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Abstract
Deep learning has enabled impressive progress in the accuracy of semantic segmentation.Yet, the ability to estimate uncertainty
and detect failure is key for safety-critical applications like autonomous driving. Existing uncertainty estimates have mostly
been evaluated on simple tasks, and it is unclear whether these methods generalize to more complex scenarios. We present
Fishyscapes, the first public benchmark for anomaly detection in a real-world task of semantic segmentation for urban driving.
It evaluates pixel-wise uncertainty estimates towards the detection of anomalous objects. We adapt state-of-the-art methods to
recent semantic segmentation models and compare uncertainty estimation approaches based on softmax confidence, Bayesian
learning, density estimation, image resynthesis, as well as supervised anomaly detection methods. Our results show that
anomaly detection is far from solved even for ordinary situations, while our benchmark allows measuring advancements
beyond the state-of-the-art. Results, data and submission information can be found at https://fishyscapes.com/.

Keywords Semantic segmentation ·Anomaly detection ·Uncertainty estimation ·Out-of-distribution detection ·Autonomous
driving

1 Introduction

Deep learning has had a high impact on the precision of
computer vision methods (Chen et al., 2018; He et al.,
2017; Fu et al., 2018; Sun et al., 2018) and enabled seman-
tic understanding in robotic applications (Mccormac et al.,
2018; Florence et al., 2018; Liang et al., 2018). However,
while these algorithms are usually compared on closed-world
datasets with a fixed set of classes (Geiger et al., 2012; Cordts
et al., 2016), the real-world is uncontrollable, and an incor-
rect reaction by an autonomous agent to an unexpected input
can have disastrous consequences (Bozhinoski et al., 2019).

As such, to reach full autonomy while ensuring safety
and reliability, decision-making systems need information
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about outliers and uncertain or ambiguous cases that might
affect the quality of the perception output. As illustrated in
Fig. 1, deep convolutional neural networks (CNNs) react
unpredictably for inputs that deviate from their training
distribution. In the presence of outlier objects, this is interpo-
lated with the available classes at high confidence. Existing
research to detect such behaviour is often labeled as out-of-
distribution (OoD), anomaly, or novelty detection, and has
so far focused on developing methods for image classifica-
tion, evaluated on simple datasets like MNIST or CIFAR-10
(Malinin and Gales, 2018; Papernot & McDaniel, 2018;
Hendrycks & Gimpel, 2017; Lee et al., 2018; Ruff et al.,
2018; Golan & El-Yaniv, 2018; Choi et al., 2018; Sabokrou
et al., 2018; Pidhorskyi et al., 2018). How these methods
generalize tomore elaborate network architectures and pixel-
wise uncertainty estimation has not been assessed in prior
work.

Motivated by these practical needs, we introduce ‘Fishy-
scapes’, a benchmark that evaluates uncertainty estimates for
semantic segmentation. The benchmark measures how well
methods detect potentially hazardous anomalies in driving
scenes. Fishyscapes is based on data fromCityscapes (Cordts
et al., 2016), a popular benchmark for semantic segmentation
in urban driving. Our benchmark consists of (i) Fishyscapes
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Fig. 1 When exposed to an object type unseen during training, a state-
of-the-art semantic segmentation model (Chen et al., 2018) predicts
familiar labels (streetsign, road) with high confidence. To detect such
failures, we evaluate various methods that assign a pixel-wise out-of-
distribution score, where higher values are darker. The blue outline is
added for illustration.

Web, where images from Cityscapes are overlayed with
objects that are regularly crawled from the web in an open-
world setup, and (ii) Fishyscapes Lost and Found, that builds
up on a road hazard dataset collected with the same setup as
Cityscapes (Pinggera et al., 2016) and that we supplemented
with labels.

To provide a broad overview, we adapt a variety of meth-
ods to semantic segmentation that were originally designed
for image classification. Because segmentation networks are
much more complex and have high computational costs, this
adaptation is not trivial, and we suggest different approxima-
tions to overcome these challenges.

Our experiments show that the embeddings of intermedi-
ate layers hold important information for anomaly detection.
Based on recent work on generative models, we develop a
novel method using density estimation in the embedding
space. However, we also show that varying visual appear-
ance can mislead feature-based and other methods. None of
the evaluated methods achieves the accuracy required for
safety-critical applications. We conclude that these remain
open problems, with our benchmark enabling the commu-
nity to measure progress and build upon the best performing
methods so far.

To summarize, our contributions are the following:

– We introduce the first public benchmark evaluating pixel-
wise uncertainty estimates in semantic segmentation,
with a dynamic, self-updating dataset for anomaly detec-
tion.

– We report an extensive evaluation with diverse state-of-
the-art approaches to uncertainty estimation, adapted to
the semantic segmentation task, and present a novel me-
thod for anomaly detection.

– We show a clear gap between the alleged capabilities
of established methods and their performance on this
real-world task, thereby confirming the necessity of our
benchmark to support further research in this direction.

2 RelatedWork

Here we review the most relevant works in semantic seg-
mentation and their benchmarks, and methods that aim at
providing a confidence estimate of the output of deep net-
works.

2.1 Semantic Segmentation

State-of-the-art models are fully-convolutional deep net-
works trainedwith pixel-wise supervision.Mostworks (Ron-
neberger et al., 2015; Badrinarayanan et al. 2017; Chen et al.,
2016; Chen et al., 2018) adopt an encoder-decoder architec-
ture that initially reduces the spatial resolution of the feature
maps, and subsequently upsamples them with learned trans-
posed convolution, fixed bilinear interpolation, or unpooling.
Additionally, dilated convolutions or spatial pyramid pooling
enlarge the receptive field and improve the accuracy.

Popular benchmarks compare methods on the segmenta-
tion of objects (Everingham et al., 2010) and urban scenes.
In the latter case, Cityscapes (Cordts et al., 2016) is a well-
established dataset depicting street scenes in European cities
with dense annotations for a limited set of classes. Efforts
have been made to provide datasets with increased diversity,
either in terms of environments, withWildDash (Zendel et al.
2018), which incorporates data from numerous parts of the
world, or with Mapillary (Neuhold et al., 2017), which adds
many more classes. Recent data releases add multi-sensor
and multi-modality recordings on top of that (Sun et al.,
2020; Geyer et al., 2020; Caesar et al., 2020). Like ours, some
datasets are explicitly derived from Cityscapes, the most rel-
evant being Foggy Cityscapes (Sakaridis et al., 2018), which
overlays synthetic fog onto the original dataset to evaluate
more difficult driving conditions. The Robust Vision Chal-
lenge1 also assesses generalization of learned models across
different datasets.

