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Abstract— The paper investigates the selection of
state sequences in data-driven projection-based model
reduction methods that compute parsimonious mod-
els by forming regression problems featuring low-
order fictitious states. Specifically, subspace identifi-
cation and dynamic mode decomposition techniques
are considered. It is shown that, while sharing a
seemingly equivalent structure, they differ profoundly
in the way these states are selected. A theoretical
characterization of the differences is given, including
a parametrization of a new class of state transfor-
mations implicitly used in both approaches and a
balanced transformation obtained directly from data.
Numerical examples are proposed to show the impact
of these differences on the accuracy of the extracted
low-order representations.

I. Introduction

Methods which enable models of dynamical systems
to be constructed from data have traditionally been
the focus of system identification [1], and are typically
geared towards experimental practicalities (where e.g.
data are noisy, and states are not measured) and control
applications (which privilege particular model classes).
Nonetheless, they share similar goals with methods devel-
oped in other communities for the identification of low-
order structures from high-dimensional noise-free (of-
ten simulated) state trajectories, such as the pioneering
works documented in [2] for the study of turbulence. The
concept of Proper Orthogonal Decomposition (POD) in
particular, revolving around the selection of a few modes
capturing most of the energy in the data, boosted the
research on approaches for computing models able to
balance accuracy with complexity. A well known example
is Dynamic Mode Decomposition (DMD) [3], which seeks
to approximate the eigendecomposition of a low-order
linear dynamics explaining the evolution of observed
state sequences. Originally developed in the context of
autonomous systems, the DMD framework has been
extended to systems with input and output channels [4],
[5], which makes it essentially an algorithm to obtain
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low-order state-space models given input, state projected
onto the POD modes, and output trajectories.

A celebrated system identification technique that tar-
gets the same model class, but works only with input and
(generally noisy) output data is Subspace Identification
(SId) [6]. SId algorithms can all be interpreted as the
identification of a subspace spanned by an extended ob-
servability matrix of the system, followed by the estima-
tion of its state-space matrices [7]. Since the first step also
reveals a basis for the state of the underlying system [8],
one can recast the problem as a least-squares analogous
to that solved in DMD. Despite this apparent similarity,
a key question is which are the particular state sequences
employed, since it is well known that linear states are
only defined up to a similarity transformation. While this
is inconsequential when the full model is identified, it
becomes critical when seeking low-order representations
by truncating the number of states used in the regression.
This arbitrariness is further exacerbated by the fact that
both problems employ fictitious states.

Motivated by these observations, which have not re-
ceived much attention in the literature, the paper ad-
dresses the problem of extracting state sequences from
noise-free data generated by linear dynamics for the
purpose of obtaining low-order models. A partial rec-
onciliation is first shown by introducing the concept
of POD transformation, for which a parametrization
is derived which analytically shows how one can place
arbitrary singular values to any state with an appropri-
ate similarity transformation. Then, a unique up-front
(that is, not requiring knowledge of the state sequence)
balanced transformation is presented to extract the SId
states directly in balanced coordinates. This is markedly
different from other approaches to data-driven balanced
truncation such as Balanced POD (which requires the
system’s matrices and an adjoint model) and the Eigen-
system Realization Algorithm [2] (which is a particular
SId algorithm relying on realization theory, and does not
provide the balancing transformation). The current work
is related to [9], where a balanced state extraction was
originally proposed, and [10], where improved algorithms
for the identification of balanced state-space models were
provided. In [6, Chapter 5] the importance of the state
basis was also recognized, but POD-type bases, which



seem relevant in view of the increasing popularity of
related methods, were not considered.

Results are shown for a non-normal system (proto-
typical of certain types of dynamical models describing
flows [11]) and a thermoacoustic model [12]. They both
illustrate the importance of the state selection for the
accuracy of low-order models and motivate the use of
the projection strategies presented in the paper.

