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Fuzz-testing SMT Solvers with Formula Weakening and
Strengthening

MAURO BRINGOLF, ETH Zürich, Switzerland

We propose formula weakening and strengthening as a new approach for fuzz testing SMT solvers and
increasing their quality and robustness. The mutation rules used in our approach preserve satisfiability as
a metamorphic property across all generated mutants, i.e. the satisfiability of all our mutants is known by
construction. We derive a theoretical framework to guarantee this property and implement a fuzzer with
almost 100 mutation rules for SMT formulas. We use this implementation to stress-test two state-of-the-art
SMT solvers Z3 and CVC5. After finding a few crash bugs in both solvers, we proceeded to explore the
completeness boundaries of these solvers. This incompleteness testing campaign was well-received by the
solver developers and helped uncover regressions, unwanted side effects of code changes as well as potential
for improving the solver’s completeness. In total, 9 of our 35 reports were fixed and 21 are confirmed but still
open.

1 INTRODUCTION
A satisfiability modulo theories (SMT) solver decides the satisfiability of first order logic formulas
with additional structures such as functions and relations from theories about strings, bit-vectors,
real numbers, arrays et cetera. A logic is a restricted class of formulas with specific background
theories [2], e.g. QF_S is the logic of quantifier-free string formulas. Logics may also combine
multiple theories and the satisfiability problem is decidable for some logics but undecidable for
others [3]. To deal with this complexity, SMT solvers implement a vast number of heuristics
and logic-specific solvers. SMT solving has numerous applications in the field of programming
languages such as program analysis, program synthesis and program verification. Tools from these
areas are typically built on top of an SMT solver as a core component which makes performance
a primary quality criterion for a competitive SMT solver, motivating sophisticated optimization
efforts from the side of solver developers. In recent years, Z3 [7] and CVC51 [1] have consistently
been among the most powerful and widely used SMT solvers evidenced for example by their
rankings in SMT-COMP [6] or number of GitHub stars (6.5k for Z3, 504 for CVC5).
Since techniques like program analysis and verification are applied predominantly in safety-

critical domains, we argue that SMT solving is safety-critical in itself: An SMT solver making a
false decision on a formula can directly translate to a safety-critical program being verified against
a specification it does not fulfill. This need for a high degree of reliability spurred the research
area of testing and validating SMT solvers. One of the most successful strategies has been random
testing (fuzz-testing) and multiple fuzzing campaigns have been conducted leading to the discovery
and fixing of hundreds of bugs in both Z3 and CVC5.
A crucial part of a fuzzer is its mutation strategy, i.e. how new test cases are produced from

existing ones. Different approaches vary in effectiveness and assessing their quality and finding
the most productive ones is still an open research problem.

Formula weakeneing and strengthening. As our first contribution, we present a new design for
such a mutation strategy which we call weakening and strengthening. The basic idea is to
either weaken the constraints of a satisfiable formula or strengthen them in an unsatisfiable one.
Relaxing the constraints of a satisfiable formula 𝜑 necessarily results in a satisfiable mutant 𝜑 ′,
1During the timeframe of our work, CVC4 was renamed to CVC5 but the latest release stayed CVC4-1.8. We will always
refer to the development version as CVC5.

Author’s address: Mauro Bringolf, mauro@bringolf.com, ETH Zürich, Zürich, Switzerland.
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Fig. 1. Formula (a) is satisfiable and the conjunct (> c 0) can be weakened to (not (= c 0)), maintaining
satisfiability since (> c 0) implies (not (= c 0)) for any c. Consequently, the resulting formula (b) is
satisfiable by construction. However, formula (b) is from an soundness bug report found by another fuzzing
campaign (https://github.com/Z3Prover/z3/issues/5329): The solver returned unsat at the time.

1 (declare -const a Real)

2 (assert (forall ((b Real)) (exists ((c

Real)) (and

3 (= (+ a (* c (+ b c) (+ b c))) 0)

4 (< a 0)

5 (> c 0)

6 ))))

7 (check -sat)

(a) Seed formula which was correctly decided as sat
by Z3 with the option nlsat.randomize=false.

