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We describe a systematic framework for finding the conservative potential of compact binary systems
with spin based on scattering amplitudes of particles of arbitrary spin and effective field theory. An
arbitrary-spin formalism is generally required in the classical limit. By matching the tree and one-loop
amplitudes of four spinning particles with those of a suitably chosen effective field theory, we obtain the
spin1-spin2 terms of a two-body effective Hamiltonian through OðG2Þ and valid to all orders in velocity.
Solving Hamilton’s equations yields the impulse and spin changes of the individual bodies. We write them
in a surprisingly compact form as appropriate derivatives of the eikonal phase obtained from the amplitude.
It seems likely this structure persists to higher orders. We also point out various double-copy relations for
general spin.

DOI: 10.1103/PhysRevD.104.065014

I. INTRODUCTION

A. Overview

The landmark detection of gravitational waves by the
LIGO and Virgo Collaborations [1] has opened a new
window into the universe. The promise of major
new discoveries calls for an invigorated effort to develop
new theoretical tools for predictions of gravitational-wave
signals matching the precision of current and future
observations. Current predictions for gravitational-wave
signals are based on a variety of complementary theoretical
approaches. This includes the effective one-body (EOB)
formalism [2], numerical relativity [3], and self-force
formalisms [4]. In the inspiral phase, we have the tradi-
tional post-Newtonian (PN) approximation using methods
in classical gravity [5,6] and the nonrelativistic general
relativity (NRGR) formalism [7,8] based on effective
field theory (EFT), as well as the post-Minkowskian
(PM) expansion [9–17]. The various approaches provide
important nontrivial confirmation and information in over-
lap regions of the PN, PM, and self-force expansions
[15,18,19]. For recent reviews see Refs. [20,21].

In recent years the post-Minkowskian approach, which
is a relativistic weak-field expansion in Newton’s
constant, has risen in prominence because, at fixed order
in Newton’s constant, it naturally yields the exact velocity
dependence of observable quantities. These properties
mirror those of scattering amplitudes, which are funda-
mental building blocks of observables in quantum field
theory. Combining techniques in scattering amplitudes and
EFT, effective Hamiltonians have been derived in
Refs. [12,22,23] that straightforwardly determine classical
dynamics of bound orbits via their equations of motion.
The usefulness of this framework has recently been
demonstrated through the construction of the conservative
two-body Hamiltonian at the third order in Newton’s
constant expansion [14,15]. Such Hamiltonians can be
imported into the EOB framework [10,16] used for
gravitational-wave template construction. An important
feature of results obtained along these lines is that they
have a much simpler analytic structure than those obtained
in other approaches, on the one hand, because the velocity
expansion is resummed and, on the other, because scatter-
ing amplitudes naturally eliminate certain gauge-redundant
structures that would generically appear.
Amplitude-based methods leverage powerful techniques

that have been developed over the years for computing
quantum scattering amplitudes in gauge and gravity the-
ories (for reviews see e.g., Refs. [24,25]). The basic
philosophy is to focus on gauge-invariant quantities that
can be recursively computed from simpler building blocks:
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on-shell recursion relations [26] allow us to build more
complex tree-level amplitudes directly from lower-point
ones, and the modern unitarity method [27–31] then
assembles tree amplitudes into integral representations of
loop amplitudes. Because there is a close link between
classical physics and quantum scattering amplitudes (see
e.g., [10–15,22,23,32–40]), advanced methods for finding
the latter can also be applied to solving certain nontrivial
classical gravitational problems. The Kawai-Lewellen-Tye
(KLT) [41] and Bern-Carrasco-Johansson (BCJ) [25,42,43]
double-copy relations give gravitational scattering ampli-
tudes directly in terms of much simpler gauge-theory ones,
enabling explicit (super)gravity calculations at remarkably
high orders of perturbation theory [44,45]. Massless and
massive helicity methods [46,47] have proven to be
especially effective for calculating four-dimensional ampli-
tudes. These tools have already demonstrated their utility
for calculations of interest in gravitational-wave physics.
In this paper we focus on spin-dependent classical

interactions of binary systems, in the post-Minkowskian
expansion. As highlighted by the recent detection of black
hole spin during inspiral phase [48], such effects are of
considerable importance in light of astrophysical evidence
that black holes can have a variety of intrinsic angular
momenta, including close to maximally allowed values
[49]. The presence of spin can lead to qualitative changes
in the dynamics of a binary system, such as the orbital-
plane precession when the spins are not aligned with the
orbital angular momentum (see e.g., Ref. [50]). Such an
effect would lead, in particular, to a modulation of the
amplitude, frequency, and phase of the observed gravita-
tional wave signal.
Inclusion of spin effects in the post-Newtonian expan-

sion has a long history in a variety of frameworks [51–57].
The effect of spin in the context of the PN approximation
has also been considered using elementary-particle scatter-
ing amplitudes [23,34]. Reference [23] further extracts PN
potentials via EFT techniques and provides an early
indication of the correspondence between minimal cou-
pling and Kerr black holes. The analogous problem in the
post-Minkowskian framework, where all orders in velocity
are kept, has been comparatively less explored. For the
problem of two Kerr black holes scattering, Ref. [58]
derived a solution at linear order in Newton’s constant with
the full spin dependence using traditional methods and
derived a corresponding two-body Hamiltonian. This was
later shown to be equivalent to minimal amplitudes in
massive spinor helicity formalism [59–62], and these
amplitudes at order G were used to derive a two-body
effective Hamiltonian [63]. Physical observables with spins
can also be extracted directly from scattering amplitudes
[38], as demonstrated at order G in [61]. At order G2, a
complete all-orders-in-velocity spin-orbit Hamiltonian is
known [64]. Beyond linear order in spin, only partial results
are available to all orders in velocity [37,59–62,65–67].

The table in Fig. 1 shows the status of the spin1-spin2
interactions analyzed in some detail in this paper atOðG2Þ,
indicating the previously known terms in both the velocity
and the G expansions as well the new results.

B. Summary of paper

In this paper, we aim to answer several important
questions in the amplitude-based approach. First, conven-
tional field theory considers elementary spins [23,34,66].
The results are a priori not necessarily the same as those
obtained with continuous classical spins. Using massive-
spinor-helicity formalism, the universality of spin-
dependent effects was shown at linear in G order and
partially at order G2 [59–62,67]. Bootstrapping results for
Kerr black holes from the massive-spinor-helicity method,
however, is known to have ambiguities beyond quartic
order in spins at G2 [37,59,60,62], as new spin-multipole
moments are allowed. It would be desirable to have a
complementary formulation, with arbitrary spins, that can
generate amplitudes from first principles. Second, for
applications to LIGO and VIRGO, it is crucial to extract
quantities of interest for the bound-state problem in a
format that can be straightforwardly compared with pre-
viously known results. In the post-Minkowskian scenario
without spins, there are several methods for doing so
available [10,12,14,15,39]. In the presence of spins, how-
ever, the known results from EFT or scattering angles are
limited either to leading order in G or to special configu-
rations of spins [23,38,59,61,63]. The goal of this paper is
to build a systematic framework bridging the gaps between
quantum scattering amplitudes, classical gravity, and bound
orbits for spinning objects. A key part is to identify a new
direct link between the scattering amplitudes including spin
and physical observables, via the eikonal phase [68,69].
A central component of our paper is an amplitude-based

formalism for incorporating spinning effects for binary

FIG. 1. The previously known results in PN and PM expansions
of the (bilinear in spin) spin1-spin2 interactions in the two-body
potential are outlined in horizontal (green) and vertical (blue)
directions, respectively. The new results in this paper at OðG2Þ
and all orders in velocity correspond to the shaded (red) region.
Each horizontal row corresponds to the same order in G, or
the PM expansion. The velocity expansion is indicated by vn.
Each vertical column corresponds to the same PN order for the
spin1-spin2 interaction, where the leading order (LO), next-to-
leading order (NLO), next-to-next leading order (NNLO), and the
static part at G4 are known up to quadratic in spins.
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systems in a post-Minkowskian framework, i.e., fixed order
in G and all orders in velocity. Our results are new in
several directions. First we construct a field theory with
arbitrary-spin particles, smoothly interpolating from
elementary particles to classical spinning particles. Next,
we formulate an EFT for spinning particles. The amplitudes
from this arbitrary-spin field theory are translated, through
EFT matching, into an effective potential which can be
used to study bound-state problems. Conversely, the
formalism can also turn any classical Hamiltonians into
gauge-invariant scattering amplitudes, allowing for a
straightforward comparison of the gauge-invariant content
of two Hamiltonians. The usefulness of our setup is
demonstrated through a new result for spin-dependent
effects: we obtain a two-body Hamiltonian that describes
the interactions linear in the spin of each body, referred to
as “spin1-spin2” or “bilinear in spin,” through order G2 and
to all orders in velocity. Finally, as discussed in more detail
in Ref. [70], we use this Hamiltonian to calculate physical
observables—the momentum and spin transfer—via the
classical equations of motion, and organize them into an
eikonal-based formula, providing a direct link between
scattering amplitudes and classical observables. All results
presented here are for generic spin orientation. We now
summarize each section in turn.
In Sec. II, we begin with a basic introduction to classical

spins, including the formulation of an arbitrary-spin field
theory following the path of Refs. [71,72]. The arbitrary-
spin formalism constructed here is a natural framework for
capturing higher powers of spin interaction; this may be
contrasted with the more familiar spin-1=2 or spin-1 cases
that could be used to extract low-order spin interactions
[23,34,66]. Nonminimal interactions at linear order inG are
characterized in Sec. III and are similar to those in the
world-line formulation [52] of spinning particles given in
Ref. [57]. At linear order in G, the Lagrangian may be
interpreted as the covariantization of the most general
parity-even gravitational form factor. Our stress tensor
reproduces the all-orders-in-spin stress tensor at order G
of Ref. [58]. For the stress tensor, or equivalently the on-
shell two-matter–one-graviton vertex, we also present new
double-copy relations to all orders in the spin for arbitrary
nonminimal coupling, expressing the complete set of
gravitational interactions in terms of gauge-theory ones.
Double-copy properties in the context of gravitational
waves have been discussed recently in Refs. [14,15,60,73].
In Secs. IV and V, we compute various tree-level and

one-loop amplitudes with higher-spin particles. At the
relatively low order considered in this paper, we will not
need the full arsenal of amplitude techniques that become
important at higher orders. We therefore use polarization
tensors to incorporate the spin degrees of freedom. and
make only modest use of the double copy [25,41,42] to
write compact expressions for amplitudes. We first obtain
the two-to-two scattering of higher-spin particles at tree

level, truncated to bilinear order in spins. Then we calculate
the tree-level gravitational Compton amplitude, and find
simple KLT-like relations. In Sec. V, we use the Compton
amplitude to extract the required contribution to the four-
point one-loop amplitude of two distinct spinning particles.
We then reduce the integrand to a basis of scalar integrals
using the massive extension [74] of Forde’s formalism [31].
This formalism clarifies the connection of basis integral
coefficients and integrands and efficiently extracts the
needed contribution in the classical limit.
In Sec. VI, we construct an EFT for spinning objects,

following the path of Ref. [12] in the spinless case and
Ref. [23] in the spin case under the PN framework. This
EFT allows us to map scattering amplitudes to effective
Hamiltonians, which can then be straightforwardly applied
to bound-orbit problems. We classify spin interactions
explicitly to bilinear-in-spin order. The on-shell matching
scheme reduces the number of independent operators. We
show how to compute scattering amplitudes in this EFT.
We also point out the crucial role of the SOð3Þ algebra of
classical spins in order to obtain results for generic spin
orientation. Combining with the one-loop amplitudes
obtained in Sec. V, we derive the bilinear in spin
Hamiltonian through order G2 and to all orders in velocity.
In Sec. VII, we obtain the momentum and spin change in

the scattering regime starting from our derived classical
Hamiltonian. The three-dimensional nature of the scattering
process makes the construction of the perturbative solution
of the equations of motion somewhat more involved than for
the case of spinless particles. An alternative approach is to
directly obtain observables from the amplitudes [13,38],
bypassing the Hamiltonian and EFT matching. A very
interesting question is whether there exist, in general, simple
and direct relations between physical quantities and suitably
defined finite parts of amplitudes scattering amplitudes
analogous to the one for the spinless or aligned spin case
[10,15,39,59]. The ability to do this for spin [38] suggests
that this might be more generally possible. We indeed find
such a relation for generic spin, generalizing the eikonal
formula [68,69] to the case with spin, obtaining not only the
impulse, but also the spin kick from appropriate derivatives
of the eikonal phase. This striking result suggests that it
should be possible to develop much more streamlined
formalisms for extracting physical observables from scat-
tering amplitudes at higher orders. We leave the details to a
forthcoming paper [70].
In order to ensure the reliability of our results, we

perform a number of nontrivial checks for the OðG2Þ
contributions to the interactions bilinear in spin. This
includes comparison with the post-Newtonian NLO spin-
orbit results of Refs. [23,54], the NNLO results of Ref. [55]
in the overlapping region to OðG2Þ, and to all orders in
velocity for the scattering angles with spins aligned to
orbital angular momentum [59,65], whose spin-orbit part is
in agreement with Ref. [64]. The latter comparison in the
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spin-orbit case is especially powerful because it verifies the
complete coefficient of the spin-orbit operator. In the test
body limit, we also reproduce a simplified isotropic gauge
version1 of the test-body Hamiltonian given in Appendix D
of Ref. [75] valid to quadratic order in spin and all order
in Newton’s constant and velocity. At the amplitude level
and with a suitable interpretation of the covariant spin
vector, we also recover the spin-1=2 results of Ref. [66].
Although we work with an arbitrary spin, this is expected
because, as we argue on general grounds in Sec. II, for the
terms linear in the spin of each particle, spin-1=2 is
sufficient as long as no special properties of the Pauli
matrices are used [23,34,62,66].
In this paper we use mostly negative metric, and the four-

dimensional Levi-Civita symbol is normalized as ϵ0123 ¼ 1.
Unless otherwise specified, the boldface symbols denote
spatial three vectors. All four momenta are outgoing.
Additional notation can be found in Secs. V E and VI E,
where we summarize the results in amplitudes and in EFT.

II. BASICS FOR SPINNING PARTICLES

In this section we describe the classical limit of processes
involving spinning particles (which we identify with
spinning compact astrophysical objects) and review basic
facts on spin that we use in later sections. We will see that
the spin must be of the same classical order as the orbital
angular momentum, and therefore, from a Lagrangian
perspective, the classical spinning particles should be
represented by higher-spin fields. To describe them we
follow Sec. 31 of Ref. [71] and Ref. [72]. This approach
has the advantage of giving a simple relation between the
classical spin vector and Lorentz generators in the
Lagrangian, making it straightforward to construct a robust
formalism. We will formulate and use a Lagrangian that
captures the gauge-invariant completion of the most general
parity-even spin-dependent linear response of a massive
particle to a gravitational field. We will show that the
trilinear interaction of this Lagrangian is the double copy
of similarly general trilinear interactions of higher-spin
fields with gluons, thus extending observations of
Refs. [41–43,76]. Last but not least, we will see that, for
suitably chosen couplings, the gravitational stress tensor
derived from our Lagrangian reproduces (in the classical
limit) that of the Kerr black hole, derived in [58].
Consequently, the scattering amplitude of two Kerr black
holes discussed in that reference is also correctly reproduced.

A. The classical limit

Our goal is to extract the classical potential between two
massive spinning bodies from their scattering amplitude. To
define the classical limit of an amplitude, we follow the

same path used in Refs. [12,14,15]. Classical physics
applies whenever the minimal interparticle separation jbj
is much larger than the de Broglie wavelength λ of each
particle. This macroscopic length scale jbj can be chosen as
the impact parameter in a scattering process, or the orbital
size of a bound binary system. For incoming particles of
momentum p, we must then have

jbj ≫ λ ¼ 1

jpj ; ð2:1Þ

where we use natural, ℏ ¼ 1, units. This implies that for
any such two-body classical system, the magnitude of
orbital angular momentum L ¼ jLj must be large,

L ∼ jp × bj ≫ 1: ð2:2Þ

The same must hold for all other charges, such as electric
charge or spin, that may be carried by classical particles.
Indeed, the difference between the classical spin and orbital
angular momentum is only in the interpretation of the
macroscopic length scale: from internal radius to the impact
parameter, and rotating to translational velocities. Thus, in
the classical limit, we need the magnitude of the spin,
Si ¼ jSij, and of the orbital angular momentum, L ¼ jLj, to
be commensurate,

S1 ∼ S2 ∼ L: ð2:3Þ

The net effect is therefore that classically spinning particles
should be described from a field theory point of view by a
large-spin limit of higher-spin fields. As we will explain
shortly, the details of the calculations imply that at fixed
order in Newton’s constant and in the number of spin
vectors, a finite but sufficiently large spin is sufficient to
capture all the relevant contributions.
Since the impact parameter is of order of the inverse

momentum transfer in a scattering process, jbj ∼ 1=jqj, the
classical limit implies the hierarchy

m1; m2; jpj ∼ Ljqj ∼ Sijqj ≫ jqj: ð2:4Þ

The quantum contributions enter at higher orders in a large
L expansion or, equivalently, higher orders in a small jqj
expansion. This gives us the scaling

Oð1=LÞ∼Oð1=SiÞ∼OðjqjÞ∼OðqÞ ðclassical expansionÞ:
ð2:5Þ

We omit the proper mass scale factors for simplicity.
The italic letter denotes four-momentum components.
Unless otherwise noted, the classical expansion in this
paper includes simultaneously the scaling of spins, orbital
angular momentum, and q. For example, monomials in

1We thank Justin Vines for providing this form of the
Hamiltonian.

BERN, LUNA, ROIBAN, SHEN, and ZENG PHYS. REV. D 104, 065014 (2021)

065014-4



q · Si or their covariant version q · Si are of Oð1Þ in the
classical limit.
A second expansion parameter is the ratio between spin

and orbital angular momentum, which is suppressed by the
internal size over impact parameter or orbital radius if we
ignore the difference in rotating velocities. Therefore the
expansion in spin-induced multipole moments is

OðSi=LÞ ∼OðSi=jbjÞ ∼OðSijqjÞ ∼OðSiqÞ
ðspin expansionÞ: ð2:6Þ

For examples, the monomials in q · Si are classically Oð1Þ
but are order by order in spin expansion. Indeed, terms
linear in the spin correspond to a dipole moment, those
quadratic in spin, ðq · SiÞ2, represent a quadrupole moment,
etc. While the multipole moments are not necessarily small
when taking velocities into account, the fact that we keep
the spin vector arbitrary provides a way to classify
interactions between two particles in terms of interactions
between their respective multipole moments.2

The traditional PN expansion parameter relies on veloc-
ity v ∼ jpj=mi. For bound orbits the virial theorem relates
the scale of both G and spin expansion parameters to the
velocity.3 The virial theorem, however, does not hold for
unbound orbits, and therefore the velocity expansion is
independent from the others in scattering events. From an
amplitudes’ perspective it is also more natural to keep a
fully relativistic velocity dependence. Thus, we will not
expand in velocity except to compare with results from the
PN literature.
With this in mind, we have the following structure of

classical conservative Hamiltonian expanded in the (num-
ber of) spin vectors of each particle,

H ¼ Hð0Þðr2; p2Þ þ hð1Þi ðr2; p2Þ 1
r2
L · Si

þ hð2;1Þij ðr2; p2Þ 1
r4
r · Sir · Sj þ � � � ; ð2:7Þ

where we only keep terms up to quadratic order in spins,
i.e., up to quadrupole moments. Here r and p are center-of-
mass distance and momentum and the indices run over i,
j ¼ 1, 2, r ¼ jrj, p ¼ jpj. Hð0Þðr2; p2Þ is the spinless

Hamiltonian with the usual PM expansion in G=r. At lowest
order, ignoring velocity and spin dependence, the potential is

simply the Newtonian one. The hðaÞb coefficient of each spin-
induced moment has the same structure as Hð0Þðr2; p2Þ.
UsingOð1=rÞ ∼OðjqjÞ under the Fourier transform, we can
see that each spin structure is of the same classical order
Oð1Þ as the spinless potential, but carries a higher order in
spins, or is equivalently suppressed by the additional powers
of 1=r. More details will be discussed in Secs. VI and VII.
Such Hamiltonians are a basic input into models—such as
the EOB framework [2]—for building gravitational-wave
templates. In this paper, we evaluate theOðG2Þ contributions
to the conservative two-body potential to all orders in the
velocity and to bilinear order in the two spins.

B. The spin vector and tensor

We now describe the basic field theory formalism that we
use to incorporate spin interactions into an amplitude-based
approach. In the post-Newtonian framework, the classical
spin-orbit and spin-spin interaction Hamiltonian of spin-
ning particles is well-studied in the literature [23,34,62].
A simplifying aspect is that through OðG2Þ, spin-1=2 and
spin-1 fields turn out to be sufficient to recover post-
Newtonian results obtained via general-relativistic methods
[51,54,55]. Not surprisingly, at higher orders in spin,
calculations using such low-spin fields are insufficient
because the dimension of these representations implies
that higher powers of Lorentz generator matrices can be
expressed in terms of lower powers. For example, the
square of a Pauli matrix describing spin-1=2 is the identity
matrix, which is of course not generally true. Thus, to
capture all multispin interactions we need a formalism
that describes arbitrarily high spins. Such a formalism
would also provide an a priori explanation of the validity
of the low-spin observations as well as give the minimal
value of the spin that is necessary to capture some
given spin-induced multipole moment.4 Descriptions of
higher-spin particles date back to Fierz and Pauli [79].
Our amplitude-based approach to higher spin is closely
related to the world-line approaches of Refs. [52,57]. The
formalism makes the connection between Lorentz gener-
ators in the amplitudes and final spin vectors relatively
transparent. Alternative approaches based on the massive-
spinor-helicity formalism of Ref. [47] are found in
Refs. [37,59,60,62,65,67].
In quantum field theory, massive particles of integer

spin s are described by symmetric traceless rank-s tensor
fields [80],

2In general, multipole moments are symmetric and traceless
combinations of spin vectors. At tree level the trace part leads to
contact interactions, which are not of interest to us. At loop-level,
however, trace terms no longer drop out and more care is needed
to relate symmetric products of spin vectors to multipole moment
operators. Since in later sections we will be concerned at most
with spin1-spin2—or dipole-dipole—interactions, we will not
need the complete identification of spin-induced multipole mo-
ments.

3In PN counting, spins are suppressed relative to the angular
momentum by Si ∼ Lvα, with α ¼ 1 to 4 depending on rotating
speeds. See Ref. [21] for more details.

4As known for some time in the particle physics phenom-
enology literature, spin-1=2 is sufficient to capture the dipole
moment and spin-1 the quadrupole. See e.g., Ref. [77] and also
Ref. [78] for a counting of form factors of an arbitrary-spin
particle.
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ϕs
a1���ai���aj���as ¼ ϕs

a1���aj���ai���as ; ηa1a2ϕs
a1a2a3���as ¼ 0:

ð2:8Þ

Additional transversality constraints are necessary [80] to
select the part corresponding to fixed spin s. The corre-
sponding physical states are described by polarization
tensors that are symmetric traceless and transverse in all
indices,

εa1a2���ai���aj���am ¼ εa1a2���aj���ai���am; ηa1a2ε
a1a2������am ¼ 0;

pa1ε
a1a2������am ¼ 0: ð2:9Þ

The Hermitian Lorentz generators in this representation are

ðMabÞcðsÞdðsÞ ¼ 2isδ½aðc1η
b�ðd1δd2c2 � � � δdsÞcsÞ ;

ðMabÞcðsÞdðsÞ ¼ −ðMabÞdðsÞcðsÞ; ð2:10Þ

where the indices cðsÞ and dðsÞ stand for the symmetrized
sets of vector indices fc1;…; csg and fd1;…; dsg, respec-
tively, and they are raised and lowered with the appropriate
symmetric product of the Minkowski metric. The gener-
ators Mab satisfy the usual Lorentz algebra,

½Ma1a2 ;Ma3a4 � ¼ iðηa3a1Ma4a2 þ ηa2a3Ma1a4

− ηa4a1Ma3a2 − ηa2a4Ma1a3Þ: ð2:11Þ

As we will explain shortly, apart from describing the
scattering of massive spin-s fields, our interest is to develop
a formalism that avoids use of any of the special properties
of fixed-spin representations of the Lorentz group. Thus, it
suffices for our purpose to not demand that they be
transverse and instead treat the fields (2.8) as uncon-
strained. It is then convenient to follow Refs. [71,72]
and map them to a two-component spinor indices in the
usual way,

ϕs
_β1��� _βs
α1���αs ¼ ϕs

a1���asðσa1Þðα1 ð
_β1 � � � ðσasÞαsÞ

_βsÞ: ð2:12Þ

This parametrization trivializes the tracelessness condition
(2.8), which translates into symmetrization in the two-
component spinor indices of the same handedness. Half-
integer spin can also be described along these lines [71,72],
as pairs of such fields with different numbers of left-handed
and right-handed indices. While we do not discuss them in
any detail (and in the classical limit they should give the
same result as the integer-spin fields), we will also describe
integer-spin fields as pairs of fields (2.12):

ϕs ¼
1ffiffiffi
2

p

0
B@ ξα1���αu_β1��� _βv

χβ1���βv_α1��� _αu

1
CA: ð2:13Þ

For integer- and half-integer-spin particles we have

u ¼ v ¼ s; u ¼ sþ 1

2
; v ¼ s −

1

2
; ð2:14Þ

respectively.5 For half-integer spins ξ and χ are different
objects; one may impose a Majorana-type condition which
identifies one with the conjugate of the other. In the
remaining part of this paper we use only integer spin,
since that is sufficient for describing large spin.
When taking the classical limit of quantum-mechanical

expectation values, it is necessary to choose states that
minimize the standard deviation of observables being
considered.6 For a spin system in the rest frame, the relevant
states are the so-called “spin coherent states” [81]. Their
defining property is that

hnjni ¼ 1; hnjŜjni ¼ S≡ jSjn; ΔŜ
jSj → 0; ð2:15Þ

where Ŝ is the rest-frame spin operator, related to the rotation
generator Mjk in the usual way, Ŝi ¼ 1

2
ϵijkMjk, and n is the

unit vector along the classical spin. The state jni localizes the
spin along the unit vector n as much as it is allowed by
quantum mechanics.
We define the covariant spin vector and spin tensor of a

particle by boosting their rest-frame three-dimensional
counterparts Si and Sij, which are related in the standard
way

Si ¼ 1

2
ϵijkSjk: ð2:16Þ

The boost from the particle’s rest frame gives

Sðp; SÞμ ¼
�
p · S
m

; Sþ p · S
mðEþmÞ p

�
;

Sðp; SÞi0 ¼ −Sðp;SÞ0i ¼ 1

m
Silpl ¼ ϵiln

pl

m
Sn;

Sðp;SÞij ¼ Sij − 2
p½iSj�lpl

mðmþ EÞ ¼ ϵijk
�
E
m
Sk −

p · S
mþ E

pk

m

�
;

ð2:17Þ

where Roman letters from the middle of the alphabet
indicate spatial indices. We raise and lower the indices
of the three-dimensional (3D) rest-frame spin vector with
the Euclidean 3D metric, so Sk ¼ Sk (which should not be
confused with the spatial part of Sμ). These expressions can
be summarized in a covariant format:

5One may have more general representations, in which u and v
differ by some finite amount, u ¼ sL, v ¼ sR, and s ¼ sL þ sR.6For example, for the harmonic oscillator, classical physics is
recovered if one chooses it to be in a coherent state.

