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Abstract
Sleep plays an essential role in human life. While sleep is a 
state elicited by the brain, its vital role reaches beyond main-
taining brain health. Unhealthy sleeping habits have been 
associated with increased risk for inflammation, obesity, or 
diabetes. Evidence is emerging that sleep guides processes 
playing an important role in promoting the regulation of en-
docrine function involved in tissue regeneration and tissue 
remodelling. Thereby, sleep presumably is a critical factor 
contributing to the balance of core body tissues: bone, fat, 
and muscle mass. Given the increasing prevalence of various 
chronic diseases and comorbidities due to unhealthy life-
style choices, sleep could be a key target to promote a 
healthy body composition up until old age. Here, we review 
the potential role of sleep and its underlying brain oscilla-
tions in body core tissues turnover. Specifically, we discuss 
potential underlying mechanisms linking sleep to body 

composition, both during rest and under challenging condi-
tions. Among other described pathways, we highlight the 
possible role of the growth hormone that was found to be 
involved in the homeostasis of all core body tissues and has 
been strongly linked to brain activity dominating deep sleep, 
the so-called slow waves. Finally, we formulate important 
questions to be addressed in future research on the effect of 
sleep on body composition and specifically emphasize the 
importance of intervention studies to move from correlative 
to causal evidence. © 2021 The Author(s)

Published by S. Karger AG, Basel

Introduction

Spending around one-third of a lifetime sleeping, it is 
undeniable that sleep is essential to human life. While re-
search revealing structural characteristics of sleep as for 
instance the distribution of sleep stages or underlying 
brain oscillations has been progressing with high speed, 
the functions of sleep remain poorly understood. Several 
studies have identified a potential role of sleep for brain 
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health, such as cleaning away toxic by-products [1, 2], 
synaptic plasticity [3–6], and memory consolidation [1, 
7–13]. In addition, an increasing number of studies point 
towards the fact that the restorative functions of sleep are 
not restricted to the brain only, but are also important for 
peripheral body functions, such as immune [14], cardio-
vascular [15], and metabolic functions [16]. By this time, 
it is generally accepted that sleep is an integral factor for 
people’s health. Yet the underlying mechanisms and the 
specific involvement of sleep in peripheral body process-
es are still not fully understood.

The proportion of fat-free mass and fat mass in the 
body, often referred to as “body composition,” is a key as-
pect determining overall health [17–19]. Evidently, nutri-
tion and physical activity are essential factors determining 
body composition and have been studied thoroughly for 

the last decades. Sleep, on the contrary, has gained much 
less attention as a central regulator of body composition, 
despite its pivotal role in regulating mass turnover [20–
22]. Therefore, this review aims to summarize current ev-
idence on how sleep affects processes that build and re-
model body composition under physiological conditions 
and upon system challenges, for example, through exer-
cise or injury. Identifying and understanding the involve-
ment of specific aspects of sleep in processes that deter-
mine body composition is key to identifying targets for 
prevention or treatment of pathological states of body 
composition. The present work starts by summarizing 
components of body composition and an introduction to 
sleep and sleep architecture. Thereafter, we will review ex-
isting literature on the association between sleep and as-
pects of body composition (muscle mass, fat, and bone 

Fig. 1. Summary of potential pathways involved in the regulating 
body composition parameters and their relation to different sleep 
variables. Despite the directionality of the arrows, the direction of 
the relationship is not in all cases conclusively clarified. The num-
bers represent the sleep characteristic: 1 = sleep duration, 2 = slow 
wave sleep, 3 = sleep quality, and 4 = REM sleep. The letters a, b, 
and c indicate whether sleep was reported subjectively or objec-
tively or whether the association was shown in an experimental 
study design (e.g., sleep intervention). Latter may already point to 
a causal relationship. Multiple numbers indicate a certain pathway 
or a molecule to be related to >1 sleep variable. Muscle mass (left), 

bone mass (middle), and body fat mass (right) are all regulated by 
various mechanisms (black arrows pointing to the respective 
mass). *An association on body fat mass was not shown directly, 
but on body mass index instead. REM, rapid eye movement; GH, 
growth hormone; IGF-1, insulin growth factor 1; ANS, autonomic 
nervous system; RANK, receptor activator of NF-κB; RANKL, re-
ceptor activator of NF-κB ligand; OPG, osteoprotegerin. Used cre-
ative commons: adipocytes: by Database Center for Life Science 
(DBCLS) – License: CC BY; bone: by Servier Medical Art – License: 
CC BY; muscle: by Servier Medical Art – License: CC BY.
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density) with a focus on a physiological mass turnover as 
well as on studies investigating the role of sleep in the re-
spective processes, which are summarized in Figure 1. 
Considering situations of intended change in body com-
position, a short paragraph will be devoted to the impor-
tance of sleep related to exercise, weight loss, and fracture 
healing. Finally, current limitations and items for a re-
search agenda will be discussed. Taken together, this work 
aims to identify potential pathways that are regulated 
through sleep quality and quantity and may play a central 
role for body composition. However, the mechanisms dis-
cussed in this review are likely not complete and we as-
sume that some pathways and processes linking sleep and 
body composition are not even known yet.

Body Composition

Body Composition and Health
Body composition has repeatedly been shown to be 

central to health and disease, although its importance of-
ten only becomes apparent in pathological states. Body 
fat, for example, is a complex tissue with critical meta-
bolic and endocrine functions by for instance releasing 
hormones regulating energy expenditure [23]. However, 
when present in excessive amount as in obesity, its effect 
on health is no longer beneficial. In fact, cardiovascular 
diseases [24], hepatic steatosis [24], insulin resistance 
[24], neurological disorders [25], and cancer [24] can all 
occur comorbid to obesity and drastically reduce life ex-
pectancy. Furthermore, low muscle mass, resulting from 
an imbalance between muscle protein synthesis and mus-
cle protein breakdown, results in muscle atrophy [26], 
which at a later stage can result in detrimental outcomes 
such as disability, decreased quality of life, and increased 
mortality [27, 28]. Finally, decreased bone mass known as 
osteopenia can further progress to osteoporosis, a state of 
low bone mineral density, and an increased rate of bone 
resorption [19, 29]. Osteoporosis is an important risk fac-
tor for bone fractures and increased risk of falling [30, 31]. 
Obesity, muscle atrophy, and osteoporosis are all repre-
senting unique unhealthy changes in body composition 
parameters and put an immense burden on the health of 
individuals as well as on health care costs [32]. Therefore, 
finding a means to keep body composition in a healthy 
range or to improve pathological alterations of body com-
position is of great interest. Besides the well-known im-
portance of healthy nutrition and physical activity for 
body composition [33, 34], sleep with its restorative func-
tions is likely to be critically involved.

Body Composition Assessment Methods
To diagnose healthy and pathological states of body 

composition, dual energy X-ray absorptiometry (DXA) is 
currently the reference standard, providing precise as-
sessments of core body tissues [35]. Less expensive but 
also less accurate alternatives to DXA are bioelectrical im-
pedance analysis (BIA), waist circumference, waist-to-
hip ratio, or the body mass index (BMI), which are com-
monly used assess body composition parameters [36]. Al-
though BMI is the most widely used measure in population 
studies, it has clearly some limitations. BMI does, for ex-
ample, not consider where the fat is located, which in 
some situation is the key factor influencing disease risk. 
For instance, as the visceral adipose tissue is known to be 
more closely associated with cardiovascular risk than the 
subcutaneous adipose tissue, assessing that waist circum-
ference or waist-to-hip ratio could be beneficial over 
BMI. However, as on population level the BMI is a valid 
construct correlating well with measures of body compo-
sition and comorbidities from obesity, BMI is still the 
most widely used obesity measurement in the general 
population [37, 38].

Sleep

Sleep Regulation
Sleep regulation is governed by 2 interacting process-

es, the circadian and the homeostatic processes, a bimod-
al regulation that is commonly explained by the “2 pro-
cess model” [39, 40]. The homeostatic process, called pro-
cess S, refers to the continuous build-up of sleep pressure 
during wake time. For this pressure to subside, sleep is 
required no matter at what time of the day/night. On the 
other hand, process C, a process controlled by the circa-
dian pacemaker, is independent of sleep and rises and 
falls periodically. The circadian pacemaker orchestrates 
many of the body’s internal biological processes, includ-
ing core body temperature, feeding patterns, and hor-
mone production in a highly rhythmic pattern [41]. Al-
though processes S and C are known to act mostly inde-
pendently of each other, they both influence sleep and 
sleep patterns in a highly complex and additive manner 
[42]. While both sleep and the circadian rhythm are in-
volved in metabolic functions, here we solely focus on ef-
fects caused by sleep itself. Controlled approaches aiming 
to identify the contributions of sleep are sleep restriction 
or sleep modulation studies (e.g., modulation of specific 
aspects of sleep architecture) [43–45]. These studies com-
pare a molecule or a hormone of interest in a sleep-de-
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prived/modulated condition to a sleep-sufficient/un-
modulated condition [16, 46, 47]. However, in some cas-
es, a clear distinction between sleep and circadian 
contributions is not possible and those cases will be ad-
dressed in the respective References of the review.