Robustness and reliability are only evaluated by these
benchmarks through ranking methods according to their
accuracy,without taking into accounts the uncertainty of their
predictions. Additionally, despite the fact that one cannot
assume that models trained with closed-world data will only
encounter known classes, these scenarios are rarely quan-
titatively evaluated. To our knowledge, WildDash (Zendel
et al. 2018) is the only public benchmark that explicitly
reports uncertainty w.r.t. OoD examples. These are however

1 http://www.robustvision.net/.
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drawn from a very limited set of full-image outliers, while
we introduce a diverse set of objects, as WildDash mainly
focuses on accuracy. Complementarily, the Dark Zurich
dataset (Sakaridis et al., 2020) allows for uncertainty-aware
evaluation of semantic segmentation models with regard to
deprived sensor inputs, i.e. evaluating aleatoric uncertainty.

Bevandic et al. (2019) experiment with OoD objects for
semantic segmentation by overlaying objects on Cityscapes
images in amanner similar to ours. They however assume the
availability of a large OoD dataset, which is not realistic in
an open-world context, and thus mostly evaluate supervised
methods. In contrast, we assess a wide range of methods
that do not require OoD data. Mukhoti and Gal (2018) intro-
duce a new metric for uncertainty evaluation and are the
first to quantitatively assess misclassification for segmen-
tation. Yet they only compare few methods on normal ID
data. The MVTec benchmark (Bergmann et al., 2019) com-
pares a range of anomaly segmentation methods on images
of single objects to find industrial production anomalies. It
mostly compare methods that focus on low-power comput-
ing. Following our work, the CAOS benchmark (Hendrycks
et al., 2019) also compares anomaly segmentation meth-
ods in simulated and real-world driving scenes. While their
results confirm our finding that most established methods
scale poorly to semantic segmentation, their methodology
lacks open-world testing, which we argue later is important
for true anomaly detection.

2.2 Uncertainty Estimation

There is a large body of work that aims at detecting OoD data
or misclassification by defining uncertainty or confidence
estimates.

Probabilistic modeling of a neural network’s output is
a straightforward approach in uncertainty estimation. The
softmax score, i.e. the classification probability of the pre-
dicted class, was shown to be a first baseline (Hendrycks
& Gimpel, 2017), although sensitive to adversarial exam-
ples (Goodfellow et al., 2015). Its performancewas improved
by ODIN (Liang et al., 2018), which applies noise to the
input with the Fast Gradient Sign Method (FGSM) (Good-
fellow et al., 2015) and calibrates the score with temperature
scaling (Guo et al., 2017). Probabilistic modelling has been
extended further in Deep Belief Networks that propagate
activation distributions throughout the network (Frey and
Hinton, 1999; Loquercio et al., 2020).

Bayesian deep learning (Gal, 2016; Kendall and Gal,
2017) adopts a probabilistic view by designing deep mod-
els whose outputs and weights are probability distributions
instead of point estimates. Uncertainties are then defined
as dispersions of such distributions, and can be of several
types. Epistemic uncertainty, or model uncertainty, corre-
sponds to the uncertainty over the model parameters that best

fit the training data for a given model architecture. As eval-
uating the posterior over the weights is intractable in deep
non-linear networks, recent works perform (MC) sampling
with dropout (Gal & Ghahramani, 2016) or ensembles (Lak-
shminarayanan et al., 2017). Aleatoric uncertainty, or data
uncertainty, arises from the noise in the input data, such as
sensor noise. Both have been applied to semantic segmenta-
tion (Kendall and Gal, 2017), and successively evaluated for
misclassification detection (Mukhoti & Gal, 2018), but only
on ID data and not for OoD detection. Malinin and Gales
(2018) later single out distributional uncertainty to represent
model misspecification with respect to OoD inputs. Their
approach however was only applied to image classifications
on toy datasets, and requires OoD data during the training
stage. To address the latter constraint, Lee et al. (2018) ear-
lier proposed a Generative Adversarial Network (GAN) that
generates OoD data as boundary samples. This is however
very challenging to scale to complex and high-dimensional
data like high-resolution images of urban scenes. Recently,
Bayesian methods investigated the inductive bias of network
structures beyond weights (Wilson & Izmailov, 2020). For
example, Antoran et al. (2020) extracts meaningful uncer-
tainties from an ‘ensemble’ of network activations at varying
depth, and Yehezkel Rohekar et al. (2019) employs a sam-
pling scheme for architectures.

OoD and novelty detection is often tackled by non-
Bayesian approaches.As such, feature introspection amounts
to measuring discrepancies between distributions of deep
features of training data and OoD samples, using either
(NN) statistics (Papernot & McDaniel, 2018; Mandelbaum
& Weinshall, 2017) or Gaussian approximations (Lee et al.,
2018; Amersfoort et al., 2020). These methods have the
benefit of working on any classification model without
requiring specific training. Recently, connections between
feature density and Bayesian uncertainties have been inves-
tigated (Postels et al., 2020). On the other hand, approaches
specifically tailored to perform OoD detection include one-
class classification (Ruff et al., 2018; Golan & El-Yaniv,
2018), which aim at creating discriminative embeddings,
density estimation (Choi et al., 2018; Nalisnick et al., 2019),
which estimate the likelihood of samples w.r.t to the true data
distribution, and generative reconstruction (Sabokrou et al.,
2018; Pidhorskyi et al., 2018; Gong et al., 2019), which use
the quality of auto-encoder reconstructions to discriminate
OoD samples. Richter and Roy (2017) apply the latter to
simple real images recorded by a robotic car and success-
fully detect new environments.

3 Benchmark Design

Because it is not possible to produce ground truth for uncer-
tainty values, evaluating estimators is not a straightforward
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task. We thus compare them on the proxy classification
task (Hendrycks & Gimpel, 2017) of detecting anomalous
inputs. The uncertainty estimates are seen as scores of a
binary classifier that compares the score against a threshold
and whose performance reflects the suitability of the esti-
mated uncertainty for anomaly detection.

