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Abstract

Effective exploration is a crucial challenge in deep reinforcement learning. Behavioral
priors have been shown to tackle this problem successfully, at the expense of reduced gen-
erality and restricted transferability. We thus propose temporal priors as a non-Markovian
generalization of behavioral priors for guiding exploration in reinforcement learning. Crit-
ically, we focus on state-independent temporal priors, which exploit the idea of temporal
consistency and are generally applicable and capable of transferring across a wide range of
tasks. We show how dynamically sampling actions from a probabilistic mixture of policy
and temporal prior can accelerate off-policy reinforcement learning in unseen downstream
tasks. We provide empirical evidence that our approach improves upon strong baselines
in long-horizon continuous control tasks under sparse reward settings.
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1

Introduction

Exploration is a fundamental issue in reinforcement learning (RL): in order for an agent
to maximize its reward signal, it needs to adequately cover its state space and observe
the outcome of its actions. This becomes increasingly harder when dealing with large,
continuous state and action spaces, which includes many real world applications. There
exists a large and fruitful body of research on exploration [Bellemare et al. 2016, Osband
et al. 2016, Tang et al. 2017, Osband et al. 2018, Azizzadenesheli et al. 2018, Burda et al.
2018, Dabney et al. 2021, Ecoffet et al. 2021], however most general-purpose algorithms
remain based on ε-greedy exploration [Mnih et al. 2015] or entropy-regularized Gaussian
policies [Haarnoja et al. 2018]. In the absence of an informative reward signal, both meth-
ods rely on uniformly sampling actions from the action space, independently of the history
of the agent. Unfortunately, in sparse reward settings, achieving positive returns by un-
correlated exploration becomes exponentially less likely as the horizon length increases
[Dabney et al. 2021]. Moreover, within this setting, the lack of temporal correlation can
result in undesirable behaviors during exploration, such as reversing recent actions.

A promising approach to achieve efficient exploration is that of using a behavioral prior
to guide the policy [Pertsch et al. 2020, Tirumala et al. 2020, Singh et al. 2021]. Typ-
ically, this is learned from expert trajectories as a state-conditional action distribution.
Behavioral priors are able to foster directed and correlated exploration [Singh et al. 2021],
by assuming a strong similarity between the agent and expert tasks. However, an agent
should ideally be able to produce efficient explorative behaviors even in unseen environ-
ments and unrelated tasks.

To overcome the shortcomings of behavioral priors, we propose temporal priors, a power-
ful non-Markovian generalization which is capable of guiding exploration in challenging
settings. In particular, we put our attention on the family of state-independent temporal
priors, which enable accelerating reinforcement learning and transferring knowledge to



1. Introduction

Figure 1.1.: TempoRL: A temporal prior is trained on task-agnostic trajectories. Actions are
then sampled from a dynamic mixture between a state-independent temporal prior
and the policy in downstream learning of more complex tasks. Our method works
with both vector-based and image-based state inputs.

unseen tasks by focusing on temporal correlation between actions.

In our method, which we dub TEMporal Priors for exploration in Off-policy Reinforce-
ment Learning (TempoRL), we introduce a temporal action prior π̄(at|st, Ht), where
Ht = (si, ai)

t−1
0 is the history of the agent. In particular, we find that the class of state-

independent temporal priors π̄(at|(ai)t−10 ) is sufficient for capturing desirable properties
for exploration, such as directness and temporal correlation, and advantageous in situa-
tions where the prior carries no knowledge about the current state. Temporal priors can
be trained offline from few task-agnostic expert trajectories (see Figure 1.1). Furthermore,
we propose a principled manner of integrating priors into the Soft Actor Critic framework
[Haarnoja et al. 2018] without breaking the Markovian assumption of the learning rule. In
downstream learning of more complex tasks, our method samples actions from a dynamic
mixture between the policy and the temporal prior. Moreover, the policy is regularized
by directly maximizing the likelihood of sampling from the prior instead of the policy’s
entropy. Our approach is general and can be applied for arbitrarily complex priors.

In our experiments, we first compare the adequacy of behavioral priors and of different
families of temporal priors for accelerating downstream RL. We then focus on state-
independent temporal priors and verify their capability to produce correlated and directed
behavior. We provide empirical evidence that our method can accelerate learning in
long-horizon control tasks with sparse rewards. We demonstrate the effectiveness of our
approach by comparing against state-of-the-art baselines.

Our contributions can be organized as follows:

1. We propose learnable non-Markovian action priors conditioned on the history of the
agent. We show that sampling from these prior produces directed and correlated
trajectories.

2



2. We introduce a principled manner of integrating temporal priors into the Soft Actor
Critic framework [Haarnoja et al. 2018].

3. We show how state-independent temporal priors can be learned from few expert
trajectories on simple tasks and used to improve exploration efficiency in new tasks,
despite the presence of massive domain gaps 1 (e.g. from a simple reaching task to
opening a window) and across entirely different settings (e.g., from non-visual to
visual RL).

After discussing our method’s novelty and related literature in Section 2, we introduce
our setting in Section 3. The method is described in Section 4, while empirical evidence
of its effectiveness is reported in Section 5. Finally, Section 6 contains a brief closing
discussion of our work. We make our code available for research purposes 2.

1We borrow this term from domain adaptation literature to hint at the different nature of the en-
vironment used for collecting expert trajectories and of the environment the RL agent is deployed
in.

2https://sites.google.com/view/tempo-rl
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Related Work

Efforts addressing exploration in deep reinforcement learning have evolved along multiple
and various directions [Bellemare et al. 2016, Osband et al. 2016, Tang et al. 2017, Osband
et al. 2018, Azizzadenesheli et al. 2018, Nair et al. 2018, Burda et al. 2018, Dabney et al.
2021, Ecoffet et al. 2021]. In this section, we focus on ideas that are closely related to our
work and allow for a direct comparison.