II. Background
We consider a deterministic multi-input multi-output

(MIMO) linear time-invariant (LTI) discrete-time sys-
tem:

xt+1 = Axt +But,

yt = Cxt +Dut,
(1)

where x ∈ Rnx is the state, u ∈ Rnu is the input, and
y ∈ Rny is the output, for which a lower order represen-
tation (i.e. with a number of states r smaller than nx)
is sought. Useful related matrices are: reachability and
observability Gramians Wr = LrL

>
r ∈ Rnx×nx and Wo =

LoL
>
o ∈ Rnx×nx , and their Cholesky factors Lr and

Lo, respectively; the extended observability matrix Γl =[
C> (CA)> ... (CAl−1)>

]> ∈ Rnyl×nx , the reversed ex-
tended controllability matrix Ωl =

[
Al−1B ... AB B

]
∈

Rnx×nul; and the block Toeplitz matrix:

Tl =


D 0 0 0
CB D 0 0

...
. . . D 0

CAl−2B CAl−3B · · · D

 ,
Given an ensemble of vectors z ∈ Rnz , we denote by

z[i,j] the matrix:

z[i,j] := [zi ... zj ] ∈ Rnz×(j−i+1),

and, when z is a function of time, also the sequence
{zk}jk=i of length j − i + 1. The block Hankel matrix
Hl(z[i,j]) with depth l associated with z[i,j] is:

Hl(z[i,j]) :=


zi zi+1 · · · zj−l+1
zi+1 zi+2 · · · zj−l+2

...
...

...
zi+l−1 zi+l · · · zj

 ,
where l is the number of block rows.

Given a matrix X ∈ Rn×m with n ≤ m, its SVD and
QR factorizations are denoted by:

X = UΣV >,
X = QR,

where U ∈ Rn×n, and Q ∈ Rn×n are orthogonal matri-
ces, V ∈ Rm×n has orthonormal columns, Σ ∈ Rn×n is
diagonal, and R ∈ Rn×m is upper trapezoidal.

The pseudo-inverse of X is denoted by X†, while
X(:,i:j) and X(:, j) denote the submatrix including the
columns from i to j and the vector with column j,
respectively.

A. Subspace identification
Subspace identification (SId) is a well established non-

parametric technique to identify state-space MIMO mod-
els from input-output data [6]. While several algorithms
have been proposed, the main idea revolves around two
steps [7]. First, a subspace spanned by the columns of
the extended observability matrix Γnx+1 of the system
is identified. Second, the state-space matrices are esti-
mated. Inspired by realization theory, some methods first
determine A and C by making use of the shift invariance
property of the subspace spanned by Γnx+1, and then
B and D, e.g. from Tl. Alternatively, a state sequence
can be extracted from the extended observability matrix
and a least-squares problem solved for the state-space
matrices. The latter approach is closely related to this
work, and a brief summary of the algorithm in [8] is
reported next.

Input and output trajectories of system (1), respec-
tively u[1,N ] and y[1,N ], are used to build two block
Hankel matrices:

H1,2l =
[
H2l(u[1,N ])(1 : l, :)
H2l(y[1,N ])(1 : l, :)

]
,

H2,2l =
[
H2l(u[1,N ])(l + 1 : 2l, :)
H2l(y[1,N ])(l + 1 : 2l, :)

]
,

(2)

where l is chosen such that lny (rows of the two out-
put Hankel sub-matrices H2l(y[1,N ])) is greater than nx
and smaller than N − 2l + 1 (columns of the Han-
kel matrices). Under the assumption that the input is
sufficiently exciting (i.e., that H2l(u[1,N ]) is full row
rank), it holds that rank(H1,2l)=rank(H2,2l)=lnu+nx,
i.e. the two sub-matrices of H2l(y[1,N ]) only add nx
dimensions to the row space spanned by the corre-
sponding input Hankel matrices. Moreover, span(H1,2l)
∩ span(H2,2l)=span(x[l+1,N−l+1]) and thus any basis of
this intersection gives a valid state vector sequence. This
intersection is found in [8] via a double SVD. The first
is used to find the orthogonal complement of

[
H1,2l
H2,2l

]
,

providing a subspace of size 2lny−nx whose basis consists
of nx vectors. A second SVD is employed to extract
x̂[l+1,N−l+1], whose row vectors provide one such basis.