Sleep Architecture
A major breakthrough in the field of sleep science was 

the development of the electroencephalogram (EEG), 
which enabled researchers to reliably measure activity in 
the brain mediated by changes in the electrical activity of 
large populations of neurons [48]. The EEG allows to de-
tect changes in brain activity between wake and sleep, and 
also between sleep stages [49], as illustrated in Figure 2d. 
Those synchronized brain activity patterns at specific fre-
quencies (seen as EEG rhythms) can be categorized into 
oscillation bands. Human nocturnal sleep periods are 
hallmarked by a cycling pattern between non-rapid eye 
movement (NREM) and rapid eye movement (REM) 
sleep, with an approximate duration of 90–120 min per 
sleep cycle [49, 50]. NREM sleep is characterized by sleep 
spindles (transient thalamocortical oscillations between 

11 and 16 Hz) and slow waves [51]. These slow waves are 
high amplitude, low-frequency waves (e.g., <4 Hz), and 
an increase in number and size as sleep deepens. The 
transition from NREM stage 2 (N2) into NREM stage 3 
(N3), the deepest stage of sleep, is characterized by the 
presence of slow waves during >20% of the time [49]. This 
stage is therefore also termed slow wave sleep (SWS). The 
distinction between REM sleep and wake brain activity is 
difficult because of the absence of dominant oscillations. 
However, REM sleep is characterized by decreased mus-
cle tone, reflecting muscle atonia, and REMs, that can 
both be identified using electromyogram and electroocu-
logram, respectively, in addition to the EEG [49, 52]. As 
the night advances and the morning approaches, the 
length of REM sleep increases, while the NREM stages 
become shorter, representing a significant change of the 
proportion of REM/NREM sleep within a sleep cycle 
across the night [53]. An exemplary sleep architecture of 
a night is illustrated in Figure 2a. Besides some natural 
changes in sleep architecture across consecutive nights, 
particularly healthy ageing is associated to affect the dura-
tion and proportion of sleep stages. Older age is associ-

Fig. 2. a Hypnogram showing distribution of sleep stages (wake, REM, and NREM sleep stages 1, 2, and 3) across 
an exemplary subject. b SWA (0.5–4.5 Hz) of electrode Pz of full night sleep. c Spectrogram of electrode Pz across 
full night. d Schematic illustration of the EEG activity of a frontal electrode to mastoid abbreviation (F3A2) for 
wake, NREM2, NREM 3 (SWS), and REM sleep. High-amplitude slow waves dominate during NREM 3. SWA, 
slow wave activity; REM, rapid eye movement; NREM, non-rapid eye movement.
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ated with a markedly reduction of amount and extent of 
SWS [54, 55]. Thus, the physiological decline in total 
sleep duration with increasing age makes sleep in the el-
derly a suitable model to study the relationship between 
SWS and body composition. In addition to quantitative 
changes in SWS, sleep gets more fragmented and shorter 
with increasing age [56], whereas the percentage of REM 
sleep remains fairly stable [57].

Sleep Assessment Methods
The gold standard for the reliable estimation for sleep 

and wake times, but also the assessment of sleep architec-
ture and the detection of sleep oscillations is polysomnog-
raphy (PSG) [58]. This method involves several measures 
of sleep, including brain activity measured by EEG, muscle 
activity (electromyogram), and eye movements (electrooc-
ulogram). These recordings can be accompanied by heart 
activity and respiratory function, for example, for sleep dis-
order screening such as sleep apnoea [58]. Since PSG as-
sessments are costly, complex, and require expensive 
equipment, studies often approximate sleep and wake du-
ration as well as sleep quality (e.g., sleep continuity) with 
actigraphy [59]. This method involves a wearable device 
usually worn on the wrist or ankle that records body accel-
eration. Therefrom, together with mathematical algo-
rithms, wake times, sleep times, and rough approximations 
of sleep stage parameters can be calculated [60]. Besides 
objective sleep assessments, perceived sleep quality and 
quantity can be assessed by questionnaires such as the Pitts-
burgh Sleep Quality Index (PSQI), which includes different 
items and finally provides a global score with higher values 
indicating worse sleep [61]. Collectively, questionnaires 
and actigraphy are often assessed in home settings, where-
as PSG is usually carried out in a sleep laboratory [59].

Sleep and Muscle Mass

Skeletal muscle mass is, apart from its key role in loco-
motion, also a metabolic organ that is essentially involved 
in whole-body homeostasis [62–64]. Skeletal muscles in 
a healthy adult comprise about 38% of total body mass in 
men and approximately 30% in women [65]. A significant 
loss in muscle mass and strength with increasing age is 
defined as sarcopenia, entailing a loss of functionality, 
which may result in disability and an increased risk for 
chronic diseases including insulin resistance, fatigue, and 
mortality [66–69]. Therefore, finding means to preserve 
muscle mass with old age may improve musculoskeletal 
and overall health. Besides optimized nutritional and 

physical activity regimen, prioritizing healthy sleep could 
aid in preserving muscle mass.

The influence of sleep on muscle mass has been the 
focus of several studies reporting an increased prevalence 
for lower muscle mass and sarcopenia in short sleepers as 
well as those who reported habitual poor sleep quality 
[70–77]. Besides muscle mass, poor subjective sleep qual-
ity and sleep efficiency were also associated with de-
creased grip strength, underlining the relevance of sleep 
for functional aspects of muscle mass [72]. Sleep depriva-
tion is proposed to influence the balance between synthe-
sis and breakdown of muscle proteins by increased pro-
teolysis [78], which ultimately leads to a loss of muscle 
mass. This view is supported by the observation of higher 
urinary protein secretion after 72 h of sleep deprivation, 
which is characteristic for enhanced proteolytic process-
ing [79]. A study directly highlighting the negative effects 
of short sleep on body composition showed that while on 
a 14-day calorie-restricted diet, the change of fat and 
muscle mass significantly varied with the allowed sleep 
time, that is, 8.5 h or 5.5 h (sleep restriction). More spe-
cifically, weight loss was comparable in both groups (∼3 
kg). However, participants in the short sleep condition 
showed a 55% lower decrease in fat mass and a 60% high-
er decrease in muscle mass than the volunteers that had 
the 8.5 h sleep opportunity per night. The longitudinal 
experimental design implies that during sleep, key pro-
cesses involved in muscle metabolism occur, which are 
required to preserve muscle mass during a calorie-re-
stricted diet [80]. Short sleep may therefore undermine 
the efficacy of the diet-induced loss of body fat.

Apart from experimental studies investigating the ef-
fect of partial or total sleep restriction on muscle mass, 
observational studies of sarcopenic patients provide use-
ful information on the link between muscle mass metab-
olisms and sleep. As proposed by Piovezan et al. [81], the 
underlying mechanisms for age-related sarcopenia may 
be associated with changes in sleep patterns. Their hy-
pothesis builds on the evidence that older adults show 
decreased sleep time and efficiency along with a signifi-
cant decrease in the amount and intensity of SWS. This 
decrease is paralleled by a dysregulation of the somato-
tropic, gonadal, and corticotropic activity as well as glu-
cose metabolism, all of which are critically involved in 
muscle metabolism [81, 82].

Underlying Mechanisms
To maintain a constant mass of muscle tissue, a bal-

ance between muscle anabolism mediated by protein syn-
thesis and muscle catabolism is required. Any imbalance, 
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especially over longer time periods, leads to muscle hy-
pertrophy when protein synthesis dominates, or muscle 
atrophy when protein degradation is prevalent [83]. In 
the following paragraphs, we first identify pathways in-
volved in the synthesis and breakdown of muscle proteins 
and second highlight whether and how these are modu-
lated by sleep. A summarizing graphical overview of po-
tential underlying mechanisms discussed below is pre-
sented in Figure 1.

Insulin-Like Growth Factor 1/Growth Hormone
Growth hormone (GH) is a central player in the pro-

motion of somatic growth and has a pivotal role in me-
tabolism including the regulation of glucose, lipolysis, 
and protein synthesis [84]. GH can either act directly or 
indirectly via the GH-induced insulin-like growth factor 

1 (IGF-1) secretion, both mechanisms being shown to 
stimulate muscle protein synthesis [84]. Primary evi-
dence for the muscle mass stimulating effect of GH comes 
from the observation that the treatment of GH-deficient 
subjects with GH could significantly increase skeletal 
muscle mass [84]. Similarly, the administration of supra-
physiological levels of GH with and without additional 
exercising in healthy adults has also repeatedly been 
shown to increase lean body mass [85–87]. However, 
variations in physiological levels of GH do not modulate 
muscle growth in adults [88], whereas cumulative deficits 
over longer time periods, as observable in older adults 
[89], could negatively affect muscle metabolism. Thus, 
age-related changes in body composition are hypothe-
sized to be related to or caused by decreased levels of GH, 
a concept known as “somatopause” [90] (see Fig. 3).

Fig. 3. GH is critically involved in the regulation of muscle-, bone, 
and body fat mass and is affected by different types of sleep distur-
bances. GH is known to act by 2 different mechanisms, directly by 
binding to the its receptor on target tissues and ultimately leading 
to the induction of signalling cascades or via its indirect mode of 
action via IGF-1. IGF-1 is secreted mainly by liver but also by oth-
er tissues including bone and muscle in response to GH. While in 
bone and muscle tissue both modes of actions are important, the 

action of GH on body fat is suggested to be mediated by its direct 
effect only. Used creative commons: brain: by Nickbyrd – License: 
CC BY-SA; adipocytes: by Database Center for Life Science (DB-
CLS) – License: CC BY; bone: by Servier Medical Art – License: CC 
BY; muscle: by Servier Medical Art – License: CC BY. GH, growth 
hormone; IGF-1, insulin-like growth factor 1; GHRH, growth hor-
mone-releasing hormone.
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When investigating the effect of sleep on the GH/IGF-
1 axis, GH rather than IGF-1 secretion is of central im-
portance. The secretion pattern of GH has been shown to 
follow a 24-h pattern, with sleep being an important win-
dow of most pronounced GH release [84]. A high GH 
release can specifically be observed soon after sleep onset 
temporally associated with the first episode of SWS [91, 
92]. SWS as well as GH levels show a significant gradual 
decline with increasing age [93]. Moreover, GH secretion 
was shown to be highly associated with the percentage of 
SWS even after controlling for age [93]. Therefore, SWS 
seems to play a key role in the regulation of GH secretion. 
These observations are in line with previous findings 
from a study in which van Cauter et al. [94] showed that 
stimulation of SWS by gamma-hydroxybutyrate (GHB) 
doubled the secretion of GH in the first 2 h after sleep on-
set. In contrast, Besedovsky et al. [95] reported no sig-
nificant difference of GH secretion when they acousti-
cally enhanced slow waves and speculated that the in-
crease in slow wave activity (SWA) may have been not 
strong enough to affect GH secretion in a young popula-
tion. Furthermore, the lack of an effect on GH secretion 
might be due to its secretion being controlled by other 
aspects of sleep [95]. More specifically, while sleep seems 
to be the primary regulator of GH release, a circadian 
contribution could likewise be at play [96]. For instance, 
observations from a study investigating GH concentra-
tion in permanent night- and daytime workers support 
the presence of a relevant circadian regulation. Even 
though both groups showed similar amounts of SWS, 
night-time workers had a lower GH secretion during 
their daytime sleep than daytime workers during their 
nightly rest. The total amount of GH secreted over 24 h, 
however, did not differ between the groups, suggesting a 
potential compensatory mechanism [96]. So far, we have 
only focused on possible mechanisms on how sleep af-
fects GH. However, there is evidence for a reciprocal re-
lationship. From animal [97] and human studies [98, 99], 
it is known that the growth hormone-releasing hormone 
(GHRH), released by the hypothalamus, stimulates 
NREM sleep intensity and/or duration and SWS in par-
ticular [98, 100, 101]. In contrast, preliminary findings on 
the effect of GH on sleep indicate that GH itself mainly 
promotes REM sleep [102, 103]. This implies that patients 
with GH deficiency (GHD) (e.g., Sheehan syndrome, 
GHD of pituitary origin), where low levels of GH lead to 
an impaired negative feedback mechanism on GHRH 
and subsequently to excessive GHRH [104], would have 
longer SWS and less REM sleep than healthy controls. In 
situations where the GHD originates in the hypothala-

