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A B S T R A C T   

Automatic identification of plant specimens from amateur photographs could improve species range maps, thus 
supporting ecosystems research as well as conservation efforts. However, classifying plant specimens based on 
image data alone is challenging: some species exhibit large variations in visual appearance, while at the same 
time different species are often visually similar; additionally, species observations follow a highly imbalanced, 
long-tailed distribution due to differences in abundance as well as observer biases. On the other hand, most 
species observations are accompanied by side information about the spatial, temporal and ecological context. 
Moreover, biological species are not an unordered list of classes but embedded in a hierarchical taxonomic 
structure. We propose a multimodal deep learning model that takes into account these additional cues in a 
unified framework. Our Digital Taxonomist is able to identify plant species in photographs better than a classifier 
trained on the image content alone, the performance gained is over 6 percent points in terms of accuracy.   

1. Introduction 

Biodiversity describes the diversity of life in terms of species’ 
numbers, similarity, abundance, and distribution across spatial scales 
(Barrotta and Gronda, 2020; Gaston and Spicer, 2004). Biodiversity is 
essential to human well-being but rapidly deteriorating worldwide in 
response to anthropogenic pressure (Díaz et al., 2019). To effectively 
conserve biodiversity, its spatio-temporal distribution needs to be well 
understood, which requires efficient monitoring schemes. Scientific 
surveys conducted at regional or country scales are, however, costly in 
terms of time and financial resources, as highly skilled professionals 
need to repeatedly examine extensive geographical areas and carefully 
document the encountered species. 

One viable way to complement professional biodiversity monitoring 
is the community science approach. The community science paradigm 
aims at involving the general public in scientific observations and in
vestigations, and is particularly useful in cases where the experiment is 
characterized by a large spatial and/or temporal scale (Silvertown, 
2009). The community science approach has a long history in 

biodiversity monitoring (Dickinson et al., 2010). For example, volun
teers have participated in the annual Christmas Bird Counts of the Na
tional Audubon Society in the USA since 1900 (Butcher and Niven, 
2007). 

With the rise of smartphones and other portable electronic devices, 
community science in biodiversity monitoring has grown. Over the past 
decade, a multitude of smartphone apps have been released, allowing 
community scientists to conveniently report observations of plants and 
animals, and to upload images to online databases. Among the most 
popular of these apps is the iNaturalist (iNaturalist, 2021) initiative, 
with over 3 million users and more than 36 million valid observations1 

distributed across the globe. 
Although data gathered with community science is extremely valu

able, it poses a number of challenges that need to be solved before it can 
be exploited effectively. One major issue is data quality, i.e., it is 
generally difficult to ensure that the collected data is correct and 
consistent. The main reasons are that community science data (either in 
the form of images or simple species presence observation) (i) are 
collected by non-experts with varying training, expertise and skills, for 
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1 A valid observation is an observation that has a date, a location, media evidence (image or sound), and has not been voted captive/cultivated. 
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instance, community scientists will on average not be able to name rare 
species as well as specialists; (ii) often exhibit significant biases due to 
geographical variations in sampling effort, observation methods and 
traditions, as well as regional differences in infrastructure and 
accessibility. 

In the context of biodiversity and species distribution mapping, 
Machine Learning (ML) can provide several tools for mitigating at least 
some of these limitations. For instance, the species recognition for the 
data collected on the field can be automatized to some extent to help the 
community scientist. This can either be done on-device to assist the user 
during data collection, as well as in a second step to assist the experts in 
verifying the user-supplied labels. In recent years, computer vision has 
made great progress, mostly due to the rise of statistical ML. In fact, the 
application that spearheaded this development was the classification of 
image content into human-defined (semantic) categories (Deng et al., 
2009). It is thus natural to ask whether ML can also assist community 
scientists to classify their photographs into taxonomic species, helping 
them to correctly identify what they have observed; thus paving the way 
towards more accurate and larger-scale species distribution maps. Visual 
species recognition has been studied fairly extensively in recent years, 
with different image sources ranging from carefully collected zoological 
or botanical collections to uncontrolled outdoor and camera trap data 
(Khosla et al., 2011; Welinder et al., 2010; Beery et al., 2020). In this 
paper, we specifically focus on the case of recognising plant species in 
data collected via community science applications such as iNaturalist 
(iNaturalist, 2021) or Info Flora (Info Flora, 2021). Properties that 
distinguish this specific scenario from other image classification tasks 
include: (i) Species observation numbers show an imbalanced distribu
tion, as some species are naturally rare or harder to find and document 
than others (and perhaps also less attractive to photograph), such that 
they are rarely observed and only a few samples are available to train an 
ML model; (ii) Side information is often readily available, e.g., the 
location and time when the image was taken are usually known, and in 
turn can be linked to further information like terrain maps, satellite 
images, etc.; (iii) Biological species are related to each other in a hier
archical manner, i.e., through a taxonomic tree, 2 and one can leverage 
these relations during both training and inference. In particular, one 
may assume that, at any level of the hierarchy, species in the same group 
are, on average, more similar than species in distinct groups (see 
Fig. A1). 

