

the transition days, which is also reflected in the accuracy of estimation of the ice-on and

ice-off dates. The main reason is that the training set has only data from non-transition

days due to the unavailability of pixel-accurate annotations on the transition days. When

clouds occur during the transition days, this issue stands out. A second weakness is that,

to some extent, the errors in MODIS and VIIRS cloud masks could introduce discrepan-

cies in the final results. Furthermore, for small lakes with very few clean pixels, absolute

geolocation errors could become critical. Note that, even after correction, an error of up

to half a pixel remains, which is not negligible when the lake itself is just a handful of

pixels.

Webcam image analysis. The proposed webcam-based solution has some caveats,

too. A major drawback is that it is very difficult or nearly impossible to scale up this

technology to country- or planet-scale, unlike the satellite-based methodology. Though

the webcam network is quite good for countries like Switzerland, it is not always the case

for other parts of the globe. Even in Switzerland, at present, not all lakes are monitored

by publicly available webcams. Even for the lakes with webcam surveillance, the number

of cameras installed might be very few, and it is not ensured that the complete lake
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area is covered, making it challenging to observe large lakes with webcams. Furthermore,

since the public webcams were not installed targeting lake ice monitoring, there is limited

control over their position, orientation, lake area coverage, image quality etc. Moreover,

the spectral resolution of these freely available cameras is just satisfactory compared

to satellites. Besides that, webcams are not useful in heavy fog situations. However,

for the target lakes, intense fog scenarios occur only during very few days in a winter.

Furthermore, on the two tested lakes, the cross-lake generalisation performance of Deep-

U-Lab methodology is below par.

As an extension of the webcam methodology, we have published some preliminary

results regarding the usage of crowd-sourced social media images, refer to Prabha et al.

(2020), however, concluded that it is pretty hard and perhaps unrealistic for operational

monitoring. The larger the lake area the worse since only the area close to the lake shore

is (usually) visible in these images. In addition, it is difficult to spot the lake shoreline in

such images, especially on snowy days. Furthermore, the field of view and lake coverage

vary significantly from one image to another. It was identified that ensuring good lake

coverage and usable geo-reference are probably the show-stoppers. Such crowd-sourced

images are available mainly for touristic lakes and not necessarily for all the lakes that

freeze. Additionally, it was noticed that the geotags of these images are not always

available1, and even if it is, they are not always correct2.

Snow-free ice. In the two winters with webcam-based ground truth available, it was

observed that there are only very few days with snow-free ice compared to snow and open

water, effectively creating class imbalance. If no class balancing measures are taken in

such a scenario, a learning-based system that assumes that the observed distribution is

representative tends to be biased to the well-represented classes. The presence of some

noise in the ground truth could make this problem worse. Consequently, the proposed

models sometimes find it difficult to distinguish between thin ice and water. Note that,

even for human experts, it is difficult to differentiate between thin snow-free ice and open

water in some cases.

7.3. Lessons learnt

The methodologies, experiments and results presented in this dissertation are the out-

comes of several years of research work. Some lessons learnt during these years are

discussed in the following sub-sections.

Lake ice detection using low spatial resolution optical satellites. One of the

main advantages of satellite-based monitoring, as opposed to webcam-based approaches,

is the ability to survey much larger areas in a single scan. However, in both MODIS and

VIIRS imagery, the target lakes are represented only by very few clean pixels. Hence,

1mountains silhouettes or skylines may be used for accurate geo-referencing, but this is still an active
area of research

2usually provides coordinates but not the orientation of the optical axis
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there is not much spatial context to learn. Therefore, sophisticated networks such as

CNNs that could take advantage of the spatial neighbourhood relationships were not

needed, and hence shallow classifiers that operate per-pixel were used.

