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ARTICLE
Periodontitis associates with species-specific gene expression of

the oral microbiota

Daniel Belstram @"°®, Florentin Constancias *>°®, Daniela I. Drautz-Moses?, Stephan C. Schuster @?, Mark Veleba?,
Frédéric Mahé® and Michael Givskov>*

The purpose of the present investigation was to characterize species-specific bacterial activity of the oral microbiota in periodontitis. We
tested the hypotheses that chronic inflammation, i.e., periodontitis, associates with bacterial gene expression of the oral microbiota. Oral
microbial samples were collected from three oral sites—subgingival plaque, tongue, and saliva from patients with periodontitis and
healthy controls. Paired metagenomics and metatranscriptomics were used to perform concomitant characterization of taxonomic
composition and to determine species-specific bacterial activity as expressed by the ratio of specific messenger RNA reads to their
corresponding genomic DNA reads. Here, we show the association of periodontitis with bacterial gene expression of the oral microbiota.
While oral site was the main determinant of taxonomic composition as well as bacterial gene expression, periodontitis was significantly
associated with a reduction of carbohydrate metabolism of the oral microbiota at three oral sites (subgingival plaque, tongue, and saliva).
Data from the present study revealed the association of periodontitis with bacterial gene expression of the oral microbiota. Conditions of
periodontitis was associated with bacterial activity of local subgingival plaque, but also on tongue and the salivary microbiota.
Collectively, data suggest that periodontitis associates with impaired carbohydrate metabolism of the oral microbiota. Future longitudinal
and interventional studies are warranted to evaluate the potential pathogenic role of impaired bacterial carbohydrate metabolism not

only in periodontitis but also in other diseases with low-grade inflammation, such as type 2 diabetes mellitus.
npj Biofilms and Microbiomes (2021)7:76 ; https://doi.org/10.1038/s41522-021-00247-y

INTRODUCTION

The oral cavity harbors the second most diverse microbiota found
in the human organism', and the open-ended ecosystem of the
oral cavity entails that the oral microbiota is constantly stressed by
internal and external perturbations®. The prime constant ecologi-
cal determinant is O, availability, which is critically different across
oral sites, with the buccal mucosa and the tongue surface as
examples of areas with extreme anaerobic and aerobic conditions,
respectively®. As a consequence of microbial adaptation to the
ecological conditions being present at different oral sites,
considerable taxonomic variations are observed at various oral
sites*°. As the taxonomic composition of the oral microbiota has
been characterized in depth in oral health, the oral cavity is an
ideal model system to study bacterial activity of polymicrobial
biofilms thriving in areas with different ecological conditions.
Periodontitis, which is a chronic inflammatory disease of the
tooth supporting tissue, is an example of a constant ecological
determinant, which affect not only the composition of the local
subgingival microbiota but also the salivary microbiota®”’. Like-
wise, cigarette smoking and electronic cigarettes are transient
external stressors on the oral microbiota, all with known effect on
bacterial gene expression in subgingival plaque®®. We have
recently used a contemporary paired metagenomic and meta-
transcriptomic approach to reveal that periodontitis is associated
with characteristics of salivary bacterial activity different from that
of oral health'®. However, as we did only characterize bacterial
activity of the salivary microbiota, we were not able to evaluate if
the salivary characteristics identified were associated with the

same characteristics of local oral biofilms such as subgingival
plague and tongue.

In the present investigation, we therefore collected multiple
samples—subgingival plaque, tongue scrapings and saliva—
which are characterized by substantially different ecological
conditions and microbial communities'’~'3. Metagenomics and
metatranscriptomics were employed to perform concomitant
characterization of taxonomic composition as well as specific
bacterial gene expression profiles. Furthermore, pairing of
metagenomic and metatranscriptomic data enabled us to
determine species-specific bacterial activity as expressed by the
ratio of messenger RNA to the corresponding genomic DNA. In
other words, the resolution of our paired deep sequencing
approaches enable us to discriminate between members of the
microbiota, with overexpression of important pathways (log10
(RNA/DNA) > 0), as compared to members with less expression
(log10(RNA/DNA) < 0).

We tested the hypothesis that presence of chronic inflamma-
tion, i.e., periodontitis, associates with bacterial gene expression
not only locally (subgingival plague) but also at other sites of the
oral cavity (tongue and saliva).

RESULTS
Sequence processing

A total of seven samples failed quality controls, which means that
59 samples were included in downstream DNA and RNA analyses.
From a total of 59 microbial samples (19 subgingival plaque
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samples, 18 tongue biofilm, 22 saliva samples), 1215M DNA
sequences (per-sample mean 20.59 M; range 15.14-35.05 M) and
3093 RNA sequences (per-sample mean 5243M; range
39.97-74.65 M) were generated.

