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Abstract

This work builds upon the recent advances in the automated data analysis of
terabyte scale electron microscopy (EM) volumes of brains for Connectome
generation and extends the amount of information that can be extracted
from EM datasets. To this end we present three novel methods for EM data
analysis that enable the automatic reconstruction of microtubules, allow for
semi-automated discovery of so far unknown phenotypic features, and that
are able to extract neurotransmitter type of synapses directly from EM data.

The first chapter of this thesis presents a method for microtubule tracking
in electron microscopy volumes. Our method first identifies a sparse set of
voxels that likely belong to microtubules. Similar to prior work, we then
enumerate potential edges between these voxels, which we represent in a
candidate graph. Tracks of microtubules are found by selecting nodes and
edges in the candidate graph by solving a constrained optimization prob-
lem incorporating biological priors on microtubule structure. For this, we
present a novel integer linear programming formulation, which results in
speed-ups of three orders of magnitude and an increase of 53% in accu-
racy compared to prior art (evaluated on three 1.2 x 4 x 4µm volumes of
Drosophila melanogaster neural tissue). We also propose a scheme to solve
the optimization problem in a block-wise fashion, which allows distributed
tracking and is necessary to process very large electron microscopy volumes.

In the second part of the thesis, we propose a method for neural network
interpretability by combining feature attribution with counterfactual expla-
nations to generate attribution maps that highlight the most discriminative
features between pairs of classes. We show that this method can be used
to quantitatively evaluate the performance of feature attribution methods in
an objective manner, thus preventing potential observer bias. We evaluate
the proposed method on three diverse datasets, including a challenging ar-
tificial dataset and real-world biological data. We show quantitatively and
qualitatively that the highlighted features are substantially more discrimina-
tive than those extracted using conventional attribution methods and argue
that this type of explanation is better suited for understanding fine grained
class differences as learned by a deep neural network.

The last chapter shows that in Drosophila melanogaster artificial convolutional
neural networks can confidently predict the type of neurotransmitter re-
leased at a synaptic site from EM images alone. The network successfully
discriminates between six types of neurotransmitters (GABA, glutamate,
acetylcholine, serotonin, dopamine, and octopamine) with an average accu-
racy of 87% for individual synapses and 94% for entire neurons, assuming
each neuron expresses only one neurotransmitter. This result is surprising



as there are often no obvious cues in the EM images that human observers
can use to predict neurotransmitter identity. We show that the classifier
generalizes across brain regions, neurons and datasets. We predict all auto-
matically detected synapses in a whole-brain EM dataset and analyse global
neurotransmitter distribution in the Drosophila melanogaster brain. Further-
more, we use the method presented in chapter three to identify a set of
hypothetical discriminators that could be used by humans to distinguish
the different neurotransmitter phenotypes by eye and potentially reveal the
relationship between structure and function of synapses. Finally, we apply
the proposed method to predict the neurotransmitter identity of all neurons
of 89 hemilineages. We show that in contrast to the Ventral Nervous System
(VNS) our predictions are inconsistent with the hypothesis that all neurons
within a hemilineage express the same fast-acting neurotransmitter in the
brain of Drosophila melanogaster.



Zusammenfassung

Diese Arbeit baut auf den Fortschritten in der automatischen Datenanal-
yse von Terabyte grossen Elektronen Mikroskopie (EM) Datensätzen für
Connectomics auf und erweitert die Menge an Informationen, die aus EM
Datensätzen extrahiert werden können. Wir präsentieren drei neue Meth-
oden für EM Datenanalyse, die es erlauben automatisch Mikrotubuli zu
rekonstruieren, semi-automatische Entdeckungen von bis dahin unbekan-
nten Phänotypen zu machen und Neurotransmitter Identität zu bestimmen.

Das erste Kapitel dieser Arbeit präsentiert eine Methode für Mikrotubuli
Rekonstruktion in EM Volumen. Unsere Methode identifiziert erst eine
Menge von Voxeln, die wahrscheinlich zu Mikrotubuli gehören. Ähnlich
zu früheren Arbeiten identifizieren wir mögliche Kanten zwischen dieser
Menge von Voxeln und repräsentieren sie in einem Kandidaten-Graph. Dann
finden wir Mikrotubuli in dem Kandidaten-Graph, indem wir ein Opti-
misierungsproblem mit Nebenbedingungen unter Berücksichtigung von bi-
ologischem Vorwissen lösen. Dafür präsentieren wir eine neue ganzzahlige
lineare Optimisierungs (GLO) Formulation, die den Algorithmus drei Grössen-
ordnungen schneller macht und zu einer Verbesserung von 53% Genauigkeit
führt (ausgewertet auf 1.2 x 4 x 4 µm Volumen von Drosophila melanogaster
neuronalem Gewebe). Weiterhin schlagen wir ein Schema vor um die GLO
in Blöcken zu lösen, was verteilte Mikrotubuli Rekonstruktion erlaubt, und
notwendig ist um sehr grosse EM Volumen zu prozessieren.

In dem zweiten Teil der Arbeit schlagen wir eine neue Methode vor um zu
interpretieren was tiefe künstliche neuronale Netzwerke gelernt haben, in-
dem wir Merkmal-Zuweisungserklärungen mit kontrafaktischen Erklärun-
gen verbinden um Attributionskarten zu generieren, die die stärksten diskri-
minierenden Eigenschaften eines Klassenpaares zeigen. Wir demonstrieren,
dass diese Methode benuzt werden kann, um die Genauigkeit von Merkmal-
Zuweisungserklärungen objektiv zu vergleichen und so hilft Beobachter-
Bias zu vermeiden. Wir evaluieren die vorgeschlagene Methode auf drei di-
versen Datensätzen, einschliesslich ein herausfordernder künstlicher Daten-
satz und ein biologischer Datensatz. Wir zeigen quantitativ und qualitativ,
dass die so extrahierten Merkmale substanziell mehr diskriminierend sind
als herkömmliche Merkmal-Zuweisungen und argumentieren, dass diese
Art von Erklärungen besser geeignet ist um zu verstehen, wie ein künstliches
neuronales Netzwerk feine Klassenunterschiede wahrnimmt.

Das letzte Kapitel zeigt, dass in Drosophila melanogaster künstliche, faltende,
neuronale Netzwerke den Neurotransmitter Typ einer Synapse von EM Bildern
dieser Synapse bestimmen können. Das Netzwerk ist in der Lage zwischen
sechs verschieden Neurotransmittern (GABA, glutamate, acetylcholine, sero-



tonin, dopamine und octopamine) mit einer durchschnittlichen Genauigkeit
von 87% für individuelle Synapsen und 94% für ganze Neuronen zu unter-
scheiden. Dies gilt unter der Annahme, dass jedes Neuron nur einen Neu-
rotransmitter freisetzt. Dieses Resultat ist überraschend weil es oft keine
auffälligen Merkmale in den EM Bildern gibt, die menschliche Beobachter
benutzen können um die Neurotransmitter Identität zu bestimmen. Wir
zeigen, dass der Klassifikator in der Lage ist die Neurotransmitter Identität
in verschieden Gehirnregionen, Neuronen und Datensätzen zu ermitteln.
Weiterhin bestimmen wir alle automatisch identifizierten Synapsen in dem
FAFB Datensatz und analysieren die globale Neurotransmitter Verteilung in
dem Drosophila melanogaster Gehirn. Ausserdem benutzen wir die in Kapitel
drei vorgeschlagene Methode, um hypothetische, diskriminerende Faktoren
zwischen den Neurotransmittern zu bestimmen. Wir wenden die Meth-
ode auch an um alle Neurotransmitter in 89 Hemi-Abstammungen zu bestim-
men und zeigen, dass im Unterschied zum Strickleiternervensystem unsere
Vorhersagen inkonsistent sind mit der Hypothese, dass alle Neuronen inner-
halb einer Hemi-Abstammungslinie den selben, klassischen Neurotransmitter
im Gehirn von Drosophila melanogaster freisetzen.
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Chapter 1

Introduction

The goal of neuroscience is to understand brains and more generally ner-
vous systems. The brain is an important part of every animal and under-
standing it would allow us to understand animal (including human) behav-
ior, learning and memory. This would enable us to design better drugs for
treating cognitive illnesses and potentially reverse engineer intelligence for
artificial agents. Since its birth, neuroscience developed from identifying
the brain as the center of cognition (Breitenfeld et al., 2014), to studying
the effect of large brain areas via lesions (Pearce, 2009), to finally discov-
ering and studying single nerve cells: Neurons (Guillery, 2005). Subse-
quently the neuron was deemed the fundamental computing unit of the brain
and an understanding emerged, that neurons communicate with each other
via electro-chemical signals using synapses as release sites (Guillery, 2005).
Since then the understanding of molecular mechanisms, development, phys-
iology, neuroanatomy and many more subdisciplines of neuroscience has
become increasingly precise. The view that the brain is an information pro-
cessing unit, perhaps influenced by the advent of computers, is arguably the
dominant interpretation of what brains are doing today. With this perspec-
tive comes an understanding that the functionally important parts of brains
are circuits, comprised of neurons and connected by synapses. While the
molecular mechanisms of individual neurons are still not fully understood
there is hope, fueled by evidence from model organisms such as Drosophila
melanogaster, that we can understand brain function on the circuit level of
abstraction (e.g. Takemura et al. (2013, 2015, 2017); Eschbach et al. (2020); Li
et al. (2020); Ohyama et al. (2015); Helmstaedter et al. (2013); Eichler et al.
(2017)).

A necessary condition for understanding circuits is mapping them and gen-
erating a so-called connectome. With the advent of high resolution, high
throughput, electron microscopes (EM) it became possible to image entire

1



2 Chapter 1. Introduction

brains of small model organisms such as C. elegans and Drosophila melanogaster
at the required resolution to see individual neurons and synapses (White
et al., 1986; Zheng et al., 2018; Xu et al., 2020; Witvliet et al., 2020). How-
ever, even for the comparatively small brain of Drosophila melanogaster the
amount of data generated from an entire brain is too large to manually an-
alyze (Zheng et al., 2018) and as a result a breadth of techniques for the
automatic detection of synapses and segmentation of neurons have been de-
veloped in recent years (Funke et al., 2018; Januszewski et al., 2018; Lee et al.,
2019; Sheridan et al., 2021; Kreshuk et al., 2015; Staffler et al., 2017; Buhmann
et al., 2019). With them we now have access to the first partial connectomes
of the adult Drosophila melanogaster central brain (Xu et al., 2020). However,
generating a connectome is still not a streamlined process. In addition to
imaging times of many months for Drosophila melanogaster the accuracy of
computational approaches for detecting synapses and segmenting neurons
is not yet sufficient for immediate use. Instead, every neuron and its synap-
tic connections has to be manually proofread by human experts, which is
expensive, slow and the current bottleneck in connectome acquisition. For
example, the recently completed Hemibrain dataset required 50 person-years
of proofreading over a time span of two years (Xu et al., 2020). Additionally,
the connectome alone is not sufficient to decode circuit function because
crucial information is missing from the connectivity matrix. For example
in Drosophila melanogaster it is not immediately obvious from the EM data
whether a given synapse is excitatory (has a positive sign) or inhibitory (has
a negative sign) or how strong it is (Xu et al., 2020; Barnes et al., 2020).

To overcome these issues, this thesis builds on the work that went into
developing the current techniques to generate connectomes from EM data
and looks beyond synapse detection and neuron segmentation. We present
methods that exploit the vast amount of information that is stored in elec-
tron microscopy datasets but has received comparably less attention so far.
In an effort to augment the connectomes from today, here we present a
method to cheaply add neurotransmitter data and thus the sign of any
synapse to connectomes, develop a method to understand how synaptic
phenotype relates to neurotransmitter identity and propose a method for
tracing microtubules in cells with the potential to speed up connectome
proofreading and provide insight into cell biological processes: Connec-
tome++.

1.1 Connectomics

Connectomics is the construction and study of the cellular wiring diagram
of nervous systems. For that, the brain of a model organism is extracted, fix-
ated, imaged slice by slice and aligned to create a 3D image volume of the



1.1. Connectomics 3

Figure 1.1: Overview of a connectomics pipeline, from the model organism to the
connectivity matrix. a) Illustration of Drosophila melanogaster. For generating a
Drosophila melanogaster connectome, its brain is b) dissected, fixed, stained with
heavy metals, and c) imaged one nanometer-thick slice at a time with an elec-
tron microscope to produce a d) 3D electron microscopy volume of the Drosophila
melanogaster brain. e) From the raw EM data each neuron is segmented and f)
synaptic partners are detected, to generate g) a connectivity matrix, a connectome.
The connectivity matrix shows the pre-synaptic neuron on the y-axis and post-
synaptic partners on the x-axis. Number of synaptic connections between two
neurons are indicated by color. Segmentation results shown are taken from Fly-
Wire (Dorkenwald et al., 2020). Connectivity matrix adapted from Buhmann et al.
(2019).
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brain (see Xu et al. (2020) for a recent protocol). Subsequently all neurons
and synapses are identified to create a map of the nervous system which can
then be analyzed to elucidate structure and function of neural circuits (see
Fig. 1.1 for an overview). The first complete Connectome ever generated was
of the worm C. elegans (White et al., 1986) and it is used to this day to in-
form research of the worms nervous system (Larson et al., 2018). During the
past few years the model organism of choice in large scale, cellular resolu-
tion connectomics, and the primary focus of this thesis, has been Drosophila
melanogaster. This is largely because of its relatively small size, fast repro-
duction cycles, availability of genetic tools, comparatively easy culturing
and its surprisingly complex behaviors e.g. during courtship and olfactory,
associative learning tasks (Jennings, 2011; McKellar and Wyttenbach, 2017).
However, it is an insect and possesses a different brain anatomy than hu-
mans and mammals. It lacks a cerebral cortex, arguably the most interesting
part of the brain in mammals as it seems to enable higher order cognition
and instead has a structure called the mushroom body, which enables com-
plex associative learning (Heisenberg, 2003; Menzel, 2012; Waddell, 2013;
Owald and Waddell, 2015). In addition Drosophila melanogaster has some pe-
culiar cellular features, for example it has so-called polyadic synapses (also
known as ribbon synapses and present in the retina of mammals) that con-
nect one pre-synaptic site to multiple receiving neurons (Meinertzhagen and
O’neil, 1991), synapse sizes are very homogeneous, and it lacks myelinated
axons (Xu et al., 2020). Due to the small size of synaptic clefts, which are
around 200 nm in thickness (Palay, 1956), creating a connectome requires
the usage of high throughput, high resolution microscopy techniques. Cur-
rently the only microscopy technique that is able to consistently reach this
resolution is electron microscopy. However, other approaches such as expan-
sion microscopy show promising first results and may be able to augment
or replace electron microscopy pipelines in the future (Shen et al., 2020).

1.1.1 Electron Microscopy

For imaging entire brains, high resolution alone is not sufficient. Because
of the large size of these volumes, the microscopes need to be fast. Even
with throughputs of ∼50 MPix/s (Zheng et al., 2018), the acquisition pro-
cess can take many months. For example, the first full adult fly brain EM
dataset (FAFB) has a total volume of 8 × 107µm3 and took 16 months to ac-
quire (Zheng et al., 2018), and fault tolerance over these timelines needs to
be guaranteed. This is achieved by modifying commercial EM systems to
operate on these time and spatial scales by automating commonly manual
tasks such as section collection and sample placement (Zheng et al., 2018;
Xu et al., 2020; Hayworth et al., 2006). Electron microscopy technologies cur-
rently used in connectomics can be broadly distinguished in two categories:
1. (Serial section) transmission electron microscopy (ssTEM) (Williams and
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Carter, 1996) and 2. (Focused ion beam) scanning electron microscopy (FIB-
SEM) (Von Ardenne, 1938). ssTEMs operate by cutting a large, three dimen-
sional, stained tissue sample into thin slices (≥ 40nm), which are then im-
aged one by one by shooting high energy electrons through the sample and
detecting where and how many electrons pass through the sample (Williams
and Carter, 1996; Knott et al., 2008). Locations where many electrons arrive
are unstained, such as the cytosol, while locations where few electrons arrive
are stained, thus block electrons and appear dark in the final image, e.g. cell
membranes. Each imaged slice is subsequently registered, aligned (Saalfeld
et al., 2012), and normalized to generate the final volumetric electron mi-
croscopy dataset (Hanslovsky et al., 2015, 2017). FIB-SEM technology uti-
lizes a different electron microscopy and sectioning approach. Instead of
cutting individual sections and detecting electrons that pass through one
section, (FIB-)SEM shoots electrons on the surface of a sample and detects
scattered electrons instead (Von Ardenne, 1938). This has the advantage that
no slices need to be cut and instead subsequent tissue surfaces are revealed
and imaged by removing thin sample layers via a focused ion beam. This
leads to significantly increased resolution (≥ 2nm) in the axis perpendicular
to the cutting plane (z-axis), which enables isotropic resolutions of up to 8
nm for large volumes such as the Drosophila melanogaster brain (Xu et al.,
2020). The first and still only full Drosophila melanogaster brain electron mi-
croscopy dataset available (FAFB), has been acquired via ssTEM. However,
since the acquisition of the FAFB dataset with ssTEM technology, FIB-SEM
technology has seen increasing popularity for current efforts after overcom-
ing its limited field of view via blockwise processing (Hayworth et al., 2015;
Kornfeld and Denk, 2018; Xu et al., 2020). This is partially motivated by
the insight that automatic neuron segmentation performs better on isotropic
datasets (Xu et al., 2020). In contrast to light microscopy, where genetic tools
and optical sensors allow for multi channel recordings that can be used
to distinguish multiple objects, for example neurons (Hampel et al., 2011),
electron microscopy does not currently offer similar capabilities at high la-
bel densities. As a result, to generate a connectome each neuron has to be
segmented from the raw electron microscopy images.

