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Abstract
This paper presents a novel system for autonomous, vision-based drone racing combining learned data abstraction, nonlinear
filtering, and time-optimal trajectory planning. The system has successfully been deployed at the first autonomous drone
racing world championship: the 2019 AlphaPilot Challenge. Contrary to traditional drone racing systems, which only detect
the next gate, our approach makes use of any visible gate and takes advantage of multiple, simultaneous gate detections to
compensate for drift in the state estimate and build a global map of the gates. The global map and drift-compensated state
estimate allow the drone to navigate through the race course even when the gates are not immediately visible and further
enable to plan a near time-optimal path through the race course in real time based on approximate drone dynamics. The
proposed system has been demonstrated to successfully guide the drone through tight race courses reaching speeds up to
8m/s and ranked second at the 2019 AlphaPilot Challenge.

Keyword Drone racing . Agile flight . Aerial vehicles

1 Introduction

1.1 Motivation

Autonomous drones have seen a massive gain in robustness
in recent years and perform an increasingly large set of tasks
across various commercial industries; however, they are still
far from fully exploiting their physical capabilities. Indeed,
most autonomous drones only fly at low speeds near hover
conditions in order to be able to robustly sense their environ-
ment and to have sufficient time to avoid obstacles. Faster
and more agile flight could not only increase the flight range
of autonomous drones, but also improve their ability to avoid
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fast dynamic obstacles and enhance their maneuverability in
confined spaces. Human pilots have shown that drones are
capable of flying through complex environments, such as
race courses, at breathtaking speeds. However, autonomous
drones are still far from human performance in terms of
speed, versatility, and robustness, so that a lot of research
and innovation is needed in order to fill this gap.

In order to push the capabilities and performance of
autonomous drones, in 2019, LockheedMartin and theDrone
Racing League have launched the AlphaPilot Challenge1,2,
an open innovation challengewith a grandprize of $1million.
The goal of the challenge is to develop a fully autonomous
drone that navigates through a race course using machine
vision, and which could one day beat the best human pilot.
While other autonomous drone races Moon et al. (2017,
2019) focus on complex navigation, the AlphaPilot Chal-
lenge pushes the limits in terms of speed and course size to
advance the state of the art and enter the domain of human
performance. Due to the high speeds at which dronesmust fly
in order to beat the best human pilots, the challenging visual
environments (e.g., low light, motion blur), and the limited
computational power of drones, autonomous drone racing

1 https://thedroneracingleague.com/airr/
2 https://www.nytimes.com/2019/03/26/technology/alphapilot-ai-
drone-racing.html
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Fig. 1 Our AlphaPilot drone waiting on the start podium to
autonomously race through the gates ahead

raises fundamental challenges in real-time state estimation,
perception, planning, and control.

1.2 Related work

Autonomous navigation in indoor or GPS-denied environ-
ments typically relies on simultaneous localization and
mapping (SLAM), often in the form of visual-inertial odom-
etry (VIO) Cadena et al. (2016). There exists a variety of VIO
algorithms, e.g., Mourikis and Roumeliotis (2007); Bloesch
et al. (2015); Qin et al. (2018); Forster et al. (2017a), that
are based on feature detection and tracking that achieve very
good results in general navigation tasksDelmerico andScara-
muzza (2018). However, the performance of these algorithms
significantly degrades during agile and high-speed flight as
encountered in drone racing. The drone’s high translational
and rotational velocities cause large optic flow,making robust
feature detection and tracking over sequential images dif-
ficult and thus causing substantial drift in the VIO state
estimate Delmerico et al. (2019).

To overcome this difficulty, several approaches exploiting
the structure of drone racing with gates as landmarks have
been developed, e.g., Li et al. (2019); Jung et al. (2018);
Kaufmann et al. (2018), where the drone locates itself rel-
ative to gates. In Li et al. (2019), a handcrafted process is
used to extract gate information from images that is then
fused with attitude estimates from an inertial measurement
unit (IMU) to compute an attitude reference that guides the
drone towards the visible gate.While the approach is compu-
tationally very light-weight, it struggleswith scenarioswhere
multiple gates are visible and does not allow to employ more
sophisticated planning and control algorithms which, e.g.,
plan several gates ahead. In Jung et al. (2018), a convolu-
tional neural network (CNN) is used to retrieve a bounding
box of the gate and a line-of-sight-based control law aided

by optic flow is then used to steer the drone towards the
detected gate. While this approach is successfully deployed
on a real robotic system, the generated control commands
do not account for the underactuated system dynamics of
the quadrotor, constraining this method to low-speed flight.
The approach presented in Kaufmann et al. (2018) also relies
on relative gate data but has the advantage that it works even
when no gate is visible. In particular, it uses aCNN to directly
infer relative gate poses from images and fuse the results with
a VIO state estimate. However, the CNN does not perform
well when multiple gates are visible as it is frequently the
case for drone racing.

Assuming knowledge of the platform state and the envi-
ronment, there exist many approaches which can reliably
generate feasible trajectories with high efficiency. The most
prominent line of work exploits the quadrotor’s underactu-
ated nature and the resulting differentially-flat output states
Mellinger et al. (2012); Mueller et al. (2015), where trajecto-
ries are described as polynomials in time. Other approaches
additionally incorporate obstacle avoidance Zhou et al.
(2019); Gao et al. (2019) or perception constraints Falanga
et al. (2018); Spasojevic et al. (2020). However, in the context
of drone racing, specifically theAlphaPilot Challenge, obsta-
cle avoidance is often not needed, but time-optimal planning
is of interest. There exists a handful of approaches for time-
optimal planning Hehn et al. (2012); Loock et al. (2013);
Ryou et al. (2020); Foehn and Scaramuzza (2020). However,
while Hehn et al. (2012); Loock et al. (2013) are limited to
2D scenarios and only find trajectories between two given
states, Ryou et al. (2020) requires simulation and real-world
data obtained on the track, and the method of Foehn and
Scaramuzza (2020) is not applicable due to computational
constraints.