1 (declare -const a Real)

2 (assert (forall ((b Real)) (exists ((c

Real)) (and

3 (= (+ a (* c (+ b c) (+ b c))) 0)

4 (< a 0)

5 (not (= c 0))

6 ))))

7 (check -sat)

(b) Satisfiable formula for which Z3 with the
option nlsat.randomize=false returned unsat: a
soundness bug.

since any model of 𝜑 is also one of 𝜑 ′. Similarly, unsatisfiability is preserved when strengthening
constraints in an unsatisfiable formula. Thus, the resulting testing strategy is metamorphic [5], e.g.
our mutation rules guarantee unchanged satisfiability of the formula and do not require differential
testing of the mutants across multiple solvers. Additionally, this allows generating mutants with
known satisfiability which solvers are unable to decide (return unknown or do not terminate).
We will use such undecided mutants to explore new forms of testing apart from the search for
conventional bugs.

Example. Let us consider a concrete example which was not found by our fuzzing campaign but
reconstructed from a bug report on the Z3 issue tracker. We borrow this case from another fuzzing
campaign to show that our technique has the capabilities to find soundness bugs. Consider the two
formulas in Fig. 1.
Any model𝑚 of 𝜑 will satisfy all three conjuncts inside the quantifiers for one assignment of

c for all possible assignments of a. Now, replace (> c 0) with (not (= c 0)), which it implies
for any c. The resulting formula 𝜑 ′ is shown in List. 1. Intuitively,𝑚 is also a model for 𝜑 ′ since
we weakened one of its constraints. The exact reasoning is given in Section 3. This means we can
construct new test cases with a correct-by-construction oracle from existing ones. Here, 𝜑 ′ revealed
a soundness bug in one configuration of Z3 in June 2021 and could have been found as a weakening
of a correctly decided formula.

Incompleteness testing. Our second contribution is a practical evaluation of testing SMT solvers
for incompleteness. We use the described mutation strategy to explore the completeness boundaries
of Z3 and CVC5, i.e. search for mutants for which a solver returns unknown. This result indicates
that the solver deemed the formula unfeasible to decide and stopped. Such behavior is to be expected
sometimes, as solvers support not only decidable but also undecidable logics. Although not typically
considered by fuzzing campaigns, we have found that unknown cases can lead to the discovery of
problems in solvers that developers are interested in and willing to fix. Fig. 2 contains one of our
reported formulas for which CVC5 returned unknown. The responding developer commented "I’ll

https://github.com/Z3Prover/z3/issues/5329
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Fig. 2. The formula from one of our reports in the CVC5 solver, shown once as SMT-LIB code in (a) and
once in mathematical notation in (b). Lines 3 and 4 from (a) are connected by conjunction ∧ in (b). https:
//www.github.com/cvc5/cvc5/issues/6798.

1 (declare -const a Bool)

2 (declare -const b Real)

3 (assert (or a (= 0 (* b b b))))

4 (assert (> (* b b) 3))

5 (check -sat)

(𝑎 ∨ 0 = 𝑏 · 𝑏 · 𝑏) ∧ (𝑏 · 𝑏 > 3)

work on a fix." and explicitly labelled the issue as bug. On another issue2, two CVC5 developers
looked at the case in detail and commented their analysis. On the Z3 front, developers have fixed
multiple of our reports of unknown formulas (Appendix A).
The remainder of this paper is structured as follows. In Section 2 we briefly discuss the status

quo of SMT solver fuzzing. Then, Section 3 presents a theoretical framework and correctness proof
of our method, along with templates for mutation rules and the conceptual difficulties we had to
overcome. The theoretical design is general and we explain some aspects of how our implementation
instantiates the framework in Section 4. In Section 5, we present incompleteness testing as a new
testing method which we think can further improve the quality of SMT solvers and complements
existing approaches. Finally, Section 6 discusses the results of our fuzzing campaign before Section
7 concludes.

2 BACKGROUND
2.1 SMT-LIB
SMT problems can be expressed in the SMT-LIB3 language [2] and in this work we use it inter-
changeably with mathematical notation for formulas. An SMT-LIB script contains a sequence of
commands instructing an SMT solver to create formulas and process them. The commands used in
our examples are declare-const to declare a constant, assert to create a formula and check-sat
to check satisfiability of the asserted formula. The semantics of multiple assertions in one script is
their conjunction and we will identify a script with the conjunction of all its asserted formulas,
illustrated in Fig. 2. Quantification of a formula phi over a variable x with sort T is written as
(forall ((x T)) phi) or (exists ((x T)) phi) respectively. Note that the type of a variable
is called its sort in SMT terminology and we use both terms.