1.1.2 Neuron Reconstruction

A neuron is defined as the connected region separated from other neurons
by its cellular membrane. In EM the neuron membrane appears as dark
outlines around the brighter cytosol (see Fig.1.1 e for an example) and the
task in neuron reconstruction is to identify each individual cell in the vol-
ume. Neurons are large, complex objects that can extend over hundreds of
microns, innervate multiple brain areas and contain many branch points.
Combined with sometimes noisy data, misalignment of consecutive sections
or entirely missing sections this makes neuron reconstruction a challeng-
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ing task even for human experts. However, spurred by advancements in
computer vision and in particular deep learning, recent years have seen ma-
jor advances in the accuracy of automatic neuron segmentation pipelines
(see Sheridan et al. (2021) for a recent comparative study). For large brain
areas the current approach is thus to first generate an automatic neuron
segmentation which is subsequently proofread by human experts to fix so-
called split and merge errors. A split error occurs when a single neuron is
wrongly assigned to two or more distinct segments, and a merge error oc-
curs if two distinct neurons are assigned to the same segment. Both of these
errors are potentially catastrophic for circuit analysis. Reducing these er-
rors during automatic segmentation and simplifying the correction of these
errors by human proofreaders has thus been a primary research focus dur-
ing the past years. Early algorithms for automatic neuron segmentation
worked by segmenting the cellular membrane, performing boundary detec-
tion of each cell and subsequent segmentation via a variant of the watershed
algorithm (Ciresan et al., 2012; Liu et al., 2012). However, with this ap-
proach small prediction errors in the boundary can cause large morpholog-
ical changes in the final neuron segmentation. This is undesirable and later
algorithms try to remedy this by using structured loss functions to penal-
ize morphological errors (Turaga et al., 2009; Funke et al., 2018; Beier et al.,
2017) or by directly predicting some volumetric representation of the neu-
ron such as flood filling networks (Januszewski et al., 2018) or local shape
descriptors (Sheridan et al., 2021). In addition, software tools for correcting
split and merge errors became increasingly advanced and together the time
for generating a neuron segmentation for large brain areas has improved by
10-100x over the last years, enabling the generation of accurate large scale
neuron segmentations (Zhao et al., 2018; Berning et al., 2015).

1.1.3 Synapse Detection

In addition to neuron segmentation, generating a connectome requires the
identification of synaptic partners. A synapse is an electro-chemical contact
between neurons used for signal communication among neurons. In elec-
tron microscopy volumes, synapses have a characteristic appearance, the
most prominent being the so-called synaptic cleft, which appears as a dark,
connected region between two synapses. In addition most synapses fea-
ture prominent pre-synaptic densities, called T-Bars as they look like the
letter T (Meinertzhagen and O’neil, 1991). The pre-synaptic site, which is
the region in the pre-synaptic neuron close to the cleft, also often features a
number of different neurotransmitter containing vesicles for release into the
synaptic cleft (Palay, 1956; Xu et al., 2020). Similar to neuron segmentation,
manual detection of all synapses in brain sized EM volumes is not feasible
and automatic approaches are used to identify synaptic partners and detect
synaptic clefts. For that, current approaches rely mostly on deep neural net-
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works and have been used to identify all synaptic partners in the FAFB and
the Hemibrain dataset (Kreshuk et al., 2015; Dorkenwald et al., 2017; Staffler
et al., 2017; Buhmann et al., 2019).

1.1.4 Proofreading Bottleneck
The limiting factor for generating connectomes is proof-reading of automatic
neuron segmentations and synapse detection. The running time of these al-
gorithms is on the order of days on appropriate hardware, while identifying
and correcting errors takes on the order of months to years (Xu et al., 2020).
As such, improving proof reading times is essential for the future of connec-
tomics, in particular when moving to larger organisms such as the mouse.
There are multiple options for reducing proof-reading times, such as increas-
ing the accuracy of automatic neuron segmentation and synapse detection,
secondary systems that automatically detect and correct errors in the initial
predictions (Rolnick et al., 2017; Schubert et al., 2019), and better proof-
reading tools and protocols (Zhao et al., 2018; Berning et al., 2015; Plaza,
2014; Cardona et al., 2012). In addition, it might be feasible to use additional
information available in the EM data that constraints neuron morphology
and circuitry. One such secondary information channel may come from
the neuronal ultrastructure visible in EM, such as microtubules (Schneider-
Mizell et al., 2016).

Microtubules

Neurons contain a multitude of different structures that enable cellular func-
tion such as mitochondria, vesicles, endoplasmic reticulum, microtubules
and many more. Of particular interest for connectomics are microtubules
because they provide structural stability to the cell and as a result closely
follow the morphology of the neuron. As such they are well suited as an
additional structural prior for neuron shape, beyond neuron membranes
(Schneider-Mizell et al., 2016). However, with an outer diameter of around
24 nm, microtubules are close to the resolution limit of EM and thus difficult
to reconstruct and detect. In this thesis we propose an algorithm for auto-
matic detection and reconstruction of microtubules to eventually aid the
accuracy of neuron segmentation and more generally understand cellular
ultrastructure.

1.1.5 Circuits
Having generated a connectome, the next step is to use the wiring diagram
to study the circuitry and its function for behavior. Reviewing all relevant
literature is outside the scope of this work, but we refer the reader to the
recently published work originating from the first dense, partial connectome
in Drosophila melanogaster (Xu et al., 2020): Li et al. (2020) describe structure
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Figure 1.2: Appearance of synaptic sites from neurons with different neurotrans-
mitters. From left to right GABA, acetylcholine, glutamate, serotonin, octopamine
and dopamine.

and function of the mushroom body, the center for associative learning in
the fly and Scheffer et al. (2020) provides a detailed analysis of the circuits
in the entire central brain. However, as exemplified in the aforementioned
studies, availability of the connectome is merely necessary but not sufficient
for understanding circuits and often additional functional experiments are
needed. For example, one property that is missing from the raw Drosophila
melanogaster connectome is neurotransmitter identity to establish the sign of
the connection between two neurons.

1.1.6 Neurotransmitters

The sign of a synaptic connection, i.e., whether it has an inhibitory or ex-
citatory effect on its synaptic partners is determined by the neurotransmit-
ter the synapse releases. There are a large variety of neurotransmitters in
the Drosophila melanogaster brain but the three most common transmitters
are the so-called classical or fast-acting transmitters GABA, glutamate and
acetylcholine (Meissner et al., 2019). Glutamate and acetylcholine are of-
ten excitatory transmitters while GABA is inhibitory. In addition to fast
acting transmitters, there exist so-called monoamines such as dopamine,
norepinephrine, octopamine and serotonin, as well as various neuropeptides
such as oxytocin, galanin or neurokinin. All transmitters are contained in
vesicles and released into the synaptic cleft when a synapse is firing, trans-
mitting the signal to its post-synaptic partners (Goyal and Chaudhury, 2013).
So far, adding neurotransmitter identity to connectomes requires light mi-
croscopy (LM) in order to image fluorescent tags that have been genetically
attached to neurotransmitter related molecules (Henry et al., 2012; Konstan-
tinides et al., 2015; Davie et al., 2018; Davis et al., 2020; Hyatt and Wise, 2001;
Long et al., 2017; Meissner et al., 2019). In addition, the neuron as seen in
LM need to be traced and matched to neuron tracings in EM (Bates et al.,
2019b,a; Costa et al., 2016). This is an expensive process and practically im-
possible to scale to an entire brain. In this thesis we propose an alternative
route and show how a simple convolutional neural network is able to con-
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fidently predict the neurotransmitter identity from EM images of synaptic
sites alone. Because human experts are generally not able to perform this
task in Drosophila melanogaster (Xu et al., 2020) we also investigate which
features the classifier relies on and develop a novel neural network inter-
pretability method to do this. For an illustration of appearance of synaptic
sites with different neurotransmitters see Fig. 1.2.

1.2 Neural Network Interpretability

With an increase of deep neural networks deployed in computational pipe-
lines across all industries, there has been an increased need for making their
decision process more transparent. In particular for applications where er-
rors have potentially devastating consequences such as cancer detection and
medical AI in general (Cruz-Roa et al., 2013; Lipton, 2018; Ahmad et al.,
2018), it is crucial to understand the features a neural network is using to
make sure it is functioning correctly. Besides debugging and increasing
trust in these systems neural network interpretability is crucial for exposing
data and algorithmic biases (Tan, 2018). Furthermore, being able to inter-
pret and distill what a network has learned may enable us to generate new
(scientific) knowledge if there are tasks that neural networks can perform
but humans cannot (Roscher et al., 2020). However, because neural net-
works are complicated objects with millions of parameters and non-linear
relationships between inputs and outputs, understanding how they work
can be difficult even for a single input. To deal with this issue, many meth-
ods have been proposed to perform neural network interpretability that are
able to e.g. highlight the regions in a given input that contributed most
to a classifiers decision, so-called attribution methods (e.g. Selvaraju et al.
(2017); Sundararajan et al. (2017); Ancona et al. (2018)). Other approaches

Figure 1.3: Illustration of the behaviour of popular, gradient based attribution meth-
ods applied to an Inception V3 network trained on natural image classification. Fig-
ure adapted from Ancona et al. (2018). All methods show considerable noise and it
is unclear whether a human would understand that the snake is the relevant object
if we did not have such strong innate visual priors about natural images.
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try to approximate deep neural networks locally with an interpretable clas-
sifier (Ribeiro et al., 2016) or fitting of a rule based system (Cranmer et al.,
2020). However, many of the proposed methods are based on black box op-
timization processes themselves and it is difficult to evaluate whether any
given explanation is correct, in particular in domains such as EM where
humans have little to no priors. Here we develop a novel interpretability
method for EM data, which allows us to validate any given interpretation
and use it to extract the previously unknown relation between neurotrans-
mitter and synaptic phenotype. For an illustration of attribution methods
on natural images see Fig. 1.3.
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1.3 Thesis overview
Chapter 2 In this chapter we present our method for microtubule track-

ing in electron microscopy volumes, compare its performance to the
prior state of the art and show its applicability to a diverse set of data
sources.

Chapter 3 Here we propose a novel deep neural network interpretability
method (DAC) for knowledge extraction from deep neural networks
(DNNs). We conduct a range of experiments on three diverese datasets,
including EM images of synaptic sites, to show that our approach im-
proves on prior interpretability methods for the generation of visual
explanations of DNN decision boundaries.

Chapter 4 In this chapter we show that in Drosophila melanogaster artificial
convolutional neural networks can confidently predict the type of neu-
rotransmitter released at a synaptic site from EM images alone. We
show generalizability of the method across developmentally distinct
neurons, brain regions, and datasets. We apply the method to the
prediction of all automatically extracted synapses in the FAFB dataset,
show that hemilineages likely express more than one neurotransmitter,
and use the method from chapter three, to identify a set of hypothet-
ical discriminators, that could be used by humans to distinguish the
different neurotransmitter phenotypes by eye.





Chapter 2

Microtubule Tracking in Electron
Microscopy Volumes1

2.1 Introduction

Microtubules are part of the cytoskeleton of a cell and crucial for a variety of
cellular processes such as structural integrity and intracellular transport of
cargo (Nogales, 2000). They are of particular interest for the connectomics
community, as they directly follow the morphology of neurons. Tracking of
microtubules therefore provides additional structural information that can
potentially be leveraged for guided proof-reading of neuron segmentation
and aid in the identification of neural subcompartments such as backbones
and twigs (Schneider-Mizell et al., 2016).

Manual tracking of microtubules faces the same limitations as neuron seg-
mentation and synapse annotations. The resolution needed to discern indi-
vidual structures of interest like neural arbors, synapses, and microtubules
can only be achieved with high resolution electron microscopy (EM), which
results in large datasets (several hundred terabytes) even for small model
organisms like Drosophila melanogaster (Zheng et al., 2018). With datasets of
these sizes, a purely manual analysis becomes impractical. Consequently,
the field of connectomics sparked a surge of automatic methods to seg-
ment neurons (for recent advances see Funke et al. (2018); Januszewski
et al. (2018); Lee et al. (2019); Lee et al. (2017)), annotate synapses (Buh-
mann et al., 2018; Kreshuk et al., 2015; Staffler et al., 2017; Buhmann et al.,
2019; Heinrich et al., 2018; Huang et al., 2018; Dorkenwald et al., 2017), and
identify other structures of biological relevance such as microtubules (Buh-

1This chapter is based on the paper Eckstein et al. (2020b), except section 2.4 which de-
scribes our contribution to the COSEM project preprint: Heinrich et al. (2020). Julia Buhmann
helped to generate the ground truth microtubule blocks used in this work. Tri Nguyen wrote
the software we use for blockwise processing.

13
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Figure 2.1: Overview of the proposed method. 1. Microtubule scores are predicted
via a 3D UNet (Ronneberger et al., 2015). Inlets show two microtubules that run per-
pendicular to the imaging plane (appearing as circles) and one that deviates from
a 90 degree angle of incidence (appearing as a line segment). The corresponding
(noisy) microtubule scores show the necessity of post processing. 2. Candidate mi-
crotubule segments are extracted and represented as vertices in a 3D graph, where
vertices are connected within a threshold distance. 3. Final microtubule trajectories
are found by solving a constrained optimization problem.

mann et al., 2016) or mitochondria (Xiao et al., 2018; Cheng and Varshney,
2017; Dorkenwald et al., 2017). Large scale automatic reconstruction of mi-
crotubules is a particularly challenging problem. With an outer diameter
of 24 nm, microtubules are close to the resolution limit of serial section
EM2. Especially in anisotropic EM volumes, the appearance of microtubules
changes drastically depending on their angle of incidence to the imaging
plane. Furthermore, they are often locally indistinguishable from other cell
organelles (like endoplasmic reticulum) or noise.

Our method for microtubule tracking is based on the formulation proposed
in Buhmann et al. (2016), with significant improvements in terms of effi-
ciency and accuracy. Similar to Buhmann et al. (2016), we first predict a
score for each voxel to be part of a microtubule. We then identify promis-

2Resolution is around 4× 4× 40 nm for ssTEM, and 8× 8× 8 nm for FIB-SEM (Takemura
et al., 2015).
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ing candidate points and possible links between them in a candidate graph
as nodes and edges. Finally, we solve a constraint optimization problem
incorporating biological priors to find a subset of edges that constitute mi-
crotubule tracks (for an overview see Fig. 2.1).
Our four main contributions are as follows: 1. We propose a new integer
linear program (ILP) formulation, which decreases the time needed to solve
the constraint optimization by several orders of magnitude. 2. We devise
a scheme to solve the resulting optimization problem in a block-wise fash-
ion in linear time, and thus are able to process real-world sized volumes.
3. Our formulation allows tracking of microtubules in arbitrary orientations
in anisotropic volumes by introducing a non-maxima suppression (NMS)
based candidate extraction method. 4. We improve the voxel-level classi-
fier by training a 3D UNet (Ronneberger et al., 2015; Funke et al., 2018) on
skeleton annotations, leading to more accurate microtubule scores.

We evaluate our method on a new benchmark comprising 153.6 µm3 of
densely traced microtubules, demonstrating a 53% increase in accuracy (0.517
→ 0.789 F1 score) compared to the prior state of the art. Source code and
datasets are publicly available at https://github.com/nilsec/micron.

2.2 Method

2.2.1 Predictions
Starting from the raw EM input data, we train a 3D UNet (Ronneberger
et al., 2015) to predict a microtubule score m ∈ [0, 1] for each voxel. We
generate microtubule scores for training from manually annotated skele-
tons by interpolating between skeleton markers on a voxel grid followed by
Gaussian smoothing. In addition, we train the network to predict spatial
gradients of the microtubule score up to second order. This is motivated by
the idea that the spatial gradient encodes the local shape of a predicted ob-
ject. Since microtubule segments have locally line-like shapes this auxiliary
task potentially regularises microtubule score predictions.

2.2.2 Candidate Extraction
Given the predicted microtubule score we perform candidate extraction via
two NMS passes, to guarantee that two successive candidates of a single
microtubule track are not farther apart than the distance threshold θd we
will use to connect two candidates with each other. In a first pass, we per-
form NMS and thresholding with a stride equal to the NMS window size,
guaranteeing at least one candidate per NMS window if the maximum is
above the threshold. This strategy is problematic if the local maximum lies
on the border or corner of a NMS window as this produces multiple, in
the worst case eight, candidates that are direct neighbors of each other. We

https://github.com/nilsec/micron
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(a) Consistency constraints (top row) and no-branch constraints (bottom row).

minIi,j,k ∑
i∈V

ci · Ii + ∑
(i,j)∈E

ci,j · Ii,j + ∑
(i,j,k)∈T

ci,j,k· Ii,j,k

s.t.
∀ (i, j, k) ∈ T : Ii, Ii,j, Ii,j,k ∈ {0, 1}

∀ i ∈ V : 2Ii − ∑
(i,j)∈E

Ii,j = 0

∀ (i, j) ∈ E : 2Ii,j − Ii − Ij ≤ 0

∀ (i, j, k) ∈ T : 2Ii,j,k − Ii,j − Ij,k ≤ 0

−Ii,j,k + Ii,j + Ij,k ≤ 1

(b) ILP following Buhmann et al. (2016).

minIi,j,k ∑
(i,j,k)∈T

ci,j,k · Ii,j,k

s.t.
∀ (i, j, k) ∈ T : Ii,j,k ∈ {0, 1}

∀ j ∈ V : ∑
(i,j,k)∈T

Ii,j,k ≤ 1

∀ (i, j) ∈ E : ∑
(k,i,j)∈T

Ik,i,j − ∑
(i,j,k)∈T

Ii,j,k = 0

(c) Reformulated ILP on triplet indicators.

Figure 2.2: Constraint optimization on the candidate graph. We formulate an ILP
on binary triplet indicators, which encode the joint selection of two incident candi-
date edges. The constraints shown in (a) ensure that found tracks are not crossing
or splitting. Although mathematically equivalent to the formulation in (b), our
formulation (c) is orders of magnitudes more efficient (see Fig. 2.4).

remove this redundancy by performing a second NMS pass on the already
extracted maxima, providing us with the final set of microtubule segment
candidate detections C.

2.2.3 Constrained Optimization

Following Buhmann et al. (2016), we represent each candidate microtubule
segment i ∈ C as a node in a graph with an associated position pi =
(xi, yi, zi). A priori we do not know which microtubule segments i ∈ C
belong together and form a microtubule. Thus, we connect all microtubule
candidates with each other that are below a certain distance threshold θd.
More formally, we introduce an undirected graph G = (V, E), where V =
C ∪ {S} is the set of microtubule candidate segments C augmented with a
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special node S and E ⊂ V × V is the set of possible links between them.
The special node S is used to mark the beginning or end of a microtubule
track and is connected to all candidates in C. We further define a set
T = {(i, j, k) ∈ V × C × V | (i, j), (j, k) ∈ E, i 6= k} of all directly connected
triplets on G.

