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Zan Gojcic   · Lorenz Schmid · Andreas Wieser 

Dense 3D displacement vector fields for point 
cloud‑based landslide monitoring

Abstract  We propose a novel fully automated deformation analysis 
pipeline capable of estimating real 3D displacement vectors from 
point cloud data. Different from the traditional methods that estab-
lish displacements based on the proximity in the Euclidean space, 
our approach estimates dense 3D displacement vector fields by 
searching for corresponding points across the epochs in the space 
of 3D local feature descriptors. Due to this formulation, our method 
is also sensitive to motion and deformations that occur parallel to 
the underlying surface. By enabling efficient parallel processing, 
the proposed method can be applied to point clouds of arbitrary 
size. We compare our approach to the traditional methods on point 
cloud data of two landslides and show that while the traditional 
methods often underestimate the displacements, our method cor-
rectly estimates full 3D displacement vectors.

Keywords  Deformation analysis · Point clouds · Deep learning · 
3D displacement vector field

Introduction
The surface motion of landslides and rockfalls can be derived 
from pointwise or areal monitoring observations. In the case of 
pointwise monitoring, the displacements of a limited number of 
carefully selected, signalized points are measured with high accu-
racy using, e.g., total stations (TS) (Frukacz et al. 2017; Amaral et al. 
2020) or GNSS sensors (Malet et al. 2002; Glabsch et al. 2009). These 
displacements then need to be generalized in order to derive the 
changes within the whole area of interest. On the other hand, areal 
monitoring techniques such as terrestrial radar interferometry 
(Caduff et al. 2015), spaceborne InSAR (Ye et al. 2004), terrestrial 
or UAV-borne photogrammetry (Niethammer et al. 2012; Kenner 
et al. 2018), and laser scanning (Barbarella and Fiani 2013; Huang 
et al. 2019), enable a nearly continuous spatial sampling, which alle-
viates the need for generalization and enables detecting changes at 
unexpected locations (Wunderlich et al. 2016). However, while areal 
techniques offer advantages in terms of coverage, the subsequent 
data analysis is still challenging and represents the main bottleneck 
for their widespread adoption.

Herein, we focus on areal geomonitoring using point cloud data. 
Specifically, we consider a setting in which two point clouds (1) are 
acquired at different times, (2) cover the same underlying surface, 
of which at least a part moves or deforms between the acquisitions, 
and (3) are registered, i.e., aligned to a common reference frame. 
Hereinafter we denote these point clouds as source (first epoch) 
and target (second epoch). Furthermore, we assume without loss 
of generality that the point clouds are obtained by laser scanning. 
The registration typically necessitates prior knowledge of the stable 
areas and can represent a significant challenge when considering 

geomonitoring point clouds (Wujanz et al. 2013). However, data-
driven registration algorithms capable of both identifying the 
stable areas and estimating the registration parameters have been 
proposed in the past (Wujanz et al. 2013; Friedli and Wieser 2016).

One of the main challenges in point cloud-based deformation 
analysis is related to the measurement principles of the sensors, 
which typically acquire raw data in a sensor-fixed frame, e.g., in a 
regular angular grid centered at the scanner in the case of terres-
trial laser scanning (TLS), rather than in a frame connected to the 
monitored surfaces. As a consequence, if the sensor moves between 
the epochs, if different sensors are used at different epochs, or if at 
least parts of the surfaces deform between the measurements, the 
same points are either not measured or cannot be readily identified 
within the point clouds (Wunderlich et al. 2016; Gojcic et al. 2020). 
This implies that some sort of geometric or radiometric modeling 
and matching (Neuner et al. 2016; Holst et al. 2017) is needed for 
the deformation analysis. In the past, several methods for point 
cloud-based deformation analysis were proposed (Cignoni et al. 
1998; Lane et al. 2003; Lindenbergh and Pfeifer 2005; Teza et al. 
2007; Monserrat and Crosetto 2008; Lague et al. 2013). We focus 
our review on the ones most commonly used in geomonitoring, 
which are also implemented in standard open-source software 
packages, e.g., CloudCompare.1 These include: cloud-to-cloud 
(C2C), cloud-to-mesh (C2M) (Cignoni et al. 1998), and multiscale 
model-to-model cloud (M3C2) (Lague et al. 2013) comparison. C2C 
is the simplest and the most efficient method of computing dis-
placements between two point clouds. The displacements are com-
puted as the Euclidean distances between the individual points of 
the source point cloud and their respective nearest neighbor (NN) 
in the target point cloud (Fig. 1a). In its basic form, C2C therefore 
does not require any modeling of the local surface (e.g., triangula-
tion or plane fitting).

In C2M comparison, the displacements are computed as the 
shortest Euclidean distances between each point of the source 
point cloud and its closest facet or edge (if the orthogonal projec-
tion of the point does not fall on any of the facets) in the triangu-
lated target point cloud (Fig. 1b). Generating a mesh surface from 
point clouds of natural scenes, with low resolution and high surface 
roughness, is a complex task. As a result, the triangulated surfaces 
typically comprise a lot of holes and artifacts (e.g., spikes or self-
intersections), which result in spurious displacement estimates.