In total, 612, 851 M (mean 10.38 M; range 0.52-21.67 M) DNA
read pairs and 95, 943 M (mean 1.62 M; range 0.27-2.9 M) RNA
read pairs were used after quality filtering, rRNA removal, and host
(i.e., human) contamination for further analysis. A comparable
average number of DNA and RNA sequences passing quality
control were identified in samples from each site: subgingival
plague (DNA: 7.86 M, RNA: 1.16 M), tongue (DNA: 16.84 M, RNA:
1.62 M), and saliva (DNA: 7.29 M, RNA: 2.03 M), and as well as in
patients with periodontitis (DNA: 9.94 M, RNA: 1.49 M) versus orally
healthy controls (DNA: 10.84 M, RNA: 1.76 M).

Microbial diversity and taxonomic composition is influenced
by site and periodontitis

A comparison of a-diversity as measured by Shannon index,
species richness, and evenness revealed significant differences
based on site, with higher a-diversity in subgingival plaque and
saliva, as compared to tongue biofilm. However, a-diversity at
each site was not influenced by health status (Fig. 1a). Also,
species community structure quantified by Atchinson distance
was more influenced by site (PERMANOVA, R?=0.33, p = 0.001)
than health status (PERMANOVA, R? = 0.07, p = 0.001, Fig. 1b) and
the interaction term between oral site and health status was not
significant indicating that health status is consistent with species
community structure. Figure 1c displays relative abundance of top
27 predominant bacterial species across the three sites and their
health status. The microbiota of each site was characterized with a
specific species combinations being clearly different from the
other sites. On the other hand, subgingival plaque was the only
site, where the predominant species were influenced by period-
ontitis, as exemplified by Tannerella forsythia, which was present in
almost all samples from patients with periodontitis, and in only
one sample from the healthy controls. A comparison of relative
abundance of all species across all samples revealed 25 species,
with significantly different relative abundances in samples from
patients with periodontitis versus healthy controls, with higher
relative abundances of periodontal pathogens such as Filifactor
alocis, Parvimonas micra, Prevotella intermedia, Treponema denti-
cola, and T. forsythia identified in samples from patients with
periodontitis, and higher relative abundances of Actinomyces
species in samples from healthy controls (Supplementary Fig. 1A).
In general, the highest abundances of periodontal pathogens
were observed in subgingival plaque samples, followed by saliva,
and with the lowest abundance in tongue biofilm (Supplementary
Fig. 1B).

Global bacterial pathway expression is shaped mostly by site,
but also by periodontitis

Figure 2a shows overall pathway species contribution richness for
both metagenomic (DNA) and metatranscriptomic (RNA) datasets
in all samples. As can be seen, all pathways were not expressed
(RNA) by all taxa with a potential of expressing the corresponding
pathways (DNA). Some pathways, such as adenosine ribonucleo-
tides de novo biosynthesis and guanosine ribonucleotides de
novo biosynthesis, which are critical to cell survival, could be
expressed by almost all members of the oral microbiota (>190
taxa). On the other hand, more specialized pathways involved in
carbohydrate metabolism, including starch degradation V and
lactose and galactose degradation |, could be expressed by less
than 75 different taxa.

Figure 2b displays the relationship between pathway abun-
dance and contributional species diversity (Shannon diversity
index). Each point represents a specific pathway and depicts its
sample abundance as well as diversity of species with potential
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(DNA) and actual (RNA) contribution. Correlation in terms of
pathway abundance and contributing species diversity was
observed in metagenomes (DNA). While the same trend was also
observed in the metatranscriptomes (RNA), some pathways were
clearly identified with high expression abundances despite low
bacterial numbers of the contributing bacteria. In total, no
differences were seen in overall bacterial activity (log10(RNA/
DNA)) at each site in relation to health status. However, a
significantly higher overall bacterial activity was observed in
subgingival plaque samples as compared to saliva and tongue
(Supplementary Fig. 2).

Figure 2c shows per-pathway DNA versus RNA contributions of
top 27 bacterial species as described in Fig. 1c. Each point
represents the overall species transcriptional activity averaged
within samples from the three different sites in all individuals.
Major differences were observed within each predominant genus,
with some members exhibiting an overall tendency for high
transcriptional activity (log10(RNA/DNA) >0), as compared low
(log10(RNA/DNA) < 0) by other members. In general, the highest
RNA/DNA ratios were identified in Streptococcus and Prevotella
species, while Actinomyces species in general were identified with
(logTO(RNA/DNA) < 0). As seen, high species-specific expression of
certain pathways was observed, as demonstrated by LACTOSECAT-
PWY and ANAGLYCOLYSIS-PWY by Streptococcus salivarius and
Streptococcus infantis, respectively.

Figure 2d shows the pathway expression by bacterial transcrip-
tional activities, of the 25 bacterial species identified with
significantly different relative abundance in samples from patients
with periodontitis versus healthy controls (Supplementary Fig. 1A).
Bacterial expression profiles were heavily influenced not only by
site but also by health status. For example, higher bacterial activity
of Leptotrichia hofstadii was observed in both subgingival plaque
and saliva collected from healthy controls, as compared to
samples from patients with periodontitis.