Such an approach however introduces amajor issue for the
design of a public OoD detection benchmark. With publicly
available ID training data A and OoD inputs B, it is not
possible to distinguish between an uncertainty method that
informs a classifier to discriminate A from any other input,
and a classifier trained to discriminate A from B. The latter
option clearly does not represent progress towards the goal
of general uncertainty estimation, but rather overfitting.

To this end, we (i) only release a small validation set with
associated ground truth masks, while keeping larger test sets
hidden, (ii) continuously evaluate submitted methods against
a dynamically changing, synthetic dataset, and (iii) compare
the performance on the dynamic dataset with evaluations on
real-world data. Additionally, all submissions to the bench-
mark must indicate whether any OoD data was used during
training, which is cross-checked with linked publications.

Examples fromall benchmark datasets are shown inFig. 2.

3.1 Does theMethodWork in an OpenWorld?

The open world scenario describes the problem that an
autonomous agent who is freely interacting with the world
has to be able to deal with the unexpected at all times. To
test perception methods in an open world scenario, a bench-
mark therefore needs to present truly unexpected inputs. We
argue that this is never truly possible with a fixed dataset that
by design has limited diversity, and over time may simply
identify those methods that deal best with the kind of objects
included in the dataset. Instead, we propose a dynamically
changing dataset that samples diverse objects at every itera-
tion.

In general, there are three options to generate such
dynamic datasets: At every iteration, one may (i) capture
new data in the wild and annotate, (ii) render new objects
in simulation, or (iii) capture new objects in the wild, but
blend them into already annotated scenes. While data from
thewild is essential to test methods in realistic settings, anno-
tation for semantic segmentation is very expensive and not
a sustainable way to generate new datasets multiple times
per year. Between (ii) and (iii) there is an essential trade-off.
Rendering in 3D ensures physically viable object placement
and consistent lighting. Images of diverse objects in the wild
are much better available than textured 3D models and can
be blended into real-world scenes. We acknowledge that
there is an ongoing debate whether photorealtistic rendering
engines or modern blending techniques achieve more realis-
tic images, which was touched upon by a response-work to

this benchmark (Hendrycks et al., 2019). In this work, we
decided to base our dataset FS Web on approach (iii). In the
following, we describe a blending-based reference dataset
FS Static and the dynamically changing dataset FS Web.

FS Static is based on the validation set of Cityscapes
(Cordts et al., 2016). It has a limited visual diversity, which is
important to make sure that it contains none of the overlayed
objects. In addition, background pixels originally belong-
ing to the void class2 are excluded from the evaluation,
as they may be borderline OoD. Anomalous objects are
extracted from the generic Pascal VOC (Everingham et al.,
2010) dataset using the associated segmentation masks. We
only overlay objets from classes that cannot be found in
Cityscapes: aeroplane, bird, boat, bottle, cat, chair, cow, dog,
horse, sheep, sofa, tvmonitor. Objects cropped by the image
borders or objects that are too small to be seen are filtered
out. We randomly size and position the objects on the under-
lying image, making sure that none of the objects appear on
the ego-vehicle. Objects from mammal classes have a higher
probability of appearing on the lower-half of the screen,while
classes like birds or airplanes have a higher probability for the
upper half. The placing is not further limited to ensure each
pixel in the image, apart from the ego-vehicle, is comparably
likely to be anomalous. Tomatch the image characteristics of
cityscapes, we employ a series of postprocessing steps sim-
ilar to those described in Abu Alhaija et al. (2018), without
those steps that require 3Dmodels of the objects to e.g. adapt
shadows and lighting.

To make the task of anomaly detection harder, we add
synthetic fog (Sakaridis et al., 2018; Dai et al., 2020) on
the in-distribution pixels with a per-image probability. This
prevents fraudulent methods to compare the input against a
fixed set of Cityscapes images. The dataset is split into a
minimal public validation set of 30 images and a hidden test
set of 1000 images. It contains in total around 4.5e7 OoD
and 1.8e9 ID pixels. The validation set only contains a small
disjoint set of pascal objects to prevent few-shot learning on
our data creation method.

FS Web is built similarly to FS Static, but with overlay
objects crawled from the internet using a changing list of
keywords. Our script searches for images with transparent
background, uploaded in a recent timeframe, and filters out
images that are too small. The onlymanual process is filtering
out images that are not suitable, e.g. with decorative borders
or watermarks. The dataset for March 2019 contains 4.9e7
OoDand 1.8e9 IDpixels.As the diversity of images and color
distributions for the images from theweb ismuchgreater than

2 void in cityscapes is defined as: forms of horizontal ground-level
structures that do not match any class, things that might not be there
anymore the next day/hour/minute (e.g. movable trash bin, buggy, bag,
wheelchair, animal), clutter in the background that is not distinguish-
able, or any objects that do not match a class (e.g. visible parts of the
ego vehicle, mountains, street lights, back side of signs).
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Fig. 2 Qualitative examples of Fishyscapes Static (rows 1–2) and
Fishyscapes Web (rows 3–5) and Fishyscapes Lost and Found (rows
6–8). The ground truth contains labels for ID (blue) and OoD (red) pix-
els, as well as ignored void pixels (black). We additionally show the

output of the best method per dataset in column 4 and the best method
without OoD training in the last column. We report the AP of each
method output in its top right corner (Color figure online).

those fromPascal VOC,we also adapt our overlay procedure.
In total, we follow these steps, some of which were added
from June 2019 onwards (marked with *):

– in case the image does not already have a smooth alpha
channel, smooth the mask of the objects around the bor-
ders for a small transparency gradient

– adapt the brightness of the object towards the mean
brightness of the overlayed pixels

– apply the inverse color histogramof theCityscapes image
to shift the color distribution towards the one found on
the underlying image*

– radial motion blur*
– depth blur based on the position in the image*
– color noise
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Fig. 3 Illustration of the blending process and improvements (v2)
applied in June 2019. While color adaptation to the predominantly gray
Cityscapes images is visually most obvious, important improvements
in v2 include depth and motion blur, as well as glow effects.