In this study, we develop an ML model for classifying community 
science photographs. Our focus is on how to best exploit side information 
that comes with the actual photograph, to improve species recognition. 
By side information, we mean the locations and time points of the ob
servations, as well as associated environmental variables and optical 
satellite imagery. Location and time are usually uploaded together with 
the images.3 Our model is inspired by other works such as (Chu et al., 
2019; Mac Aodha et al., 2019), however, there are a few key differences: 
(i) we make use of additional metadata (altitude and Sentinel-2), (ii) we 
train the model following a late fusion strategy and (iii) we make use of 
the marginalisation loss (Kumar and Zheng, 2017). 

Many environmental variables are publicly available, as are remote 
sensing images, e.g., the Sentinel-2 satellite data repositories (Coperni
cus open access hub, 2021). Moreover, we include the taxonomic hier
archy to improve model performance at inference time. Hierarchically 
structured class labels can be beneficial in two different ways: on the one 
hand, the hierarchy can be used as a regularisation of the model, which 
has been shown to improve the classification of rare classes (Turkoglu 
et al., 2021); on the other hand, the hierarchy can also be used at 
inference time to provide a prediction (at a coarser level) for species not 

present in the list of the output classes. We investigate different strate
gies to exploit the side information and empirically compare them. We 
find that a model combining the community science images, spatio- 
temporal context, hierarchical labels and remote sensing images 
trained in a joint manner with a late fusion strategy performs the best. 
We validate the proposed method on a subset of the iNaturalist cata
logue, with 56,608 observations of 977 distinct plant species, which 
includes observations of plant species across the territory of Switzerland. 

2. Related work 

2.1. Context-based modelling 

Research has shown that the location context is important for 
modeling the distribution of species, and therefore can especially benefit 
fine-grained classification tasks. In (Wittich et al., 2018) the authors 
adopt a nearest neighbour approach to predict the possible species that a 
person could encounter at certain locations given the previously recor
ded nearby observations. Although the paper acknowledges the fact that 
such information can be used to help and speed up species recognition, 
they do not combine their method with any image-based classification 
model. In (Berg et al., 2014) the location and time where a photo was 
taken are used to define a prior distribution over bird species occur
rences. An adaptive kernel density estimation is employed to construct 
that distribution, which is then combined with probabilistic output from 
a Support Vector Machine (SVM). Although the proposed method is 
effective when using spatial and temporal metadata to improve classi
fication, the usage of SVM severely limited the overall performance. 
Novel, deep learning-based methods can achieve higher accuracies on 
the same dataset without spatio-temporal priors (Foret et al., 2021). 
With the fast advancement of deep learning, researchers have developed 
ways to utilise the location context with Convolutional Neural Networks 
(CNNs). In (Tang et al., 2015) the authors investigate how to encode the 
image’s GPS coordinate to increase prediction accuracy. The encoding is 
then concatenated with the image representation from the CNN before 
the final (linear) classifier. The paper also investigates the impact of 
further map features, e.g., precipitation maps, alongside simple GPS 
coordinates. (Chu et al., 2019 and Mac Aodha et al., 2019) are two 
studies that combine deep learning and geographical information to 
improve species recognition accuracy. In (Chu et al., 2019) the authors 
propose a refinement network that merges the prediction from a CNN 
with a secondary network that receives as input the location where the 
image was taken. The weights of the CNN network are kept frozen while 
training the refinement module. As a second option, the paper proposes 
a method where the location-aware network can alter the feature 
extraction inside the CNN, based on the picture’s location. This second 
technique, however, did not lead to a substantial improvement. (Mac 
Aodha et al., 2019) propose a slightly different solution for the same 
problem, in this case the network responsible for extracting the 
geographical prior is in fact trained separately. The problem in this case 
is that the dataset consists exclusively of positive labels, i.e., it contains 
no information where the context speaks against a certain species label. 
To overcome this, the authors propose a joint embedding loss able to 
deal with presence-only datasets. The difference between the two ap
proaches is that in the former (Chu et al., 2019) the geographical 
network is trained to improve the image-based prediction coming from 
the CNN, but cannot make a meaningful prediction on its own, i.e., 
without the CNN; whereas in the latter work (Mac Aodha et al., 2019) 
the geographical network is trained separately and can also be evaluated 
without an image, effectively producing a species distribution map. 

2.2. Hierarchical labels 

Complementary to location context, structure among the species 
labels helps the classification task by sharing features among related (i. 
e., nearby) classes. In (Srivastava and Salakhutdinov, 2013), the output 

2 Namely, a sub-tree of the general hierarchy of (from top to bottom) 
kingdom, phylum, class, order, family, genus and species (Stace, 1991).  