Significantly different bacterial pathway expression in
subgingival plaque and saliva in patients with periodontitis

While a-diversity metrics of potential and expressed pathways
(DNA and RNA datasets, respectively) were not significantly
different between site or health status (Supplementary Fig. 3A),
both site and health status had a significant impact on pB-diversity
of pathway RNA/DNA expression (Fig. 3a, b). In addition, bacterial
activity of 22 pathways (as quantified by pathway-level RNA/DNA
ratio) was significantly different between periodontitis versus
healthy controls, when comparing samples from all sites. Nineteen
pathways were highly expressed in conditions of oral health, most
of which were pathways contributing to carbohydrate metabo-
lism. On the other hand, only three pathways were identified with
higher RNA/DNA ratios in periodontitis, including pyrimidine
deoxyribonucleotide phosphorylation and 6-hydroxymethyl dihy-
dropterin diphosphate biosynthesis | (Fig. 3b).

Figure 3c shows bacterial species with the potential to express
(DNA) the pathways identified with different expression in
periodontitis versus health, including which bacterial species that
were actually expressing the pathways (RNA). As seen, the
bacterial signatures, in terms of DNA and RNA expression, were
completely different based on site. Furthermore, it was evident
that while some species despite high abundances of specific
pathways within the metagenomes, were actually not contributing
extensively to the total expression profiles, as evident from their
low levels of concomitant pathway’s proportion in the RNA
dataset. In addition, RNA expression of the 22 significant pathways
was clearly different in subgingival plaque samples in health
versus diseases, with much higher RNA expression by L. hofstadii
in health. When comparing samples from each site based on
health status, a total of 14 pathways were identified with
significantly different RNA/DNA ratios in subgingival plaque,
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Fig. 1

Diversity and taxonomic composition of oral microbiota. a a-diversity patterns as measured by observed richness, Pielou’s evenness

and Shannon diversity index. b p-diversity as summarized by Aitchison distance and visualized using PCoA ordination. ¢ Top ten species
identified in oral site x health status combinations (27 species in total). Color indicates heath status (blue: healthy controls versus red:
periodontitis group), and shape reflects oral site. Significant differences were assessed using Kruskal-Wallis and PERMANOVAS tests for o and
B-diversity, respectively. Significant FDR-adjusted p values were indicated as follows: *0.05 > p > 0.01 **0.01 > p > 0.001 ***p < 0.001. Boxplots
display first quartile, median, and third quartile and whiskers represent 1.5 times the interquartile range from the first and third quartiles. The
top 12 species significantly (p <0.05) correlated among the PCoA 1 and 2 axes were displayed using vegan:envfit() function. Microbial

taxonomic profiles are based on MetaPhlAn v3.0.1—default parameters.

whereas a significantly higher RNA/DNA ratio of sucrose degrada-
tion Il was observed in saliva of the healthy samples. No
differences in RNA/DNA ratios were observed in tongue biofilm
in health versus periodontitis (Supplementary Fig. 3B, C).

Bacterial gene expression reveals impaired carbohydrate
metabolism in periodontitis

a-diversity of DNA and RNA gene expression as quantified by
observed, evenness, and Shannon index was significantly influ-
enced by site, but not by health status (Fig. 4a, Supplementary Fig.
4A). On the other hand, B-diversity of RNA/DNA ratios were
significantly influenced by site, and also to a lesser but significant
degree by health status (Fig. 4b, Supplementary Fig. 4B).

Figure 5a shows the 48 bacterial genes (EC numbers), which
were identified by a significantly different RNA/DNA ratio in
periodontitis versus health (based on analysis of all samples).
Specifically, 36 genes were observed as having higher RNA/DNA
ratios in health as compared to 12 genes in periodontitis. When
performing pairwise comparison of samples collected at each site,
84 genes in subgingival plaque (Fig. 5b, 61 health associated, 23
periodontitis associated), and 7 genes in tongue (Figs. 5¢, 4 health
associated, 3 periodontitis associated), were identified with a
significantly different RNA/DNA ratio in periodontitis versus
health. No genes were observed with significant different RNA/

Published in partnership with Nanyang Technological University

DNA ratio in saliva samples obtained from health and period-
ontitis. Comparable findings were attained considering gene
families matching KEGG's orthologs (Supplementary Fig. 5A-D).

Nine out of the ten genes with the highest RNA/DNA ratios
were significantly more expressed in oral health. Six of these
genes contribute to carbohydrate metabolism, specifically in
different steps of glycolysis. On the other hand, the only top ten
gene identified with higher RNA/DNA ratio in periodontitis was
Gingipain_K, which is solely expressed by the periodontal
pathogen Porphyromonas gingivalis (Fig. 5a).