20-winter time series analysis. One key advantage of optical satellite imagery is the

availability of a large MODIS data archive with continuity guaranteed by VIIRS. This

thesis has shown that it is possible to learn the LIP trends from the 20-year long time

series of MODIS data. Some meaningful correlations were found between the derived

LIP trends and the regional climate variables. Even though a two-decade period is

not enough to draw solid conclusions, some preliminary inference can be made on the

freeze patterns in Swiss lakes. An interesting observation from Chapter 4 is that the

proposed, dedicated monitoring system was able to retrieve lake ice more accurately than

the operational MODIS and VIIRS snow products, despite the relatively high correlation

between freezing of lakes and snow cover. Though the analysis was limited to two lakes

in the Oberengadin valley located in the south-eastern part of Switzerland, the trends

are not expected to be too different for other lakes with similar characteristics situated

in the Swiss and European Alps.

Lake ice monitoring with webcams. The proposed webcam-based Deep-U-Lab ap-

proach showed very good ice and snow detection performance, especially during the tran-

sition periods by capturing the finer lake ice dynamics, which were difficult to achieve

using satellite approaches. Cloud problems with webcams are negligible as opposed to

optical satellites. Additionally, the spatial (if not placed far from the lake) and temporal

resolutions are higher than S1-SAR. Webcams are valuable sensors particularly useful to

monitor very small lakes that cannot be observed well using low- and medium-spatial res-

olution optical satellite sensors. Regardless of the meagre image quality, the CNN-based

webcam algorithm presented in Chapter 3 attained good performance even in challenging

scenarios such as variable solar illumination conditions and in the presence of shadows

(from clouds, mountains). In a nutshell, though satellites are the best choice for country-

wide, planet-scale coverage for lake ice retrieval, webcams are valuable for meticulous,

regional monitoring purposes.

Lake ice detection from Sentinel-1 SAR. Among the satellite sensors investigated

in this thesis, the results suggest that S1-SAR is the best solution for lake ice monitoring

as a stand-alone sensor. Firstly, the microwave sensor can penetrate clouds, preventing

data loss on cloudy days compared to any optical satellite. Secondly, due to the low GSD

of the S1-SAR sensor, unlike MODIS and VIIRS, there is no scarcity of pixels to deploy

the deeplab v3+ network. Thirdly, though the temporal resolutions of MODIS and VIIRS

are good enough for lake ice monitoring, the corresponding spatial resolutions are just

satisfactory. On the contrary, S1-SAR images have very good spatial resolution. Hence,

the CNN learns better context and texture features by grasping the pixel neighbourhood

relationships, effectively marking excellent performance for lake ice monitoring. However,

note that, the 1.5 days (best case) repeat cycle for the target regions involves different
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incidence angles. Moreover, not all regions on Earth are captured from both ascending

and descending orbits.

Satellite embedding learning. This thesis proposed various single satellite sensor

approaches for lake ice observation using MODIS, VIIRS (Chapters 3, 4) and S1-SAR

(Chapter 5). However, one key conclusion is that it is difficult to satisfy the GCOS

temporal resolution criteria using such approaches. A hybrid approach that fuses data

from multiple satellites is one of the possible solutions to this problem. However, fusing

data from multiple optical satellites alone is risky, especially if clouds occur near the

critical dates during the vital freeze-up and break-up periods. Such cases can compromise

the estimation accuracy of the critical LIP dates. Clouds are unavoidable in the Alps

and many other mountain areas during the winter season when the lakes freeze, and their

occurrence can be random. Hence, multi-sensor data fusion is not just a recommendation

but a necessity. Perhaps the most reliable solution for satellite-based lake ice monitoring is

a combination of SAR and optical data. Therefore, this thesis has presented an integrated

method (Chapter 6) that compensated for the shortcomings of each satellite sensor by

learning a joint feature space representation.

7.4. Outlook

The following paragraphs discuss the outlook and promising future directions to drive

the lake ice monitoring research based on the findings of this dissertation.