– glow effects to simulate overexposure*

Figure 3 shows an illustration of the blending results.
As discussed, the blending process is part of a trade-off to

make an open-world dataset feasible. To further ensure that
methods do not overfit to any artifacts created by the blending
process, but detect anomalies based on their semantics and
appearance, we include a sample of ID objects in the blend-
ing dataset. For this, we create a database from objects in
the Cityscapes training dataset (car, person, truck, bus, train,
bike) where we manually filter out any occluded instances.
We then decide at random for every image whether to blend
an anomalous object or a Cityscapes object, where we skip
random placement and histogram adaptation for the latter.
This addition was introduced in FSWeb Jan 2020. An exam-
ple can be seen in Fig. 2.

As indicated, the postprocessing was improved between
iterations of the dataset. Because the purpose of the FS Web
dataset is to measure any possible overfitting of the methods
through a dynamically changing dataset, we will continue
to refine also this image overlay procedure, updating our
methodwith recent research results. Any update to the blend-
ing is also applied to the FS Static validation set, allowing
submissions to validate the effect of blending improvements.

3.2 Does theMethodWork on Real Images?

As discussed in Sect. 3.1, capturing and annotating driv-
ing scenes multiple times per year is not sustainable, which
made it necessary to use synthetic data generation for the

dynamic dataset. However, for safe deployment it is equally
important to test methods under real-world conditions. This
is the purpose of the FS Lost and Found dataset in our bench-
mark.

FSLost and Found is based on the original Lost and Found
dataset (Pinggera et al., 2016). However, the original dataset
only includes annotations for the anomalous objects and a
coarse annotation of the road. It does not allow for appropri-
ate evaluation of anomaly detection, as objects and road are
very distinct in texture and it is more challenging to evaluate
the anomaly score of the objects compared to eg. building
structures. In order to make use of the full image, we add
pixel-wise annotations that distinguish between objects (the
anomalies), background (classes contained in Cityscapes)
and void (anything not contained in Cityscapes classes that
still appears in the training images). Additionally, we filter
out those sequences where the ‘road hazards’ are children
or bikes, because these are part of regular Cityscapes data
and not anomalies. We subsample the repetitive sequences,
labelling at least every sixth image, and remove images that
do not contain objects. In total, we present a public valida-
tion set of 100 images and a testset of 275 images, based on
disjoint sets of locations.

While the Lost and Found images were captured with the
same setup as Cityscapes, the distribution of street scenery
is very different. The images were captured in small streets
of housing areas, industrial areas, or on big parking lots.
The anomalous objects are usually very small and are not
equally distributed on the image. Nevertheless, the dataset
allows to test for real images as opposed to synthetic data,
therefore preventing any overfitting on synthetic image pro-
cessing. This is especially important for parameter tuning on
the validation set.

3.3 Metrics

We consider metrics associated with a binary classification
task. Since the ID andOoD data is unbalanced, metrics based
on the (ROC) are not suitable (Saito & Rehmsmeier, 2015).
We therefore base the ranking and primary evaluation on the
(AP). However, as the number of false positives in high-recall
areas is particularly relevant for safety-critical applications,
we additionally report the false positive rate at 95% recall
(FPR95). Thismetric was also used inHendrycks andGimpel
(2017) and emphasizes safety.

Semantic classification is not the goal of our benchmark,
but uncertainty estimation and outlier detection should not
come at high cost of segmentation accuracy. We therefore
additionally report the mean (IoU) of the semantic segmen-
tation on the Cityscapes validation set.

For safety-critical systems, it is not only important to
detect anomalies, but also to be fast enough to allow for a
reaction. We therefore report the inference time of joint seg-
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mentation and anomaly detection per single frame. Times are
measured over 500 images of the Cityscapes validation set
on a GeForce 1080 Ti GPU.

4 EvaluatedMethods

We now present the methods that are evaluated in Fishy-
scapes. In a first part, we describe the existing baselines and
how we adapted them to the task of semantic segmentation.
We then propose a novelmethod based on learned embedding
density. Finally, we list those methods that were submitted
to the public benchmark so far.

All approaches are applied to the state-of-the-art semantic
segmentation model DeepLab-v3+ (Chen et al., 2018). Fur-
ther implementation details are listed in the supplementary
material.

4.1 Baselines

Softmax The maximum softmax probability is a commonly
used baseline and was evaluated in Hendrycks and Gim-
pel (2017) for OoD detection.We apply themetric pixel-wise
and additionally measure the softmax entropy, as proposed
by Lee et al. (2018), which captures more information from
the softmax.

OoD training While we generally strive for methods that
are not biased by data, learning confidence from data is an
obvious baseline and was explored in DeVries and Tay-
lor (2018). As we are not supposed to know the true OoD
distribution, we do not use Pascal VOC, but rather approxi-
mate unknown pixels with the Cityscapes void class. In our
evaluation, we (i) train a model to maximise the softmax
entropy for OoD pixels, or (ii) introduce void as an addi-
tional output class and train with it. The uncertainty is then
measured as (i) the softmax entropy, or (ii) the score of the
void class.

Bayesian DeepLab was introduced by Mukhoti and Gal
(2018), following Kendall and Gal (2017), and is the only
uncertainty estimate already applied to semantic segmenta-
tion in the literature. The epistemic uncertainty is modeled
by adding Dropout layers to the encoder, and approximated
by T (MC) samples, while the aleatoric uncertainty corre-
sponds to the spread of the categorical distribution. The total
uncertainty is the predictive entropy of the distribution y,

Ĥ
[
y|x] = −

∑

c

(
1

T

∑

t

ytc

)

log

(
1

T

∑

t

ytc

)

, (1)

where ytc is the probability of class c for sample t . The epis-
temic uncertainty ismeasured as themutual information (MI)
between y and the weights w,

Î
[
y,w|x] = Ĥ

[
y|x] − 1

T

∑

c,t

ytc log y
t
c. (2)

Dirichlet DeepLab Prior networks (Malinin and Gales,
2018) extend the framework of Gal (2016) by considering
the predicted logits z as log concentration parameters α of a
Dirichlet distribution, which is a prior of the predictive cate-
gorical distribution y. Intuitively, the spread of the Dirichlet
prior should model the distributional uncertainty, and remain
separate from the data uncertainty modelled by the spread of
the categorical distribution. To this end, Malinin and Gales
(2018) advocate to train the network with the objective:

L(θ) = Epin [KL [Dir(μ|αin)||p(μ|x; θ)]]

+ Epout [KL [Dir(μ|αout)||p(μ|x; θ)]]

+ CrossEntropy(y, z).