1.3 Contribution

The approach contributed herein builds upon the work
of Kaufmann et al. (2018) and fuses VIOwith a robust CNN-
based gate corner detection using an extended Kalman filter
(EKF), achieving high accuracy at little computational cost.
The gate corner detections are used as static features to com-
pensate for the VIO drift and to align the drone’s flight path
precisely with the gates. Contrary to all previous works Li
et al. (2019); Jung et al. (2018); Kaufmann et al. (2018),
which only detect the next gate, our approach makes use of
any gate detection and even profits from multiple simulta-
neous detections to compensate for VIO drift and build a
global gate map. The global map allows the drone to nav-
igate through the race course even when the gates are not
immediately visible and further enables the usage of sophis-
ticated path planning and control algorithms. In particular, a
computationally efficient, sampling-based path planner (see
e.g., LaValle (2006), and references therein) is employed that
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plans near time-optimal paths through multiple gates ahead
and is capable of adjusting the path in real time if the global
map is updated.

This paper extends our previous work Foehn et al. (2020)
by including a more detailed elaboration on our gate corner
detection in Sect. 4 with an ablation study in Sect. 8.1, further
details on the fusion of VIO and gate detection in Sect. 5, and
a description of the path parameterization in Sect. 6, com-
pleted by an ablation study on the planning horizon length in
Sect. 8.3.

2 AlphaPilot race format and drone

2.1 Race format

From more than 400 teams that participated in a series of
qualification tests including a simulated drone race Guerra
et al. (2019), the top nine teams were selected to compete
in the 2019 AlphaPilot Challenge. The challenge consists
of three qualification races and a final championship race at
which the six best teams from the qualification races compete
for the grand prize of $1 million. Each race is implemented
as a time trial competition in which each team is given three
attempts to fly through a race course as fast a possible with-
out competing drones on the course. Taking off from a start
podium, the drones have to autonomously navigate through
a sequence of gates with distinct appearances in the cor-
rect order and terminate at a designated finish gate. The race
course layout, gate sequence, and position are provided ahead
of each race up to approximately ±3m horizontal uncer-
tainty, enforcing teams to come up with solutions that adapt
to the real gate positions. Initially, the race courses were
planned to have a lap length of approximately 300m and
required the completion up to three laps. However, due to
technical difficulties, no race required to complete multiple
laps and the track length at the final championship race was
limited to about 74m.

2.2 Drone specifications

All teams were provided with an identical race drone
(Fig. 1) that was approximately 0.7m in diameter, weighed
3.4kg, and had a thrust-to-weight ratio of 1.4. The drone
was equipped with a NVIDIA Jetson Xavier embedded com-
puter for interfacing all sensors and actuators and handling all
computation for autonomous navigation onboard. The sensor
suite included two ± 30◦ forward-facing stereo camera pairs
(Fig. 2), an IMU, and a downward-facing laser rangefinder
(LRF). All sensor data were globally time stamped by soft-
ware upon reception at the onboard computer. Detailed
specifications of the available sensors are given in Table 1.
The drone was equipped with a flight controller that con-
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Fig. 2 Illustrationof the race dronewith its body-fixed coordinate frame
B in blue and a camera coordinate frame C in red

trolled the total thrust f along the drone’s z-axis (see Fig. 2)
and the angular velocity,ω = (

ωx , ωy, ωz
)
, in the body-fixed

coordinate frame B.

2.3 Dronemodel

Bold lower case and upper case letters will be used to
denote vectors and matrices, respectively. The subscripts in

I pCB = I pB − I pC are used to express a vector from point
C to point B expressed in frame I.Without loss of generality,
I is used to represent the origin of frame I, and B represents
the origin of coordinate frame B. For the sake of readability,
the leading subscript may be omitted if the frame in which
the vector is expressed is clear from context.

The drone ismodelled as a rigid body ofmassm with rotor
drag proportional to its velocity acting on it Kai et al. (2017).
The translational degrees-of-freedom are described by the
position of its center of mass, pB = (

pB,x , pB,y, pB,z
)
, with

respect to an inertial frame I as illustrated in Fig. 2. The
rotational degrees-of-freedom are parametrized using a unit
quaternion, qIB, where RIB = R(qIB) denotes the rota-
tion matrix mapping a vector from the body-fixed coordinate
frameB to the inertial frame I Shuster (1993). A unit quater-
nion, q, consists of a scalar qw and a vector q̃ = (

qx , qy, qz
)

and is defined as q = (qw, q̃) Shuster (1993). The drone’s
equations of motion are

m p̈B = RIB f eBz − RIBDRᵀ
IBvB − mg, (1)

q̇IB = 1

2

[
0
ω

]
⊗ qIB, (2)

where f and ω are the force and bodyrate inputs, eBz =
(0, 0, 1) is the drone’s z-axis expressed in its body-fixed
frame B, D = diag(dx , dy, 0) is a constant diagonal matrix
containing the rotor drag coefficients, vB = ṗB denotes the
drone’s velocity, g is gravity and ⊗ denotes the quaternion
multiplication operator Shuster (1993). The drag coefficients
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Table 1 Sensor specifications

Sensor Model Rate Details

Cam Leopard imaging IMX 264 60Hz Global shutter, color resolution: 1200 × 720

IMU Bosch BMI088 430Hz Range: ±24g, ±34.5 rad/s resolution: 7e-4g, 1e-3 rad/s

LRF Garmin LIDAR-Lite v3 120Hz Range: 1–40m resolution: 0.01m

Sensor Interface Perception State Estimation Planning & Control Drone Interface

IMU
Laser

Rangefinder

Camera 4
Camera 3
Camera 2
Camera 1 Gate

Detection

Visual
Inertial

Odometry

EKF
State

Estimation

State
Prediction

Position
Control

Attitude
Control

Angular
Velocity

Path
Planning

Total
Thrust

gate map

trajectory

attitude

vehicle state

Fig. 3 Overview of the system architecture and its main components. All components within a dotted area run in a single thread

were identified experimentally to be dx = 0.5 kg/s and
dy = 0.25 kg/s.