As observed in Buhmann et al. (2016), we can make use of the fact that
microtubules do not branch and have limited curvature (Gittes et al., 1993).
We encode these priors as constraints and costs respectively, and solve the
resulting optimization problem with an ILP. As outlined in Fig. 2.2, and
in contrast to Buhmann et al. (2016), we formulate consistency and ”no-
branch” constraints on triplets of connected nodes (i, j, k) ∈ T only, leading
to an orders of magnitude improvement in ILP solve time (see Fig. 2.4).
To this end, we introduce a binary indicator variable Ii,j,k ∈ {0, 1} for each
(i, j, k) ∈ T and define selection costs ci,j,k for each triplet by propagating
costs ci on nodes and ci,j on edges as follows:

ci =

{
θS if i = S
θP else

ci,j = θD dist(i, j) + θE evid(i, j) + ci + cj
ci,j,k = θC curv(i, j, k) + ci,j + cj,k

,

(2.1)
where θS is the cost for beginning/ending a track and θP < 0 is the prior
on node selection. dist(i, j) = ||pi − pj|| measures the distance between
candidates i and j, whereas evid(i, j) = ∑p∈Pi,j

m(p) accumulates the pre-
dicted evidence for microtubules on all voxels on a line Pi,j connecting i and
j. curv(i, j, k) = π − ∠(i, j, k) measures deviations of a 180 degree angle
between two pairs of edges, and thus introduces a cost on curvature. The
values θS, θP, θD, θE, θC ∈ R are free parameters of the method and found via
grid search on a validation dataset.

2.2.4 Blockwise Processing
In order to be able to apply the constraint optimization to arbitrary sized
volumes, we decompose the candidate graph spatially into a set of blocks
B. For each block b ∈ B, we define a constant-size context region b, which
encloses the block and is chosen to be large enough such that decisions
outside the context region are unlikely to change the ILP solution inside
the block. We next identify sets Si ⊂ B of blocks that are pairwise conflict
free, where we define two blocks a and b to be in conflict if a overlaps
with b. All blocks of a subset Si can then be distributed and processed in
parallel. The corresponding ILP for each block b ∈ Si is solved within b,
however, assignments of the binary indicators are only stored for indicators
corresponding to nodes in b. To obtain consistent solutions across block
boundaries, existing indicator assignments from previous runs of conflicting
blocks are acknowledged by adding additional constraints to the block ILP.
See supplement for an illustration.
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2.2.5 Evaluation

To evaluate reconstructed tracks against groundtruth, we resample both re-
construction and groundtruth tracks equidistantly and match nodes based
on distance using Hungarian matching. Results are reported in terms of
precision and recall on edges, which we consider correct if they connect two
matched nodes that are matched to the same track.

2.3 Results

2.3.1 Dataset

We densely annotated microtubules in eight 1.2x4x4µm (30x1000x1000 voxel)
volumes of EM data in all six CREMI 3 volumes A, B, C, A+, B+, C+ using
Knossos (Boergens et al., 2017) and split the data in training (A+, B+, C+),
validation (B+v, Bv) and test (A, B, C) sets.

2.3.2 Comparison

NMS * models refer to the model described in the methods section, where
NMS SM uses a 3D UNet predicting microtubule score only, NMS GRAD
additionally predicts spatial gradients of the microtubule score up to sec-
ond order and NMS RFC uses a random forest classifier (RFC) instead of
a 3D UNet. For each, we first select the best performing UNet architecture
(for NMS RFC we interactively train an RFC using Ilastik (Sommer et al.,
2011)) and NMS candidate extraction threshold in terms of recovered candi-
dates on the validation datasets, followed by a grid search over the distance
threshold θd and ILP parameters for 150 different parameter combinations.
For the NMS candidate extraction we use a window size of 1x10x10 voxels
for the first NMS pass to offset the anisotropic resolution of 40x4x4 nm. For
the second NMS pass we use a window size of 1x3x3 voxels, removing dou-
ble detections.

Baseline refers to an adaptation4 of the method in Buhmann et al. (2016),
that uses an RFC for prediction, z section-wise connected component (CC)
analysis on the thresholded microtubule scores for candidate extraction, and
a fixed orientation estimate for each microtubule candidate pointing in the
z direction5. For the baseline we interactively train two (for microtubules
of different angles of incidence on the imaging plane) RFCs on training vol-
umes A, B, C using Ilastik (Sommer et al., 2011). We find the threshold

3MICCAI Challenge on Circuit Reconstruction in EM Images, https://cremi.org.
4We use our ILP formulation, which was necessary to process larger volumes.
5Orientation estimate used in Buhmann et al. (2016) (direct communication with au-

thors).

https://cremi.org
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Figure 2.3: 3D rendering of raw EM volumes (Raw), manual tracing (GT) and au-
tomatically reconstructed microtubules in CREMI volumes A,B,C for our method
(NMS GRAD and NMS SM) and the considered baseline (Buhmann et al., 2016)
using validation best ILP parameters (best viewed on screen).

for CC candidate extraction, distance threshold θd and ILP parameters via
grid search over 242 parameter configurations on the validation set. For an
overview see Table 2.1.

2.3.3 Test Results

Fig. 2.4 shows that both variants of our proposed model outperform the
prior state of the art (Buhmann et al., 2016) substantially. Averaged over test
data sets A,B,C, we demonstrate a 53% increase in accuracy for NMS GRAD.
Table 2.1 further shows test best F1 scores for each individual dataset. In
accordance with the qualitative results shown in Fig. 2.3, NMS GRAD per-
forms substantially better for test set A while NMS SM is more accurate for
volumes B and C. Ablation experiments show that CC candidate extraction
leads to overall less accurate reconstructions. Exchanging the UNet with
an RFC while retaining NMS candidate extraction seriously harms perfor-
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Figure 2.4: Top row: comparison of ILP formulations on random candidate graphs
in terms of solve time (left) and number of constraints (right). Solve times have
been obtained from 54 different ILP parameter configurations θS,P,D,E,C on an Intel
Xeon(R), 2.40GHz x 16 CPU processor using the Gurobi optimizer. Bottom row,
left: Comparison of our method (NMS SM and NMS GRAD) to the baseline (Buh-
mann et al., 2016) and two ablation experiments CC GRAD (NMS replaced with
connected component candidate extraction) and NMS RFC (UNet replaced with
RFC). Shown are precision and recall for varying values of the start/end edge prior
θS averaged over the test datasets A,B,C. The validation and test best are high-
lighted with circles and stars, respectively. Bottom row, right: Qualitative results
on sample B (best viewed on screen).

mance, resulting in large numbers of false positive detections. For extended
qualitative results, including reconstruction of microtubules in the Calyx, a
76 x 52 x 64 µm region of the Drosophila Melanogaster brain, see supplement.
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Figure 2.5: Left: Accuracy as a function of block size over several orders of mag-
nitude. Shown are the F1 scores, averaged over test data sets A, B and C, using
validation best parameters NMS GRAD. Interestingly, for some sizes, solving the
ILP block-wise results in higher F1 scores than solving the ILP to global optimality
(blue line). However, it should be noted that the differences in F1 score are minor
and likely not significant. The black circle indicates the block size we used for all
reported results. Right: Box plot of ILP solve time per block as a function of block
size. Shown is the wall-clock time needed to solve the ILP for one block, measured
for ten runs, on test cube B using validation best parameters NMS GRAD. Note that
in contrast to accuracy, solve time is strongly affected by block size. This implies
that we are able to process large volumes by solving the ILP in a blockwise manner,
without a significant decrease in accuracy.

Table 2.1: Model overview and test best F1 score by data set.

Model Prediction Cand. Extr. Edge Score A B C Avg
NMS GRAD UNet+GRAD NMS Evidence 0.784 0.827 0.757 0.789

NMS SM UNet NMS Evidence 0.711 0.828 0.785 0.775
Baseline RFC CC Orientation 0.454 0.547 0.549 0.517

CC GRAD UNet+GRAD CC Evidence 0.660 0.723 0.537 0.640
NMS RFC RFC NMS Evidence 0.366 0.375 0.302 0.348

2.4 Whole Cell Microtubule Tracking

We apply the proposed method to the automatic segmentation of all micro-
tubules in four FIB-SEM stacks of entire cells as part of the COSEM project
with the aim to automatically segment all organelles in a given cell (Hein-
rich et al., 2020). The FIB-SEM volumes analysed here are two HeLa cells
(jrc hela-2 & jrc hela-3) a jurkat cell (jrc jurkat-1) and a macrophage cell
(jrc macrophage-2). In contrast to the full adult fly brain FAFB (Zheng et al.,
2018), this data is isotropic with a resolution of 4x4x4nm. Additionally, we
replace the classifier described here by the network from Heinrich et al.
(2020) and apply the constrained optimzation as a refinement step on the
network predictions.
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Figure 2.6: Overview of automatic microtubule tracking results in FIB-SEM stacks
of entire cells. (a) Shown are raw 2D FIB-SEM slices together with microtubule
ground truth tracks (red) and corresponding reconstructions (cyan) for a test block
in jrc hela-2. (b) Comparison of reconstruction accuracy over all considered cells.
For each cell we show precision, recall and F1-score in two test ground truth cubes
with 2µm edge length. (c) Comparison of the presented method to a simple base-
line microtubule reconstruction method on isotropic 4x4x4nm resolution FIB-SEM
data in terms of topological errors on entire tracks. (d) Comparison of the presented
method to the considered baseline in terms of precision and recall as defined be-
fore. All comparison results have been generated via 6-fold cross validation over
4 ground truth blocks. The median value of the cross validation runs are shown
above each column in (d). Figure adapted from Heinrich et al. (2020).

2.4.1 Evaluation

In order to validate that the presented method translates to isotropic data
we compare the performance of our method to a baseline method (see 2.6 c,
d) via 6-fold cross validation over 4 densely traced 2x2x2µm FIB-SEM blocks
in jrc hela-2. The baseline we consider consists of:

1. Thresholding of the microtubule predictions

2. Morphological closing of the thresholded predictions

3. Connected component analysis

4. Size filtering of connected components

5. Skeletonization of each connected component, where we restrict the
skeleton to have no branches.
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We used the following baseline hyperparameters after grid search over two
out of the four ground truth blocks for each cross validation run:

1. Prediction threshold t = 0.4.

2. Morphological closing filter size f = 4

3. Connected component size filter c = 500

For our method we find hyperparameters in the same way (θE = 200, θC = 22,
θS = 200 and θP = -200 and θd = 180nm) and solve the ILP with a block size
of 400x400x400 nm. Using our method results in a significant reduction of
morphological errors on full tracks, in particular a reduced number of false
positives, splits and merges w.r.t. the baseline. Similarly we improve upon
the baseline in all considered metrics in terms of individual edge accuracy.
We also find that reconstruction accuracy is highly dependent on the cell.
We achieve 0.6-0.8 edge accuracy for the two considered HeLa cells but per-
form worse for the Jurkat and Macrophage cell (Fig. 2.6 b). This is mostly
caused by varying quality of the neural network predictions for microtubule
scores m, which in turn is influenced by the imaging quality and amount of
available training data. For a full analysis of microtubule morphology and
relationship to other organelles see Heinrich et al. (2020).

2.5 Discussion
Although some of our improvements in accuracy can be attributed to the
use of a deep learning classifier, the presented method relies mostly on an
effective way of incorporating biological priors in the form of constraint
optimization. In particular our ablation studies (CC GRAD) show that the
strided NMS-based candidate extraction method positively impacts accu-
racy: Since a single microtubule could potentially extend far in the x-y
imaging plane, it is not sufficient to represent candidates in one plane by
a single node, as done in Buhmann et al. (2016). The strided NMS detec-
tions homogenize the candidate graph and is likely decisive for the abil-
ity of our method to generalize to datasets of different resolutions, such
as the presented FIB-SEM stacks. A potential downside is poor precision
when combined with extremely noisy microtubule score predictions m (see
NMS RFC). In this case NMS on a grid extracts too many candidate seg-
ments, and besides structural priors, the only remaining cost we use to ex-
tract final microtubule tracks is directly derived from the (noisy) predicted
microtubule score m (see equation (2.1)). Note that the baseline does not
suffer as much from noisy microtubule scores, because it uses a fixed ori-
entation prior and is thus limited to a subset of microtubules in any given
volume. Finally, the reformulation of the ILP and the block-wise processing
scheme result in a dramatic speed-up and the ability to perform distributed,
consistent tracking, which is required to process petabyte-sized datasets.





Chapter 3

Discriminative Attribution from
Counterfactuals1

3.1 Introduction

Machine Learning—and in particular Deep Learning—continues to see in-
creased adoption in crucial aspects of society such as industry, science, and
healthcare. As such, it impacts human lives in significant ways. Conse-
quently, there is a need for understanding how these systems work and how
they make predictions in order to increase user trust, limit the perpetuation
of societal biases, ensure correct function, or even to gain scientific knowl-
edge. However, due to the large numbers of parameters and non-linear
interactions between input and output, deep neural networks (DNNs) are
generally hard to interpret. In particular, it is not clear which input features
influence the output of a DNN.

A popular approach for explaining DNN predictions is provided by so-
called feature attribution methods. These methods output the importance
of each input feature w.r.t. the output of the DNN. In the case of image
classification—the primary focus of this work—the output is a heatmap
over input pixels, highlighting and ranking areas of importance. A large
number of approaches for feature attribution have been proposed in recent
years (for a recent review see Samek et al. (2021) and related work below).
Although those have been used successfully to interpret model behavior
for some applications, there is still debate about the effectiveness, accuracy,
and trustworthiness of these approaches (Kindermans et al., 2019; Adebayo
et al., 2018; Ghorbani et al., 2019; Alvarez-Melis and Jaakkola, 2018). In ad-
dition, objectively evaluating feature attribution methods remains a difficult
task (Samek et al., 2016; Hooker et al., 2018).

1Alexander S. Bates and Gregory S.X.E. Jefferis helped with the data collection of the
Synapses dataset and provided valuable feedback.
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A complementary approach for explaining DNN decisions are so called
counterfactual explanations (Martens and Provost, 2014; Wachter et al., 2017).
In contrast to feature importance estimation, counterfactual approaches at-
tempt to explain a DNN output by presenting the user with another input
that is close to the original input, but changes the classification decision of
the DNN to another class. For humans, this representation is natural and it
provides an intuitive means for elucidating DNN behaviour.

While counterfactual explainability methods have seen increased adoption
in structured data domains, they are comparatively less popular for image
data, where feature attribution methods arguably remain the dominant tool
for practitioners. The popularity of feature importance methods is partly
driven by their ease of use, availability in popular Deep Learning frame-
works, and intuitive outputs in the form of pixel heatmaps. In contrast,
generating counterfactual explanations typically involves an optimization
procedure that needs to be carefully tuned in order to obtain a counter-
factual with the desired properties. This process can be computationally
expensive and does, in general, not allow for easy computation of attri-
bution maps (Verma et al., 2020). To address these issues, we present a
simple method that bridges the gap between counterfactual explainabil-
ity and feature importance for image classification by building attribution
maps from counterfactuals (DAC: Discriminative Attribution from Counter-
factuals, see Fig. 3.1 for a visual summary). Crucially, our method can be
used to quantitatively evaluate the attribution in an objective manner on
a target task, a missing feature in current attribution methods. We use a
cycle-GAN (Zhu et al., 2017) to translate real images xR of class i to coun-
terfactual images xC of class j 6= i, where we validate that the translation
has been successful by confirming that f (xR) = i and f (xC) = j, where f is
the classifier to interpret. We repurpose a set of common attribution meth-
ods by introducing their discriminative counterparts, which are then able
to derive attribution maps from the paired real and counterfactual image.
We show that this approach is able to generate sparse, high quality feature
attribution maps that highlight the most discriminative features in the real
and counterfactual image more precisely than standard attribution meth-
ods. Furthermore, subsequent thresholding of the attribution map allows
us to extract binary masks of the features and quantify their discriminatory
power by performing an intervention and replacing the highlighted pixels
in the counterfactual with the corresponding pixels in the real image. The
difference in output classification score of this hybrid image, compared to
the real image classification, then quantifies the importance of the swapped
features. We validate our method on a set of three diverse tasks, includ-
ing a challenging artificial dataset, a real world biological dataset (where
a DNN solves a task human experts can not), and MNIST. For all three
datasets we show quantitatively and qualitatively that our method outper-
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Figure 3.1: Overview of the proposed method: An input image xR of class i is con-
verted through an independently trained cycle-GAN generator Gi→j into a counter-
factual image xC of class j, such that the classifier f we wish to interpret predicts
yR = i and yC = j. The Discriminative Attribution method then searches for the
minimal mask m, such that copying the most discriminative parts of the real im-
age xR into the counterfactual xC (resulting in the hybrid xH) is again classified as
yH = i.

forms all considered attribution methods in identifying key discriminatory
features between the classes. Source code and datasets are publicly available
at https://dac-method.github.io.

3.2 Related Work

Recent years have seen a large number of contributions addressing the prob-
lem of interpretability of DNNs. These can be broadly distinguished by the
type of explanation they provide, either local or global. Methods for local
interpretability provide an explanation for every input, highlighting the rea-
sons why a particular input is assigned to a certain class by the DNN. Global
methods attempt to distill the DNN in a representation that is easier to un-
derstand for humans, such as decision trees. One can further distinguish
between interpretability methods that are post-hoc, i.e., applicable to every
DNN after it has been trained, and those methods that require modifica-
tions to existing architectures to perform interpretable classification as part
of the model. In this work we focus on a specific class of local, post-hoc ap-
proaches to DNN interpretability for image classification, so-called feature
importance estimation methods.

Attribution Methods for Image Classification Even in this restricted class
of approaches there is a large variety of methods (Ribeiro et al., 2016; Lund-
berg and Lee, 2017; Baehrens et al., 2010; Bach et al., 2015; Zintgraf et al.,
2017; Selvaraju et al., 2017; Sundararajan et al., 2017; Simonyan et al., 2014;
Zeiler and Fergus, 2014; Kindermans et al., 2017; Montavon et al., 2017; Fong
and Vedaldi, 2017; Dabkowski and Gal, 2017; Zhang et al., 2016; Shrikumar
et al., 2017, 2016; Smilkov et al., 2017). They have in common that they aim

https://dac-method.github.io
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to highlight the most important features that contributed to the output clas-
sification score for a particular class, generating a heatmap indicating the
influence of input pixels and features on the output classification. Among
those, of particular interest to the work presented here are baseline feature
importance methods, which perform feature importance estimation with ref-
erence to a second input. Those methods gained popularity, as they assert
sensitivity and implementation invariance (Sundararajan et al., 2017; Shriku-
mar et al., 2016). The baseline is usually chosen to be the zero image as it is
assumed to represent a neutral input.

Counterfactual Interpretability Another body of literature that is relevant
to the presented work are counterfactual interpretability methods first pro-
posed by Martens and Provost (2014). Since then, the standard approach for
generating counterfactuals broadly follows the procedure proposed by Wachter
et al. (2017), in which the counterfactual is found as a result of an optimiza-
tion aiming to maximize output differences while minimizing input differ-
ences between the real image xR and the counterfactual xC:

xC = argmin
x

Li(xR, x)− Lo( f (xR), f (x)) (3.1)

with Li and Lo some loss that measures the distance between inputs and
outputs, respectively, and f the classifier in question. However, optimizing
this objective can be problematic because it contains competing losses and
does not guarantee that the generated counterfactual xC is part of the data
distribution p(x). Current approaches try to remedy this by incorporating
additional regularizers in the objective (Liu et al., 2019; Verma et al., 2020),
such as adversarial losses that aim to ensure that the counterfactual xC is
not distinguishable from a sample x ∼ p(x) (Barredo-Arrieta and Del Ser,
2020; Liu et al., 2019). However, this does not address the core problem of
competing objectives and will result in a compromise between obtaining in-
distribution samples, maximizing class differences, and minimizing input
differences. Interpreting the presented work in this context, we circumvent
this issue by dropping the input similarity loss in the generation of counter-
factuals and instead enforce similarity post-hoc, similar to the strategy used
by Mothilal et al. (2020).