BERN, LUNA, ROIBAN, SHEN, and ZENG PHYS. REV. D 104, 065014 (2021)

065014-6



SαβðpÞ ¼ −
1

m
ϵαβγδpγSδðpÞ;

SαðpÞ ¼ −
1

2m
ϵαβγδpβSγδðpÞ; ð2:18Þ

where the four-dimensional Levi-Civita symbol is normal-
ized as ϵ0123 ¼ 1. We will later denote the covariant spin
vector of particle a as Sa ≡ Sðpa; SaÞ. Our definition of the
covariant spin vector implies that it obeys the so-called
covariant spin supplementary condition,

pμSðp; SÞμ ¼ 0: ð2:19Þ

Boosting the relations (2.15) to an arbitrary frame will
not change the scalar product of coherent states and will
yield the covariant spin vector on the right-hand side of the
second equation. Boosting the ket and the bra states to
momenta differing by some momentum transfer q is less
trivial. It is lengthy but straightforward to show that [see
also Appendix E of Ref. [60] for some details on the
derivation of εðs; p1Þ · εðs; p2Þ]

εðs; p1Þ · εðs; p2Þ

¼
�
1 − i

ϵrskpr
1p

s
2S

k

mðmþ Eðp1ÞÞ
þOðS2q2Þ

�
þOðqÞ;

εðs; p1ÞMabεðs; p2Þ
¼ Sðp1; SÞabεðs; p1Þ · εðs; p2Þ þOðq0Þ;

εðs; p1Þ
1

2
fMab;Mcdgεðs; p2Þ

¼ Sðp1; SÞabSðp1; SÞcdεðs; p1Þ · εðs; p2Þ þOðq−1Þ;
ð2:20Þ

where εðs; p1Þ and εðs; p2Þ are the incoming and outgoing
polarization tensors of a particle in a convention where both
momenta are taken to be outgoing, so that the momentum
transfer is q ¼ −p1 − p2. We denote the spin label by s to
emphasize that, in general, it can be a quantum property
of the particle and to distinguish it from the rest-frame
classical spin vector S. The rest-frame spin is assumed to be
large in the classical limit, with q · S=m ∼Oð1Þ as dis-
cussed in Sec. II A, and the number of left-handed and
right-handed indices in Eq. (2.13), u and v, are commen-
surate, i.e., u − v ≪ u, v. The terms in the parentheses of
the first line are classical, and we only exhibit them to linear
order in spin. The rest ofOðqαÞ denote classical expansion,
where we show only the leading term. Recall that classical
expansion count both q and spins. The momentum of the
spin tensor can be chosen to be any combination of p1 and
p2 since all such combinations differ by terms proportional
to the momentum transfer q. In tree amplitudes the
momentum dependence of vertices makes all these con-
tributions subleading in the classical limit. We will revisit
the subleading terms in the second of Eq. (2.20) in our

discussion of the effective field theory and the comparison
of its amplitudes with those of the higher-spin Lagrangian
we discuss next. As we will see, they do not affect
observables. Another subtlety is that, as indicated in the
final formula in Eq. (2.20), only the symmetric product of
Lorentz generators is interpreted directly as products of
spin tensors. As will be discussed in Sec. III, this is
sufficient for obtaining the classical limit of a product of
two Lorentz generators after accounting for the standard
commutation relation (2.11).

C. Higher-spin Lagrangians

Theories of massive higher-spin fields have a long
history. A free action was constructed in Ref. [80].
Spin-s fields are described by rank-s symmetric tensors.
Fields transforming in the ðsþ 1; sþ 1Þ representation
of the SOð3; 1Þ ≃ SUð2Þ × SUð2Þ Lorentz group7 contain
many representations of the rotation group. To eliminate all
but the spin-s representation [i.e., the (2sþ 1)-dimensional
representation of the SOð3Þ rotation group], the tensor field
is usually constrained to be transverse. Implementing this
in a Lorentz-invariant Lagrangian can be done [80] with the
aid of s rank-k auxiliary fields, with k ¼ 0;…; s − 1.
Preservation of tree-level unitarity when coupling this free
action with gravity turns out to require introduction
of dimension-four terms involving both the higher-spin
fields and the Riemann curvature tensor [82,83]. Aspects of
an interacting Lagrangian constructed along these lines
for all spin-induced multipole moments were discussed
in Ref. [62].
While we use a Lagrangian to organize the interactions

of higher-spin fields with gravity, we take a different
approach than earlier ones, which is tailored to our needs
for constructing classical limits of amplitudes with explicit
dependence on the spin vector. It may be interpreted as a
relativistic effective theory that captures all spin-induced
multipole moments and thus all linear responses of spin-
ning objects to gravity. This approach provides a minimal
completion of any desired three-particle interactions
which is invariant under the nonlinear diffeomorphism
transformations and offers a convenient way to align our
derivations with earlier ones. Here we will use this
approach to understand aspects of low-point interactions
of higher-spin fields and gravitons in the classical limit and
derive the effective interaction potential of two higher-spin
fields due to the exchange of gravitons through OðG2Þ.
For our purpose it is not important that the matter fields

transform in an irreducible representation of the rotation
group. It is, however, important that all irreducible com-
ponents be treated uniformly. To this end we take our
fields to be traceless rank-s tensors in their spinor

7We denote representations of the Lorentz group by ðdL; dRÞ,
where the two entries are the dimensions of the two SUð2Þ
representations.
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formulation (2.12) and not require that they be transverse.
The validity of this approach can be verified a posteriori
through the independence of the result on the number of
components of the tensor field. One may intuitively expect
that this will be the case as the number of components of
matter fields can arise only from loops containing them and
such graphs do not contribute in the classical limit. As we
will see, this framework provides a minimal value for the
spin needed to capture the complete spin dependence of an
L-loop four-point amplitude in the classical limit. Such
lower bonds are similar in spirit with the observation
[23,34,62] that calculations at fixed and low spins can
be used to reproduce the part of the spin-dependent
Hamiltonian that is available in the literature and was
originally derived though general-relativistic techniques.
We describe the gravitational field in the vielbein rather

than the metric formulation because it exposes the tangent-
space Lorentz generators, making it easier to identify the
(classical) spin vector. Since we are not interested in matter
contact interactions of higher-spin fields (because they do
not contribute to the long-range potential), we will focus on
a single higher-spin field, ϕs.
Our higher-spin Lagrangian has two parts:

L ¼ Lmin þ Lnonmin; S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L: ð2:21Þ

The minimal Lagrangian, i.e., the Lagrangian with the
minimal number of derivatives, including the terms needed
to preserve tree-level unitarity [82–84], is8

Lmin ¼ −Rðe;ωÞ þ 1

2
gμν∇ðωÞμϕs∇ðωÞνϕs −

1

2
m2ϕsϕs

þ H
8
Rðe;ωÞefghϕsMefMghϕs þ � � � ; ð2:22Þ

where H is an adjustable parameter, we take the higher-spin
field ϕs to be real, and the ellipses stand for terms that
vanish on shell. The Mab are the Hermitian Lorentz
generators in the ðsþ 1; sþ 1Þ representation (2.12) and
(2.13). The covariant derivative is

∇ðωÞμϕs ≡ ∂μϕs þ
i
2
ωμefMefϕs; ð2:23Þ

where ω is the spin connection. To shorten the expression
we do not display the many tangent-space indices of ϕs.
They are understood as contracted via matrix multiplica-
tion. The spinor notation we use for the higher-spin field
emphasizes that they are assumed to carry only tangent-
space indices; similarly, the curvature tensor and the
Lorentz generators also carry tangent-space indices. We

postpone describing nonminimal higher-spin Lagrangians
to the next section.
The last term displayed in Eq. (2.22) is a gravitational

quadrupole interaction; its coefficient may be set to H ¼ 1
by requiring that amplitudes have an improved high-energy
behavior, delaying violations of partial-wave unitarity
[83,84]. String theory predicts a different value for this
coefficient [84]. This may be interpreted as being due to the
other higher-spin fields of string theory further contributing
to the unitarity constraint. Here we keep H as a free
parameter. This term does not affect any interaction linear
in the particle’s spin, but it is important at higher order in
spin and, as we will see in Sec. III B, plays an important
role in giving a field-theory description of the stress tensor
of the Kerr black hole [58]. The value of H found by
matching to a Kerr black hole reproduces the one required
by improved partial-wave unitarity.
At tree level there is no physical difference between the

scattering of higher-spin fields described by the Lagrangian
(2.22) and by one that enforces transversality of the higher-
spin polarization vectors. This is because four-point tree-
level scattering amplitudes of higher-spin fields contain no
Feynman graphs with propagators for these fields.
Let us now examine the relation between calculations

carried out with low-spin fields and with arbitrary-spin
fields, beyond tree level and for the case where each vertex
contains no more than one Lorentz generator. The
Lagrangians for massive vectors and massive spin-2 fields
without curvature couplings are both of the form of
Eq. (2.22). Theories of such low-spin fields will yield
the same amplitudes as the Lagrangian (2.22) as long as
special relations obeyed by symmetric products of gen-
erators of four-dimensional Lorentz group in representa-
tions (2,2) and (3,3) are not used. These relations stem from
the fact that, for a spin-s representation of SUð2Þ, with
generators Js,

ðΞ · JsÞk≥2sþ1 ¼
X2s
n¼1

anðΞ; k; sÞðΞ · JsÞn ð2:24Þ

for some coefficients anðΞ; k; sÞ. Here Ξ is an arbitrary
three-component vector; differentiating Eq. (2.24) k times
with respect to Ξ yields the decomposition of a symmetric
product of k generators of SOð3Þ into a linear combinations
of symmetric products of at most s generators. If each
matter-graviton vertex of a Feynman diagram of an L-loop
four-point matter amplitude contains at most one Lorentz
generator, it is easy to see that each matter line of this
diagram contains a (symmetric) product of at most Lþ 1
generators, multiplied from the left and the right with
polarization tensors. For (2.24) not to operate if the fields
are in a chiral representation of the Lorentz group [i.e., they
transform under only one of the two SUð2Þ factors], it is
therefore necessary that they be in a representation of
dimension dim ≥ Lþ 2.

8The sign of the H term follows from the one in [82–84] by
changing the signature of the metric to mostly minus and
converting to Hermitian Lorentz generators.
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This counting suggests that one-loop calculations carried
out with fields with the Lorentz representations (3,1) or/and
(1,3) should be sufficient within our formalism because
they yield products of at most two Lorentz generators (in
e.g., box or triangle graphs) for a matter line. At two loops,
where we may get products of three Lorentz generators,
Lorentz representations of the type (4,1) or/and (1,4) are
needed. We interpret these bounds as being sufficient to
capture the complete spin dependence within our formal-
ism. Similarly, on a case-by-case basis it may be possible to
evade them and use e.g., spin-1 fields in our formalism and
capture the complete spin dependence at one-loop. One
may reach this conclusion by e.g., constructing a relation
analogous to (2.24) for the SOð3; 1Þ generators in the (2,2)
representation and demanding that the decomposition be
manifestly covariant.
We stress that the counting above refers specifically to

our formalism and does not necessarily apply to actions that
e.g., use properties of special representations of SOð3; 1Þ.
The actual bound might even be lowered after the classical
limit is applied. In general, perhaps the most straightfor-
ward approach to using low values of spin is to use a
formulation of the low-spin Lagrangians that does not
implicitly employ relations between Lorentz generators
that use their four-dimensional nature. Moreover, such

relations should not be used at any step in the calculation
of amplitudes.
Trilinear couplings containing more than one Lorentz

generator, such as the H-dependent term in (2.22) and the
higher-derivative terms discussed below change the count-
ing argument above and suggest a need for larger repre-
sentations at lower-loop orders.

D. Expansion of the minimal Lagrangian

The spin connection ω is an auxiliary field, which can be
eliminated via its equation of motion, as usually done in
supergravity theories. This expresses ω in terms of the
vielbein and matter fields. Once replaced in the original
Lagrangian, the matter-field dependence yields only matter
contact terms and is thus irrelevant for long-range inter-
actions of matter fields. The remainder matter-independent
solution of the ω equation of motion is equivalent to the
solution to the vielbein postulate, ∇μðωÞeνa ¼ 0. We will
denote it by ωðeÞ.
Following standard methods we define the graviton field

as the fluctuation of the metric around the Minkowski
background. Local Lorentz symmetry can be used to
choose the fluctuations of the vielbein to be symmetric,
hμa ¼ haμ. We take

gμν ¼ ημν þ hμν; eμa ¼ δaμ þ
1

2
hμa −

1

8
hμρhaρ þOðh3Þ;

ωðeÞμcb ¼ −∂ ½chb�μ −
1

4
hρ½c∂μhb�ρ þ

1

2
hρ½c∂ρhb�μ −

1

2
hρ½c∂b�hμρ þOðh3Þ; ð2:25Þ

where the antisymmetrization includes division by the number of terms and we take ημν to be in the mostly minus
convention. One may make different choices for the metric fluctuations to e.g., make the expansion of the vielbein simpler;
while this has no effect on scattering amplitudes, it makes gravitational vertices depart from their standard form. With the
choice above, the expansion of the Riemann tensor to second order in fluctuations is

Rðe;ωðeÞÞefgh ¼ −2∂ ½ej∂ ½ghh�jf� þ ðhμ½eδνf� þ δμ½eh
ν
f�Þ∂μ∂ ½ghh�ν −

1

2
∂ ½ejhρ½g∂ jf�hh�ρ þ ∂ ½ejhρ½g∂ρhh�jf�

− ∂ ½ejhρ½g∂h�hjf�ρ þ 2∂ ½ghc�½ej∂ ½dhh�jf�ηcd þOðh3Þ: ð2:26Þ

Following the usual procedure we can extract Feynman vertices. Consider the three-point vertex in Fig. 2. The
contribution from the three vertex from the minimal Lagrangian (2.22) is then

−iVμν
min aðsÞ

bðsÞðq; p1; p2Þ ¼ pðμ
1 p

νÞ
2 δ

bðsÞ
aðsÞ −

1

2
ημνðp1 · p2 þm2ÞδbðsÞaðsÞ −

i
2
qρðp2 − p1ÞðμðMνÞρÞaðsÞbðsÞ

þ H
2
qρqσðMρðμjMσjνÞÞaðsÞbðsÞ; ð2:27Þ

where the legs carrying momenta p1 and p2 are spin-s fields with sets of tangent-space Lorentz indices bðsÞ and aðsÞ,
respectively, and the symmetrization of the two graviton indices has unit strength (i.e., it includes division by the number of
terms). A useful property of the vertex, following from diffeomorphism invariance of the action, is the on-shell analog of
stress tensor conservation. That is, when its external legs are placed on shell, the three-point vertex is transverse with respect
to the graviton momentum,
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qμV
μν
min aðsÞ

bðsÞðq; p1; p2Þ ¼ 0;

qνV
μν
min aðsÞ

bðsÞðq; p1; p2Þ ¼ 0: ð2:28Þ

This does not require any special properties, such as
transversality, for the higher-spin polarization tensors.
This is consistent with our setup, in which higher-spin
fields are not required to be transverse. As for low-spin
particles, this property guarantees the gauge-choice inde-
pendence of the tree-level four-point matter amplitude.

III. NONMINIMAL INTERACTIONS

The general form of the stress tensor of an arbitrary-spin
particle in a parity-invariant theory is described in Ref. [72]

in terms of four independent form factors. When used as
vertices in a scattering amplitude, two of them contribute
only contact terms. In this section we describe a non-
minimal part Lnon-min, corresponding to the remaining two
form factors of the Lagrangian (2.22).

A. Nonminimal higher-spin Lagrangians
and cubic vertices

To construct manifestly covariant spin-dependent
Lagrangian interactions it is convenient to define an off-
shell manifestly covariant analog of the Pauli-Lubanski
vector:

Sa ≡ −i
2m

ϵabcdMcd∇ðωÞb: ð3:1Þ

It carries an explicit tangent-space vector index and two
implicit labels for the spin representation which we will
choose to be ðsþ 1; sþ 1Þ. Then, all the terms linear in the
graviton and bilinear in higher-spin fields are

Lnon-min ¼
X∞
n¼1

ð−1Þn
ð2nÞ!

CES2n

m2n ∇ðωÞf2n � � �∇ðωÞf3Rf1af2b∇ðωÞaϕsSðf1 � � �Sf2nÞ∇ðωÞbϕs

−
X∞
n¼1

ð−1Þn
ð2nþ 1Þ!

CBS2n

m2nþ1
∇ðωÞf2nþ1

� � �∇ðωÞf3
1

2
ϵabðcjf1R

abjdÞf2∇ðωÞcϕsSðf1 � � �Sf2nþ1Þ∇ðωÞdϕs; ð3:2Þ

where, as in Eq. (2.22), the indices on ϕs are implicit. The
operators included here are in one-to-one correspondence to
the nonminimal couplings in the world-line spinning-particle
action of Ref. [57]. As in the minimal Lagrangian, here all
indices are flat, and we assume that the fields are real.
We note that, through cubic order in fields, the matrix

elements of the quadrupole term in (2.22) are indistin-
guishable from the matrix elements of the n ¼ 1 term on
the first line of Eq. (3.2). Thus, when combining the
minimal and nonminimal Lagrangians and their contribu-
tions to vertices, we will drop the H term in favor of CES2 .
One can include further terms, with two or more

Riemann tensors. At OðGÞ in a scattering process, they
necessarily imply emission of gravitational radiation. At
higher orders in Newton’s constant they contribute also to
the conservative part of the two-particle spin-dependent
Hamiltonian. Some of them can be identified as bilinears in

the single-graviton operators included in Eq. (3.2). We will
not attempt to classify here all such operators to all orders
in spin.
To find the nonminimal vertices we expand (3.2) around

Minkowski space. Following the same reasoning as in
Sec. II D, we may take the spin connection to be given by
the solution to the vielbein postulate. This implies that the
expansion of the Riemann tensor is given by Eq. (2.26).
Since all nonminimal terms contain a Riemann tensor, none
of the other vielbein or spin connections in Eq. (3.2)
contribute to the three-point vertex. It is convenient to
consider separately the contribution of the terms depending
on the Riemann tensor and its dual:

−iV3
μν
non-min ¼ −iV3

μν
non-min;E − iV3

μν
non-min;B: ð3:3Þ

Each of them is given by

−iV3
μν
non-min;E ¼ pðμ

1 p
νÞ
2 Sym½ðq · S0ðp1ÞÞ; ðq · S0ðp1ÞÞ; Êðq · S0ðp1ÞÞ� þOðq; p2

i −m2Þ;

−iV3
μν
non-min;B ¼ −

i
2
m2qρðp2 − p1ÞðμSym½MνÞρ; q · S0ðp1Þ; B̂ðq · S0ðp1ÞÞ� þOðq; p2

i −m2; pμ
i MμνÞ; ð3:4Þ

FIG. 2. The three vertex labels. All momenta are outgoing.
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where S0ðpÞμ is the Fourier transform of the linearization
of the operator Sμ in Eq. (3.1) (i.e., the part that is
independent of the metric fluctuations),

S0ðpÞμ ≡ 1

2m
ϵμνρσpνMρσ: ð3:5Þ

In the second Eq. (3.4) we neglected terms containing
pμ
i Mμν because such terms vanish in the classical limit up to

contributions subleading in q. The operators ÊðXÞ and
B̂ðXÞ are defined as

ÊðXÞ ¼
X∞
n¼1

1

ð2nÞ!
CES2n

m2n X2n−2;

B̂ðXÞ ¼
X∞
n¼1

1

ð2nþ 1Þ!
CBS2nþ1

m2nþ2
X2n−1; ð3:6Þ

and the operator Sym½� � �� symmetrizes with unit strength in
all of its arguments. Last, if an argument is the nth power of
an operator, then it is interpreted as n distinct entries.

B. The higher-spin and the Kerr black hole stress tensor

To construct the on-shell stress tensor we contract the
three-point vertex with polarization tensors for the higher-
spin fields, use the mass-shell conditions and transversality
of the graviton polarization tensor,

q2 ¼ 0; qμεðqÞμν ¼ qνεðqÞμν ¼ 0; p2
1 ¼ p2

2 ¼ m2;

ð3:7Þ

and evaluate

Tμν ¼ i
m

εðs; p2ÞðVμν
3;min þ Vμν

3;non-minÞεðs; p1Þ
εðs; p2Þ · εðs; p1Þ

: ð3:8Þ

Following our original setup, we do not assume that the
higher-spin polarization tensors are transverse. The division
by εðs; p2Þ · εðs; p1Þ can be understood as a choice of
position-space coordinate conjugate to the graviton
momentum. With this normalization this coordinate is
covariant and thus includes a certain shift proportional to
the rest-frame spin [72].
To see this it is useful to recall that, as it was understood

long ago by Foldy and Wouthuysen [85] in the context of
the free Dirac theory, the operator xcov whose expectation
value is the position of a particle is, in fact, a particular
combination of the canonical position operator x and the
spin operator. For a particle with momentum p and rest-
frame spin S it is

xcov ¼ x −
p × S

mðEðpÞ þmÞ : ð3:9Þ

A similar relation was shown in Ref. [58] to be a
consequence of switching between the covariant and
canonical spin supplementary conditions. Using the all-
orders-in-spin generalization of Eqs. (2.20),

εðs; p1Þ · εðs; p2Þ ¼ exp

�
−i

ϵrskpr
1p

s
2S

k

mðEþmÞ
�
þOðqÞ; ð3:10Þ

which may be proven directly, by writing the polarization
tensors as boosts of rest-frame coherent states, as in Sec. II,
it is straightforward to see thatZ

d2qe−ir·qεðs; p2ÞðVμν
3;min þ Vμν

3;non-minÞεðs; p1Þ

¼
Z

d2qe−ircov·q
εðs; p2ÞðVμν

3;min þ Vμν
3;non-minÞεðs; p1Þ

εðs; p2Þ · εðs; p1Þ
:

ð3:11Þ

This choice facilitates comparisons with Ref. [58], which
uses the covariant coordinate and covariant spin tensor in the
derivation of the Kerr black hole stress tensor. To express our
results in terms of the rest-frame spin, it is necessary to
restore the spin dependence contained in the product of
polarization tensors; we will do so in later sections.
The classical limit of Eq. (3.8) can be taken by using a

generalization of Eq. (2.20) to the symmetric product of an
arbitrary number of Lorentz generators. By boosting from
the rest frame, where such products can be computed using
the properties of the coherent states and the explicit forms
of Lorentz generators, it is not difficult to find that

εðs; p2ÞSym½Mμ1ν1 ;…;Mμnνn �εðs; p1Þ
¼ Sðp1; SÞμ1ν1 � � � Sðp1; SÞμnνnεðs; p2Þ · εðs; p1Þ
þOðq−ðn−1ÞÞ: ð3:12Þ

This relation can be used to evaluate the expectation value
of a generic product of Lorentz generators. Indeed, using
the Lorentz algebra one can rewrite an arbitrary monomial
in Lorentz generators as a sum of completely symmetric
products or generators, with coefficients given by the
structure constants of the algebra. For example,

Mμ1ν1Mμ2ν2 ¼ 1

2
fMμ1ν1 ;Mμ2ν2g þ 1

2
½Mμ1ν1 ;Mμ2ν2 �

¼ 1

2
fMμ1ν1 ;Mμ2ν2g þ i

2
ðημ3μ1Mμ4μ2

þ ημ2μ3Mμ1μ4 − ημ4μ1Mμ3μ2 − ημ2μ4Mμ1μ3Þ:
ð3:13Þ

Then, the expectation value of each factor can be evaluated
using Eq. (3.12). Each time Lorentz algebra is used, the
number of generators decreases by one; the expectation
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value of the resulting monomials is subleading compared to
that of the symmetric product of the original number of
generators. Such subleading terms will be crucial at one-
loop in Sec. V to obtain the correct classical terms. By the
same reasoning, this will be true at higher loops as well.
At tree level, however, the maximal number of gener-

ators already gives a classical contribution, so all com-
paratively subleading terms can be ignored. Upon using
Eq. (3.12), all Lorentz generatorsMμν become spin tensors.
Moreover, using the contraction of Eq. (2.18) with the
momentum transfer q,

1

2
ϵμνρσqμpν

1Sðp1Þρσ ¼ −mqμSðp1Þμ ≡ −mq · Sðp1Þ;
ð3:14Þ

ignoring terms subleading in the small-q expansion and
defining CES0 ¼ 1 and CBS0 ¼ 1, the stress tensor becomes

Tμνðp1;qÞ¼
pμ
1p

ν
1

m

X∞
n¼0

CES2n

ð2nÞ!
�
q ·Sðp1Þ

m

�
2n

−
i
m
qρp

ðμ
1 Sðp1ÞνÞρ

X∞
n¼1

CBS2nþ1

ð2nþ1Þ!
�
q ·Sðp1Þ

m

�
2n
:

ð3:15Þ

As expected, it has a form consistent with the general stress
tensor that contributes to long-range interactions [72].
Equation (3.14) also implies that, as stated previously,

the coefficient CES2 is equivalent to the quadrupole H term
in Eq. (2.22). Indeed, using the relation between the
covariant spin vector and tensor it is not difficult to
show that

Sðp1ÞμρSðp1Þνσqρqσ ¼ −
1

m2
pμ
1p

ν
1ðq · Sðp1ÞÞ2 þ…

¼ þ 1

m2
pðμ
1 p

νÞ
2 ðq · Sðp1ÞÞ2 þ � � � ;

ð3:16Þ

where the ellipses stand for terms that vanish when the
free indices are contracted with an on-shell graviton
polarization tensor. Thus, as noted earlier, we are justified
to ignore the quadrupole term in Eq. (2.22) when the
nonminimal interaction Lagrangian (3.2) is included.
Comparing Eq. (2.27) with the n ¼ 1 term in the first
Eq. (3.4) in the classical limit and using (3.16), it is easy to
see that the coefficient H is related to CES2 as

H ¼ CES2 : ð3:17Þ

Thus, the value of H for the Kerr black hole can be found by
comparing Eq. (3.15) to the stress tensor of the Kerr black
hole constructed in Ref. [58].