The state-space identification problem is then formu-
lated as the least-squares problem

min
A,B,C,D

∥∥∥∥[x̂[l+2,N−l+1]
y[l+1,N−l]

]
−
[
A B
C D

] [
x̂[l+1,N−l]
u[l+1,N−l]

]∥∥∥∥2

F

. (3)

B. POD and (IO)DMD(c)
Proper Orthogonal Decomposition (POD) is a pop-

ular technique to extract low-order structures in high-
dimensional physical problems [2]. Consider M members
{w(k)}Mk=1 of a scalar field (the same reasoning applies
to the multivariable case) w : R → Rn. For example,
w can be the velocity field in a one-dimensional flow,
where the members are obtained from measurements at
M different times, or can represent ensemble averages



over M distinct experiments [2]. The objective is to find
a basis {φj(x)}∞j=1 in a Hilbert space with inner product
that is L2 optimal. That is, a basis is sought such that
the error made by the approximation of order r:

w(x) ≈ wr(x) =
r∑
j=1

ajφj(x),

is the smallest among those achieved with other bases
and same order. The problem can be formally stated as:

min
φ

〈∥∥∥∥w − (w, φ)
‖φ‖2

φ

∥∥∥∥2
〉
, (4)

where 〈·〉 denotes averaging over the members, (·, ·) is
an inner product, and ‖f‖ = (f, f) 1

2 . The choice of
inner product is a very important step and can be
informed by prior knowledge of the problem domain. A
common choice is to search for the basis in Rn and take
(x, y) = y>x. In this case, the optimal basis is given by
the eigenvectors {φj}nj=1 of the correlation matrix R =
1
M

∑M
k=1 wkw

>
k ∈ Rn×n, called POD modes. Moreover,

the eigenvalues of R, denoted by λj and always real non-
negative, are proportional to the energy captured in the
associated mode φj . This has the important implication
that (assuming the eigenvalues have been ordered by
λj ≥ λj+1) the subspace of order r span(φ[1,r]) captures

the fraction
∑r

j=1
λj∑n

j=1
λj

of total energy in the observed data.
From a computational viewpoint, the eigendecomposi-
tion of R is costly because n� 1. This can be overcome
by noting that (φj ,λj) can also be obtained from the SVD
of w[1,M ]:

w[1,M ] = UΣV >,

σj = Σ(j, j) λj =
σ2
j

M
, φj = U(:, j).

Dimensionality reduction is achieved by using the pro-
jection operator Sr = φ[1,r]φ

>
[1,r] which maps Rn into the

subspace Q of size r < n spanned by φ[1,r] =: Pr.
While POD has proved successful in producing low-

order dynamical models, a recognized drawback is that
the subspace Q does not account for dynamical effects,
and the optimality criterion (4) might not always lead
to accurate results. The Dynamic Mode Decomposition
(DMD) technique was proposed in [3] to partially address
these aspects, and can be understood as a method to
compute a low-order eigendecomposition of a linear oper-
ator which describes the evolution of a given sequence of
observations [13]. The key step is to project the data onto
a lower dimensional subspace where a linear regression
can be efficiently computed. Even though researchers
have looked at improved strategies for the data projec-
tion step (e.g. optimization over manifolds techniques
[14]), the standard choice is an orthogonal projection
onto the subspace Q spanned by the first r POD modes
associated with the sequence of computed states.

While initial works focused on autonomous systems,
recent extensions of the DMD framework to controlled
systems (DMDc) [4] and input-output models (IODMD)
[5] have been proposed, all using Q as subspace for the
projection. If input u[1,M ], state x[1,M ], and output y[1,M ]
trajectories are available, a model of order r can then be
estimated by solving the least-squares problem:

min
A,B,C,D

∥∥∥∥[ x̄[2,M ]
y[1,M−1]

]
−
[
A B
C D

] [
x̄[1,M−1]
u[1,M−1]

]∥∥∥∥2

F

, (5)

where x̄[1,M ] = P>r x[1,M ] ∈ Rr×M , and Pr ∈ Rn×r is
made of the leading r singular vectors of the so-called
snapshot matrix x[1,M−1].