3 These parameters constitute sensitive personal information, but community 
scientists are usually willing to disclose them to geo-locate their observations. 
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classes are organised in a hierarchical structure, and features are 
transferred between related classes to inject the a priori hierarchy into 
the deep neural network classifier. (Yan et al., 2015) was another early 
work that tackled hierarchical classification in the context of visual 
recognition. The proposed method is limited to a 2-level hierarchy, and 
it is composed of two classifiers: a coarser one, which separates more 
easily distinguishable classes, and a finer one the resolves the more 
difficult cases. (Xiao et al., 2014), and more recently (Roy et al., 2018) 
analysed the use of hierarchical labels for visual recognition for the 
specific case of incremental learning. A hierarchical classifier for 
clothing recognition was proposed in (Kumar and Zheng, 2017). The 
model predicts a label hierarchy instead of a single label for the input 
object, by analyzing detection errors. The method exhibits good gener
alization capabilities also for novel clothing products that were not seen 
during training. In the past years, researchers have explored different 
ways to inject knowledge about hierarchical labels into neural networks. 
The authors of (Chen et al., 2018) propose a framework to predict the 
category scores at each hierarchy (tree) level in a top-down manner, 
with a multi-head network where each branch is responsible for a 
different level. Recently, (Dhall et al., 2020) have investigated and 
compared a number of strategies and loss functions to integrate hier
archical semantic structure into a CNN, including per-level classifiers, 
hierarchical softmax, and a marginalisation loss. The marginalisation 
loss summarizes the hierarchical information in a bottom-up manner 
and, although being one of the simplest approaches, emerged as one of 
the most effective. In (Turkoglu et al., 2021) the authors investigate the 
task of classifying agricultural crops from a sequence of satellite images, 
where the crop labels also exhibit a hierarchical structure (e.g., wheat is 
more similar to other cereals than to, say, orchards). They propose a 
convolutional recurrent architecture, where increasing depth in the 
spatial/convolutional dimension corresponds to a finer hierarchy level, 

thus deriving higher-level features for finer classification from coarser 
lower-level features. The layout is specific to the recurrent setup and it is 
unclear how to adapt it to conventional CNNs without disrupting the 
feature extraction backbone. 

As a general comment, we note that methods designed for hierar
chical labels tend to use custom architectures and cannot easily be 
combined with well-known, pre-trained high-performance backbones. 

3. Methodology 

We now outline our proposed model for plant species classification. 
The model can be understood as composed of two branches: the first 
branch infers a probability distribution over plant species, by looking 
exclusively at the input image; the second branch infers another species 
distribution only from the auxiliary information, which is then com
bined with the image-based prediction to obtain a refined posterior 
distribution. The entire two-branch network is supervised jointly with a 
hierarchical loss that leverages the structure of the taxonomy. 

3.1. Inference from image 

Given an image I that depicts a certain plant specimen, we can use a 
CNN to infer its species y. The network outputs a probability distribution 
p(y|I; θ) over all C possible species, where θ are the learnable parameters 
(convolution weights). To lighten the notation we drop θ when it is clear 
from the context, and simply write p(y|I). In our implementation we use 
the popular ResNet architecture (He et al., 2016), although other net
works could also be employed. Our ResNet is pre-trained on ImageNet 
(Deng et al., 2009), a setting that has become common practice to speed 
up training and boost performance with limited data. 

Fig. 1. Overview of our model.  

Fig. 2. Different Hypericum species, in order 
H. androsaemum, H. calycinum, H. hirsutum and H. perforatum. 
The present species are visually similar but have different 
geographical distribution ranges. For such groups of species 
additional spatio-temporal information can help to improve 
classification accuracy. For each species we visualise the 
probability score learned by our Location Encoder (left), the 
location of the training samples (red dots) and a sample 
image from our training set (right). (For interpretation of the 
references to color in this figure legend, the reader is referred 
to the web version of this article.)   
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3.2. Inference from spatio-temporal context 

As explained above, community science observations are often 
accompanied by auxiliary information, in particular spatio-temporal 
context, i.e., where and when the photo was taken. We denote that 
spatio-temporal context by the vector x. The spatial information in
cludes longitude (x), latitude (y), and altitude (z), while the day of the 
year t represents the temporal information.4 This information is typi
cally included in the images’ metadata, except for the altitude, which 
can be easily derived from the location given a Digital Elevation Model 
(DEM). The spatio-temporal context of an observation has been shown 
to be a useful cue for classifying species observations (see Section 2.1 
and Fig. 2) – which is not surprising, as the probability of observing a 
certain species varies greatly across space and time. 