To carry out this comparison we first organize the result
of Ref. [58] in our notation. It is found there by casting the
linearized Kerr metric in the form of an operator acting on a
free-particle Green’s function:

hρσ ¼ 4GPdeDonder
ρσμν T̂μν 1

r
;

PdeDonder
ρσμν ¼ 1

2
ημαηνβ þ

1

2
ηναημβ −

1

D − 2
ημνηαβ: ð3:18Þ

Here PdeDonder
ρσμν is the tensor structure of the graviton

propagator in de Donder gauge and r is the flat-space
four-dimensional coordinate distance, r2 ¼ ημνxμxν. The
stress-tensor operator T̂μν is given by [cf. Eq. (32a) of
Ref. [58] ]

T̂μν ¼ m expða � ∂ÞðμρuνÞuρ; ð3:19Þ

where

aμ ¼ 1

2p2
ϵμνρσpνSρσ; ða � ∂Þμν ≡ ϵμνρσaρ∂σ; ð3:20Þ

and u is the four-velocity of the black hole, uμ ¼ pμ=m.
Identities such as

ða � ∂Þμνða � ∂Þνρ u
ρ

r
¼ −ða · ∂Þ2δμρ u

ρ

r
;

ða � ∂Þνρ u
ρ

r
¼ SðpÞμρ∂ρ 1

r
ð3:21Þ

may be used to reorganize the exponential factor.
To compare with our trilinear vertex we need to Fourier

transform T̂μν to momentum space, which is easily done via
the substitution ∂μ → iqμ. It leads to

T̂μν ¼ m expðia � qÞðμρuνÞuρ
¼ mðcos a � qþ i sin a � qÞðμρuνÞuρ

¼ m

�
coshða · qÞδðμρ þ i

ða � qÞðμρ
a · q

sinhða · qÞ
�
uνÞuρ

¼ m coshða · qÞuμuν − i
a · q

sinhða · qÞqρSðpÞρðμuνÞ:

ð3:22Þ

It is not difficult to see, using Eq. (3.14), that the building
block of this expression, a · q, is the same as the building
block of Eq. (3.15):

a · q ¼ 1

2m2
ϵμνρσqμpνSðpÞρσ ¼ −

q · SðpÞ
m

: ð3:23Þ

Further using the relation between momentum and velocity,
Eqs. (3.22) and (3.15) become identical if we choose
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CES2n ¼ 1; CBS2n ¼ 1: ð3:24Þ

Equation (3.17) then implies that the H parameter of the
Kerr black hole is

H ¼ 1: ð3:25Þ

As mentioned earlier, this value is the one required [83,84]
for amplitudes of higher-spin fields to have an improved
high-energy behavior delaying violations of partial-wave
unitarity.
The relation between the Kerr stress tensor [58] and the

one following from the Lagrangian (2.22) and (3.2) implies
that the tree-level scattering amplitude of two higher-spin
fields—and consequently the 1PM effective Hamiltonian—
will also reproduce the scattering amplitude of two Kerr
black holes found in Ref. [58]. In subsequent sections we
will be interested in Hamiltonian terms that contain at most
one spin vector for each of the two particles, so we will focus
on the minimal Lagrangian (2.22) and ignore the higher-
derivative terms in the nonminimal Lagrangian (3.2).

C. The double-copy properties
of general three-point vertex

For computations beyond leading order in Newton’s
constant it can be quite useful to exploit the double-
copy structure of gravitational theories. This property
played a useful role in the computation of the two-body
Hamiltonians for spinless particles at OðG3Þ [14,15].

The double-copy properties of amplitudes of massive
spin-1=2 and spin-1 massive particles have been studied
in some detail in [76], using the massive-spinor-helicity
formalism. Here we make a few observations on the
properties of the trilinear vertex for graviton-coupled
arbitrary spin particles and in Sec. IV we derive a
double-copy formula for the tree-level gravitational
Compton amplitude of the minimal Lagrangian. This
tree-level amplitude, together with the three- and four-
point amplitudes of higher-spin particles, is the building
block of the one-loop amplitude we construct in Sec. V.
As we now show, for generic values of the parameters

CES2n and CBS2n , the complete on-shell trilinear graviton-
higher-spin vertex,

Vμν
3 ¼ Vμν

3;min þ Vμν
3;non-min; ð3:26Þ

can be expressed as the double-copy of trilinear vertices
coupling higher-spin fields with vector fields. The double
copy is usually formulated in terms of non-Abelian vector
fields; for three-point interactions, the non-Abelian struc-
ture is not essential, so one may equally well describe
(3.26) as the double copy of trilinear vertices coupling
higher-spin fields with a Maxwell field. Extension of the
double-copy property for four- and higher-point amplitudes
is an interesting open question.
To see explicitly these properties, consider the general

trilinear vector-higher-spin vertex9 arising from the
Lagrangian,

L ¼ 1

4
Fa
μνFa;μν −

1

2

X∞
n¼0

Cnημ0ν0
22nm4n ϵμ1ν1ρ1σ1 � � � ϵμ2nν2nρ2nσ2nDðμ0Dμ1 � � �Dμ2nÞφsgSym½Mρ1σ1 ;…;Mρ2nσ2n �Dðν0Dν1 � � �Dν2nÞφsg

þ 1

2
m2

X∞
n¼0

Cn

22nm4n ϵμ1ν1ρ1σ1 � � � ϵμ2nν2nρ2nσ2nDðμ1 � � �Dμ2nÞφsgSym½Mρ1σ1 ;…;Mρ2nσ2n �Dðν1 � � �Dν2nÞφsg

þ i
2

X∞
n¼0

En

22nm4n ϵμ1ν1ρ1σ1 � � � ϵμ2nν2nρ2nσ2nDðμ1 � � �Dμ2nÞφsgSym½Mμ0ν0F
μ0ν0 ;Mρ1σ1 ;…;Mρ2nσ2n �Dðν2n � � �Dμ1Þφsg : ð3:27Þ

Here we assume that the real higher-spin field φsg is in a
real nonadjoint representation of some gauge group G,Dν is
the corresponding covariant derivative, and Fμ0ν0 ≡
Fa
μ0ν0T

a is its field strength. Equation (3.27) may be given
in a (slightly) more compact form in terms of an operator
obtained from S defined in Eq. (3.1) by replacing the
gravitational covariant derivative with a gauge-covariant
derivative. Both Lorentz and gauge group indices are

contracted via matrix multiplication. The scalar coefficients
Cn and En are arbitrary except for C0 ¼ −1 defining
the quadratic term of the higher-spin field; all quadratic
terms with more than two derivatives cancel out upon
integration by parts. Last, Lorentz generators M are in
the ðsg þ 1; sg þ 1Þ representation; for the purpose of
this action one may think of them only as the Clebsch-
Gordan coefficients for projection ðsg þ 1; sg þ 1Þ×
ðsg þ 1; sg þ 1Þ → ð3; 1Þ ⊕ ð1; 3Þ.
The color-stripped three-point vertex can easily be read

from the action:
9As in their coupling to gravity, here too higher-spin fields are

not required to be transverse.
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−iVμ0
3 aðsgÞ

bðsgÞ ¼ i
2
ðp2 − p1Þμ0

X∞
n¼0

Ĉμ1ν1;…;μ2nν2n
n ðMμ1ν1 � � �Mμ2nν2nÞaðsgÞbðsgÞ

−
X∞
n¼0

Êμ1ν1;…;μ2nν2n
n Sym½Mμ0ν0qν0 ;M

μ1ν1 ;…;Mμ2nν2n �aðsgÞbðsgÞ: ð3:28Þ

Here p1 and p2 are the momenta of the tensor fields with Lorentz indices bðsgÞ and aðsgÞ, respectively, and q ¼ −p1 − p2 is
the gluon momentum. The tensors Ĉn and Ên are symmetric under the interchange of pairs of ðμiνiÞ indices and read:

Ĉμ1ν1;…;μ2nν2n
n ¼ Cn

22nm4n ϵ
ρ1σ1μ1ν1qρ1p1σ1 � � � ϵρ2nσ2nμ2nν2nqρ2np1σ2n ;

Êμ1ν1;…;μ2nν2n
n ¼ En

22nm4n ϵ
ρ1σ1μ1ν1qρ1p1σ1 � � � ϵρ2nσ2nμ2nν2nqρ2np1σ2n : ð3:29Þ

In deriving them we ignored terms proportional to the free equations of motion and terms that contain more powers of the
gluon momentum than the ones shown. In the contraction of the Levi-Civita symbols, Lorentz generators, and momenta we
may recognize the repeated appearance of the operator S0 defined in Eq. (3.5). Up to numerical coefficients, the tensors Ĉn

and Ên are proportional, so their product also is totally symmetric in all ðμiνiÞ pairs of indices.
To construct the double copy of two such vertices, one with sg ¼ sL and the other with sg ¼ sR, we need the projection of

the product ðsL þ 1; sL þ 1Þ × ðsR þ 1; sR þ 1Þ onto ðsþ 1; sþ 1Þ with s ¼ sL þ sR. Using the fact that the double-copy
vertex is contracted with a polarization tensor in the ðsþ 1; sþ 1Þ representation, the relevant projection (denoted by the
vertical bar and realized e.g., by contracting all two-component spinor indices with identical commuting spinors) is

ðMμ1ν1 � � �MμnνnÞaðsLÞbðsLÞ ⊗ ðMρ1σ1 � � �MρmσmÞaðsRÞbðsRÞj ¼ Cðn;m; sL; sRÞðMμ1ν1 � � �MμnνnMρ1σ1 � � �MρmσmÞaðsÞbðsÞ; ð3:30Þ

where

Cðn;m; sL; sRÞ ¼
sL!

ðsL − nÞ!
sR!

ðsR −mÞ!
ðs − n −mÞ!

s!
: ð3:31Þ

Evaluating

−iεðs; p2ÞVμ0ν0
3;DCεðs; p1Þ ¼ ½−iεðsL; p2ÞVμ0ν0

3;L εðsL; p1Þ�½−iεðsR; p2ÞVμ0ν0
3;R εðsR; p1Þ�; ð3:32Þ

in the classical limit by using the relation between polarization tensors εðs; pÞ ¼ εðsL; pÞ ⊗ εðsR; pÞj, using the identity
(3.16), and ignoring terms that vanish for on-shell gravitons, we find

−iεðs; p2ÞVμ0ν0
3;DCεðs; p1Þ ¼ pμ0

1 p
ν0
1

X∞
n;m¼0

Cðn;m; sL; sRÞCnCmεðs; p2Þ
�
q · S0

m

�
2mþ2n

εðs; p1Þ

− pμ0
1 p

ν0
1

X∞
n;m¼0

Cðn;m; sL; sRÞEnEmεðs; p2Þ
�
q · S0

m

�
2nþ2mþ2

εðs; p1Þ

− i
X∞
n;m¼0

CnEmεðs; p2ÞSym
�
ðCðn;m; sL; sRÞpμ0

1 M
ν0σ0qσ0

þ Cðm; n; sL; sRÞpν0
1 M

μ0σ0qσ0Þ;
�
q · S0

m

�
2mþ2n

�
εðs; p1Þ: ð3:33Þ

If sL ≠ sR, the expression above contains an antisymmetric part which is identified with a coupling with the Neveu-Schwarz
B field. It is not difficult to see that the symmetric part has the same tensor structure as the graviton-higher-spin vertex in
Eq. (3.15); moreover, any choice of coefficients CES2n and CBS2n can be reproduced by adjusting the coefficients Cn and En.
As a special case of this general relation, we show that the double copy of two minimal couplings of a higher-spin field

with a vector yields the gravitational minimal coupling (2.27), including the quadrupole contribution. The former may be
found by truncating (3.28) to terms with at most one Lorentz generator (i.e., setting to zero all Cn≠0 and En≠0):
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−iVμ
aðsLÞ

bðsLÞðq; p1; p2Þ ¼ ipμ
1δ

bðsLÞ
aðsLÞ − qρðMμρÞaðsLÞbðsLÞ:

ð3:34Þ

Constructing the double-copy vertex (3.32) and projecting
onto the ðsþ 1; sþ 1Þ representation gives

− iVμν
3;DCaðsÞ

bðsÞðq; p1; p2Þ

¼ −pμ
1p

ν
1δ

bðsÞ
aðsÞ −

i
sL þ sR

ðsRqρpμ
1ðMνρÞaðsÞbðsÞ

þ sLqρpν
1ðMμρÞaðsÞbðsÞÞ

þ 1

2

�
2

sLsR
sðs − 1Þ

�
qρqσðMðμjρMjνÞσÞaðsÞbðsÞ: ð3:35Þ

For s ¼ sL þ sR ¼ 1 as well as for sL ¼ 0 or sR ¼ 0 the
quadrupole term is not generated. As in the general case, for
sL ≠ sR the on-shell double-copy three-point vertex V μν

3;DC

contains an antisymmetric part, representing the coupling
of the Neveu-Schwarz B field with the higher-spin tensor.
The term linear in Lorentz generators in the symmetric part
of V μν

3;DC is universal, independent on sL and sR; this is a
reflection of the universality of gravity. It is easy to see that
the symmetric part of Eq. (3.35) is the on-shell value of the
graviton-higher-spin vertex (2.27) derived from the mini-
mal Lagrangian (2.22), with a gravitational quadrupole
coefficient given by

H ¼ 2
sLsR

sðs − 1Þ : ð3:36Þ

This value is the same as the one found in string theory
[84]. Equation (3.36) implies that, in the classical limit,
where all spins are large, H < 1=2. For low values of the
spins, H can reach unity.

IV. TREE AMPLITUDES

One of our goals is to obtain new results for the terms
bilinear in spin in the two-body Hamiltonian, through
OðG2Þ, and to all orders in velocity. The key input that
we need is the one-loop two-to-two scattering amplitudes
for spinning particles. In turn, the generalized unitarity
method [27–31] for constructing loop amplitudes relies on
suitable tree-amplitude building blocks. In this section,
we describe the ones that will be required in subsequent
sections to obtain the desired gravitationally induced
interactions of spinning particles. To construct these tree
amplitudes we use the arbitrary-spin formalism set up in
Sec. II. Here we are interested only in terms linear in the
spin of each particle, so the minimal Lagrangian in
Eq. (2.22) with H ¼ 0 is sufficient; the nonminimal
interactions discussed in Sec. III are all quadratic or of
higher order in spin and will be useful for future studies.

First, we obtain the tree-level amplitude with four
external particles of arbitrary spin. The sole contributing
diagram is shown in Fig. 3. It gives us the necessary
information to determine theOðGÞ two-body Hamiltonian.
Then, we proceed to obtain the tree-level amplitude which
will be used in Sec. V to construct the one-loop amplitude
that encodes the spin-orbit and spin-spin interactions at
OðG2Þ. As noted in Refs. [11,12,17,22] and reviewed in
Sec. II A, only a limited number of terms in the one-loop
amplitude contribute to the long-range classical potential.
They are captured by the unitarity cuts that separate the
two matter lines, as illustrated at one-loop in Fig. 4.
Thus, to build the relevant parts of the one-loop amplitude,
we only need the tree amplitudes contributing to these
cuts, i.e., the gravitational analog of the tree-level
Compton amplitude, whose diagrams are shown Fig. 5.
In this section, we will present these tree amplitudes,
constructed using our arbitrary-spin formalism. We also
comment on some of their important properties, including
generalized on-shell Ward identities and double-copy
properties.

FIG. 3. The tree-level Feynman diagram containing the OðGÞ
spin interactions. Because we are interested only in long range
interactions contact terms where the graviton propagator cancels
can be ignored.

FIG. 4. The two-particle cut needed for extracting classical
dynamics. The blobs represent on-shell tree amplitudes and the
exposed lines indicate that the propagators are replaced with on-
shell conditions.

(d)(b) (c)(a)

FIG. 5. The tree-level Feynman diagram for gravitational
Compton scattering. For integer-spin electrodynamics diagram
(d) is absent. Here the internal lines represent Feynman
propagators.
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A. Tree-level two-to-two scattering of spinning particles

Consider the two-to-two tree-level scattering amplitude
encoded in the diagram in Fig. 3 and obtained by sewing
together two three-point vertices (2.27) with H ¼ 0. We can
drop any term that cancels the graviton propagator, since
we are only interested in long range interactions. This
effectively places the graviton on-shell with the result that
each vertex is automatically transverse and thus their
contribution to the amplitude is independent of the gauge
choice. We may therefore use the relatively simple de
Donder gauge propagator,

Pμναβ
deDonderðqÞ ¼

i
q2

�
1

2
ημαηνβ þ 1

2
ηναημβ −

1

D − 2
ημνηαβ

�
;

ð4:1Þ

since any longitudinal terms in the graviton physical-state
projector are automatically set to zero by the two vertices.
Using the vertex (2.27) and the propagator (4.1) it is then

straightforward to obtain the desired tree-level amplitude
from the diagram in Fig. 3:

iMtreeð1s1 ; 2s2 ; 3s2 ; 4s1Þ ¼ ε4
aðsÞVμν

minaðsÞ
bðsÞðq; p1; p4Þε1bðsÞPμναβ

deDonderðqÞε3cðsÞVμν
mincðsÞ

dðsÞð−q; p2; p3Þε2dðsÞ; ð4:2Þ

where εi ≡ εðsi; piÞ and we can drop any terms that cancel the graviton propagator. Starting with the tree-level vertex given
in Eq. (2.27) and defining

Mijða; bÞ≡ εðpiÞMμνεðpjÞaμbν; Mijðeμ; aÞ≡ εiMμνεjaν; ð4:3Þ

where eμ is a unit vector signifying that the μ index is uncontracted, from Eq. (4.2) we obtain

iMtreeð1s1 ; 2s2 ; 3s2 ; 4s1Þ ¼ −
16πiGm2

1m
2
2

q2

�
ð2σ2 − 1Þε1 · ε4ε2 · ε3 þ

2iσ
m1m2

M14ðp2; qÞε2 · ε3 −
i
m2

1

M14ðp1; qÞε2 · ε3

−
2iσ
m1m2

ε1 · ε4M23ðp1; qÞ þ
i
m2

2

ε1 · ε4M23ðp2; qÞ

þ 1

m2
1m

2
2

ðM14ðp2; qÞM23ðp1; qÞ −M14ðp1; qÞM23ðp2; qÞÞ −
σ

m1m2

M14ðeμ; qÞM23ðeν; qÞημν
�
;

ð4:4Þ

where we use the dimensionless kinematic variable,

σ ≡ p1 · p2

m1m2

: ð4:5Þ

In the classical limit, the products of polarization tensors and Lorentz generators (4.3) are related to the spin tensors of the
two particles through Eqs. (2.20); thus, the tree amplitude can be expressed solely in terms of them as well as the products
εi · εj. Further using Eq. (2.18) and the covariant spin supplementary condition (2.19), the amplitude becomes

iMtreeð1s1 ; 2s2 ; 3s2 ; 4s1Þ ¼ −
16πiGm1m2

q2
ε1 · ε4ε2 · ε3

�
m1m2ð2σ2 − 1Þ − 2σðiS2ðp1; qÞ − iS1ðp2; qÞÞ

−
�

1

m1m2

S1ðp2; qÞS2ðp1; qÞ þ σS1ðeμ; qÞS2ðeν; qÞημν
��

þOðq; S2i Þ; ð4:6Þ

where, in close analogy with Eq. (4.3), we defined

Siða; bÞ≡ aμbνSμνðpiÞ; Siðeμ; bÞ≡ bνSμνðpiÞ: ð4:7Þ

The parametrization of the classical amplitude in terms of the spin tensor emphasizes its close relation to its complete
quantum origin. As we will see in Sec. V, this persists at loop-level and we will organize the amplitude in a similar form,
which will have a structure close to that of the unitarity cuts.
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Using Eq. (2.18), and the identities for products of Levi-Civita tensors, we can express the result in terms of the spin
vector. During this transformation, terms with more than two powers of the momentum transfer q appearing in the bilinears
in spin tensor as well as terms canceling the graviton propagator are discarded. We find

iMtreeð1s1 ; 2s2 ; 3s2 ; 4s1Þ ¼ −
16πiGm1m2

q2
ε1 · ε4ε2 · ε3

�
m1m2ð2σ2 − 1Þ − 2iσϵμνρσp1μp2νqρ

�
S1σ
m1

þ S2σ
m2

�

þ ð2σ2 − 1Þq · S1q · S2

�
þOðq; S2i Þ: ð4:8Þ

It is straightforward to further write the amplitude in terms
of the rest-frame spin vectors of the two particles; we will
do this in Sec. V E and will be an important input in the
construction of the EFT in Sec. VI.