(3)

The first term forces ID samples to produce sharp priors
with a high concentration αin, computed as the product of
smoothed labels and a fixed scale α0. The second term forces
OoD samples to produce a flat prior with αout = 1, effec-
tively maximizing the Dirichlet entropy, while the last one
helps the convergence of the predictive distribution to the
ground truth. We model pixel-wise Dirichlet distributions,
approximate OoD samples with void pixels, and measure the
Dirichlet differential entropy.

kNN Embedding.Different works (Papernot &McDaniel,
2018; Mandelbaum&Weinshall, 2017) estimate uncertainty
using kNNstatistics between inferred embedding vectors and
their neighbors in the training set. They then compare the
classes of the neighbors to the prediction, where discrep-
ancies indicate uncertainty. In more details, a given trained
encoder maps a test image x′ to an embedding z′

l = fl(x′)
at layer l, and the training set X to a set of neighbors
Zl := fl(X). Intuitively, if x′ is OoD, then z′ is also dif-
ferently distributed and has e.g. neighbors with different
classes. Adapting these methods to semantic segmentation
faces two issues: (i) The embedding of an intermediate
layer of DeepLab is actually a map of embeddings, result-
ing in more than 10,000 kNN queries for each layer, which
is computationally infeasible. We follow Mandelbaum and
Weinshall (2017) and pick only one layer, selected using the
FS Lost and Found validation set. (ii) The embedding map
has a lower resolution than the input and a given training
embedding z(i)

l is therefore not associated with one, but with
multiple output labels. As a baseline approximation, we link
z(i)
l to all classes in the associated image patch. The relative
density (Mandelbaum & Weinshall, 2017) is then:

D(z′) =

∑

i∈K ,c′=ci

exp
(
− z′z(i)

|z′| |z(i)|
)

∑

i∈K
exp

(
− z′z(i)

|z′| |z(i)|
) . (4)
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Here, ci is the class of z(i) and c′ is the class of z′ in
the downsampled prediction. In contrast to Mandelbaum
and Weinshall (2017), we found that the cosine similarity
from Papernot and McDaniel (2018) works well without
additional losses. Finally, we upsample the density of the
feature map to the input size, assigning each pixel a density
value.

As the class association is unclear for encoder-decoder
architectures, we also evaluate the density estimation with k
neighbors independent of the class:

D(z′) =
∑

i∈K
exp

(

− z′z(i)

|z′| |z(i)|

)

. (5)

This assumes that an OoD sample x′, with a low density w.r.t
X, should translate into z′ with a low density w.r.t. Zl .

4.2 Learned Embedding Density

We now introduce a novel approach that takes inspiration
from density estimation methods while greatly improving
their scalability and flexibilty.

Density estimation using kNN has two weaknesses. First,
the estimation is a very coarse isotropic approximation,while
the distribution in feature space might be significantly more
complex. Second, it requires to store the embeddings of the
entire training set and to run a large number of NN searches,
both of which are costly, especially for large input images.
On the other hand, recent works (Choi et al., 2018; Nalisnick
et al., 2019) on OoD detection leverage more complex gen-
erative models, such as normalizing flows (Dinh et al., 2017;
Kingma&Dhariwal, 2018;Dinh et al., 2014), to directly esti-
mate the density of the input sample x. This is however not
directly applicable to our problem, as (i) learning generative
models of images that can capture the entire complexity of
e.g. urban scenes is still an open problem; and (ii) the pixel-
wise density required here should be conditioned on a very
(ideally infinitely) large context, which is computationally
intractable.

Our approach mitigates these issues by learning the den-
sity of z. We start with a training set X drawn from the
unknown true distribution x ∼ p∗(x), and corresponding
embeddings Zl . A normalizing flow with parameters θ is
trained to approximate p∗(zl) by minimizing the negative
log-likelihood (NLL) over all training embeddings in Zl :

L(Zl) = − 1

|Zl |
∑

i

log pθ (z
(i)
l ). (6)

The flow is composed of a bijective function gθ that maps an
embedding zl to a latent vector η of identical dimensionality
and with Gaussian prior p(η) = N(η; 0, I). Its loglikelihood

is then expressed as

log pθ (zl) = log p(η) + log

∣
∣∣∣det

(
dgθ

dz

)∣
∣∣∣ , (7)

and can be efficiently evaluated for some constrained gθ .
At test time, we compute the embedding map of an input
image, and estimate the NLL of each of its embeddings. In
our experiments, we use the Real-NVP bijector (Dinh et al.,
2017), composed of a succession of affine coupling layers,
batch normalizations, and random permutations.

The benefits of this method are the following: (i) A nor-
malizing flow can learn more complex distributions than the
simple kNN kernel or mixture of Gaussians used by Lee
et al. (2018), where each embedding requires a class label,
which is not available here; (ii) Features follow a simpler dis-
tribution than the input images, and can thus be correctly fit
with simpler flows and shorter training times; (iii) The only
hyperparameters are related to the architecture and the train-
ing of the flow, and can be cross-validated with the NLL of
ID data without any OoD data; (iv) The training embeddings
are efficiently summarized in the weights of the generative
model with a very low memory footprint.

Input preprocessing (Liang et al., 2018) can be trivially
applied to our approach. Since the NLL estimator is an end-
to-end network, we can compute the gradients of the average
NLL w.r.t. the input image by backpropagating through the
flow and the encoder.