A closely related work addressing counterfactual interpetability is the method
presented by Narayanaswamy et al. (2020). Similar to ours, this method uses
a cycle-GAN to generate counterfactuals for DNN interpretability. How-
ever, this method differs in that the cycle-GAN is applied multiple times to
a particular input in order to increase the visual differences in the real and
counterfactual images for hypothesis generation. Subsequently, the found
features are confirmed by contrasting the original classifiers performance
with one that is trained on the discovered features. Similar to other previous
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methods, this does not lead to attribution maps or an objective evaluation of
feature importance.

Attribution and Counterfactuals Closest to our approach is the work by Wang
and Vasconcelos (2020), which proposes to combine attribution and coun-
terfactual explanations. This work introduces a novel family of so-called
discriminative explanations that also leverage attribution on a real and coun-
terfactual image in addition to confidence scores from the classifier to derive
attributions for the real and counterfactual image that show highly discrim-
inative features. In contrast to our work, this approach requires calcula-
tion of three different attribution maps, which are subsequently combined
to produce a discriminative explanation. In addition, this method does not
generate new counterfactuals using a generative model, but instead selects a
real image from a different class. On one hand this is advantageous because
it does not depend on the generator’s performance, but on the other hand
this does not allow creating hybrid images for the evaluation of attribution
maps.

Another relevant work is presented by Goyal et al. (2019). Similar to our
work, the authors devise a method to generate counterfactual visual expla-
nations by searching for a feature pair in two real images of different classes
that, if swapped, influences the classification decision. To this end, they pro-
pose an optimization procedure that searches for the best features to swap,
utilizing the networks feature representations. In contrast to our work, the
usage of real (instead of generated) counterfactuals can lead to more arti-
facts during the replacement of features. In addtion, our work supports the
generation of attribution maps and features a procedure for the quantitative
evaluation of the explanations.

Attribution Evaluation Our work differs notably from the current state of
the art as it enables quantitative evaluation of the generated attributions
by copy-pasting features from a paired image set (the real and the coun-
terfactual). Prior work evaluated the importance of highlighted features by
removing them (Samek et al., 2016). However, it has been noted that this
strategy is problematic because it is unclear whether any observed perfor-
mance degradation is due to the removal of relevant features or because the
new sample comes from a different distribution. As a result, strategies to
remedy this issue have been proposed, for example by retraining classifiers
on the modified samples (Hooker et al., 2018). Instead of removing entire
features, in this work we replace them with their corresponding counterfac-
tual features.
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3.3 Method

The method we propose combines counterfactual interpretability with dis-
criminative attribution methods to find and highlight the most important
features between images of two distinct classes i and j, given a pretrained
classifier f . For that, we first generate for a given input image xR of class i
a counterfactual image xC of class j. We then use a discriminative attribution
method to find the attribution map of the classifier for this pair of images.
As we will show qualitatively and quantitatively in Section 3.4, using paired
images results in attribution maps of higher quality. Furthermore, the use
of a counterfactual image gives rise to an objective evaluation procedure for
attribution maps.

In the next sections we describe (1) our choice for generating counterfactual
images, (2) the derivation of discriminative attribution methods from exist-
ing baseline attribution methods, and (3) how to use counterfactual images
to evaluate attribution maps. We denote with f a pretrained classifier with N
output classes, input images x ∈ Rh×w, and output vector f (x) = y ∈ [0, 1]N

with ∑i yi = 1.

3.3.1 Creation of Counterfactuals

We train a cycle-GAN (Zhu et al., 2017) for each pair of image classes
i 6= j ∈ {0, 1, ..., N − 1}, which enables translation of images of class i into
images of class j and vice versa. We perform this translation for each image
of class i and each target class j 6= i to obtain datasets of paired images
Di→j =

{
(xk

R, xk
C)|k = 1, . . . , n(i)

}
, where xk

R denotes the kth real image of
class i and xk

C its counterfactual of class j. We then test for each image in
the dataset whether the translation was successful by classifying the coun-
terfactual image xC and reject a sample pair whenever f (xC)j < θ, with θ a
threshold parameter (in the rest of this work we set θ = 0.8, except otherwise
specified).

This procedure results in a dataset of paired images, where the majority
of the differences between an image pair is expected to be relevant for the
classifiers decision, i.e., we retain formerly present non-discriminatory dis-
tractors such as orientation, lighting, or background. We encourage that the
translation makes as little changes as necessary by choosing a Res-Net (He
et al., 2016) architecture for the cycle-GAN generator, which is able to triv-
ially learn the identity function.

3.3.2 Discriminative Attribution from Counterfactuals

The datasets Di→j are already useful to visualize data-intrinsic class differ-
ences (see Fig. 3.5 for examples). However, we wish to understand which
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input features the classifier f makes use of. Specifically, we are interested in
finding the smallest binary mask m, such that swapping the contents of xC
with xR within this mask changes the classification under f .

To find m, we repurpose existing attribution methods that are amendable to
be used with a reference image. The goal of those methods is to produce
attribution maps a, which we convert into a binary mask via thresholding.
A natural choice for our purposes are so-called baseline attribution methods,
which derive attribution maps by contrasting an input image with a baseline
sample (e.g., a zero image). In the following, we review suitable attribution
methods and derive discriminative versions that use the counterfactual im-
age as their baseline. We will denote the discriminative versions with the
prefix D.

Input * Gradients

One of the first and simplest attribution methods is Input * Gradients (IN-
GRADS) (Shrikumar et al., 2016; Simonyan et al., 2014), which is motivated
by the first order Taylor expansion of the output class with respect to the
input around the zero point:

INGRADS(x) = |∇x f (x)i · x|, (3.2)

where i is the class for which an attribution map is to be generated. We
derive an explicit baseline version for the discriminatory attribution of the
real xR and its counterfactual xC by choosing xC as the Taylor expansion
point:

D-INGRADS(xR, xC) = |∇x f (x)j

∣∣∣
x=xC

· (xC − xR)|, (3.3)

where j is the classes of the counterfactual image.

Integrated Gradients

Integrated Gradients (IG) is an explicit baseline attribution method, where
gradients are accumulated along the straight path from a baseline input x0
to the input image x to generate the attribution map (Sundararajan et al.,
2017). Integrated gradients along the kth dimension are given by:

IGk(x) = (x − x0)k ·
∫ 1

α=0

∂ f (x0 + α(x − x0))i

∂xk
dα. (3.4)

We derive a discriminatory version of IG by replacing the baseline as follows:

D-IGk(xR, xC) = (xC − xR)k ·
∫ 1

α=0

∂ f (xR + α(xC − xR))j

∂xk
dα. (3.5)
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Deep Lift

Deep Lift (DL) is also an explicit baseline attribution method which aims to
compare individual neurons activations of an input w.r.t. a reference base-
line input (Shrikumar et al., 2016). It can be expressed in terms of the gradi-
ent in a similar functional form to IG:

DL(x) = (x − x0) · FDL, (3.6)

where FDL is some function of the gradient of the output (see Ancona et al.
(2018) for the full expression). The discriminative attribution we consider is
simply:

D-DL(xR, xC) = (xC − xR) · FDL. (3.7)

GradCAM

GradCAM (GC) is an attribution method that considers the gradient weighted
activations of a particular layer, usually the last convolutional layer, and
propagates this value back to the input image (Selvaraju et al., 2017). We
denote the activation of a pixel (u, v) in layer l with size (h, w) and channel
k by Cl

k,u,v and write the gradient w.r.t. the output y as:

∇Cl
k
y = (

dy
dCl

k,0,0

,
dy

dCl
k,1,0

,
dy

dCl
k,2,0

, ...,
dy

dCl
k,h,w

) (3.8)

The original GC is then defined as:

GC(x) = ReLU

(
∑

k
∇Ck y · Ck

)
= ReLU

(
∑

k
∑
u,v

dy
dCk,u,v

Ck,u,v

)
(3.9)

= ReLU

(
∑

k
αkCk

)
, (3.10)

where we ommitted the layer index l for brevity. Each term dy
dCk,u,v

Ck,u,v is
the contribution of pixel u, v in channel k to the output classification score y
under a linear model. GC utilizes this fact and projects the layer attribution
from layer l back to the input image, generating the final attribution map.

In contrast to the setting considered by GC, we have access to a matching
pair of real and counterfactual images xR and xC. We extend GC to consider
both feature maps CxR

k and CxC
k by treating GC as an implicit zero baseline

method similar to INGRADS:

D-GCk(xR, xC) =
dyj

dCk

∣∣∣
C=C

xC
k

(Ck(xC)− Ck(xR)) . (3.11)
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Averaging those gradients over feature maps k, and projecting the activa-
tions back to image space then highlights pixels that are most discriminative
for a particular pair:

D-GCP(xR, xC) =

∣∣∣∣∣P ∑
k

D-GCk(xR, xC)

∣∣∣∣∣ , (3.12)

where P is the projection matrix from feature space C to input space X. Note
that in contrast to GC, we use the absolute value of the output attribution,
as we do not apply ReLU activations to layer attributions.

Because feature maps can be of lower resolution than the input space, GC
tends to produce coarse attribution maps (Selvaraju et al., 2017). To address
this issue it is often combined with Guided Backpropagation (GBP), a method
that uses the gradients of the output class w.r.t. the input image as the at-
tribution map (Springenberg et al., 2014). During the backwards pass, all
values < 0 at each ReLU non-linearity are then discarded to only retain
positive attributions.

Guided GradCAM (GGC) uses this strategy to sharpen the attribution of GC
via element-wise multiplication of the attribution maps (Selvaraju et al.,
2017). For the baseline versions we thus consider multiplication of D-GC
with the GBP attribution maps:

GBP(x) = ∇x f (x)i , with∇ReLU > 0 (3.13)
GGC(x) = GC(x) · GBP(x) (3.14)

D-GGC(xR, xC) = D-GC(xR, xC) · GBP(xR). (3.15)

3.3.3 Evaluation of Attribution Maps
The discriminative attribution map a obtained for pair of images (xR, xC)
can be used to quantify the causal effect of the attribution. Specifically, we
can copy the area highlighted by a from the real image xR of class i to the
counterfactual image xC of class j, resulting in a hybrid image xH. If the
attribution accurately captures class-relevant features, we would expect that
the classifier f assigns a high probability to xH being of class i.

The ability to create those hybrid images is akin to an intervention, and has
two important practical implications: First, it allows us to find a minimal
binary mask that captures the most class-relevant areas for a given input
image. Second, we can compare the change in classification score for hybrids
derived from different attribution maps. This allows us to compare different
methods in an objective manner, following the intuition that an attribution
map is better, if it changes the classification with less pixels changed.

To find a minimal binary mask mmin, we search for a threshold of the at-
tribution map a, such that the mask score ∆ f (xH) = f (xH)i − f (xC)i (i.e.,
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Figure 3.2: Evaluation procedure for discriminative attribution methods: Given the
real image xR of class i and its counterfactual xC of class j, we generate a sequence
of binary masks m by applying different thresholds to the attribution map a. Those
masks are then used to generate a sequence of hybrid images xH. The plot shows
the change in classifier prediction ∆ f (xH)i = f (xH)i − f (xC)i over the size of the
mask m (normalized between 0 and 1). The DAC score is the area under the curve,
i.e., a value between 0 and 1. Higher DAC scores are better and indicate that
a discriminative attribution method found small regions that lead to the starkest
change in classification.

the change in classification score) is maximized while the size of the mask
is minimized, i.e., mmin = arg minm |m| − ∆ f (xH) (where we omitted the
dependency of xH on m for brevity). In order to minimize artifacts in the
copying process we also apply a morphological closing operation with a
window size of 10 pixels followed by a Gaussian Blur with σ = 11px. The
final masks highlight the relevant class discriminators by showing the user
the counterfactual features, the original features they are replaced with, and
the corresponding mask score ∆ f (xH), indicating the quantitative effect of
the replacement on the classifier. See Fig. 3.5 for example pairs and corre-
sponding areas mmin.

Furthermore, by applying a sequence of thresholds for the attribution map
a, we derive an objective evaluation procedure for a given attribution map:
For each hybrid image xH in the sequence of thresholds, we consider the
change in classifier prediction relative to the size of the mask that has been
used to create the hybrid. We accumulate the change in classifier prediction
over all mask sizes to derive our proposed DAC score. This procedure is
explained in detail in Fig. 3.2 for a single pair of images. When reporting
the DAC score for a particular attribution method, we average the single
DAC scores over all images, and all distinct pairs of classes.

3.4 Experiments

We evaluate the presented method on four datasets: Mnist (LeCun and
Cortes, 2010), Synapses (Eckstein et al., 2020a)2 and two versions of a syn-

2Dataset kindly provided by the authors of Eckstein et al. (2020a).
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Figure 3.3: Example images of datasets Synapses and Disc. Synapses consists of
electron microscopy images of synapses. Each class is defined by the neurotrans-
mitter the synapse releases. Disc is a synthetic dataset we designed in order to
highlight failure cases of popular attribution methods. We consider two subsets:
Disc-A shows triangles in each image and classes are defined by the parity of the
number of triangles. Disc-B consists of images showing triangles, squares, and
disks. Each class is one combination of two shapes.

thetic dataset that we call Disc-A and Disc-B (see Fig. 3.3 for an overview).

Synapses A real world biological dataset, consisting of 128 × 128px elec-
tron microscopy images of synaptic sites in the brain of Drosophila melanogaster.
Each image is labelled with a functional property of the synapse, namely
the neurotransmitter it releases (the label was acquired using immunohisto-
chemistry labelling, see Eckstein et al. (2020a) for details). This dataset is of
particular interest for interpretability, since a DNN can recover the neuro-
transmitter label from the images with high accuracy, but human experts are
not able to do so. Interpretability methods like the one presented here can
thus be used to gain insights into the relation between structure (from the
electron microscopy image) and function (the neurotransmitter released).

Disc-A and Disc-B Two synthetic datasets with different discriminatory
features of different difficulty. Each image is 128× 128px in size and contains
spheres, triangles or squares. For Disc-A, the goal is to correctly classify
images containing an even or odd number of triangles. Disc-B contains
images that show exactly two of the three available shapes and the goal is
to predict which shape is missing (e.g., an image with only triangles and
squares is to be classified as “does not contain spheres”). This dataset was
deliberately designed to investigate attribution methods in a setting where
the discrimination depends on the absence of a feature.
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Figure 3.4: Quantitative evaluation of discriminative (D - solid) and corresponding
original (S for “single input” - dashed) attribution methods over four datasets. Cor-
responding D and S versions of the same method are shown in the same color. For
each, we plot the average change of classifier prediction ∆ f (xH)

k
i = f (xH)i − f (xC)i

as a function of mask size m ∈ [0, 1]. In addition we show performance of the two
considered baselines: masks derived from random attribution maps (random - red,
dotted) and mask derived from the residual of the real and counterfactual image
(residual - black, dotted). On all considered datasets all versions of D attribution
outperform their S counterparts. All experiments are performed with VGG archi-
tectures. For ResNet results of Mnist and Disc see supplement.

Training For Mnist and Disc, we train a VGG and ResNet for 100 epochs
and select the epoch with highest accuracy on a held out validation dataset.
For Synapses we adapt the 3D-VGG architecture from Eckstein et al. (2020a)
to 2D and train for 500,000 iterations. We select the iteration with the highest
validation accuracy for testing. For each dataset we train one cycle-GAN for
200 epochs, on each class pair and on the same training set the respective
classifier was trained on (the full network specifications are given in the
supplement).

Results Quantitative results (in terms of the DAC score, see Section 3.3.3)
for each investigated attribution method are shown in Fig. 3.4 and Table 3.1.
In summary, we find that attribution maps generated from the proposed dis-
criminative attribution methods consistently outperform their original ver-
sions in terms of the DAC score. This observation also holds visually: the
generated masks from discriminative attribution methods are smaller and
more often highlight the main discriminatory parts of a considered image
pair (see Fig. 3.5). In particular, the proposed method substantially outper-
forms the considered random baseline, whereas standard attribution meth-
ods sometimes fail to do so (e.g., GC on dataset Synapses). Furthermore, on
Mnist and Disc-A, the mask derived from the residual of real and counter-
factual image is already competitive with the best considered methods and
outperforms standard attribution substantially. However, for more complex
datasets such as Synapses the residual becomes less accurate in highlighting
discriminative features. Here, the discriminatory attributions outperform all
other considered methods.
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Dataset D-IG D-DL D-INGR. D-GC D-GGC RES. IG DL INGR. GC GGC RND.

Mnist 0.83 0.84 0.82 0.73 0.78 0.84 0.77 0.79 0.77 0.52 0.56 0.46
Synapses 0.75 0.79 0.65 0.62 0.65 0.63 0.56 0.43 0.61 0.28 0.52 0.41
Disc-A 0.9 0.9 0.88 0.95 0.79 0.9 0.69 0.7 0.72 0.43 0.48 0.54
Disc-B 0.91 0.91 0.91 0.95 0.88 0.91 0.48 0.51 0.6 0.8 0.79 0.48

Table 3.1: Summary of DAC scores for each investigated method on the three
datasets Mnist, Synapses, and Disc (two versions) corresponding to 3.4. Best
results are highlighted. For extended results with ResNet architectures see sup-
plement.

xR xC a m · xR m · xC xH

D-DL

DL

D-GC

GC

D-GC

GC

Figure 3.5: Samples from the best performing method pair on Synapses and Disc-A
and B. Discriminative attribution methods are able to highlight the key discrimina-
tive features while vanilla versions often fail to do so (e.g., a subtle intensity change
in the synaptic cleft in the top rows). Further qualitative results (including the other
considered datasets) can be found in the supplement.
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3.5 Discussion
This work demonstrates that the combination of counterfactual interpretabil-
ity with suitable attribution methods is more accurate in extracting key dis-
criminative features between class pairs than standard methods. While the
method succeeds in the presented experiments, it comes with a number
of limitations. It requires the training of cycle-GANs, one for each pair of
output classes. Thus training time and compute cost scale quadratically in
the number of output classes and it is therefore not feasible for classifica-
tion problems with a large number of classes. Furthermore, the translation
from the real to the counterfactual image could fail for a large fraction of
input images, i.e., f (xC) 6= j. In this work, we only consider those image
pairs where translation was successful, as we focus on extracting knowledge
about class differences from the classifier. For applications that require an
attribution for each input image this approach is not suitable. An additional
concern is that focusing only on images that have a successful translation
may bias the dataset we consider and with it the results. GANs are known
to exhibit so called mode collapse (Che et al., 2016; Salimans et al., 2016),
meaning they focus on only a small set of modes of the full distribution. As
a consequence, the method described here may miss discriminatory features
present in other modes. Using a cycle-GAN is not possible in all image do-
mains. Image classes need to be sufficiently similar in appearance for the
cycle-GAN to work, and translating, e.g., an image of a mouse into an image
of a tree is unlikely to work and produce meaningful attributions. However,
we believe that the generation of masks in combination with the correspond-
ing mask score is superior for interpreting DNN decision boundaries than
classical attribution maps and suggest the usage of cycle-GAN baselines for
attribution in cases where a fine grained understanding of class differences
is sought.