Several methods have been proposed to merge such auxiliary infor
mation into the classification, for instance see (Chu et al., 2019; Mac 
Aodha et al., 2019). We will briefly describe the different strategies and 
highlight their pros and cons:  

Early Fusion In this case the image I and auxiliary information x 
are together fed into a model which shall directly 
predict p(y|I, x; θ,ϕ). That model is trained by mini
mizing a suitable loss function such as the cross- 
entropy between the predicted and true labels. The 
advantage of such an approach is that it does not 
impose any independence assumptions and the 
model can, in principle, leverage any statistical 
relation between y and the inputs, including corre
lations between I and x). However, this generality 
comes at a price: (i) at inference time the complete 
auxiliary information x must be fed to the model to 
obtain a reliable prediction, and (ii) if the training 
data is scarce, processing the two sources I and x 
together increases the risk of over-fitting to spurious 
correlations.  

Separate  
Training 

This approach, exemplified by (Mac Aodha et al., 
2019), takes the opposite route and employs two 
completely separate networks: one “main” network 
processes only the image to obtain p(y|I; θ), the sec
ond “auxiliary” one processes only the side infor
mation to obtain p(y|x; ϕ). The two networks are 
trained separately and produce separate scores that 
are only merged at inference time. This corresponds 
to the assumption that I and x are independent, such 
that p(y|I, x)∝p(y|I)⋅p(y|x). The main advantage of 
this approach is a much reduced danger of over- 
fitting, as visual information and context are decor
related. A further advantage is that one can use 
additional datasets without images to train the 
spatio-temporal prior. On the other hand, training 
that prior without supporting image information can 
also be difficult, particularly in the common situation 
with presence-only annotations (Mac Aodha et al., 
2019). Finally, any real correlations between x and I 
will be lost, by construction.

5  

Late Fusion This approach, employed for instance as one of the 
methods in (Chu et al., 2019), constitutes a 
compromise between early fusion and the separate 
training. Separate branches are maintained for I and 

x. But their scores are not only combined during 
inference but also during training, with a joint loss 
function on the combined prediction p(y|I, x). The 
risk of over-fitting remains low compared to early 
fusion, as the model admits correlations between 
visual and auxiliary cues only “globally”, but not 
between individual variables: p(y|x) acts as a spatio- 
temporally varying rescaling of the image-based class 
scores p(y|I), and vice versa. At the same time, 
presence-only observations do not challenge the 
training of the spatio-temporal prior, as the loss is 
computed only after including the visual 
information. 

All the aforementioned methods are legitimate design choices, 
whether to prefer one or the other depends on the particular problem as 
well as the available data. In the experiment section, we empirically 
compare their performance for plant species classification. In terms of 
network architecture, for separate training and late fusion, the auxiliary 
information is first embedded into a C-dimensional vector with a fully- 
connected network (FCNcontext), with C the number of classes (see 
Fig. 1). The FCNcontext, with parameters ϕ, has as last layer a sigmoid, 
such that its output represents a presence/absence probability per class. 
Note that the sigmoid (rather than a softmax over C classes) is chosen to 
reflect that, at a given place and time, multiple species can be present 
with high probability. 

3.3. Inference using auxiliary Sentinel-2 images 

Finally, given that we know the location where a specific species 
observation was made, we can extract additional context information 
from remotely-sensed sources, to potentially improve species identifi
cation performance. To illustrate this, we add a Sentinel-2 image of the 
region around x as further auxiliary data. Sentinel-2 was chosen for its 
potential to supplement meaningful information about the local 
ecosystem: it provides complete coverage of the region of interest 
(Switzerland). We choose to only use the 4 bands with the highest spatial 
resolution (10 m GSD) across the visible and infrared spectrum (ranging 
from 0.5 to 1.0 μm). These are commonly used to derive vegetation 
information and have been shown to be sufficient to derive further 
vegetation parameters (Lang et al., 2019). 

The satellite data S is fed into the model in a similar fashion as the 
location context. The only difference is that the embedding of the raw 
data into the C-dimensional vector p(y|S; ψ) is a convolutional encoder 
with parameters ψ (rather than a fully-connected network), to account 
for the nature of image data. In our implementation we use a ResNet-50. 

As before, the embedded satellite imagery is combined with the other 
inputs according to the late fusion strategy and all three branches are 
trained jointly, via the merged score p(y|I,x,S). 

3.4. Integration of taxonomic hierarchy 

Hierarchical labels derived from plant taxonomy are another source 
of non-visual a priori information about plant species. The taxonomic 
hierarchy endows the output space with additional structure that may 
help to correctly classify plant species, especially if the training data is 
heavily imbalanced. Attempts to use the hierarchy rest on the assump
tion that closely related species in the tree have higher visual similarity 
than more distant ones.6. On the one hand, the hierarchical grouping 
(for instance, of many rare species into a common genus) gives rare 
species statistical strength, as confusing them with each other becomes 
cheaper than confusing them with some frequently observed species 
from a different genus. On the other hand, the grouping also benefits the 4 Thus assuming the distribution is seasonally varying but stationary over a 

few years.  
5 Such patterns are likely to exist. Examples include location-specific shadows 

or time-dependent snow cover. 6 In expectation, not necessarily in every instance 
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fine-grained species classification, as it favours feature sharing between 
adjacent classes that, by themselves, have too few samples to learn a 
good representation (Srivastava and Salakhutdinov, 2013). The taxo
nomic levels we use are, from the bottom to the top of the hierarchy: 
species, genus, family, order, class and phylum. 