The M3C2 comparison quantifies the displacements using interest 
points, i.e., subsampled points of the source point cloud. The process-
ing can be broken down into three steps for each interest point. First, 
two sub-clouds are obtained by intersecting the source and target 
point cloud with a cylinder of diameter d and main axis aligned with 
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the estimated normal vector (Fig. 1c). Second, the points of each sub-
cloud are projected on the cylinder axis. This results in two distribu-
tions of points along the normal direction. Finally, these distributions 
are used to (1) compute the local point cloud roughness (in terms of 
standard deviations �1 and �2 in source and target point cloud), (2) 
compute the displacement as the distance between the mean values of 
the distributions (diamond symbols in Fig. 1c), and assess the statisti-
cal significance of the displacement.

These traditional point cloud comparison methods at least 
implicitly yield 3D displacement vectors (e.g., between the NNs or 
between the mean values on the cylinder axis), but these vectors 
just represent the distance between the surfaces not the actual dis-
placement of points on the surfaces. Therefore, the derived vectors 
do not represent the real 3D displacements and the results are typi-
cally interpreted and visualized in terms of their magnitudes only. 
Moreover, they represent primarily the deformations orthogonal to 
the surfaces and fail to reflect the actual displacements, or signifi-
cantly underestimate them, in case of motion/deformation parallel 
to the surface (e.g., debris sliding along the surface) or more com-
plex motion (Holst et al. 2017; Gojcic et al. 2020).

A parallel line of works has tried to address this problem by 
either combining the point clouds with the RGB images (Wagner 
2016), or by converting the points clouds to hillshade images (Holst 
et al. 2021). Both approaches then estimate 3D displacement vectors 
based on the corresponding points obtained using the 2D image 
features. However, these methods start by converting 3D data to 2D 
and treat the third component with less priority. Furthermore, they 
were only evaluated on a single dataset using hyperparameters that 
were optimized for the specific study areas.

Recently, Gojcic et al. (2019b, 2020) proposed Feature to Feature 
Supervoxel-based Spatial Smoothing (F2S3), a novel deep learn-
ing framework for point cloud-based deformation analysis that 
calculates real 3D displacement vectors. The main idea of F2S3 is 
to establish corresponding points across the epochs based on the 
proximity in a feature space, spanned by local feature descriptors, 
rather than by proximity in the Euclidean space (Fig. 1d). Local 
feature descriptors describe the geometric information2 of the 
local neighborhood (e.g., sphere with radius rf  ) around the interest 

points in the form of high dimensional vectors and are commonly 
used for point cloud registration already (Gojcic et al. 2019a; Huang 
et al. 2020).

By establishing the corresponding points in the feature space, 
F2S3 is also sensitive to displacements along the surface and thus 
yields full 3D displacement vectors. We could show that F2S3 out-
performs the traditional methods on real-world geomonitoring 
datasets when the hyper-parameters are chosen appropriately. 
However, the only implementation of F2S3 that is currently avail-
able (Gojcic et al. 2020) is computationally very complex, not fully 
automated, and requires in-depth knowledge of the algorithm 
and the deformation process for the appropriate choice of the 
hyper-parameters.

In this work, we take a step further and embed the F2S3 work-
flow into a fully automated deformation analysis pipeline, which 
can easily be applied to point clouds of arbitrary size. To this end, 
we (1) propose an automated tiling procedure, which divides the 
point clouds into smaller tiles that can efficiently be processed in 
parallel, and (2) replace all user-selected hyperparameters by values 
directly derived from the input point clouds. Furthermore, we (3) 
optimize the run time and memory complexity by using a more 
efficient local feature descriptor (Poiesi and Boscaini 2021). As a 
result, even very large point clouds with several tens of millions of 
points can be processed on a standalone computer within a couple 
of hours.

We demonstrate our approach using two case studies of actual 
landslides and compare the results to the state-of-the-art methods. 
Although the primary motivation for the underlying research is 3D 
deformation analysis, the method proposed herein can also be used 
for solving or mitigating other point cloud processing challenges, 
e.g., fine registration or segmentation of scenes into deforming/
moving and stable parts.

Methodology
In this section, we describe the individual modules of the pro-
posed point cloud-based deformation analysis method, which is 
shown schematically in Fig. 2. The core of the method is the F2S3 
framework (Gojcic et al. 2020), which can be roughly divided into 
two steps. First, an initial displacement vector field is estimated by 
determining the pointwise correspondences in the feature space 
(“Estimating the initial displacement vector field” section). This 
step is based on the assumption that the same points are measured 

Fig. 1   Schematic overview of the commonly used methods for point 
cloud-based deformation analysis. The target point cloud (blue) is 
shifted to the right, relative to the source point cloud (red). The tra-
ditional methods (C2C, C2M, and M3C2) struggle to estimate the 
correct displacements in the case of motion that is parallel to the 

surface. Due to establishing the correspondences in the feature 
rather than Euclidean space, F2S3 is sensitive to both parallel and 
orthogonal motion relative to the surface. Black arrows depict the 
inferred displacement vectors, while light blue and red lines depict 
the (unobserved) underlying surface