Temporally-Extended Exploration Several works have attempted to directly ad-
dress the inability of traditional methods, such as ε-greedy or uniform action sampling
[Lillicrap et al. 2016, Haarnoja et al. 2018], to produce correlated trajectories. An inter-
esting study [Dabney et al. 2021] highlights this issue and shows how repeating random
actions for multiple steps is sufficient to significantly accelerate Rainbow [Hessel et al.
2018] on Atari [Bellemare et al. 2013]. Similarly, [Amin et al. 2021] propose a non-learned
policy inspired by the theory of freely-rotating chains in polymer physics to collect initial
explorative trajectories in continuous control tasks. Both methods pinpoint a fundamen-
tal issue, but rely on scripted policies which are hand-crafted for a particular family of
environments. On the other hand, our method is learned from task-agnostic trajectories
and does not require engineering an explorer, which can be unfeasible for complex tasks.

Hierarchical Reinforcement Learning Another approach to tackle exploration-hard
tasks is to rely on a hierarchical decomposition of the agent into different levels of tem-
poral and functional abstraction [Parr and Russell 1998, Dietterich 2000, Sutton et al.
1999, Dayan and Hinton 2000]. For instance, the task can be decomposed into high level
planning and a set of low-level policies, often referred to as skills [Konidaris and Barto
2007, Eysenbach et al. 2018] or options [Sutton et al. 1999, Bacon et al. 2017]. This
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approach effectively reduces the planning horizon and allows efficient solving of complex
tasks from scratch [Bacon et al. 2017, Vezhnevets et al. 2017, Nachum et al. 2018, Levy
et al. 2019, Christen et al. 2021]. Low-level policies can be trained without supervision
to achieve correlated and directed behaviors [Eysenbach et al. 2018], however, the issue
of temporal correlation is merely relocated in the hierarchy, as the high-level planner is
not encouraged to produce correlated sequences of skills. Incidentally, our method is not
designed to achieve temporal abstraction, but can be interpreted in a hierarchical frame-
work [Schäfer et al. 2021] in which a high-level criterion (the mixing function) governs a
probabilistic choice between an explorer (temporal prior) and an exploiter (policy).

Learning from Demonstrations TempoRL is aligned with existing methods that rely
on demonstrations to accelerate RL on complex tasks [Nair et al. 2018, Rajeswaran et al.
2018]. In principle, the cost of acquiring few expert trajectories can be small compared
to the significant engineering effort required in their absence [OpenAI et al. 2019]. In
most cases, such trajectories are required to be near-optimal and collected in the same
environment [Schaal 1997] or from the same distribution of tasks [Singh et al. 2021]. In our
case, expert trajectories can be task-agnostic, unlabeled and collected in a significantly
different environment, as we focus on reconstructing correlated exploration trajectories
instead of exploitative behavior.

Behavioral Priors Behavioral priors are generally represented by state-conditional ac-
tion distributions modeling strategies for the current state of the environment. Such priors
can be learned jointly with the policy in the context of KL-regularized RL [Tirumala et al.
2019, Tirumala et al. 2020], which in some cases restricts the information available to the
prior [Galashov et al. 2019]. A second approach consists in learning behavioral priors
from expert policies on related tasks. This is the case for several works [Peng et al.
2019, Pertsch et al. 2020, Pertsch et al. 2021, Ajay et al. 2021] which adopt a Gaussian
behavioral prior in a latent skill-space. In particular, [Pertsch et al. 2020] report that a
prior is crucial to guiding a high-level actor in an HRL framework. An important con-
tribution to the field is made by PARROT [Singh et al. 2021], which focuses on a visual
setup and introduces a flow-based transformation of the action space to allow arbitrarily
complex prior distributions. We extend this idea to prior action distributions that are not
only conditioned on the current state or a part thereof, but rather on the history of the
agent, and are therefore non-Markovian. Moreover, we propose a novel and more flexible
way of integrating the prior distribution into the learning algorithm. Most importantly,
we overcome the reliance of the last two methods on a tight domain gap between tasks
for training the prior and the agent.
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Background

3.1. Setting

Reinforcement learning (RL) is the problem that an agent faces when learning to inter-
act with a dynamic environment. We formalize the environment as a goal-conditioned
Markov Decision Process (gc-MDP) [Nasiriany et al. 2019], that consists of a 6-tuple
(S,A,G,R, T , γ), where S is the state space, A is the action space, G ⊆ S is the goal
space, R : S × G → R is a scalar reward function, T : S × A → Π(S) a probabilistic
transition function that maps state-action pairs to distributions over S and, finally, γ is
a discount factor. Assuming goals to be drawn from a distribution pG, the objective of an
RL agent can then be expressed over a time horizon T as finding a probabilistic policy

π? = arg max
π

Eg∼pG
t=T∑
t=0

γtR(st, g), with st ∼ T (st−1, at−1) and at−1 ∼ π(st−1, g).

In order to simplify notation, from this point on, we will implicitly include the goal into
the state at each time step: st ← (st, g).

We focus on long-horizon control problems with continuous state and action spaces and
sparse rewards, i.e., non-zero only after task completion. Although our method can be
generally applied to stochastic off-policy RL methods, we build upon Soft Actor Critic
[Haarnoja et al. 2018] with Hindsight Experience Replay [Andrychowicz et al. 2017], due
to their wide adoption in these settings.