3 System overview

The system is composed of five functional groups: Sensor
interface, perception, state estimation, planning and control,
and drone interface (see Fig. 3). In the following, a brief
introduction to the functionality of our proposed perception,
state estimation, and planning and control system is given.

3.1 Perception

Of the two stereo camera pairs available on the drone, only
the two central forward-facing cameras are used for gate
detection (see Sect. 4) and, in combination with IMU mea-
surements, to run VIO. The advantage is that the amount of
image data to be processed is reduced while maintaining a
very large field of view. Due to its robustness, multi-camera
capability and computational efficiency, ROVIO Bloesch
et al. (2015) has been chosen as VIO pipeline. At low speeds,
ROVIO is able to provide an accurate estimate of the quadro-
tor vehicle’s pose and velocity relative to its starting position,
however, at larger speeds the state estimate suffers from drift.

3.2 State estimation

In order to compensate for a driftingVIO estimate, the output
of the gate detection and VIO are fused together with the
measurements from the downward-facing laser rangefinder
(LRF) using anEKF (seeSect. 5). TheEKFestimates a global
map of the gates and, since the gates are stationary, uses the

gate detections to align the VIO estimate with the global
gate map, i.e., compensates for the VIO drift. Computing
the state estimate, in particular interfacing the cameras and
running VIO, introduces latency in the order of 130ms to the
system. In order to be able to achieve a high bandwidth of
the control system despite large latencies, the vehicle’s state
estimate is predicted forward to the vehicle’s current time
using the IMU measurements.

3.3 Planning and control

The global gate map and the latency-compensated state esti-
mate of the vehicle are used to plan a near time-optimal path
through the next N gates starting from the vehicle’s cur-
rent state (see Sect. 6). The path is re-planned every time
(i) the vehicle passes through a gate, (ii) the estimate of the
gate map or (iii) the VIO drift are updated significantly, i.e.,
large changes in the gate positions or VIO drift. The path is
tracked using a cascaded control scheme (see Sect. 7) with
an outer proportional-derivative (PD) position control loop
and an inner proportional (P) attitude control loop. Finally,
the outputs of the control loops, i.e., a total thrust and angular
velocity command, are sent to the drone.

3.4 Software architecture

The NVIDIA Jetson Xavier provides eight CPU cores, how-
ever, four cores are used to run the sensor and drone interface.
The other four cores are used to run the gate detection, VIO,
EKF state estimation, and planning and control, each in a sep-
arate thread on a separate core. All threads are implemented
asynchronously to run at their own speed, i.e., whenever new
data is available, in order to maximize data throughput and to
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reduce processing latency. The gate detection thread is able
to process all camera images in real time at 60Hz, whereas
the VIO thread only achieves approximately 35Hz. In order
to deal with the asynchronous nature of the gate detection and
VIO thread and their output, all data is globally time stamped
and integrated in the EKF accordingly. The EKF thread runs
every time a new gate or LRF measurement is available. The
planning and control thread runs at a fixed rate of 50Hz. To
achieve this, the planning and control thread includes the
state prediction which compensates for latencies introduced
by the VIO.

4 Gate detection

To correct for drift accumulated by the VIO pipeline, the
gates are used as distinct landmarks for relative localization.
In contrast to previous CNN-based approaches to gate detec-
tion, we do not infer the relative pose to a gate directly, but
instead segment the four corners of the observed gate in the
input image. These corner segmentations represent the like-
lihood of a specific gate corner to be present at a specific
pixel coordinate. To represent a value proportional to the
likelihood, the maps are trained on Gaussians of the corner
projections. This allows the detection of an arbitrary amount
of gates, and allows for a more principled inclusion of gate
measurements in the EKF through the use of reprojection
error. Specifically, it exhibits more predictable behavior for
partial gate observations and overlapping gates, and allows
to suppress the impact of Gaussian noise by having multi-
ple measurements relating to the same quantity. Since the
exact shape of the gates is known, detecting a set of charac-
teristic points per gate allows to constrain the relative pose.
For the quadratic gates of the AlphaPilot Challenge, these
characteristic points are chosen to be the inner corner of the
gate border (see Fig. 4, 4th column). However, just detect-
ing the four corners of all gates is not enough. If just four
corners of several gates are extracted, the association of cor-
ners to gates is undefined (see Fig. 4, 3rd row, 2nd column).
To solve this problem, we additionally train our network to
extract so-called Part Affinity Fields (PAFs), as proposed
by Cao et al. (2017). These are vector fields, which, in our
case, are defined along the edges of the gates, and point from
one corner to the next corner of the same gate, see column
three in Fig. 4. The entire gate detection pipeline consists
of two stages: (1) predicting corner maps and PAFs by the
neural network, (2) extracting single edge candidates from
the network prediction and assembling them to gates. In the
following, both stages are explained in detail.

4.1 Stage 1: predicting corner maps and part affinity
fields

In the first detection stage, each input image, Iw×h×3, is
mapped by a neural network into a set of NC = 4 corner
maps, Cw×h×NC , and NE = 4 PAFs, Ew×h×(NE ·2). Pre-
dicted corner maps as well as PAFs are illustrated in Fig. 4,
2nd and 3rd column. The network is trained in a super-
vised manner by minimizing the Mean-Squared-Error loss
between the network prediction and the ground-truth maps.
In the following, ground-truth maps for both map types are
explained in detail.

4.1.1 Corner maps

For each corner class, j ∈ C j , C j := {T L ,T R ,BL ,BR }, a
ground-truth corner map, C∗

j (s), is represented by a single-
channelmap of the same size as the input image and indicates
the existence of a corner of class j at pixel location s in the
image. The value at location s ∈ I in C∗

j is defined by a
Gaussian as

C∗
j (s) = exp

(

−‖s − s∗j‖22
σ 2

)

, (3)

where s∗j denotes the ground truth image position of the near-
est cornerwith class j . The choice of the parameterσ controls
the width of the Gaussian. We use σ = 7 pixel in our imple-
mentation. Gaussians are used to account for small errors in
the ground-truth corner positions that are provided by hand.
Ground-truth corner maps are generated for each individual
gate in the image separately and then aggregated. Aggre-
gation is performed by taking the pixel-wise maximum of
the individual corner maps, as this preserves the distinction
between close corners.