2  Radiometric and spectral information (e.g., intensity, color) could 
be incorporated in the local feature descriptors, but is usually omit-
ted because it is much more specific to each sensor, to environmental 
conditions etc., and thus much harder to generalize.
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in both epochs and that the actually corresponding points are clos-
est in the feature space. This is only approximately valid in practice, 
e.g., due to the low sampling resolution, motion, occlusions, and 
areas without sufficiently salient features. As a result, the initial dis-
placement vector field is noisy and contains false correspondences. 
The second step is therefore dedicated to the filtering and smooth-
ing of the initial displacement vector field (“Filtering and smooth-
ing the initial vector field” section). To this end, the points of the 
source point cloud are first combined into geometrically coherent 
local patches, which are assumed to move as nearly rigid bodies. 
Finally, the noisy displacement vectors, which do not agree with 

the dominant rigid motion component within each local patch, are 
filtered out. The second step of F2S3 is motivated by the observation 
that the actual displacement vector fields are not random and in 
fact show high local regularity (e.g., large stones move as rigid bod-
ies and nearby areas without discontinuities often move similarly).

We complement the F2S3 workflow with an automated tiling 
procedure (“Point cloud tiling” section) and replace the user-
selected parameters with the ones estimated directly from the 
data. The relation for each individual parameter is described in 
the respective subsections. The resulting fully automated procedure 
takes two point clouds as input and returns the 3D displacement 

Fig. 2   Workflow of the proposed point cloud-based deformation 
analysis method. We assume that the input point clouds (orange, 
blue) are registered (a) and start by splitting them into tiles that can 
be processed in parallel (b). The subsequent operations (d–f) are per-

formed independently for each individual tile (c). The output are 3D 
displacement vectors estimated for all points for which a reliable cor-
respondence was established in the feature space (g–i)
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vectors of all points of the source point cloud for which a reli-
able correspondence was established. The proposed approach is 
completely modular and individual blocks can be replaced in the 
future. For example, with the rapid progress of deep learning, bet-
ter-performing local feature descriptors will soon be available and 
could be integrated into our workflow. A detailed description of the 
algorithms used to implement the individual blocks is therefore 
out of the scope of this paper, but we will refer the reader to the 
respective references.

Point cloud tiling

Processing point clouds with tens of millions of points or even 
more at once, would make the computation of the local feature 
descriptors slow and the correspondence search in the feature 
space intractable. We therefore divide the point clouds into suf-
ficiently small tiles, which can be processed efficiently in parallel 
(Fig. 3). To this end, we first project the point clouds to 2D along the 
coordinate axis that yields the 2D orthographic projection with the 
largest bounding box. We then recursively subdivide the obtained 
2D bounding boxes (binary subdivision at the middle point of 
the longer edge) into smaller tiles, until individual tiles contain 
less than the predefined number of points (Fig. 3). The maximum 
number of points per tile is limited by the memory needed for 
the subsequent operations. On the other hand, the correspond-
ence search will later only be carried out within each tile such that 
the tiles should be larger than the (expected) displacements. We 
observed that tiles with approximately one million points offer a 
good trade-off between the computational efficiency and the spatial 
extent of the tiles. To avoid bordering effects in the computation of 
the local feature descriptors we extend each tile by a 20 m buffer 
zone (always larger than rf  ) beyond each original edge (see Fig. 3c). 
While this simple way of tiling performs well for the geomonitor-
ing datasets presented herein, a more sophisticated approach will 
be required to also obtain displacement vectors across the edges 
of the tiles and to handle strongly curved surfaces. We leave this 
for future research.

All subsequent steps of our pipeline are performed indepen-
dently for each tile. The displacement vectors corresponding to the 
full original point clouds are finally obtained by recombining the 
tiles using a simple union operation.

Estimating the initial displacement vector field

We follow the framework of F2S3 and establish the initial displace-
ment vector field based on the corresponding points in the feature 
space. Specifically, we (1) compute the local feature descriptors for 
all points in both point clouds, (2) establish correspondences based 
on the NN search in the feature space, and (3) determine the initial 
displacement vector field as 3D vectors connecting the two points 
of each correspondence. The individual steps are summarized in 
the following and a detailed description thereof is given in Gojcic 
et al. (2020).

Local feature descriptor
In recent years several handcrafted (Rusu et al. 2009; Tombari 
et al. 2010) and learned (Gojcic et al. 2019a; Choy et al. 2019) 3D 
feature descriptors were proposed. Here, handcrafted denotes that 
the function that maps the point to its feature descriptor is manu-
ally engineered based on heuristics and learned denotes that it is 
the result of machine learning based on annotated examples of 
corresponding points. Most state-of-the-art, local feature descrip-
tors are invariant to rotation and translation by design but assume 
local rigidity, i.e., the local neighborhood around the interest point 
should not be deformed too much between the epochs.

Herein, we adopt a state-of-the-art learned local feature descrip-
tor denoted as distinct 3D local descriptor (DIP) proposed by Poiesi 
and Boscaini (2021). Compared to 3DSmoothNet (Gojcic et al. 
2019a) used in the initial F2S3 implementation, DIP is more efficient 
to compute and achieves a comparable performance (ratio of cor-
rect correspondences) with lower dimensional descriptors (64 vs. 
128). The reduced dimensionality of the descriptors in turn reduces 
the computation time of the correspondence search. DIP takes the 
points within the spherical neighborhood with radius rf  centered 
at the interest point as input and outputs a 64-dimensional feature 
descriptor. We relate the feature radius rf  to the median resolution 
v of the point clouds such that rf ∶= 10

√
3 ⋅ v , where v = max(vs, vt) 

is computed for each tile independently and vs and vt denote the 
median resolution of source and target point cloud tile, respectively.