To integrate hierarchical labels, we adopt the marginalisation loss 
proposed in (Kumar and Zheng, 2017). As shown in Fig. 3, the output of 
the classifier is the probability distribution over all species. Margin
alising over all species within each genus thus yields the probability 
distribution over genera. This procedure can then be repeated to derive 
the distribution over families, etc.: 

p(yl
i) =

∑

j∈Ki

p(yl+1
j ) (1)  

where p(yl
i) is the predicted probability for the i-th label at hierarchy 

level l, and p(yl+1
j ) is the probability of class j at the next-coarser hier

archy level l + 1. With Ki we denote the set of child classes of parent 
class i. Based on the distribution p(yl) derived at level l, we can compute 
a cross-entropy loss ℒl for each individual level. The marginalisation loss 
is then simply the sum of all these intermediate losses: 

ℒmar =
∑

l
ℒl. (2)  

3.5. Data preprocessing 

All community science images were resized to the size of 256 × 256 
and then centre-cropped to 224 × 224. The images used for training 
were additionally augmented by random rotations, random horizontal 
flips and color-jitter, which are all standard methods to help mitigate the 
risk of over-fitting. Furthermore, all images were normalized according 
to the mean and standard deviation of the training set. 

We encode the observation time, measured as day of year t, into (t1,
t2) using the sine-cosine mapping (Mac Aodha et al., 2019), Eq. 3. In this 
way December 31st and January 1st are mapped close to each other, 
correctly accounting for the cyclic nature of the variable. 
⎧
⎪⎪⎨

⎪⎪⎩

t1 = sin(
2πt
365

)

t2 = cos(
2πt
365

)

(3) 

Regarding the location coordinates, we rescale longitude, latitude 
and altitude separately to fit into the interval [ − 1, 1] and denote the 
triple of normalised coordinates as our geo-location (x,y, z). 

Finally, the Sentinel-2 images are extracted from a cloud-free mosaic 
of images taken in 2020. As previously indicated, we only use the four 
spectral bands with a 10 m spatial resolution (R, G, B and N-IR), since 
they are often sufficient to derive vegetation parameters (Lang et al., 
2019). From this mosaic, we extract patches of 256 × 256 pixels to 
ensure enough context (ca. 1.3 km around the sample location, see 
Table A.2 for a comparison of the performance with different sized 
patches). 

3.6. Balanced sampling 

We used a balanced sampling strategy, where the sampling weight of 
each image Wi is inversely proportional to the number of images Nyi of 
the corresponding class yi: 

Wi =
1

Nyi

. (4) 

This strategy will oversample the rare species from the tail of the 
distribution and undersample the frequent species from the head of the 
distribution, so as to mitigate the impact of the imbalance on the clas
sifier. It should be noted that the effect cannot be completely removed: 
even when sampled with higher frequency, the few images of a rarely 
observed species will inevitably carry less information than the many 
example images of an abundant species. As a result there is no clear 
advantage in neither of the two approaches, making this a mere design 
choice. In fact, using the balanced sampling strategy, compared to the 
conventional training method, improves the per-class accuracy while 
decreasing the overall accuracy (see Table A.1). Although the differ
ences in performance are small, we decide to prioritise the per-class 
accuracy since we believe it is more important for our application and 

Fig. 3. The idea of the marginalisation loss is to simultaneously apply a cross- 
entropy loss at all levels of the taxonomic hierarchy. As the output of the 
classifier is the probability distribution over all species, marginalising over all 
species within each genus yields the probability distribution over genera. This 
procedure can then be repeated to derive the distributions at all higher levels. 
The marginalisation loss is simply the sum of the intermediate losses computed 
at each level. 

Fig. 4. Sample distribution for each species in the training dataset. Note the logarithmic scale of the y-axis. Both diagrams share the same scale.  
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thus choose to use the balanced sampling approach. 
Fig. 4 shows the number of training images per species in the training 

set before and after balanced sampling. 
We employ a stochastic gradient descent (SGD) (Bottou et al., 2012) 

to optimise the parameters of our model. We set two different learning 
rates, a smaller one of 5⋅10− 5 for the pre-trained convolutional layers of 
the CNN, and a larger one of 2⋅10− 3 for the fully connected layers. These 
learning rates are further reduced when a plateau is reached. The batch 
size is fixed to 32, and all models were trained for 100 epochs. We use a 
cross-entropy loss for baselines that ignore the label hierarchy, and the 
marginalisation loss (Eq. 2) for hierarchically structured labels. 