Additional training data and better generalisation. The approaches presented

in this thesis attained good generalisation performance across lakes, winters and cameras

(for webcams). However, there is still room for improvement, especially across lakes

for webcams. Re-training (or fine-tuning) of the models might be needed when the

proposed methods are applied on the data from new lakes (or winters, but probably less

tuning might be required for winters as opposed to lakes). The cross-winter variations

are assumed to be barely correlated. Hence, the data from probably a handful of winters

might represent the expected range of conditions. On the other hand, any small set

of lakes may still be biased by the geographic conditions and not generalise well to

different locations. To some extent, the generalisation error might prevail in all bottom-

up data-driven learning-based systems unless the learnt model fully covers the entire

input distribution (including corner cases). However, this is not easily attainable. This

issue can be minimised by incorporating multi-winter data (including also pixel-accurate

annotated data from transition dates) in the training set (also from more lakes across the

globe). Another workaround is to strengthen the approaches for better domain adaptation

capabilities.

Reduced supervision. Though various ML approaches were used in this thesis, the

analysis was limited to supervised learning methodologies which needed labelled training

data. As already discussed, the ground truth generation process based on visual image
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interpretation is laborious and time-consuming. Reducing the supervision with the help of

semi-supervised learning, active learning, or data-driven domain adaptation will abate the

need for large amounts of annotated data (especially to train deep networks) and hence

looks promising. With such an extension, the untapped potential of huge unlabelled

archives of remote sensing data can be utilised to improve the quality of the trained

model. In addition, data from meteorological stations (e.g., temperature) in the vicinity

of the lakes can be used to perform further checks and to fill gaps in the existing reference

data.

More hybrid models. The hybrid model proposed in Chapter 6 that learns satellite

embedding could potentially serve as a basis for an operational product that closely

meets the GCOS specification. It would be intriguing to fuse even more satellite data

such as Sentinel-2, Landsat-8 etc. Though such freely available satellites will not be

effective as stand-alone data sources due to their relatively poor temporal resolution, they

might still be useful for closing gaps in the existing time series. Another possible option

for data fusion is the Planet Cubesat satellite constellation. An even more challenging

but fascinating research direction is to extend the proposed satellite embedding learning

approach to fuse images from webcams and satellite imagery.

UAVs for monitoring. The addition of more sensors such as UAVs (furnished with

both RGB and thermal cameras) for lake ice monitoring would be exciting. Drones could

be considered as a more professional version of webcams with better control, viewpoint

advantages etc. It would be straightforward to adapt the proposed Deep-U-Lab network

for UAV-captured images. However, there are certain bottlenecks such as reliability is-

sues (especially with accurate geo-referencing), reduced flight time in cold weather, area

coverage (only feasible for small lakes), permission/security/privacy issues etc. Addition-

ally, even though the data acquisition flights are largely automated, there is still a lot of

manual work involved during the field campaigns.

Global-scale analysis. In Chapter 4, the MODIS data from 20 winters was used to

derive the LIP trends in two Swiss mountain lakes. Even though this thesis focused

on Swiss regional lakes, the proposed optical satellite-based approach is straightforward.

Hence, it could be easily adapted to similar lakes in Switzerland and nearby countries

(and probably lakes from other geographical regions). One possible future direction is

the automated extraction of the 20-winter LIP patterns from more lakes that freeze in

the Northern Hemisphere (e.g. lakes in Canada and Finland, high mountain Asia etc.).

It would be interesting to observe whether the global trends also align with the Swiss

LIP patterns. An added advantage is that it will test the robustness of the proposed

ML-based approach for operational monitoring. However, more training might be needed

to adapt the proposed models on totally new data from unseen geographic regions.

Physics-informed ML. One of the main problems with the current artificial intel-

ligence approaches for Earth observation applications is the lack of explainability and
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interpretability, which primarily stem from the bottom-up modelling approach. Induc-

ing a balance between the top-down knowledge-driven numerical approaches and the

bottom-up data-driven learning-based approaches has so far been less explored. A good

trade-off is physics-inspired ML that incorporates the advantages of both top-down and

bottom-up methodologies (Camps-Valls et al., 2018, 2020). It will be beneficial if such

approaches could lead to more efficient designs which either reduce the amount of training

data needed or achieve better domain adaptation. For the specific application of lake ice

monitoring, the physics of ice formation and melting, if incorporated in the loss function

or as additional constraints, could improve the accuracy during the transition periods.