B. Tree-level gravitational Compton amplitude

To obtain the tree-level gravitational Compton amplitude
needed to construct the one-loop four-point matter ampli-
tude, we follow the same basic procedure. It is obtained by
straightforwardly evaluating the four Feynman diagrams in
Fig. 5, with two external arbitrary-spin particles and two
gravitons. We need to include the contribution of the four-
point vertex arising from the Lagrangian (2.22) and shown
in Fig. 5(c) as it contributes, together with other contact
terms from collapsing internal propagators, to the classical
part of the loop amplitudes we construct from this tree
amplitude.
Once we have obtained the Compton amplitude we put it

in a factorized form inspired by the KLT relations [41],
which express gravitational amplitudes in terms of gauge-
theory ones. First we note that the case of spinless external
matter has a simple factorization into a product of ampli-
tudes in scalar electrodynamics,

iMð10; 20; 3h; 4hÞ
¼ −4πiG

p1 · p3p1 · p4

p3 · p4

½Að10; 20; 3A; 4AÞ�2; ð4:9Þ

where Að10; 20; 3A; 4AÞ is the scalar electrodynamics
Compton amplitude, the 0 superscript indicated that the
matter leg is spinless, and the h and A superscripts indicate
the leg is a graviton and photon, respectively. The factors of
i are due to our choices for normalizing the amplitudes.
Similarly, the arbitrary-spin amplitude also factorizes into
electrodynamics amplitudes,

iMð1s; 2s; 3h; 4hÞ
¼ −4πiG

p1 · p3p1 · p4

p3 · p4

Að10; 20; 3A; 4AÞAð1s; 2s; 3A; 4AÞ;

ð4:10Þ

where the second amplitude Að1s; 2s; 3A; 4AÞ is an electro-
dynamics Compton amplitude for an arbitrary-spin particle

as indicated by the superscript s. In Eq. (4.10) the graviton
polarization tensor is identified in terms of a product of two
photon polarizations,

εγ1γ2ðp3Þ ¼ εγ1ðp3Þεγ2ðp3Þ: ð4:11Þ

While inspired by KLT factorization, Eq. (4.10) differs
somewhat from the usual field theory KLT relation in two
ways: it holds for arbitrary-spin massive particles, and the
factorization involves Abelian rather than non-Abelian
gauge-theory amplitudes.
The scalar electrodynamics amplitude Að10; 20; 3A; 4AÞ

is derived from the standard Lagrangian,

Ls¼0;EM ¼ −
1

4
FμνFμν þD†

μϕ̄Dμϕ −m2ϕ̄ϕ; ð4:12Þ

where Fμν is the usual Maxwell field strength and Dμ the
corresponding covariant derivative. Similarly, the arbitrary-
spin electromagnetic Compton amplitude in Eq. (4.10)
arises from the Lagrangian with a gyromagnetic ratio,
g ¼ 2,

Ls;EM ¼ −
1

4
FμνFμν þD†

μϕ̄sDμϕs −m2ϕ̄sϕs

þ eðg − 1ÞFμνϕ̄sMμνϕs; ð4:13Þ

where M is a Lorentz generator. We suppress the Lorentz
indices of the higher-spin fields, as in Eq. (2.22). Because
we are coupling to a Uð1Þ gauge field we take the higher-
spin field ϕs to be complex here and (4.13) is the complex
version of the two-derivative truncation of the Lagrangian
(3.27) used in Sec. III C to show that the minimal higher-
spin-graviton vertex has a double-copy structure.10 As
discussed there, the H (quadrupole) term is not generated
if one of the two spins vanishes, which is consistent with
the left-hand side of Eq. (4.10) arising from the Lagrangian
(2.22) with H ¼ 0.
To present the explicit form of the amplitudes we strip

them of their external polarization vectors and tensors,

10Equation (4.13) is also a rewriting of Eq. (3.27) for an SOð2Þ
gauge group and higher-spin matter fields in its vector repre-
sentation.
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Að1s; 2s; 3A; 4AÞ ¼ εαðp3Þεβðp4Þεsðp1Þ · Aαβð1s; 2s; 3A; 4AÞ · εsðp2Þ; ð4:14Þ

where as usual we suppress the higher-spin indices for legs 1 and 2. The dot products refer to the contraction of these
indices. For spinless matter fields we have

Að10; 20; 3A; 4AÞ≡ εαðp3Þεβðp4ÞAαβð10; 20; 3A; 4AÞ: ð4:15Þ

The explicit polarization-stripped amplitude is

Aαβð1s; 2s; 3A; 4AÞ ¼ Aαβð10; 20; 3A; 4AÞ1 − 2i

��
pβ
1

p1 · p4

−
pβ
2

p2 · p4

�
p3γiMγα þ

�
pα
1

p1 · p3

−
pα
2

p2 · p3

�
p4δiMδβ

− p3γp4δ

�
1

p1 · p4

MαγMβδ þ 1

p1 · p3

MβδMαγ

��
; ð4:16Þ

where we have suppressed the indices of the higher-spin fields,M is a Lorentz generator and 1 is the identity matrix of the
ðs1 þ 1; s2 þ 1Þ representation with s ¼ s1 þ s2, g ¼ 2, and we have dropped the electromagnetic coupling constant e. The
scalar part is

Aαβð10; 20; 3A; 4AÞ ¼ 2i

�
pβ
1p

α
2

p1 · p4

þ pα
1p

β
2

p1 · p3

þ pα
3p

β
3 þ pα

4p
β
4

p3 · p4

þ ηαβ
�
: ð4:17Þ

From Eq. (4.10) the arbitrary-spin polarization-stripped gravitational Compton amplitude [derived from the Lagrangian
(2.22) with H ¼ 0] is

iMγ1γ2;δ1δ2ð1s; 2s; 3h; 4hÞ ¼ −4πiG
p1 · p3p1 · p4

p3 · p4

Aγ1δ1ð10; 20; 3A; 4AÞAγ2δ2ð1s; 2s; 3A; 4AÞ: ð4:18Þ

Similarly, the case of spinless matter can be written as

iMγ1γ2;δ1δ2ð10; 20; 3h; 4hÞ ¼ −4πiG
p1 · p3p1 · p4

p3 · p4

Aγ1δ1ð10; 20; 3A; 4AÞAγ2δ2ð10; 20; 3A; 4AÞ: ð4:19Þ

In practice, the spinless limit follows simply by setting the Lorentz generatorsM to zero, and the scalar products of massive-
particle polarization tensors εðs; pÞ to be unity.
The KLT-inspired form of the gravitational amplitudes inherits useful properties directly from the photon amplitudes.

Specifically, the spin-0 and spin-s electromagnetic Compton amplitudes are automatically transverse on each photon leg,
without the need contracting the other legs with polarization tensors. From Eqs. (4.16) and (4.17) it is straightforward to
verify that, for any s including s ¼ 0,

p3γAγδð1s; 2s; 3A; 4AÞ ¼ 0; p4δAγδð1s; 2s; 3A; 4AÞ ¼ 0; ð4:20Þ

using only the antisymmetry of the Lorentz matrices and the on-shell conditions for all external momenta. The net effect is
that, when sewing photon lines of amplitudes with this property, physical-state projectors are not required. Note that the
terms depending on p3 and p4 in Eq. (4.17), which vanish when contracted with physical gluon polarization vectors, are
crucial to ensure this property.
The gravity amplitudes stripped of polarization tensors automatically inherit similar Ward identities via the KLT-like

relation (4.10). Together with Eq. (4.20), this implies that

p3γ1M
γ1γ2;δ1δ2ð1s; 2s; 3h; 4hÞ ¼ 0; p3γ2M

γ1γ2;δ1δ2ð1s; 2s; 3h; 4hÞ ¼ 0;

p4δ1M
γ1γ2;δ1δ2ð1s; 2s; 3h; 4hÞ ¼ 0; p4δ2M

γ1γ2;δ1δ2ð1s; 2s; 3h; 4hÞ ¼ 0: ð4:21Þ

Polarization-stripped gravitational amplitudes constructed through standard methods will not automatically satisfy these
identities. Typically, on-shell Ward identities hold only after transversality is imposed on all other legs by contracting them
with physical state polarization. The differences between such generic forms of polarization-stripped amplitudes and those
obeying the generalized on-shell Ward identities (4.21) are terms that vanish upon contraction with the physical polarization
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tensors. An advantage of using amplitudes obeying the
generalized form of Ward identities is that the graviton
physical state projectors used to sew tree amplitudes into
loops reduces to the simple de Donder gauge one (4.1),
without requiring ghosts. This in turn simplifies D-dimen-
sional cut constructions of loop amplitudes, recently
exploited in Refs. [14,15,17].

1. Connection to field theory KLT relations

Although the original form of the relations was given for
all string theory states, including the massive arbitrary-spin
ones, the field theory KLT relations are usually formulated
in terms of massless states of spin s ≤ 2 on the gravitational
side. The amplitudes appearing in the two factors are those
of non-Abelian Yang-Mills theories (perhaps coupled to
additional matter). Here, Eq. (4.10) holds for a single
massive particle of arbitrary spin and involves Abelian
amplitude factors. Thus, while there is a strong similarity
between the double-copy relation (4.10) and the celebrated
KLT relations [41], they are not identical. It is therefore
worth commenting on the precise connection.
To understand this, we will construct the gravitational

Compton amplitude for massive scalars, by dimensionally
reducing the standard massless D-dimensional KLT rela-
tions to four dimensions. This will yield the amplitude
in a form that will allow us to connect its factors to the
amplitudes of massive scalar electrodynamics that
enter Eq. (4.9).
The D-dimensional four-graviton tree-level amplitude in

KLT form is [41]

iMð1h; 2h; 3h; 4hÞ
¼ −16πiGp1 · p4AYMð1g; 2g; 3g; 4gÞAYMð1g; 3g; 2g; 4gÞ;

ð4:22Þ

where the YM label indicates that these are color-ordered
[24] amplitudes of Yang-Mills theory. The superscript g
indicates that the leg is a gluon, while the superscript h
indicates that it is a graviton. Using the four-point BCJ
amplitude relation [42,86] between partial amplitudes,

AYMð1g; 2g; 3g; 4gÞ ¼ p1 · p3

p3 · p4

AYMð1g; 3g; 2g; 4gÞ; ð4:23Þ

allows us to rewrite the four-graviton amplitude as

iMð1h; 2h; 3h; 4hÞ
¼ −16πiG

p1 · p3p1 · p4

p3 · p4

½AYMð1g; 3g; 2g; 4gÞ�2: ð4:24Þ

The components of the vector fields in the extra (D − 4)
dimensions appear as scalars in four dimensions. Moreover,
the components of the momentum in the extra dimensions
acts as a mass for the four-dimensional particles. Thus, in

both gauge theory amplitudes, we will choose gluons 3 and
4 to be vectors in four dimensions, with no momenta in the
extra dimensions and particles 1 and 2 to be scalars—i.e.,
vectors pointing in the extra dimensions. We will also
assume that they have momentum components in the extra
dimensions, so they are massive from a four-dimensional
standpoint. [See, for example, Eqs. (3.3) and (3.4) of
Ref. [15] for more details.] Thus, the KLT relation for
two massive scalars and a two-graviton amplitude is

iMð10; 20; 3h; 4hÞ
¼ −16πiG

p1 · p3p1 · p4

p3 · p4

½AYMð10; 3g; 20; 4gÞ�2:

ð4:25Þ

This is now of a similar form as Eq. (4.9) except that it
is in terms of non-Abelian gauge-theory amplitudes instead
of electrodynamics. This difference is inconsequential
because the color-ordered diagrams that contribute to the
particular color ordering in Eq. (4.25) and collected in
Fig. 6 do not contain a three-gluon interaction. They are
therefore the same as Maxwell amplitudes, after accounting
for different normalizations and signs from reordering the
diagrams. With standard normalization of color generators
used to define the color-order gauge-theory amplitudes in
the KLT relation, one must divide by a factor of

ffiffiffi
2

p
for

each factor of the electric charge and account for color
ordering signs,

AYMð10; 3g; 20; 4gÞ ¼ −
1

2
AEMð10; 20; 3A; 4AÞ; ð4:26Þ

where the legs on the left-hand side are ordered and on the
right-hand side are unordered. Thus, we obtain

iMð10; 20; 3h; 4hÞ
¼ −4πiG

p1 · p3p1 · p4

p3 · p4

½AEMð10; 20; 3A; 4AÞ�2; ð4:27Þ

in agreement with Eq. (4.10).
The same discussion extends straightforwardly to the

tree-level scattering amplitude of two spin-1 particles and
two gravitons, offering a simple proof of Eq. (4.10) for
s ¼ 1. We note that, as verified by explicitly computing

(b) (c)a)(

FIG. 6. The color ordered tree-level Yang-Mills Compton
Feynman diagrams, with ordering 1, 3, 2, 4, where legs 1 and
2 are bosonic particles of spin s.
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both the gravitational and the electromagnetic Compton
amplitudes arising, respectively, from the Lagrangians in
Eqs. (2.22) and (4.13), the factorization (4.10) requires
that the electromagnetic amplitudes include a magnetic
moment coupling, as indicated in Eq. (4.13). This mirrors
the situation for the three-point vertex discussed in
Sec. III C, where such a coupling was necessary to generate
the complete higher-spin-graviton three-point vertex. It is
an interesting problem to explore such relations in general,
especially at arbitrary orders of the spin and in the presence
of higher-dimension operators as in Eq. (3.27). They should
become important at higher orders, where they will help
simplify calculations and expose new structures.

V. ONE-LOOP AMPLITUDES

Using the generalized unitarity method [27], we now
construct the parts of the one-loop amplitude needed to
extract the classical interaction potential between spinning
particles. As reviewed at length in Ref. [15], not all
generalized cuts contain useful information about the
classical limit of the amplitude. (See also Refs. [11,12,
17,22].) Since we are interested only in long-range inter-
actions, four-point matter contact interactions can be
dropped; this implies that whenever graviton propagators
that connect the two matter lines are canceled by numerator
factors they can be set to zero. In the generalized unitarity
language this implies that the contributing terms must have
two cut graviton legs separating the two matter lines, as
illustrated in Fig. 4. Moreover, the fact that we are
scattering classical particles requires that each loop must
contain at least one matter line; thus, the cuts that contribute
to the classical limit of the amplitude must contain at least
one cut matter line per loop. This implies an integrand
containing the contributions that we are interested in can be
obtained from the quadruple and triple cuts in Figs. 7 and 8.
As we describe below, the quadruple-cut contributions
correspond to iteration contributions. The triple cuts con-
tain the classical pieces we wish to obtain.
After an integrand is constructed from the unitarity

constraints, we apply standard integral reduction methods
to express it as a linear combination of scalar integrals.
Using these methods any one-loop amplitude can be
organized into a linear combination of scalar box, triangle,
bubble, and tadpole integrals [87]. We immediately drop
any bubble and tadpole integrals that result from the

reduction because they are not relevant in the classical limit,
leaving only the box and triangle integrals in Fig. 9. Not only
do bubble and tadpoles not have the required unitarity cuts,
but a direct inspection of the explicit values of the integrals
[88] reveals that their dependence on the transferred
momentum q is inconsistent with classical dependence
while the rational prefactor cannot compensate.
Thus, the classically relevant part of the four-point

amplitude is a linear combination of box, IB and IB̄, and
triangle, I△ and I▽, integrals, shown in Figs. 9(a) and 9(b),
and Figs. 9(c) and 9(d), respectively:

iM1 loop
4 ¼ dBIB þ dB̄IB̄ þ c△I△ þ c▽I▽: ð5:1Þ

The coefficients dB, dB̄, c△, and c▽ are rational functions of
external momenta, polarization tensors, and Lorentz gen-
erators. In the classical limit the latter can be converted to
spin tensors and vectors through an appropriate choice
of polarization tensors, using the relations in Sec. II B. The
evaluation of scalar integrals in the classical limit is
straightforward [11,12,17,33]. In any case, since the one-
loop Feynman integrals are known [88], we can also simply
extract the classical limit directly from these.
One issue that we encounter is that because the box

integrals have a stronger-than-classical behavior, sublead-
ing terms in the relation between polarization and spin
tensors are required for a consistent construction of the
classical limit and extraction of the classical interaction
potential. Whenever this issue arises we postpone intro-
ducing the classical spin tensors until Sec. VI. It turns out
that simply by matching the infrared divergences between
the amplitudes of the full theory and those of the effective
field theory for spinning particles, we find that the physics
is insensitive to these subtleties at this order in G.

(b)(a)

FIG. 7. The quadruple cut from which the coefficients of the
two box integrals in Fig. 9 are extracted. All four external lines
are placed on shell.

(a) (b)

FIG. 8. The triple cuts from which the coefficient of the triangle
integrals are extracted. In each case the three exposed lines are
placed on shell.

(a) (b) (d)(c)

FIG. 9. (a), (b) The one-loop scalar box integrals that contribute
to iterations, and (c), (d) the triangle integrals that contribute to
OðG2Þ terms in the potential.
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Well-developed methods for extracting the coefficient
of the basics scalar integrals exist for extracting them
[30,31] directly from generalized unitarity cuts [27,29].
We use the method due to Forde [31], as extended to
massive particles in Ref. [74]. In this method the coef-
ficient of scalar box integrals are computed from quad-
ruple cuts, i.e., cuts in which four internal propagators are
replaced with on-shell conditions, as illustrated in Fig. 7.
The coefficients of triangle integrals are then extracted
from the triple cuts, as illustrated in Fig. 8, in which three
internal propagators are replaced with on-shell conditions.
While there are alternative ways to carry out the integral
reduction to the basis of scalar integrals, this method
naturally maintains an organized structure for the coef-
ficients of the integrals even for high-rank numerator
tensors of the type that are encountered in multispin
interactions of higher-spin fields described in Secs. III A
and III B.

A. Sewing tree amplitudes

The triple and quadruple cuts, shown in Fig. 8 and Fig. 7,
respectively, that are necessary for constructing the coef-
ficients of the scalar integrals in Eq. (5.1) can all be
obtained from a regular t-channel two-particle cut, shown
in Fig. 4. Given that the required gravitational Compton
amplitudes are relatively simple, this two-particle cut is a
convenient starting point for obtaining the quadruple and
triple cuts. To do so one simply replaces additional
propagators with on-shell conditions.
We carry out the calculation in D dimensions. Although

it is generally more efficient to use four-dimensional tree
amplitudes in the unitarity cuts,D-dimensional cuts make it
straightforward to implement dimensional regularization
and thus identify all infrared singularities. This is particu-
larly useful at higher loops, as one needs to ensure that no
terms are missed due to subtleties or incomplete handling
of dimensional regularization [15]. At one-loop it is not
difficult to show that the difference between four- and
D-dimensional methods for construction of the integrand
amounts to certain rational terms in the amplitude [28] that
do not have the correct scaling at small transferred
momentum to contribute to the classical limit. In particular,
they do not have the characteristic 1=

ffiffiffiffiffiffiffiffi
−q2

p
behavior that

arises from triangle integrals [11,33].
The two-particle cut corresponding to Fig. 4 is given by

C2 ¼
X
λλ0

εðk5Þγ1γ2λ εð−k6Þδ1δ2−λ0 Mγ1γ2δ1δ2ð4s1 ; 1s1 ; 5h;−6hÞ

× εð−k5Þγ
0
1
γ0
2

−λ εðk6Þδ
0
1
δ0
2

λ0 Mγ0
1
γ0
2
δ0
1
δ0
2
ð2s2 ; 3s2 ;−5h; 6hÞ;

ð5:2Þ

where the two tree amplitudes correspond to the two
blobs in that figure and the sum runs over the physical
polarization of the cut gravitons. They may be expressed

naturally in terms of the sum PμνðkÞ over the physical
polarizations of a vector field, as

X
λ

εðkÞμνλ εð−kÞαβ−λ¼
1

2
PμαPνβþ1

2
PναPμβ−

1

D−2
PμνPαβ;

ð5:3Þ

where

PμνðkÞ ¼ ημν −
rμkν þ rνkμ

r · k
ð5:4Þ

and rμ is an arbitrary null reference vector which should
drop out of physical expressions.
The appearance of terms dependent on this reference

vector in intermediate expressions complicates the evalu-
ation of the generalized unitarity cut, especially at higher
loops. Even at one-loop it is best to eliminate them as early
as possible. Because our tree-level amplitudes satisfy, by
construction, the on-shell generalized Ward identities
(4.21), these terms automatically drop out from the physi-
cal-state projectors because in every such term the graviton
momentum contracts with a manifestly transverse ampli-
tude. Thus the completeness relation (5.3) reduces to the
numerator of the graviton propagator in de Donder gauge,

X
λ

εðkÞμνλ εð−kÞαβ−λ ¼
1

2
ημαηνβ þ 1

2
ηναημβ −

1

D − 2
ημνηαβ

≡ Pμναβ
deDonder: ð5:5Þ

A key difference between our construction and the usual de
Donder gauge Feynman diagram approach is that here,
despite the appearance of the same projector, only physical
states propagate so ghosts are not necessary to remove
unphysical degrees of freedom. Combining everything, the
two-graviton cut in Eq. (5.2) becomes

C2 ¼ Mγ1γ2δ1δ2ð4s1 ; 1s1 ; 5h;−6hÞP
γ1γ2γ

0
1
γ0
2

deDonderP
δ1δ2δ

0
1
δ0
2

deDonder

×Mγ0
1
γ0
2
δ0
1
δ0
2
ð2s2 ; 3s2 ;−5h; 6hÞ; ð5:6Þ

where the superscripts s1 and s2 indicate the spin of the
massive particles and the superscript h indicates that the
legs are gravitons. The sewing of tree amplitudes with
the de Donder projector (5.5) substantially simplifies the
evaluation of generalized cuts at both one and higher loops.
The on-shell conditions for the external and cut legs,

k25 ¼ 0; k26 ≡ ðk5 þ qÞ2 ¼ 0; ð5:7Þ

alter the naive scaling in the limit of small momentum
transfer, defined as q≡ p2 þ p3. We use the momentum
assignment in Fig. 8. Indeed, they imply that
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p2 · q ¼ q2=2; p1 · q ¼ −q2=2; k5 · q ¼ −q2=2:

ð5:8Þ

This improved scaling further simplifies the generalized
cuts in the classical limit and, consequently, also the box
and triangle coefficients in Eq. (5.1).

B. Quadruple and triple cuts

The two-graviton cut (5.6), obtained by sewing two tree-
level gravitational Compton amplitudes, leads to a rational
function of momentum invariants and polarization tensors,
whose numerator depends explicitly on loop momenta. We
use the entirely algebraic formalism of Refs. [31,74], which
extracts the coefficients of box and triangle scalar integrals
from quadruple and triple cuts, respectively, shown in
Figs. 7 and 8. They in turn are straightforwardly obtained
by imposing two and one additional cut conditions on the
two-particle cut (5.6), where the input tree amplitudes for
capturing the terms bilinear in spin are given in Eq. (4.4).

1. Quadruple cuts

The quadruple cut corresponding to Fig. 7(a), which
determines the coefficient dB in Eq. (5.1), is obtained from
Eq. (5.6) by cutting the two matter lines carrying momenta
p1 þ k5 and p2 − k5. It is therefore defined as

CðaÞ
4 ≡ ð−2ip1 · k5Þð2ip2 · k5ÞC2jp1·k5→0;p2·k5→0: ð5:9Þ

Because the scalar box integral is more singular in the
classical limit than the expected classical terms, it is
necessary that the classical limit be taken carefully, by
keeping subleading terms in the relation between Lorentz

generators and spin tensors. Their details are correlated
to the choice of effective field theory that we use to
construct the effective interaction Hamiltonian. We there-
fore temporarily postpone the classical limit and list here
the spin-independent terms linear and quadratic in Lorentz
generators.
To shorten the expressions we anticipate that each

Lorentz generator yields a factor of the spin tensor and
therefore has a leading jqj−1 scaling in the classical limit.
The same expectation allows us to use the covariant spin
supplementary condition in the form M14ðp1; eμÞ ¼
M23ðp2; eμÞ ¼ 0. This clearly holds to leading order in
the classical limit [cf. Eq. (2.20)]; we also verify that the
needed subleading terms do not spoil this relation. Last but
not least, we also take the loop momentum to scale as
k25 ∼ q2 at small jqj. We will verify all these expectations in
Sec. V C and emphasize that they are not a necessary step in
the construction of the (classical limit of the) amplitude.
At one-loop it is simple enough to confirm any assumption,
by direct computation.
Thus, the part of the quadruple cut independent of

Lorentz generators is

CðaÞ;Si¼0
4

64π2G2m1m2

¼ 4m3
1m

3
2ð2σ2 − 1Þ2ε1 · ε4ε2 · ε3: ð5:10Þ

The momentum dependence reproduces that of the classical
limit of the quadruple cuts of the one-loop four-point
scattering amplitude of scalar fields [10–12,17,36].
The part of the quadruple cut that is linear in Lorentz

generators is

CðaÞ;SO
4

64π2G2m1m2

¼ −8im2
1m

2
2σð2σ2 − 1ÞM14ðp2; qÞε2 · ε3 þ 8im2

1m
2
2σð2σ2 − 1ÞM23ðp1; qÞε1 · ε4

þ 2ið4m2
1m

2
2σð2σ2 − 1Þ þm1m3

2ð4σ2 − 1ÞÞM14ðk5; qÞε2 · ε3
þ 2ið4m2

1m
2
2σð2σ2 − 1Þ þm3

1m2ð4σ2 − 1ÞÞM23ðk5; qÞε1 · ε4; ð5:11Þ

where the notationMijða; bÞ is defined in Eq. (4.3). These terms will yield the spin-orbit terms in the coefficients of scalar
box integrals.
Finally, the part of the quadruple cut that is quadratic in Lorentz generators with each matter line carrying at least one of

them is

CS1S2
4

64π2G2m1m2

¼ −8m1m2ð2σ2 þ 1ÞM14ðk5; p2ÞM23ðk5; p1Þ þ 4m1m2ð2σ2 − 1ÞM14ðp2; qÞM23ðp1; qÞ

þ ð8m2
2σ þ 4m1m2ð2σ2 þ 1ÞÞM14ðk5; qÞM23ðk5; p1Þ

− ð8m2
1σ þ 4m1m2ð2σ2 þ 1ÞÞM14ðk5; p2ÞM23ðk5; qÞ

− 4m1m2ð2σ2 þ 1ÞM14ðp2; qÞM23ðk5; p1Þ − 4m1m2ð2σ2 þ 1ÞM14ðk5; p2ÞM23ðp1; qÞ
þ 4m1m2ð3σ2 − 1ÞM14ðp2; qÞM23ðk5; qÞ − 4m1m2ð3σ2 − 1ÞM14ðk5; qÞM23ðp1; qÞ

BERN, LUNA, ROIBAN, SHEN, and ZENG PHYS. REV. D 104, 065014 (2021)

065014-22



þ 4m2
1m

2
2σð2σ2 − 1ÞM14ðeμ; qÞM23ðeν; qÞημν þ 8m2

1m
2
2σð2σ2 − 1ÞM14ðk5; eμÞM23ðk5; eνÞημν

þ 4q2m1m2σ
2M14ðk5; eμÞM23ðp1; eνÞημν − 4q2m1m2σ

2M14ðp2; eμÞM23ðk5; eνÞημν
þ 2q2m1m2σ

2M14ðeμ; qÞM23ðp1; eνÞημν − 2q2m1m2σ
2M14ðp2; eμÞM23ðeν; qÞημν

þ 4m2
1m

2
2σð2σ2 − 1ÞM14ðeμ; qÞM23ðk5; eνÞημν þ 4m2

1m
2
2σð2σ2 − 1ÞM14ðk5; eμÞM23ðeν; qÞημν; ð5:12Þ

where Mijðeμ; aÞ is defined in Eq. (4.3). The complete quadruple cut corresponding to Fig. 7(b) and determining the
coefficient dB in Eq. (5.1) is

CðbÞ
4 ¼ CðbÞ;Si¼0

4 þ CðbÞ;SO
4 þ CðbÞ;S1S2

4 : ð5:13Þ

The quadruple cut CðbÞ
4 corresponding to Fig. 7(b) and determining the coefficient dB̄ in Eq. (5.1) is obtained by

interchanging the external momenta p2 and p3 in Eq. (5.13).