All results (unless stated otherwise) are computed with 5-fold cross- 
validation, stratified to ensure uniform class distribution across all folds. 

4. Dataset 

From the iNaturalist database (iNaturalist, 2021), we have down
loaded all images7 of plants that are located in Switzerland and labeled 
as “Research Grade”. The latter constitutes the highest level of data 
quality, where observations meet five criteria: (1) they must include a 

date, (2) a spatial geo-reference, (3) a picture (or sound, but we only 
focus on images in this work), (4) the subject must be a naturally living 
organism (not captive or cultivated), and (5) at least 2 identifiers should 
agree on a taxon, out of a minimum of 3 identifiers. 

As shown in Table 1, a total of 60,781 images were downloaded (see 
Fig. 6), which represented 2,374 species. However, as seen in Fig. 5,  the 
dataset is highly imbalanced and follows a long-tail distribution. We 
discard all species with  < 10 images in order to ensure reliability and 
statistical significance of the experimental results. After this filtering we 
are left with 56,608 images representing 977 species. We also generated 
a dataset of unseen species for further experiments (see Section 5.4). 
These are observations of species that have fewer than 10 but more than 
5 images. For each of those species, we select 5 images at random. 

Besides the images, the dataset also contains non-visual information, 
including the additional data that we use in our model, i.e., longitude, 
latitude, day of the year and hierarchical labels. To obtain altitude we 
extract the height value corresponding to the given geo-location from 
the swissALTI3D DEM of the Swiss national mapping agency (Swisstopo, 
2021). 

5. Experimental results 

5.1. Model performance 

We have conducted experiments with the following models to 
empirically determine their performance gain: (1) Baseline, which 
corresponds to a standard ResNet50; (2) Baseline  þ Location Context, 
where we add the location encoder to the baseline in a late fusion setup; 
(3) Baseline  þHierarchical Labels, where we add the marginalisation 
loss to the baseline; and (4) Proposed Model, which leverages both the 
location context and the hierarchical labels. Here, we again use the late 
fusion strategy, which empirically achieved the best performance (see 
Table 3). 

Table 1 
Overview of our dataset.  

Description Images Species 

Overall 60,781 2,374 
Selected 56,608 977 
Unseen 1,650 330  

Fig. 5. Sample distribution for all “Research Grade” iNaturalist observations in 
Switzerland. Note the logarithmic scale of the y-axis. 

Fig. 6. Example images from our dataset.  

Table 3 
Comparison of different training strategies. Note that the top-k accuracies 
indicate the average species-specific metrics.  

Model Accuracy 
(%) 

Top-1 
(%) 

Top-3 
(%) 

Top-5 
(%) 

Separate Training 76.41 65.29 82.09 86.58 
Joint Training: Early 

Fusion 
73.65 64.84 79.60 83.87 

Joint Training: Late 
Fusion 

79.12 69.76 84.86 88.95  

7 As of November 5th, 2020. 
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As seen in Table 2, adding either the location context or the hierar
chical labels to the baseline model significantly improves the results, for 
all metrics. Note that we compute the top-k accuracies as the average 
species-specific metrics in order to give the same weight to all the spe
cies in the evaluation. Thus the overall accuracy is higher than the top-1 
hit-rate due to the imbalanced nature of our dataset, which is preserved 
in our stratified cross-validation. Furthermore, improvements from 
location context and hierarchical labels are largely orthogonal, as ex
pected, since they leverage different types of information. These results 
indicate a clear benefit of complementing visual cues from community 
science images with additional sources of information. For a more 
detailed ablation study of the exact contributions of every component in 
our location context see Section 5.5. Visual inspection of misclassified 
images confirms that location context helps in the case of visually 
similar species that occur in different geographical regions (see Fig. 7), 
whereas hierarchical labels help to classify species with few images. 

Finally, as seen in Fig. 8 our proposed model improves over the 
baseline for all four ranges of species counts and the margin of 
improvement is largest for the tail species of the dataset with a number 
of images between 10 and 50. This is very useful since rare species are 
more commonly misidentified by community science and are particu
larly important for conservation purposes. 

5.2. Training strategies 

Table 3 compares the three different training strategies described in 
Section 3.2. The separate training strategy has the advantage that one 
can use the image classifier and get reasonable predictions even when 
metadata is missing. Whereas the joint training strategies should always 

perform better, at the cost of being less flexible, as metadata is 
mandatory. Under ideal circumstances, one would also expect the early 
fusion strategy to perform best, as it is not subject to any factorisation 
constraints on p(y|I, x) and can leverage the complete correlation 
structure. In practice, we however observe the worst performance, see 
Table 3. It appears that the increased model capacity leads to over- 
fitting. The late fusion training strategy, with its restricted interaction 
between image and context cues, emerges as the best compromise with 
clearly superior performance. Separate training does bring a noticeable 
improvement over the baseline but does not reach the late fusion 
approach. Likely this is, at least in part, due to the presence-only labels 
hampering the learning of the prior p(y|x). 