Finally, in contrast with several behavioral prior approaches [Galashov et al. 2019, Pertsch
et al. 2020, Singh et al. 2021], we adopt a more general and challenging setting. First,
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we do not assume that prior information on the structure of the state space is avail-
able. Second, while we also assume access to a collection of expert trajectories D =
{(si0, ai0, si1, ai1, . . . , siN , aiN)}Li=0, we do not require high quality trajectories collected on
the exact environment and task. From this point on, we refer to the environment used
for collecting data as the training environment, and to the environment in which the RL
agent is deployed as the downstream environment.

3.2. Behavioral Priors

A behavioral prior π̄(a|s) [Pertsch et al. 2020, Singh et al. 2021] is a state-conditional
probability distribution over the action space (cf. Figure 4.1a). Behavioral priors can be
trained to assign high probability to useful actions with respect to the current state, and
hence be used to accelerate RL. A behavioral prior can only guide the policy effectively
as long as prior information on the structure of the state space is available [Galashov
et al. 2019], or the prior has been trained on data collected on a closely related task and
environment [Pertsch et al. 2020, Singh et al. 2021].

In our settings, the structure of observations is unknown and expert trajectories D may
be collected on unrelated tasks. This means that the distribution of training states might
not match the distribution of states produced by downstream environments: behavioral
priors will then be evaluated on out-of-distribution samples and their performance will
degrade drastically, as shown in Section 5.1.

8
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Method

Our method relies on the integration of a learned temporal action prior into an off-policy
RL algorithm. Thus, we first define and discuss the class of temporal priors of interest,
and later describe how they can be integrated into existing off-policy algorithms.

4.1. Temporal Priors

Within the settings outlined in Section 3.1, it is still possible to extract and transfer
knowledge from the expert dataset D to the agent, despite a significant domain gap.
Namely, we can model the temporal correlation of the expert trajectories and use it to
speed up downstream learning.

In order to recover this information, we thus propose to learn a temporal prior. A temporal
prior is a non-Markovian action prior, representing a probability distribution over the
action space that is not conditioned on the current state alone, but also on the past
history of the agent: π̄(at|st, Ht) (see Figure 4.1b), where Ht = (s0, a0, . . . , st−1, at−1).
Temporal priors are a powerful generalization of behavioral priors, which directly address
temporal correlation.

In the challenging settings we describe in Section 3.1, conditioning on the current state
is not just insufficient, but might also be counterproductive, as a state-conditional action
prior would receive out-of-distribution samples as inputs. Hence, we focus on the class
of state-independent temporal priors, which drop their dependence on the environment’s
state. This is indeed a viable strategy in a hard-exploration setting, when no prior in-
formation is available on the state space and no reward is observed: in this case, no
information can be extracted from the state in any case. The most general definition of
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Figure 4.1.: Graphical models representing different priors: from left to right, a behavioral
prior, a general temporal prior, a state-independent temporal prior and a single-
step state-independent temporal prior. Solid arrows represent the environment’s
transition function T , while dashed arrow indicate conditional modeling.

a state-independent temporal prior is a probability density π̄(at|at−10 ) (see Figure 4.1c).
Our empirical evidence suggests that its simplest form, i.e., π̄(at|at−1) (see Figure 4.1d) is
surprisingly competitive with variants conditioned on multiple past actions (cf. Section
5.1) and is therefore sufficient to capture complex temporal relations.

Independently from the conditioning variables, temporal priors can conveniently be mod-
eled as parametric or non-parametric conditional generative models and learned through
empirical risk minimization. For the purpose of this work, we choose to use the condi-
tional variant of the Real Non Value Preserving Flow [Dinh et al. 2017, Ardizzone et al.
2019], which has been successfully applied in similar settings before [Singh et al. 2021] and
is well suited for Euclidean action spaces. Our integration in the SAC framework allows
arbitrarily complex prior distributions, which Real NVP Flows can in principle capture.

In the context of NVP Flows, training samples are actions a ∈ A, paired with conditioning
variables (s,H), thus the learned mapping is a = fθ(z; (s,H)), with z ∼ N . Since fθ is
invertible, we analytically compute the likelihood of a single training pair (a, (s,H)) and
maximize its expected value through standard gradient-based optimization techniques.
An empirical justification of this choice is found in Appendix A.5.1, while implementation
details are reported in Appendix A.4. For a complete introduction to Real NVP Flows,
we refer the reader to [Dinh et al. 2017].

One final concern regards the nature of the data for training the temporal prior. The
main requirements for the training data are two: (1) the environment in which the data is
collected needs to share the same action space of the downstream environment and (2) the
training trajectories should display the desired qualities of correlation and directness. In
general, we adopt task-agnostic expert trajectories generated by achieving simple random
goals. Such simple trajectories can be learned from scratch using standard RL or, as
we do in practice, produced by a scripted policy. We remark that, in contrast with
existing approaches [Pertsch et al. 2020, Singh et al. 2021], this framework poses very
weak requirements on the similarity between the environments used for data collection
and the target environments. As we show in Section 5.3, this allows our method to bridge
the gap between fundamentally different environments and settings, such as transferring
from a simple reaching task with access to the true state of the system to a door-closing
task in a visual RL setting.

10
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4.2. Soft Actor Critic with TempoRL

Algorithm 1 SAC with TempoRL

1: Train temporal prior π̄(at|st, Ht)
2: Initialize history H0 = ∅
3: Initialize policy and Q-parameters θ, φ
4: for each iteration do
5: for each environment step do
6: λt = Λ(H(π(·|st))
7: at ∼ (1− λt)π(at|st) + λtπ̄(at|st, Ht)

8: st+1 ∼ T (st, at)
9: D = D ∪ (st, at, r(st, at), st+1)

10: Ht+1 = Ht ∪ (st, at)
11: end for
12: for each gradient step do
13: Update θ, φ
14: end for
15: end for

The main challenge introduced by tem-
poral priors stems from their non-
Markovianity, which renders existing inte-
grations of priors in RL unsuitable. Exist-
ing methods for accelerating RL through
behavioral priors can only handle state-
conditional distributions, which are mod-
elled as Gaussians in most cases. For this
reason, we introduce a novel method for
the integration of an action prior in an
off-policy RL framework. Our method is
suitable for both behavioral and tempo-
ral priors, independently of their condition-
ing variables. The key strategy revolves
around sampling actions from a mixture
between the policy and a prior distribution,
dynamically weighted through uncertainty
estimation. We demonstrate it as an in-
tegration into the Soft Actor Critic frame-
work.