Smoking has limited association with bacterial activity as
compared to oral site and health status

The association of smoking was tested by comparison of pathway
expression as determined by DNA, RNA, and RNA/DNA, respec-
tively. Based on comparison of all 42 samples collected from
smokers with that of 90 samples collected from nonsmokers, a
total of four pathways were identified with significantly different
DNA expression in samples from smokers (one with higher
expression and three with lower expression), as compared to
nonsmokers (Supplementary Fig. 6A). In addition, 12 pathways
were recorded with significantly different RNA/DNA expression,
with 9 of those pathways being more expressed in smokers
(Supplementary Fig. 6B). No pathways were identified with
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Fig. 2 Pathway-level contributional diversity and species transcriptomal activity of oral microbiome. a Overall contributional species
richness represented in metagenomic (DNA) and metatranscriptomic (RNA) pathway profiles determined across all paired samples. Only
pathways expressed (RNA) by at least two species were plotted. b Relationship between pathway relative abundance and contributional
species diversity (Shannon diversity index) in metagenomic (DNA) and metatranscriptomic (RNA). Each point represents a pathway and
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We found that pathway abundance and contributional species diversity quite correlate in metagenomes (DNA) while some pathways clearly
exhibited overexpression (RNA). Some highly expressed pathways which are not necessarily expressed by highly diverse communities.
Pathway code was display for pathway with Abundance >0.045 or shannons_div < 0.03. ¢ Differences in per-pathway metagenomic (DNA)
versus metatranscriptomic (RNA) contributions of top bacterial species as described in Fig. 1c. Each point represents the overall species
transcriptional activity averaged within samples from different sites from the same Subject and across patients. Some species exhibited an
overall tendency for overtranscription or undertranscription, whereas others displayed pathway-specific activity patterns. Boxplots display first
quartile, median, and third quartile and whiskers represent 1.5 times the interquartile range from the first and third quartiles. d Pathway-level
transcriptomal activity of species found to be differentially abundant between healthy and patients with periodontitis (see Supplementary Fig.
1A). The activity of each species is average within sample (average of pathways detected within paired metagenomes and

metatranscriptomes).
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RNA expression in versus

DISCUSSION

The purpose of the present investigation was to study the
association of chronic inflammation, periodontitis, and bacterial
gene expression profiles in three different compartments of the
oral microbiota—subgingival plaque, tongue, and saliva. We used
contemporary metagenomics and metatranscriptomics analyses
to test the hypothesis that periodontitis associates with bacterial
gene expression not only locally in the subgingival plaque
microbiota but also in saliva and at distant sites such as the
tongue.

As expected, major differences in taxonomic composition of
predominant bacterial species identified in subgingival plaque,
tongue biofilm, and saliva were observed (Fig. 1¢). Indeed, this has
been known since 2012, where 16S based analysis of samples
from the Human Microbiome Project was used to characterize the
composition of the microbiota at ten digestive tract sites®. Thus,
our metagenomic data not only confirm previous findings from
the Human Microbiome Project but the alignment of data also
underline the robustness of the methods and databases used in
the present study. While predominant bacterial species identified
in subgingival plaque were almost completely absent in tongue,
small amounts were identified in concomitant saliva samples. PCR
and microarray techniques have been used to demonstrate
concordance of specific bacterial species in subgingival plaque
and saliva in patients with periodontitis'*'®, Importantly, saliva is
sterile, when entering the oral cavity'®. Therefore, our species-

npj Biofilms and Microbiomes (2021) 76

resolution data analysis confirms the assumption of the salivary
microbiota as a conglomerate of bacteria shed from various oral
surfaces.

In health, substantial site-specific variations in taxonomic
composition were observed within some genera, as exampled
by major differences in relative abundance of specific Rothia and
Streptococcus species identified in subgingival plaque versus
tongue. Specifically, Rothia dentocariosa and Streptococcus oralis
were identified with high abundances in subgingival plaque, but
almost absent in tongue, whereas Rothia mucilaginosa and S.
salivarius were predominant in tongue (Fig. 1c). While species
within the same genus are taxonomically closely related, site-
specific preferences support the idea of coevolution of the
resident microbiota together with the host, which results in
gradual adaptation of specific bacterial species to the environ-
ment offered at the various oral sites'’.

Bacterial gene expression is shaped by oral site in health, as
seen by significant differences in B-diversity at pathway (Fig. 3a) as
well as gene level (Fig. 4b). Moreover, bacterial pathway
expression as measured by their RNA/DNA ratios identified at
each site in oral health demonstrated site-specific variations in
term of general bacterial activity. This is clearly visualized in Fig. 2d
with species such as L. hofstadii being placed in the upper left
corner in subgingival plaque, in contrast to saliva and tongue.
Likewise, species contribution of pathways being expressed
significantly different in periodontitis and oral health were
completely different at each site (Fig. 3c). Collectively, these
findings confirm that taxonomic composition and bacterial gene
expression of the resident, microbiota in oral health is shaped by