Due to the lack of annotated pointwise correspondences in geo-
monitoring data, we train DIP on the point clouds derived from 
the RGB-D images of indoor scenes (e.g., offices, hotel rooms, and 
tabletops) from the 3DMatch datasets (Zeng et al. 2017). We then 
directly use this pretrained DIP on the outdoor point clouds pre-
sented herein. This direct generalization (i.e., training on indoor 
and evaluating on outdoor data) is possible because DIP only con-
siders local geometry. While on a large scale, the indoor and out-
door scenes look vastly different, locally the features such as edges 
and corners are similar enough to enable generalization. Despite 
the good generalization, certain domain gap remains and in the 
future effort should be put into generating outdoor datasets, which 
would enable training directly on the target domain.

Correspondence search in the feature space
Even though the correspondence search is performed indepen-
dently for each tile, a relatively large number of points ( ≈ 1million) 
in combination with the 64-dimensional feature descriptors, still 
make it computationally challenging. On the one hand, brute-force 
computation (i.e., explicitly computing all the pairwise distances 

Fig. 3   Point cloud tiling. After an orthographic projection of the 
point clouds to 2D (a), we perform a recursive subdivision of the 
bounding box into disjoint tiles (b), until the condition of the maxi-
mum number of points within a tile is satisfied by both point clouds 
(c). To avoid bordering effects we consider a buffer zone of 20  m 
around each tile [blue and green dashed rectangles in (c)] in subse-
quent computations
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and selecting the smallest one) is intractable due to the large mem-
ory complexity. On the other hand, data structures such as kd-trees 
(Bentley 1975), which are often used to speed up the search, suffer 
from the curse of dimensionality (Bellman 1957), i.e., their effi-
ciency drops quickly with increased dimension of the input data.

We therefore adopt a highly optimized graph-based approxi-
mate NN search algorithm HNSW (Malkov and Yashunin 2018) in 
the combination with the l2-distance. The recall3 of HNSW can be 
tuned with the parameters ec , M, and es , which control the qual-
ity of the graph construction, the maximum number of outgoing 
connections, and the quality of the search, respectively. With the 
empirically determined parameters ec = es ∶= 300 and M ∶= 12 , 
which favor efficiency over quality, HNSW reaches a high recall of 
> 95% in our experiments.

Filtering and smoothing the initial vector field

In geomonitoring, parts of the scene are stable over time, others 
move as rigid bodies, and some change completely, e.g., due to the 
flow of earth and debris. While on a macro-level this causes dis-
continuities in the displacement vector field, local patches tend to 
move in a spatially coherent, rigid manner over time. This notion 
of local rigidity is not only important for the extraction of local 
feature descriptors, but the regularity that it imposes can also be 
used as a (soft) constraint for filtering and smoothing of the initial 
noisy displacement vector field.

Supervoxel segmentation
The local rigidity constraint should only be applied within areas 
that do not cross discontinuities of the displacement vector field, 
which are unfortunately not known in advance. Empirically, these 
discontinuities occur primarily on the object boundaries, which 
are challenging to detect in the raw point clouds. Therefore, in the 
F2S3 framework instead of directly detecting the objects, the source 
point cloud is over-segmented into supervoxels, i.e., geometrically 
coherent point patches. The advantage of combining points into 
patches that are usually smaller than most rigid objects, is twofold 
(1) by reducing the size of the patches, the probability of a patch 
crossing a discontinuity is lower, and (2) if a patch does cross a 
discontinuity, a smaller area and hence fewer points are affected. 
However, the optimal size of the supervoxels is a trade-off. On the 
one hand, very small patches are more likely to move as a rigid 
body and less probable to cross discontinuities. On the other 
hand, they only contain few points and in the presence of noise 
and outliers might not carry enough information to deduct the 
underlying rigid motion. Hence, the supervoxels should contain 
enough points, while still being smaller than the objects that can 
be resolved and for which nearly rigid motion can be detected at 
the given resolution.

To extract such supervoxels, we adopt a recently proposed 
supervoxel segmentation algorithm (Lin et al. 2018), specifically 
designed for object boundary preservation. The object boundaries 
are preserved by incorporating the cosine similarity of the normal 

vectors4 in the optimization energy function. The approximate size 
of the resulting supervoxels is controlled by an input parameter rs , 
which we again relate to the median resolution vs of each source 
point cloud tile such that rs ∶= 10

√
3 ⋅ vs.

In the following, the points belonging to the same supervoxel 
are considered to act as a nearly rigid body. Because the spatial 
resolution of the geomonitoring point clouds is generally low, 
supervoxels will occasionally cover an area larger than the indi-
vidual objects, e.g., individual stones in the gravel. In these cases, 
the points assigned to a single supervoxel might not move as a rigid 
body and will be removed by our filtering algorithm. However, the 
local feature descriptor is also based on the assumption of local 
rigidity, and hence the correspondences established in these areas 
will typically be unreliable anyway. A more rigorous deformation 
analysis of such areas necessities either acquisition with a higher 
spatial sampling rate or some sort of super-resolution approach. 
We leave this investigation for future work.