Climate change quantification. One main goal of this thesis was to accurately quan-

tify lake ice, as a basis for trend analysis and climate studies, using machine learning. In

Chapter 4, strong connections between the LIP trends and regional climate variables were

identified. Such trends could be useful as a complementary cue to confirm or question

quantitative climate change analysis, especially at the local to regional scale. Accurate

climate change and global warming assessment will be useful in the effective design of

climate change mitigation strategies and policies.
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Šmejkalová, T., Edwards, M., Dash, J., 2016. Arctic lakes show strong decadal trend in

earlier spring ice-out. Sci. Rep. 6, 38449.

Song, H., Liu, Q., Wang, G., Hang, R., Huang, B., 2018. Spatiotemporal satellite image

fusion using deep convolutional neural networks. IEEE J. Sel. Top. Appl. Earth Obs.

Remote Sens. 11, 821–829.

142



Spencer, P., Miller, A.E., Reed, B., Budde, M., 2008. Monitoring lake ice seasons in

southwest Alaska with MODIS images, in: Pecora Conference, Denver, USA, 18 - 20

November.

Surdu, C.M., Duguay, C.R., Brown, L.C., Fernández Prieto, D., 2014. Response of ice

cover on shallow lakes of the North Slope of Alaska to contemporary climate conditions

(1950–2011): Radar remote-sensing and numerical modeling data analysis. Cryosphere

8, 167–180.

Surdu, C.M., Duguay, C.R., Pour, H.K., Brown, L.C., 2015. Ice freeze-up and break-up

detection of shallow lakes in Northern Alaska with spaceborne SAR. Remote Sens. 7,

6133–6159.

Sutskever, I., Martens, J., Dahl, G., Hinton, G., 2013. On the importance of initialization

and momentum in deep learning, in: International Conference for Machine Learning,

Atlanta, USA, 16 - 21 June.

Sütterlin, M., Duguay-Tetzlaff, A., Wunderle, S., 2017. Toward a Lake Ice Phenology

Derived from VIIRS Data, in: EGU General Assembly, Vienna, Austria, 23 - 28 April.

Svacina, N., Duguay, C., King, J., 2014. Modelled and satellite-derived surface albedo of

lake ice - part II: evaluation of MODIS albedo products. Hydrol. Process. 28, 4562–

4572.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-

houcke, V., Rabinovich, A., 2015. Going deeper with convolutions, in: International

Conference on Computer Vision and Pattern Recognition, Boston, USA, 7 - 12 June.

Thoma, M., 2016. A survey of semantic segmentation. arXiv preprint, arXiv:1602.06541.

Tom, M., Aguilar, R., Imhof, P., Leinss, S., Baltsavias, E., Schindler, K., 2020a. Lake

Ice Detection from Sentinel-1 SAR with Deep Learning. ISPRS Ann. Photogramm.

Remote Sens. Spatial Inf. Sci. V-3-2020, 409–416.

Tom, M., Baltsavias, E., Schindler, K., 2020b. Integrated Lake Ice Monitoring and

Generation of Sustainable, Reliable, Long Time-Series. Available online: https://

ethz.ch/content/dam/ethz/special-interest/baug/igp/photogrammetry-re

mote-sensing-dam/documents/pdf/Misc/Lake Ice Project Final Report.pdf

(accessed 10 July 2021).

Tom, M., Jiang, Y., Baltsavias, E., Schindler, K., 2021a. Learning a Sensor-invariant

Embedding of Satellite Data: A Case Study for Lake Ice Monitoring. arXiv preprint,

arXiv:2107.09092.
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B 20-winter time series

B.1. Operational lake ice products

Details of operational lake ice products are shown in Table B.1.

Table B.1.: Comparison of the operational lake ice / snow products. Note that lake ice
extent is still a pre-operational product. Res indicates resolution.

Product Availability Spatial Temporal Input
res res sensor(s)

CCI Lake Ice Cover from 2000 250m daily MODIS, VIIRS
Sentinel-1,-3

MODIS Snow Product from 2000 500m daily MODIS
VIIRS Snow Product from 2012 375m daily VIIRS

Lake Ice Extent from 2017 250m daily MODIS

B.2. Characteristics of the target lakes

Details of the target lakes are shown in Table B.2

Table B.2.: Details of the lakes. (primary source: Wikipedia). Maximum and average
depths are shown in m. Last three rows display information about the nearest
meteorological stations.