Although we present this work in the context of understanding DNNs and
the features they make use of, an uncritical adaptation of this and other
similar interpretability methods can potentially lead to ethical concerns. As
an example, results should be critically evaluated when using this method
to interpret classifiers that have been trained to predict human behaviour, or
demographic and socioeconomic features. As with any data-heavy method,
it is important to realize that results will be reflective of data- and model-
intrinsic biases. As such, an interpretability method like the one we present
here can at most identify a correlation between input features and labels, but
not true causal links. The method presented here should therefore not be
used to “proof” that a particular feature leads to a particular outcome. Such
claims should be met with criticism to prevent agenda-driven narratives of
malicious actors.



Chapter 4

Neurotransmitter Classification from
Electron Microscopy Images at
Synaptic Sites in Drosophila1

4.1 Introduction
In recent years, advances in imaging technology enabled high resolution
electron microscopy (EM) imaging of whole brain data sets (Zheng et al.,
2018; Ryan et al., 2016; Cook et al., 2019; Ohyama et al., 2015), opening up
the possibility of generating cellular level wiring diagrams (connectomes)
of nervous systems. Generating a connectome entails identifying all neu-
rons and the synapses that connect them. Due to the size of these data sets
manual tracing of all neurons and synapses is not feasible even for com-
paritively small organisms such as Drosophila melanogaster. However, recent
advances in automated methods for segmenting neurons (Funke et al., 2018;
Januszewski et al., 2018; Lee et al., 2019) and detecting synapses (Kreshuk
et al., 2015; Staffler et al., 2017; Buhmann et al., 2019) greatly reduce the time
of human involvement in these tasks and have just recently been applied to
generate the connectome for a large part of the Drosophila melanogaster brain
(Xu et al., 2020).

However, EM data does not directly give us information about gene ex-
pression and as a result quantities such as neurotransmitter identity, while
crucial to determine the function of any given synapse, are unknown for a

1This chapter is an extended version of the preprint Eckstein et al. (2020a). It also con-
tains parts of our contribution to the preprint Baker et al. (2021) and the paper Li et al. (2020).
Alexander S. Bates helped with the conception of this project, data collection, data analysis
and visualization. He also identified the hemilineages used in this work together with Volker
Hartenstein. Gregory S.X.E. Jefferis analyzed the whole brain neurotransmitter predictions,
provided visualizations and wrote software for accessing the predictions. Michelle Du ran
the initial experiments for this study.

39
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majority of the cells in the connectome of Drosophila melanogaster. The action
a neuron has on its downstream targets is determined by the neurotransmit-
ters it releases into the extracellular space. Before release, neurotransmit-
ters are packaged into different types of vesicles at synaptic sites. The so-
called classical, fast-acting transmitters GABA, acetylcholine and glutamate
are contained in small, clear vesicles, while monoamines such as dopamine,
norepinephrine, octopamine and serotonin are packaged into pleomorphic
clear-core or small dense-core vesicles (Goyal and Chaudhury, 2013). The
large number of various neuropeptides such as cholecystokinin, galanin,
neurokinin and oxytocin are contained in large dense-core vesicles. In ver-
tebrates it is generally possible for humans to distinguish between different
clear-core and dense-core vesicles (Goyal and Chaudhury, 2013) (indicating
neurotransmitter identity) and there are automated methods for classifying
symmetric and asymmetric synapses (Dorkenwald et al., 2017). In contrast,
for invertebrates such as Drosophila melanogaster it is so far unknown whether
synaptic phenotype, as seen in EM, is sufficient to consistently determine
neurotransmitter identity, especially different varieties of clear-core vesicles.

As a result, adding neurotransmitter identities to connectomic data requires
light microscopy (LM) pipelines, in which gene transcripts or proteins in-
volved in the pathway of interest have been made visible using fluores-
cent probes. Common methods for neurotransmitter detection include se-
quencing transcriptomics (RNAseq) (Henry et al., 2012; Konstantinides et al.,
2015; Davie et al., 2018; Davis et al., 2020), immunolabeling (Hyatt and
Wise, 2001) and fluorescent in situ hybridization (FISH) (Long et al., 2017;
Meissner et al., 2019). Subsequent morphological matching of these neu-
rons to reconstructed neurons in the EM data can then be performed using
NBLAST (Costa et al., 2016), providing neurotransmitter identity to connec-
tome data (Bates et al., 2019b,a).

However, this approach is very difficult to scale to an entire connectome
of Drosophila melanogaster comprising ∼150,000 cells. Although imaging ex-
pression patterns for multiple neurotransmitters on a brain scale can be done
in a matter of minutes to days depending on the required resolution2 (Meiss-
ner et al., 2019), bridging the gap between LM and EM remains challenging:
In addition to imaging expression patterns of neurotransmitter related pro-
teins, it requires a well-characterized, sparse genetic driver line in order to
perform accurate morphological matching to EM tracings using tools such
as NBLAST (Costa et al., 2016). As a result, transmitter identity is known
for only a few hundred types of neurons (Bates et al., 2019a).

2Throughput estimated at around one neuron per minute at sufficient spatial resolution
for colocalization with single cell labeling - personal communication with authors.
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Here, we show that it is possible to determine the primary neurotransmitter
of a given neuron in the Drosophila melanogaster brain from the phenotype of
its synaptic sites in EM alone. For that, we train a deep learning classifier to
predict the neurotransmitter of a 640 × 640 × 640nm3 3D EM volume with
a synaptic site at the center. We find that this method is able to classify the
neurotransmitter of any given synapse with 87% accuracy on average. Fur-
thermore, we show on a large test set that the classifier generalizes across
neurons with different developmental histories (i.e., that derive from differ-
ent ’hemilineages’), brain regions and datasets, indicating that the influence
of the neurotransmitter on the phenotype of a synaptic site is largely con-
served and that the classifier learned robust features. We use our method
to predict the neurotransmitter identity of over 1000 neurons in 89 hemi-
lineages with so far unknown neurotransmitter identities in the Drosophila
melanogaster brain. In contrast to recent findings in the ventral nervous sys-
tem (VNS) (Lacin et al., 2019), our results suggest that the neurotransmitter
identity of neurons within hemilineages in the brain is not limited to one
fast-acting transmitter. Furthermore, we predict the neurotransmitter of all
automatically detected synapses (Buhmann et al., 2018) in the Drosophila
melanogaster brain and make the data publicly available. Given that the rela-
tion of synaptic phenotype and neurotransmitter identity is not fully under-
stood in Drosophila melanogaster, we use neural network interpretability tools
to extract a set of hypothetical discriminatory features between synaptic sites
of different neurotransmitter identity, elucidating another piece of the rela-
tionship between structure and function in the Drosophila melanogaster brain.

In summary, our method circumvents a major bottleneck in neurotransmit-
ter identification, matching LM expression patterns to EM tracings, and is
able to assign neurotransmitter identity to individually traced neurons in
a matter of seconds. Combined with automated synapse detection meth-
ods (Buhmann et al., 2018; Kreshuk et al., 2015; Staffler et al., 2017; Buh-
mann et al., 2019), we generate a comprehensive neurotransmitter atlas for
the connectome of Drosophila melanogaster and extract human interpretable
features from the classifier, highlighting so far unknown phenotypical dif-
ferences between neurotransmitter classes in Drosophila melanogaster.

3See Footnote 6
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Figure 4.1: Method Overview. We assemble a dataset of neurons with known neu-
rotransmitter in the Drosophila whole brain EM dataset (FAFB) (Zheng et al., 2018)
from the literature and retrieve corresponding synaptic locations from the sub-
set of skeletons that have been annotated in the CATMAID (Saalfeld et al., 2009;
Schneider-Mizell et al., 2016) FAFB collaboration database3. (a) Typically, neurons
are genetically tagged to identify their neurotransmitter identity and to reconstruct
their coarse morphology using light microscopy. (b) Light microscopy tracings of
neurons are then matched to corresponding neuron traces in the FAFB dataset, and
synaptic locations are annotated, resulting in a data set of EM volumes of synap-
tic sites with known neurotransmitter identity. (c) We use the resulting pair (x, y),
with x a 3D EM volume of a synaptic site and y ∈ {GABA, ACh, GLUT, SER, OCT,
DOP}, the neurotransmitter of that synaptic site, to train a 3D VGG-style (Simonyan
and Zisserman, 2014) deep neural network to assign a given synaptic site x to one
of the six considered neurotransmitters. We use the trained network to predict the
neurotransmitter identity of synapses from neurons with hitherto unknown neuro-
transmitter identity in the Drosophila FAFB dataset. C, D, and F denote convolution,
downsampling, and fully connected layers respectively.
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4.2 Methods

We learn a mapping f : x → y, where x is a local 3D EM volume with a
synaptic site at the center and y the neurotransmitter of the corresponding
neuron (see Fig. 4.1). To this end, we need to generate a training dataset
of pairs (x,y). This involves light microscopy of genetically tagged neurons
to determine their neurotransmitter expression, neuron tracing and synapse
annotation in the corresponding EM dataset and matching of the LM neuron
morphology to a traced neuron in EM.

4.2.1 Data Acquisition

We acquire the majority of neurotransmitter to neuron assignments used for
training and evaluation from published reconstructions in the full adult fly
brain (FAFB) dataset (Bates et al., 2020; Dolan et al., 2018; Felsenberg et al.,
2018; Frechter et al., 2019; Huoviala et al., 2018; Dolan et al., 2019; Marin
et al., 2020; Sayin et al., 2019; Turner-Evans et al., 2019; Zheng et al., 2018),
as well as unpublished but identified neuron reconstructions offered by the
FAFB community (see acknowledgements). In these studies, the authors
had already linked some of their reconstructed cell types to immunohis-
tochemical data (Aso et al., 2014; Bräcker et al., 2013; Busch et al., 2009;
Davis et al., 2018; Dolan et al., 2019; Ito et al., 2013; Lai et al., 2008; Okada
et al., 2009; Shinomiya et al., 2015; Tanaka et al., 2012; Wilson and Laurent,
2005). Stainings were typically performed on neurons visualized by GFP
expression in a GAL4/split-GAL4 line. Dissected brains are incubated with
primary antibodies (e.g., anti-VGlut, anti-GABA, anti-ChAT), followed by
secondary antibodies which have a fluorescent tag to visualise the primary
antibody. The transcripts/proteins related to certain transmitter expressions
are thus labelled across the brain and if they colocalize with the GFP signal
for the GAL4/split-GAL4 line of interest, those neurons are considered to
express that transmitter4. For RNA transcripts, usually the neuron’s soma is
examined. Other methods involve RNA sequencing and include TAPIN-seq
(Davis et al., 2018). Note that individual studies often only test single trans-
mitters and do not show negative staining. As a result, there is limited data
for cotransmission of multiple neurotransmitters in a single neuron and we
therefore assume no cotransmission of neurotransmitters within one neuron.

We use manually reconstructed neuron annotations from the FAFB commu-
nity CATMAID5 (Saalfeld et al., 2009; Schneider-Mizell et al., 2016) database6.
Synapses were annotated at presynaptic sites, defined by T-bars, vesicles

4A commonly used, full step-by-step protocol can be found at https://www.janelia.
org/project-team/flylight/protocols.

5http://www.catmaid.org
6https://neuropil.janelia.org/tracing/fafb

https://www.janelia.org/project-team/flylight/protocols
https://www.janelia.org/project-team/flylight/protocols
http://www.catmaid.org
https://neuropil.janelia.org/tracing/fafb
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Neuron split Hemilineage split Brain Region split
Train 140,565 140,868 138,982
Test 40,104 40,703 39,715

Validation 20,084 19,182 19,858
Avg. Synapse Accuracy 87% 75% 88%
Avg. Neuron Accuracy 94% 92% 95%

Table 4.1: Overview of the three data splits used for evaluation of the classifier.
Shown are the number of synapses for training, testing and validation as well as
average synapse and neuron classification accuracy on the test set for each data
split.

and a thick dark active zone by a synaptic cleft (Prokop and Meinertzhagen,
2006). In total, the assembled dataset contains 153,593 cholinergic synapses
(679 neurons), 33881 GABAergic synapses (181 neurons), 7953 glutamater-
gic synapses (49 neurons), 9526 dopaminergic synapses (89 neurons), 2924
octopaminergic synapses (7 neurons) and 4732 serotonergic synapses (5 neu-
rons).

4.2.2 Train and Test Datasets

For each neurotransmitter y ∈ {GABA, ACh, GLUT, SER, OCT, DOP}, we
divide the data in test, train and validation set by randomly assigning entire
neurons, each containing multiple synapses. We refer to this split as Neuron
split in the following. We use 70% of neurons for training, 10% for validation
and the remaining 20% for testing. Splitting the dataset by entire neurons,
instead of randomly sampling synapses, mirrors the real world use case in
which we typically know the neurotransmitter of an entire neuron and are
interested in the neurotransmitter of an entirely different neuron.

In order to test how well the proposed method generalizes across morpho-
logically distinct cells and regions, and to exclude potentially confounding
variables, we also generate two additional splits that separate the data by
hemilineage (Hemilineage split - neurons in a hemilineage are lineally related,
see section 4.4 for further details) and brain region (Brain Region split) respec-
tively. To this end, we find the optimal split between entire hemilineages and
brain regions, such that the fraction of synapses for every neurotransmitter
in the train set is close to 80% of all synapses of that neurotransmitter. We
further use randomly selected 12.5% of the training synapses (10% of the
entire dataset) for validation.
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4.2.3 Network Architecture and Training

We use a 3D VGG-style (Simonyan and Zisserman, 2014) network to pre-
dict the neurotransmitter identity from a 3D EM input cube of edge length
640 nm with a synaptic site at its center. The network consists of four func-
tional blocks, each consisting of two 3D convolution operations, batch nor-
malization, ReLU non-linearities and subsequent max pooling with a down-
sample factor of (z=1, y=2, x=2) for the first three blocks and (z=2, y=2,
x=2) for the last block and is followed by three fully connected layers with
dropout (p=0.5) applied after the first two. We train the network to mini-
mize cross entropy loss over the six classes (GABA, ACh, GLUT, SER, OCT
and DOP), using the Adam optimizer (Kingma and Ba, 2014). We train for
a total of 500,000 iterations in batches of size eight and select the iteration
with highest validation accuracy for testing. A full specification of the net-
work architecture and training pipeline, including data augmentations, can
be found in the appendix. For an illustration of the network architecture
used see Fig. 4.1c.

4.3 Classifier accuracy
We tested the classifier on our held out test sets. For the Neuron split, the
test set consists of a total of 40,104 synapses from 185 neurons that the net-
work was not trained on. We achieve an average, per transmitter accuracy of
87% for the neurotransmitter prediction of individual synapses. Since we as-
sume that each neuron expresses the same neurotransmitters at its synaptic
sites we can additionally quantify the per neuron accuracy of the presented
method. To this end we assign each neuron with more than 30 synapses in
the test set a neurotransmitter by majority vote of its synapses, leading to
an average accuracy of 94% for the neurotransmitter prediction per neuron.
For the Hemilineage split, we find an accuracy of 75% for individual synapses
and 92% for entire neurons. The Brain Region split evaluates to 88% synapse
classification accuracy and 95% neuron classification accuracy. A per class
overview can be seen in Fig. 4.3, for a summary of the results and data splits
see Table 4.1.

4.3.1 Hemibrain

In addition to the FAFB dataset we also train a classifier to predict synap-
tic neurotransmitter identity in the so called Hemibrain (Xu et al., 2020), an
isotropic 8 x 8 x 8 nm resolution FIB-SEM dataset containing roughly 50%
of the full Drosophila brain. We adapt the architecture to match the field
of view of 640nm3 in the FAFB dataset and train on a set of 219,971 man-
ually annotated synapses. We test on a held out dataset containing 63,438
synapses in 207 neurons. We achieve an average synaptic accuracy of 79%
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a b

Figure 4.2: Illustration of (a) the progression of a Type I neuroblast from third-
instar (L3) larva into the adult, GMC, ganglion mother cell and (b) breakdown of a
single secondary lineage, LHl2 (also known as DPLal2) into its two hemilineages.
Neuronal reconstruction data from the FAFB project shown, which covers half the
neurons in this lineage.

and average neuron accuracy of 90% for the skeleton split, showing that
predicting neurotransmitter identity from EM is possible on diverse EM
datasets (Fig.4.4 a). The reduction in average accuracy compared to our
results on FAFB could be explained by the lower lateral resolution of 8 nm
(see Fig.4.4 b for images of synaptic sites from both datasets).
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Figure 4.3: Illustration of the spatial distribution of synapses in the considered data
splits (left column) and corresponding confusion matrices for synapses (middle col-
umn) and entire neurons (right column). Datasets: For each split we visualize the
synaptic locations used for training (top) and for testing (bottom). Synapse loca-
tions are color coded according to their z-depth (perpendicular to viewing plane).
Confusion Matrices: Rows show labels and columns the predicted neurotransmit-
ter. The total number of test set ground truth synapses and neurons respectively
are shown next to each row. In order to be able to have a meaningful majority vote
we only consider neurons with more than 30 synapses for the neuron confusion
matrices.
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Figure 4.4: a) Synaptic (left) and neuronal (right) confusion matrix on the Hemibrain
skeleton split test set. b) Appearance of synaptic sites in the Hemibrain (left) and
FAFB (right) datasets, highlighting differences in resolution. Both synapses are from
GABAergic neurons.