SAC’s objective is designed to pursue large rewards while maximizing the entropy of its
policy. When prior knowledge on the structure of the environment or task is available,
simply sampling actions from a maximal entropy policy π may not be optimal. On the
other hand, blindly sampling from a behavioral or temporal prior π̄ prevents exploitation
of reward signals as well as any behavior which is not encoded in the prior. Ideally, it is
desirable to control the degree to which actions are sampled from the prior. We propose
to achieve this in a natural way by sampling actions from a mixture between the policy
π and the prior π̄:

at ∼ (1− λt)π(·|st) + λtπ̄(·|st, Ht) with 0 ≤ λt ≤ 1, (4.1)

where the mixing parameter λt is computed dynamically at each step.

In principle, the current policy π should be centered upon actions that maximize returns,
while π̄’s sole purpose is to suggest suitable actions according to behavioral or temporal
knowledge. When observing a state st, the agent should then sample directly from its
policy π in case a path from such state to the goal is known, and sample from π̄ in case the
state is unknown and further exploration is needed. For this reason, the mixing weight
λt should ideally estimate the probability of failing to reach the goal while only sampling
from the policy π.

We therefore propose to compute the mixing weight directly as a function of the policy’s
entropy H(π(·|st)), which intuitively quantifies the agent’s confidence in its plans. Since
H(π(·|st)) cannot always be computed in closed form, we can estimate it via Monte Carlo

11
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sampling. While the number of samples can control the variance of the estimator, we
simply use the current policy sample:

H(π(·|st)) = E
at∼π

[− log π(at|st)] ≈ − log π(at|st) with at ∼ π(st). (4.2)

The mixing weight can then be computed at each step as:

λt = Λ
(
H(π(·|st)

)
≈ Λ

(
− log π(at|st)

)
with at ∼ π(st), (4.3)

where Λ(·) is a monotonically increasing mixing function bounded to the range [0, 1].

We further incorporate this novel action sampling scheme by reformulating the objective
to directly encourage sampling from the prior π̄:

π? = arg max
π

E
τ∼π

[ ∞∑
t=0

γt
(
R(st, at) + αΛ

(
H(π(·|st))

))]
. (4.4)

Through straightforward derivations (see Appendix A.1), one can retrieve a modified
objective for training the policy π and a Q-function estimator Qπ in the Soft Actor Critic
framework. Given a distribution D of observed states and actions, the loss functions can
be defined as:

Jπ = − E
s∼D

[
Qπ(s, a) + αΛ(− log πθ(a|s))

]
with a ∼ π(·|s), (4.5)

JQ = E
(s,a)∼D

[(
Qπ(s, a)− yt(s, a)

)2]
, (4.6)

where the target for the Q-value is computed as

yt(s, a) = R(s, a) + γ

(
Qπ(s′, a′) + αΛ

(
− log πθ(a

′|s′)
))

with s′ ∼ T (·|s), a′ ∼ π(·|s′).

(4.7)

The two objectives can be empirically estimated and minimized through standard proce-
dures, as reported in [Haarnoja et al. 2018] and in Appendix A.1.

Algorithm 1 summarizes (in blue) the modifications to be applied in order to integrate
our prior into the SAC framework. Namely, actions are sampled from a mixture (line 7)
weighted according to the output of a mixing function (line 6). Finally, the history of the
agent needs to be initialized (line 1) and updated at each step (line 10). Update rules for
θ and ψ are modified and computed from Equations 4.5 and 4.6.

We finally note that the modified learning objective remains aligned with the original
formulation. As a consequence, while our method is superior on more complex tasks (cf.
Section 5.3), leaving SAC’s objective unchanged can perform on-par on some tasks, with

12
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reduced sensitivity to hyperparameter tuning. We refer the reader to Appendix A.2 for
more details.

Mixing Function The output of the mixing function Λ should be constrained to the
range [0, 1] and monotonically increasing with respect to its input. Intuitively, if the
entropy of the policy increases (i.e. in the absence of a strong reward signal), the mixing
weight should also increase, as sampling from the prior becomes more desirable. A natural
choice is to simply apply a sigmoid function after scaling and translating the entropy via
parameters βt, βs. These parameters are estimated empirically and kept fixed across all
experiments. The resulting function for computing the mixing weights is:

Λ
(
H(π(·|st)

)
= σ

(
βsH(π(·|st))− βt

)
. (4.8)

13
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5

Experiments

We evaluate our method in a series of experiments to empirically validate our contri-
butions. First, in Section 5.1, we compare the effectiveness of behavioral and temporal
priors to justify our choice of state-independent conditioning. In Section 5.2, we verify
that sampling from our temporal prior produces correlated and state-covering behavior,
without the need to hand-craft an exploration policy. Next, we show how our method can
improve exploration efficiency in unseen long-horizon tasks by comparing against various
baselines in state-based RL (Section 5.3). Furthermore, we demonstrate that our prior
enables transfer to different settings, i.e., from non-visual to visual state space, whilst
retaining the aforementioned benefits in exploration. An ablation of the generative model
is provided in Appendix A.5.1.