5.3. Evaluation at different hierarchy levels 

When using the taxonomic hierarchy during training in conjunction 
with the marginalisation loss, we can predict at inference time labels at 
different hierarchy levels. If taxonomic distance indeed correlates with 
similar visual features and ecological requirements (see Fig. A1), then 
the predictions at higher levels should be increasingly more correct. I.e., 
even if a specimen is assigned the wrong species label it might be 
assigned the correct genus label, as it is more likely to be confused with a 
similar species from the same genus.8 

We have evaluated our model at all taxonomic levels that we use, see 

Fig. 7. Misclassification example: both images of Phyteuma orbiculare 
(Left) are misclassified as Phyteuma hemisphaericum (Right) by our 
baseline model. When including the location context, our proposed 
model correctly classifies the image with the green frame, whereas the 
image with the red frame is still misclassified. The green and red ar
rows indicate the locations of the respective left two images. The 
underlying maps are the species distribution maps downloaded from 
Info Flora (Info Flora, 2021). This highlights the importance of 
including the location information to distinguish visually similar 
species that have different geographical ranges. (For interpretation of 
the references to color in this figure legend, the reader is referred to 
the web version of this article.)   

Fig. 8. Improvement in Mean Accuracy over the baseline for species with 
different numbers of images in the dataset. 

Table 2 
Ablation study of our proposed model. Note that the top-k accuracies denote the 
average species-specific metrics in order to give the same weight to all the 
species in the evaluation.  

Model Accuracy 
(%) 

Top-1 
(%) 

Top-3 
(%) 

Top-5 
(%) 

Baseline 73.48 62.48 79.04 83.97 
Baseline  + Location 

Context 
76.99 67.47 82.50 87.01 

Baseline  + Hierarchical 
Labels 

76.30 65.49 82.20 86.81 

Proposed Model 79.12 69.76 84.86 88.95  

8 Note that also the chance level increases, as there are fewer possible labels. 
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Table 5. Indeed, the performance is better for the higher levels (c.f. 
Table 4). Furthermore, higher up in the hierarchy, fewer classes are 
poorly represented; the long-tail distribution is less extreme. 

5.4. Experiments with unseen species 

Given the hierarchical labels, it is also possible to classify new species 
which the classifier has not seen at all during training. While the 
assigned species label will necessarily always be wrong, one would hope 
that the predictions at coarser taxonomy levels are often sensible. For 
this experiment, we picked 330 species that were initially discarded 
from our dataset for having <10 images, but for which at least 5 images 
are available, c.f. the “Unseen” row in Table 1. The corresponding re
sults in Table 6 confirm our intuition: while there is of course a signif
icant performance drop compared to the trained species, it is still 
possible to classify unseen species into the right Genus, Family or Order 
with reasonable performance, well above chance level (the probability 
of success of a classifier that always predicts the most common class). 
This capability can be extremely useful in the context of community 
science, where the coarser labels can be used to refer examples to the 
right expert for classification or to detect gaps in the taxonomy lists 
offered to users. 

5.5. Contextual information and Sentinel-2 images ablation study 

To investigate the contributions of different types of contextual in
formation, and the potential benefit of adding satellite imagery, we 
perform extensive ablation studies. 

In Table 7 we show the impact of the different contextual informa
tion (altitude, geo-coordinates, day of the year) on the evaluated met
rics. As it can be seen they all contribute to some extent, with the altitude 
being one of the most important. Considering the high altitude vari
ability of the Swiss landscape it was rather expected that the altitude 
could carry the most valuable information. When the full context is 
combined the performance metrics show a further increase meaning that 
the additional data carry orthogonal information. 

Finally, Table 8 displays the performance achieved with the inte
gration of Sentinel-2 imagery. Overall, their impact turns out to be 
small. When naively adding the Sentinel-2 branch, performance even 
drops slightly, apparently due to over-fitting. By adding standard drop- 
out regularisation (Srivastava et al., 2014) on the last fully-connected 
layer, we were able to remedy this behaviour and achieve a mild (but 
still statistically significant) performance gain. To ensure that the 

difference is actually caused by the satellite imagery and not the drop- 
out, we add an additional baseline where the model without the 
Sentinel-2 branch is trained with drop-out. Interestingly, this even 
degraded the performance. 

While it is promising that the much-enriched context information 
from the satellite image brings an improvement over the simple geo- 
location, that gain is relatively modest, at least with our implementa
tion. Further research, beyond the scope of the present paper, will be 
needed to clarify the potential of satellite (or airborne) data as auxiliary 
information. 