Filtering the noisy displacement vectors
The outlier filtering module is motivated by the regularity in the 
displacement vector fields and aims to impose the congruence of 
the displacement vectors within each individual supervoxel. To 
this end, we resort to a neural network-based outlier detection 
algorithm proposed by Gojcic et al. (2020).5 This network takes 
the initial displacement vectors (coordinates of the start and end-
points) of an individual supervoxel as input. It outputs an inlier 
score between 0 and 1 for each of them, where 0 denotes a high 
probability that this displacement vector is an outlier and 1 denotes 
a high probability that it is an inlier. The inlier scores are computed 
in a single forward pass (i.e., function evaluation) for each super-
voxel. They are based on the local context, which means that within 
the network the individual vectors have to be compared to each 
other. This is achieved by the special context normalization layers 
(Yi et al. 2018). As the training procedure again requires annotated 
point correspondences, we once more resort to the point clouds of 
indoor scenes (see “Estimating the initial displacement vector field” 
section). More information about the filtering network is available 
in Gojcic et al. (2020).

The inlier scores inferred by the filtering module can be used in 
two ways, (1) for filtering the outlier displacement vectors by thresh-
olding the scores, which results in a “sparse” displacement vector 
field or, (2) additionally using the inlier vectors (after threshold-
ing) to estimate the parameters of the congruence transformation 
and recompute the displacement vectors for all points within the 
supervoxel. In all evaluations presented in “Experimental evalua-
tion” section we show the result of the latter case that provides an 
additional layer of smoothing within the supervoxels and further 
mitigates the noise caused by imposing the direct point-to-point 
correspondences.

3  In the evaluation of the approximate NN algorithms, recall denotes 
the percentage of ground truth NNs that are correctly recovered.

4  Boundary preservation is based on the assumption that the direc-
tion of the normal vectors changes significantly at the object bounda-
ries.
5  The filtering could also be performed with traditional robust esti-
mation methods e.g., RANSAC (Fischler and Bolles 1981), but would 
be more time-consuming (Gojcic et al. 2020).
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Experimental evaluation
In this section, we evaluate the proposed point cloud-based defor-
mation analysis method in two case studies: the Brienz landslide 
(“Brienz landslide” section) and the Moosfluh landslide (“Moosfluh 
landslide” section). In the former, we process point clouds acquired 
using UAV-based LiDAR as well as point clouds obtained from TLS. 
In the latter, we process point clouds acquired using TLS only. The 
point clouds of both case studies are depicted in Fig. 4.

Evaluation protocol

We compare the displacement magnitudes estimated using our 
method to the ones obtained using the established point cloud 
deformation analysis methods C2C and M3C2 as well as to results 
derived from TS measurements, which are available for a few points 
and are considered as ground truth (GT) because of their expected 
superior accuracy. For C2C and M3C2 we use the implementations 
available in the open-source point cloud processing software 
CloudCompare v2.10.1 (Girardeau-Montaut 2019). The TS data 
are not available in the same reference frame as the point clouds, 
and aligning them could introduce biases whose effects would be 
impossible to distinguish from errors of the displacement esti-
mates. So, we use them only for the comparison of the displacement 
magnitudes and not the full 3D displacement vectors. However, we 
also evaluate the full 3D displacement vectors of our method by 
comparing them to manually annotated data. The annotations are 
obtained in the following manner: (1) we cut a small patch around 
each interest point in the source point cloud (source patches), (2) 
we coarsely register each individual patch to the target epoch by 
manually selecting the corresponding points, and (3) we refine the 
registration by an ICP algorithm (Besl and McKay 1992). The latter 
step yields target patches from which the 3D displacement vectors 
can easily be obtained due to the one-to-one correspondences. In 
the Brienz case study, where TS measurements are available, we use 
the locations of the TS targets as the interest points, whereas in the 
Moosfluh case study we sample the interest points such that they 
cover the large unstable area at the bottom of the scene (c.f. Fig. 11). 
When performing the annotation, we once more assume that the 
local patches move as a rigid body. To confirm this assumption 
and the annotation process in general, we compare the annotated 
displacement magnitudes with the reference data and we observe 
a good agreement, e.g., less than 5% difference in the Brienz UAV 
dataset (“Brienz landslide” section). Based on this comparison, we 

conclude that the annotated data faithfully represents the actual 
underlying displacement vector field.

For easier interpretation, we quantify the differences between 
the estimated and the annotated displacement vectors using the 
magnitude, the lateral horizontal deviation �l , and the vertical one 
�v instead of the deviations in the Cartesian coordinate frame. The 
lateral and vertical components are defined as

where

and � ∈ ℝ
3 and � ∈ ℝ

3 denote the median estimated and median 
GT (annotated) displacement vector, respectively. ⟨⋅, ⋅⟩ denotes the 
dot product and || ⋅ || the vector norm.