2. Triple cuts

The triple cuts, which will be used to determine the coefficients c△ and c▽ in Eq. (5.1), are shown in Fig. 8. They may be
obtained by sewing together one Compton and two three-point gravitational amplitudes or by imposing an additional cut
condition on one of the matter propagators in the two-particle cut (5.6). We follow this second approach:

CðaÞ
3 ≡ 2ip2 · k5C2jp2·k5→0; CðbÞ

3 ≡ −2ip1 · k5C2jp1·k5→0: ð5:14Þ
They are related by the relabeling ðm1; m2; p1; p2; p3; p4; k5Þ ↔ ðm2; m1; p2; p1; p4; p3;−k5Þ, so we need to evaluate only
one of them. Each of the two cuts may be further separated into two parts related by the interchanges p1 ↔ p4 and
p2 ↔ p3, respectively. They correspond to the symmetry of the triangle integrals I△ and I▽. In the following we will not
make explicit this separation.

Since the coefficients c△ and c▽ which will be determined from CðaÞ
3 and CðbÞ

3 multiply integrals whose leading small-q
scaling is classical, I△ ∼ jqj−1 ∼ I▽, it suffices to evaluate the triple cuts only to leading order in the classical limit. That is,
we are free to use the leading order part of the relations (2.20) between Lorentz generators, polarization, and spin tensors.

For the spin-independent part of CðaÞ
3 we find

CðaÞ;Si¼0
3

64π2G2
¼ i

q2P2ðP2 þ q2Þ ε1 · ε4ε2 · ε3f−4m
2
1P

2
2q

2ðP2
2 þ P2q2 þm2

2ð1 − 6σ2Þq2Þ þ P4
2q

4 − 8m1m2P3
2σq

4

þ 16m3
1m2P2σq2ðP2

2 þ P2q2 þm2
2ð1 − 2σ2Þq2Þ þ 2m4

1ðP4
2 þ 2P3

2q
2 þ 2m2

2P2ð1 − 4σ2Þq4 þ 2m4
2ð1 − 2σ2Þ2q4

þ P2
2q

2ðm2
2ð2 − 8σ2Þ þ q2ÞÞg; ð5:15Þ

where P2 ≡ −2p2 · k5. The presence of the two factors in the denominator, related by p2 ↔ p3, exposes the presence
mentioned above of two distinct terms related by this transformation.

Expressing the result in terms of the covariant spin vector through Eq. (2.18), the terms in CðaÞ
3 that are linear in the

covariant spin are

CðaÞ;SO
3

64π2G2
¼ 2ε1 · ε4ε2 · ε3

q2P2ðP2 þ q2Þ fS1ðk5; qÞð−ðq
4ðm3

1ðm3
2ð8σ3 − 4σÞ − 4m2P2σÞ þm2

1ð−8m2
2P2σ

2 þm4
2ð4σ2 − 1Þ þ P2

2Þ

þ 2m2m1P2σðP2 − 2m2
2Þ þm2

2P
2
2Þ − P2q2ð4m2m3

1σðm2
2ð2 − 4σ2Þ þ 3P2Þ

− 2m2
1P2ðm2

2ð1 − 10σ2Þ þ 2P2Þ − 8m2m1P2
2σ þ P3

2Þ þm2
1P

3
2ð3P2 − 8m1m2σÞÞÞ

þ S2ðk5; qÞððq4ðm4
1ðm2

2ð1 − 4σ2Þ þ P2Þ þ 4m2m3
1σðm2

2ð1 − 2σ2Þ þ 2P2Þ
þm2

1P2ð2m2
2ð6σ2 − 1Þ − 3P2Þ − 6m2m1P2

2σ þ P3
2Þ

þm2
1P2q2ðm2

1ðm2
2ð2 − 8σ2Þ þ 3P2Þ þ 12m2m1P2σ − 4P2

2Þ þ 2m4
1P

3
2ÞÞ

þ ðq2ðP2 − 2m1m2σÞðq2ð2m2
1ð−2m2

2σ
2 þm2

2 þ P2Þ þ 4m2m1P2σ − P2
2Þ þ 2m2

1P
2
2ÞÞðS1ðp2; qÞ − S2ðp1; qÞÞg;

ð5:16Þ
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where

Siða; bÞ≡ aμbνSμνðpiÞ: ð5:17Þ

Last, the terms in the triple cut which are linear in both S1 and S2 are

CðaÞ;S1S2
3

64π2G2
¼ −

i
4

ε1 · ε4ε2 · ε3
q2P2ðP2 þ q2Þ f−m

2
1P

3
2S1ðeμ; eνÞS2ðeα; eβÞημαηβνq4

− 16m2
1P

2
2S1ðk5; p2ÞS2ðp1; qÞq2 þ 2m2

1ð8σm1m2 − 3P2ÞP2
2S1ðq; eμÞS2ðq; eνÞημνq2

− 4m2
1P

2
2S1ðp2; eμÞS2ðk5; eνÞημνq4 þ 8m2

1P
2
2ðP2 − 2σm1m2ÞS1ðk5; eμÞS2ðq; eνÞημνq2

− 16σm3
1m2P2

2S1ðq; eμÞS2ðk5; eνÞημνq2 − 16m2
1P

2
2S1ðk5; p2ÞS2ðk5; qÞq2

− 4m2
1ð8σm1m2 − 5P2ÞP2S1ðp2; qÞS2ðk5; qÞq2 þ 16m2

1P
2
2S1ðk5; qÞS2ðk5; p1Þq2

þ 4ðq2ð8ð2σ2m2
2 þm2

2 − P2Þm2
1 − 12σm2P2m1 þ 3P2

2Þ − 8m2
1P

2
2ÞS1ðk5; p2ÞS2ðk5; p1Þq2

− 16m2
1P

2
2S1ðp2; qÞS2ðk5; p1Þq2 − 8m2

1P
3
2S1ðq; eμÞS2ðp1; eνÞημνq2

þ 2P2ðð4ð3P2 − 4σ2m2
2Þm2

1 þ 12σm2P2m1 − 3P2
2Þq2 þ 8m2

1P
2
2ÞS1ðk5; eμÞS2ðp1; eνÞημνq2

− 2P2ðððð8 − 64σ2Þm2
2 þ 20P2Þm2

1 þ 52σm2P2m1 − 11P2
2Þq2 þ 16m2

1P
2
2ÞS1ðk5; qÞS2ðp1; qÞ

þ 2P2ðð32σm2m3
1 − 8ð3P2 − 7σ2m2

2Þm2
1 − 42σm2P2m1 þ 8P2

2Þq2
þ 8m2

1ð4σm1m2 − 3P2ÞP2ÞS1ðk5; qÞS2ðk5; qÞ
þ 4m1ðð8σm2ðð1 − 2σ2Þm2

2 þ P2Þm2
1 þ 2P2ðð6σ2 − 2Þm2

2 þ P2Þm1 − 3σm2P2
2Þq2

þ 8σm2
1m2P2

2ÞS1ðk5; eμÞS2ðk5; eνÞημνq2g: ð5:18Þ

The complete triple cut CðaÞ
3 in the classical limit is

CðaÞ
3 ¼ CðaÞ;Si¼0

3 þ CðaÞ;SO
3 þ CðaÞ;S1S2

3 : ð5:19Þ

The triple cut CðbÞ
3 , corresponding to Fig. 8(b) and deter-

mining the coefficient c▽ in Eq. (5.1), is obtained by
applying the transformation ðm1;m2;p1;p2;p3;p4;k5Þ→
ðm2;m1;p2;p1;p4;p3;−k5Þ to Eq. (5.19).

C. Extracting integral coefficients

Armed with the expressions for the quadruple and triple
cuts, we proceed to extract the coefficients of the scalar box
and triangle integrals in Eq. (5.1). The construction [31,74]
begins with solving the triple and quadruple cut conditions.
They determine the loop momentum in terms of one free
parameter while the latter, which may be obtained from the
former for a special value of that parameter, gives a discrete
set of solutions. For a suitable parametrization of the loop
momentum, the coefficient of triangle integrals is then
obtained as the term in the evaluation of the triple cut on the
solution of the cut condition that is independent of the free
parameter. The coefficient of the box integrals is given by
the sum over the solutions of the quadruple cut conditions
of the evaluation of the quadruple cuts on these solutions.
We will begin by solving the triple cut conditions in the

appropriate parametrization [31,74]. From here we will

extract the loop momentum that solves the quadruple cuts
and subsequently use them to extract the integral coeffi-
cients. Finally, we reconstruct the classical limit of the one-
loop four-point amplitude of arbitrary-spin particles.

1. The triple cuts and the coefficients
of scalar triangle integrals

Let us consider the triple cut in Fig. 8(a), whose
expression is found in Eqs. (5.15)–(5.18). The on-shell
conditions for the cut legs are

k25 ¼ 0; 2q · k5 − q2 ¼ 0; p1 · k5 ¼ 0; ð5:20Þ

where, as before, q ¼ p2 þ p3. Their solution is para-
metrized as [31,74]

k5ðTÞμ ¼ xqμ þ ypμ
1 þ Ta1μ þ

αa2μ

T
; ð5:21Þ

where x, y, and α are free parameters to be determined by
(5.20), T parametrizes the component of the loop momen-
tum that is not fixed by the three cut conditions, and the
vectors a1μ and a2μ are given by [74]

a1μ ¼ hQ♭jσμjP♭�; a2μ ¼ hP♭jσμjQ♭�: ð5:22Þ

The null momenta P♭ and Q♭ are chosen to be
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P♭μ ≡ pμ
1 þ

m2
1

γ
qμ; Q♭μ ≡ qμ þ q2

γ
pμ
1; ð5:23Þ

the parameter γ is determined by requiring that P♭ and Q♭

are null,

γ ¼ 1

2

�
q2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2ðq2 − 4m2

1Þ
q �

: ð5:24Þ

Three of these parameters are fixed by imposing the three
on-shell conditions in Eq. (5.20),

x ¼ −
2m2

1

q2 − 4m2
1

; y ¼ −
q2

q2 − 4m2
1

;

α ¼ m2
1q

2

2ðq2 − 4m2
1Þa1 · a2

: ð5:25Þ

The construction of solutions to the on-shell conditions
corresponding to the triple cut in Fig. 8(b) is similar and
may be obtained from that corresponding to Fig. 8(a)
through

m1 → m2; y → −y; γ → −γ: ð5:26Þ

Evaluating the triple cut (5.15)–(5.18) on these solutions
yields rational functions of the remaining free parameter T.
The singularities of these functions have different physical
interpretations. As discussed before, Eqs. (5.15)–(5.18)
contain propagator singularities that correspond to the
contributions of the box scalar integrals in Eq. (5.1) to

the triple cut. They are reflected by singularities at values of
T solving the equations

k5ðTÞ · p2 ¼ 0 or k5ðTÞ · p3 ¼ 0: ð5:27Þ

Each of them is a quadratic equation for T and thus has two
solutions; it is not difficult to see that, away from special
momentum configurations, T takes some finite values.
From the discussion above it is clear that the (sum over
the) corresponding residues are closely related to the box
integral coefficients, which may indeed be extracted this
way: the solutions of the first (5.27) equation lead to dB
while those of the second (5.27) equation lead to dB̄.
It has been shown in [31,74] that the coefficient of the

triangle integral is given by the T-independent part of the
average of the evaluation of the triple cut (5.15)–(5.18) on
the two solutions of the triple-cut on-shell conditions,
Eqs. (5.21), (5.22), (5.25), and (5.24). The relevant terms
come therefore from the T-independent parts of the loop
momentum k5ðTÞ as well as from terms containing the
product aμ1a

ν
2. This product is given by

a1μa2ν¼2ðQ♭μP♭νþQ♭νP♭μ−ημνQ♭ ·P♭Þ−2iϵμναβQ♭
αP♭

β;

ð5:28Þ

which can be expressed in them of the full external
momenta using Eq. (5.23).

Following this procedure, the triple cut CðaÞ
3 , correspond-

ing to Fig. 8(a), yields the coefficient of the triangle integral
I△ in Eq. (5.1):

c△ ¼ −32π2G2m2
1ε1 · ε4ε2 · ε3

�
6m2

1m
2
2ð5σ2 − 1Þ þ 2m1m2ð5σ2 − 3Þσ

σ2 − 1
ð3iS2ðp1; qÞ − 4iS1ðp2; qÞÞ

þ 2

ðσ2 − 1Þ
�
3ð5σ2 − 1ÞS1ðp2; qÞS2ðp1; qÞ þ ð5σ2 − 3Þσημα

�
m1m2ðS1ðeμ; qÞS2ðeα; qÞ

− q2ηνβS1ðeμ; eνÞS2ðeα; eβÞÞ þ
q2

σ2 − 1

�
2σS1ðeμ; p2ÞS2ðeα; p1Þ

þm1 þm2σ

m2

S1ðeμ; p2ÞS2ðeα; qÞ −
m2 þm1σ

m1

S2ðeμ; p1ÞS1ðeα; qÞ
����

þOðq2S2i Þ: ð5:29Þ

The coefficient c▽, of the integral I▽, can be obtained from
c△ through the map

ðm1; m2; p1; p2; S1; S2; q; σÞ
→ ðm2; m1; p2; p1; S2; S1;−q; σÞ: ð5:30Þ

2. The quadruple cuts and the coefficients
of scalar box integrals

The coefficients of scalar box integrals are given by the
average over the values of the quadruple cut on the

solutions of the quadruple cut conditions [27,31,74]. As
discussed in the previous subsection, these solutions may
be obtained from those of the triple cuts, Eqs. (5.21), (5.22),
(5.25), and (5.24), by further demanding that the additional
propagator of the desired box diagram is on shell. We may,
alternatively, start with a parametrization of the loop
momentum which is slightly more convenient for this
purpose,

kμ5 ¼ αpμ
1 þ βpμ

2 þ γqμ þ δημ; ð5:31Þ
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where α, β, γ, and δ are free, complex parameters and η is a
null reference vector, whose precise value should not affect
the final answer. By choosing η to be orthogonal to p1 and
p2, we find the two solutions for the loop momentum

kμ5 ¼
q2

2q · η
ημ; kμ5 ¼

Nαp
μ
1 þ Nβp

μ
2 þ Nγqμ

N
−

q2

2q · η
ημ;

ð5:32Þ

where

Nα ¼ −2m2ðm2 þm1σÞq2; Nβ ¼ 2m1ðm1 þm2σÞq2;
ð5:33Þ

Nγ ¼ 4m2
1m

2
2ðσ2 − 1Þ; N ¼ Nγ þ ðNβ − NαÞ=2:

ð5:34Þ

While it is possible to keep η arbitrary (up to its
properties stated above) and have it drop out of the final
expressions for dB, it is more convenient to use an explicit
form that manifests its properties. We choose it to be

ημ ¼ hp♭
1jσμjp♭

2�; p♭
1 ¼ p1 þm2

1ζp2;

p♭
2 ¼ p2 þm2

2ζp1; ζ ¼ −
σ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p

m1m2

: ð5:35Þ

The two values of ζ are determined by demanding that p♭
1

and p♭
2 are null. Both are necessary for determining the

coefficient of the box integral. To express the dependence
on η in terms of p1 and p2 it is useful to multiply and divide
the η-dependent terms in Eq. (5.32) by q · η̄,

ημ

q · η
¼ q · η̄ημ

q · η̄q · η
; ð5:36Þ

and use the identity

ημη̄ν ¼ 2ðp1
♭μp2

♭ν þ p2
♭μp1

♭ν − ημνp1
♭ · p2

♭Þ
− 2iϵμναβp1

♭
αp2

♭
β: ð5:37Þ

Using this procedure on the quadruple cut Eqs. (5.13),
we find that the coefficient dB of the box integral IB is
given by

dB ¼ 64G2m1m2π
2f4m3

1m
3
2ð2σ2 − 1Þ2ε1 · ε4ε2 · ε3 þ 8im2

1m
2
2σð2σ2 − 1Þðε1 · ε4M23ðp1; qÞ

−M14ðp2; qÞε2 · ε3Þ þ 4m1m2ð2σ2 − 1ÞM14ðp2; qÞM23ðp1; qÞ
þ 4m2

1m
2
2σð2σ2 − 1ÞημνM14ðeμ; qÞM23ðeν; qÞ − 2q2m2

1m
2
2σð2σ2 − 1ÞημνηρσM14ðeμ; eρÞM23ðeν; eσÞ

þ 2q2m1m2

σ2 − 1
ð4σ4 − 2σ2 − 1ÞημνM14ðeμ; p2ÞM23ðeν; p1Þ

−
q2m2

σ2 − 1
ðð4σ4 − 2σ2 − 1Þm1 þ σð4σ2 − 3Þm2ÞημνM14ðeμ; qÞM23ðeν; p1Þ

þ q2m1

σ2 − 1
ðð4σ4 − 2σ2 − 1Þm2 þ σð4σ2 − 3Þm1ÞημνM14ðeμ; p2ÞM23ðeν; qÞ

�
þOðq3Þ; ð5:38Þ

whereMijða; bÞ and their counterparts with free indices are
defined in Eqs. (4.3). As in the case of the quadruple cut,
we kept intact the dependence on Lorentz generators and
polarization tensors, anticipating that comparison with the
effective field theory will require a careful choice of the
subleading in the classical limit.
The coefficient dB̄ of the second crossed-box integral IB̄

is obtained from dB above by interchanging p2 and p3.

D. The one-loop amplitude in the classical limit

We can now reconstruct the classical part of the four-
point amplitude (5.1). As we will see in detail in the next

section and used in earlier literature [11,12,22,23,
33,36,37], the new physical information in this amplitude
arises from triangle integrals. It is therefore convenient to
collect their contribution in M△þ▽ defined as

iM1 loop
4 ¼ dBIB þ dB̄IB̄ þ c△I△ þ c▽I▽ ð5:39Þ

≡dBIB þ dB̄IB̄ þM△þ▽: ð5:40Þ

The two triangle integrals are related by interchanging
the massesm1 andm2 and are well-known; in an expansion
around the classical limit they are [11,12,17,33]
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I△ ¼
Z

d4l
ð2πÞ2

1

ðl2 þ iϵÞððlþ qÞ2 þ iϵÞððlþ p1Þ2 −m2
1 þ iϵÞ ¼ −

i
32m1

1ffiffiffiffiffiffiffiffi
−q2

p þ � � � ;

I▽ ¼
Z

d4l
ð2πÞ2

1

ðl2 þ iϵÞððlþ qÞ2 þ iϵÞððl − p2Þ2 −m2
2 þ iϵÞ ¼ −

i
32m2

1ffiffiffiffiffiffiffiffi
−q2

p þ � � � : ð5:41Þ

Thus, together with their coefficients (5.29), their contribution to the amplitude is

iM△þ▽ ¼ 2π2iG2m1m2ffiffiffiffiffiffiffiffi
−q2

p ε1 · ε4ε2 · ε3

�
3m1m2ðm1 þm2Þð5σ2 − 1Þ

þ ð5σ2 − 3Þσ
σ2 − 1

ðð3m1 þ 4m2ÞiS2ðp1; qÞ − ð3m2 þ 4m1ÞiS1ðp2; qÞÞ

þ ðm1 þm2Þ
ðσ2 − 1Þm1m2

�
3ð5σ2 − 1ÞS1ðp2; qÞS2ðp1; qÞ þ ð5σ2 − 3Þσημα

�
m1m2ðS1ðeμ; qÞS2ðeα; qÞ

− q2ηνβS1ðeμ; eνÞS2ðeα; eβÞÞ þ
q2

σ2 − 1

�
2σS1ðeμ; p2ÞS2ðeα; p1Þ

þm1 þm2σ

m2

S1ðeμ; p2ÞS2ðeα; qÞ −
m2 þm1σ

m1

S2ðeμ; p1ÞS1ðeα; qÞ
����

þOðq2S2i Þ: ð5:42Þ

Using identities of the Levi-Civita tensor, this can be expressed in terms of the covariant spin vector:

iM△þ▽ ¼ π2iG2m1m2ffiffiffiffiffiffiffiffi
−q2

p ε1 · ε4ε2 · ε3

�
6m1m2ðm1 þm2Þð5σ2 − 1Þ

þ 2ið5σ2 − 3Þσ
σ2 − 1

ϵμνρσp1μp2νqρ

�
ð3m1 þ 4m2Þ

S2σ
m2

þ ð3m2 þ 4m1Þ
S1σ
m1

�

þ 2ðm1 þm2Þð20σ4 − 21σ2 þ 3Þ
σ2 − 1

ðq · S1q · S2 − q2S1 · S2Þ

þ 8q2σ3ðm1 þm2Þð5σ2 − 4Þp1 · S2p2 · S1
m1m2ðσ2 − 1Þ2

�
þOðq2S2i Þ: ð5:43Þ

The terms containing both S1 and S2 are now expressed as
scalar products; this property will be useful in Sec. VI for
systematically organizing the interactions of spinning
particles. The box integrals IB and IB̄ expanded in the
classical limit are also well-known [11,17,32]; we do not
list explicitly their contribution to the complete amplitude
(5.40) because, on the one hand, it will turn out to be
physically unimportant and, on the other, it can easily be
reconstructed given the dB integral coefficient in Eq. (5.38).
Later in this section we compare Eq. (5.40) with existing
results in the literature [34,60,66].
The complete classical amplitude (5.40) agrees with the

spin-1=2 amplitude constructed in [66] after changing the
orientation of external momenta in the latter to match ours
and upon making the replacements

εi ·εj→1; ε1Mμνε4¼Sμνðp1Þ; ε2Mμνε3¼Sμνðp2Þ:
ð5:44Þ

The former can be understood as a choice of normalization
of the amplitude, and the latter two are consistent with the
leading term in our second Eq. (2.20) and are a conse-
quence of the effective spinors used in [66].
References [34,60] present the amplitude as different

expansions around the zero-momentum limit: in the former
it is an expansion in the spatial momenta of external
particles while in the latter it is an expansion in (σ − 1).
Accounting for the nonrelativistic normalization of [34] it is
not difficult to see that the small momentum expansion of
our expression for M△þ▽ recovers the terms listed in
Eq. (94) of that reference and the expansion in (σ − 1) of
M△þ▽ recovers the terms listed in Eqs. (7.11), (7.13), and
(7.18) of Ref. [60].

E. Tree and one-loop summary

To facilitate the extraction of the two-body effective
Hamiltonian in the next section, we now summarize the
one-loop and tree-level four-higher-spin amplitudes
obtained in this section and Sec. IV, respectively. For this
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purpose we normalize the amplitudes nonrelativistically, by
dividing by a factor of 4E1E2, and manifest the dependence
on the rest-frame spin that arises from the presence of
Lorentz generators in vertices. We do the latter in two steps:
we will first expose the rest-frame spins coming from the
dependence on the covariant spin vectors in the amplitude,
but not that coming from the product of polarization
tensors. The coefficients of the various spin-dependent
monomials in the resulting expressions are decorated with a
subscript “cov,” which emphasizes their covariant origin.
We subsequently extract the remaining spin dependence in
the product of polarization tensors. The reason for this
stepwise treatment is that the coefficients of the various
spin-dependent monomials in the final expressions are
simple linear combinations of the “covariant” coefficients,
with additional energy- and mass-dependent factors arising
from Eqs. (2.20) and (3.10).
To further facilitate comparison with EFT calculations in

the next section, we specialize the expressions of the
amplitudes and their associated particle spins to the
center-of-mass frame, defined as (recall that all momenta
are outgoing)

p1 ¼ −ðE1; pÞ; p2 ¼ −ðE2;−pÞ;

q ¼ ð0; qÞ; p · q ¼ q2

2
: ð5:45Þ

Equation (2.17) then gives the relation between the
covariant spin vectors and the corresponding rest-frame
ones:

Sμ1 ¼
�
p · S1
m1

; S1 þ
p · S1

ðE1 þm1Þm1

p

�
;

Sμ2 ¼
�
−
p · S2
m2

; S2 þ
p · S2

ðE2 þm2Þm2

p

�
: ð5:46Þ

The two covariant spin-dependent factors in the tree-
level amplitude Eq. (4.8) are q · Si and p1μp2νqρSiσ . Using
Eqs. (5.46), it is straightforward to find that

q · Si ¼ q · Si −
q2p · Si

2miðEi þmiÞ
;

ϵμνρσp1μp2νqρSiσ ¼ Eðp × qÞ · Si; ð5:47Þ

where E ¼ E1 þ E2 is the total energy of the incoming
particles and we neglected terms that are of a higher-order
in q, which appear because of the fourth relation in (5.45).
While such terms are important at loop-level, they can be
safely ignored at tree level because they cancel the graviton
propagator and thus cannot contribute to the long-range
potential.
With these preliminaries, the tree-level (4.8) with a

nonrelativistic normalization can be written as

Mtree
4

4E1E2

¼ 4πG
q2

ε4 · ε1ε3 · ε2

�
að0Þcov;1 þ i

X2
j¼1

að1;jÞcov;1ðp × qÞ · Sj

þ að2;1Þcov;1q · S1q · S2

�
: ð5:48Þ

The cov subscript decorating the coefficients reflects the
fact that they originate from terms with covariant depend-
ence on the spin vector; the second subscript “1” reflects
that they are tree-level coefficients. The first superscript in
the a coefficients represents the number of spin vectors
multiplying this coefficient while the second superscript
denotes the spin-dependent monomials with the given
number of spins. For monomials linear in spin we identify
it with the spin label. While here we encounter a single two-
spin monomial, we chose to nevertheless index it in
anticipation of the fact that more monomials will appear
in the one-loop amplitude. The explicit expressions for the
coefficients can easily be read off from the amplitude (4.8);
accounting for the nonrelativistic normalization, they are

að0Þcov;1 ¼ −
m2ν2

ξγ2
ð1 − 2σ2Þ; að1;iÞcov;1 ¼

ν

ξγ2
2σE
mi

;

að2;1Þcov;1 ¼ −
ν

ξγ2
ð1 − 2σ2Þ; ð5:49Þ

where we used the variables

m ¼ m1 þm2; E ¼ E1 þ E2; γ ¼ E
m
;

ν ¼ m1m2

m2
; ξ ¼ E1E2

E2
: ð5:50Þ

It is interesting to note that a second two-spin monomial

appears, q2S1 · S2, with coefficient equal to a
ð2;2Þ
cov;1¼−að2;1Þcov;1.