4.4 Transmitter prediction for hemilineages

Similar to neurons, which release the same set of neurotransmitters at their
synaptic sites (Eccles, 1976; Dale, 1934), it has been found that sets of lin-
eally related neurons in the Drosophila melanogaster ventral nervous system
(VNS), so-called hemilineages, also show homogeneous neurotransmitter
expression patterns (Lacin et al., 2019). If a similar principle holds for the
Drosophila melanogaster brain, it would enable us to assign neurotransmit-
ter identity to large groups of neurons simultaneously. With the presented
method we are able to verify to what extent such a principle holds.

The roughly 45,000 neurons of the central brain of Drosophila melanogaster (Croset
et al., 2018) are generated by a set of stem cells known as neuroblasts. Dur-
ing division neuroblasts generate two cells, one additional stem cell and
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one cell that further divides into two sibling neurons. In only one of these
siblings the so called Notch pathway is activated, leading to two differ-
ent “hemilineages” of neurons within the lineage (Kumar et al., 2009; Sen,
2019; Lacin et al., 2019). Lacin et al. (2019) showed that each hemilineage
in the VNS expresses just one of the fast-acting transmitters acetylcholine,
glutamate and GABA, even though mRNA transcripts for combinations of
these can appear in the nucleus (Lacin et al., 2019). This raises the question
whether the same holds true in the adult brain. Using the presented classi-
fier, we predict the neurotransmitter identity of all identified neurons within
89 out of a total of ˜150 identified hemilineages in the Drosophila melanogaster
brain. The majority of our predictions show homogeneity of neurotransmit-
ter identity within a single hemilineage, in line with findings in the VNS.
However, we identify a set of hemilineages which express two fast acting
neurotransmitters with high statistical significance. We find no hemilineage
that expresses all three. As a result, our predictions are inconsistent with the
hypothesis that all hemilineages express the same fast-acting neurotransmit-
ter.

4.4.1 Hemilineage assignments in Drosophila

Cell body fiber tracts for identified hemilineages had previously been identi-
fied using TrakEM2 (Cardona et al., 2012) in a light-level atlas for a Drosophila
melanogaster brain, stained with an antibody against neurotactin (BP104) (Lovick
et al., 2013). We extracted these expertly identified tracts and registered
them into a common template brain, JFRC2, using CMTK (Rohlfing and
Maurer, 2003), and then into FAFB space (Bates et al., 2019b). This enabled
us to identify cell body fibre tracts in this ssTEM dataset in the vicinity of
the transformed hemilineage tracts.

4.4.2 Predictions

We retrain the classifier on 90% of the entire dataset and use the remaining
10% to select the best performing iteration. We predict the neurotransmitter
identity of 180,675 synapses within 1,164 neurons with previously unknown
neurotransmitter identity. These neurons come from a total of 89 hemilin-
eages, of which 20 have more than one neuron with genetically identified
neurotransmitter. Fig. 4.5 shows ground truth neurotransmitter annotations
for the subset of neurons Nh

gt that have known neurotransmitters and our
predictions for the remaining neurons Nh

pred (Nh
gt ∩ Nh

pred = ∅) in the hemi-
lineage for five selected hemilineages. In the following, we analyse the re-
sults by quantifying how neurotransmitter predictions are distributed over
neurons and synapses within hemilineages.
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WEDa2
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102.2
102.21
102.22

WEDPNs

WEDPNs

101
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Figure 4.5: Neurotransmitter barcode plots and corresponding renderings of skele-
tons and synapses (color coded according to their neurotransmitter identity) of five
selected hemilineages, for which a subset of neurons Nh

gt have genetically deter-
mined, known neurotransmitters (left) and our predictions on the remaining neu-
rons Nh

pred in the same hemilineage (right). Each column in the neurotransmitter
barcode represents one neuron. For each neuron (column), the relative number of
synapses with neurotransmitter y, ŷ ∈ Y ={GABA, ACh, GLUT, SER, OCT, DOP}
is represented by the color intensity of the respective row. The total number of
synapses in each neuron is shown above each row. Note that Nh

gt ∩ Nh
pred = ∅.

Neuron classes, shown above the inset, are given for the most numerous cells in
our training data, for each hemilineage that we show (Dolan et al., 2019; Otto et al.,
2020; Aso et al., 2014). For an overview of all hemilineages that have partially
known neurotransmitter identities and our associated predictions, see Fig. A.14.
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Neuron Level Entropy

In order to quantify multimodality of neurotransmitter predictions on a
neuron level within a hemilineage we calculate the entropy H of the neu-
rotransmitter distribution over neurons in the following way: Let n ∈ Nh be
a neuron in hemilineage h and ŷn ∈ Y = {GABA, ACh, GLUT, SER, OCT,
DOP} the predicted neurotransmitter of neuron n. Then

H(Nh) = − ∑
y∈Y

ph(y) log6 ph(y) , with (4.1)

ph(y) =
1

|Nh| ∑
n∈Nh

δ(ŷn = y) (4.2)

A value of H(Nh) = 0 (minimal entropy) then means that all neurons within
hemilineage h have the same predicted neurotransmitter, while a value of
H(Nh) = 1 (maximal entropy) means that within hemilineage h all predicted
neurotransmitters are equally common.

Synapse Level Entropy

Similarly we can quantify the average multimodality over synapses within
neurons of a given hemilineage: Let s ∈ Sn be the synapses in neuron n ∈ Nh
of hemilineage h and ŷs the predicted neurotransmitter. The entropy of
predicted synaptic neurotransmitters H(sn) in neuron n is then given by:

H(Sn) = − ∑
y∈Y

pn(y) log6 pn(y) , with (4.3)

pn(y) =
1

|Sn| ∑
s∈Sn

δ(ŷs = y) (4.4)

With this, the average synaptic entropy over all neurons within hemilineage
h is given by:

H(Sh) =
1

|Nh| ∑
n∈Nh

H(Sn) (4.5)

A value of H(Sh) = 0 (minimal entropy) then means that all synapses of all
neurons in hemilineage h have the same predicted neurotransmitter, while
a value of H(Sh) = 1 (maximal entropy) means that in all neurons within
hemilineage h all synaptic neurotransmitter predictions are equally com-
mon. Fig. 4.6 shows the distribution of H(Nh) and H(Sh) of all predicted
hemilineages with more than ten neurons that have more than 30 synapses
each.

On the population level we find relatively lower values of H(Sh) (Synapse
level entropy) than H(Nh) (Neuron level entropy). 75% of hemilineages
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Figure 4.6: (a) Neuron level entropy vs average synapse level entropy for all
predicted hemilineages with more than 10 neurons and more than 30 synapses
per neuron. q25(H(Nh)) = 0.07, q25(H(Sh)) = 0.08 and q75(H(Nh)) = 0.34,
q75(H(Sh)) = 0.19 are indicating 25% and 75% percentiles respectively. Highlighted
hemilineages show the extreme points of the entropy distribution: (b) Hemilineage
40 shows low neuron level entropy H(Nh) and low synapse level entropy H(Sh),
caused by a unimodal distribution of neurotransmitters on synapse and neuron
level in this hemilineage. (c) Hemilineage 42 shows high neuron level entropy
H(Nh) but low synapse level entropy H(Sh), caused by neurotransmitter predic-
tions that are unimodal within each neuron but multimodal across neurons. (d)
Hemilineage 16 shows high neuron level entropy H(Nh) and high synapse level
entropy H(Sh), as a result of a bimodal distribution of neurotransmitter predic-
tions within most neurons of this hemilineage. For a mapping of hemilineage ID to
hemilineage name see Table A.8.

show a synapse level entropy below q75(H(Sh)) = 0.19 as compared to
q75(H(Nh)) = 0.34. This is reassuring as it suggests less variation of neuro-
transmitter identity predictions within individual neurons compared to vari-
ations of neurotransmitter identity of neurons within a hemilineage. How-
ever, we also find cases with a high level of synaptic entropy, such as hemi-
lineage 16 and 30. For these hemilineages it is unclear whether neuron level
multimodality is only an artifact of uncertain, multimodal predictions on
synapse level of individual neurons. In contrast to 16 and 30 hemilineages
29, 27 and 42 show high neuron level entropy H(Nh) ≥ q75 but low synapse
level entropy H(Sh) ≤ q25, suggesting clear neuron level segregation of pre-
dicted neurotransmitters within those hemilineages. Hemilineages such as
24 and 40 with H(Sh) < q25 and H(Sn) < q25 appear homogeneous within
each neuron and within the entire hemilineage.
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4.4.3 Number of distinct, fast-acting neurotransmitters in hemi-
lineages of the Drosophila melanogaster adult brain

We can now ask the question how likely it is to observe a given prediction
of neurotransmitters in a hemilineage under some error rate given by the
confusion matrix on the test set, and the assumption that all neurons in the
hemilineage have the same underlying neurotransmitter. We can then com-
pare this likelihood to the alternative hypothesis that a hemilineage consists
of neurons with more than one neurotransmitter. Out of 26 investigated
hemilineages with a sufficient number of predicted neurotransmitters, up
to five show strong evidence for expressing two distinct, fast-acting neuro-
transmitters (Bayes factor K ≥ 102, decisive). We find none that expresses all
three.

Probability to observe neurotransmitter predictions ŷ

Given a neuron has true neurotransmitter y ∈ Y, the probability that we pre-
dict neurotransmitter ŷ ∈ Y (assuming that each prediction is independent
and identically distributed) is given by the categorical distribution

p(ŷ|y) = Cy,ŷ (4.6)

where C is the neuron confusion matrix obtained on the test data set (see
Fig. 4.3).

Let m be the number of different neurotransmitters in hemilineage h. We
model the probability p(ŷ|m) of observing neurotransmitter predictions ŷ =
{ŷ0, ŷ1, ..., ŷn} under the assumption that hemilineage h contains m different
neurotransmitters. Here, ŷj is the predicted neurotransmitter of neuron j in
hemilineage h with n neurons total. Let Pc(Y) be the set of subsets of true
neurotransmitters Y with cardinality c, then:

p(ŷ|m) = ∑
S∈Pm(Y)

p(ŷ|S) · p(S|m), (4.7)

where p(ŷ|S) is the probability to observe predictions ŷ if the hemilineage
has true underlying neurotransmitters y ∈ S and p(S|m) is the probability
for the set of true neurotransmitters S given the hemilineage contains m
different neurotransmitters. Since we assume i.i.d. predictions ŷ, p(ŷ|S)
factorizes as follows:

p(ŷ|S) = ∏
j

p(ŷj|S) (4.8)
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and marginalizing over y ∈ S yields:

p(ŷ|S) = ∏
j

∑
y∈S

p(ŷj|y) · p(y|S) (4.9)

= ∏
j

∑
y∈S

Cy,ŷj · p(y|S) (4.10)

Regarding p(S|m) and p(y|S) we assume a flat prior, i.e.:

p(S|m) =

(
|Y|
m

)−1

(4.11)

p(y|S) = 1
|S| =

1
m

(4.12)

With this, the probability of observing predictions ŷ given m different neu-
rotransmitters becomes:

p(ŷ|m) =

(
|Y|
m

)−1

∑
S∈Pm(Y)

(
∏

j
∑
y∈S

Cy,ŷj ·
1
|S|

)
(4.13)

Bayes Factor

With this formalism in place, we can compare hypotheses about the number
of true neurotransmitters m in a given hemilineage by using the Bayes Fac-
tor K = p(D|M1)

p(D|M2)
, where D is our observed data (predicted neurotransmitters)

and M1, M2 are two models about the underlying true neurotransmitters
that we wish to compare. The Bayes factor for a model M1 with m1 true
neurotransmitters per hemilineage and model M2 with m2 different neuro-
transmitters is given by:

K =
p(ŷ|m1)

p(ŷ|m2)
(4.14)

=
(|Y|m1

)
−1

∑S∈Pm1 (Y)

(
∏j ∑y∈S Cy,ŷj · 1

m1

)
(|Y|m2

)
−1

∑S∈Pm2 (Y)

(
∏j ∑y∈S Cy,ŷj · 1

m2

) (4.15)

So far, we assumed that p(ŷj|y) = Cy,ŷj , i.e., we estimate this distribution
on the test dataset. However, because our test set is finite we cannot expect
that the estimated error rates perfectly transfer to other datasets. In order to
relax our assumptions about this distribution we simulate additional errors,
by incorporating additive smoothing on the counts of neurons Ny,ŷ that have
true neurotransmitter y and were predicted as neurotransmitter ŷ, i.e.:

C̃y,ŷ =
Ny,ŷ + β

∑ŷ Ny,ŷ + 6β
, (4.16)
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where β ∈ N0 is the smoothing parameter. With Cy,ŷ =
Ny,ŷ

∑ŷ Ny,ŷ
we then have

C̃y,ŷ =
Cy,ŷ +

β
∑ŷ Ny,ŷ

1 + 6 β
∑ŷ Ny,ŷ

=
Cy,ŷ + α

1 + 6α
(4.17)

and α ∈ R≥0 the count normalized smoothing parameter. In the limit of α →
∞, C̃y,ŷ approaches the uniform distribution with probability 1/6 for each
neurotransmitter, whereas a value of α = 0 means we recover the observed
confusion matrix C. With this, our distributions are now parametrized by α
and the Bayes factor becomes:

K =

∫
α p(ŷ, α|m1)p(α)dα∫
α p(ŷ, α|m2)p(α)dα

(4.18)

=
p̃(ŷ|m1)

p̃(ŷ|m2)
(4.19)

(4.20)

where p̃(ŷ|m) is as defined in (4.13) but with Cy,ŷj replaced with its expected
value Ep(α)[C̃y,ŷj ].

The prior distribution on α, p(α), allows us to encode our prior knowledge
about α and use it to weight the likelihood of the corresponding model.
Given the data, a value of α = ε with epsilon small (0 < ε � 1), should be
most probable, while the probability of values α > ε should monotonically
decrease as we deviate more from the observed confusion matrix. Values
of α < ε should have probability zero, because they correspond to the un-
smoothed confusion matrix with zero entries, i.e., a probability of zero for
misclassification of certain neurotransmitters. While these probabilities may
be small, they are likely greater than zero and an artifact caused by the finite
test set. Many distributions fulfill these criteria, in particular the family of
exponential distributions with rate parameter λ:

p(α) =

{
λe−λ(α−ε) α ≥ ε

0 α < ε

Thus, λ controls the weight for smoothing parameter α in the integral Ep(α|M)

[C̃(α)y,ŷj ] =
∫

α C̃y,ŷj p(α)dα. For λ → 0, the expected confusion matrix ap-
proaches the unweighted average of all C(α) in the integration range. For
λ → ∞, the expected confusion matrix approaches the ε-smoothed confu-
sion matrix C̃y,ŷ =

Cy,ŷ+ε

1+6ε . The rate parameter λ can also be understood
via its influence on the expected average accuracy c̃exp = 1

6 ∑i Ep(α|M)[C̃]i,i.
For values of λ → 0, the expected accuracy approaches chance level while
for values of λ → ∞, the expected accuracy approaches the ε-smoothed,
observed accuracy on the test set.
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Figure 4.7: Bayes factor K over a range of expected average predictor accuracy
c̃exp. Shown are hemilineages with more than ten neurons that have more than 30
synapses each and more than one predicted, fast-acting neurotransmitter. Stars in-
dicate regions of evidence for model M1 (K > 1) or model M2 (K < 1), respectively:
* - substantial, ** - strong, *** - very strong, **** - decisive (Jeffreys, 1998). Top: M1:
m1 = 2 and M2: m2 = 1. Bottom: M1: m1 = 3 and M2: m2 = 2. For a mapping of
hemilineage ID to hemilineage name see Table A.8.
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Figure 4.8: Renderings of neurotransmitter predictions of all neurons within two
selected hemilineages that show a high Bayes factor K2,1 (see Fig. 4.7) in addition to
low synaptic entropy H(Sh) (see Fig. 4.6) (a), and corresponding NBLAST dendro-
grams (b). Y-axis shows the morphological dissimilarity between clusters, based
on Ward’s method. Each neuron is color coded according to its predicted, majority
vote neurotransmitter. The dendrograms show that neurotranmsitter predictions
correlate strongly with neuron morphology for hemilineage 27 and to a lesser de-
gree for hemilineage 42. For renderings of all hemilineages and corresponding
barcode plots see Fig. A.13 and Fig. A.12.

Evidence for two fast acting transmitters in a single hemilineage

We calculate the Bayes factor K2,1 = p(ŷ|m=2)
p(ŷ|m=1) and K3,2 = p(ŷ|m=3)

p(ŷ|m=2) for the set
of three classical neurotransmitters Ycl = {GABA, ACh, GLUT} for those
hemilineages that have more than ten annotated neurons and 30 annotated
synapses each with neurotransmitter predictions in the set Ycl. For this anal-
ysis, we ignore all other neurons with predicted neurotransmitter identity
ŷ 6∈ Ycl. Fig. 4.7 shows K2,1 and K3,2 for a range of rate parameters λ and
corresponding expected average accuracy c̃exp. For hemilineages 30, 16, 27,
20, and 42 there is decisive evidence (K2,1 ≥ 102) for the presence of two
distinct fast acting neurotransmitters for a large range of expected accura-
cies c̃exp. However, note that hemilineage 30 and 16 show high synaptic
entropy H(Sh) (see Fig. 4.6), indicating that individual neurons within the
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hemilineage already show bimodal neurotransmitter predictions. As such,
strong bimodality at the neuron level is at least partially explained by un-
certain predictions at the individual synaptic level. This is in contrast to
hemilineages 27 and 42, who show synaptic entropies below the 25% per-
centile. In these hemilineages, large Bayes factor values K2,1 directly stem
from neuron level segregation of the predicted neurotransmitters within the
hemilineage. See Fig. 4.8 for a rendering of the neurotransmitter predictions
of these hemilineages and corresponding NBLAST dendrograms, indicat-
ing that the two fast acting neurotransmitters in some of these hemilineages
are divided between morphologically distinct neurons. The remaining 13
hemilineages show no strong evidence for either hypothesis (K2,1 ≈ 1, n=5)
or favor the hypothesis of expressing only one fast acting neurotransmitter
(K2,3 ≤ 10−2, n=8). No hemilineage shows evidence for expressing all three
fast acting neurotransmitters (K2,3 < 10−2).