III. Extracting states from data
It is clear that the SId algorithm reviewed in Section II-

A (related by a unifying theory to other SId approaches
[7]) and DMD feature important similarities. In both
cases, the model estimation step boils down to a least-
squares fit (3)-(5) done on input, state, and output
sequences. A fundamental role is played by the state,
which in both cases is a proxy of the true one. In SId,
the state is not measured and a particular sequence is
extracted from the intersection between two subspaces
built from input-output trajectories. In DMD there is full
observation, and the state x̄ used for fitting is obtained by
projecting the high-dimensional state onto the subspace
spanned by the POD modes (computed as well from the
states). Owing to these modes’ aforementioned property,
the state components are here ranked by energy content,
paving the way to the use of DMD as a model reduction
technique. Similarly, truncating SVD factorizations is in
subspace identification a common heuristics for obtaining
reduced-order models and denoising the data. However,
this is not underpinned by a clear rationale, for example
on the relevance of the states that are neglected. The next
sections provide results that shed light into the selection
of particular state sequences in SId and DMD techniques.
A. Parametrized POD coordinate transformations

It is known that state-space models such as (1) are only
defined up to a similarity transformation. While many
important properties of the LTI system remains invariant
under this transformation, the state does not. Specifi-
cally, given a state x, x̃ = Tx also qualifies as state for
any nonsingular matrix T ∈ Rnx×nx defining a particular
coordinate transformation, which only leaves the state
range space unchanged, i.e. span(x̃[i,j])=span(x[i,j]). A
similarity transformation which provides a common
ground between DMD and SId is defined next (it is
assumed that j − i+ 1>nx, which is necessary in SId).

Definition 1: Given a state sequence x[i,j], a nonsin-
gular matrix TPOD defines a POD transformation if:

x̃[i,j] = TPODx[i,j] = Σ̃Ṽ >, (6)

where Σ̃ ∈ Rnx×nx is any positive definite diagonal
matrix (with entries in decreasing order) and
Ṽ ∈ R(j−i+1)×nx is any matrix with orthogonal columns.



Essentially, TPOD defines a coordinate frame where states
are ranked by their energy content. Obviously, for a
given state sequence x[i,j] POD transformations are non-
unique. Next lemma gives a parametrization of POD
coordinate transformations.

Lemma 1: Given a state sequence x[i,j] = UΣV >, then
any nonsingular matrix T̃POD:

T̃POD = Σ̃V̂ >Σ†U>, (7)

where Σ̃ ∈ Rnx×nx is any positive definite diagonal
matrix and V̂ ∈ Rnx×nx is any orthogonal matrix, defines
a POD transformation with:

x̃[i,j] = T̃PODx[i,j] = Σ̃Ṽ >, Ṽ = V V̂ . (8)
Proof: From Definition 1 and orthogonality of the

left singular vectors U , it is clear that a candidate TPOD
is simply TPOD = U>. This would give:

x̃[i,j] = TPODx[i,j] = ΣV >, (9)

and is such that x̃[i,j] and x[i,j] have the same singular
values. However, any matrix T̃POD which satisfies:

T̃PODT
>
PODΣ = Σ̃V̂ >,
T̃POD = Σ̃V̂ >Σ†U>,

for arbitrary positive definite diagonal and orthogonal
matrices, respectively Σ̃ and V̂ , would give a new state
sequence in POD coordinates:

x̃[i,j] = T̃PODx[i,j] = Σ̃V̂ >Σ†U>UΣV > = Σ̃(V V̂︸︷︷︸
Ṽ

)>,

where Ṽ ∈ R(j−i+1)×nx is the product of a matrix with
orthogonal columns by an orthogonal matrix and thus
has orthogonal columns.

Remark 1: Eq. (7) shows that POD transformations
can be parametrized by choosing the nx singular values
Σ̃ of the projected state x̃[i,j] (singular values placement).
This non-uniqueness is not surprising, and relates to
the fact that the original state sequence x[i,j] is not
uniquely defined. In DMD algorithms, the state x̄ is
determined using the particular transformation (9) which
preserves the singular values of the original sequence
x[i,j]. However, these clearly depend on the similarity
transformation underlying (1). In fact, using (7) one
can readily obtain a similarity transformation for the
original sequence such that, after applying the standard
transformation (9), the states are ranked according to the
(arbitrary) singular values in Σ̃. This is believed to have
strong ties with the selection of inner product (4) in the
definition of POD modes, known from the early works
[2] to have a very important role, but largely overlooked
in applications.