Because of the factor of q2, however, it cannot contribute to
a long-range interaction at tree level, so it is dropped. This
structure will appear again at one loop, where the factor of
q2 no longer implies that this monomial can be dropped.
The one-loop amplitude is given in Eqs. (5.40), (5.38),

and (5.43); it contains two additional covariant spin-
dependent monomials, p2 · S1 and p1 · S2, apart from those
already appearing at tree level. They can easily be
expressed in terms of the rest-frame spin vectors,

p2 · S1 ¼ −
E
m1

p · S1; p1 · S2 ¼ þ E
m2

p · S2; ð5:51Þ

using Eq. (5.46). Together with Eqs. (5.47) they can be
used to write the one-loop amplitude as
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M1 loop
4

4E1E2

¼ 2π2G2

jqj ε4 · ε1ε3 · ε2

�
að0Þcov;2 þ i

X2
j¼1

að1;jÞcov;2ðp × qÞ · Sj þ að2;1Þcov;2q · S1q · S2 þ að2;2Þcov;2q
2S1 · S2 þ að2;3Þcov;2q

2p · S1p · S2

�

− iaBIB − iaB̄IB̄: ð5:52Þ

For the terms on the first two lines we used the same labeling scheme for the coefficients as at tree level. The two subscripts
indicate that the coefficients originate from covariant dependence on the spin vectors and that they appear at one-loop,
respectively. The new superscripts compared to those already appearing for tree-level coefficients indicate that they multiply
bilinears in spin which are labeled as 2 and 3, continuing the list of monomials bilinears in spin started at tree level. They are

að0Þcov;2 ¼
3ν2m3

4ξγ2
ð5σ2 − 1Þ;

að1;1Þcov;2 ¼
ν

4ξγ2
σð5σ2 − 3Þ
σ2 − 1

ð4m1 þ 3m2Þ
m1

E; að1;2Þcov;2 ¼
ν

4ξγ2
σð5σ2 − 3Þ
σ2 − 1

ð3m1 þ 4m2Þ
m2

E;

að2;1Þcov;2 ¼ −að2;2Þcov;2 ¼
mν

4ξγ2

�
20σ4 − 21σ2 þ 3

σ2 − 1

�
; að2;3Þcov;2 ¼

mν

4ξγ2

�
20σ3 − 15σ2 − 6σ þ 3

ðσ − 1Þp2
�
: ð5:53Þ

We point out here the appearance, as in the tree-level amplitude, of the monomial q2S1 · S2 with coefficient a
ð2;2Þ
cov;2 ¼ −að2;1Þcov;2.

It would be interesting to understand whether this equality persists to higher orders in perturbation theory. The box integral
coefficients,

aB ¼ dB
4E2γ1γ2

; aB̄ ¼ dB̄
4E2γ1γ2

; ð5:54Þ

where γi ¼ Ei=mi is the usual Lorentz factor of particle i. The corresponding box and cross-box integrals, IB and IB̄, are
given in Ref. [89] and were evaluated in the classical limit in Ref. [12]. In Sec. VI we follow the same integration scheme
where the integrals are

IB ¼ i
2E

Z
dD−1l
ð2πÞD−1

1

l2ðlþ qÞ2ðl2 þ 2plÞ ;

IB̄ ¼ 0: ð5:55Þ

The box integral has a stronger-than-classical scaling in the classical limit. Thus, in taking the classical limit of the box
coefficient dB, first subleading terms should also be kept. As we will discuss in the next section, they have no physical
effects, and we will choose them such that the EFT we construct there corresponds to the complete theory used to
compute the amplitudes summarized here. For this reason we did not express the box (and cross-box) coefficients in
terms of the rest-frame spin vectors; the leading terms are, however, easy to obtain by replacing Eqs. (5.47) and (5.51)
in Eq. (5.38).
It is not difficult to see that, upon expanding the products of polarization tensors in Eqs. (5.48) and (5.52) using

Eqs. (2.20), no further spin-dependent spin-bilinear monomials are generated. The coefficients of each spin-dependent
monomial is slightly modified because of the additional spin dependence coming from ε4 · ε1ε3 · ε2: each one becomes a
linear combination of acov. This mixing is the same at every order in G. Thus, the tree-level and one-loop amplitudes fully
expanded to second order in spin are

Mtree
4

4E1E2

¼ 4πG
q2

�
að0Þ1 þ i

X2
j¼1

að1;jÞ1 ðp × qÞ · Sj þ að2;1Þ1 q · S1q · S2

�
; ð5:56Þ

M1 loop
4

4E1E2

¼ 2π2G2

jqj
�
að0Þ2 þ i

X2
j¼1

að1;jÞ2 ðp× qÞ · Sj þ að2;1Þ2 q · S1q · S2 þ að2;2Þ2 q2S1 · S2 þ að2;3Þ2 q2p · S1p · S2

�
− iaBIB − iaB̄IB̄;

ð5:57Þ
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with the aAi given by

að0Þi ¼ að0Þcov;i;

að1;1Þi ¼ að1;1Þcov;i −
1

m2
1ðγ1 þ 1Þ a

ð0Þ
cov;i;

að1;2Þi ¼ að1;2Þcov;i −
1

m2
2ðγ2 þ 1Þ a

ð0Þ
cov;i;

að2;1Þi ¼ að2;1Þcov;i −
p2

m2
2ðγ2 þ 1Þ a

ð1;1Þ
cov;i −

p2

m2
1ðγ1 þ 1Þ a

ð1;2Þ
cov;i þ

p2

m2
1m

2
2ðγ1 þ 1Þðγ2 þ 1Þ a

ð0Þ
cov;i;

að2;2Þi ¼ að2;2Þcov;i þ
p2

m2
2ðγ2 þ 1Þ a

ð1;1Þ
cov;i þ

p2

m2
1ðγ1 þ 1Þ a

ð1;2Þ
cov;i −

p2

m2
1m

2
2ðγ1 þ 1Þðγ2 þ 1Þ a

ð0Þ
cov;i;

að2;3Þi ¼ að2;3Þcov;i −
1

m2
2ðγ2 þ 1Þ a

ð1;1Þ
cov;i −

1

m2
1ðγ1 þ 1Þ a

ð1;2Þ
cov;i þ

1

m2
1m

2
2ðγ1 þ 1Þðγ2 þ 1Þ a

ð0Þ
cov;i; ð5:58Þ

with i ¼ 1, 2. We are not decorating them with a cov index
because they are no longer associated with a definite
combination of covariant spin vectors. We note that, while
the expansion of ε4 · ε1ε3 · ε2 generates the structures q2S1 ·
S2 and q2p · S1p · S2 in the tree-level amplitude, they can be
ignored, as done before, because they do not correspond to
long-range interaction terms. The acov;i with i ¼ 1, 2 are

given in Eqs. (5.49) and (5.53), respectively, and að2;3Þcov;1 ¼ 0.
In the following section we will use these expressions to

fix the effective interaction Hamiltonian of two spinning
bodies with arbitrarily oriented spins, through OðS1S2Þ.

VI. EFFECTIVE FIELD THEORY AND DERIVED
HAMILTONIAN

Having found scattering amplitudes of general relativity
coupled with higher-spin fields of the type described in
Sec. II, we will now describe their translation to a two-body
spin-dependent conservative Hamiltonian with complete
velocity dependence. We will extract it from the two-to-two
interaction of an effective field theory of the positive-
energy modes of higher-spin fields, thus generalizing the
construction of Ref. [12] to include spin degrees of free-
dom. The matching procedure with spins was discussed at
OðGÞ [23,63], and also at OðG2Þ for spin-orbit potential
expanded in velocity [23]. Here we will establish a general
spinning formalism for higher orders in G and all order in
velocity; it has the distinct advantage of being relatively
straightforward, while simultaneously producing results
that allow physical observables to be obtained through
standard Hamiltonian mechanics methods.

A. Spin formalism

Unlike the Lorentz-invariant setup of earlier sections, we
will parametrize the spin degrees of freedom in terms of the
rest-frame spin of the two fields, ξ1 and ξ2. Since the rest
frames of the two particles are not necessarily identical

(i.e., the two particles need not be simultaneously at rest),
there are two copies of the little-group generators, each
acting on only one of the two fields; thus, the two fields ξ1
and ξ2 carry little-group indices,11 which we suppress
throughout. We will denote the two copies of the little-
group generators by Ŝ1 and Ŝ2, respectively, and their
components by Ŝia with a ¼ 1, 2. Apart from generating
the SOð3Þ,

½Ŝia; Ŝjb� ¼ iδabϵijkŜ
k
a; ð6:1Þ

they also are, as in nonrelativistic quantum mechanics, the
spin operators of the two particles.
We take the action of the effective field theory for the

fields ξ1 and ξ2 to be

S ¼
Z
k

X
a¼1;2

ξ†að−kÞ
	
i∂t −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

i

q 

ξaðkÞ

−
Z
k;k0

ξ†1ðk0Þξ†2ð−k0ÞV̂ðk0; k; ŜaÞξ1ðkÞξ2ð−kÞ; ð6:2Þ

where we wrote the interaction term in the center-of-mass
frame and

R
k ¼

R
dD−1k
ð2πÞD−1. As mentioned, all little-group

(spin) indices are suppressed. While the field ξðkÞ describes
a particle with momentum k, its spin is always defined with
respect to its own rest frame, such that the algebra in
Eq. (6.1) is satisfied. This is analogous to the treatment of
spinning particles in quantum mechanics, where commu-
tation relations of spin operators are the same whether the
particle is at rest or not [90]. The hat on the potential
V̂ðk0; k; ŜaÞ indicates that it is a momentum space quantity;
it is a function of the incoming momentum k, momentum

11This is to be contrasted with the full theory, where the higher-
spin fields carry SUð2ÞL × SUð2ÞR spinor indices; cf. e.g.,
Eqs. (2.12) and (2.13).
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transfer q ¼ k − k0, as well as spin operators Ŝ1 and Ŝ2 of
the two particles.
To connect these operators with the classical rest-frame

spin vectors, which is necessary in the matching of the EFT
amplitudes with those of the complete theory, we take the
asymptotic states of ξ1 and ξ2 to be spin coherent states in
Eq. (2.15). Similarly, the classical two-body Hamiltonian is
given by the expectation value on classical on-shell states,
which satisfy p2 ¼ ðp − qÞ2,

Hðq; pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

2

q
þ hn1n2jV̂ðp − q; p; ŜaÞjn1n2i; ð6:3Þ

where we only keep the classical part based on the counting
in Eqs. (2.4) and (2.5). The spin-independent part, obtained
by formally setting Ŝa ¼ 0, clearly reproduces the two-
body spinless Hamiltonian. Here the momentum transfer q
is the conjugate of the separation r between the two
particles. Therefore the position-space classical potential
follows from taking the Fourier transform with respect to q,

Vðr; p;SaÞ ¼
Z
q
e−iq·rhn1n2jV̂ðp − q; p; ŜaÞjn1n2i; ð6:4Þ

the expectation value effectively replaces the symmetric
product of spin operators Ŝa with their classical expectation
values Sa via Eq. (2.15).
The ansatz for the interaction V̂ðk0; k; ŜaÞ, which is

subsequently fixed by matching the EFT amplitudes with
those of the full theory in the classical limit, is constructed
such that, on the one hand, it contains only long-range
interactions between the fields ξ1 and ξ2 and, on the other, it
requires that none of the terms vanishes in the classical
limit. As discussed in Refs. [12,15], this fixes the depend-
ence on the momentum transfer atOðGnÞ to be jqjn−3 while
the dependence on the incoming momentum is arbitrary.
The classical scaling, described in Eqs. (2.4) and (2.5),
is the main tool for including the spin dependence. It
implies that, at each OðGnjqjn−3Þ, we may include any
number of spin operators as long as each of them is
accompanied by one factor of the momentum transfer, i.e.,

V̂ðk0; k; ŜaÞ ⊃ dj1���jn1þn2
;i1;…;in1þn2 ðpÞqj1 � � � qjn1þn2

× Ŝi11 � � � Ŝin11 Ŝ
in1þ1

2 � � � Ŝin1þn2
2

Gn

jqj3−n : ð6:5Þ

The coefficients dj1���jn1þn2
;i1;…;in1þn2 ðpÞ can be further

expanded in independent tensor structures, which are
constrained both by the desired/expected symmetries
(such as parity) and by the classical limit. The former
implies that in a parity-invariant theory an even n1 þ n2
requires a parity-invariant coefficient and an odd n1 þ n2

requires a parity-odd coefficient (i.e., one containing a
Levi-Civita tensor).
The ansatz for the coefficients dj1���jn1þn2

;i1;…;in1þn2 ðpÞ is
also constrained by the classical limit and the desired long-
range nature of interactions. Momentum conservation
implies that p · q ¼ q2=2. Therefore, if such a contraction
occurs, the corresponding term becomes subleading in the
classical limit and therefore needs not be included.
Similarly, if dj1���jn1þn2

;i1;…;in1þn2 ðpÞ contains a term that
leads to a contraction of two of the momentum transfer
factors, then that term needs not be included at OðGÞ
(because it is a contact interaction) but must be included at
all higher orders. Each independent tensor structure has a
scalar coefficient, which depends only on the square of the
center-of-mass momentum; as in [12,15], we take it to
be p2 ¼ ðk2 þ k02Þ=2.
It is not difficult to see that at OðGÞ and in a parity-

invariant theory, the only types of operators with an even
and an odd number of spin operators of each particle are
ðq · ŜiÞa and Lq · Ŝiðq · ŜiÞa, where a is an even integer and

Lq ¼ iðk × qÞ ð6:6Þ

is the momentum space version of the orbital angular
momentum. The complete set of operators that can appear
in the interaction potential is the tensor product of the above
sets of single-particle spin operators. All other combina-
tions, which are proportional to q2 and therefore ignored at
this order, must be included atOðGn≥2Þ; the construction of
operators proceeds as described above.
Using the construction outlined above, we will next set

up in detail the EFT to quadratic order in spin operators and
through OðG2Þ and determine the free coefficients of the
interaction potential by matching its amplitudes with those
of the full theory, summarized in Sec. V E.

B. Potential bilinear in spin

Following the framework described above, we now build
the most general classical potential up to quadratic order in
spins. The classical counting in Eq. (2.5) implies that, in
momentum space, the possible building blocks are

linear in spin∶ Lq · Ŝi;

quadratic in spin∶ q · Ŝiq · Ŝj; q2Ŝi · Ŝj; q2k · Ŝik · Ŝj;

q · kk · Ŝiq · Ŝj; q · kq · Ŝik · Ŝj;

ð6:7Þ

where the subscripts i, j ¼ 1, 2 are the particle labels, the
prefactors are chosen such that each operator isOð1Þ under
the classical counting, and Lq, defined in (6.6), is the
momentum-space version of the orbital angular momen-
tum. Parity requires that an operator with an odd number of
spins must contain a factor of Lq. Note that the vectors q, k,
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and Lq span a complete basis in three dimensions. The

operator Lq · ŜiLq · Ŝj can be written in terms of the above
building blocks.
If the momenta of the two particles, k and k0, are on shell,

then k ·q→q2=2; consequently, the operators q ·kk ·Siq · Ŝj
and q ·kq · Ŝik · Ŝj are subleading in the classical limit. This
observation is similar to the removal of the products k · q
in favor of q2 in the case of spinless particles [12].
We can see that it is even more advantageous in the
presence of spin operators, because even the number of
independent interactions is reduced. This choice is analo-
gous to gauge choices in more standard derivations of two-
body Hamiltonians from general relativity; as we will see
shortly, it corresponds to the so-called isotropic gauge.
Thus, a minimal basis of spin-dependent interactions in

the on-shell scheme, up to quadratic order in spin and linear
in the spin of each particle, consists of the six operators:

Ôð0Þ ¼ I; Ôð1;1Þ ¼ Lq · Ŝ1; Ôð1;2Þ ¼ Lq · Ŝ2;

Ôð2;1Þ ¼ q · Ŝ1q · Ŝ2; Ôð2;2Þ ¼ q2Ŝ1 · Ŝ2;

Ôð2;3Þ ¼ q2k · Ŝ1k · Ŝ2: ð6:8Þ

Their expectation values in the spin coherent states, as in
Eq. (6.3), are in one-to-one correspondence with the
various spin-dependent monomials in the tree-level and
one-loop amplitude in the full theory to this order in spin
(see Sec. V E). We labeled them following the same scheme
as there. The ansatz for the EFT potential operator
V̂ðk0; k; ŜiÞ to quadratic order in spin operators is

V̂ðk0; k; ŜiÞ ¼
X
A

V̂Aðk0; kÞÔA; ð6:9Þ

where A runs over the superscripts of the operators in
Eq. (6.8) and V̂Aðk0; kÞ are free momentum-dependent
coefficients that can be expanded as

V̂Aðk0; kÞ ¼ 4πG
q2

dA1 ðp2Þ þ
2π2G2

jqj dA2 ðp2Þ þOðG3Þ:

ð6:10Þ

The coefficients dAi are closely related to the d coefficients
in Eq. (6.5) and may be interpreted as the scalars multi-
plying the independent tensor structures in the latter. As
mentioned in Sec. VI A and following Ref. [12], we choose
the off-shell continuation p2 ¼ ðk2 þ k02Þ=2. While this is
not important at tree level, it becomes essential for higher-
order amplitudes.
It is not difficult to see that, as discussed in Sec. VI A, in

theOðGÞ potential any operator ÔA which contains a factor
of q2 can be ignored. Indeed, the q2 is such an operator it
cancels the q−2 in the first term in (6.10) and thus leads to a

contact term upon Fourier transform to position space.
Such are Ôð2;2Þ and Ôð2;3Þ, so we may therefore choose

dð2;2Þ1 ¼ dð2;3Þ1 ¼ 0: ð6:11Þ

Starting at OðG2Þ, however, the q2 in these operators does
not cancel the nonanalytic q dependence, and therefore
yields relevant long-distance effects and, in general, should
not be ignored.
The position-space classical potential follows straight-

forwardly from the Fourier transform of q as in Eq. (6.4).
(Here we strip off the coherent states.) To carry out the
Fourier transform it is necessary to identify the complete
dependence on q. This amounts to expressing all k and k0 in
terms p and q; the latter may be ignored in the classical
limit. This gives rise to the position-space potential

Vðr; p; ŜiÞ ¼
X
A

VAðr; pÞOA: ð6:12Þ

The six independent position-space operators are

Oð0Þ ¼ I; Oð1;1Þ ¼ 1

r2
L · Ŝ1; Oð1;2Þ ¼ 1

r2
L · Ŝ2;

Oð2;1Þ ¼ 1

r4
r · Ŝ1r · Ŝ2; Oð2;2Þ ¼ 1

r2
Ŝ1 · Ŝ2;

Oð2;3Þ ¼ 1

r2
p · Ŝ1p · Ŝ2; ð6:13Þ

where L ¼ r × p is the orbital angular momentum and the
prefactors are expanded in G,

VAðr; pÞ ¼ G
jrj c

A
1 ðp2Þ þ

�
G
jrj
�

2

cA2 ðp2Þ þOðG3Þ: ð6:14Þ

The earlier choice to trade the products k · q for q2 using
momentum conservation translates in position space to
the absence of the product p · r from the expression of the
Hamiltonian. Thus, it corresponds to the so-called iso-
tropic gauge.
The relation between the coefficients of the momentum

space and position space identity operator is trivial,

cð0Þi ¼ dð0Þi . However, some of the spin operators ÔA

include nontrivial (tensorlike) q dependence. Thus, the
Fourier transform of V̂ðk0; k; ŜiÞ in Eqs. (6.9) and (6.10)
leads, in general, to nontrivial linear relations between the
dA in Eq. (6.10) and the cA coefficients in Eq. (6.14). They
are summarized in Table I. We note that, while at OðGÞ the
momentum space potential depends only on Ôð2;1Þ, its
Fourier transform depends on both Oð2;1Þ and Oð2;2Þ; they
enter only in the combination 3Oð2;1Þ −Oð2;2Þ, which may
be identified as (proportional to) the quadrupole of the
system of two particles which is not inherited from the
quadrupole of either one.
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C. EFT four-point scattering amplitude

To guarantee that the EFT described above corresponds
to the full theory setup and used in earlier sections and free
coefficients of the EFT Lagrangian, we compare its tree-
level and one-loop four-point scattering amplitude with the
tree-level and one-loop amplitudes that are summarized in
Sec. V E. To this end, in this section we evaluate the EFT

two-to-two scattering amplitude. Before proceeding in the
next section to determine its free coefficients, we use the
state-of-the-art spin1-spin2 Hamiltonians [6,54] to verify
that the EFT amplitude reproduces the suitable expansion
of the full theory amplitudes.
Given the simple structure of the EFT Lagrangian,

it is straightforward to derive the Feynman rules. The
propagator and vertices are

ð6:15Þ

where I in the numerator of the propagator is an identity operator. As emphasized above, the vertices should be viewed as
operators whose ordering is important. As in the spinless case, off-shell continuation of the potential needs to be defined in

order to have consistent amplitude. We use p2 ¼ ðk2 þ k02Þ=2 in the coefficients dðAÞi ðp2Þ, and also choose Eq. (6.8) as the
off-shell definitions for the operators.
To illustrate the calculation, consider the amplitude up to OðG2Þ. The two relevant Feynman diagrams are given in

Fig. 10. It is not difficult to see that the Feynman rules give the following expression for the two-to-two scattering amplitude
stripped of external-state spinors:

cMEFT ¼ −V̂ðp0; pÞ −
Z
k

Z
dω
2π

V̂ðp0; kÞV̂ðk; pÞ
ðE1 þ ω −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

1

p
ÞðE2 − ω −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

2

p
Þ

¼ −V̂ðp0; pÞ −
Z
k

V̂ðp0; kÞV̂ðk; pÞ
E1 þ E2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

1

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

2

p : ð6:16Þ

The second line is obtained by carrying out the ω integral, using the standard iϵ prescription.

Unlike the case of spinless particles, the potential V
entering each vertex is an operator, and therefore the order
of V̂ðp0; kÞ and V̂ðk; pÞ in the numerator is essential. As

typically done in quantum mechanics and quantum field
theory, they are ordered from left to right, beginning with
the vertex adjacent to the final state, followed by the one

TABLE I. Summary of momentum- and real-space operators for spin interactions and relations between their coefficients, through
bilinear order in spins. The first column lists operator labels, A. The operators in momentum space and in position space, ÔA andOA, are
given in columns two and three, respectively. In the last column we give the relations between the coefficients of momentum-space
operators dAi and position-space counterpart cAi at OðGÞ and OðG2Þ. The momentum-space and position-space potentials are defined in
Eqs. (6.10) and (6.14).

Label A Mom. space operator Real space operator OðGÞ OðG2Þ
(0) I I cð0Þ1 ¼ dð0Þ1 cð0Þ2 ¼ dð0Þ2

(1,1) Lq · Ŝ1
1
r2 L · Ŝ1 cð1;1Þ1 ¼ −dð1;1Þ1 cð1;1Þ2 ¼ −2dð1;1Þ2

(1,2) Lq · Ŝ2
1
r2 L · Ŝ2 cð1;2Þ1 ¼ −dð1;2Þ1 cð1;2Þ2 ¼ −2dð1;2Þ2

(2,1) q · Ŝ1q · Ŝ2 1
r4 r · Ŝ1r · Ŝ2 cð2;1Þ1 ¼ −3dð2;1Þ1 cð2;1Þ2 ¼ −8dð2;1Þ2

(2,2) q2Ŝ1 · Ŝ2 1
r2 Ŝ1 · Ŝ2 cð2;2Þ1 ¼ dð2;1Þ1 cð2;2Þ2 ¼ 2dð2;1Þ2 − 2dð2;2Þ2

(2,3) q2k · Ŝ1k · Ŝ2
1
r2 k · Ŝ1k · Ŝ2 cð2;3Þ1 ¼ 0 cð2;3Þ2 ¼ −2dð2;3Þ2
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adjacent to the initial state. In terms of the one-loop
Feynman graph in Fig. 10, vertices are read against the
arrows denoting the momentum (and charge) flow. Each
vertex brings spin operators of the same particle. In close
similarity with the full theory, to consistently take the
classical limit it is necessary to decompose such products in
irreducible representations of the rotation group12; this is
done by repeated use of the SOð3Þ algebra in Eq. (6.1). For
example, a product of two spin operators is organized as

ŜiaŜ
j
a ¼

1

2
fŜia; Ŝjag þ

1

2
½Ŝia; Ŝja� ¼

1

2
fŜia; Ŝjag þ

i
2
ϵijkŜka;

ð6:17Þ

this is similar with Eq. (3.13) in the full theory, written there
for the generators of the Lorentz group. Although the
commutator may appear to be subleading in classical
counting, it can still yield relevant contributions when it
appears in a loop diagram.
The propagator in Eq. (6.16) simplifies when expanded

around the classical limit [12],

1

E1 þ E2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

1

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

2

p
¼ −

2ξE
k2 − p2

−
1 − 3ξ

2ξE
þ � � � ; ð6:18Þ

where E ¼ E1 þ E2, ξ ¼ E1E2=ðE1 þ E2Þ2, and the ellip-
sis stands for higher order in classical counting which are
irrelevant for OðG2Þ. As indicated in Fig. 10, k ¼ pþ l,
where p is the center-of-mass external momentum and l is
the momentum transfer in the leftmost vertex of the send
diagram. We can see that the first term is Oðjlj−1Þ ∼
Oðjqj−1Þ using k ¼ pþ l and expanding in l. Therefore,
as stated above, the commutator term in Eq. (6.17) can be
relevant for the classical limit of the EFT amplitude when it
interferes with the propagator. We will judiciously keep
such contributions when evaluating the second term
in Eq. (6.16).