Published in partnership with Nanyang Technological University
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the prevailing ecological properties, which are present at each
niche in the oral cavity'®

Unsurprisingly, periodontitis was clearly associated with the
composition of the subgingival plaque microbiota, as seen by
significant different B-diversity (Fig. 1b), together with significantly
higher relative abundance of predominant species such as T.
forsythia (Fig. 1c). Also, 25 bacterial species were observed with
higher abundances in subgingival plaque from patients with
periodontitis (Supplementary Fig. 1A). Indeed, the composition of
the subgingival microbiota of patients with periodontitis has for
many decades been characterized intensively using a wide variety
of culturing and molecular methods'>?°, Collectively, these
studies have identified the association of specific anaerobic
gram-negative bacterial species with periodontitis, including the
proposed periodontal pathogens, P. gingivalis, T. denticola, and T.
forsythia, which was therefore named the red complex?'. Indeed,
some of the species we identified to associate with periodontitis,
including T. forsythia, F. alocis, P. micra, P. intermedia, T. denticola,
and Fusobacterium nucleatum, are consistently known in the
literature as periodontal pathogens'?223, In addition, we identified
several species, including Bulleidia extructa, Campylobacter rectus,
Desulfobulbus oralis, and Eubacterium species, which have all
previously been noted in the literature to potentially associate
with periodontitis®*~2”. Thus, our data based on contemporary
molecular methods not only reaffirm findings on a strong
association of specific bacterial species with periodontitis but also
underline the polymicrobial nature of the subgingival biofilm in
periodontitis.

Notably, periodontitis was significantly associated with
B-diversity of pathway and gene expression, as judged from their
RNA/DNA ratios (Figs. S3A and 4A). Furthermore, pronounced
differences were observed in specific bacterial gene expression in
subgingival plaque at both pathway (Figs. 3a and S3B) and gene
levels (Fig. 5a, b). Specifically, bacterial activity (RNA/DNA ratios) of
pathways involved in carbohydrate metabolism, such as lactose
and galactose degradation | and glucose and glucose-1 phosphate
degradation, were significantly lower in subgingival plaque from
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patients with periodontitis. Also, significant differences were
observed with genes involved in carbohydrate metabolism, where
glyceraldehyde-3-phosphate dehydrogenase was significantly
higher expressed in periodontitis, as compared to fructose
bisphosphate aldolase, which was significantly less expressed.
Multiple studies have used metagenomics to characterize the
subgingival microbiota in periodontitis*?>, and data from these
studies point toward a diseased microbiota, with increased gene
expression of virulence factors involved in lipopolysaccharide
synthesis and amino acid metabolism?%2%2°, Indeed, our data
reveal a decrease in carbohydrate metabolism, rather than
increased expression of specific virulence factors. Nevertheless,
data from our study and previous metagenomics reports probably
reflect that the microbiota compositionally and functionally
adapts to the ecological characteristics of periodontitis, such as
conditions of anaerobiosis and chronic inflammation being
present in the local periodontal environment?%2!,

Historically, the role of the oral microbiota in the pathogenesis
of periodontitis has been explained by different theories, i.e., the
nonspecific plaque hypothesis, the specific plaque hypothesis, and
the ecological plaque hypothesis®°, which were then followed by
the key stone pathogen hypothesis®!, and finally the very recent
inflammation-mediated polymicrobial-emergence and dysbiotic-
exacerbation model®2. Indeed, the focus of the nonspecific and
the specific plaque hypothesis was primarily on the microbiota, as
evaluated by the amount of biofilm and presence of specific
pathogens, respectively®’. On the contrary, the ecological plaque
hypothesis was the first to pinpoint the important role of the
interaction between the microbiota and the host in period-
ontitis*>3, which is the center of the inflammation-mediated
polymicrobial-emergence and dysbiotic-exacerbation model*?.
Accordingly, the attention has gradually shifted from being much
focused on presence of specific pathogens, to a more inclusive
view, with emphasis on the activity of the biofilm, and how this is
shaped by the conditions of chronic inflammation as coined by
inflammation-mediated polymicrobial-emergence and dysbiotic-
exacerbation model®2. Importantly, this shift has only been
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Fig. 4 Diversity of microbial genes associated with associated
with EC numbers. a o-diversity of gene families found in
metagenomes (DNA) and metatranscriptomes (RNA) in plaque,
tongue biofilm, and saliva expressed as number of observed gene
families (i.e., richness). Boxplots display first quartile, median, and
third quartile and whiskers represent 1.5 times the interquartile
range from the first and third quartiles. b p-diversity of gene
expression visualized as measured by log RNA/DNA ratio quantified
using weighted Jaccard distance and visualized on PCoA. Sample
denotation: red: periodontitis, blue: oral health, circle: plaque,
triangle: tongue biofilm, square: saliva. Significant differences were
assessed using Kruskal-Wallis and PERMANOVAS tests for o and
B-diversity, respectively. Significant FDR-adjusted p values were
indicated as follows: *0.05 > p >0.01 **0.01 > p > 0.001 ***p < 0.001.