Baselines We now present the baselines. Implementation details are provided in Ap-
pendix A.4.3.

• SAC: vanilla Soft Actor Critic [Haarnoja et al. 2018]

• SAC+AR(n): SAC with a non-learning based prior that repeats an action n times
to enforce more directed behavior. We choose n = 2 for our experiments.

• SAC+BC: SAC with warm-started policy through behavior cloning.

• SAC-PolyRL: SAC with locally self-avoiding walks [Amin et al. 2021].

• PARROT-state: flow-based behavioral prior enforced through a transformation
of the action space [Singh et al. 2021]. We benchmark a state-based variant in
non-visual settings.
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Figure 5.1.: Overview of environments used in our experimental validation.

Environments We evaluate our method on two types of domains, namely robotic ma-
nipulation and maze navigation. Specifically, we make use of a subset of robot manip-
ulation tasks from the publicly available meta-world suite [Yu et al. 2020] and adapt
the point-maze implementation from [Pitis et al. 2020]. More details can be found in
Appendix A.3, while visual examples of the environments are provided in Figure 5.1.

Our temporal priors, as well as prior-based baselines, are learned in relatively simple
training environments that make very weak assumptions about the environment and
task structure. To this end, we train priors for robot manipulation in a reaching task
(reach) and for maze navigation in an empty environment (room-maze), where the task
is completed upon reaching a goal that is sampled uniformly from the whole environment
space.

RL agents are then trained and evaluated on a wider range of downstream environments
and tasks. For analyzing how learned priors can improve exploration efficiency, we deploy
an RL agent on both the environment used for training the priors and a set of unseen,
more difficult test tasks. The latter consist of manipulating objects, such as opening a
window, or navigating in more complex mazes.

5.1. Conditioning Variables for Behavioral and

Temporal Priors

The goal of this section is to empirically show how the effectiveness of an action prior
depends on conditioning variables and on the domain gap between the training and the
downstream environment. For this purpose, we train several variants of flow-based action
priors on the robotic reaching task (reach) and train TempoRL from scratch on the same
environment, as well as on a different one (window-open). In particular, we compare
temporal priors conditioned on action sequences of different lengths (1, 2, 5, 10), temporal
priors conditioned on the previous state-action pair and a behavioral prior (conditioned
on the state alone).

The results are provided in Figure 5.2. We observe that both types of priors are capable
of guiding downstream RL as long as the downstream environment matches the training
environment. However, we find that including the state in the conditioning variables can
jeopardize the ability to transfer knowledge to a different task, such as window-open. We
hypothesize that this is due to a mismatch between the states used for training the prior
and those returned by the downstream environment. For this reason, behavioral priors
π̄(at|st) fail on the unseen task. Even when the prior is conditioned on state-action pairs
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Figure 5.2.: Comparison of downstream performance of behavioral and temporal priors when
conditioned on actions, states and combinations thereof.

π̄(at|st, at−1), it learns to rely on its state input to model the action distribution, and
therefore fails to transfer. Furthermore, we observe that state-conditional priors suffer
when training in the same environment that was used for data collection, which we argue
is due to the limited variance in sampled trajectories at training time (see Appendix
A.4.4).

On the other hand, state-independent temporal priors prove to be a capable alternative
across both settings and are able to transfer knowledge to unseen tasks. While condi-
tioning on longer action sequences can improve performance, we note that single-action-
conditional models π̄(at|at−1) are sufficient for capturing complex temporal dependencies
within our settings. Hence, they will be the focus of the remaining experiments.

5.2. Correlation and State Coverage

In this experiment, we show how a one-step state-independent temporal prior π̄(at|at−1)
produces correlated and directed behavior, which leads to a more complete coverage of the
state space during exploration. To this end, we sample 20 random trajectories of 500 steps
each with our method and several baselines in the room-maze and reach environment.

As shown in Figure 5.3, our temporal prior produces directed behavior which covers most

Figure 5.3.: A qualitative comparison of sampled exploration trajectories in a 2D room. Our
method achieves directed behavior while covering most of the state space. SAC
and SAC+AR(2) fail to cover the full state space, while SAC-PolyRL fails to reach
distant areas consistently.
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Table 5.1.: State coverage metrics for our method and baselines. TempoRL’s trajectories are
locally directed and cover the state space well in both environments.

reach room-maze

U2
g % Coverage U2

g % Coverage

SAC 0.006±0.001 0.137±0.01 0.005±0.001 0.333±0.02

SAC+AR(2) 0.010±0.002 0.199±0.02 0.008±0.001 0.493± 0.08

SAC-PolyRL 0.025±0.001 0.272±0.01 0.026±0.002 0.880±0.04

TempoRL (ours) 0.053±0.009 0.357±0.02 0.054±0.008 0.963±0.04

of the state space. As expected, uniform sampling (SAC) and action repeat (SAC+AR(2))
fail to reach the boundaries of the environment. SAC-PolyRL is capable of producing cor-
related and directed behaviors, but only after careful hyperparameter tuning. Equivalent
behavior can be observed in the robot manipulation environment (cf. Appendix A.5.2).
This qualitative assessment is verified quantitatively in the evaluation presented in Table
5.1. We report state space coverage and radius of gyration squared [Amin et al. 2021] (see
Appendix A.4.1 for details). Evidently, our method outperforms the presented baselines
on both metrics.

5.3. Transfer Learning

Our main results are obtained by comparing our method against several baselines in
downstream learning tasks with a vectorized state space, as presented in Figure 5.4.