4.1.2 Part affinity fields

We define a PAF for each of the four possible classes of
edges, defined by its two connecting corners as (k, l) ∈
EK L := {(T L ,T R ), (T R,BR ), (BR,BL ), (BL ,T L )}. For each
edge class, (k, l), the ground-truth PAF, E∗

(k,l)(s), is repre-
sented by a two-channel map of the same size as the input
image and points from corner k to corner l of the same gate,
provided that the given image point s lies within distance d
of such an edge. We use d = 10 pixel in our implementation.
Let G∗ be the set of gates g and S(k,l),g be the set of image
points that are within distance d of the line connecting the
corner points s∗k and s∗l belonging to gate g. Furthermore, let
vk,l,g be the unit vector pointing from s∗k to s∗l of the same
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Fig. 4 The gate detection module returns sets of corner points for each
gate in the input image (fourth column) using a two-stage process. In the
first stage, a neural network transforms an input image, Iw×h×3 (first
column), into a set of confidence maps for corners, Cw×h×4 (second
column), and Part Affinity Fields (PAFs) Cao et al. (2017), Ew×h×(4·2)
(third column). In the second stage, the PAFs are used to associate sets
of corner points that belong to the same gate. For visualization, both

corner maps, C (second column), and PAFs, E (third column), are dis-
played in a single image each. While color encodes the corner class for
C, it encodes the direction of the 2D vector fields for E. The yellow
lines in the bottom of the second column show the six edge candidates of
the edge class (T L, T R) (the T L corner of the middle gate is below the
detection threshold), see Sect. 4.2. Best viewed in color (Color figure
online)

gate. Then, the part affinity field, E∗
(k,l)(s), is defined as:

E∗
(k,l)(s) =

{
vk,l,g ifs ∈ S(k,l),g, g ∈ G∗

0 otherwise.
(4)

As in the case of corner maps, PAFs are generated for each
individual gate in the image separately and then aggregated.
In case a point s lies in S(k,l),g of several gates, the vk,l,g of
all corresponding gates are averaged.

4.2 Stage 2: corner association

At test time, discrete corner candidates, s j , for each corner
class, j ∈ C j , are extracted from the predicted corner map
using non-maximum suppression and thresholding. For each
corner class, there might be several corner candidates, due
to multiple gates in the image or false positives. These cor-
ner candidates allow the formation of an exhaustive set of
edge candidates, {(sk, sl)}, see the yellow lines in Fig. 4.
Given the corresponding PAF, E(k,l)(s), each edge candi-
date is assigned a score which expresses the agreement of
that candidate with the PAF. This score is given by the line
integral

S((sk, sl)) =
∫ u=1

u=0
E(k,l)(s(u)) · sl − sk

‖sl − sk‖du, (5)

where s(u) lineraly interpolates between the two corner can-
didate locations sk and sl . In practice, S is approximated by
uniformly sampling the integrand.

The line integral S is used as metric to associate corner
candidates to gate detections. The goal is to find the optimal
assignment for the set of all possible corner candidates to
gates. As described in Cao et al. (2017), finding this optimal
assignment corresponds to a K -dimensional matching prob-
lem that is known to beNP-HardWest (2001). FollowingCao
et al. (2017), the problem is simplified by decomposing
the matching problem into a set of bipartite matching sub-
problems. Matching is therefore performed independently
for each edge class. Specifically, the following optimization
problem represents the bipartite matching subproblem for
edge class (k, l):

maxS(k,l) =
∑

k∈Dk

∑

l∈Dl

S((sk, sl)) · zkl (6)

s.t. ∀k ∈ Dk,
∑

l∈Dl

zkl ≤ 1 , (7)

∀l ∈ Dl ,
∑

k∈Dk

zkl ≤ 1 , (8)

where S(k,l) is the cumulative matching score and Dk , Dl

denote the set of corner candidates for edge class (k, l). The
variable zkl ∈ {0, 1} indicates whether two corner candidates
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are connected. Equations (7) and (8) enforce that no two
edges share the same corner. Above optimization problem
can be solved using the Hungarian method Kuhn (1955),
resulting in a set of edge candidates for each edge class (k, l).

With the bipartite matching problems being solved for all
edge classes, the pairwise associations can be extended to
sets of associated edges for each gate.

4.3 Training data

The neural network is trained in a supervised fashion using
a dataset recorded in the real world. Training data is gen-
erated by recording video sequences of gates in 5 different
environments. Each frame is annotated with the corners of
all gates visible in the image using the open source image
annotation software labelme3, which is extended with KLT-
Tracking for semi-automatic labelling. The resulting dataset
used for training consists of 28k images and is split into 24k
samples for training and 4k samples for validation. At train-
ing time, the data is augmented using random rotations of up
to 30◦ and random changes in brightness, hue, contrast and
saturation.

4.4 Network architecture and deployment

The network architecture is designed to optimally trade-
off between computation time and accuracy. By conducting
a neural network architecture search, the best performing
architecture for the task is identified. The architecture search
is limited to variants of U-Net Ronneberger et al. (2015)
due to its ability to perform segmentation tasks efficiently
with a very limited amount of labeled training data. The best
performing architecture is identified as a 5-level U-Net with
[12, 18, 24, 32, 32] convolutional filters of size [3, 3, 3, 5, 7]
per level and a final additional layer operating on the output
of the U-Net containing 12 filters. At each layer, the input
feature map is zero-padded to preserve a constant height
and width throughout the network. As activation function,
LeakyReLU with α = 0.01 is used. For deployment on the
Jetson Xavier, the network is ported to TensorRT 5.0.2.6. To
optimize memory footprint and inference time, inference is
performed in half-precision mode (FP16) and batches of two
images of size 592 × 352 are fed to the network.