Brienz landslide

The Brienz landslide is located just north of the Brienz village in 
the Albula valley in Graubünden, Switzerland. The landslide area 
moves with a rate of up to several meters per year and the village 
itself is displaced by a few decimeters each year (Krähenbühl and 
Nänni 2017; Häusler and Fäh 2018). In our case study we consider 
two datasets. The point clouds of the first dataset (Brienz UAV) 
were acquired using a UAV-based lidar system (Riegl RiCOPTER) 
in two epochs about 2.5 months apart in summer 2018. The point 
clouds of the second dataset were acquired using a terrestrial laser 
scanner Riegl VZ-6000 in two epochs about 3 months apart in 
fall 2020. The spatial resolution of the Brienz UAV point clouds is 
more uniform and equals ≈ 7.5 cm (resulting in ≈ 160 M points per 
epoch) whereas the spatial resolution of the TLS point clouds varies 
between 5 cm at the bottom and 15 cm at the top part of the slope 
(resulting in ≈ 65 M points per epoch).

Brienz UAV
We start the evaluation on the Brienz UAV dataset by comparing the 
displacement magnitudes estimated using the point cloud-based 
methods to the reference TS measurements. Here, the estimates 
of the point cloud-based methods are defined as the median dis-
placement magnitude of all vectors that lie within a patch with 
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Fig. 4   Datasets used to evaluate the method proposed herein. Brienz UAV and Brienz TLS are point clouds of the same landslide acquired 
using different sensors. For improved readability only the point clouds of the respective first epoch are depicted here
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approximately6 5 m radius centered at each of the TS targets. While 
the positions of the TS targets are not known with an accuracy that 
would facilitate using them for registration, their approximate coor-
dinates are sufficiently accurate ( ≈ 30 cm) to center these patches. 
The same procedure is also used to obtain the estimates of the point 
cloud-based methods in the analysis of the Brienz TLS and Moos-
fluh datasets. Figure 5 shows that the maximum deviation of our 
method from the GT is about 5 cm (at point P5) and the average 
deviation lies just below 2 cm. Even though the average deviations 
might still include a possible bias due to the non-perfect registra-
tion of the two epochs, they are more than three times smaller than 
the mean resolution of the point clouds. So, our method yields cor-
rect estimates irrespective of the actual displacement magnitude. 
On the other hand, both C2C and M3C2 greatly underestimate the 
displacement magnitudes for all points that actually move. The 
largest error (more than 1 m) occurs at point P1 that was displaced 
the most between the epochs. Similar results can be observed in 
the comparison of the point cloud-based methods to the manually 
annotated data (Fig. 5 bottom).

We further use the annotated data to evaluate the full 3D dis-
placement vectors estimated by our method (Fig. 6). The lateral 
and vertical deviations of our estimates are all smaller than 4 cm, 
with most of them below 2 cm. This evaluation confirms that our 

method is not only capable of estimating the correct displacement 
magnitudes but in fact the full 3D displacement vectors. This opens 
up new possibilities for landslide analysis such as for example the 
automatic extraction of the sliding surfaces from the estimated 3D 
displacement vectors.

We conclude the evaluation on the BrienzUAV dataset with the 
qualitative analysis of the estimated displacement magnitudes. 
Figure 7 shows that the estimates of our method (right) and M3C2 
(left) are vastly different, except in the stable areas on right-hand 
side of the point clouds. In fact according to the M3C2 estimates, the 
whole area should be almost completely stable. Relating this result 
to the available reference measurements again hints at the under-
estimation problem of the traditional point cloud-based deforma-
tion analysis methods. Contrarily, according to the estimates of our 
method, most of the area is unstable and the displacement vector 
field shows a smooth trend from low displacement magnitudes at 
the bottom to the larger displacements at the top of the slope. A 
similar trend can be seen in the TS measurements.

Brienz TLS
In the assessment of the Brienz TLS results we follow the same 
evaluation protocol as for Brienz UAV, but consider four additional 
TS reference points (P11–P14) that were installed epochs of both 
datasets. Top and bottom plot in Fig. 8 depict the comparison of the 
point cloud-based methods to the reference TS measurements and 
manually annotated data, respectively. The maximum and average 
deviation of our method are 6.7 cm and 3.2 cm, respectively, when 
compared to the TS reference data and 3.2 cm and 1 cm when com-
pared to the manually annotated data.

The comparison of the full 3D vectors (depicted in Fig. 9) in 
which all the deviations are once more below 4 cm, not only recon-
firms that our method is capable of estimating the true 3D displace-
ment vectors but also that it can process point cloud data from 
different sensors. We additionally provide a 3D visualization of the 
estimated displacement vectors for a randomly selected point cloud 
tile in Fig. 10. For improved readability, only 0.5% of the calculated, 
reliable 3D vectors are plotted. They are randomly selected and 
thus provide a realistic impression of the displacement patterns 
and also show the regions where no or few vectors are found. The 
estimated 3D displacement vectors show high local consistency of 
both magnitude and direction.