As expected, we observe that the performance of behavioral priors depends on the similar-
ity of the downstream task with the expert dataset. This is the case for PARROT-state,
which solves reach and room-maze easily, as its behavioral prior already represents a
strong policy. PARROT-state also offers good performance in door-close, as the act of
reaching for the goal, which is the final position of the door, is sufficient to swing it closed.
On tasks which are significantly different from the training task, namely window-open,
window-close and u-maze, PARROT-state is unable to guide the policy, as it receives
out-of-distribution states (cfr. Appendix A.3). On the other hand, TempoRL is capable
of transferring to unseen tasks, while rapidly catching up with PARROT-state in the
training tasks.

Other baselines are in general less effective across the benchmarks: Vanilla SAC only
makes progress in the reaching task, due to the presence of easily reachable goals that
can be achieved even with weak exploration. Enabling action repeat (SAC+AR(2)) can
effectively speed up exploration, but only on tasks that are slightly out of reach when
the heuristic is not enabled. SAC-PolyRL is able to produce good explorative trajecto-
ries through its hand-crafted policy, but its performance is strongly dependent on the
task. As previously reported by [Singh et al. 2021], initializing SAC through behavioral
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Figure 5.4.: Accelerating downstream RL. While other methods are mostly competitive on
training tasks (reach and room-maze), TempoRL is able to accelerate RL for
unseen tasks (door-close, door-open, window-close, window-open, u-maze).

cloning (SAC+BC) can help guide exploration, but it fails to generalize across tasks and
is regularly outperformed by stronger methods.

Visual RL We finally demonstrate the benefits of temporal priors in more complex
settings. In particular, state-independent temporal priors allow the state space of the
downstream environment to be defined arbitrarily. Hence, they also allow transfer to the
visual RL setting, which avoids reliance on a low-dimensional vectorized state space and
is purely based on RGB observations. To this end, we compare TempoRL with Vanilla
SAC in Figure 5.5 and with PARROT in its original, visual setup, i.e., by conditioning its
behavioral prior on images. We report that our findings hold in visual settings: temporal
priors are capable of generalizing to unseen tasks, even when transferred to fundamentally
different state spaces. More results are presented in Appendix A.5.3.
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Figure 5.5.: Transfer of a one-step state-independent temporal prior to Visual RL. TempoRL
(red) compared with SAC (brown) and PARROT (orange).

19



5. Experiments

20



6

Conclusion

In this work, we propose a method for improved exploration efficiency in off-policy re-
inforcement learning. In particular, we introduce a non-Markovian, flow-based tempo-
ral prior and show how it can be integrated into an off-policy reinforcement learning
framework. Crucially, we argue that state-conditioned priors struggle with transferring
knowledge across domain gaps and provide empirical evidence on how a state-independent
temporal prior can accelerate learning in unseen long-horizon control tasks with sparse
rewards. As our method shows promising results, there are exciting directions for future
work. State-independent temporal priors demonstrated their usefulness in unseen tasks,
to which behavioral priors often cannot extrapolate. On the other hand, state-conditioned
prior can directly transfer knowledge in the absence of a domain gap. Since both families
of methods remain strong in complementary settings, we hope to explore the direction of
a flexible prior, capable of both general and task-specific exploration.
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Appendix

A.1. Objective Derivation

The purpose of this section is that of describing how learning objectives for the policy
and Q-estimators can be derived from the TempoRL objective:

E
τ∼π

[ ∞∑
t=0

γt
(
R(st, at) + αΛ

(
H(π(·|st))

))]
. (A.1)

The steps of these derivations follow those reported in [Haarnoja et al. 2018], as our
method is designed to fit into their framework. First, let us formally introduce the Q-
function for a generic policy π:

Qπ(s, a) = E
τ∼π

[ ∞∑
t=0

γtR(st, at) + α

∞∑
t=1

γtΛ
(
H(·, st)

)
|s0 = s, a0 = a

]
. (A.2)

We can then formulate the Bellman Equation and explicitly unravel the entropy term:

Qπ(s, a) = E
s′∼T ,a′∼π

[
R(s, a) + γ(Qπ(s′, a′) + αΛ

(
H(·, s′))

)]
= E

s′∼T ,a′∼π

[
R(s, a) + γ(Qπ(s′, a′) + αΛ

(
E

a′′∼π
− log π(a′′|s′))

)]
.

(A.3)



A. Appendix

The right-hand side of Equation A.3 can be estimated via Monte Carlo sampling and
used as a target, as shown in Equation 4.7. Q-estimates can be trained by minimizing a
standard MSE error, resulting in the Q-loss in Equation 4.6.

In practice, as is done for SAC, two separate parameterized Q-function estimators (Qφi)i=1,2

are used to prevent overestimating Q-values; the policy is also parameterized as πθ. Addi-
tionally, we also adopt target networks (Qφtarget,i)i=1,2, updated via Polyak averaging. As
a result, when sampling a batch B from a replay buffer, the empirical estimates for the
Q-losses are:

ĴQφi =
1

|B|
∑

(s,a,r,s′,d)∈B

(
Qφi(s, a)− ŷt(s′, r, d)

)2

, (A.4)

where the target for the Q-value is computed as

ŷt(s
′, r, d) = r + γ(1− d)

(
min
i=1,2

Qφtarget,i(s
′, a′) + αΛ

(
− log πθ(a

′|s′)
))

with a′ ∼ πθ(·|s′).

(A.5)

and r, d stand for the reward and done signal, respectively.

On the other hand, the policy πθ should maximize the value function over a distribution
of states D, which can be formulated as follows:

V π(s) = E
a∼π,s∼D

[
Qπ(s, a) + αΛ(H(π(·|s))

]
. (A.6)

Computing the expectation over actions can be circumvented by using the reparameter-
ization trick, which enables expressing actions as aθ(ξ, s), where ξ ∼ N is sampled from
a standard Gaussian. In practice, since the entropy term can once again be estimated by
Monte Carlo sampling, this finally translates into the empirical loss estimate:

Ĵπθ = − 1

|B|
∑
(s)∈B

(
min
i=1,2

Qφi(s, aθ(s, ξ)) + αΛ
(
− log πθ(aθ(s, ξ)|s)

))
, (A.7)

which can be minimized via standard first-order optimization techniques.