A natural question is then in which coordinate system
is the state x̂ extracted by the subspace algorithm.

Lemma 2: Given matrices H1,2l and H2,2l (2) built
from persistently exciting input and noise-free output

trajectories u[1,N ] and y[1,N ], define the following SVD
and QR factorizations:

H =
[
H1,2l
H2,2l

]
=
[
U11 U12
U21 U22

] [
Σ11 0
0 0

] [
V1 V2

]> (10a)

U>12U11Σ11 = UxΣxV >x (10b)
U>x = QxRx. (10c)

Then, Qx defines a POD transformation for the extracted
state sequence x[l+1,N−l+1]:

x[l+1,N−l+1] = RxU
>
12H1,2l, (11a)

x̂[l+1,N−l+1] = Qxx[l+1,N−l+1] = Σx(V1Vx)>. (11b)
Proof: The SVD (10a) identifies the order of the

system (since Σ11 ∈ R(2lnu+nx)×(2lnu+nx)) and the or-
thogonal complement

[
U12
U22

]
, which in turn reveals the

intersection between the range spaces of H1,2l and H2,2l:

U>12H1,2l = −U>22H2,2l ∈ R(2lny−nx)×N−2l+1, (12)

As proven in [8], the intersection subspace has only
nx independent vectors, coinciding with a valid state
sequence. To find a basis for it, observe using (10a) that:

U>12H1,2l =
[
U>12U11Σ11

]
V >1 ,

and hence rank(U>12U11Σ11)=nx. Therefore, using the
factorizations (10b)-(10c), it holds:

RxU
>
12H1,2l = RxUxΣx(V1Vx)> = x[l+1,N−l+1],

QxRxU
>
12H1,2l︸ ︷︷ ︸

x[l+1,N−l+1]

= Σx︸︷︷︸
Σ̃

(V1Vx︸ ︷︷ ︸
Ṽ

)> = x̂[l+1,N−l+1],

(13)
which proves the statement.

The algorithm in [8] also employs the SVD (10a)-
(10b), but their implications on the state sequence co-
ordinate definition were not addressed. Lemma 2 proves
two things: the states x̂[l+1,N−l+1] from the intersection
algorithm are in POD coordinates; and the particular
POD transformation used here is the one assigning to
the extracted state sequence the non-zero singular values
of U>12H1,2l (i.e. the entries of Σx). It is worth observing
that, since the latter matrix depends on input-output
data only, the particular POD transformation matrix
used here Qx is not affected by the arbitrariness related
to similarity transformations. Moreover, in SId the cal-
culation of TPOD is done in advance (up-front), that is,
the transformation is not computed from, but together
with, the state sequence. This is contrast with DMD
methods where the computation of the POD modes
requires knowledge of the state sequence x[l+1,N−l+1].
Note also that SVD (10b), enabling the subspace-POD
projection, has a computational complexity depending
only on the depth 2l. Instead, the computation of POD
modes depends on the data length, which is potentially
onerous if the sequence is long.



B. Estimating balanced states from data
It has been shown earlier that both DMD and SId

methods use states ranked by energy content in their re-
spective least-squares problems, thus providing a means
for obtaining models of reduced order r by removing the
last nx − r states. This strategy is however questioned
by the arbitrariness of TPOD, unless one has a precise
rationale to select a specific POD transformation out of
the infinitely many defined by Lemma 1. It is therefore
of interest to consider alternative similarity transforma-
tions. For example, the balanced one, as it is central in
model order reduction of LTI systems.

Definition 2: [15] A nonsingular matrix TBal defines a
balanced transformation for (1) if:

TBal = Σ−0.5
b U>b L

>
o , (14)

where Lo and Lr are the Cholesky factors of the Grami-
ans Wo and Wr, respectively, and L>o Lr = UbΣbV >b .