A flow ensemble can be built by training separate density
estimators over different layers of the segmentation model,
similar to Lee et al. (2018). However, the resulting NLL
estimates cannot be directly aggregated as is, because the dif-
ferent embedding distributions have varying dispersions and
dimensions, and thus densities with very different scales. We
propose to normalize the NLL N (zl) of a given embedding
by the average NLL of the training features for that layer:

N̄ (zl) = N (zl) − L(Zl). (8)

This is in fact a (MC) approximation of the differential
entropy of the flow, which is intractable. In the ideal case of
a multivariate Gaussian, N̄ corresponds to the Mahalanobis
distance used by Lee et al. (2018). We can then aggregate the
normalized, resized scores over different layers. We exper-
iment with two strategies: (i) Using the minimum detects a
pixel as OoD only if it has low likelihood through all lay-
ers, thus accounting for areas in the feature space that are
in-distribution but contain only few training points; (ii) Fol-
lowing Lee et al. (2018), taking a weighted average, with
weights given by a logistic regression fit on the FS Lost and
Found validation set, captures the interaction between the
layers.
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Table 1 Benchmark results

Gray columns represent the primary metric of the benchmark. Methods are only evaluated on those FS Web datasets with object images appearing
on the web after their submission date. For every metric and dataset, the best performance is marked bold and the best performance without OoD
training is marked italic

4.3 SubmittedMethods

The following methods were submitted to our benchmark
since it went online in August 2019. They were not imple-
mented or trained by us, but we include an overview since
they are part of the benchmark results.

An outlier head can be added in a multi-task fashion to
many semantic segmentation architectures. Bevandic et al.
(2019) trains the head in a supervised fashion on both ID and
OoD data samples. The training is executed simultaneously
with the segmentation training. The outlier detection head
then returns a pixel-wise anomaly score. Submitted were
three variants of this method where the exact descriptions
are in submission for publication.

Image resynthesis uses reconstruction to estimate the fit
of an input to the training data distribution of a generative
model.While auto-encoders such as described in Sect. 2 scale
poorly to the level of detail in urban driving, good results have
been achieved with generative adversarial networks (Wang
et al., 2018; Isola et al., 2017) that synthesize driving scenes
from semantic segmentation. Lis et al. (2019) uses such a
method to find outliers by comparing the original and resyn-
thesized image, where they train the comparison on flipped
semantic labels in the ID data and therefore do not require
outliers in training. While the original work (Lis et al., 2019)
experimented with lower resolution segmentation data, Di
Biase et al. (2021) submitted an adapted, scaled-up model.

Synboost is a modular approach that combines introspec-
tive uncertainties and input reconstruction into a pixel-wise
dissimilarity score. Further details are described in Di Biase
et al. (2021).
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Fig. 4 Performance evolution over the different iterations of the FS
Web dataset. We only plot the best-performing variant of each method.
Methods that train on OoD data are plotted with dashed lines. Notable
changes are the better blending method in June 19 and the inclusion of
blended ID objects in January 20, which changed the data-balance.

5 Discussion of Results

We show in Table 1 the results of our benchmark as of
December 2020 for the aforementioned datasets and meth-
ods. Qualitative examples of all methods are shown in Fig. 5.

Softmax confidence Confirming findings on simpler tasks
(Lee et al., 2018), the softmax confidence is not a reliable
score for anomaly detection. While training with OoD data
clearly improves the softmax-based detection, it is not much
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successful example incorrect example

Softmax
Entropy

Void Classifier

Bayesian
DeepLab

Dirichlet
DeepLab

kNN density

learned density
regression

Image
Resynthesis

Outlier Head
Combined

Synboost

Fig. 5 Successful and failed examples for all methods on the Fishysc-
apes Lost and Found dataset. Input images overlayedwith the evaluation
labels are on the left, predicted anomaly scores on the right of each exam-

ple pair. For every method, we show the best variant. The red circles
highlight anomalies that are missed by the method or indistinguishable
from noise.

better than Bayesian DeepLab, that does not require such
data.

Difference between datasets For most methods, there is a
clear performance gap between the data fromLost and Found
and the other datasets. We attribute this to two factors. First,
the dataset contains a lot of images with only very small
objects. This is indicated by the AP of the random classifier,
which equals to the fraction of anomalous pixels. Second, the
qualitative examples show themore challenging nature of the
Lost and Found dataset with e.g. false positives for the void
classifier or outlier head, and cases where small anomalous
objects are not detected at all e.g. for the Bayesian DeepLab
or Softmax Entropy.

We further investigate the results on FS Web over time
in Fig. 4. While most methods follow overall trends that
can be attributed to the difficulty of the individual objects or
differences in data balance, it becomes clear that (i) embed-
ding based methods were picking up blending artifacts in FS
Web March 2019, and (ii) Dirichlet DeepLab is performing
very inconsistently. (i) appears to be fixed with the advanced
blending from June 2019, since the introduction of blended
ID objects did not have any effect on embedding based meth-
ods. (ii) could indicate a degree of overfitting to specific
object types, because Dirichlet DeepLab is trained on OoD
data.
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Semantic segmentation accuracy The data in table 1
illustrates a tradeoff between anomaly detection and seg-
mentation performance. Methods like Bayesian DeepLab or
Outlier Head are consistently among the best methods on all
datasets, but need to train with special losses that reduce the
segmentation accuracy by up to 10%. If segmentation accu-
racy is important, methods that do not require any retraining
are particularly interesting.

Supervision with OoD data appears to be important for
good anomaly detection. On every dataset, the best method
required OoD data and is at least 38% better than any ‘unsu-
pervised’ method. While training with OoD data can in
principle lead to overfitting to specific objects, the results on
FS Web, which was designed specifically to resemble open-
world settings, show that the Outlier Head or Dissimilarity
Ensemble are very robust to diverse anomalies.

We however want to emphasize that anomaly detection
and uncertainty estimation are very different principles. Our
benchmark therefore serves the dual purpose of finding either
the best anomaly segmentation method or well-scalable
uncertainty estimates, that are simply tested on the proxy task
of anomaly detection. Comparing BayesianDeepLab and the
void classifier shows that good uncertainty estimation meth-
ods can even compete with some supervised methods, but
so far not with specifically designed anomaly segmentation
methods.

Inference time differs significantly between methods.
Methods can be broadly sorted into two categories, where
the first do a single pass through a (sometimes modified)
DeepLabv3+ architecture and the second category applies
additional processing on top of this forward pass. Our mea-
surements show that methods in the second category have
up to two orders of magnitude higher inference time. The
only exception marks the single-layer embedding density,
where inference time is comparable to single pass meth-
ods. While nearly all methods3 were executed as optimised
tensorflow graphs, measurements are still dependent on the
implementation details and possible parallelization is limited
by GPU memory constraints. For example, the difference
between softmax max-prob, softmax entropy, and dirichlet
entropy can only be explained with inefficiencies in the soft-
max entropy implementation that cause a difference of more
than 0.2 s.