mus (e.g., Prader-Willi syndrome), a different phenotype 
is expected: due to a disrupted hypothalamic function, 
GHRH levels are low together with GH levels. Conse-
quently, decreased SWS and REM sleep compared to age- 
and sex-matched controls are expected. However, while 
the expected alterations in sleep were repeatedly observed 
[98, 99, 105, 106], only few studies have been able to show 
a reversibility of the altered sleep characteristics through 
GH administration yet [102, 107, 108].

In conclusion, apart from the role of sleep in regula-
tion of GH levels, the effect of GH/GHRH on sleep char-
acteristics also warrants attention because clinical and ex-
perimental data support the presence of a reciprocal in-
teraction between GH and sleep physiology. Given the 
inconclusive results, experimental studies investigating 
the bidirectional relationships and underlying mecha-
nisms are needed. Due to the fact that patients with GHD 
often have increased fat mass and reduced lean mass 
[109–111], they might represent an interesting model to 
additionally study how the altered hormone status influ-
ences body composition.

Testosterone
Testosterone is not only influencing male secondary 

sex characteristics but also has anabolic muscle effects 
[112]. Various mechanisms how testosterone may induce 
muscle hypertrophy have been suggested, including the 
commitment of pluripotent stem cells to differentiate 
into cells of the myogenic type [112]. Studies investigat-
ing how testosterone secretion patterns are affected by 
sleep have mostly been conducted in men only [113]. 
Nonetheless, testosterone was shown to play a central role 
in female muscle and bone anabolism too [113]. In el-
derly women, higher levels of circulating testosterone 
have directly been associated with increased lean body 
mass [114], thereby supporting evidence that the effect of 
testosterone is not restricted to men only. Because wom-
en can also increase muscle mass despite having extreme-
ly low concentrations of testosterone, this implies that su-
praphysiological rather than physiological doses of tes-
tosterone are responsible for the shift towards muscle 
anabolism [115, 116]. The circadian component in the 
secretion of testosterone is responsible for to levels peak-
ing in the early morning and its decrease during the day 
[117–119], while an ultradian rhythm leads to the burst-
like secretion pattern of testosterone in 90-min intervals 
[120]. Starting after sleep onset, testosterone levels gradu-
ally rise until they reach a plateau coinciding with REM 
sleep onset [121]. Although the rhythm of nocturnal tes-
tosterone secretion seems to be related to the cycling be-
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tween REM and NREM phases [122], Evans et al. [123] 
observed that REM sleep does not directly lead to a pro-
duction of testosterone. Axelsson et al. [124] observed a 
rise in testosterone during daytime sleep, with decreasing 
levels upon awakening, implying that testosterone levels 
in healthy young men are mainly regulated by sleep and 
weakly by circadian influences. In addition, a 1-week 
sleep restriction in healthy men (<6 h sleep/night) led to 
significantly lower testosterone levels than a rested condi-
tion (>8 h sleep) [125]. As ageing is associated with de-
creased testosterone levels in men and women, testoster-
one administration to re-establish physiological levels 
can be considered to prevent the age-related loss in mus-
cle mass [116, 126–133]. The significant decrease of sleep 
duration as well as sleep efficiency and especially percent-
age of SWS with age may at least partially explain the re-
duced testosterone secretion in elderly.

Cortisol
Contrary to the anabolic hormone testosterone, corti-

sol shows catabolic effects for muscle hypertrophy [134]. 
Cortisol, commonly called “stress hormone,” is secreted 
in response to many types of physiological and psycho-
logical stress [135], while to some extent required, supra-
physiological levels of cortisol have been suggested to 
modulate muscle protein metabolism through increased 
catabolism [136] and decreased synthesis of muscle pro-
teins [137]. Pathological hypercortisolism as observed in 
Cushing’s syndrome [138] shows characteristic proximal 
muscle weakness among other symptoms associated with 
an unfavourable effect on body composition such as ab-
dominal fatty tissue deposits or bone loss [138]. Biopsic 
investigations of muscular tissue from patients with 
Cushing’s disease also revealed morphological changes in 
muscles, seen as damaged mitochondria in muscular tis-
sue, malformations of muscle fibres, and wide interfibril-
lar spaces [139].

Since cortisol secretion is enhanced under stress [135], 
one might expect that NREM sleep, as a relaxing state of 
human body and brain, is associated with decreased cor-
tisol levels. However, varying cortisol levels between sleep 
and wake [140] can be a result of either the circadian con-
trol of hormone release, the influence of sleep itself, or 
even a combination of both. Therefore, controlled exper-
iments to elucidate the respective influence of these 2 pro-
cesses are needed. Evidence for the regulation by a circa-
dian mechanism suggests that the release of cortisol is 
under the control of the central and peripheral circadian 
clocks. In turn, this leads to a peak of cortisol levels at the 
start of the activity phase, which, for diurnal organisms 

such as humans, is in the mornings [141]. However, sleep 
itself also contributes to cortisol secretion and the regula-
tion of plasma cortisol concentrations [142]. An inhibi-
tory effect of sleep leading to a decreased secretion of cor-
tisol was found independent of sleep timing within the 
circadian rhythm in a 4-day sleep restriction protocol in-
cluding sleep phase shifts and total sleep deprivation 
[143]. Further evidence showed that cortisol levels were 
significantly higher after 36 h of sleep deprivation than 
control and recovery nights [144]. Taken together, short 
sleep and total sleep deprivation are associated with in-
creased cortisol levels independent of the circadian phase 
[143–145]. Apart from sleep duration, several studies in-
vestigated whether an association between sleep quality 
and cortisol levels exists. Poorer sleep quality, subjective-
ly assessed by PSQI and objectively by actigraphy, was 
associated with a smaller early-morning cortisol decline 
and a slower rate of cortisol decline later in the day [146]. 
Specifically, SWS was shown to suppress the release of 
cortisol [14], with a variation in the secretion pattern that 
is temporally associated with the power spectral density 
in the slow wave EEG band (SWA) [147]. SWA across an 
exemplary night is illustrated in Figure 2b. Furthermore, 
selective enhancement of slow waves through acoustic 
stimulation led to a significantly reduced cortisol concen-
tration during the first hour of stimulation, with a sig-
nificant reduction already after 5 min of stimulation [95]. 
These observations are comparable to previous results 
from studies in which SWA was enhanced by pharmaco-
logical agents [106, 148]. Grimaldi et al. [149] reported 
significantly reduced evening-to-morning increases in 
cortisol when SWA was increased using acoustic stimula-
tion compared to sham stimulation. However, they did 
not find a change in total cortisol levels after sleep follow-
ing acoustically enhanced SWA. It should be noted 
though that, contrary to other studies, blood samples for 
cortisol testing were only drawn in the evening prior to 
sleep and in the morning [149]. Thus, cortisol levels may 
already have had risen when the blood sample was drawn 
in the morning and thereby the lowest concentrations 
may have been missed.

Inflammation
While so far focusing on hormones and peptides, the 

presence of a chronic low-grade inflammatory environ-
ment is likely to be another mechanism ,which relates 
muscle mass metabolism to sleep [150]. As reviewed by 
Beyer et al. [150], there is a consistent association of age-
related sarcopenia and chronic low-grade inflammation 
[150]. Both systemic [151, 152] and tissue-specific [153–
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156] inflammatory markers were negatively associated 
with muscle mass and inflammation-related pathways. 
Moreover, numerous total and partial sleep restriction 
studies exist, showing an increment in markers for acute 
inflammation such as interleukin-1 (IL-1), tumour ne-
crosis factor alpha (TNF-α), IL-6, and C-reactive protein 
(CRP) in response to sleep manipulation in humans 
[157]. Negative effects of inflammatory environments 
have mostly been examined in relation to cardiovascular 
disease. However, enhanced expression of these cyto-
kines is also known to interfere with other physiological 
pathways such as impaired muscle anabolism or increased 
muscle protein breakdown [158]. TNF-α as one example 
of a pro-inflammatory cytokine that is sensitive to sleep 
restriction is known to play a critical role in cachexia, a 
pathological condition causing ongoing muscle loss 
[159]. The underlying mechanism involves NF-κB tran-
scription factors, which are expressed in skeletal muscle, 
where they act as effect mediators of pro-inflammatory 
cytokines. In several sleep restriction studies as for in-
stance by Irwin et al. [160], peripheral NF-κB levels were 
compared between baseline sleep, partial sleep depriva-
tion, and recovery sleep. Results revealed a significantly 
increased NF-κB concentration in the morning after par-
tial sleep deprivation compared to the other conditions 
[160]. Similarly, TNF-α receptor 1 and IL-6 were elevated 
following experimentally induced total sleep restriction 
[161]. Moreover, elevated CRP levels, a strong predictor 
for cardiovascular morbidity, were observed following 
partial and total sleep restriction compared to a sufficient 
sleep condition [162]. Taken together, several studies 
found an increment of pro-inflammatory cytokines dur-
ing nights of short sleep. However, whether these chang-
es in inflammatory levels due to impaired sleep translate 
into impaired muscle protein synthesis, both in the short 
and long-term, remains to be investigated.