5 State estimation

The nonlinear measurement models of the VIO, gate detec-
tion, and laser rangefinder are fused using an EKF Kalman
(1960). In order to obtain the best possible pose accuracy
relative to the gates, the EKF estimates the translational and

3 https://github.com/wkentaro/labelme

rotational misalignment of the VIO origin frame, V , with
respect to the inertial frame, I, represented by pV and qIV ,
jointly with the gate positions, pGi

, and gate heading, ϕIGi .
It can thus correct for an imprecise initial position estimate,
VIO drift, and uncertainty in gate positions. The EKF’s state
space at time tk is xk = x(tk) with covariance Pk described
by

xk = (
pV , qIV , pG0

, ϕIG0 , . . . , pGN−1
, ϕIGN−1

)
. (9)

The drone’s corrected pose,
(
pB, qIB

)
, can then be com-

puted from the VIO estimate,
(
pVB, qVB

)
, by transforming

it from frame V into the frame I using
(
pV , qIV

)
as

pB = pV + RIV · pVB, qIB = qIV · qVB. (10)

All estimated parameters are expected to be time-invariant
but subject to noise and drift. This is modelled by a Gaussian
random walk, simplifying the EKF process update to:

xk+1 = xk, Pk+1 = Pk + �tk Q, (11)

where Q is the random walk process noise. For each mea-
surement zk with noise R the predicted a priori estimate, x−

k ,
is corrected with measurement function, h(x−

k ), and Kalman
gain, K k , resulting in the a posteriori estimate, x+

k , as

K k = P−
k Hᵀ

k

(
Hk P

−
k Hᵀ

k + R
)−1

,

x+
k = x−

k + K k
(
zk − h(x−

k )
)
,

P+
k = (I − K kHk) P

−
k , (12)

with h(x−
k ), the measurement function with Jacobian Hk .

However, the filter state includes a rotation quaternion

constrained to unit norm, ‖qIV‖ != 1. This is effectively
an over-parameterization in the filter state space and can
lead to poor linearization as well as underestimation of the
covariance. To apply the EKFs linear update step on the
over-parameterized quaternion, it is lifted to its tangent space
description, similar to Forster et al. (2017b). The quaternion
qIV is composed of a reference quaternion, qIVref

, which
is adjusted after each update step, and an error quaternion,
qVrefV , of which only its vector part, q̃VrefV , is in the EKF’s
state space. Therefore we get

qIV = qIVref
· qVrefV qVrefV =

[√
1 − q̃ᵀ

VrefV · q̃VrefV
q̃VrefV

]

(13)
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from which we can derive the Jacobian of any measurement
function, h(x), with respect to qIV by the chain rule as

∂

∂ q̃VrefV
h(x) = ∂

∂qIV
h(x) · ∂qIV

∂ q̃VrefV
(14)

= ∂

∂ q̃IV
h(x) · [qIVref

]×
⎡

⎣
−q̃ᵀ

VrefV√
1−q̃ᵀ

VrefV ·q̃VrefV
I3×3

⎤

⎦

(15)

wherewe arrive at (15) by using (13) in (14) and use [qIVref
]×

to represent the matrix resulting from a lefthand-side multi-
plication with qIVref

.

5.1 Measurement modalities

All measurements up to the camera frame time tk are passed
to the EKF together with the VIO estimate, pVB,k and qVB,k ,
with respect to the VIO frameV . Note thate the VIO estimate
is assumed to be a constant parameter, not a filter state, which
vastly simplifies derivations ad computation, leading to an
efficient yet robust filter.

5.1.1 Gate measurements

Gate measurements consist of the image pixel coordinates,
sCoi j , of a specific gate corner. These corners are denoted
with top left and right, and bottom left and right, as in j ∈ C j ,
C j := {T L ,T R ,BL ,BR } and the gates are enumerated by i ∈
[0, N − 1]. All gates are of equal width, w, and height, h, so
that the corner positions in the gate frame, Gi , can be written
as pGiCoi j = 1

2 (0,±w,±h). Themeasurement equation can
be written as the pinhole camera projection Szeliski (2010)
of the gate corner into the camera frame. A pinhole camera
maps the gate corner point, pCoi j , expressed in the camera
frame, C, into pixel coordinates as

hGate(x) = sCoi j = 1

[ pCoi j ]z
[
fx 0 cx
0 fy cy

]
pCoi j , (16)

where [·]z indicates the scalar z-component of a vector, fx
and fy are the camera’s focal lengths and

(
cx , cy

)
is the

camera’s optical center. The gate corner point, pCoi j , is given
by

pCoi j =Rᵀ
IC

(
pGi

+ RIGi pGiCo j
− pC

)
, (17)

with pC and RIC being the transformation between the iner-
tial frame I and camera frame C,

pC = pV + RIV
(
pVB + RVB pBC

)
, (18)

RIC =RIV RVBRBC, (19)

where pBC and RBC describe a constant transformation
between the drone’s body frame B and camera frame C (see
Fig. 2). The Jacobian with respect to the EKF’s state space
is derived using the chain rule,

∂

∂x
hGate(x) = ∂hGate(x)

∂ pCoi j (x)
· ∂ pCoi j (x)

∂x
, (20)

where the first term representing the derivative of the pro-
jection, and the second term represents the derivative with
respect to the state space including gate position and ori-
entation, and the frame alignment, which can be further
decomposed using (14).

5.1.2 Gate correspondences

The gate detection (see Fig. 4) provides sets of m measure-
ments, Sî = {sCoî j0

, . . . , sCoî jm−1}, corresponding to the

unknown gate î at known corners j ∈ C j . To identify the
correspondences between a detection set Sî and the gate Gi

in our map, we use the square sum of reprojection error. For
this, we first compute the reprojection of all gate corners,
sCoi j , according to (16) and then compute the square error
sum between the measurement set, Sî , and the candidates,
sCoi j . Finally, the correspondence is established to the gate
Gi which minimizes the square error sum, as in

argmin
i∈[0,N−1]

∑

sCo
î j

∈Sî
(sCoî j

− sCoi j )
ᵀ(sCoî j

− sCoi j ) (21)

5.1.3 Laser rangefinder measurement

The drone’s laser rangefinder measures the distance along
the drones negative z-axis to the ground, which is assumed
to be flat and at a height of 0m. The measurement equation
can be described by

hLRF(x) = [ pB]z
[RIBeBz ]z = [ pV + RIV pV B]z

[RIV RVBeBz ]z . (22)

The Jacobian with respect to the state space is again derived
by ∂hLRF

∂ pV
and ∂hLRF

∂qIV
and further simplified using (14).