Challenges in method adaptation The results reveal that
some methods cannot be easily adapted to semantic seg-
mentation. For example, retraining required by special losses
can impair the segmentation performance, and we found that
these losses (e.g. for Dirichlet DeepLab) were often unsta-
ble during training or did not converge. Other challenges rise
from the complex network structures which complicate the
translation of class-based embedding methods such as deep

3 Image Resynthesis and SynBoost were submitted as pytorch models.

k-nearest neighbor (Papernot &McDaniel, 2018) to segmen-
tation. This is illustrated by the performance of our simple
implementation.

6 Conclusion

In this work, we introduced Fishyscapes, a benchmark for
anomaly detection in semantic segmentation for urban driv-
ing.Comparing state-of-the-artmethods on this complex task
for the first time, we draw multiple conclusions:

– The softmax output from a standard classifier is a bad
indicator for anomaly detection.

– Most of the better performing methods required special
losses that reduce the semantic segmentation accuracy.

– Supervision of anomaly segmentationmethodswithOoD
data consistently outperformed unsupervised methods
even in open-world scenarios.

Overall, the methods compared in our benchmark so
far leave a lot of room for improvement. To safely deploy
semantic segmentation methods in autonomous cars, further
research is required. As a public benchmark, Fishyscapes
supports the evaluation of new methods on urban driving
scenarios.
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Appendix

Here we provide additional experimental evaluations as well
as details on the proposed datasets and the evaluatedmethods.

AMisclassification Detection

Additionally to anomaly detection, we test some methods on
the detection ofmisclassifications from the semantic segmen-
tation output. Misclassification detection is another proxy
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classification task that correlates with uncertainty. However,
misclassification mixes uncertainty from

– noise in the input (aleatoric uncertainty)
– model uncertainty
– shifts in data balance (softmax classification implicitly
learns a prior distribution of the classes over the training
set)

Nevertheless, failure detection is an important problem for
deployment on autonomous agents, e.g. as part of sensor
fusion mechanisms, and misclassification detection is used
in different related work (Hendrycks & Gimpel, 2017; Lak-
shminarayanan et al., 2017; Guo et al., 2017; Jiang et al.,
2018) to benchmark uncertainty estimates.

Dataset We test misclassification detection on a diverse
mixture of different data sources that introduce sources of
uncertainty in the input. From Sakaridis et al. (2018), we
select all images. From Dai et al. (2020), we map classes sky
and fence to void, as their labelling is not accurate and some-
times areas that are not visible due to fog are simply labelled
sky. For WildDash (Zendel et al. 2018), we use all images.
For Mapillary Vistas (Neuhold et al., 2017), we sample 50

Table 2 Mapping of mapillary classes onto our used set of classes for
misclassification detection

Mapillary label Used label

construction–barrier–fence fence

construction–barrier–wall wall

construction–flat–road road

construction–flat–sidewalk sidewalk

construction–structure–building building

human–person person

human–rider–* rider

nature–sky sky

nature–terrain terrain

nature–vegetation vegetation

object–support–pole pole

object–support–utility-pole pole

object–traffic-light traffic light

object–traffic-sign–front traffic sign

object–vehicle–bicycle bicycle

object–vehicle–bus bus

object–vehicle–car car

object–vehicle–motorcycle motorcycle

object–vehicle–on-rails train

object–vehicle–truck truck

marking–* road

anything else void

Table 3 Misclassification detection results

Gray column represents the primary metric

random images from the validation set and apply the label
mapping described in Table 2.

During evaluation all pixels labelled as void are ignored.
Evaluated Methods From the methods evaluated on

anomaly detection, we note that the void classifier produces
meaningless results for misclassification detection since a
high void output score produces the exact misclassification
it is detecting. Furthermore, we did not evaluate the learned
embedding density.

Results of our evaluation are presented in Table 3 and
qualitative examples in Fig. 6. Differently from anomaly
detection, the softmax score is expected to be a good indicator
for classification uncertainty, and indeed shows competitive
results. ForBayesianDeepLab,wefind thepredictive entropy
to be a better indicator of misclassification, which was also
observed byKendall andGal (2017). The kNNdensity shows
results similar to the other methods, hinting that embedding-
based methods cannot be entirely classified as OoD-specific,
but may also be able to detect input noise that is very differ-
ent from the training distribution.Overall, the experiments do
not reveal a single method that performs significantly better
than others.

B Details on theMethods

In this section we provide implementation details on the
evaluated methods to ease the reproducibility of the results
presented in this paper.

B.1 Semantic SegmentationModel

We use the state-of-the-art model DeepLabv3+ (Chen et al.,
2018) with Xception-71 backbone, image-level features, and
dense prediction cell. When no retraining is required, we use
the original model trained on Cityscapes4.

4 https://github.com/tensorflow/models/blob/master/research/
deeplab.
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Fig. 6 Qualitative examples of misclassification detection. Predic-
tions correspond to the uncertainty maps to their right. Misclassifica-
tions aremarked in black, while ignored void pixels aremarked in bright
green. Better methods should assign a high score (dark) to misclassified

pixels. While the different trainings clearly lead to different classifica-
tion performances, none of the methods captures all the misclassified
pixels.

B.2 Softmax

ODIN (Liang et al., 2018) applies input preprocessing and
temperature scaling to improve the OoD detection ability
of the maximum softmax probability. Early experiments
on Fishyscapes showed that (i) temperature scaling did not
improve much the results of this baseline, and (ii) input pre-
processing w.r.t. the softmax score is not possible due to
the limited GPU memory and the large size of the DeepLab
model. As the maximum probability is anyway not compet-
itive with respect to the other methods, we decided to not
further develop that baseline.

B.3 Bayesian DeepLab

We reproduce the setup described by Mukhoti and Gal
(2018).As such,weuse theXception-65 backbone pretrained
on ImageNet, and insert dropout layers in its middle flow.We
train for 90k iterations, with a batch size of 16, a crop size of
513 × 513, and a learning rate of 7 · 10−3 with polynomial
decay.