Limitations and Implications
Concentrations and secretion patterns of various key 

players in muscle metabolism have been shown to be re-
lated to or affected by sleep. In addition, impaired sleep 
has been linked to reduced muscle mass and function [72, 
163, 164], implying that sleep potentially affects muscle 
homeostasis. Yet, studies that directly link sleep and mus-
cle mass as well as additionally provide a causal link of any 
of these pathways are still lacking. A positive influence of 
sleep on muscle anabolism is supported by studies that 
followed a sleep restriction protocol [80, 165]. However, 
they solely assessed the adverse effect of an insufficient 
amount of sleep and never examined whether specific 

sleep cycles, sleep-specific oscillations, or certain sleep 
stages such as REM or NREM contribute to the observed 
effects. While research on the mechanism how GH and 
cortisol secretion are related to slow waves has been con-
ducted, further research is needed inspecting the rele-
vance of sleep macro- and microstructure on proposed 
mechanisms that lead to impaired muscle metabolism. 
Moreover, the correlation between a significant decline in 
SWS and the development of sarcopenia observable in 
elderly requires further investigation. In addition, sleep 
may become even more important for the metabolic pro-
cesses during situations challenging muscle homeostasis 
(e.g., exercise) than baseline physiological conditions 
[163, 164].

Sleep and Body Fat Mass

Excessive fatness, as observable in obesity, has become 
a major health problem across the world [166]. An exces-
sive accumulation of body fat mass is often thought to be 
a consequence of an unhealthy diet and low levels of phys-
ical activity, whereas poor and short sleep are rarely con-
sidered as risk factors.

Several studies reported correlations between indices 
of fat mass and insufficient sleep [167–172] consistently 
across all age groups [173–179]. Interestingly, a trend to-
wards higher BMI with less hours of sleep has been ob-
served in men, whereas the relationship in women has 
been found to be U-shaped [180], suggesting that the 
dose-response relationship is influenced by gender. In a 
large-scale study including 1,024 volunteers, a minimal 
BMI was found for a nightly sleep duration of 7.7 h [176], 
which is in line with the recommended 7 h–9 h sleep/
night for adults [181]. The identification of underlying 
mechanisms linking sleep to BMI is of current interest 
and not yet completely resolved. However, endogenous 
mechanisms such as appetite regulation by hormones 
and the endocrine control of energy expenditure are like-
ly to be involved [182]. Another potential mechanism 
how short sleep may lead to weight gain involves the 
change in food choices or the increased wake time in an 
obesogenic environment [183], leading to increased en-
ergy intake [182]. Most likely, no single pathway fully 
explains the association between short sleep and high 
BMI, but rather various mechanisms are simultaneously 
at play. Jurado-Fasoli et al. [184] observed an association 
between body fat mass percentage, assessed by DXA, and 
poor subjective sleep quality in sedentary middle-aged 
adults, which did not remain significant after including 
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sex or sex and age in the model. Neither subjective sleep 
efficiency nor accelerometer-assessed wake after sleep 
onset correlated with body fat mass percentage [184]. In 
contrast, lower sleep efficiency measured by actimetry 
was found to be associated with higher fat mass assessed 
by BIA in students [185]. Interestingly, this association 
differed between men and women. The observation only 
held true for sleep on workdays in women, and for sleep 
on weekend days in men. This unexpected difference led 
to the hypothesis that poor sleep on workdays in women 
was tightly related to low levels of physical activity on 
these days. However, poor sleep efficiency in men on free 
days was observed to occur simultaneously with a higher 
dietary fat intake [185]. Other studies assessing body 
composition by BIA found single components of PSQI-
assessed subjective sleep including sleep latency, sleep 
disturbances, and daytime dysfunctions to be associated 
with body fat mass [186]. Similarly, total sleep duration 
reported on a questionnaire correlated with fat mass as-
sessed by BIA in young athletes [187]. Although the au-
thors do not discuss potentially underlying mechanisms 
in detail, poor sleep patterns are hypothesized to alter 
endocrine function [186] towards a pro-fat-deposition 
hormonal pattern such as increased morning cortisol, 
which in turn increases the amount of body fat [185, 
187].

Rao et al. [188] further linked fat mass to aspects of 
sleep architecture. BMI, but not the percentage of total 
body fat mass measured by DXA, was shown to be sig-
nificantly associated with SWS percentage. As a possible 
limitation and reason for the lack of a relationship, the 
authors suggest that abdominal rather than total body fat 
might be associated with SWS, with only latter examined 
in this study [188]. Another study aimed to determine 
gender differences in the context of body composition 
and sleep patterns [189]. Detailed analyses of sleep archi-
tecture revealed a significant negative correlation be-
tween SWS percentage and percentage of body fat mass 
in women but not in men [189]. Apart from SWS, a pop-
ulation-based study found a reduction in REM sleep to be 
associated with obesity in women [190]. Similar results 
were obtained in children and teens, showing time spent 
in REM state to negatively correlate with overweight 
[191]. Chronic insomnia, which is considered the most 
prevalent sleep disorder [192] and that is characterized by 
a lack of sleep or inability to sleep [193], has also been as-
sociated with future weight gain [175, 194] and obesity 
[176, 195]. Moreover, a meta-analysis found that patients 
with insomnia had a higher risk of suffering from hyper-
tension, hyperglycaemia, and obesity, which are the lead-

ing symptoms of the metabolic syndrome [196]. The 
causes of insomnia as well as its association with an al-
tered body composition are complicated and diverse. Al-
tered secretion profiles of pro-inflammatory cytokines 
[197], ageing [198], menopause, stressful events, and de-
pression are all contributing factors to the hyperarousal 
and finally to insomnia [199]. Although the association 
with obesity is still unclear, it has previously been hypoth-
esized that a hyperactivation of the hypothalamic–pitu-
itary–adrenal (HPA) axis and a dysregulation of hor-
mones that regulate energy homeostasis might be in-
volved [200, 201].

Taken together, poor subjective sleep quality was re-
peatedly shown to be associated with unfavourable chang-
es in body fat mass. Yet, the underlying mechanisms are 
insufficiently explored, but appetite regulation, energy 
expenditure, and secretion of hormones are likely to be 
contributing aspects. Little is currently known about 
whether specific sleep stages may have an impact on body 
fat mass accumulation and further investigations of ex-
tended duration are needed, also considering gender as a 
relevant factor.

Underlying Mechanisms
In the following paragraphs, we will discuss potential 

underlying mechanisms linking sleep to excessive fat tis-
sue. An overview of those mechanisms is presented in 
Figure 1.

Appetite Regulation
One mechanism relating sleep to excessive accumula-

tion of body fat mass might be the pattern of food intake, 
which is driven by appetite, regulated by 2 opposing hor-
mones leptin and ghrelin [202].

Leptin
Leptin is a hormone that is produced by adipocytes 

and informs the body about its energy status. It has gained 
special interest in the context of sleep because its secre-
tion follows a circadian rhythm that is further influenced 
by sleep and fasting [179, 203]. Under normal conditions, 
leptin levels increase during sleep until the peak is reached 
at around the midpoint of sleep followed by a gradual de-
crease until mid-afternoon [177]. Reduced leptin levels 
resulting from chronic starvation enhance the drive to eat 
[204].

Several cross-sectional studies investigating whether 
there is a correlation between sleep duration and leptin 
levels revealed inconclusive results. While Knutson et al. 
[205] did not find a correlation between habitual sleep 
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duration assessed by actigraphy, a large population-based 
study by Taheri et al. [176] revealed that short habitual 
sleep duration was associated with decreased leptin levels. 
Along these lines, several studies investigated whether 
sleep restriction or sleep deprivation affects leptin levels, 
again revealing conflicting results. Several studies using 
total sleep deprivation showed a decreased amplitude of 
the variation of leptin levels over 24 h [178, 206, 207]. For 
example, one study found that sleep restriction to 4 h 
compared to 12 h led to a 19% decrease in the nocturnal 
amplitude of leptin levels [207]. In contrast, more recent 
findings observed leptin concentration to either increase 
in response to experimental sleep restriction [208] or re-
main unchanged [209]. Constant measurement of leptin 
levels during 38 h of wakefulness in a constant routine 
protocol aimed to disentangle the specific contributions 
of the endogenous circadian rhythm and behavioural fac-
tors such as sleep on leptin levels. Leptin concentrations 
increased linearly during the period of wakefulness with-
out a modulation by circadian phase, whereas a signifi-
cant decrease in leptin during recovery sleep has been ob-
served [179].

The contradictory findings about the association of 
sleep duration and leptin levels may be explained by the 
fact that leptin is rather a long-term signal [210]; thus, a 
single night of short sleep does not lead to an immediate 
decrease in leptin levels. In line with this notion, chronic 
short sleep, however, is associated with significantly de-
creased leptin levels. Moreover, sleep loss affects mean 
leptin levels over 24 h as well as the amplitude of the leptin 
secretion profile [178, 206, 207] rather than morning se-
rum leptin.