6 Path planning

For the purpose of path planning, the drone is assumed to be a
pointmasswith bounded accelerations as inputs. This simpli-
fication allows for the computation of time-optimal motion
primitives in closed-formand enables the planningof approx-
imate time-optimal paths through the race course in real time.
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Even though the dynamics of the quadrotor vehicle’s accel-
eration cannot be neglected in practice, it is assumed that this
simplification still captures the most relevant dynamics for
path planning and that the resulting paths approximate the
true time-optimal paths well. In order to facilitate the track-
ing of the approximate time-optimal path, polynomials of
order four are fitted to the path which yield smoother posi-
tion, velocity and acceleration commands, and can therefore
be better tracked by the drone.

In the following, time-optimal motion primitives based
on the simplified dynamics are first introduced and then a
path planning strategy based on these motion primitives is
presented. Finally, amethod to parameterize the time-optimal
path is introduced.

6.1 Time-optimal motion primitive

The minimum times, T ∗
x , T

∗
y and T ∗

z , required for the vehicle
to fly from an initial state, consisting of position and veloc-
ity, to a final state while satisfying the simplified dynamics
p̈B(t) = u(t) with the input acceleration u(t) being con-
strained to u ≤ u(t) ≤ u are computed for each axis
individually. Without loss of generality, only the x-axis is
considered in the following. Using Pontryagin’s maximum
principle Bertsekas (1995), it can be shown that the optimal
control input is bang-bang in acceleration, i.e., has the form

u∗
x (t) =

{
ux , 0 ≤ t ≤ t∗,
ux , t∗ < t ≤ T ∗

x ,
(23)

or vice versa with the control input first being ux followed by
ux . In order to control the maximum velocity of the vehicle,
e.g., to constrain the solutions to ranges where the simplified
dynamics approximate the true dynamics well or to limit the
motion blur of the camera images, a velocity constraint of the
form vB ≤ vB(t) ≤ vB can be added, in which case the opti-
mal control input has bang-singular-bang solution Maurer
(1977)

u∗
x (t) =

⎧
⎪⎨

⎪⎩

ux , 0 ≤ t ≤ t∗1 ,

0, t∗1 < t ≤ t∗2 ,

ux , t∗2 < t ≤ T ∗
x ,

(24)

or vice versa. It is straightforward to verify that there exist
closed-form solutions for the minimum time, T ∗

x , as well as
the switching times, t∗, in both cases (23) or (24).

Once the minimum time along each axis is computed,
the maximum minimum time, T ∗ = max(T ∗

x , T ∗
y , T ∗

z ), is
computed and motion primitives of the same form as in (23)
or (24) are computed among the two faster axes but with
the final time constrained to T ∗ such that trajectories along
each axis end at the same time. In order for such a motion
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Fig. 5 Example time-optimal motion primitive starting from rest at
the origin to a random final position with non-zero final velocity. The
velocities are constrained to ±7.5m/s and the inputs to ±12m/s2. The
dotted lines denote the per-axis time-optimal maneuvers

primitive to exist, a new parameter α ∈ [0, 1] is introduced
that scales the acceleration bounds, i.e., the applied control
inputs are scaled to αux and αux , respectively. Fig. 5 depicts
the position and velocity of an example time-optimal motion
primitive.

6.2 Sampling-based receding horizon path planning

The objective of the path planner is to find the time-optimal
path from the drone’s current state to the final gate, passing
through all the gates in the correct order. Since the previously
introduced motion primitive allows the generation of time-
optimal motions between any initial and any final state, the
time-optimal path can be planned by concatenating a time-
optimal motion primitive starting from the drone’s current
(simplified) state to the first gate with time-optimal motion
primitives that connect the gates in the correct order until the
final gate. This reduces the path planning problem to finding
the drone’s optimal state at each gate such that the total time
is minimized. To find the optimal path, a sampling-based
strategy is employed where states at each gate are randomly
sampled and the total time is evaluated subsequently. In par-
ticular, the position of each sampled state at a specific gate
is fixed to the center of the gate and the velocity is sampled
uniformly at random such the velocity lies within the con-
straints of the motion primitives and the angle between the
velocity and the gate normal does not exceed a maximum
angle, ϕmax It is trivial to show that as the number of sam-
pled states approaches infinity, the computed path converges
to the time-optimal path.

In order to solve the problem efficiently, the path planning
problem is interpreted as a shortest path problem. At each
gate, M different velocities are sampled and the arc length
from each sampled state at the previous gate is set to be equal
to the duration, T ∗, of the time-optimal motion primitive that
guides the drone from one state to the other. Due to the exis-

123



316 Autonomous Robots (2022) 46:307–320

tence of a closed-form expression for the minimum time, T ∗,
setting up and solving the shortest path problem can be done
very efficiently using, e.g., Dijkstra’s algorithm Bertsekas
(1995) resulting in the optimal path p∗(t). In order to further
reduce the computational cost, the path is planned in a reced-
ing horizon fashion, i.e., the path is only planned through the
next N gates.