When the singular values of the product WrWo (the
Hankel singular values) are distinct, TBal is unique to
within the sign of its columns. This transformation
diagonalizes (with same diagonal entries, equal to the
Hankel singular values) Wr and Wo, and the resulting
states are ranked based on their degree of controllabil-
ity/observability. Balanced truncation then consists of
removing the states associated with the smallest nx − r
Hankel singular values, justified by the fact that their
sum provides a lower bound and, for systems in bal-
anced coordinates, an upper bound on the quality of the
approximation [16]. Even though not guaranteed to be
optimal, balanced truncation is de facto a standard tool
in model-based order reduction.

The finite time-l observability and reachability Grami-
ans [17] are defined respectively as Wo,l = Γ>l Γl and
Wr,l = ΩlΩ>l . When they are used, instead of Wo and
Wr, to build the transformation (14), the state sequence
is said to be in finite time-l balanced coordinates. While
the error bounds available for the infinite-time balanced
case do not hold in this case, by making l large enough
(how large depends on the impulse response decay rate)
the two transformations can be made arbitrarily close
[10]. In the remainder it is assumed that l is chosen such
that the approximation introduced by the finite time-
Gramians is negligible.

The use of balanced truncation in the context of DMD
methods has been recently suggested in [18] to replace
the orthogonal projection onto the POD modes by an
oblique projection onto empirical balancing modes. This
is achieved at the cost of additional ad-hoc simulations to
construct the finite time-Gramians [19]. The SId frame-
work instead allows one to directly extract a balanced
state sequence using only input output trajectories [9],
[10]. This is presented in the following Lemma, which
builds on the original result from [9] (variables already
introduced in Lemma 2 are used with same notation and
the subscript 2l is dropped for readability). We first de-
fine the following partition of the orthogonal complement

of H, which corresponds to the input-output parts in H1
and H2, i.e.

[
U>12 U>22

]
=
[
P1,u P1,y P2,u P2,y

]
.

Lemma 3: Given trajectories u[1,N ] and y[1,N ], it holds:

Γl = P †2,yR
>
x , (15a)

ΓlΩl = P †2,y

(
P1,yP

†
2,yP2,u − P1,u

)
= UTΣTV >T , (15b)

T̂x = Σ−0.5
T U>T Γl. (15c)

That is, matrices derived from data can be used to
explicitly construct the extended observability matrix
Γl and the matrix T̂x projecting the state sequence
x[l+1,N−l+1] (11a) in finite time-l balanced coordinates.

Proof: In Lemma 2 it was proved that x[l+1,N−l+1]
is a valid state sequence (in generic coordinates). The
proof here uses this as starting point, and constructs
the balancing transformation T̂x for the representation
associated with x[l+1,N−l+1] in three steps.

The input-output equations of (1) yields:

H2(l + 1 : 2l, :) = Γlx[l+1,N−l+1] + TlH2(1 : l, :),
→ x[l+1,N−l+1] =

[
−Γ†l Tl Γ†l

]
H2, (16)

The sequence x[l+1,N−l+1] can also be written using
(11a). Substituting (12) in (11a), the two equivalent
expressions for the state sequence give:[

−Γ†l Tl Γ†l
]
H2 = Rx

[
P2,u P2,y

]
H2, (17)

This relationship, observing that Rx has orthonormal
columns, can be used to construct the extended observ-
ability matrix and thus proves (15a).

The second step consists of proving (15b), for which
the same arguments in [9] are followed. From the input-
output equations it also holds:

H1(l + 1 : 2l, :) = Γlx[1,N−2l+1] + TlH1(1 : l, :), (18)

Pre-multiplying (16) and (18) by the orthogonal comple-
ment of Γl (denoted by Γ⊥l ) yields:

0 =
[
−Γ⊥l Tl Γ⊥l

]
H1 =

[
−Γ⊥l Tl Γ⊥l

]
H2, (19)

Using the fact that the state sequence is in the span of
U>22H2, and eqs.(17)-(19), it is possible to write:[

P2,u P2,y
]