The final two-to-two scattering amplitude MEFT in EFT

is obtained by contracting cMEFT with suitable external-
state states. As discussed in Secs. VI A and II, the relevant
ones for the classical limit are the spin coherent states
defined in Eq. (2.15). Thus,

MEFT ≡ hn1; n2jcMEFTjn1; n2i: ð6:19Þ

Since these states are momentum independent, the net
effect of the expectation value is to simply turn the spin
operator Ŝi into classical expectation values Si; moreover,
this expectation value does not lead to any terms that are
subleading in the classical limit.
At OðGÞ, the EFT amplitude follows simply from

evaluating the tree-level diagram in Fig. 10, which corre-
sponds to the first term in Eq. (6.16); it is directly given by
the OðGÞ potential. Keeping only the terms up to bilinear
order in spin that contribute to long-range interactions, the
amplitude is

MEFT
1PM ¼ 4πG

q2

h
að0Þ1 þ að1;1Þ1 Lq · S1 þ að1;2Þ1 Lq · S2

þ að2;1Þ1 q · S1q · S2
i
: ð6:20Þ

The aA1 coefficients13 are directly given by the coefficients
in the momentum-space potential (6.10),

aA1 ¼ −dA1 : ð6:21Þ

As discussed in Sec. II, a simple rule for tracking relevance
in the classical limit, is that each power of spin comes with
a single power of q relative to the spinless case; terms with
higher powers are irrelevant. If the required powers of q
appear as q2 at this order, we can drop the contributions
because they cancel the 1=q2 pole and will not yield long-
distance contributions to the potential.
The EFT amplitude at OðG2Þ order receives contribu-

tions from both terms in Eq. (6.16) and can be written as

FIG. 10. The EFT scattering amplitude is given by the sum of
bubble diagrams. We use the center-of-mass frame for external
kinematics. The loop momentum k ¼ pþ l where l is the
momentum transfer flowing downward in the leftmost vertex
of the second diagram.

12In the full theory, products of Lorentz generators were
decomposed in irreducible representations of the Lorentz group.

13These EFT amplitude coefficients are formally distinct from
the full theory coefficients. However, for the EFT to correspond
to the full theory, the scattering amplitudes of the two theories
must be the same. Enforcing this condition, referred to as “EFT
matching” which we will do in Sec. VI D, leads to amplitudes’
coefficients being equal, so we use the same notation for both of
them.
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MEFT
2PM ¼ 2π2G2

jqj
h
að0Þ2 það1;1Þ2 Lq ·S1það1;2Þ2 Lq ·S2

það2;1Þ2 q ·S1q ·S2það2;2Þ2 q2S1 ·S2

það2;3Þ2 q2p ·S1p ·S2
i

þð4πGÞ2aiter
Z

dD−1l
ð2πÞD−1

2ξE
l2ðlþ qÞ2ðl2þ 2p ·lÞ ;

ð6:22Þ

where we have expanded in q and kept only terms that are
relevant in the classical limit. The first two lines are of order
1=jqj, including the scaling of the spin vectors; this is the
expected order of the classical potential at OðG2Þ. The
integral in the last term originates from the one-loop
diagram in Fig. 10; since the two vertices are identical
and given by theOðGÞ potential, we refer to this term as an
“iteration.” It is not difficult to see that the integral is of
order 1=q2. Thus, for the amplitude to be accurate to
Oð1=jqjÞ, an extra power of q beyond the leading con-
tribution must be kept in the coefficient aiter. While this part
of the amplitude does not contain information beyond the
one in the tree-level potential, it is nevertheless very
important. Similar to the spinless EFT, the iteration part
of the EFT one-loop amplitude is IR divergent. Since the
EFT is constructed to match the low-energy part of the

desired complete theory, the IR divergences in EFT should
be the same as in the full theory one-loop amplitude.14 In
doing so the first subleading terms in the aiter coefficients
are crucial and the required match can be enforced by
appropriately choosing the subleading terms in the relation
between the Lorentz generators and the spin tensor in the
full theory. We emphasize that the only effect of such a
choice is to guarantee the match of IR divergences and has
no consequence on the finite part of the amplitude and on
the OðG2Þ potential.
To write compact expressions for the coefficients of the

2PM EFT amplitude in terms of those of the momentum
space Hamiltonian it is convenient to define the functions

A0½X� ¼ ½ð1 − 3ξÞ þ 2ξ2E2∂�X;
A1½X� ¼

�
ð1 − 3ξÞ þ 2ξ2E2

p2
þ 2ξ2E2∂

�
X;

A2½X� ¼
�
1

4
ð1 − 3ξÞ þ ξ2E2

p2
þ 1

2
ξ2E2∂

�
X;

A3½X� ¼
�
3

4
ð1 − 3ξÞ þ ξ2E2

p2
þ 3

2
ξ2E2∂

�
X; ð6:23Þ

where ∂ ¼ ∂=∂p2. Then, the EFT amplitude coefficients in
Eq. (6.22) are

að0Þ2 ¼ −dð0Þ2 þ 1

2ξE
A0½ðdð0Þ1 Þ2�;

að1;iÞ2 ¼ −dð1;iÞ2 þ 1

2ξE
A1½dð0Þ1 dð1;iÞ1 �;

að2;1Þ2 ¼ −dð2;1Þ2 þ 1

2ξE
A3½dð0Þ1 dð2;1Þ1 � þ p2

2ξE
A2½dð1;1Þ1 dð1;2Þ1 � þ ξE

8
ðdð1;1Þ1 þ dð1;2Þ1 Þdð2;1Þ1 ;

að2;2Þ2 ¼ −dð2;2Þ2 −
1

2ξE
A2½dð0Þ1 dð2;1Þ1 � − p2

ξE
A2½dð1;1Þ1 dð1;2Þ1 � þ ξE

8
ðdð1;1Þ1 þ dð1;2Þ1 Þdð2;1Þ1 ;

að2;3Þ2 ¼ −dð2;3Þ2 þ ξE
p4

½dð0Þ1 dð2;1Þ1 � þ 1

ξE
A2½dð1;1Þ1 dð1;2Þ1 � − ξE

2p2
ðdð1;1Þ1 þ dð1;2Þ1 Þdð2;1Þ1 : ð6:24Þ

Recalling that the first superscript of the Hamiltonian
coefficients represents the number of spin operators in
the corresponding operator, it is easy to infer that the

combination ðdð1;1Þ1 þ dð1;2Þ1 Þdð2;1Þ1 arises from three-spin
terms in the numerator of the amplitude (6.16). Such terms
nevertheless contribute to the two-spin terms in the am-
plitude through the commutator identity Eq. (6.17).
We note that the spin-dependent sector of the amplitude

contains 1=p2 threshold singularities through the functions
A1;2;3½dA1dB1 �. This singularity is physical because it appears

in the amplitude. These terms arise from the reduction to
scalar integrals of various tensor integrals in the one-loop
diagram in Fig. 10. This is intimately connected to the spin
dependence and, as pointed out in Sec. V, has a counterpart
in the amplitude calculation in the full theory. The residue
of this singularity is completely fixed byOðGÞ terms in the
Hamiltonian, so the singular terms should be the same in
the EFT and in the full theory. The 2PM Hamiltonian
obtained by demanding that the two amplitudes are
identical turns out to be local in p.
Last, the iteration coefficient aiter in Eq. (6.22) is fixed by

the OðGÞ terms in the Hamiltonian:14Higher-loop iteration terms have a similar interpretation.
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aiter ¼ ðdð0Þ1 Þ2 þ dð0Þ1 dð1;1Þ1 Lq · S1 þ dð0Þ1 dð1;2Þ1 Lq · S2 þ dð0Þ1 dð2;1Þ1 q · S1q · S2

þ 1

2

�
dð1;1Þ1 dð1;2Þ1 þ dð0Þ1 dð2;1Þ1

p2

�
½Lq · S1Lq · S2 − p2q · S1q · S2�: ð6:25Þ

This expression is through OðjqjÞ, where we count
Si ∼ 1=jqj. In particular, the subleading terms appearing
when mapping Lq · S1Lq · S2 to the basis in Eq. (6.7) are
important.
The EFT formalism described in Sec. VI A and illus-

trated here for the spin bilinears also allows us to compute
scattering amplitudes starting from canonical Hamiltonians
in the general relativity literature. The gauge invariance of
scattering amplitudes provides a straightforward test of the
(in)equivalence of different-looking Hamiltonians that
avoids the explicit construction of canonical transforma-
tions. Given some Hamiltonian constructed from the outset
in terms of the classical spin, the calculation of amplitudes
follows the same steps as above. We first promote the
classical spins in the potential to operators Sa ↦ Ŝa. Since
the classical Hamiltonian has, by construction, classical
scaling, this operation does not introduce an ordering
ambiguity; any such ordering, arising through Eq. (6.17),
is subleading. The amplitudes then follow from the
Feynman rules in Eq. (6.15) and the expression
Eq. (6.16) for the tree-level and one-loop Feynman dia-
grams. As in our calculation, the ordering of the vertices is

relevant once inserted in the one-loop (and higher-loop)
diagrams. While our construction exploits on-shell con-
ditions to eliminate p · r=jrj and only keeps operators (6.13)
in our position-space potential (6.12), typical GR-derived
Hamiltonians depend on p · r=jrj as well as other operators
such as p · Ŝ1r · Ŝ2. It is essential that they all be kept in the
off-shell vertex and that on-shell conditions are enforced
only for the external states of the amplitude.
Using this approach, we can evaluate the EFT amplitude

for the available post-Newtonian Hamiltonian with spin-
orbit and spin1-spin2 interactions. In the same gauge as the
potential for spinless bodies in Eq. (8.41) of Ref. [6], the
spin-dependent next-to-leading order Hamiltonian may be
found in Eqs. (7.26)–(7.29) in Ref. [54], and the next-to-
next-leading order one in Eqs. (138) and (139) of
Ref. [55].15 This counting translates to expansions up to
OðGv4Þ and OðG2v2Þ at the first and second orders in an
expansion in Newton’s constant, respectively. See Fig. 1 for
the comparison of spin1-spin2 potential.
The tree-level EFT amplitude following from these

Hamiltonians, through Oðp4Þ, has the same structure as
Eq. (6.20); the coefficients are

að0Þ1 ¼ m1m2 þ
3m2

1 þ 8m1m2 þ 3m2
2

2m1m2

p2 −
5m4

1 − 18m2
1m

2
2 þ 5m4

2

8m3
1m

3
2

p4 þ � � � ;

að1;1Þ1 ¼ 4m1 þ 3m2

2m1

þ 18m2
1 þ 8m1m2 − 5m2

2

8m3
1m2

p2 −
15m4

1 þ 15m2
1m

2
2 þ 12m1m3

2 − 7m4
2

16m5
1m

3
2

p4 þ � � � ;

að2;1Þ1 ¼ 1þ 2m2
1 þ 9m1m2 þ 2m2

2

4m2
1m

2
2

p2 −
6m4

1 þ 15m3
1m2 − 4m2

1m
2
2 þ 15m1m3

2 þ 6m4
2

16m4
1m

4
2

p4 þ � � � ; ð6:26Þ

where the ellipses stand forOðvn≥6Þ and að1;2Þ1 is obtained by exchanging ðm1; γ1Þ and ðm2; γ2Þ in að1;1Þ1 . It is not difficult to
see that these expressions reproduce the coefficients of the full theory amplitude in Eqs. (5.49) and (5.58), through Oðv4Þ.
The available Hamiltonians determine the OðG2Þ amplitude only through Oðv2Þ. The structure of the amplitude is the

same as Eq. (6.22). The coefficients of the various spin-dependent monomials to the relevant order in velocity are

að0Þ2 ¼ 3m1m2ðm1þm2Þþ
3ðm1þm2Þð3m2

1þ 10m1m2þ 3m2
2Þ

4m1m2

p2þ� � � ;

að1;1Þ2 ¼m1m2
2ð4m1þ 3m2Þ

2ðm1þm2Þp2
þ 20m3

1þ 53m2
1m2þ 41m1m2

2þ 9m3
2

4m1ðm1þm2Þ
þ 3ð30m4

1þ 71m3
1m2þ 43m2

1m
2
2 −m1m3

2− 4m4
2Þ

16m3
1m2ðm1þm2Þ

p2þ� � � ;

að2;1Þ2 ¼ m2
1m

2
2

2ðm1þm2Þp2
þð7m2

1þ 15m1m2þ 7m2
2Þ

2ðm1þm2Þ
þ 3ð3m4

1þ 39m3
1m2þ 74m2

1m
2
2þ 39m1m3

2þ 3m4
2Þ

16m2
1m

2
2ðm1þm2Þ

p2þ� � � ;

15See Ref. [56] for the equivalence of the spin Hamiltonian derived using NRGR.
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að2;2Þ2 ¼ −að2;1Þ2 ;

að2;3Þ2 ¼ m2
1m

2
2

ðm1 þm2Þp4
þ 19m2

1 þ 40m1m2 þ 19m2
2

4ðm1 þm2Þp2
þ 3ð3m4

1 þ 45m3
1m2 þ 86m2

1m
2
2 þ 45m1m3

2 þ 3m4
2

16m2
1m

2
2ðm1 þm2Þ

þ � � � : ð6:27Þ

The ellipses stand for Oðvn≥4Þ and að1;2Þ2 is obtained by

interchanging m1 and m2 in að1;1Þ2 . Note that the operator

associated with að2;3Þ2 is p · Ŝ1p · Ŝ2, which carriesOðp2Þ, its
coefficient is determined only though Oðv0Þ. We also note
the coefficients of the spin-dependent monomials exhibit
1=p2 singularities; similar to the full theory amplitude and
to the calculation of the EFT amplitude from the potential
(6.9), they originate from the tensor reduction of EFT one-
loop integrals and their residues are controlled by OðGÞ
Hamiltonian terms. The agreement outlined here serves as a
highly nontrivial test of the spin EFT formalism formulated
in this section and of the higher-spin field theory con-
struction used in earlier sections.

D. Conservative spin Hamiltonian from matching

With the amplitudes of the EFT and of the full theory in
hand, we turn to constructing the Hamiltonian. It is fixed by
demanding that the two amplitudes are the same,

MEFT
1PM ¼ Mtree

4

4E1E2

; MEFT
2PM ¼ M1 loop

4

4E1E2

: ð6:28Þ

The EFT amplitude is parametrized in Eqs. (6.20) and
(6.22), with coefficients given in Eqs. (6.21) and (6.24)
while the full theory amplitude may be found, in the same
parametrization, in Eqs. (5.49), (5.53), and (5.58). The
equality of amplitudes (6.28) implies that coefficients of
identical spin-dependent monomials—both denoted by
aAi —are also identical. From here we extract the coeffi-
cients dAi of the momentum-space potential.
Carrying this out at OðGÞ we find that dA1 are given by

dð0Þ1 ¼ m2ν2

ξγ2
ð1− 2σ2Þ;

dð1;iÞ1 ¼ −
ν

ξγ2
2σE
mi

−
1

m2
i ðγi þ 1Þd

ð0Þ
1 ;

dð2;1Þ1 ¼ ν

ξγ2
ð1− 2σ2Þ þ

�
1

m1ðγ1 þ 1Þ þ
1

m2ðγ2 þ 1Þ
�
2σp2

Eξ

þ p2

m2
1m

2
2ðγ1 þ 1Þðγ2 þ 1Þd

ð0Þ
1 ; ð6:29Þ

and dð2;2Þ1 ¼ dð2;3Þ1 ¼ 0 because they do not mediate long-
range interactions. The variables used here are defined in
Eq. (5.50) and below Eq. (5.54). The position-space
potential follows immediately via Table I:

cð0Þ1 ¼ dð0Þ1 ; cð1;iÞ1 ¼ −dð1;iÞ1 ; cð2;1Þ1 ¼ −3dð2;1Þ1 ;

cð2;2Þ1 ¼ dð2;1Þ1 ; cð2;3Þ1 ¼ 0: ð6:30Þ

At OðGÞ, the amplitude and potential are directly related, so
the potential retains the structure in Eq. (5.58). The relation

between cð2;1Þ1 and cð2;2Þ1 implies that, at this order, the spin-
bilinear part of the position-space potential depends only on
the two-particle quadrupole 3r · S1r · S2 − r2S1 · S2.
The coefficients (6.30) determine the OðGÞ Hamiltonian

to leading order in the classical limit. As discussed earlier in
this section, we may consider keeping subleading terms in
this Hamiltonian, as they may yield leading-order classical
terms in theOðG2Þ amplitude and thus modify the classical
Hamiltonian at that order. Fortunately, the on-shell con-
ditions force the correction to be either suppressed by two
powers of q compared to the classical terms or proportional
to the operators q2p · Ŝiq · Ŝj. The latter structure cancels
one graviton pole, leading to a contact term which gives a
vanishing contribution in the one-loop EFT amplitude.
The former may yield at most contributions to the EFT
amplitude that are suppressed by one power of q. We
conclude therefore that the coefficients (6.30) are sufficient
to generate the correct EFT amplitudes through OðG2Þ.
As a nontrivial consistency check, which verifies that the

EFT we constructed corresponds to the full theory used in
earlier sections, we can compare the iteration coefficient,
aiter in Eq. (6.25), and the classical limit of the aB of the
energy-integrated box integral. They are both determined
by OðGÞ data and multiply the same IR-divergent three-
dimensional integral, which is Oðjqj−1Þ. We find

dB
4E1E2

¼ ð4πGÞ24ξE2aiter þOðjqjÞ; ð6:31Þ

which is indeed required for the equality of the EFTand full
theory amplitudes, Eq. (6.28), at Oðq−2Þ. The match of the
IR divergent part can be extended to subleading order in
two equivalent ways. On the one hand, we can extend the
OðGÞ EFT Hamiltonian by subleading [OðjqjÞ] terms
which are adjusted for such that the equality above holds
toOðjqjÞ. They are related to the fact that the relation (2.20)
needed to express dB in terms of the classical spin vector
hold only to leading order in the classical limit. Conversely,
we can include next-to-leading order terms in Eq. (2.20),
and we verified that such terms extend the equality (6.31) to
OðjqjÞ. The details of this subleading correction are not
important; their only effect is to restore the equality of the
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IR-divergent part of the EFT and full-theory one-loop amplitudes without altering the classical EFT Hamiltonian
through OðG2Þ.
The coefficients dA2 of the OðG2Þ Hamiltonian are found from Eq. (6.28) with the EFT amplitude coefficients in

Eq. (6.24) and full theory coefficients in Eqs. (5.53) and (5.58). The spin-independent term and spin-orbit interaction
coefficients dAi are

dð0Þ2 ¼ ν2m3

ξγ2

�
3

4
ð1 − 5σ2Þ − 4νσð1 − 2σ2Þ

γξ
−
ν2ð1 − ξÞð1 − 2σ2Þ2

2γ3ξ2

�
;

dð1;1Þ2 ¼ νE
4ξγ2m1

�
−
ð5σ2 − 3Þσ
σ2 − 1

ð4m1 þ 3m2Þ þ
2ð2σ2 − 1Þ
σ2 − 1

ð2σEðγ−21 þ γ−22 Þ þ γ−11 ð1 − 2σ2Þm2Þ þ
4νð6σ2 − 1ÞE

ξγ2

�

−
1

m2
1ðγ1 þ 1Þ d

ð0Þ
2 : ð6:32Þ

The variables used here are defined in Eq. (5.50) and below Eq. (5.54), and dð1;2Þ2 is obtained by interchanging ðm1; γ1Þ and
ðm2; γ2Þ in dð1;1Þ2 . The expressions for the coefficients dð2;1Þ2 ; dð2;2Þ2 ; dð2;3Þ2 of the spin-bilinear operators are more complicated
so we provide them in the Mathematica ancillary file coefficients.m.
The coefficient functions of the position-space potential are readily obtained through the relations in Table I:

cð0Þ2 ¼ dð0Þ2 ; cð1;iÞ2 ¼ −2dð1;iÞ2 ; cð2;1Þ2 ¼ −8dð2;1Þ2 ; cð2;2Þ2 ¼ 2dð2;1Þ2 − 2dð2;2Þ2 ; cð2;3Þ2 ¼ −2dð2;3Þ2 : ð6:33Þ

We can verify that the probe limit of our all-orders-in-velocity Hamiltonian reproduces the results of Ref. [75], where the
Hamiltonian was constructed in this limit up to quadratic order in spins. (See also Refs. [65,91].) Taking m1; jpj ≪ m2, so
we have a spinning probe particle 1 in a Kerr background by particle 2 and mapping those results into isotropic gauge,16 the
probe-limit real-space potential up to bilinear order in spin is

Vðp; r;SiÞ ¼
�
Gm2

m1

ð2γ1 þ 1Þ
γ1ðγ1 þ 1Þ −

G2m2
2

m1

ð9γ31 þ 7γ21 þ 2γ1 þ 2Þ
2rγ31ðγ1 þ 1Þ

�
L · S1
r3

þ
�
2G −

6G2m2

r

�
L · S2
r3

þG
ð2γ1 − 1Þ

γ1

1

r5
ð3r · S1r · S2 − r2S1 · S2Þ þG2m2

ð−40γ41 − 28γ31 þ 14γ21 þ 6γ1 þ 6Þ
2γ31ðγ1 þ 1Þ

r · S1r · S2
r6

þG2m2

ð16γ41 þ 13γ31 − 5γ21 − 2γ1 − 2Þ
2γ31ðγ1 þ 1Þ

S1 · S2
r4

þ G2
m2

m2
1

ðγ1 − 1Þ
2γ1ðγ1 þ 1Þ2

p · S1p · S2
r4

: ð6:34Þ

Only the leading contribution in small m1=m2 is kept for each type of spin-dependent monomial. Mapping the expression
above to the form in Eq. (6.12) and Eq. (6.14) yields the coefficient cAi . We can see that the OðGÞ position-space potential
contains only the combination 3r · S1r · S2 − r2S1 · S2, in agreement with our result [cf. the discussion below Eq. (6.30)].
Equation (6.34) is in complete agreement with the probe limit of our potential.
We note that the combination 3r · S1r · S2 − r2S1 · S2, as a symmetric traceless tensor in r, can be interpreted as the

quadrupole of the two-particle system which is not induced by the quadrupole of the individual constituents, and thus it is
entirely due to their interaction. It may therefore be natural to organize the spin dependence in terms of this operator, even at
higher orders in G. At OðGnÞ it can also be identified as the traceless-symmetric structure in the momentum space
Hamiltonian, jqjn−3ð3q · S1q · S2 − q2S1 · S2Þ; while the second term drops out of the OðGÞ Hamiltonian (because it
represents a contact interaction), the Fourier transform of the remainder, including the additional q-dependent factors, is the
operator on the second line of Eq. (6.34).

E. Summary of EFT formulas

Here we collect the formulas that define the EFT constructed in this section and its coefficient functions determined by
matching its amplitudes with those of the full theory.