6.3 Path parameterization

Due to the simplifications of the dynamics that were made
when computing the motion primitives, the resulting path is
infeasible with respect to the quadrotor dynamics (1) and
(2) and thus is impossible to be tracked accurately by the
drone. To simplify the tracking of the time-optimal path, the
path is approximated by fourth order polynomials in time.
In particular, the path is divided into multiple segments of
equal arc length. Let t ∈ [tk, tk+1) be the time interval of the
k-th segment. In order to fit the polynomials, p̄k(t), to the
k-th segment of the time-optimal path, we require that the
initial and final position and velocity are equal to those of
the time-optimal path, i.e.,

p̄k(tk) = p∗(tk), p̄k(tk+1) = p∗(tk+1), (25)
˙̄pk(tk) = ṗ∗(tk), ˙̄pk(tk+1) = ṗ∗(tk+1), (26)

and that the positions at t = (tk+1 − tk) /2 coincide as well:

p̄k

(
tk+1 + tk

2

)
= p∗

(
tk+1 + tk

2

)
. (27)

The polynomial parameterization p̄k(t) of the k-th segment
is then given by

p̄k(t) = a4,ks4 + a3,ks3 + a2,ks2 + a1,ks + a0,k, (28)

with s = t − tk being the relative time since the start of k-th
segment. The velocity and acceleration required for the drone
to track this polynomial path can be computed by taking the
derivatives of (28), yielding

˙̄pk(t) = 4a4,ks3 + 3a3,ks2 + 2a2,ks + a1,k, (29)

¨̄pk(t) = 12a4,ks2 + 6a3,ks + 2a2,k . (30)

7 Control

This section presents a control strategy to track the near
time-optimal path from Sect. 6. The control strategy is based
on a cascaded control scheme with an outer position control
loop and an inner attitude control loop, where the position
control loop is designedunder the assumption that the attitude

control loop can track setpoint changes perfectly, i.e., without
any dynamics or delay.

7.1 Position control

The position control loop along the inertial z-axis is designed
such that it responds to position errors

pBerr,z = pBref,z − pB,z

in the fashion of a second-order system with time constant
τpos,z and damping ratio ζpos,z ,

p̈B,z = 1

τ 2pos,z
pBerr,z + 2ζpos,z

τpos,z
ṗBerr,z + p̈Bref,z . (31)

Similarly, two control loops along the inertial x- and y-axis
are shaped to make the horizontal position errors behave
like second-order systems with time constants τpos,xy and
damping ratio ζpos,xy . Inserting (31) into the translational
dynamics (1), the total thrust, f , is computed to be

f = [m (
p̈Bref + g

) + RIBDRᵀ
IBvB]z

[RIBeBz ]z . (32)

7.2 Attitude control

The required acceleration from the position controller deter-
mines the orientation of the drone’s z-axis and is used, in
combination with a reference yaw angle, ϕref, to compute
the drone’s reference attitude. The reference yaw angle is
chosen such that the drone’s x-axis points towards the refer-
ence position 5m ahead of the current position, i.e., that the
drone looks in the direction it flies. A nonlinear attitude con-
troller similar to Brescianini and D’Andrea (2018) is applied
that prioritizes the alignment of the drone’s z-axis, which is
crucial for its translational dynamics, over the correction of
the yaw orientation:

ω = 2 sgn(qw)
√
q2w + q2z

T−1
att

⎡

⎣
qwqx − qyqz
qwqy + qxqz

qz

⎤

⎦ , (33)

where qw, qx , qy and qz are the components of the attitude
error, q−1

IB ⊗ qIBref
, and where Tatt is a diagonal matrix

containing the per-axis first-order system time constants for
small attitude errors.

8 Results

The proposed system was used to race in the 2019 AlphaPi-
lot championship race. The course at the championship race
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Fig. 6 Top view of the planned (left) and executed (center) path at the championship race, and an executed multi-lap path at a testing facility (right).
Left: Fastest planned path in color, sub-optimal sampled paths in gray. Center: VIO trajectory as pVB and corrected estimate as pB (Color figure
online)

consisted of five gates and had a total length of 74m. A top
view of the race course as well as the results of the path plan-
ning and the fastest actual flight are depicted in Fig. 6 (left
and center). With the motion primitive’s maximum veloc-
ity set to 8m/s, the drone successfully completed the race
course in a total time of 11.36 s, with only two other teams
also completing the full race course. The drone flew at an
average velocity of 6.5m/s and reached the peak velocity of
8m/s multiple times. Note that due to missing ground truth,
Fig. 6 only shows the estimated and corrected drone position.

The systemwas further evaluated at a testing facilitywhere
there was sufficient space for the drone to fly multiple laps
(see Fig. 6, right), albeit the course consisted of only two
gates. The drone was commanded to pass 4 times through
gate 1 before finishing in the final gate. Although the gates
were not visible to the drone for most of the time, the drone
successfully managed to fly multiple laps. Thanks to the
global gate map and the VIO state estimate, the system was
able to plan and execute paths to gates that are not directly
visible. By repeatedly seeing either one of the two gates, the
drone was able to compensate for the drift of the VIO state
estimate, allowing the drone to pass the gates every time
exactly through their center. Note that although seeing gate
1 in Fig. 6 (right) at least once was important in order to
update the position of the gate in the global map, the VIO
drift was also estimated by seeing the final gate.

The results of the system’smain components are discussed
in detail in the following subsections, and a video of the
results is attached to the paper.

8.1 Gate detection

Architecture search Due to the limited computational bud-
get of the Jetson Xavier, the network architecture was
designed tomaximizedetection accuracywhile keeping a low
inference time. To find such architecture, different variants
of U-Net Ronneberger et al. (2015) are compared. Table 2

Table 2 Comparison of different network architectures with respect
to intersection over union (IoU), precision (Pre.) and recall (Rec.).
The index in the architecture name denotes the number of levels in
the U-Net. All networks contain one layer per level with kernel sizes
of [3, 3, 5, 7, 7] and [12, 18, 24, 32, 32] filters per level. Architectures
labelled with ’L’ contain twice the amount of filters per level. Timings
are measured for single input images of size 352 x 592 on a desktop
computer equipped with an NVIDIA RTX 2080 Ti

Arch. IoU Pre. Rec. #params Latency [s]