Only little research has been conducted on how sleep 
architecture is associated with the secretion of leptin. Ol-
son et al. [211] focused on the percentage of REM sleep 
assessed by PSG and its association with leptin levels that 
were assessed before and after sleep, respectively. They 
found a higher percentage of REM sleep to be associated 
with a more pronounced overnight change in leptin, 
which is likely to contribute to an increased amplitude of 
24 h leptin levels [211]. Based on findings from previous 
research, the amplitude of leptin concentration better 
predicts food intake than morning leptin concentration 
[212, 213]. Thereby, changes in circulating leptin may 
represent the link between the previously discussed asso-
ciation of REM sleep percentage with prevalence of over-
weight reported by Liu et al. [191] and Theorell-Haglöw 
et al. [190]. In contrast to the percentage of REM sleep, 
no significant relationship between any NREM sleep 
stage and changes in leptin levels was observed [211].

Ghrelin
Another peptide involved in the regulation of appetite 

and food intake is ghrelin. Ghrelin is primarily secreted 
from the stomach and has been shown to increase appe-
tite thereby leading to increased food intake in humans 
[214]. Under normal conditions, ghrelin secretion fol-
lows a circadian and ultradian pulsatile pattern, with the 
peak of ghrelin concentration occurring during the night 
[203]. However, this regulation only applies to lean and 
not obese subjects [203]. Observational studies investi-
gating the association between sleep duration and ghrelin 
levels mostly showed ghrelin levels to be negatively cor-
related with sleep duration [176, 215, 216]. Experimental 
studies however show conflicting results as reviewed by 
St. Onge [217]. While some studies report an increase in 
ghrelin in the sleep deprived compared to the control 
group [218–220], others did not find any differences 
[221–223]. For instance, in a study where subjects were 
allowed to stay in bed for 4 h/night on 2 days followed by 
a bedtime of 10 h/night for another 2 days, researchers 
observed 28% higher ghrelin levels in the sleep-restricted 
condition than the 10 h bedtime condition [219]. Simi-
larly, another study found increased ghrelin levels after 
one night of total sleep restriction compared to a sleep 
opportunity of 5 h using a crossover design. In-between 
ghrelin levels were observed in the third condition, in 
which volunteers had the opportunity to sleep for 7.5 h 
[218]. Thus, in contrast to leptin, ghrelin seems to be 
more sensitive to short-term sleep behaviour [176], which 
is in line with the fact that ghrelin is a rapidly acting hun-
ger signal, whereas leptin is a long-term energy balance 
parameter [224]. The findings that sleep loss leads to al-
terations in endocrine levels which control food intake 
might be part of the link between short sleep and the risk 
of obesity. However, the conflicting results warrant large-
scale controlled experiments. Different study regimes, 
sampling times, participant characteristics, and the com-
plex interplay between hormones may contribute to vary-
ing results [182]. Furthermore, increased food intake fol-
lowing sleep curtailment has been consistently reported 
[182, 217]. Therefore, factors other than hormonal imbal-
ance should be considered to explain the obesogenic ef-
fect resulting from short sleep [182].

Adiponectin
Adiponectin belongs to the group of adipokines and is 

specifically secreted by adipocytes, the cells of adipose tis-
sue [225]. It is inversely correlated with the amount of 
adipose tissue and its concentration has been observed to 
decrease with the onset of obesity [226]. Recent evidence 



Stich/Huwiler/D’Hulst/LustenbergerNeuroendocrinology 2022;112:673–701684
DOI: 10.1159/000518691

from animal studies promises beneficial effects of adipo-
nectin in terms of weight reduction and improvements in 
insulin sensitivity [227]. Therefore, the question is wheth-
er an intervention may lead to an increase of endogenous 
serum adiponectin and potentially promote a healthy 
weight management in humans. As one factor, sleep might 
modulate adiponectin levels through the HPA axis, which 
is sensitive to sleep. SWS might be of particular interest 
since an inhibitory effect of SWS on the HPA axis and sub-
sequently on cortisol secretion has previously been re-
ported [143]. In a study by Fallo et al. [228], administra-
tion of glucocorticoids such as hydrocortisone leads to an 
inhibition of adiponectin secretion in healthy males, sup-
porting the fact that glucocorticoids affect adiponectin 
levels. Taken together, evidence suggests that experimen-
tally induced enhancement of slow waves could lead to 
decreased glucocorticoid levels, which in turn results in 
higher adiponectin levels. However, there are numerous 
studies showing that glucocorticoid treatment led either 
to increased blood adiponectin concentrations [229–234] 
or to no observable effect [235–237]. Nonetheless, the use 
of distinct types of glucocorticoids and different dosing 
regimens render results hardly comparable. More stan-
dardized research is needed addressing the question of 
whether glucocorticoid administration modulates adipo-
nectin levels, before conclusions regarding the HPA axis 
and sleep can be drawn [238]. To our knowledge, there is 
currently only one study investigating the direct associa-
tion between sleep and adiponectin levels. In this investi-
gation, experimental sleep restriction only decreased adi-
ponectin levels in women but not in men [239].

Growth Hormone
Studies investigating how GH secretion is affected by 

sleep have previously been discussed in the relation to 
muscle mass. In this context, especially SWS has gained 
attention since it represents the window of most pro-
nounced GH release [92, 240–242]. Selective SWS disrup-
tion by electrical stimulation [243] or natural reduction 
through ageing has been accompanied by reduced GH se-
cretion [93], whereas SWS stimulation by pharmacologi-
cal treatment led to increased GH secretion [94]. The fol-
lowing paragraph will discuss the effects of GH secretion 
on fat mass and whether targeting GH secretion by sleep 
modulation has the potential to improve body composi-
tion. Contrary to the anabolic effects of GH in most tissues 
(e.g., muscle), GH is involved in catabolic processes in ad-
ipose tissue [244] (see Fig. 3 as an overview of the effects 
of GH on body tissues). GH secretion in healthy individu-
als is negatively associated with the mass of adipose tissue, 

especially visceral adipose tissue [245–248]. Decreased 
GH secretion is observed in obese, which manifests as a 
decline in the mass of GH secreted per burst [249, 250]. 
The central mechanism relating GH to the accumulation 
of adipose tissue lies in the induction of lipolysis, which 
forms the catabolic branch of fatty acid metabolism [251]. 
Lipolysis makes free fatty acids available for use when they 
are needed as substrates for lipid synthesis [244]. Induc-
tion of lipolysis has been shown to reduce adipose tissue 
mass, thus resulting in body fat mass reduction in both 
human [252] and animal studies [253]. Numerous studies 
have evaluated the potential of GH treatment as means to 
treat obesity [254–259]. There is mounting evidence that 
a GH-induced reduction in adipose tissue does not ulti-
mately lead to a metabolically healthy tissue, but rather 
results in an unhealthy lean phenotype [246]. This coun-
terintuitive difference between healthy obese and un-
healthy lean needs further investigation and should be 
taken into account when considering GH augmentation 
as a means to improve body composition. It is noteworthy 
though that enhancing endogenous GH secretion has less 
adverse effects compared to exogenous GH administra-
tion [256, 259]. Hence, further research is needed investi-
gating the possibility to increase endogenous GH secre-
tion through sleep modulation and the potentially subse-
quent favourable changes in body fat mass.

Limitations and Implications
The number of studies investigating the relation be-

tween sleep and BMI exceeds studies assessing fat mass 
directly. Although BMI does not provide information 
about body mass composition due to its simplicity, it still 
often is the method of choice to assess someone’s over-
weight or obesity. However, the strong positive correla-
tion between body fat mass and BMI across the general 
population legitimates its use instead of body fat mass 
[37, 38, 260–263]. The variety and diversity of potential 
underlying mechanisms how body fat mass is related to 
sleep underlines the complexity of this field. Although it 
is likely that a multitude of mechanisms are involved, one 
big challenge is to elucidate their individual and causal 
impact. Furthermore, mechanisms leading to fat mass ac-
cumulation are likely to be highly versatile. Apart from 
molecular mechanisms relating to how ingested food is 
used and stored in our bodies, the regulation of appetite 
and satiety already starts beforehand. Moreover, regula-
tion of food intake is not solely mediated by a homeo-
static system but also by the hedonic system [264, 265]. 
The hedonic system refers to the concept that food intake 
can additionally be driven by the presence of highly palat-
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able food that exert a highly rewarding experience. In the 
presence of such foods, the hedonic system can even ab-
rogate the control by the homeostatic system [266]. Thus, 
it is not enough to exclusively focus on the actions of 
leptin, ghrelin, and other satiety signals to understand the 
drivers for eating. Further research, which also considers 
motivational and rewarding aspects of food intake and 
whether these mechanisms are influenced by sleep, is 
therefore needed.

Promising results obtained from a single animal study 
showed that adiponectin deserves further attention [227]. 
Here, researchers showed that slow wave enhancement 
inhibited the HPA axis, resulting in decreased cortisol se-
cretion [267]. Thus, adiponectin concentration may 
change beneficially as well. Yet, there is need for future 
research directly examining the modulation of adiponec-
tin levels through slow wave manipulation and its long-
term consequences on fat tissue turnover. Although here 
we focus on the effect of sleep on body compositions and 
the underlying pathways, it should also be mentioned that 
there is evidence for a reciprocal interaction. One key ex-
ample of this reciprocal interaction is obstructive sleep 
apnoea, a serious sleep disorder that causes breathing to 
repeatedly stop during sleep. While obesity is among the 
main risk factor for OSA, the disorder itself leads to a dis-
turbed sleep ultimately altering energy balance resulting 
in further weight gain [268]. The polycystic ovary syn-
drome (PCOS) is another pathological condition that ex-
emplifies the bidirectional relationship of altered sleep 
characteristics and body composition mediated by meta-
bolic and endocrine changes. PCOS is an endocrine dis-
order affecting metabolic and reproductive processes 
[269]. Besides having a higher tendency to be overweight 
than the general population, sleep problems are frequent-
ly reported in patients with PCOS [270]. Although it is 
known that overweight may lead to sleep problems, over-
weight only partly accounts for the sleep problems in 
PCOS [270]. Various other mechanisms through which 
PCOS may lead to sleep disorders and disturbances have 
been proposed, including an upregulation of the HPA 
axis [271], increased androgen levels [270, 272], and in-
sulin resistance [198, 273, 274]. However, the underlying 
mechanisms are probably much more complex and nu-
merous, and not all of them are known yet. With OSA and 
PCOS here we just briefly discussed 2 examples that high-
light the complexity of clearly distinguishing between the 
direction of the relationship between altered sleep char-
acteristics and changes in body composition. To under-
stand the reported associations on a mechanistic level, 
controlled experimental studies are needed.