Fig. 5   Comparison of the displacement magnitudes estimated using 
our method, C2C, and M3C2 with the reference TS measurements 
(top) and manually annotated data (bottom) on the Brienz UAV data-
set

Fig. 6   Comparison of the 3D displacement vectors estimated by our 
method with the manually annotated data on the Brienz UAV dataset

6  The exact size of each patch is dependent on the resolution of the 
point clouds and the local surface geometry in that neighborhood. 
However, exactly the same patches are used for all the methods.
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Moosfluh landslide

Moosfluh is a large landslide area located on the terminus of the 
Aletsch glacier located in southeast Switzerland. The slope move-
ments of the Moosfluh area are due to the glacier retreat. Since the 
mid 1990s, when the glacial ice began to diminish at a much faster 
rate, the average motion reached several decimeters to meters per 
year and is still accelerating (Kos et al. 2016; Glueer et al. 2020). In 
recent years, the Moosfluh area was a subject of several monitor-
ing campaigns using various measurement techniques including 
ground-based and satellite-based radar interferometry (Strozzi 
et al. 2010; Kos et al. 2016), photogrammetry (Strozzi et al. 2010), 

Fig. 7   Point clouds of the Brienz UAV dataset color coded by the 
displacement magnitudes estimated using M3C2 (left side) and our 
method (right side). Our method estimates a smooth displacement 

vector field and filters out unreliable displacement vectors in areas 
of small cobble and debris. Note also the discontinuities of the M3C2 
estimates in the unstable areas

Fig. 8   Comparison of the displacement magnitudes estimated using 
our method, C2C, and M3C2 with the reference TS measurements 
(top) and manually annotated data (bottom) on the Brienz TLS data-
set

Fig. 9   Comparison of the 3D displacement vectors estimated by our 
method with the manually annotated data on Brienz TLS dataset

Fig. 10   3D displacement vectors for one tile of the Brienz TLS dataset 
estimated using the method proposed herein. Note the local consist-
ency of the estimates and the smooth increase of the displacement 
magnitude from the bottom to the top. For improved readability 
only 0.5% of all vectors are depicted
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GNSS (Strozzi et al. 2010) as well as terrestrial (Friedli et al. 2019) 
and airborne (Kos et al. 2016) laser scanning.

Herein, we use point clouds of three epochs acquired in the 
course of two measurement campaigns. The first epoch was 
acquired on 21.09.2017 and the second and third on 05.09.2018 and 
06.09.2018, respectively. A long-range terrestrial laser scanner Riegl 
VZ-4000 with a specified range accuracy of 15 mm and a user-
selected angular scanning resolution of 10 mgon was used in both 
campaigns. The point clouds were acquired from the opposite side 
of the glacier valley. The resulting distances are between 700 m at 
the bottom and up to 2500 m at the top of the slope. The spatial 
resolution of the point clouds varies accordingly from about 0.1 m 
at the bottom to 0.4 m at the top. In this evaluation, we consider 
two scenarios. We start by comparing epochs two and three (Moos-
fluh one day) and then proceed to epochs one and three (Moos-
fluh 1 year). In the latter case, displacements of several meters are 
expected at the most active locations.

Moosfluh 1 day
In line with the results of the previous measurement campaigns 
(Kos et al. 2016; Glueer et al. 2020), the estimates of our method 
(and M3C2) show that the most active part of the landslide is 
located at the bottom-middle part of the slope. We therefore focus 
our analysis only on this active part. Figure 11 shows the displace-
ment magnitudes, estimated using M3C2 and our method. Our 
method yields displacements between 0.3 m (bottom part) and 
1 m (top part) with a smoothly increasing trend from the bottom 
to the top. On the other hand, most of the displacements estimated 
using M3C2 are below 0.2 m and reach higher values only on the 
front faces of the individual objects, i.e., in the small areas where the 
true displacement is nearly orthogonal to the surfaces. In fact, M3C2 
even yields estimates which are physically impossible. For example, 
according to the M3C2 results the front of the boulder marked by 
the white rectangle in Fig. 11a moved by more than 0.5 m, while the 
top part of the same boulder is indicated as stable.

Due to the lack of independent reference data in the active parts 
of the slope, we once more resort to the manually annotated data in 
order to quantitatively evaluate the estimates of our method. Spe-
cifically, we select 15 points distributed across the active area and 
annotate their 3D displacement vectors as described in “Evaluation 

protocol” section. The results of this comparison are shown in 
Fig. 12. Whereas the traditional methods once more underestimate 
the displacement magnitudes (by up to 50 cm), the estimates of 
our method agree well with the annotated data. The maximum 
deviation of our method to the annotated data is 5.8 cm at point 
P2, and the average absolute deviation is slightly below 2.5 cm. 
When comparing the estimated 3D displacement vectors (Fig. 12 
bottom) the lateral and vertical deviations are below 4.5 cm, which 
is much lower than the spatial resolution of the input point clouds 
( ≈ 15 cm).

Fig. 11   Zoom-in to the unstable areas of the Moosfluh one day data-
set. Point clouds are color coded by the displacement magnitudes 
estimated using M3C2 (left side) and the method proposed herein 

(right side). Note how the estimates of M3C2 are larger on the front 
faces (actual motion is orthogonal to these faces) of individual 
objects

Fig. 12   Comparison of the displacement magnitudes (top) and 3D 
displacement vectors (bottom—only ours) estimated using our 
method, C2C, and M3C2 with the manually annotated data on Moos-
fluh one day dataset
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Moosfluh 1 year
We conclude this evaluation with a scenario in which the two point 
clouds of the Moosfluh landslide were acquired over a time span 
of 1 year. This represents a scenario in which the displacements 
in the active area are expected to be in the range of several tens 
of meters. Because there are no suitable artificial targets available 
in this dataset, the registration of the point clouds was performed 
using an ICP. Due to the fact that the whole area is unstable, the 
estimated registration parameters are impaired. This highlights 
that the point cloud registration is still a challenge in cases where 
the whole scene is unstable.