= R>x
[
−Γ†l Tl Γ†l

]
+ B

[
−Γ⊥l Tl Γ⊥l

]
,

(20)
where B is any arbitrary matrix of appropriate size.
Then, an equivalent formula for U>12 is obtained by
observing that x[l+1,2N−l+1] = Alx[1,2N−2l+1] + ΩiH1(1 :
l, :), and by using eqs.(12-19):[

P1,u P1,y
]

=R>x
[(
AlΓ†l Tl − Ωl

)
−AlΓ†l

]
+

+ C
[
−Γ⊥l Tl Γ⊥l

]
,

(21)

where again C is any arbitrary matrix of appropriate size.
Eqs. (20) and (21) finally give:

P1,yP
†
2,yP2,u − P1,u = −P1,yTl − P1,u = R>x Ωl,

P †2,y =
[
Γ Γ⊥†

] [
Rx B

]†
,



which, together with (15a), prove (15b).
Finally, given an expression for ΓlΩl, it is possible to

show that the matrix T̂x in (15c) provides a balanced
state sequence. Recalling the SVD (15b), it holds:(

Σ−0.5
T U>T Γl

)︸ ︷︷ ︸
T̂x

Wr,l

(
Σ−0.5
T U>T Γl

)> = ΣT ,

(
ΩlVTΣ−0.5

T

)>
Wo,l

(
ΩlVTΣ−0.5

T

)︸ ︷︷ ︸
T̂−1

x

= ΣT .
(22)

That is, T̂x diagonalizes (with same diagonal) the Grami-
ans, hence is the sought balanced transformation.
Lemma 3 provides new elements with respect to the orig-
inal result in [9]. The proof is linked with that of Lemma
2, and by doing so the connection with the sequence of
states in POD coordinates is made. Moreover, an explicit
expression for the transformation T̂x is obtained here,
while in [9] only the reduction (fat) matrix that gives
the state via multiplication by U>12H1 was given.

An important fact is that, similarly to what was ob-
served earlier for POD states, in SId the balanced trans-
formation is performed up-front. This is an interesting
fact considering that there is no direct access to the state,
while in DMD, despite having full observability, further
ad-hoc simulations would be required [18]. The reason
for this is that subspace identification favourably exploits
the structural properties of the underlying linear system
to extract states (and as a result state-space models) in
the desired coordinates. This points out the potential of
investigating balancing projections in DMD which only
require input-output matrices.

IV. Numerical examples
A. An illustrative non-normal system

Consider the SISO system defined as:

A :=

Aij = 0.2, i = j
Aij = 2.5, i > j
Aij = 0, i < j

∈ R10×10,

B = [1 ... 1] ∈ R10, C = c [1 ... 1]> ∈ R1×10, D = 0.
(23)

where c is a normalization factor such that the system
has unit DC gain, and the sampling time is Ts = 0.03s.
The upper-triangular structure of A makes this system
non-normal, that is A does not commute with its adjoint
and thus its eigenvectors are not orthogonal (in fact, they
are all parallel here). An important consequence of this is
that, even if the system is stable, its unforced response
does not decrease monotonically and can exhibit large
transient growth before eventually decaying. This type
of systems are often encountered in fluid mechanics
problems (e.g. linearized Navier-Stokes equations), see
for example [11].

The impulse response of the reduced-order models
obtained by removing in the least-squares problems the
smallest nx − r states are examined. Specifically, results

are compared in Figure 1 for: IODMD (problem in Eq. 5
with states obtained by projecting the simulated states
onto the first r POD modes); SId-POD (problem in Eq.
3 with states extracted directly in POD coordinates, as
per Eq. 11b); and SId-Bal (problem in Eq. 3 with states
extracted directly in balanced coordinates). The sensi-
tivity of IODMD to the state coordinate of the original
model is also investigated by generating a sequence of
states from the companion form of (23) (IODMD-comp).
The analyses are performed with N=510, M=N , l=20,
and using as the input a PRBS-9 sequence [1].
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Fig. 1: Impulse response of the estimated models with
full-order (r=10) and reduced-orders (r=8, 6, 4, 3, 2).