A.2. Simplified Algorithm

As we note in Section 4, due to monotonicity of the mixing function Λ(·), the regularization
term in the TempoRL objective is aligned with the regularization term in SAC, as they
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Figure A.1.: Comparison between the full method and its simplified version. The simplified
version does not modify SAC’s update rules.

are both maximized by a max-entropy policy π?. For this reason, our method can be
simplified by removing all modifications to the objective or the learning rules of SAC. The
resulting algorithm, which we refer to as TempoRL-simplified, was empirically validated
on the same settings of Section 5.3 in Figure A.1. In general, we find that the simplified
version is mostly on par with the full method in terms of downstream performance on the
easier tasks (e.g. door-close), but it is not able to learn the more complex tasks (e.g.
door-open). Interestingly, we find the simplified version to be more robust with respect
to changes in hyperparameters, and we would suggest it as a practical alternative to the
full method on easier tasks.

A.3. Environment Details

A.3.1. Robot Manipulation

We use the meta-world suite [Yu et al. 2020] for robot manipulation experiments. It
consists of a simulated 7 DoF Sawyer arm, implemented in the MuJoCo physics engine
[Todorov et al. 2012]. By default, states are represented as 36-dimensional vectors across
all tasks. The state contains the 3D location and aperture of the gripper, the 3D location
and quaternion of one object (e.g. door or window), measured for the current and previous
time step. Goals are represented as the desired 3D location of the end effector or object,
according to the task. Actions are 4-dimensional vectors containing a 3D movement and
a 1D control over the aperture of the effector.

We additionally render 64x64 RGB images as observations for the visual setup in Section
5.3, using the camera angle corner (as can be seen in Figure 5.1). Instead of the origi-
nally proposed dense reward, we adopt a sparse reward which is only non-zero upon task
completion. For more details, we refer to the original implementation [Yu et al. 2020].
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A.3.2. Maze Navigation

Our point-maze environments were adapted from [Pitis et al. 2020]. The state consists
of the 2D position of the agent, which can be actuated via a velocity-controller through
2D actions. The goal space matches the state spaces in dimensions and representation.
The reward signal is 1 when the Euclidean distance to the goal is lesser than 1.2 units,
else it is 0. We experiment with two different layouts (renderings can be found in Figure
5.1):

• room-maze is a large, 29×29 square room. The starting position is at the center and
the goal is initialized randomly in one of the 4 corners at each reset. Trajectories
for training the priors are obtained from this environment. Only for Figure 5.3, the
size was increased to 81×81, to allow and better visualize long trajectories.

• u-maze is a larger u-shaped corridor with three parts of lengths 50, 3 and 50 respec-
tively, assembled at 90° clockwise rotations. The structure of the maze can therefore
be contained in a 50 × 3 rectangle. Starting and goal position are fixed and located
at opposite ends of the maze.

For further details, we refer directly to our published codebase (URL in Footnote 2).

A.4. Implementation Details

A.4.1. Metrics

All metrics reported in this work (e.g. cumulative returns) are averaged over 3 random
seeds (or 5 for Figure 5.4); mean and standard deviation are reported and plots are
smoothed over 5 steps.

We rely on two metrics for measuring the quality of exploration trajectories in Section
5.2:

• %Coverage divides the reachable state space in n cubic buckets (n = 1000 for
reach and n = 100 for room-maze) and reports the ratio between the number of
buckets visited by a set of 20 trajectories of length 500 and the total number of
buckets.

• Radius of Gyration Squared measures the spread in visited states, averaged
over all trajectories, and is adapted from [Amin et al. 2021]. Given a set T of n
trajectories, the metric can be computed as:

U2
g (T ) =

1

δn

∑
τ∈T

1

|τ | − 1

∑
s∈τ

d2(s, τ̄),

where a trajectory τ is modeled as a sequence of states (si)
|τ |−1
0 , d2(·, ·) measures

the Euclidean distance and τ̄ = 1
|τ |
∑

s∈τ s. We additionally normalize the metric by
δ, which measures the diagonal of the box containing reachable states.
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A.4.2. Data Collection

Although the training tasks are relatively simple and a data collection policy can in princi-
ple be trained from scratch, for simplicity we fill the expert dataset D with the trajectories
of a scripted policy corrupted with Gaussian noise. For each training environment (reach
or room-maze), we collect 4000 trajectories of 500 steps each. Goals for the scripted policy
are sampled uniformly from the reachable state space. On goal achievement, a new goal
is sampled, once again uniformly. The same expert datasets are then used for training
temporal priors, behavioral priors or behavioral cloning.

A.4.3. Baselines

SAC We build upon the implementation provided by SpinningUp [Achiam 2018], which
is reported to be roughly on-par with the best results achieved on MuJoCo Gym [Brock-
man et al. 2016]. Notably, we do not use automatic entropy tuning, and introduce HER
[Andrychowicz et al. 2017] as well as n-step returns [Hessel et al. 2018]. We experimented
with importance sampling for off-policy correction, but, similarly to what is reported
by [Hessel et al. 2018], we observed no empirical benefit. By default, we sum rewards
over n = 10 steps before clipping the range to [0, 1]. All remaining hyperparameters are
reported in Table A.1.

SAC+AR(n) This baseline shares all hyperparameters with SAC. The only difference
lies in the fact that the policy is only sampled from every n-th step, while the previous
action is repeated for the remaining steps. We use n = 2 in our experiments.