However, although the error of the registration is reflected in 
the estimated displacement vector fields (Fig. 13), the results can 
still be compared for plausibility or with the manually annotated 
data (Fig. 14), which is insensitive to the miss-alignment of the two 
epochs, i.e., the effect of a miss-alignment is the same for annotated 
data and our estimates.

The qualitative results depicted in Fig. 13 show that our method 
filters out the majority of the points in the active area ( > 85% ), 
because their reliable correspondences could not be established. 
This is to be expected due to the large changes of the local geom-
etry between the measurement epochs. Nevertheless, some larger 
patches that were not filtered out remain even in the most active 
areas. We show the results of one such patch in Fig. 14. For this 
comparison, we establish the ground truth by measuring the dis-
tance between the corresponding points, which can visually easily 
be recognized. Remarkably, our method can estimate correct dis-
placement magnitudes even though the objects have moved more 
than 50 m between the epochs. On the other hand, the estimates of 
M3C2 are very random as there is a high probability that either the 
displacement is not in the direction perpendicular to the surface or 
that due to the large motion some other point of the target epoch 
lies closer to the interest point.

This final analysis shows that our method has no upper bound 
of the estimated displacement magnitude if the local geometry 
does not change too much, which can in turn likely be assured for 
most monitoring applications by selecting a sufficiently short time 
interval between the measurements. In our current implementa-
tion, the tiling of the point clouds does bound the estimates, i.e., 
the correspondence has to lie within the same tile. The algorithm 
will thus not provide a displacement vector for points which move 
outside the tile between the analyzed epochs. Prior knowledge of 
the deformation process should thus be incorporated into the—
possibly adaptive—tiling procedure, by introducing appropriate 

additional overlap between adjacent tiles and merging the results 
obtained from different tiles for the overlap region. We leave this 
improvement for future work.

Limitations and practical considerations
Despite the good performance across several datasets, our method 
naturally has limitations and certain consideration have to be 
made before using it in practice. As with other point cloud-based 
deformation analysis methods, the spatial resolution and temporal 
resolution of the point clouds are of great importance and should 
be determined on a per case basis. In case of rapid motion the tem-
poral resolution should be increased in order to prevent that the 
scene gets too deformed between acquisitions. In case of smaller 
displacements, the spatial resolution might need to be increased. 
As shown in “Experimental evaluation” section our method is even 
capable of estimating displacements that are smaller than the reso-
lution of the point clouds but a certain relation persists.

Our method also strongly relies on the distinct features in order 
to establish the pointwise correspondences. While false correspond-
ences that occur in areas without distinct features (e.g., areas of 
cobble or debris) will be filtered out, the data gaps will remain and 
specifically tailored methods for such areas should be developed in 

Fig. 13   Point clouds of the Moosfluh 1 year dataset color coded by 
the displacement magnitudes estimated using M3C2 (left side) and 
the method proposed herein (right side). Our method filters out a 

large part of the point in the active area. For improved readability we 
use a non-linear color scale

Fig. 14   Selected patch from the most active area of the Moosfluh 1 
year dataset. We manually measure the distance between the (a) cor-
responding points of the source (blue) and target (orange) epoch, 
and compare it to the estimates of M3C2 (b) and our method (c)
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the future.7 The same holds for man-made structures such as for 
example dams, which often consist of smooth surfaces. Currently, 
other methods such as M3C2 should be considered in such cases, 
especially if the dominant motion direction is orthogonal to the 
surface.

Summary and conclusions
In this work, we have proposed a novel deformation analysis pipe-
line that is capable of estimating real 3D displacement vector fields 
from point cloud data. To this end, we have extended the recently 
proposed F2S3 framework with a tiling procedure that enables effi-
cient processing of the data in parallel and replaced all the hyper-
parameters with the ones derived directly from the input data. Our 
contributions result in a fully automated deformation analysis pipe-
line, which can be used to process point clouds of arbitrary size.

We evaluated the proposed pipeline on datasets of actual land-
slides on which our approach consistently outperforms the tradi-
tional point cloud-based deformation analysis methods. Even more, 
we have shown that the traditional methods that are commonly 
used in geomonitoring often underestimate the actual displace-
ments, especially when motion and deformation occur parallel to 
the underlying surface. On the other hand, our method is also sen-
sitive to in-plane motion and deformation and returns the true 3D 
displacement vectors. In turn, this opens up the possibility to derive 
more information about the deformation process, e.g., derive slid-
ing surfaces from the estimated dense 3D displacement vector field.

While the focus of this paper lies in the deformation analy-
sis, our method can easily be applied to other tasks such as point 
cloud registration, classification of stable/unstable regions, or other 
applications such as scene flow estimation in autonomous driving 
(Gojcic et al. 2021).
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