6. Conclusion 

In this work, we have demonstrated that easily accessible side in
formation can bring rather large performance gains when classifying 
community science photographs. We have focused on the spatio- 
temporal context of the observations, and have shown how it can 
refine the classification model by providing relevant prior knowledge 
regarding the distribution and occurrence of species observations. We 
have also briefly touched on extended radiometric context from optical 
satellite imagery, a direction where we see quite some potential for 
further research. Moreover, we have verified that exploiting the hier
archical structure of biological taxonomy not only improves the species 
recognition performance, but also enables more reliable predictions at 
coarser taxonomy levels, and even coarse classification of species not 
seen at all during the classifier training. 

In terms of practical community science applications, our model is 
also a step towards a viable scheme for verifying user-supplied labels. 
For instance, the proposed method could provide hints to the commu
nity scientist when labelling the species, or it could facilitate the 
reviewing validation by experts, marking specific observations where 
the model disagrees with the label provided by the community scientist. 
Of course, these suggestions would need to be followed with care in 
practice to avoid creating a confirmation bias of the model. We hope 
that, ultimately, a larger number of correct species observations will 
contribute to better species distribution models, to inform biodiversity 
research and conservation initiatives, particularly for rare species. 
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Table 4 
Number of classes at each hierarchical level.  

Level Species Genus Family Order Class Phylum  

Number 977 489 121 50 8 3   

Table 6 
Accuracy (%) on unseen species.  

Evaluation Set Species Genus Family Order Class Phylum 

5-fold Cross-Val 79.02 83.39 87.26 88.54 97.24 99.89 
Unseen Species – 24.27 41.86 50.23 85.60 96.00  

Table 7 
Ablation study of spatio-temporal context. Note that the top-k accuracies indi
cate the average species-specific metrics.  

Model Accuracy 
(%) 

Top-1 
(%) 

Top-3 
(%) 

Top-5 
(%) 

Baseline 73.48 62.48 79.04 83.97 
Baseline  + Altitude 75.40 65.11 81.00 85.80 
Baseline  + Geo-coordinates 75.07 64.86 80.63 85.45 
Baseline  + Day of the year 75.51 65.00 80.91 85.51 
Baseline  þ Full Location 

Context 
76.99 67.47 82.50 87.01  

Table 8 
Results adding Sentinel-2 mosaic. Note that the top-k accuracies indicate the 
average species-specific metrics.  

Model Accuracy 
(%) 

Top-1 
(%) 

Top-3 
(%) 

Top-5 
(%) 

Proposed model 79.12 69.76 84.86 88.95 
Proposed model with Dropout 78.02 67.77 83.39 87.52 
Proposed model  + Sen-2 78.59 68.29 84.43 88.60 
Proposed model  þ Sen-2 

with Dropout 
79.73 70.32 85.52 89.33  

Table 5 
Results at different hierarchical levels. Note that top-3 and top-5 accuracy at 
phylum level are meaningless, since there are only 3 possible phyla. Note that 
the top-k accuracies indicate the average species-specific metrics.  

Metric (%) Species Genus Family Order Class Phylum 

Accuracy 79.02 83.39 87.26 88.54 97.24 99.89 
Top-1 69.50 73.23 75.84 78.53 88.52 86.63 
Top-3 84.49 85.76 87.81 89.34 98.01 100.0 
Top-5 88.57 89.37 91.45 92.95 99.51 100.0  
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Appendix A. Ablation studies 

Fig. A1. 

Appendix B. Confusion matrix 

Tables A.1 and A.2. 

Fig. A1. Confusion matrix for our proposed model. The species in the rows and columns have been ordered based on their taxonomy. The hierarchy between the 
species is made apparent by the dendrograms. The block-like structure along the diagonal indicates that species that are close in terms of their taxonomy are 
misclassified for each other more often than unrelated species. 

Table A.1 
Ablation study of balanced sampling. Note that the top-k accuracies denote the average species-specific metrics.  

Model Accuracy (%) Top-1 (%) Top-3 (%) Top-5 (%) 

Baseline  + No Balanced Sampling 75.57 62.08 80.9 86.18 
Baseline  + Balanced Sampling 73.48 62.48 79.04 83.97 
Proposed Model  + No Balanced Sampling 80.05 69.23 86.15 90.29 
Proposed Model  + Balanced Sampling 79.12 69.76 84.86 88.95  

Table A.2 
Comparison of different extents for Sentinel-2 images. Note that the top-k accuracies indicate the average species-specific metrics.  

Model Accuracy (%) Top-1 (%) Top-3 (%) Top-5 (%) 

No Sent-2 79.12 69.76 84.86 88.95 
Small Sent-2 (128× 128)  79.5 69.56 84.76 88.92 
Normal Sent-2 (256× 256)  79.73 70.32 85.52 89.33 
Large Sent-2 (512× 512)  79.16 69.9 84.94 88.91  
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