SAC+BC Behavioral cloning (BC) is performed on the entire dataset D for 10 epochs,
by maximizing the log-likelihood of the Gaussian policy with respect to expert actions.
The optimizer and batch size used for BC are the same as for downstream learning.

SAC-PolyRL SAC-PolyRL [Amin et al. 2021] replaces the initial uniform exploration
phase of SAC with trajectories collected by a hand-crafted policy. While SAC’s hyperpa-
rameters are unvaried, SAC-PolyRL specific parameters are tuned from those reported in
various settings in the original paper. We use θ = 0.35, σ2 = 0.017 and β = 0.01.

PARROT An official implementation for PARROT [Singh et al. 2021] is not available at
the time of writing. We reproduce their training routine and downstream application and
adopt all hyperparameters reported in the original paper. Generative models are trained
until convergence (100 epochs) using a batch size of 400 samples and Adam [Kingma and
Ba 2017] as an optimizer, with a learning rate of 0.0001, β1 = 0.9, β2 = 0.999 and a
weight decay penalty of 1e− 6.

In addition to the image-based version of PARROT used in Section 5.3, we introduce
a version with a vectorized state space, dubbed PARROT-state, since the method is
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originally only applicable in visual settings. The only modification consists in replacing
the image encoder with a 3-layer MLP with 256 neurons per layer and ReLU activations.
In this setting, the input to the encoder is therefore vector-based (non-visual).

Table A.1.: Hyperparameters for SAC.

Hyperparameter Value

Epochs 125

Steps Per Epoch 4e3

Steps of Initial Exploration 1e4

Steps Before Training 1e3

Environment Steps per Iteration 50

γ 0.99

Polyak Averaging Rate 0.995

Inverse of Reward Scale (α) 0.2 for meta-world, 0.02 for point-maze

Batch Size 100

Optimizer Adam

β1 0.9

β2 0.999

Learning Rate 0.001

Hidden Units 256

Hidden Layers 2

Hindsight Replay Ratio 4

Replay Size 5e5 for vector-based RL, 2e5 for image-based RL

A.4.4. TempoRL

Prior We model all families of temporal priors with conditional Real NVP Flows [Ardiz-
zone et al. 2019], sharing the same architecture across all experiments. The invert-
ible transformation fθ is a composition of 6 coupling layers, each followed by a batch-
normalization layer [Dinh et al. 2017]. For each layer, a 3-layer MLP with 128 hidden
units per layer is used to preprocess the conditioning input. Scale and transition networks
are also implemented as a shared 3-layer MLP with 128 hidden units, whose output is
split in two to provide scale and shift coefficients. All MLPs use ReLU activations.

We train our temporal priors following the same protocol used with behavioral priors (100
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epochs, a batch size of 400 samples and Adam [Kingma and Ba 2017], with a learning
rate of 0.0001, β1 = 0.9, β2 = 0.999 and a weight decay penalty of 1e− 6).

Downstream Learning Our method introduces a pair of hyperparameters governing
the mixing function Λ(·), which we tune on window-open and apply to all other tasks and
environment: βt = −0.7, βs = 1

0.75|A| , where A is the action space. Due to the modifi-
cations to the objective, we also tune α to 0.2 for point-maze and 1.0 for meta-world.
While SAC samples action uniformly for the first 10000 steps to encourage exploration,
TempoRL has access to a temporal prior π̄ and therefore, during this initial phase, we
sample directly from it in meta-world. To overcome stability issues, TempoRL still sam-
ples initial actions uniformly and adopt a lower learning rate of 0.0001 in point-maze.
Among these changes, those that could also be applied to the baselines were tested and
found to not be beneficial to them. All remaining hyperparameters are shared with SAC
(see Table A.1).

Simplified Method The simplified version uses βt = 0.65 and βs = 40
|A| , while all

remaining hyperparameters are shared with SAC. Similarly to the full method, it also
samples initial actions from the prior.

State-conditional Prior When using state-dependent priors π̄(at|st) and π̄(at|st, at−1)
to accelerate downstream learning in Section 5.1, trajectories at training time are imme-
diately near-optimal and often distributed over an excessively small support, which hurts
test-time performance. To mitigate this issue, when using state-dependent priors in our
framework, we multiply the mixing weight λt by a scheduling coefficient ε, which we lin-
early increase from 0 to 1 over the duration of training. Intuitively, this leads to more
diverse initial trajectories.
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Figure A.2.: Performance on downstream tasks when modeling a one-step state-independent
temporal prior through various generative models.
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A.5. Additional Results

A.5.1. Ablation

We finally set out to provide empirical backing for an important design choice. Our
policy mixing approach grants freedom in choosing generative models capable of describing
complex distributions, as computing distance metrics to the prior is not required. We
compare the performance of Real NVP Flows with a Conditional VAE [Sohn et al. 2015],
a non-parametric conditional Least Squares Density Estimator [Sugiyama et al. 2010],
and a MLP modeling a deterministic prior. As shown in Figure A.2, we observe that
Flow modeling is consistently more powerful.

A.5.2. Correlation and State Coverage

Figure A.3.: A qualitative comparison of sampled exploration trajectories in a robot manipula-
tion environment (reach). Our method achieves directed behavior while covering
most of the state space, outperforming SAC-PolyRL. On the other hand, uniform
sampling (SAC) and action-repeat (SAC+AR(2)) fail to cover the full state space.

A.5.3. Visual RL

We report the performance on an additional unseen task (window-open) in the same
settings as in Section 5.3. Similarly, our method outperforms both PARROT and SAC
(see Figure A.4), which are not able to learn the task.
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Figure A.4.: Comparison of methods on window-open with image-based states: TempoRL
(red), SAC (brown) and PARROT (orange).
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