UNet-5L 0.966 0.997 0.967 613k 0.106

UNet-5 0.964 0.997 0.918 160k 0.006

UNet-4L 0.948 0.997 0.920 207k 0.085

UNet-4 0.941 0.989 0.862 58k 0.005

UNet-3L 0.913 0.991 0.634 82k 0.072

UNet-3 0.905 0.988 0.520 27k 0.005

summarizes the performance of different network architec-
tures. Performance is evaluated quantitatively on a separate
test set of 4k images with respect to intersection over union
(IoU) and precision/recall for corner predictions. While the
IoU score only takes full gate detections into account, the
precision/recall scores are computed for each corner detec-
tion. Based on these results, architecture UNet-5 is selected
for deployment on the real drone due to the low inference
time and high performance. On the test set, this network
achieves an IoU scorewith the human-annotated ground truth
of 96.4%. When only analyzing the predicted corners, the
network obtains a precision of 0.997 and a recall of 0.918.
Deployment Even in instances of strong changes in illumina-
tion, the gate detectorwas able to accurately identify the gates
in a range of 2− 17m. Fig. 4 illustrates the quality of detec-
tions during the championship race (1st row) as well as for
cases with multiple gates, represented in the test set (2nd/3rd
row). With the network architecture explained in Sect. 4, one
simultaneous inference for the left- and right-facing camera
requires computing 3.86GFLOPS (40kFLOPS per pixel). By
implementing the network inTensorRTandperforming infer-
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Table 3 Total flight time vs.
computation time averaged over
100 runs. The percentage in
parenthesis is the computation
time with respect to the
computational time for the full
track

Ngates Flight time Computation time

1 9.5935 s 1.66ms 2.35%

2 9.2913 s 18.81ms 26.56%

3 9.2709 s 35.74ms 50.47%

4 9.2667 s 53.00ms 74.84%

5 (full track) 9.2622 s 70.81ms 100%

CPC Foehn and Scaramuzza (2020) (full track) 6.520 s 4.62 · 105 ms 6524%

ence in half-precision mode (FP16), this computation takes
10.5ms on the Jetson Xavier and can therefore be performed
at the camera update rate.

8.2 State estimation

Compared to a pure VIO-based solution, the EKF has proven
to significantly improve the accuracy of the state estima-
tion relative to the gates. As opposed to the works by Li
et al. (2019); Jung et al. (2018); Kaufmann et al. (2018), the
proposed EKF is not constrained to only use the next gate,
but can work with any gate detection and even profits from
multiple detections in one image. Fig. 6 (center) depicts the
flown trajectory estimated by the VIO system as pVB and the
EKF-corrected trajectory as pB (the estimated corrections
are depicted in gray). Accumulated drift clearly leads to a
large discrepancy between VIO estimate pVB and the cor-
rected estimate pB . Towards the end of the track at the two
last gates this discrepancywould be large enough to cause the
drone to crash into the gate. However, the filter corrects this
discrepancy accurately and provides a precise pose estimate
relative to the gates. Additionally, the imperfect initial pose,
in particular the yaw orientation, is corrected by the EKF
while flying towards the first gate as visible in the zoomed
section in Fig. 6 (center).

8.3 Planning and control

Figure 6 (left) shows the nominally planned path for the
AlphaPilot championship race, where the coloured line
depicts the fastest path along all the sampled paths depicted
in gray. In particular, a total of M = 150 different states are
sampled at each gate, with the velocity limited to 8m/s and
the angle between the velocity and the gate normal limited
to ϕmax = 30◦. During flight, the path is re-planned in a
receding horizon fashion through the next N = 3 gates (see
Fig. 6, center). It was experimentally found that choosing
N ≥ 3 only has minimal impact of the flight time comapred
to planning over all gates, while greatly reducing the com-
putational cost. Table 3 presents the trade-offs between total
flight time and computation cost for different horizon lengths
N for the track shown in Fig. 6 (left). In addition, Table 3

shows the flight and computation time of the time-optimal
trajectory generation from Foehn and Scaramuzza (2020),
which significantly outperforms our approach but is far away
from real-time execution with a computation time of 462 s
for a single solution. Online replanning would therefore not
be possible, and any deviations from the nominal track layout
could lead to a crash.

Please also note that the evaluation of our method is per-
formed in Matlab on a laptop computer, while the final
optimized implementation over N = 3 gates achieved
replanning times of less than 2ms on the Jetson Xavier and
can thus be done in every control update step. Figure 6 (right)
shows resulting path and velocity of the drone in a multi-lap
scenario, where the drone’s velocity was limited to 6m/s. It
can be seen that drone’s velocity is decreased when it has to
fly a tight turn due to its limited thrust.

9 Discussion and conclusion

The proposed system managed to complete the course at a
velocity of 5m/s with a success rate of 100% and at 8m/s
with a success rate of 60%. At higher speeds, the combi-
nation of VIO tracking failures and no visible gates caused
the drone to crash after passing the first few gates. This fail-
ure could be caught by integrating the gate measurements
directly in a VIO pipeline, tightly coupling all sensor data.
Another solution could be a perception-aware path planner
trading off time-optimality against motion blur and maxi-
mum gate visibility.

The advantages of the proposed system are (i) a drift-free
state estimate at high speeds, (ii) a global and consistent gate
map, and (iii) a real-time capable near time-optimal path
planner. However, these advantages could only partially be
exploited as the races neither included multiple laps, nor had
complex segments where the next gates were not directly
visible. Nevertheless, the system has proven that it can han-
dle these situations and is able to navigate through complex
race courses reaching speeds up to 8m/s and completing the
championship race track of 74m in 11.36 s.

While the 2019 AlphaPilot Challenge pushed the field of
autonomous drone racing, in particularly in terms of speed,
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autonomous drones are still far away from beating human
pilots. Moreover, the challenge also left open a number of
problems, most importantly that the race environment was
partially known and static without competing drones or mov-
ing gates. In order for autonomous drones to fly at high speeds
outside of controlled or known environments and succeed
in many more real-world applications, they must be able to
handle unknown environments, perceive obstacles and react
accordingly. These features are areas of active research and
are intended to be included in future versions of the proposed
drone racing system.
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