Sleep and Bone Mass

Bone tissue is crucial for providing rigidity, strength, 
and shape and is essential for movement. Although bone 
tissue is a rigid structure, it undergoes dynamic changes, 
namely, the 2 processes formation (mediated by osteo-
blasts) and resorption (mediated by osteoclasts). Main-
taining a constant bone mass requires a dynamic homeo-
stasis between these opposing processes. Any imbalance, 
as it may occur with increasing age, altered sex hormone 
levels or the use of medication leads to a weakening of 
bone structure and increases the risk for fractures [275]. 
Bone health is usually assessed by DXA as bone mineral 
density (BMD) and bone mineral content (BMC), which 
both have been shown to decrease with age due to the im-
balance in bone turnover [276]. Furthermore, BMD and 
BMC are reported to be lower in females compared to 
males [277], making gender and age factors requiring ad-
justment. BMD provides information for assessing bone 
fracture risk, whereas whole-body BMC is mainly height-
dependent and not providing information about bone 
strength [278].

Restorative sleep is likely required to allow bones to re-
cover from the pressure acting on them throughout the 
day. Yet, the underlying mechanisms how sleep affects 
bone homeostasis are complex and largely unknown. Evi-
dence that sleep and bone health are related is mainly de-
rived from studies assessing the quality and duration of 
sleep together with BMD assessments. Both long [279–
284] and short sleep duration [281, 282, 285–292] have 
repeatedly been associated with low BMD and osteoporo-
sis. However, a meta-analysis found that only long sleep 
duration (≥8 h/day) was associated with a 22% higher risk 
of osteoporosis, while no association between short sleep 
and osteoporosis was found [293]. Furthermore, some 
studies found no association between sleep duration and 
BMD [74, 294]. Additional investigations examined 
whether subjective sleep quality, assessed by PSQI, was as-
sociated with bone health. Here, poor subjective sleep 
quality was found to negatively correlate with BMC and 
BMD [74, 184, 295]. One major limitation of these studies 
is the subjective report of sleep duration and quality, 
thereby making the results hardly comparable between in-
dividuals. In addition, objective sleep quality assessed by 
an accelerometer was not associated with any bone health 
parameter [184]. Taken together, there is currently much 
inconsistency in this area of research pointing to the need 
of further research as well as for controlled experiments 
with objective sleep parameters (e.g., PSG-assessed mac-
ro- and microstructure aspects of sleep).
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Underlying Mechanisms
The underlying mechanisms on how poor sleep qual-

ity and/or sleep duration may negatively affect bone 
health are likely to be versatile [184]. Several mechanisms 
linking various sleep variables to bone turnover have 
been suggested and will be discussed in the following 
paragraphs. Figure 1 provides a graphical overview of 
those potential mechanisms.

Bone Turnover Markers
A useful means to examine mechanisms by which 

sleep affects bone health are bone turnover markers 
(BTMs) measurable in blood in response to bone resorp-
tion, bone formation, or cytokine function.

Swanson et al. [296] investigated the impact of a com-
bined sleep restriction and circadian disruption interven-
tion on 4 BMTs: C-terminal cross-linked telopeptide of 
type I collagen (CTX), which is indicative for bone re-
sorption, N-terminal pro-peptide of type I procollagen 
(P1NP), a biomarker for bone formation, sclerostin, and 
fibroblast growth factor 23 (FGF-23), 2 biomarkers for 
osteocyte function. Participants underwent an interven-
tion including sleep restriction to 5.6 h/night in combina-
tion with forced circadian-desynchrony, which was pro-
voked by 28 h-days for 3 weeks. They reported P1NP to 
be significantly lower post-intervention than baseline lev-
els, with a more pronounced effect in younger subjects 
(<28 years) than in older subjects (>55 years). A signifi-
cant increase and decrease in response to the intervention 
were observed for sclerostin and FGF-23, respectively. 
While the increase in sclerostin was only observed for the 
younger group, the change in FGF-23 levels was observ-
able among all participants. CTX was not affected by the 
intervention [296]. Interestingly, P1NP levels declined 
significantly from the first day of intervention and stayed 
at almost constant lower levels during the following 3 
weeks [297].

Among BTMs, CXT displays the most robust 24 h cir-
cadian rhythm [296, 298–300] with generally higher lev-
els observed in women than in men [301]. However, the 
shape of the 24 h profile of bone resorption parameters 
such as CTX does not seem to be influenced by sex [302, 
303], age [302], posture [302], or parathyroid hormone 
[304]. In addition, fasting has been identified as a factor 
that diminishes the amplitude of the CTX concentration 
rhythms but does not change the 24-h profile [302, 305, 
306]. P1NP on the other hand does not seem to follow a 
clear circadian rhythm [307–309] and is relatively insen-
sitive to food intake [310], thereby rendering P1NP a suit-
able biomarker for investigating the effect of sleep restric-

tion or deprivation. The distinctive sinusoidal rhythm 
across the 24 h of a day, as for instance observed in CTX, 
is likely due to the presence of peripheral oscillators as 
suggested by the expression of clock genes in bone tissue 
[311–314]. Sleep restriction or deprivation or the shift of 
sleep timing as it may occur in night shift work can there-
fore potentially lead to a disrupted rhythmicity of BTMs 
and may subsequently result in impaired bone health due 
to an imbalance between bone formation and bone re-
sorption. Observations made among night shift workers 
support this mechanism [315, 316], as for instance re-
ported in postmenopausal female rotating-shift nurses 
that showed lower BMD at lumbar spine and at femoral 
neck than those that worked daytime shifts [315].

Inflammation
The presence of an inflammatory microenvironment, 

especially if persisting over a long time, is known to neg-
atively influence bone metabolism by disturbing the bal-
ance between bone-resorbing osteoclasts and bone-form-
ing osteoblasts, finally resulting in bone loss [317]. A sys-
tem centrally involved in the regulation of bone turnover 
is the RANKL/OPG system, which was shown to be high-
ly sensitive to inflammation [317]. Binding of RANKL to 
osteoblasts induces a signalling cascade, ultimately lead-
ing to the differentiation of osteoclasts [318]. While un-
der physiological conditions osteoclast differentiation is 
tightly controlled through the inhibitory effect of OPG, 
this system is disturbed in an inflammatory response.

Rheumatoid arthritis (RA) is one example for a chron-
ic inflammatory disease, which leads to a constant secre-
tion of pro-inflammatory cytokines and thereby serves as 
a model to investigate the effect of inflammation on bone 
mass. The secreted pro-inflammatory cytokines in RA in-
clude IL-6, IL-1, IL-17, and TNF-α. These cytokines lead 
to an enhanced osteoclastogenesis, mainly mediated by 
their activating effect on RANKL [162, 319]. Moreover, 
besides the secretion of resorption-promoting cytokines, 
RANKL secretion itself is enhanced. This in turn leads to 
a change in the RANKL/OPG ratio and ultimately inter-
ference with the fine-tuned balance between bone forma-
tion and bone resorption [317].

While so far much of the research has focussed on an 
inherited autoimmune disease, it remains to be elucidat-
ed what other factors can cause the presence of a persist-
ing inflammatory bone microenvironment. Noteworthy, 
very little research has been conducted in the area inves-
tigating whether sleep has any influence on inflamma-
tion processes in bone tissue. While no human study ex-
ists yet, an experiment in rodents found an increased ex-
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pression of IL-1β, TNF-α, and RANKL in the 
temporomandibular joint of animals that were paradox-
ical (REM) sleep-deprived compared to the control 
group, indicating an impaired bone metabolism [320]. 
More research is needed to further examine the relevance 
of inflammation on bone metabolism altered by sleep 
variables. Potential candidates are IL-6 and TNF-α, and 
both pro-inflammatory cytokines were previously shown 
to be increased in healthy young adults who had their 
sleep restricted to 6 h per night [321]. Importantly, in-
flammation is not bad per se and should not be generally 
thought to interfere with bone health. Inflammatory me-
diators are part of the normal healing response or are 
needed as an immune response towards pathogens. 
However, chronic inflammation or an increase of in-
flammatory markers over prolonged time periods might 
negatively affect bone turnover. Consequently, future 
studies assessing sleep-related changes in inflammation 
markers and their role in bone turnover should include 
long-term investigations.

Autonomic Nervous System Activity
Another potential link between sleep and bone health 

is the autonomic nervous system (ANS). For instance, 
short sleep was found to be associated with sympathetic 
nervous system (SNS) hyperactivity [288], which in turn 
was shown to favour low bone mass [322]. Likewise, also 
the second branch of the ANS, the parasympathetic ner-
vous system (PNS), might affect bone metabolism with 
opposite effects [323]. Concordantly, sectioning PNS fi-
bres in rodents was observed to result in low bone mass 
[324].

The main neurotransmitter of the SNS is norepineph-
rine, which exerts its function via α- and β-adrenergic 
receptors. Bone cells show mainly an expression of 
β-adrenergic receptors and rodent studies showed that 
daily stimulation of these resulted in increased bone ca-
tabolism characterized by enhanced osteoclast forma-
tion, a reduction in the function of osteoblasts, and fi-
nally in bone loss [325–328]. In addition, selective block-
age of these receptors in young mice increased 
bone-forming activity, ultimately leading to a higher ob-
served bone mass [328–330]. In contrast, PNS activity is 
suggested to have a favourable influence on bone mass via 
direct action of acetylcholine on osteoclasts and osteo-
blasts as well as through the suppressive effect on sympa-
thetic activity on bone receptor levels [331–333]. Sharing 
neurophysiological and chemical mechanisms, autonom-
ic regulation, and sleep is tightly linked on the anatomical 
as well as on the physiological level [149]. Transitions be-

tween sleep stages are characterized by coincidentally 
fluctuating ANS activity [334]. The parasympathetic tone 
increases during N2 and N3 sleep compared to wake 
[335], whereas the sympathetic tone decreases [336]. 
Moreover, while NREM sleep is clearly characterized by 
parasympathetic predominance, sympathetic activity 
dominates during REM sleep [336]. The SNS activity was 
even shown to exceed the sympathetic activity during 
wake [337]. Recently, experimental enhancement of SWA 
by auditory stimulation was shown to increase parasym-
pathetic activity during SWS [149]. SWS-mediated 
changes in ANS activity are thought to influence several 
physiological processes including glucose metabolism 
[338], immune [339], and cognitive functions [340]. 
Therefore, the characteristic predominance of parasym-
pathetic activity together with low sympathetic tone dur-
ing SWS may represent a favourable window for bone 
formation.