possible with the advent of metatranscriptomics, which has
enabled the possibility to characterize the functional activities,
rather than just the taxonomic composition of the oral micro-
biota®*. Consequently, our findings of impaired carbohydrate
metabolism of the oral microbiota at multiple oral sites in
periodontitis, which was most likely the consequence of the
dysbiotic conditions determined by chronic periodontal inflam-
mation, are in concert with the current view, stressing the
interaction of the microbiota and the host as the determining
factor in periodontitis, rather than solely the presence of specific
proposed pathogens. Furthermore, taken together with a recent
theory suggesting that frequent carbohydrate consumption may
induce inflammation in the periodontal tissues®, our finding that
periodontitis impairs carbohydrate metabolism of the subgingival
plague microbiota provides a possible explanation as to why
excessive carbohydrate intake may contribute to the pathogenesis
of periodontitis. Notably, periodontitis is linked with medical
disorders such as type 2 diabetes, with conditions of systemic low-
grade inflammation as the immediate communality3®. Thus, it is an
interesting hypothesis that impaired bacterial carbohydrate
metabolism could be a factor aggravating systemic low-grade
inflammation, in general.

Periodontitis was also associated with bacterial activity in saliva
and the tongue, as visualized by specific pathways and their gene
expression profiles (Figs. S3C and 5C). In addition, higher activity
of specific bacterial species such as L. hofstadii was evident in
saliva from healthy individuals (Fig. 2b). Specifically, significantly
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lower bacterial activity of the sucrose degradation Ill pathway was
observed in saliva from patients with periodontitis. Furthermore,
bacterial activity of genes related to lipid metabolism (glycerol-3-
phosphate-cytidylyltransferase) and carbohydrate metabolism
(B-fructofuranosidase) was significantly lower in tongue biofilm
from patients with periodontitis. We have previously showed an
impact of periodontitis on salivary bacterial activity’®. However,
this is the first study to perform simultaneous characterization of
bacterial pathways and their gene expression profiles in sub-
gingival plaque, tongue, and saliva. It is therefore interesting that
pathways and genes identified with significantly different RNA/
DNA ratios in saliva and tongue were not the same as those
identified in subgingival plaque. Therefore, data suggest that
periodontitis acts differently on bacterial gene expression in
different oral compartments as visualized in the present study by
subgingival plaque, tongue, and saliva.

Another interesting finding, which was evident from analysis of
our high-resolution dataset, was that expression of Gingipain_K
was solely identified in samples from patients with periodontitis
(Fig. 5a). Gingipain_K is an endopeptidase with strict specificity for
lysyl bonds, which is only produced by the periodontal pathogen
P. gingivalis®’. Interestingly, previous in vitro studies have shown
that presence of P. gingivalis dramatically alters the transcriptomic
profiles of oral commensals in an artificially grown biofilm3, which
is one of the reasons that P. gingivalis is the main act in the key
stone hypothesis®'. Our finding of bacterial expression of
Gingipain_K exclusively in samples from patients with period-
ontitis is therefore intriguing. However, future studies are
warranted to reveal if P. gingivalis in vivo also alters the
transcriptome of the resident microbiota or alternatively is
counteracted by reliance mechanism of the commensals.

Some limitations apply to the present investigation, including
the relatively small sample size, which however is comparable
to other metatranscriptomic-based studies on the oral
microbiota3®=*'. Furthermore, we pooled subgingival samples
collected from the deepest periodontal pockets. Obviously,
pooled subgingival plague samples are not representative of
specific subgingival sites*?. In addition, samples were collected
from both smokers and nonsmokers. Smoking has been demon-
strated to profoundly impact the taxonomic composition of the
subgingival microbiota®4344, whereas the effect on the salivary
microbiota is probably less pronounced*. Therefore, we directly
tested the association of smoking on DNA, RNA, and RNA/DNA
expression (Supplementary Fig. 6A, B). Indeed, data showed
limited association of smoking with these parameters, as
compared to the main endpoints tested, oral site, and period-
ontitis. Nevertheless, future studies on bacterial activity should
ideally be performed in nonsmokers. Finally, even though very
deep sequencing of DNA and RNA was performed, it was still not
possible to portray total gene expression of specific species with
an overall low abundance. Accordingly, we could not determine if
the transcriptomic profile of for example P. gingivalis differentiated
between sites and in health versus disease.