B.4 Dirichlet DeepLab

Following Malinin and Gales (2018), we interpret the output
logits of DeepLab as log-concentration parameters α and
trainwith the loss described by Eq. (3) and implementedwith
the TensorFlow Probability (Dillon et al., 2017) framework.
For the first term, the target labels are smoothed with ε =
0.01 and scaled by α0 = 100 to obtain target concentrations.
To ensure convergence of the classifier, we found it necessary
to downweight both the first and second terms by 0.1 and

to initialize all but the last layer with the original DeepLab
weigths.

We also tried to replace the first term by the negative log-
likelihood of the Dirichlet distribution but were unable to
make the training converge.

B.5 kNN Embedding

Layer of Embedding. As explained in Sect. 4.1, we had to
restrict the kNN queries to one layer. A single layer of the
network already has more than 10,000 embedding vectors
and we need to find k nearest neighbors for all of them.
Querying over multiple layers therefore becomes infeasible.
To select a layer of the network, we test multiple candidates
on the FS Lost and Found validation set.We experienced that
our kNN fitting with hnswlib5 (Malkov & Yashunin, 2018)
was not deterministic, therefore we provide the average per-
formance on the validation set over 3 different experiments.
Additionally, we had to reduce the complexity of kNN fitting
by randomly sampling 1000 images from Cityscapes instead
of the whole training set (2975 images).

For the kNN density, we provide the results for different
layers in Table 4.

For class-based embedding, we perform a similar search
for the choice of layer. The result can be found in Table 5.

Number of Neighbors We select k according to Tables 6
and 7. All values are measured with the same kNN fitting. As
the computational time for each query grows with k, small
values are preferable. Note that by definition, the relative
class density needs a sufficiently high k such that not all
neighbors are from the same class.

5 https://github.com/nmslib/hnswlib.
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Table 4 Parameter search of the embedding layer for kNN density

DeepLab layer (AP)

xception_71/middle_flow/block1/unit_8 1.00 ± .02

xception_71/exit_flow/block2 1.80 ± .01

aspp_features 2.97 ± .47

decoder_conv0_0 3.84 ± .19

decoder_conv1_0 2.46 ± .09

The AP is computed on the validation set of FS Lost and Found. Based
on these results, we use the layer decoder_conv0_0 in all our exper-
iments

Table 5 Parameter search of the embedding layer for class based rela-
tive kNN density

DeepLab layer (AP)

xception_71/middle_flow/block1/unit_8 9.6 ± .0

xception_71/middle_flow/block1/unit_10 9.7 ± .0

xception_71/exit_flow/block2 9.7 ± .1

aspp_features 2.3 ± .7

decoder_conv0_0 2.8 ± .1

decoder_conv1_0 3.1 ± .2

The AP is computed on the validation set of FS Static.
Based on these results, we use the layer xception_71/exit
_flow/block2 in all our experiments

Table 6 Parameter search for
the number of nearest neighbors
for kNN embedding density

k (AP)

1 42.3

2 44.6

5 47.7

10 50.9

20 52.2

50 52.7

100 52.5

As computing time increases
with k, we select k = 20

Table 7 Parameter search for
the number of nearest neighbors
for the class based kNN relative
density

k (AP)

5 5.4

10 6.7

20 7.9

50 9.3

100 9.9

200 10.0

As computing time increases
with k, we select k = 100

B.6 Learned Embedding Density

Flow architecture The normalizing flow follows the sim-
ple architecture of Real-NVP. We stack 32 steps, each one

composed of an affine coupling layer, a batch normalization
layer, and a fixed random permutation. As recommended by
Kingma and Dhariwal (2018), we initialize the weights of
the coupling layers such that they initially perform identity
transformations.

Flow training For a given DeepLab layer, we export the
embeddings computed on all the images of the Cityscapes
training set. The number of such datapoints depends on the
stride of the layer, and amounts to 22M for a stride of 16.
We keep 2000 of them for validation and testing, and train
on the remaining embeddings for 200k iterations, with a
learning rate of 10−4, and the Adam optimizer. Note that
we can compare flow models based on how well they fit the
in-distribution embeddings, and thus do not require any OoD
data for hyperparameter search.

Layer selection OoD data is only required to select the
layer atwhich the embeddings are extracted. The correspond-
ing feature space should best separate OoD and ID data, such
that OoD embeddings are assigned low likelihood.We found
that it is critical to extract embeddings before ReLU activa-
tions, as some dimensions might be negative for all training
points, thus making the training highly unstable. We show in
Table 8 the (AP) on the FS Lost and Found validation set for
different layers.Wefirst observe thatwedid not achieve train-
ing convergence for those layers that showed best results in
the kNNmethod. This may be due to the high dimensionality
of these layers, and/or because the flow is not well suited to
approximate these distributions. We also notice that overall
layers in the encoder middle flow work best, while Mukhoti
and Gal (2018) insert dropout layers at this particular stage.
While we do not know the reason behind their design deci-
sion,wehypothesize the they found these layers to bestmodel
the epistemic uncertainty.

Table 8 Cross-validation of the embedding layer for the learned density

DeepLab layer AP

xception_71/entry_flow/block5 1.27

xception_71/middle_flow/block1/unit_4 2.14

xception_71/middle_flow/block1/unit_6 2.38

xception_71/middle_flow/block1/unit_8 2.41

xception_71/middle_flow/block1/unit_10 2.52

xception_71/middle_flow/block1/unit_12 2.22

aspp_features –

decoder_conv0_0 0.16

decoder_conv1_0 2.77

The AP is computed on the validation set of FS Lost and Found.
Based on these results, we use the layer decoder_conv1_0 in all
our experiments. We could not manage to make the training of the
aspp_features layer converge, most likely due to a very peaky
distribution that induces numerical instabilities
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Table 9 Cross-validation of the
input preprocessing for the
learned density

Noise ε AP on FS Static
validation test

None 36.0 52.5

0.1 38.4 –

0.2 39.1 –

0.25 39.2 55.4

0.3 39.2 –

0.35 39.2 –

0.4 39.1 –

0.5 39.0 –

1.0 36.6 –

Based on these results, we apply
noise with magnitude ε = 0.25
in all our experiments

Effect of input preprocessing As previously reported
by Liang et al. (2018; 2018), we observe that this simple
input preprocessing brings substantial improvements to the
detection score on the test set. We show in Table 9 the AP
for different noise magnitudes ε.
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