IGF-1/GH
As previously discussed, GH and ultimately IGF-1 se-

cretion are strongly influenced by SWS. However, the im-
portance of GH is not restricted to muscle tissue only but 
is likewise involved in growth mechanisms in other tis-
sues, including bone (see Fig. 3 for an overview). In ex-
perimental studies, administration of both, GH and IGF-
1, was found to stimulate the growth of longitudinal 
bones in animals and humans by direct action [341, 342] 
as well as indirectly by increasing the production of IGF-
1 [342, 343]. Additional evidence supporting the critical 
effect of GH on bone mass comes from studies investigat-
ing the effects of GHD [344]. It was shown that a lack of 
GH and simultaneous low levels of IGF-1 in mice with 
mutation in the GHRH receptor were associated with os-
teopenia and reduced cortical bone mass. Exogenously 
administered IGF-1 did almost completely reverse the 
negative effect on bone growth [344]. Moreover, in pa-
tients suffering from adult growth hormone deficiency, 
treatment with GH resulted in an increase of BMD [345, 
346]. Therefore, when present at subphysiological levels, 
GH administration seems to be beneficial in terms of pro-
moting bone health and increasing BMD. However, 
whether this effect is of great importance under physio-
logical levels remains to be elucidated. Nevertheless, evi-
dence from experimental studies in osteoporotic subjects 
as well as in patients with bone fractures revealed a sig-
nificant positive effect of GH or IGF-1 administration on 
bone health [347, 348]. IGF-1 administration in healthy 
and osteoporotic females was found to increase bone for-
mation in several studies, including different dosing reg-
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imens and durations varying from 6 days to 9 months 
[349–354]. Since GH/IGF-1 is known to be involved in 
mechanisms that are impaired in delayed or failed bone 
fracture healing, several clinical trials investigated the ef-
fect of GH/IGF-1 administration on fractured bone heal-
ing. They reported increased BMD, better functional re-
covery, as well as increased bone strength [354–356]. 
Based on experiments that found a significant association 
between SWS and GH secretion [91–94], sleep modula-
tion may support bone mass preservation in osteoporotic 
people as well as in the healing process following a bone 
fracture.

Leptin
Although leptin is primarily known for its central role 

in the regulation of energy homeostasis, its involvement 
in bone metabolism receives increasing attention. First 
evidence showed that leptin-deficient mice had higher 
vertebral trabecular bone mass than wild-type mice [357]. 
Over the years, further evidence emerged that leptin acts 
centrally as well as peripherally to control bone mass 
[358–361]. This has risen the question on how the com-
munication between cells in the brain and bone cells is 
possible. Therefore, a mice parabiosis model was used to 
determine whether the factor leading to low bone mass 
phenotype could be exchanged via circulation or whether 
it was of neural origin. Seeing that only the animals that 
got leptin delivered into the third cerebral ventricle did 
show low bone mass, the mediator was suggested to be a 
signal of neural nature [357]. As already discussed in rela-
tion to body fat mass, leptin levels have repeatedly been 
shown to be sensitive to short sleep as well as to single 
sleep stages [176, 178, 206, 207]. Therefore, further re-
search investigating leptin concentration in response to 
sleep in general and to the modulation of sleep, more spe-
cifically, should consider that leptin is also crucially in-
volved in bone metabolism apart from its central role in 
energy homeostasis.

Limitations and Implications
Although many studies only focused on total sleep du-

ration or sleep quality so far, some pathways have been 
suggested, which are likely involved in bone turnover and 
which are affected by a variety of sleep parameters. Activ-
ity of the ANS, for example, may play an important role 
in bone metabolism as sympathetic activity was shown to 
dominate during REM sleep [337] and to be associated 
with bone resorption [325–328]. Moreover, BTMs’ char-
acteristic for bone resorption displays a peak in the sec-
ond half of the night when REM sleep predominates 

[302]. PNS as counterpart of the SNS predominates dur-
ing SWS [335] and was proven beneficial for bone forma-
tion [331]. Taken together, either selectively intensifying 
NREM sleep (SWS enhancement) or decreasing the pro-
portion of REM sleep without changing total sleep dura-
tion may represent potential approaches to shift the activ-
ity of the nervous system more towards parasympathetic 
activity and subsequently the balance of bone metabolism 
more towards bone formation. While methods to en-
hance and intensify SWA exist and have previously al-
ready been discussed, suppression of REM sleep is a less 
typical experimental approach but is a commonly observ-
able phenomenon in people taking antidepressants [362]. 
Therefore, further investigations are needed focusing on 
the association between sleep architecture and bone 
health in more detail. Identification of a specific sleep mi-
cro- or macrostructural feature that is especially critical 
in bone metabolism may represent a target for selective 
modulation in order to increment parasympathetic activ-
ity during sleep.

Moreover, leptin and GH/IGF-1 are likely to be further 
mechanisms involved in the link between sleep and bone 
health. While balanced leptin concentration importantly 
contributes to a healthy bone metabolism [357–361], dys-
regulated leptin levels as a consequence of short sleep 
[178, 206, 207] may negatively affect bone mass. How-
ever, whether the modulations in leptin levels caused by 
changes in sleep duration are relevant for bone turnover 
needs to be further investigated. The relevance of GH/
IGF-1, on the other hand, has previously been shown to 
be of clinical importance in the pathology of osteoporosis 
[349–354], after bone fractures [354–356], and is likely to 
affect GH secretion [91–94]. Further controlled studies 
over an extended period are required to explore whether 
GH levels can be increased to clinically significant levels 
by sleep modulation and whether this increase translates 
into improved BMD.

Metabolic System under Challenge: The Role of 
Sleep

The previous paragraphs on the role of sleep in meta-
bolic processes mainly summarized current evidence un-
der resting conditions. Yet, sleep might become specifi-
cally important at times when the metabolic system is 
challenged, such as induced by physical exercise, during 
a weight reduction diet, or when bones are fractured. 
Here, we focus on the potential interplay of sleep with 
these challenges.
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Promoting Muscle Anabolism: Physical Exercise and 
the Role of Sleep
Physical exercise, especially resistance training, is 

widely accepted as the main strategy to induce muscle 
hypertrophy and improve musculoskeletal health [363, 
364]. A single bout of resistance exercise has consistently 
been shown to trigger muscle protein synthesis, resulting 
in a net protein balance when combined with protein in-
take [365, 366]. Resistance exercise enhances the ability 
for skeletal muscle cells to sense amino acids [367], ensur-
ing an adequate rise in postprandial muscle protein syn-
thesis and accretion of muscle tissue when the exercise 
regimen is sufficiently repeated over time [368]. Nutri-
tion and muscle contraction work in synergy to augment 
post-exercise increases in muscle protein synthesis and 
mass on the longer term, but the influence of sleep has 
been neglected so far.

Intriguingly, a recent study showed that short-term 
sleep deprivation leads to lower rates of myofibrillar pro-
tein synthesis in the basal, non-exercised state. However, 
when subjects performed high-intensity interval training 
during this 5-day period of sleep deprivation, myofibril-
lar protein synthesis rates were maintained at control lev-
els, suggesting that high-intensity muscle contractions 
can overcome the negative effects of sleep deprivation on 
muscle architecture [369]. In line with these data, a 96-h 
period of sleep deprivation in rats resulted in ∼5% muscle 
atrophy over the course of 8 weeks, while resistance train-
ing in the form of weighted ladder training attenuated the 
reduction in muscle fibre cross-sectional area [370].

Given the increasing prevalence of inadequate sleep in 
modern societies, future efforts should be directed to bet-
ter understanding the mechanisms underlying the pro-
found effects of sleep deprivation on basal muscle protein 
synthetic rates. In the long run, the gained knowledge 
could be used to optimize interventions to reduce the 
negative effects of sleep deprivation on muscle health. For 
instance, overnight sleep is the longest post-absorptive 
phase across the 24 h of a day and emerging evidence sug-
gests that pre-sleep protein intake can enhance positive 
effects on muscle remodelling both acutely [371–374] 
and in the longer term [375, 376]. Hence, potential excit-
ing areas of interest include the optimization of pre-sleep 
protein beverages in terms of amino acid composition 
and absorbability that improve net protein balance in 
sleep-restricted situations. Additionally, given the pro-
found effects of muscular contractions on muscle protein 
synthesis, future research should focus on the promotion 
of exercise regimens that are tolerable in a sleep-deprived 
state.