In conclusion, data from the present study characterize the
association of periodontitis with bacterial gene expression of the
oral microbiota. Conditions of periodontitis was associated with
bacterial activity of both subgingival plaque but also on tongue
and the salivary microbiota. Collectively, data suggest that
periodontitis associates with impaired carbohydrate metabolism
of the oral microbiota. Future longitudinal and interventional
studies are warranted to evaluate the potential pathogenic role of
impaired bacterial carbohydrate metabolism not only in period-
ontitis but also in other diseases with low-grade inflammation,
such as type 2 diabetes mellitus.
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Fig. 5 Genes (matching EC numbers) differentially expressed (RNA/DNA ratio) between healthy patient and patient with periodontal
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METHODS

Study population and sample collection

The study population included 11 patients with chronic periodontitis, and
11 orally healthy controls, which were enrolled in January 2018 at
University of Copenhagen, Department of Odontology. All 22 participants
signed informed consent. The study was approved by the regional ethical
committee (H-16016368) and reported to the local data authorization of
University of Copenhagen (SUND-2018-8). Periodontitis was defined as
bleeding on probing =25% of total sites + minimum two teeth with clinical
attachment level >4 mm + minimum two teeth with probing depth
>6 mm*®. Exclusion criteria were: age <50 years, systemic diseases, and
use of any kind of medication including usage of antibiotics within the last
3 months.

The periodontitis group was comprised of five males and six females
with a mean age of 64 years (55-77 years), whereas the control group
included four males and seven females with at mean age of 60 years
(50-71 years). Four patients with periodontitis were current daily smokers,
as compared to three current smokers in the control group. All 22
participants signed informed consent. The study was approved by the
regional ethical committee (H-16016368) and reported to the local data
authorization of University of Copenhagen (SUND-2018-8).

A total of three microbial samples were collected from each participants,
including subgingival plaque samples (n = 22), tongue scrapings (n = 22),
and stimulated saliva samples (n = 22), which were collected between 8:00
a.m. and 11:00 a.m. Microbial samples were consequently collected in the
same order: stimulated saliva, tongue coating, and subgingival plaque
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according to standardized protocols'>*748, Stimulated 1 mL of chewing-
stimulated saliva was collected using paraffin gum. Subgingival plaque
tongue biofilm was collected using a dental curette and a tongue spatula,
respectively, and thereafter suspended in 2 mL sodium chloride (9 mg/mL).
Immediately, after collection each sample was divided in two aliquots of
1 mL each, one each for metagenomics and metatranscriptomics analysis.
RNAlater (Life Technologies, Denmark) was added to the aliquot allocated
for metatranscriptomics and all aliquots were immediately stored at —80 °C
until further processing.

Metagenomic and metatranscriptomic library preparation and
sequencing

Preparation of DNA and RNA library was performed according to lllumina’s
TruSeq Nano DNA Sample Preparation Protocol and stranded mRNA,
respectively. DNA samples were sheared on a Covaris E220 to ~450 bp,
following the manufacturer’'s recommendation, and uniquely tagged with
one of lllumina’s TruSeq HT DNA dual barcode combination to enable
sample pooling for sequencing. The following modifications were applied
to lllumina’s TruSeq Stranded mMRNA protocol. The oligo-dT mRNA
purification step was omitted and instead, 200 ng of total RNA was
directly added to the Elution2-Frag-Prime step. The PCR amplification step,
which selectively enriches for library fragments that have adapters ligated
on both ends, was performed according to the manufacturer's recom-
mendation but the number of amplification cycles was reduced to 12. Each
library was uniquely tagged with one of Illumina’s TruSeq HT RNA dual
barcode combination to allow pooling of libraries for sequencing. Both
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DNA and RNA libraries were quantitated using Promega’s QuantiFluor
dsDNA assay and the average library size was determined on an Agilent
Tapestation 4200. Library concentrations were then normalized to 4 nM
and validated by gqPCR on a QuantStudio-3 real-time PCR system (Applied
Biosystems), using the Kapa library quantification kit for lllumina platforms
(Kapa Biosystems).

The libraries were then pooled at equimolar concentrations and
sequenced on the lllumina HiSeq2500 platform at a read length of
250 bp paired-end and 100 bp paired-end for DNA and RNA libraries,
respectively.

Read preprocessing

lllumina TruSeq adapters, 5’ or 3’ bases with quality scores lower than 20,
as well as read pairs having a mate with any ambiguous base (i.e., N) or
shorter than 150 or 50 bp for DNA and RNA sequences, respectively, were
trimmed using Atropos*® in paired-end mode (version 1.1,25, -max-n 0 -n 1
-q 20,20 -quality-base 33 -minimum-length 150/50 -O 6).

RNA reads were then subjected to sortmeRNA®C version 2.1, default
parameters, 5S, 16S, 23S, 18S, and 28S databases), using provided rRNA
databases for in silico depletion of ribosomal RNA. Ribosomal RNA
sequences represented an average of 83.9% of the quality-trimmed RNA
reads (71.1-88.4%). Human reads were then removed from both
metagenomic and metatranscriptomic datasets by aligning DNA and
mRNA read pairs to the human genome (GRCh38, ftp:/ftp.ebi.ac.uk/
pub/databases/gencode/Gencode_human/release_28/GRCh38.primary_
assembly.genome.fa.gz, downloaded on August 8, 2018). Alignments
were performed using Bowtie2*" (version 2.3.4.1, -dovetail) for DNA reads
and hisat2 (*?version 2.1.0, -dta) for RNA reads, respectively. Samtools>3
(version 1.3, view -b -f 12 -F 256) and bedtools®* (version 2.24.0,
bamToFastq) were then used to identify and extract read pairs which
consistently did not map the human reference genome, those were
considered for microbial and taxonomical and functional profiling.