Sihl Sils Silvaplana St. Moritz

Lat (◦N), Long (◦E) 47.14, 8.78 46.42, 9.74 46.45. 9.79 46.49, 9.85
Altitude (m) 889 1797 1791 1768

Depth (Max, Avg) 23, 17 71, 35 77, 48 42, 26
Area (km2) 11.3 4.1 2.7 0.78

Volume (Mm3) 96 137 140 20

Meteo station EIN SIA SIA SAM
Lat (◦N), Long (◦E) 47.13, 8.75 46.43, 9.77 46.43, 9.77 46.53, 9.88

Altitude (m) 910 1804 1804 1708

B.3. MODIS and VIIRS bands

MODIS and VIIRS band spectrum are displayed in Fig. B.1
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Figure B.1.: Spectrum of the MODIS (M, blue) and VIIRS (V, red) bands used in our
analysis.

B.4. Class imbalance in our dataset

Details on class imbalance in our dataset are shown in Fig. B.2
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Figure B.2.: Bar graphs showing the class distribution in our dataset from the winters
2016–17 (top) and 2017–18 (bottom). The total number of clean, cloud-free
pixels from the non-transition dates that are at least 30% cloud-free are
shown. M and V denote MODIS and VIIRS respectively. Silv and Moritz
represent lakes Silvaplana and St. Moritz respectively.

B.5. Correlation of weather data and LIP events

Correlation of LIP events with temperature variables are shown in. Fig. B.3. Similarly,

correlations with sunshine and precipitation are displayed in Fig. B.4.
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B.5. Correlation of weather data and LIP events
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Figure B.3.: Correlation of MWT (◦C) with ICD (days) and BUS are shown in rows 1 and
2 respectively, AFDD (◦C) with ICD, CFD (days) and FUE are displayed
in rows 3, 4 and 5 respectively. Results for lakes Sils and Silvaplana are
displayed in left and right columns respectively.
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Figure B.4.: Correlation of total winter sunshine (hours) with ICD (days) is shown in
row 1, total sunshine from January to May (J2M) with BUS and BUE are
displayed in rows 2 and 3 respectively. Correlation of total precipitation
(mm) from January to May (J2M) and BUS is shown in last row. Results for
lakes Sils and Silvaplana are displayed in left and right columns respectively.
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C Embedding learning

C.1. Details of target lakes

Properties of the four target lakes are displayed in Table C.1.

Table C.1.: Physical properties of target lakes.

Sihl Sils Silvaplana St. Moritz

Area (km2) 11.3 4.1 2.7 0.78
Altitude (m) 889 1797 1791 1768
Max. depth (m) 23 71 77 42
Avg. depth (m) 17 35 48 26
Volume (Mm3) 96 137 140 20

C.2. Full winter time-series

Full winter time-series results for lakes Silvaplana and St. Moritz are displayed in Fig. C.1.

C.3. Embedding visualisation

t-SNE representation for the learnt embedding for lakes Silvaplana and St. Moritz are

displayed in Fig C.2.
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C. Embedding learning

Lake Silvaplana

Lake St. Moritz

Figure C.1.: Time-series plots for lakes Silvaplana and St. Moritz from winter 2016–17
using a model trained on all the data (all four lakes) from winter 2017–18.
Best if viewed on screen.
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C.3. Embedding visualisation

Lake Silvaplana, dimension=3 Lake Silvaplana, dimension=2

Lake St. Moritz, dimension=3 Lake St. Moritz, dimension=2

Figure C.2.: t-SNE representation of the embedding learnt (lakes Silvaplana and
St. Moritz, winter 2016–17) using the proposed 2-step approach with a model
trained on all the data from winter 2017–18. Water fraction refers to the
predicted fraction of non-frozen pixels. Best if viewed on screen.
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