The Role of Sleep for Successful Weight Loss and 
Weight Loss Maintenance
Given that both short sleep duration and obesity are 

increasingly prevalent in modern societies, investigating 
the importance of sleep for weight loss is of high interest 
for public health [377]. Subjectively reported sleep quality 
and quantity prior to weight loss interventions were 
shown to be associated with the success of the intervention 
and subsequent maintenance of lost weight [378]. Fur-
thermore, worse sleep quality at 6 months after the inter-
vention decreased the likelihood of successful weight loss 
or maintenance of lost weight at 18 months [378]. Among 
the objectively actigraphy-assessed sleep parameters, only 
sleep duration significantly correlated with the amount of 
maintained weight loss [379]. Comparing a group of sub-
jects undergoing calorie restriction (CR) to another group 
in which CR was combined with sleep restriction (de-
creased habitual sleep duration of 1 h per day on 5 days/
week), this study aimed to determine whether the associa-
tion between sleep duration and weight loss can also be 
found in an experimental design. Although both groups 
lost similar amounts of weight, the proportion of weight 
lost as fat was significantly higher in the CR group that had 
an unchanged sleep duration [380]. Another study with a 
daily calorie deficit of 600–700 kcal/day over a period of 
15–24 weeks led to a mean weight loss of 4.5 ± 3.9 kg. In-
terestingly, subjectively reported sleep duration at the be-
ginning of the experiment was found to be positively cor-
related with the proportion of weight loss coming from fat 
stores [381]. Although studies investigating the associa-
tion between sleep duration and the success of weight loss 
predominate, results from a study by Verhoef et al. [382] 
also propose the presence of a relationship in the opposite 
direction. Here, changes in sleep duration were assessed 
during a 3-month weight loss intervention in obese vol-
unteers. Subjectively classified short sleepers at baseline, 
who successfully lost weight, had significantly increased 
their sleep duration with weight loss. These results imply 
a bidirectional relationship between sleep duration and 
weight loss and both seem to benefit from each other 
[382]. Taken together, sleep may represent a modifiable 
factor that should be considered in weight loss programs 
and that may additionally facilitate the success of the in-
tervention. Yet, more research is needed to identify which 
sleep aspects and underlying mechanisms efficiently sup-
port weight loss.

The Role of Sleep in Bone Fracture Healing
Bone fractures are among the most common injuries 

of the musculoskeletal system and thus affect a great 
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number of people [383]. Essentially, the demographic 
shift towards an ageing population contributes to the in-
creasing prevalence of fragility fractures [384]. Although 
bone tissue has a unique capacity for repair, a substantial 
proportion of fractures result in non-union or delayed 
healing [385]. Thus, several factors have been identified 
that determine the chance of successful healing response: 
fracture type, age, treatment, mediation, alcohol, and 
smoking [386]. Evidence from animal studies showed 
that sleep deprivation in rats resulted in a decreased BMD, 
decreased osteogenesis, and impaired bone mineraliza-
tion [387], which may indicate that sleep is another factor 
determining risk for incomplete or delayed healing. A ro-
dent study inducing femur fracture together with experi-
mentally induced sleep deprivation supports the central 
role of sleep for the healing process as sleep deprivation 
was found to delay bone fracture healing and significant-
ly increase levels of the pro-inflammatory cytokines IL-1β 
und TNF-α [388], which are in line with findings from 
previous studies [389]. Treatment with the anti-inflam-
matory drug trehalose substantially mitigated the nega-
tive effects of sleep deprivation on bone recovery [388]. 
Taken together, observations from rodent studies imply 
that sleeping enough is crucial during bone fracture re-
covery. However, the fact that evidence is restricted to 
animal studies represents a major limitation to the rela-
tionship between sleep and human bone healing. There-
fore, further research in humans is needed to translate the 
significance of this observation to human bone fractures. 
Nevertheless, as experimentally induced fractures in hu-
mans are not feasible, epidemiological studies recruiting 
patients with fractures should be considered to investi-
gate the role of sleep on the healing process and success.

Limitation of the Present Work and Implications for 
Further Research

For all reviewed body composition parameters, muscle 
mass, bone mass, and body fat mass, a link to sleep has 
previously been documented. Yet, there have been sev-
eral limitations that render definite conclusions difficult.

First, in most of the presented studies, body composi-
tion, sleep, or both were assessed with inaccurate meth-
ods. Therefore, many sleep studies collected rather an-
thropometric than body composition data or several 
studies that accurately measured body composition with 
DXA or BIA assessed sleep solely with subjective sleep 
questionnaires such as the PSQI. Furthermore, previous 
work has often only been limited to total sleep duration 

and its association with symptoms or diseases. Thus, ac-
curately examining body composition by DXA and ac-
quiring sleep data via PSG, which allows the identifica-
tion of sleep architecture even on a topographical level 
when assessed with high-density EEG, may have a prom-
ising potential for the identification of relationships be-
tween sleep and body composition.

Second, the number of observational studies exceeded 
the number of controlled experiments by far. Investigat-
ing the associations between sleep variables and body 
composition parameters or specific molecules does not 
give any information about a causal relationship. To 
draw valid conclusions about mechanisms, more con-
trolled experimental studies that manipulate sleep are 
needed. There is evidence for some pathways, suggesting 
that the amount of SWS is of particular importance. 
Therefore, selective enhancement of slow waves and in-
creasing SWS percentage over the course of a night with-
out changing total sleep duration represents an interest-
ing and promising approach for further pursuit. In the 
early years of this research field, mainly pharmacological 
approaches were used, which were shown to effectively 
decrease daytime sleepiness in sleep-restricted individu-
als [267]. However, since pharmacological approaches 
entail the problems of tolerance and dependence, over 
the years additional non-invasive methods have been es-
tablished. Promising avenues to modulate slow waves in-
clude slow oscillatory transcranial direct current stimu-
lation [263], transcranial magnetic stimulation [270], 
and sensory stimuli such as auditory (closed-loop) stim-
ulation [390]. To date, auditory stimulation represents 
the most promising approach because of its low costs, 
safety, scalability for long term, and mobile use in ambu-
latory studies as well as artefact-free EEG recordings 
[391]. Even though this method is still in its infancy, 
some well-controlled in-lab studies exist, which showed 
its potential in boosting slow waves along with modifica-
tions in memory consolidation, cortisol levels [95], and 
immune supportive responses [95]. Single session glu-
cose tolerance and GH levels in healthy young adults 
were not effectively modulated so far [95, 392]. However, 
further research over longer time periods and in popula-
tions/situations of increased metabolic demand (e.g., el-
derly, athletes, and obese) is essential to evaluate its po-
tential to modulate certain metabolic pathways. Finding 
a means to modulate sleep in such a way that it has a 
beneficial consequence on body composition is a poten-
tial breakthrough in the treatment of various disabling 
diseases and concurrently would also massively decrease 
the burden on health costs. Furthermore, we need to con-
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sider that various research models including in vitro 
studies, different in vivo animal studies, and well-con-
trolled human laboratory studies up to large-scale cohort 
assessments and meta-analyses provide different levels 
of evidence (e.g., mechanistic insights and societal im-
pact). Therefore, an interdisciplinary approach leverag-
ing on studies that span different research models and 
techniques will be important to establish a comprehen-
sive understanding of the role of sleep in metabolism 
from a mechanistic to a societal perspective.

Third, even though sleep restriction/deprivation stud-
ies primarily define the role of sleep in certain processes, 
a complete separation of circadian influences is not pos-
sible since these processes are not completely indepen-
dent [393]. The inclusion of circadian control parameters 
and studies that subtly alter parameters of sleep (e.g., en-
hance amount of deep sleep, modulate REM sleep) in-
stead of modifying sleep duration could help to disen-
tangle the direct role of specific sleep characteristics 
(rather than indirect changes over circadian modifica-
tions) in metabolism.

Finally, while this review summarizes a collection of 
publications showing links between sleep and body com-
positions or metabolic processes (implied in body com-
position), it is largely unknown whether prolonged 
changes of metabolic processes through sleep modifica-
tion/changes will translate into significant body composi-
tion adaptations. Moreover, the effect of sleep or sleep 
modulation may be different under baseline conditions 
and when the metabolic systems are challenged or in a 
pathological state. Studies identifying the translational 
potential of metabolic changes through sleep in different 
contexts will be of utmost importance and require well-
controlled, long-term trials including sleep modulation, 
molecular assessments, and accurate sleep and body com-
position tracking. Long-term assessment and modulation 
of sleep represent a challenge as these sleep studies are 
costly and time-consuming for the experimenter and the 
participants. Nevertheless, the recent development of re-
search-grade, mobile PSG, and sleep modulation systems 
allows for accurate in-home assessment and modulation 
of sleep [391] and opens up new possibilities to perform 
these long-term trials.

Concluding Remarks

Unhealthy body composition such as an excessive ac-
cumulation of adipose tissue considerably impairs overall 
health. However, while mainly diet and the lack of physi-

cal activity seem to cause excessive body fat, sleep is much 
less seen as a causal risk factor. Similar to muscle mass 
and bone metabolism, sleep has not received its deserved 
attention so far.

Here we aimed to provide a review covering the evi-
dence in the field of sleep and body composition param-
eters including muscle mass, body fat mass, and bone 
tissue. In addition, we investigated potential mecha-
nisms how sleep architecture, sleep duration, and sleep 
oscillations may critically influence human body com-
position. The identification of mechanisms how sleep is 
associated with changes in body composition represents 
a target for modulation, thereby promising beneficial 
consequences for general human health. Some mecha-
nisms that could potentially link sleep and body compo-
sition have already been identified. Interestingly, among 
the described pathways, GH was found to be involved in 
the homeostasis of all discussed body composition pa-
rameters and has been strongly linked to sleep, specifi-
cally SWS (see Fig. 3). Therefore, SWS seems to play a 
key role in connecting sleep to body composition and 
should be a focus of well-controlled future studies. Spe-
cifically, its importance under baseline physiological and 
under pathological conditions in relation to sleep is of 
fundamental interest.

The identification of sleep parameters that critically 
impact key regulators of either type of body mass has a 
great potential as a target for new treatment options for 
diseases and disorders related to unfavourable body com-
position. As shown with the example of obesity, it is not 
only the condition itself but the numerous disabling co-
morbidities making obesity a global major health prob-
lem. Although muscle atrophy and decreased bone mass 
affect less people than an unhealthy body fat distribution, 
both changes in muscle and bone mass may lead to fur-
ther comorbidities as well. We therefore argue that fur-
ther research is needed investigating how the modulation 
of sleep (e.g., sleep oscillations and sleep stages) can pos-
itively affect human health through a favourable body 
composition. Well-controlled, long-term studies in hu-
mans and animal models are required to make conclusive 
statements.
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