4.5 Whole Brain Predictions
We use the classifier to predict the neurotransmitter identity of all automat-
ically detected synapses in FAFB (Buhmann et al., 2019). We use the same
network as described in Section 4.4. We validate whether neurotransmit-
ter predictions from automatically detected pre-synaptic sites are robust by
predicting the neurotransmitter of neurons within 6 cell types with known
neurotransmitters and find perfect agreement for all neurons with conclu-
sive neurotransmitter predictions (Fig. 4.9 b). A neuron is defined to have
conclusive predictions if the predicted, synaptic, majority neurotransmitter
constitutes more than 65% of all synapses of that neuron. This threshold
corresponds to a >95% accuracy for all three fast acting transmitters on
the test set (see Fig. 4.9 a). Prediction of all ≈ 220 Million pre-synaptic
sites took 3 days on 20 GPUs and 100 CPUs. 22% of all synapses are pre-
dicted as GABA, 47.5% as ACh, 19.2% GLUT, 3.9% SER, 2.2% OCT and 5.2%
DOP, consistent with experimental results from large scale RNA-seq (Croset
et al., 2018). Furthermore we recover known anatomical features of neuro-
transmitter distribution such as a GABA rich ellipsoid body, dopamine rich
mushroom body lobes and expression symmetry in the hemispheres. For an
overview see Fig. 4.9 c.
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a b

GABA ACh GLUT

SER OCT DOP

c

GABA ACh GLUT SER OCT DOP

Figure 4.9: Whole brain neurotransmitter prediction from automatically detected
synapses. a) Neurotransmitter neuron classification accuracy on the test set as a
function of the fraction of synapses in a neuron below which we consider the neu-
ron inconclusive. For whole brain prediction accuracy evaluation we use a cutoff of
0.65 (grey line), corresponding to a >95% neuron classification accuracy on the test
set for the three fast acting transmitters. b) Shown is the fraction of neurons that
have been predicted as a particular neurotransmitter using automatically detected
synapses for 6 different cell types in FAFB with known neurotransmitters. Neuron
classes are colored according to their known neurotransmitter identity. c) Frontal
view of whole brain neurotransmitter distributions for all six considered neuro-
transmitters. We only show 10 million randomly chosen synapses from the total of
220 million for visualization purposes. Note that the predictions recover already
known morphological features such as a dopamine rich mushroom body lobes, a
GABA enriched ellipsoid body and neurotransmitter expression symmetry between
the two hemispheres. Panels a) and b) adapted from Baker et al. (2021). Visualiza-
tions in panel c) were created by Gregory S.X.E. Jefferis.
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4.6 Data Availability

For on demand predictions, we make the data and the classifier available to
the community by providing a public website that allows a user to request
predictions. The service supports coordinate queries from FAFB and the
Hemibrain datasets in all three major service coordinates: CATMAID (Saalfeld
et al., 2009), FlyWire (Dorkenwald et al., 2020) and Neuprint (Xu et al., 2020).
In addition we provide the possibility to query from skeleton- (CATMAID)
or body-ids (Neuprint) and request predictions for traced neurons that have
annotated synapses in either one of these services. Because FlyWire neu-
ron segmentation data is not public we cannot support query by neuron
identifier from FlyWire. After processing of a users request, we send out
a neurotransmitter prediction report, detailing the predicted neurotransmit-
ter fractions for each neuron as well as provide the raw input and output
data of the classifier for further analysis. In addition, we provide a SQL
database dump of the FAFB whole brain predictions and make it accessible
via a query module available within the natverse library7.

4.7 Interpretability

In Drosophila melanogaster humans can not generally distinguish different
neurotransmitter containing vesicles from EM alone, thus we would like to
know how the presented classifier is doing it and which features it relies on.
Despite the fact that we have complete information about the artificial neural
system that is able to assign images of synaptic sites to neurotransmitters,
it is difficult to extract the rules under which it operates. Here we use
DAC, a novel neural network interpretability method introduced in the prior
chapter, to generate a hypothesis matrix, detailing the feature differences
between each pair of neurotransmitter classes as learned by the classifier.

4.7.1 Hypothetical Discriminators

In order to simplify the problem and to be able to use DAC, we train a 2D
VGG f2D to perform neurotransmitter classification from a 128 x 128 pixel
large cropout around the synapse. While accuracy is reduced compared
to using a 3D classifier, we still achieve 77% average synaptic classification
accuracy. This implies that the classifier picked up on the most important
features of each class. For each input image xr (real) of a synaptic site with
neurotransmitter ntA, DAC generates another image of a synaptic site x f
(Fake), showing how the synaptic site would look if it would express neu-
rotransmitter ntB. In addition, DAC outputs a binary mask Amin of pixels
in the image, that are most important for the classifier’s decision. In or-

7http://natverse.org

http://natverse.org
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der to understand the decision boundaries learned by the classifier, we thus
look for features in the set of the top 40 image pairs with smallest area of
importance Amin for each pair of neurotransmitters ntA, ntB. We only ac-
cept sample pairs if the real image xr and the fake image x f are classified
correctly, i.e. f2D(xr) > 0.9 and f2D(x f ) > 0.9. For each pair we consider

both directions ntr
A → nt f

B and ntr
B → nt f

A and note an observed change in
features as a hypothetical discriminator, if the feature consistently changes
in one direction, and is symmetrically reversed when going in the other. For
example, if we observe a darkening of the cleft from ntr

A → nt f
B, we require

the cleft to broaden going from ntr
B → nt f

A. This ensures that we do not
pick up on features that are not present in real synapses. All symmetric,
hypothetical discriminators can be seen in Fig. 4.10.

The most notable findings are that the classical transmitters GABA, glu-
tamate and acetylcholine look different in very subtle ways. For example we
observe a consistent brightening of the inside of the synaptic cleft going from
GABA to acetylcholine and slightly enlarged vesicles going from GABA to
glutamate. Changes from acetylcholine to glutamate are a darker T-bar
and a darker cleft. Other notable features are the apparent removal of post
synaptic densities going from acetylcholine and glutamate to dopamine, in
line with findings in mammalian cells (Uchigashima et al., 2016). A known
discriminator we were able to rediscover is the addition of dense core vesi-
cles when going from the classical transmitters to serotonin and octopamine.
We leave confirmation of these hypotheses for future work.



62 Chapter 4. Neurotransmitter Classification

Figure 4.10: Hypothetical Discriminator Matrix of features that change between im-
ages of two different neurotransmitter classes. We only show the direction from
rows to columns in the upper triangle of the matrix, as we only consider symmet-
rically reversed features as valid hypotheses. Each box shows the feature change
from the respective row title to the column title. Brighter Cleft refers to less electron
density inside the synaptic cleft. Add DCVs is the addition of dense core vesicles,
Lower Density means an overall reduction of content in the pre-synaptic site. Fill
Vesicles means the darkening of the inside of vesicles. Darker Cleft refers to more
electron density inside the synaptic cleft. Remove DCVs is the removal of dense
core vesicles. Remove small Vs means the removal of vesicles with a small diam-
eter. Brighter DVs refers to the brightening of the inside of medium size vesicles
that we call Dense Vesicles. Thinner Cleft means that the distance between pre and
post-synaptic partners is reduced. !Circ. Vesicles refers to a change of shape from
circular to non-circular vesicles. Remove PSDs is the removal of post-synaptic den-
sities. Larger Vesicles means the increase of vesicle diameter. Add DVs means there
is an addition of Dense Vesicles. Less Post-Synapses describes a reduction in the num-
ber of post-synaptic partners. Inlets above the hypothesis matrix show example
image pairs and highlighted regions lead to a change of classification decision in
the indicated direction if swapped.
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4.8 Discussion

4.8.1 Results

We presented a classifier which is able to predict the neurotransmitter iden-
tity of a synapse from a local 3D EM volume with high accuracy. We showed
that the method generalizes across neurons, brain regions, hemilineages and
datasets with different resolutions, staining and microscopes. This is strong
evidence that the classifier is indeed learning how neurotransmitter identity
affects the phenotype of synaptic sites, as opposed to other spurious correla-
tions that may be present in small homogeneous datasets. We predicted the
neurotransmitter identity of 180,675 manually annotated synapses within
1,164 neurons from 89 hemilineages with heretofore unknown neurotrans-
mitter identity. We analyzed the neurotransmitter distribution of 26 hemi-
lineages that have a sufficient amount of annotated neurons and synapses
and showed that most of them homogeneously express one fast acting neu-
rotransmitter. However, we also identified a set of five hemilineages that,
according to our predictions, express two distinct fast-acting neurotransmit-
ters with high statistical significance. Two of those five, 27 and 42, also show
low synaptic entropy H(Sh), indicating that the observed effect is a result of
neuron-level neurotransmitter segregation within the hemilineage. Further-
more we predicted all automatically detected synapses in the FAFB dataset
and made the data publicly available. We also support on demand, custom
neurotransmitter prediction queries via a publicly available web-interface.
Finally, we use neural network interpretability tools to identify previously
unknown hypothetical discriminative features between all six considered
neurotransmitters.

4.8.2 Limitations

A potential source of neurotransmitter misclassification is the possibility
that a given neuron releases more than one neurotransmitter at its synaptic
sites. Due to a lack of known and annotated neurons with cotransmission
of the considered neurotransmitters our current model ignores this possibil-
ity. However, single cell transcriptomic data of the Drosophila melanogaster
brain shows that neurotransmitter gene expression is largely exclusive for
the fast acting transmitters ACh, GABA and GLUT (Croset et al., 2018),
excluding widespread cotransmission of these transmitters. For the con-
sidered monoamines (SER, OCT, and DOP), coexpression with another fast
acting transmitter is more probable. In particular Croset et al. (2018) sug-
gests that a large fraction of octopaminergic neurons likely corelease GLUT,
while SER and DOP show less evidence for coexpression with fast acting
transmitters. If a particular neuron in the dataset were to corelease a fast
acting transmitter and a monoamine the presented classifier would predict
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only one of the two. However, this is not a fundamental limitation of the
presented approach and could be remedied if coexpression training data be-
comes available.

Another current limitation is the fact that we only consider the set of six
neurotransmitters {GABA, ACh, GLUT, DOP, OCT, SER} and due to our
use of a softmax normalization at the network output layer, the model is
forced to select one of the six classes, even if there is no evidence for any
of them. As a result, the current model is not able to identify synapses or
neurons that release something other than the considered neurotransmitters,
notably histamine (Nässel, 2018), tyramine and a vast number of neuropep-
tides (Croset et al., 2018). Similar to coexpression, we expect an extension to
further neurotransmitters to be possible if training data becomes available.

Regarding our analysis of the number of distinct fast-acting neurotrans-
mitters in a hemilineage, a potential source of error is misassignments of
neurons to hemilineages. If neurons are erroneously assigned to a partic-
ular hemilineage any observed effect of multimodal neurotransmitter dis-
tributions on neuron-level within a hemilineage could be an artifact. Fur-
thermore, for hemilineages 16 and 30 the high synaptic entropy H(Sh) sug-
gests that the phenotype of synapses is ambiguous in these hemilineages.
Although coexpression of fast-acting neurotransmitters is unlikely (Croset
et al., 2018), the neurotransmitter distribution would be consistent with co-
transmission of GABA and glutamate in the neurons of these hemilineages.

An apparent issue of our analysis of neurotransmitter discriminatory fea-
tures is that here we only extract relative differences between the classes,
not absolute descriptions of the features of each class. While this might
appear as a limitation on first sight, relative differences between all classes
lead to descriptive features of each class if we have one reference point. For
example, we could measure the average intensity of the synaptic cleft of
GABA neurons and thus infer that e.g. ACH must have an average inten-
sity strictly higher as we found a brightening of the cleft going from GABA
to ACH. Similarly, we would expect the same average intensity in GABA
and GLUT neurons, as we observe no change of synaptic cleft brightness.
We hope to address this point in future work by manual annotation of the
discovered features for a set of presynaptic sites.

4.8.3 Hypothetical Discriminators

In mammalian brains, it is known that there are two distinct synaptic types,
namely asymmetric and symmetric ones. Symmetric synaptic sites are char-
acterized by a comparatively small post synaptic density of the same size
as the pre-synaptic density and a thin cleft, while asymmetric synaptic sites
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show a broad cleft and a dominant post-synaptic density (Peters and Fol-
ger, 2013). Interestingly we find similar features for some neurotransmitter
classes in Drosophila. In particular, dopamine shows features of symmet-
ric synaptic sites, as it has a small post synaptic density and a thin cleft
compared to the classical transmitters. This is in line with findings in mam-
malian brains (Uchigashima et al., 2016). However, in contrast to mam-
malian cells we did not find a relation between inhibitory and excitatory
synapses and their appearance as symmetric and asymmetric synaptic sites.
In particular the classical transmitters all fit the description of asymmetric
synaptic sites, independent of sign.

4.8.4 Generalization
We showed that our network is able to generalize across brain regions and
hemilineages. However, although the performance on the brain region split
(88% average accuracy) outperforms even the baseline neuron split (87%
average accuracy), the hemilineage split suffers a performance decrease of
more than 10% (75% average accuracy), suggesting that the influence of
the neurotransmitter on the phenotype of a synaptic site is influenced by
its hemilineage. This is partially remedied when averaging over multiple
synapses: Neuron-level neurotransmitter classification for the hemilineage
split is robust with an average accuracy of 92%. Note that the presented
data splits already exclude neuron identity, hemilineage identity and brain
region as potential confounding variables for the prediction of neurotrans-
mitter identity as performance is far above chance level. Similarly, we show
that the classifier generalizes across datasets by training and predicting on
the Hemibrain dataset. The reduction in accuracy compared to the FAFB
dataset could be explained by the halved lateral resolution of 8x8x8nm. We
observe the strongest performance decrease on the Hemibrain test set in the
classification of GLUT synaptic sites as the classifier wrongly predicts GABA
instead of GLUT. Given the close metabolic relationship between these two
transmitters the discriminative features are likely subtle and our analysis
suggests that there is a slight difference in vesicle size, a feature that could
be invisible in lower resolution datasets. Given the importance of neuro-
transmitter knowledge for circuit analysis, we recommend imaging future
datasets at the highest lateral resolution possible.
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A.1 Microtubule Tracking

Operation Size Feature Maps
Conv (3,3,3) 12
Conv (1) (3,3,3) 12
MaxPool (1,3,3) 12
Conv (3,3,3) 60
Conv (2) (3,3,3) 60
MaxPool (1,3,3) 60
Conv (3,3,3) 300
Conv (3) (3,3,3) 300
MaxPool (1,3,3) 300
Conv (3,3,3) 1500
Conv (3,3,3) 1500
TConv (1,3,3) 300
Concat (3) 600
Conv (3,3,3) 300
Conv (3,3,3) 300
TConv (1,3,3) 60
Concat (2) 120
Conv (3,3,3) 60
Conv (3,3,3) 60
TConv (1,3,3) 12
Concat (1) 24
Conv (3,3,3) 12
Conv (3,3,3) 12
Conv (1,1,1) 1/10∗

Table A.1: 3D-UNet architecture used for all models. “TConv” denotes a transposed
convolution, “Concat (i)” concatenates features maps from “Conv (i)”. The final
convolution (denoted by ∗) produces 1 or 10 feature maps for models NMS SM and
NMS GRAD, respectively.
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Parameter Value
Input Shape (32, 322, 322)
Loss MSE
Optimizer Adam Kingma and Ba (2014)
Learning Rate 5E-05
β1 0.95
β2 0.999
Iterations 300,000

Augmentation Parameter Value
Elastic control point spacing (4,40,40)

jitter sigma (0, 2, 2)
subsample 8

Rotation axis z
angle in [0, π

2 ]
Section Defects slip probability 0.05

shift probability 0.05
max misalign 10

Mirror n/a
Transpose axes x, y
Intensity scale in [0.9, 1.1]

shift in [−0.1, 0.1]

Table A.2: Training parameters used for all models. Augmentations were per-
formed using our augmentation library (https://github.com/funkey/gunpowder),
see online documentation for details.

Model θS θP θD θE θC θd Block Size b Context Size b
NMS GRAD 180 -80 0 12 14 90 (30, 250, 250) (50,450,450)
CC GRAD 200 -70 0 14 14 120 (30, 250, 250) (50,450,450)
NMS SM 180 -70 0 14 16 120 (30, 250, 250) (50,450,450)
NMS RFC 180 -90 0 12 14 90 (30, 250, 250) (50,450,450)
Baseline 60 -100 0 12 10 140 (30, 250, 250) (50,450,450)

Table A.3: ILP validation best parameters for all considered models.

https://github.com/funkey/gunpowder
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Figure A.1: Rendering of (A) automatically reconstructed microtubules in (B) se-
lected, automatically segmented neurons in the Calyx, a 76 x 52 x 64 µm region
of the Drosophila Melanogaster brain. Microtubules of the same color belong to the
same neuron.
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Figure A.2: x-y and x-z view for selected slices of test data sets A, B, C with
reconstructed microtubules (red) from groundtruth, our method (NMS GRAD &
NMS SM) and the baseline. Best viewed on screen.
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Figure A.3: Illustration of the proposed blockwise processing scheme for dis-
tributed ILP solving. 1: Block region b ∈ B (purple) and associated context region b
(ligth purpe). 2: Conflict free subsets Si ⊂ B induced by 1. Blocks of the same color
can be solved in parallel without conflicts.
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A.2 Discriminative Attribution from Counterfactuals

A.2.1 Training Details
Network Architectures

Cycle-GAN We extend the cylce-GAN implementation from https://github.
com/junyanz/pytorch-CycleGAN-and-pix2pix for our purposes. For all ex-
periments we use a 9-block ResNet generator and a 70× 70 PatchGAN (Isola
et al., 2017) discriminator. For training we use a least squares loss (LS-
GAN (Mao et al., 2017)), a batch size of one, instance normalization and
normal initialization. We use the Adam optimizer (Kingma and Ba, 2014)
with momentum β1 = 0.5 and a learning rate of 0.0002 with a linear decay
to zero after the first 100 epochs.

Classifiers The classifiers used for attribution are either VGG (for datasets
Synapses, Mnist, and Disc) or ResNet (for datasets Mnist and Disc) ar-
chitectures, trained using a cross-entropy loss. Individual layers are shown
in Table A.4 and Table A.5.

For the training of the VGG network on the Synapses dataset, we use the
same strategy (including augmentations) as described in Eckstein et al. (2020a),
with the only difference being that we consider 2D images instead of 3D vol-
umes. We did not attempt to train a ResNet on the Synapses dataset.

For the training of the VGG and ResNet architectures on the Mnist and
Disc datasets we did not make use of augmentations and trained each net-
work for 100 epochs with a batch size of 32 using the Adam optimizer (learn-
ing rate 10−4).

Compute

The most significant part of the compute costs come from training the cycle-
GANs. For each experiment, cycle-GAN training for 200 epochs took around
5 days on a single RTX 2080Ti GPU. For Mnist experiments we trained a
total of 45 cycle GANs, 15 for Synapses, and 4 for Disc. In total this results
in roughly 320 GPU-days for cycle-GAN training. In contrast, attribution
and mask generation is comparatively cheap and takes between 1-3 hours
on 20 RTX 2080Ti GPUs for each dataset, resulting in 60 GPU hours for each
experiment and 15 GPU days in total.