16We thank Justin Vines for sharing this result.
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Our real-space Hamiltonian is

H ¼ Hð0Þðr2; p2Þ þHð1;iÞðr2; p2ÞL · Si þHð2;1Þðr2; p2Þr · S1r · S2 þHð2;2Þðr2; p2ÞS1 · S2 þHð2;3Þðr2; p2Þp · S1p · S2 þ � � � ;
ð6:35Þ

where the ellipsis stands for terms quadratic in the spin of each particle as well as for terms of higher orders in spin. This
Hamiltonian corresponds to the one in Eqs. (6.12) and (6.13). As usual, the coefficients in Eq. (6.35) can be expanded in
Newton’s constant G, as in Eq. (6.14):

Hð0Þðr2; p2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

2

q
þG

r
cð0Þ1 ðp2Þ þ

�
G
r

�
2

cð0Þ2 ðp2Þ þOðG3Þ;

Hð1;iÞðr2; p2Þ ¼ 1

r2

�
G
r
cð1;iÞ1 ðp2Þ þ

�
G
r

�
2

cð1;iÞ2 ðp2Þ þOðG3Þ
�
;

Hð2;1Þðr2; p2Þ ¼ 1

r4

�
G
r
cð2;1Þ1 ðp2Þ þ

�
G
r

�
2

cð2;1Þ2 ðp2Þ þOðG3Þ
�
;

Hð2;2Þðr2; p2Þ ¼ 1

r2

�
G
r
cð2;2Þ1 ðp2Þ þ

�
G
r

�
2

cð2;2Þ2 ðp2Þ þOðG3Þ
�
;

Hð2;3Þðr2; p2Þ ¼ 1

r2

�
G
r
cð2;3Þ1 ðp2Þ þ

�
G
r

�
2

cð2;3Þ2 ðp2Þ þOðG3Þ
�
: ð6:36Þ

The first coefficient function, Hð0Þðr2; p2Þ, is the Hamiltonian that describes the gravitational interaction of spinless
particles; the remaining ones give systematically spin-dependent interactions. The coefficients cAi are the same as
in Eq. (6.14).
From Eqs. (6.29) and (6.30) we have the explicit values of the OðGÞ position-space Hamiltonian coefficients:

cð0Þ1 ¼ m2ν2

ξγ2
ð1 − 2σ2Þ;

cð1;iÞ1 ¼ ν

ξγ2
2σE
mi

þ 1

m2
i ðγi þ 1Þ c

ð0Þ
1 ;

cð2;1Þ1 ¼ −
3ν

ξγ2
ð1 − 2σ2Þ −

�
3

m1ðγ1 þ 1Þ þ
3

m2ðγ2 þ 1Þ
�
2σp2

Eξ
−

3p2

m2
1m

2
2ðγ1 þ 1Þðγ2 þ 1Þ c

ð0Þ
1 ;

cð2;2Þ1 ¼ −
1

3
cð2;1Þ1 ;

cð2;3Þ1 ¼ 0: ð6:37Þ

Similarly, theOðG2Þ terms are obtained from Eqs. (6.32) and (6.33). The spin-independent and spin-orbit ones are given by

cð0Þ2 ¼ ν2m3

ξγ2

�
3

4
ð1 − 5σ2Þ − 4νσð1 − 2σ2Þ

γξ
−
ν2ð1 − ξÞð1 − 2σ2Þ2

2γ3ξ2

�
;

cð1;1Þ2 ¼ −
νE

2ξγ2m1

�
−
ð5σ2 − 3Þσ
σ2 − 1

ð4m1 þ 3m2Þ þ
2ð2σ2 − 1Þ
σ2 − 1

ð2σEðγ−21 þ γ−22 Þ þ γ−11 ð1 − 2σ2Þm2Þ

þ 4νð6σ2 − 1ÞE
ξγ2

�
þ 2

m2
1ðγ1 þ 1Þ c

ð0Þ
2 ;

cð1;2Þ2 ¼ cð1;1Þ2 jm1↔m2;γ1↔γ2
: ð6:38Þ

The remaining lengthier coefficients cð2;1Þ2 , cð2;2Þ2 , and cð2;3Þ2 are found in the Supplemental Material [92]. The variables used
here are defined in Eq. (5.50) and below Eq. (5.54):
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γ ¼ E
m
; γ1 ¼

E1

m1

; γ2 ¼
E2

m2

; ξ ¼ E1E2

E2
; σ ¼ p1 · p2

m1m2

;

E ¼ E1 þ E2; m ¼ m1 þm2; ν ¼ m1m2

m2
; ð6:39Þ

where E1 and E2 are the energies of the two particles.
The EFT amplitude coefficients can be obtained from the real-space Hamiltonian coefficients from Table I and

Eqs. (6.21) and (6.24). At OðGÞ we have

að0Þ1 ¼ −cð0Þ1 ; að1;1Þ1 ¼ cð1;1Þ1 ; að1;2Þ1 ¼ cð1;2Þ1 ;

að2;1Þ1 ¼ 1

3
cð2;1Þ1 ¼ −cð2;2Þ1 ; að2;2Þ1 ¼ 0; að2;3Þ1 ¼ 0; ð6:40Þ

while at OðG2Þ we have

að0Þ2 ¼ −cð0Þ2 þ 1

2ξE
A0½ðcð0Þ1 Þ2�;

að1;iÞ2 ¼ 1

2
cð1;iÞ2 −

1

2ξE
A1½cð0Þ1 cð1;iÞ1 �;

að2;1Þ2 ¼ 1

8
cð2;1Þ2 −

1

6ξE
A3½cð0Þ1 cð2;1Þ1 � þ p2

2ξE
A2½cð1;1Þ1 cð1;2Þ1 � þ ξE

24
ðcð1;1Þ1 þ cð1;2Þ1 Þcð2;1Þ1 ;

að2;2Þ2 ¼ 1

8
cð2;1Þ2 þ 1

2
cð2;2Þ2 þ 1

6ξE
A2½cð0Þ1 cð2;1Þ1 � − p2

ξE
A2½cð1;1Þ1 cð1;2Þ1 � þ ξE

24
ðcð1;1Þ1 þ cð1;2Þ1 Þcð2;1Þ1 ;

að2;3Þ2 ¼ 1

2
cð2;3Þ2 −

ξE
3p4

½cð0Þ1 cð2;1Þ1 � þ 1

ξE
A2½cð1;1Þ1 cð1;2Þ1 � − ξE

6p2
ðcð1;1Þ1 þ cð1;2Þ1 Þcð2;1Þ1 ; ð6:41Þ

where

A0½X� ¼ ½ð1 − 3ξÞ þ 2ξ2E2∂�X;
A1½X� ¼

�
ð1 − 3ξÞ þ 2ξ2E2

p2
þ 2ξ2E2∂

�
X;

A2½X� ¼
�
1

4
ð1 − 3ξÞ þ ξ2E2

p2
þ 1

2
ξ2E2∂

�
X;

A3½X� ¼
�
3

4
ð1 − 3ξÞ þ ξ2E2

p2
þ 3

2
ξ2E2∂

�
X. ð6:42Þ

The explicit values of the amplitude coefficients aAi
summarized in Sec. V E are much simpler than the
corresponding cAi Hamiltonian coefficients. This is not
surprising given that Hamiltonians are gauge dependent,
while amplitudes are gauge independent. It would be
interesting to see if there exists a formulation of the
EFT which leads to a Hamiltonian which exhibits the
simplicity of the scattering amplitude.

VII. PHYSICAL OBSERVABLES

The two-body Hamiltonian constructed in the previous
section allows us to compute observables of scattering
processes and of bound motion of spinning bodies. We will

focus here on scattering observables, to point out a simple
connection to the eikonal phase. Unlike the spinless case
where the motion occurs in a plane and therefore there is
only a single scattering angle, the spinning case has several
interesting observables. Since the orbital angular momen-
tum is no longer conserved, the scattering process is three-
dimensional, and thus there are two deflection angles.
Moreover, since the spins are not separately conserved,
they also change in a scattering process. As for the spinless
case, these scattering observables are useful stepping stones
for the construction of effective one-body Hamiltonians
[2,93,94] which can be used to evaluate bound-state
dynamics. In this case, the dynamics is similarly rich with
three-dimensional motion and multiple angles, leading to
nontrivial modulation of gravitational wave signals which
may be used to determine the properties of the binary
constituents.

A. Classical mechanics of particles with spin

Consider the general problem of an arbitrary
Hamiltonian describing the interaction of two particles
with rest-frame spin three-vectors S1 and S2 in their center-
of-mass frame, H ¼ Hðr; p; S1; S2Þ. In our case we will
truncate to a fixed number of spin vectors, namely bilinear
in spin. This is consistent, since terms in the solutions to the
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equations of motion with a certain number of spin vectors
do not receive contributions from terms in the Hamiltonian
with a larger number of spin vectors. While, as usual, r and
p are canonically conjugate to each other, the spin variables
do not have a natural canonical conjugate. To derive the
equations of motion we use the fact that they must generate
SOð3Þ, so

fSia; Sjbg ¼ δabϵ
ijkSka; a; b ¼ 1; 2; ð7:1Þ

where fA; Bg is the Poisson bracket of A and B. One way to
understand this relation is by recalling that in the complete
theory the spin vector is given by the expectation value of
the Lorentz generator. Applying Ehrenfest’s theorem to the
Lorentz algebra leads to Eq. (7.1). A similar strategy for
deriving the equations of motion for the spin variables is
found in, for example, Refs. [21,93].
The equations of motion are then

_r¼∂H
∂p ; _p¼−

∂H
∂r ; _Sa¼−Sa×

∂H
∂Sa ; a¼1;2; ð7:2Þ

where in the spin equation of motion no summation is
implied on the right-hand side. One can use spherical polar
coordinates, but for the purpose of finding the impulse Δp
we find it convenient to use Cartesian coordinates. One
may either solve the equations of motion for coordinates
and momenta and spins as a function of time or one may
choose the z coordinate as an effective time parameter.
There are two conservation laws that aid the construc-

tion of classical solutions. These fix the energy and the
total angular momentum in terms of their asymptotic
values:

E ¼ Hðr; p; S1; S2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
∞ þm2

1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
∞ þm2

2

q
;

I ¼ r × pþ S1 þ S2 ¼ Lin þ S1;in þ S2;in; ð7:3Þ

where p∞ ¼ p∞ez is the incoming momentum at
infinity,17 as indicated in Fig. 11. We take the orbital
angular momentum at infinity to be

Lin ¼ b × p∞ ¼ bp∞ey; ð7:4Þ

where b ¼ −bex and b is the impact parameter. Note that
under the conservative dynamics, the spins cannot
exchange energy with the remainder of the system
because under the equations of motion,

djSaj2
dt

¼ 2Sa · _Sa ¼ −2Sa ·
�
Sa ×

∂H
∂Sa

�
¼ 0; ð7:5Þ

where, as in the spin equation of motion (7.2), the index
a ¼ 1, 2 is not summed.
We solve the equations of motion perturbatively in

Newton’s constant; i.e., we search for a solution for
coordinates, momenta, and spins of the form

rðtÞ ¼ r0ðtÞ þ Gr1ðtÞ þ G2r2ðtÞ þ � � � ;
pðtÞ ¼ p0ðtÞ þ Gp1ðtÞ þG2p2ðtÞ þ � � � ;
SaðtÞ ¼ Sa;0ðtÞ þGSa;1ðtÞ þ G2Sa;2ðtÞ þ � � � : ð7:6Þ

Replacing them in the equations of motion (7.2) leads to
iterative relations between the time derivative of the nth
term in the expansions above and all the lower-order terms.
The OðG0Þ terms describe the motion of a free spinning
particle in flat space, i.e., a straight line fixed by the initial
momentum, the impact parameter, and the initial spin. The
first-order differential equations for the higher-order terms
can be integrated; the relevant boundary conditions are that
rn≥1, pn≥1, and Sa;n≥1 vanish at t ¼ −∞. The contribution
of each order in G to an observable O, such as the impulse
and spin kick, is then

ΔOn¼
Z

∞

−∞
dt
dOn

dt
¼Onðt¼þ∞Þ−Onðt¼−∞Þ; ð7:7Þ

with the complete result being their sum weighted with the
appropriate powers of G.
The incoming and outgoing trajectories approach

straight lines at t ¼ �∞, respectively, which are along
the incoming and outgoing momenta. Thus, the polar and
azimuthal scattering angles can be read off in terms of their
components or, alternatively, in terms of the incoming
momentum and the impulse. Starting with an initial
momentum along some generic direction defined by the
angles θ0 and ϕ0,

FIG. 11. A representation of a scattering process in the presence
of spin. The center of mass is placed at the origin; p∞ is the
incoming momentum, poutgoing is the outgoing momentum, and
jpoutgoingj ¼ jp∞j. Its direction has been translated to pass through
the origin to facilitate the depiction of the two scattering angles θ̄
and ϕ̄.

17The notation p∞ is sometimes defined differently, as in
Ref. [95].
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pincoming ¼ p∞ sin θ0 cosϕ0ex þ p∞ sin θ0 sinϕ0ey

þ p∞ cos θ0ez; ð7:8Þ

and then the outgoing momentum, expressed in terms of the
scattering angles θ̄ and ϕ̄, is

poutgoing ¼ pincoming þ Δp

¼ p∞ sinðθ0 þ θ̄Þ cosðϕ0 þ ϕ̄Þex
þ p∞ sinðθ0 þ θ̄Þ sinðϕ0 þ ϕ̄Þey
þ p∞ cosðθ0 þ θ̄Þez: ð7:9Þ

The scattering angles can then easily be extracted in terms
of the components of the impulse Δp and the incoming
momentum. It is worth noting that, if e.g., θ0 ¼ π and
ϕ0 ¼ 0, then the azimuthal angle evaluated at finite
Newton’s constant exhibits a discontinuity in the limit
G → 0. Indeed, for such a value of θ0, the incoming
momentum has vanishing components along ex and ey.
The components of the outgoing momentum in these
directions are both OðGÞ, leading to tan ϕ̄ ¼ Oð1Þ. This
discontinuity is unphysical and may easily be remedied
by slightly changing the initial conditions such that the
incoming momentum is not parallel to a coordinate axis.

B. Impulse, spin kick, and the eikonal phase

As we will describe in some detail in Ref. [70], by
solving Hamilton’s equations we find a remarkably simple
hidden structure, tying the solution to the gauge-invariant
amplitudes. In the case of spinless particles there is a
direct link between the physical observables and
gauge-invariant quantities extracted from scattering ampli-
tudes [10,15,39,40]. Indeed, Refs. [13,38] provide a gen-
eral formalism for systematically extracting physical

observables from amplitudes and their unitarity cuts. For
spinning particles such a relation has been found at lowest
order in G found in Ref. [38] and further applied in
Ref. [61]. Here we show that such relations appear to be
general by rewriting the solution for the impulse and spin
kick at OðG2Þ in terms of appropriate derivatives acting on
the eikonal phase [68], showing that the notion of the
eikonal phase naturally generalizes to the case of spin.
As for the spinless case, we define the eikonal phase

χ ¼ χ1 þ χ2 þ � � � by Fourier transforms of appropriate
parts of amplitudes. The OðGÞ contribution to the eikonal
phase, in particular, is just the Fourier transform of the tree
amplitude to impact parameter space,18

χ1 ¼
1

4m1m2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p
Z

d2−2ϵq
ð2πÞ2−2ϵ e

−iq·bMtreeðqÞ; ð7:10Þ

and the OðG2Þ contributions to the eikonal phase is given
simply by the triangle contributions to the one-loop
amplitudes,

χ2 ¼
1

4m1m2

ffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p
Z

d2q
ð2πÞ2 e

−iq·bM△þ▽ðqÞ; ð7:11Þ

whereM△þ▽ðqÞ is given in Eq. (5.43). Since the goal is to
compare with results obtained from Hamilton’s equations,
in the formulas above we must use the amplitudes
expressed in terms of the canonical rest-frame spins. The
tree-level amplitude in this form is given in Eq. (5.56) while
the triangle part of the one-loop amplitude, M△þ▽ðqÞ, is
given by the first two lines of Eq. (5.57). The coefficient of
each spin-dependent structure is given in Eqs. (5.58),
(5.49), and (5.53). Carrying out the Fourier transforms
gives the following remarkably compact expressions:

χ1 ¼
GξE
jpj

�
−að0Þ1 ln b2 −

2að1;iÞ1

b2
ðp × SiÞ · bþ að2;1Þ1

�
2

b2
S1⊥ · S2⊥ − 4

S1⊥ · bS2⊥ · b
b4

��
;

χ2 ¼
πG2ξE
jpj

�
að0Þ2

jbj − ðað2;2Þ2 S1 · S2 þ að2;3Þ2 p · S1p · S2Þ
1

jbj3 −
að1;iÞ2

jbj3 ðp × SiÞ · bþ að2;1Þ2

�
1

jbj3 S1⊥ · S2⊥ − 3
S1⊥ · bS2⊥ · b

jbj5
��

;

ð7:12Þ

where we define

S⊥i ≡ Si − p
Si · p
p2

: ð7:13Þ

Note that the p here, following from the notation in our
amplitudes, is the incoming momentum p∞ in Fig. 11,
which should not be confused with the intermediate p in
Sec. VII A. In Eq. (7.12), we can also use the model-
independent expressions of aAi given in terms of the cAi
coefficients appearing in the potential via Eqs. (6.40) and
(6.41). Remarkably the simple gauge-invariant functions in
Eq. (7.12) encode the physical information for classical
scattering processes through OðG2Þ, including spinless,

18At higher orders in G the b in the eikonal formula could
differ from the geometric impact parameter [69], but we can set
aside this distinction through OðG2Þ.

BERN, LUNA, ROIBAN, SHEN, and ZENG PHYS. REV. D 104, 065014 (2021)

065014-42



spin-orbit, and spin1-spin2 interactions in a form valid to all
orders in velocity.
To extract the impulse and spin kick from the eikonal

phase, consider the kinematic configuration shown in
Fig. 11 where

p ¼ ð0; 0; p∞Þ; b ¼ ð−b; 0; 0Þ;
L ¼ Lin ¼ p∞ð0; b; 0Þ: ð7:14Þ

As mentioned before, p here represents the incoming
momentum p∞. By evaluating the eikonal phase on this
kinematics and comparing to the solution of the equations
of motion, we find that impulse in the x − y plane is [70]

Δp⊥ ¼ −fP⊥; χg −
1

2
fχ; fP⊥; χgg −DSLðχ; fP⊥; χgÞ

þ 1

2
fP⊥;DSLðχ; χÞg; ð7:15Þ

and the spin kick for all three components is

ΔSi ¼ −fSi; χg −
1

2
fχ; fSi; χgg −DSLðχ; fSi; χgÞ

þ 1

2
fSi;DSLðχ; χÞg; ð7:16Þ

where both relations are valid up to OðG2Þ and

fP⊥; fg≡ −∇bf;

fSia; fg≡ ϵijk
∂f
∂Sja S

k
a ða not summedÞ;

DSLðf; gÞ≡ −
X
a¼1;2

ϵijkSka
∂f
∂Sia

∂g
∂Lj

¼ 1

p2
X
a¼1;2

� ∂f
∂Sja

∂g
∂bj Sa · p − pj ∂f

∂Sja Sa ·∇bg

�
;

ð7:17Þ

where f and g depend on S, p, and b. In the brackets p
should be taken as inert. To use the first form of DSL, we
replace b with L via

b ¼ 1

p2
p × L; ð7:18Þ

consistent with p · b ¼ 0. After evaluating the derivatives,
we substitute in the values at t ¼ −∞ given in Eq. (7.14) to
obtain the impulse and spin kick.
While Eq. (7.15) does not directly give the impulse in the

z direction, this quantity follows from energy conservation,

Δpz ¼ −
1

2jpj ðΔpÞ
2; ð7:19Þ

which can be iteratively solved as a series in G. From the
structure of the brackets andDSL in Eq. (7.17), the value S2a
is preserved, as required from the equation of motion (7.5).
The expressions for the impulse and spin kick in

Eqs. (7.15) and (7.16) then match the derived results from
the equations of motion, as we have explicitly verified.
Together with Eqs. (7.9) and (7.8), they relate the scattering
angles and the eikonal phase; in the limit of vanishing spin
this relation reproduces the standard one [68], implying the
proportionality of the sine of half of the scattering angle
and the derivative of the eikonal phase with respect to the
absolute value of the impact parameter. An ancillary
Mathematica text file [92] contains the explicit values of
impulse and spin kick for the initial conditions in Eq. (7.14).
The expressions in Eqs. (7.15) and (7.16) strongly

suggest an all orders generalization. For example, one
matches the above expressions to the order that they are
valid, by

ΔO ¼ e−iχD½O; eiχD�; ð7:20Þ

where the commutator is related to the brackets in
Eq. (7.17) by ½f; g� ¼ iff; gg and

χDg≡ χgþ iDSLðχ; gÞ; ð7:21Þ

for any function g that appears to the right of D.
Equation (7.20) is interpreted as being multiplied from
the right by a function independent of the orbital angular
momentum; alternatively, one may simply define DSL to
vanish when it is the rightmost operator in that expression.
We defer a detailed discussion of the derivation of these
results and their implications to Ref. [70].

VIII. CONCLUSIONS

In this paper we presented a systematic method for
constructing the conservative classical Hamiltonian
describing the gravitational interaction of two massive
spinning bodies. Such Hamiltonians provide crucial input
toward obtaining precision gravitational-wave predictions
from binary systems that include Kerr black holes or
neutron stars. Our formalism extends the arbitrary-spin
approach of Refs. [71,72] and incorporates the world-line
interactions of Refs. [52,57] into a field-theory framework
from which scattering amplitudes can be calculated. The
tree-level and one-loop amplitudes we find using this
formalism determine the classical two-spinning-body
Hamiltonian by EFT matching along the lines of Ref. [12].
We constructed the tree-level amplitude to all orders in

spin and velocity and show that it reproduces the OðGÞ
results of Ref. [58] for the Kerr black hole and extend it to
general objects, such as neutron stars with generic spin-
induced multipole moments. To demonstrate the utility of
our approach, we obtained new nontrivial results for the
spin1-spin2 Hamiltonian at OðG2Þ valid to all orders in
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velocity. The bilinear-in-spin part of the one-loop ampli-
tude containing the complete velocity dependence agrees
with the spin-1=2 calculation in Ref. [66]. This is in line
with expectations [23,34,62] that this is sufficient at one-
loop to capture such spin bilinears. We gave an argument
for the lower bound on the value of the spin which is
sufficient in our formalism to capture the complete spin
dependence of an amplitude at a given loop order.
To extract the two-spinning-body Hamiltonian to all

orders in velocity we extended the EFT approach of
Ref. [12] to include spin degrees of freedom. In doing
so we encountered a subtlety: for the one-loop infrared
divergences of the EFTand of the full theory to be the same,
it was necessary to have a specific treatment of the terms in
the relation between Lorentz generators and spin tensors
that are subleading in the classical limit. This procedure
guarantees that the constructed EFT corresponds to the
relativistic theory we started with. Because of the stronger-
than-classical scaling of parts of the loop-level amplitudes,
we expect that the matching of infrared divergences must
be revisited at every loop order and increasingly more
subleading terms be included. Further study is needed to
determine whether this procedure is sufficient to fix the
subleading terms to all orders in Newton’s constant. It may
instead be possible to construct a more involved EFT that
makes the matching of infrared divergences more straight-
forward or even avoids it altogether. It would be important
to explore both of these strategies toward the obviously
interesting problem of systematically constructing the spin-
dependent two-body Hamiltonian at OðG3Þ and beyond.
By suitably choosing the initial conditions, the

Hamiltonian derived here can be used to describe any
dynamical problem, including the important bound-state
cases. For constructing precision gravitational-wave tem-
plates that incorporate the new spin information, it is
necessary to import these results into models, such as
the effective one body approach [2,16].
In this paper we summarized the results of solving the

equations of motion for our bilinear-in-spin Hamiltonian in
a scattering process and defer a more detailed discussion to
Ref. [70]. We obtained the impulse and spin kick in a
scattering process. Their construction is substantially more
intricate than for the spinless case because orbital angular
momentum is not conserved and, consequently, the scatter-
ing trajectory is no longer planar. Despite this additional
complexity, the results for the impulse and spin kick
obtained from the solution to the equations of motion
are neatly encoded in the eikonal phase [68,69], obtained
by Fourier transforming relevant parts of the amplitude. It is
rather striking that the eikonal phase determines the
scattering observables, including the spin kick. This points
to a much greater hidden simplicity than visible in the
Hamiltonian and equations of motion. Based on our results
it does seem that a general simple formalism should exist
that translates the eikonal phase into generic physical

observables. The formalism of Refs. [13,38], which directly
expresses physical observables in terms of scattering
amplitudes and their unitarity cuts should provide impor-
tant guidance for further developments along these lines.
We validated our results for the spin-dependent two-

body Hamiltonian and the associated observables through
several nontrivial checks. Our primary test is that, after
expanding in velocity, our result agrees with the state-of-
the-art calculations of spin-orbit and spin1-spin2 potentials
in the post-Newtonian framework [54,55] in the overlapped
region. Truncating our Hamiltonian to spin-orbit inter-
actions, we also reproduce the all-orders-in-velocity scat-
tering angle obtained in Ref. [59], whose spin-orbit part is
in agreement with Ref. [64], for the configuration where the
spins of the two bodies are aligned with the orbital angular
momentum. An additional nontrivial test is in the test-mass
limit, in which we reproduce the all-orders-in-velocity
results of Refs. [75]. (See also Refs. [65,91].)
While the Lagrangian for higher-spin fields we con-

structed here is not directly suitable for quantum loop
calculations with internal higher-spin fields, it is sufficient
for tree-level calculations, which in turn are sufficient for
constructing all unitarity cuts required in the classical limit.
A very interesting direction that can usefully impact the
complexity of constructing higher order spin-dependent
Hamiltonians is to systematically expand our understand-
ing of the double copy including spin. The double copy
expresses gravitational amplitudes in terms of simpler
gauge-theory ones. Here we pointed out some tantalizing
double-copy relations. This includes double-copy proper-
ties of the two-matter–one-graviton tree-level vertices,
corresponding to the energy-momentum tensor for arbitrary
spin [58]. In addition, we presented a KLT-like factoriza-
tion for the tree-level gravitational Compton amplitude.
An obvious problem is to extend the results obtained

here to high powers of spin at OðG2Þ and beyond. As we
have argued, amplitudes of low-spin particles are in general
insufficient for this purpose because of special relations
between Lorentz generators in fixed representations. We set
up our arbitrary-spin formalism precisely to avoid these
limitations. The higher-spin Lagrangian we used captures
the covariantization of the parity-even spin-induced gravi-
tational linear response functions and thus includes all
parity-even multipole moments. As the number of spin
operators increases, nonlinear response functions,
described by operators with two or more gravitons, also
need to be included. Here we avoided them by focusing on
terms that, while bilinear in spins, are at most linear in the
spin of each particle. An important problem is the complete
classification of all such operators (each containing as
many Riemann tensors as the desired number of gravitons)
and the evaluation of their contribution to the effective
Hamiltonian of massive spinning bodies. For black holes, it
may be possible to fix coefficients through purely theo-
retical considerations as done for the energy-momentum
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tensor [58]. For neutron stars or other astrophysical objects,
the coefficients carry information about its internal struc-
ture and properties, and should be treated as phenomeno-
logical parameters, to be determined by observation. The
first contribution of such an operator to the two-body
Hamiltonian depends on the number of gravitons it con-
tains. For example, the two-graviton operators first con-
tribute at OðG2Þ to conservative processes and at OðG3=2Þ
to processes with outgoing gravitational radiation.
It would also be of crucial importance to see what further

progress can be made in developing an eikonal formalism
that includes arbitrary spin contributions at any order and to
understand in detail the extent of the direct links between
finite parts of scattering amplitudes and physical quantities.
It would also be important to see whether appropriate
analytic continuations can relate observables of the unbound
and bound motion, as for the spin-aligned case [39].
In summary, we expect the amplitude-based effective-

field-theory approach advocated here to lead to further
progress on the spin dependence of gravitational inter-
actions. Our linkage of scattering observables to the eikonal
phase demonstrates a surprising hidden simplicity which

suggests that better methods for constructing physical
observables may exist. This will be further discussed
in Ref. [70].
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