Taxonomic and functional community profiling

Taxonomic composition of metagenomes was assessed using MetaPhlAn
(version 3.0.1, June 25, 2020, -min_ab 0.000001 using the latest available
database, i.e., mpa_v30_CHOCOPhIAn_201901). Briefly, MetaPhlan relies on
read mapping against a built-in collection of clade-specific marker genes
database which allows an unambiguous estimation of species relative
abundance across samples with a low species-resolution false positives rate
as compared to read classifiers. This is especially true when working
with human microbiome data (https://www.researchgate.net/publication/
343635031_Tutorial_Assessing_metagenomics_software_with_the_CAMI_-
benchmarking_toolkit). As the tool is based on marker genes and is not
designed to assign taxonomic information to all reads nor rRNA sequence
as taxonomic marker, a direct taxonomic classification of the metatran-
scriptomes is not possible.

Sample-specific taxonomic profiles generated using MetaPhlAn on
metagenomes were used to filter the HUMANN2®> built-in pangenomes
database to the organism present in the sample. Metagenomic and
metatranscriptomic reads were then mapped using Bowtie2 to sample-
specific pangenomes. Metagenomic and metatranscriptomic reads failing
to align to the pangenome databases were then blasted against UniRef90
using DIAMOND?®®, Hits were counted per gene family and normalized for
length and alignment quality. Gene family abundances were then
combined into pathways level using MetaCyc®’ and normalized to relative
abundances. Functional gene family tables were regrouped to KEGG's
orthologs and Enzyme (enzyme commission number, i.e., EC numbers)
with the provided humann2 UniRef90_to_KO and UniRef90_to_EC
numbers mapping files, respectively®®.

Since sample-specific HUMAnN2 pangenome database are filtered
based on MetaPhlAn taxonomic profiles, a complementary taxonomic
profiling analysis was conducted using mOTUs profiler>® (version 2.5.0)
which also includes MAGs (i.e., species without reference genomes in
the standard databases) to confirm the observed patterns (Supplemen-
tary Fig. 7).

Statistical analysis

Taxonomic profiles generated using MetaPhlAn as well as functional
metagenomic and metatranscriptomic pathway and gene family tables
generated using HUMANN2 were imported in R and loaded into phyloseq
objects for data handling®®.
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Taxonomic tables as well as pathway and gene family tables were
characterized using o-diversity indices (i.e.,, number of observed species/
pathways/gene families, Shannon diversity index, and Pielou’s evenness).
Taxonomic and functional data were also characterized in terms of
B-diversity (i.e, taxonomic community structure and metabolic profiles)
using Atchinson distance computed on taxonomic count tables as well as
weighted and binary Jaccard metrics for pathways and genes relative
abundance normalized tables. Principle coordinate analysis (i.e., PCoA) was
used to depict microbial community structure using vegan R package
(cmdscale()). Relationship with community distance and ordination space
was assessed using Shepard diagrams to ensure quality of the ordinations.

Differences between sites and health status were tested using two-sided
nonparametric Kruskal-Wallis and PERMANOVA statistical tests for a and
B-diversity, respectively. Multivariate Welch t-test was also run to confirm
highlighted PERMANOVAS patterns®® and multivariate homogeneity was
assessed to ensure PERMANOVA’s assumptions.

Aldex2 was used in order to detect differentially abundant species
among oral site and health status on count normalized species tables®’
and MaAsLin2 (https://huttenhower.sph.harvard.edu/maaslin/) for pathway
and gene families relative abundance normalized tables. Pathway and
gene families table from metagenomes (DNA) and metatranscriptomes
(RNA) and computed DNA/RNA ratio were log transformed and only
features occurring in at least 20% of the samples were considered.
UNMAPPED and UNITEGRATED pathways were removed from a/B-diversity
analysis but kept for linear modeling approach using MaAsLin2 in order to
limit the potential for housekeeping functions to artificially inflate in less
well-characterized samples.

When testing for differences between oral sites, subject identifier was
added as random factor and PERMANOVA's permutations were restricted
to take into account repetitive sampling within the same Subject.

In order to correct for multiple comparisons p values generated using
Kruskal-Wallis, Aldex2 Maaslin2 and PERMANOVAS tests were FDR
corrected.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

Raw sequence data have been deposited at NCBI (Sequence Read Archive) and are
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Bioinformatic open-source tools and parameters used in this present study are
defined in the “Methods” section and scripts can be found in the following Github
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