The impulse response of (23), reported for reference
(Ref.), shows the non-monotonicity characteristic of non-
normal systems. It is noted that, as r decreases, the
quality of the model estimated by the IODMD approach
markedly deteriorates (note that for r < 8 the transient
feature is not even qualitatively captured). Moreover, a
big difference is noted between IODMD and IODMD-
comp. Note that while the choice of companion form is
fictitious here, the arbitrariness of the similarity trans-
formation can happen in practice in high-order models (a
trivial but often encountered example is the normaliza-
tion of state variables by arbitrary reference quantities).
The SId-Bal estimates capture dominant features of the
original impulse response also for very low r. It is also
worth observing that SId-POD performs considerably
better than IODMD, despite the fact that both methods
remove states based on their energy contents.

B. A thermoacoustic test-case
In the second example, a model describing thermoa-

coustic effects in the Rijke tube system is considered [12].
The dynamics is described by nonlinear partial differen-
tial equations consisting of continuity and momentum
balances, which can be linearized about a specified trim
point and then converted into ordinary differential equa-
tions by means of spatial discretization schemes. This
is done here by projecting the dynamics onto Galerkin
modes, which are sinusoidal functions of the position
inside the Tube with harmonically related frequencies,



see [20] for details. The autonomous model proposed in
the reference is augmented here to account for input
(modelled as in boundary condition control) and output
(representing sensor measurements) channels. The final
model, used to generate the data, consists of 200 states
(each Galerkin mode is associated with two states), 1
input modeling the action of a speaker at the bottom of
the tube, and 1 output consisting of the pressure mea-
sured at 80 % of the length. The analyses are performed
with N=1022, M=N , l=270, and using as input a PRBS-
10 sequence, a type of input also used in [21] for real
experiments on the Rijke tube. However, other inputs
such as chirp could also be considered.

Figure 2 shows two relative error metrics between
the original and estimated frequency response’s magni-
tude, namely e2=

∑nω

i=1|G(ejωi )−Ĝr(ejωi )|2∑nω

i=1|G(ejωi )|2 (left plot) and

e∞=maxωi |G(ejωi )−Ĝr(ejωi )|
maxωi |G(ejωi )| (right plot), on nω = 200

frequency points for different values of model order r.
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Fig. 2: Percentage relative errors (e2-left, e∞-right) of the
frequency response as a function of the model’s order.

The results reinforce the evidence gathered in the
previous example and are obtained considering a physical
system which is representative of a typical application of
DMD techniques [22]. The plotted trend confirms that
subspace identification with balanced states outperform
the other algorithms when seeking low-order approxima-
tions. Moreover, it is confirmed that the particular POD
transformation selected in the subspace identification
method outperforms the one adopted in IODMD (com-
puted from the high-dimensional state sequence). This
inherent robustness was observed also in other numerical
tests and general arguments that underpin its success
deserve further investigations.

V. Conclusions
Similarities and important distinctions between sub-

space identification and Dynamic Mode Decomposition
approaches with focus on the use of fictitious state
sequences are formally presented. A parametrization of
POD state transformations is derived and it is shown

how the approaches can be interpreted as two differ-
ent choices of this transformation. New insights into
a balancing transformation only requiring input-output
trajectories are also described. The results corroborate
the main claim that the standard POD projection step
employed in DMD approaches might not be robust to
general applications since the quality of the estimated
model strongly depends on the particular state sequence
considered. This emphasizes the importance of selecting
an appropriate inner product when using POD.
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to balanced truncation for model reduction of nonlinear con-
trol systems,” International Journal of Robust and Nonlinear
Control, vol. 12, no. 6, pp. 519–535, 2002.

[20] M. Juniper, “Triggering in the horizontal rijke tube: non-
normality, transient growth and bypass transition,” Journal
of Fluid Mechanics, vol. 667, pp. 272–308, 2011.

[21] A. Iannelli, M. S. Baumann, S. Balula, and R. S. Smith,
“Experiments and identification of thermoacoustic instabili-
ties with the Rijke tube,” in IEEE Conference on Control
Technology and Application, 2020.

[22] T. Sayadi, V. Le Chenadec, P. Schmid, F. Richecoeur, and
M. Massot, “Thermoacoustic instability - a dynamical system
and time domain analysis,” Journal of Fluid Mechanics, vol.
753, pp. 448–471, 2014.