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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Operation Tensor Size

input image (128, 128)
Conv2d, size (3, 3) (12, 128, 128)
BatchNorm2d (12, 128, 128)
ReLU (12, 128, 128)
Conv2d, size (3, 3) (12, 128, 128)
BatchNorm2d (12, 128, 128)
ReLU (12, 128, 128)
MaxPool2d, size (2, 2) (12, 64, 64)
Conv2d, size (3, 3) (24, 64, 64)
BatchNorm2d (24, 64, 64)
ReLU (24, 64, 64)
Conv2d, size (3, 3) (24, 64, 64)
BatchNorm2d (24, 64, 64)
ReLU (24, 64, 64)
MaxPool2d, size (2, 2) (24, 32, 32)
Conv2d, size (3, 3) (48, 32, 32)
BatchNorm2d (48, 32, 32)
ReLU (48, 32, 32)
Conv2d, size (3, 3) (48, 32, 32)
BatchNorm2d (48, 32, 32)
ReLU (48, 32, 32)
MaxPool2d, size (2, 2) (48, 16, 16)
Conv2d, size (3, 3) (96, 16, 16)
BatchNorm2d (96, 16, 16)
ReLU (96, 16, 16)
Conv2d, size (3, 3) (96, 16, 16)
BatchNorm2d (96, 16, 16)
ReLU (96, 16, 16)
MaxPool2d, size (2, 2) (96, 8, 8)
Linear (4096)
ReLU (4096)
Dropout (4096)
Linear (4096)
ReLU (4096)
Dropout (4096)
Linear (k)

(a) VGG architecture used for the
Synapses (k = 6), Disc-A (k = 2),
and Disc-B (k = 3) dataset.

Operation Tensor Size

input image (28, 28)
Conv2d, size (3, 3) (12, 28, 28)
BatchNorm2d (12, 28, 28)
ReLU (12, 28, 28)
Conv2d, size (3, 3) (12, 28, 28)
BatchNorm2d (12, 28, 28)
ReLU (12, 28, 28)
MaxPool2d, size (2, 2) (12, 14, 14)
Conv2d, size (3, 3) (24, 14, 14)
BatchNorm2d (24, 14, 14)
ReLU (24, 14, 14)
Conv2d, size (3, 3) (24, 14, 14)
BatchNorm2d (24, 14, 14)
ReLU (24, 14, 14)
MaxPool2d, size (2, 2) (24, 7, 7)
Conv2d, size (3, 3) (48, 7, 7)
BatchNorm2d (48, 7, 7)
ReLU (48, 7, 7)
Conv2d, size (3, 3) (48, 7, 7)
BatchNorm2d (48, 7, 7)
ReLU (48, 7, 7)
Conv2d, size (3, 3) (96, 7, 7)
BatchNorm2d (96, 7, 7)
ReLU (96, 7, 7)
Conv2d, size (3, 3) (96, 7, 7)
BatchNorm2d (96, 7, 7)
ReLU (96, 7, 7)
Linear (4096)
ReLU (4096)
Dropout (4096)
Linear (4096)
ReLU (4096)
Dropout (4096)
Linear (10)

(b) VGG architecture used for the
Mnist dataset.

Table A.4: VGG classifier network architectures.
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Operation Tensor Size

input image (128, 128)
Conv2d, size (3, 3) (12, 128, 128)
BatchNorm2d (12, 128, 128)
ReLU (12, 128, 128)
ResBlock, stride (2, 2) (12, 64, 64)
ResBlock (12, 64, 64)
ResBlock, stride (2, 2) (24, 32, 32)
ResBlock (24, 32, 32)
ResBlock, stride (2, 2) (48, 16, 16)
ResBlock (48, 16, 16)
ResBlock, stride (2, 2) (96, 8, 8)
ResBlock (96, 8, 8)
Linear (4096)
ReLU (4096)
Dropout (4096)
Linear (4096)
ReLU (4096)
Dropout (4096)
Linear (k)

(a) ResNet architecture used for the
Disc-A (k = 2) and Disc-B (k = 3)
dataset.

Operation Tensor Size

input image (28, 28)
Conv2d, size (3, 3) (12, 28, 28)
BatchNorm2d (12, 28, 28)
ReLU (12, 28, 28)
ResBlock, stride (2, 2) (12, 14, 14)
ResBlock (12, 14, 14)
ResBlock, stride (2, 2) (24, 7, 7)
ResBlock (24, 7, 7)
ResBlock, stride (2, 2) (48, 3, 3)
ResBlock (48, 3, 3)
ResBlock, stride (2, 2) (96, 1, 1)
ResBlock (96, 1, 1)
Linear (4096)
ReLU (4096)
Dropout (4096)
Linear (4096)
ReLU (4096)
Dropout (4096)
Linear (10)

(b) ResNet architecture used for the
Mnist dataset.

Table A.5: ResNet classifier network architectures.
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A.3 Extended Results for ResNet Architectures
In addition to the results using VGG architectures in the main text, below
we show additional results for ResNet architectures on Mnist and Disc-B
(see Fig. A.4 and Table A.6). We do not show results for Disc-A, because
all considered ResNet architectures failed to achieve more than chance level
accuracy on the validation dataset. Since our goal is to understand what
the classifier learned about class differences, using a network that did not
successfully learn to classify will not produce meaningful results.

The shown results for ResNet architectures follow the same pattern as ob-
served in the main VGG results: All discriminative attribution methods out-
perform their counterparts in terms of DAC-score. For Mnist, the overall
best performing method is the residual, which already performed well for
VGG experiments. This is a consequence of the sparsity and simplicity of
Mnist and can be observed less drastically for Disc as well. The changes the
cycle-GAN introduces are often minimal, and thus the residual is already an
accurate attribution. However, in general, the residual is not a good choice
for an attribution map as intensity differences between classes do not gener-
ally correlate with feature importance. This is particularly noticeable in the
experiments on the more challenging Synapses experiments (see main text).

Mnist Disc-B

∆
f(

x H
) i

mask size mask size

Figure A.4: Quantitative evaluation of discriminative (D - solid) and corresponding
original (S for “single input” - dashed) attribution methods for Mnist and Disc-B
using a ResNet architecture. Corresponding D and S versions of the same method
are shown in the same color. For each, we plot the average change of classifier
prediction ∆ f (xH)

k
i = f (xH)i − f (xC)i as a function of mask size m ∈ [0, 1]. In

addition we show performance of the two considered baselines: masks derived
from random attribution maps (random - red, dotted) and mask derived from the
residual of the real and counterfactual image (residual - black, dotted). On all
considered datasets all versions of D attribution outperform their S counterparts.
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Figure A.5: Qualitative samples from the Synapses dataset for all considered meth-
ods. xR shows a synapse from class Serotonin, xC shows a synapse from class
Acetylcholine.
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Figure A.6: Qualitative samples from the Synapses dataset for all considered meth-
ods. xR shows a synapse from class Acetylcholine, xC shows a synapse from class
Octopamine.
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Figure A.7: Qualitative samples from the Synapses dataset for all considered meth-
ods. xR shows a synapse from class Serotonin, xC shows a synapse from class
Glutamate.
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Figure A.8: Qualitative samples from the Synapses dataset for all considered meth-
ods. xR shows a synapse from class Dopamine, xC shows a synapse from class
Serotonin.
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Figure A.9: Qualitative sample from the Mnist dateset for all considered methods.
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Figure A.10: Qualitative sample from the Disc-A dateset for all considered meth-
ods.
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Figure A.11: Qualitative sample from the Disc-B dateset for all considered methods.
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Dataset D-IG D-DL D-INGR. D-GC D-GGC RES. IG DL INGR. GC GGC RND.

Mnist 0.82 0.8 0.81 0.44 0.6 0.83 0.68 0.66 0.66 0.42 0.23 0.46
Disc-B 0.98 0.98 0.98 0.94 0.91 0.98 0.26 0.48 0.52 0.86 0.81 0.47

Table A.6: Summary of DAC scores for ResNet architectures on Disc and Mnist

corresponding to Fig. A.4. Best results are highlighted.

A.4 Disc Dataset
The Disc dataset was specifically designed to highlight the advantage of
discriminative attribution over vanilla attribution. In particular, the discrim-
inatory feature of Disc-A is the parity of the number of triangles in the
image. This feature is non-local and it is unclear what vanilla attribution is
supposed to highlight. In Disc-B the classes are defined by the absence of a
feature, another situation where vanilla attribution is not designed to give a
sensible answer and will often highlight all objects in the image, providing
little information to the user.

Disc-A For each image we randomly draw an even (class 0) or odd (class 1)
number between one and six, indicating the number of triangles to generate.
Each triangle has a random size between 20 and 40% of the image size of 128
pixels and a random position. In addition we draw a random intensity value
between 120 and 200, a random rotation angle, and additive noise strength
before applying Gaussian smoothing to generate different textures. We reject
a sample if the fraction of foreground pixels and the total expected area
of all shapes (assuming no overlap) is below 90%, thus avoiding strongly
overlapping configurations.

Disc-B Similar to Disc-A, we draw a random position, intensity value,
rotation and additive noise strength to generate images showing pairs of a
triangle and a square, a disk and a square or a disk and a triangle. We reject
a sample if the fraction of foreground pixels and the total expected area of
all shapes (assuming no overlap) is below 90%.

A.5 Code and Data Availability
All code, datasets, checkpoints, and instructions needed to reproduce the
presented results are available at https://dac-method.github.io.

https://dac-method.github.io
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A.6 Neurotransmitter Classification

Parameter Value
Input Shape (16, 160, 160)
Loss CrossEntropy
Optimizer Adam
Learning Rate 1E-04
β1 0.95
β2 0.999
Iterations 315,000

Augmentation Parameter Value
Elastic control point spacing (4,40,40)

jitter sigma (0, 2, 2)
subsample 8

Rotation axis z
angle in [0, π

2 ]
Section Defects slip probability 0.05

shift probability 0.05
max misalign 10

Mirror n/a
Transpose axes x, y
Intensity scale in [0.9, 1.1]

shift in [−0.1, 0.1]

Table A.7: Training parameters for best performing FAFB model. Augmentations
from http://funkey.science/gunpowder.

http://funkey.science/gunpowder
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Figure A.12: Neurotransmitter barcode plots of our predictions for all hemilineages
that have more than 10 neurons with more than 30 synapses each. Each column
represents one neuron. The relative number of synapses predicted as neurotrans-
mitter ŷ ∈ Y ={GABA, ACh, GLUT, SER, OCT, DOP} is represented by the color
intensity of the respective row. Corresponding renderings of neurons and pre-
dicted neurotransmitters are shown in Fig. A.13. For a mapping of hemilineage ID
to hemilineage name see Table A.8
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Figure A.13: Renderings of neurotransmitter predictions for all neurons within
hemilineages that have more than 10 neurons with more than 30 synapses each.
Corresponding neurotransmitter barcode plots are shown in Fig. A.12. For a map-
ping of hemilineage ID to hemilineage name see Table A.8
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Figure A.14: Neurotransmitter barcode plots of all hemilineages, for which a sub-
set of neurons Nh

gt have genetically determined, known neurotransmitters (Known)
and our predictions (Predicted) on the remaining neurons Nh

pred in the same hemi-
lineage. Each column in the neurotransmitter barcode represents one neuron. The
relative number of synapses with neurotransmitter y, ŷ ∈ Y ={GABA, ACh, GLUT,
SER, OCT, DOP} is represented by the color intensity of the respective row. Note
that Nh

gt ∩ Nh
pred = ∅. For a mapping of hemilineage ID to hemilineage name see

Table A.8
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Hemilineage ID ItoLee Name Hartenstein Name
1 ALad1 BAmv3
2 AOTUv1 DALcm2
3 ALl1 dorsal BAlc dorsal
4 SLPav1 lateral BLAl lateral
5 ALlv1 BAlp4
6 ALl1 ventral BAlc ventral
7 unnamed unnamed
8 VPNp and v1 posterior BLP1 posterior
9 LHl4 posterior BLD1 posterior

10 VLPd1 DPLam
11 FLAa3 BAmas2
12 DL1 dorsal CP2 dorsal
13 unnamed BLP3 ventral
14 DM1 DPMm1
15 LALv1 BAmv1
16 LHl1 lateral BLD4 lateral
17 ALv1 BAla1
18 LHd1 DPLd
19 SLPal2 ventral DPLal3 ventral
20 CREa1 ventral BAmd1 ventral
21 CREa2 DALcm1
22 DL2 dorsal CP3 dorsal
23 SMPpv1 DPMpl1
24 SIPp1 DPMpl2
25 DL1 ventral CP2 ventral
26 SLPal1 DPLal1
27 VLPd and p1 posterior DPLl2 posterior
28 SMPpv2 CP1
29 unnamed unnamed
30 LHl4 lateral BLD1 lateral
31 LHp1 BLP4
32 WEDa1 ventral BAlv
33 SLPad1 anterior DPLl3 anterior
34 FLAa2 BAmas1
35 VLPp and l1 dorsal DPLpv dorsal
36 EBa1 DALv2
37 SMPad2 DAMd2/3
38 SLPpm1 DPLm1
39 SLPal2 dorsal DPLal3 dorsal
40 WEDd1 DALd
41 SLPp and v1 posterior DPLp2 posterior
42 LHa1 medial BLAd1 medial
43 LHd2 dorsal DPLm2 dorsal
44 VPNl and d1 dorsal BLAvm2 dorsal

Table A.8: Mapping of hemilineage ids to ItoLee and Hartenstein hemilineage
names (1/2).
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Hemilineage ID ItoLee Name Hartenstein Name
45 LHa3 BLVa2
46 LHp2 medial DPLp1 medial
47 VLPl2 dorsal BLAv2 dorsal
48 SLPad1 posterior DPLl3 posterior
49 VLPl2 ventral BLAv2 ventral
50 SLPav3 BLVa2a
51 LHl2 lateral DPLal2 lateral
52 VESa1 BAla3
53 SMPpd1 DPLc1
54 SLPal3 dorsal BLAd3 dorsal
55 VLPl1 BLVa3/4
56 VLPl and p1 posterior BLVp2 posterior
57 SIPa1 ventral BLAd2 ventral
58 LHa2 ventral BLVa1 ventral
59 WEDa2 BAlp3
60 SIPa1 dorsal BLAd2 dorsal
61 SLPav2 dorsal BLD2 dorsal
62 VLPl and p2 posterior BLVp1 posterior
63 SLPpl1 DPLl1
64 LHp2 lateral DPLp1 lateral
65 SLPpl3 lateral unnamed
66 VLPl and d1 lateral BLAv1 lateral
67 LHl2 medial DPLal2 medial
68 VLPl and p1 anterior BLVp2 anterior
69 VLPl and d1 dorsal BLAv1 dorsal
70 AOTUv2 DALl1
71 AOTUv3 dorsal DALcl1 dorsal
72 VLPp and l1 ventral DPLpv ventral
73 VPNd1 BLD6
74 WEDa1 dorsal BAlv
75 VLPd and p1 anterior DPLl2 anterior
76 unnamed unnamed
77 VLPp1 BLP2
78 PSa1 BAlp1
79 Primary Primary
80 VPNp1 posterior BLD5 posterior
81 unnamed unnamed
82 DL2 ventral CP3 ventral
83 LHa2 dorsal BLVa1 dorsal
84 SLPpl3 posterior unnamed
85 PSp3 DPMl1/2
86 SLPa and l1 lateral BLAl lateral
87 SLPa and l1 anterior BLAvm1 anterior
88 AOTUv3 ventral DALcl1 ventral
89 CLp1 DPLc2/4

Table A.9: Mapping of hemilineage ids to ItoLee and Hartenstein hemilineage
names (2/2).
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Operation Size Feature Maps
Conv (1) (3,3,3) 8
BatchNorm 8
ReLU 8
Conv (2) (3,3,3) 8
BatchNorm 8
MaxPool (1,2,2) 8
Conv (3) (3,3,3) 16
BatchNorm 16
ReLU 16
Conv (4) (3,3,3) 16
BatchNorm 16
MaxPool (1,2,2) 16
Conv (5) (3,3,3) 32
BatchNorm 32
ReLU 32
Conv (6) (3,3,3) 32
BatchNorm 32
MaxPool (1,2,2) 32
Conv (7) (3,3,3) 64
BatchNorm 64
ReLU 64
Conv (8) (3,3,3) 64
BatchNorm 64
MaxPool (1,2,2) 64
Linear 4096 1
ReLU 1
Dropout 1
Linear 4096 1
ReLU 1
Dropout 1
Linear 6 1

Table A.10: Best performing 3D-VGG-type architecture used for FAFB predictions.
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Marin, E. C., Roberts, R. J. V., Büld, L., Theiss, M., Pleijzier, M. W., Sarkissian, T.,
Laursen, W. J., Turnbull, R., Schlegel, P., Bates, A. S., Li, F., Landgraf, M., Costa,
M., Bock, D. D., Garrity, P. A., and Gregory S X (2020). Connectomics analysis
reveals first, second, and third order thermosensory and hygrosensory neurons
in the adult Drosophila brain.

Martens, D. and Provost, F. (2014). Explaining data-driven document classifications.
Mis Quarterly, 38(1):73–100.

McKellar, C. E. and Wyttenbach, R. A. (2017). A protocol demonstrating 60 different
drosophila behaviors in one assay. Journal of Undergraduate Neuroscience Education,
15(2):A110.

Meinertzhagen, I. A. and O’neil, S. (1991). Synaptic organization of columnar el-
ements in the lamina of the wild type in drosophila melanogaster. Journal of
comparative neurology, 305(2):232–263.

Meissner, G. W., Nern, A., Singer, R. H., Wong, A. M., Malkesman, O., and Long, X.
(2019). Mapping neurotransmitter identity in the whole-mount drosophila brain
using multiplex high-throughput fluorescence in situ hybridization. Genetics,
211(2):473–482.

Menzel, R. (2012). The honeybee as a model for understanding the basis of cogni-
tion. Nature Reviews Neuroscience, 13(11):758–768.

Montavon, G., Lapuschkin, S., Binder, A., Samek, W., and Müller, K.-R. (2017). Ex-
plaining nonlinear classification decisions with deep taylor decomposition. Pat-
tern Recognition, 65:211–222.



Bibliography 101

Mothilal, R. K., Sharma, A., and Tan, C. (2020). Explaining machine learning clas-
sifiers through diverse counterfactual explanations. In Proceedings of the 2020
Conference on Fairness, Accountability, and Transparency, pages 607–617.

Narayanaswamy, A., Venugopalan, S., Webster, D. R., Peng, L., Corrado, G. S., Ru-
amviboonsuk, P., Bavishi, P., Brenner, M., Nelson, P. C., and Varadarajan, A. V.
(2020). Scientific discovery by generating counterfactuals using image transla-
tion. In International Conference on Medical Image Computing and Computer-Assisted
Intervention, pages 273–283. Springer.
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