2.2 Past SMT fuzzing campaigns
We brielfy present five recent fuzz-testing campaigns on SMT solvers which have employed a
variety of techniques. STORM [8] takes an arbitrary seed formula and generates mutants that
are satisfiable by construction, testing seven solvers across many logics. Bugariu and Müller [4]
synthesize string formulas whose satisfiability is also known by construction using satisfiability-
preserving mutation rules. Semantic Fusion [13] combines two equi-satisfiable formulas into a
formula by first concatenating them and then rewriting terms with shared variables in order to
preserve satisfiability. OpFuzz [12] replaces operators with other operators of conforming type, e.g.
(+ 1 2) becomes (* 1 2) by operator replacement. Falcon [14] focuses on the correlation between
solver configurations and formulas in order to test more solver options efficiently. Sparrow [15] is
2https://github.com/cvc5/cvc5-projects/issues/279, to be discussed later as List. 4.
3We are always referring to SMT-LIB version 2.6.

https://www.github.com/cvc5/cvc5/issues/6798
https://www.github.com/cvc5/cvc5/issues/6798
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concurrent4 work with our testing campaign and employs a very similiar technique but focuses
only on correctness testing.

Table 1. A comparison of different SMT fuzzing campaigns. A question mark indicates that the authors did
not reveal the length of their testing campaign.

fuzzing technique reported fixed campaign duration [months] testing method
OpFuzz 1092 685 9 differential
Falcon 518 469 6 differential
Sparrow 84 55 ? metamorphic

Semantic Fusion 45 41 4 metamorphic
STORM 29 19 3 metamorphic

Bugariu & Müller 5 3 ? metamorphic
Our work 35 9 5 metamorphic

The results of these approaches together with our own are depicted in Tab. 1. In this comparison
we use two categories for the number of bug findings: bugs that the authors reported on the issue
trackers and reports that have been fixed by the developers. We do not further differentiate between
bug types (crash, soundness etc.) for multiple reasons: Not all authors provide bug counts for
the same categories5, later campaigns test solver versions robustified by previous testing efforts,
different campaigns test different number of solvers and logics and most importantly the options
and number of configurations for solvers varies drastically across campaigns. In our view, the
category of fixed bugs is mostly robust against these factors and the preferrable measure for the
effectiveness of a testing strategy.

3 DESIGN
In this section, we first formalize weakening and strengthening of subformulas as mutation rules
and prove that they are satisfiability-preserving. Second, we propose a mutation algorithm for
applying these rules to a set of seed formulas. Finally, we give two templates for weakening and
strengthening rules used in our implementation.

3.1 Theoretical framework
3.1.1 Preliminaries. We describe first-order logic formulas over many-sorted terms with functions
and relations as used in satisfiability modulo theories (SMT):

𝜑 ::= 𝑟 (𝑡1, . . . , 𝑡𝑛) | 𝜑 ∧ 𝜑 | ¬𝜑 | ∃𝑥 : 𝜑
𝑡 ::= 𝑓 (𝑡1, . . . , 𝑡𝑛) | 𝑥

Symbols 𝑟 and 𝑓 represent relation and function symbols from background theories and 𝑥

represents a variable. Terms are many-sorted and boolean terms are called predicates. The set of
free variables in a formula 𝜑 is denoted as 𝐹𝑉 (𝜑) and a formula without free variables is called a
sentence. A model of a formula assigns an interpretation (constants, functions, relations, sorts) to
each free symbol such that it evaluates to 𝑡𝑟𝑢𝑒 . A formula is called satisfiable if such a model exists
and unsatisfiable otherwise. Moreover, a tautology is a formula 𝜑 for which any interpretation is a
model which is denoted by |= 𝜑 . Two formulas are called equi-satisfiable if either both are satisfiable
or both are unsatisfiable.
4To be presented at FSE’21 on 25th of August 2021.
5e.g. some authors count soundness and invalid model bugs together as correctness bugs.
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3.1.2 Subformulas and substitution. Consider a formula generated by the grammar above. Its
syntactic structure is described by a unique abstract syntax tree with nodes labelled as non-terminal
(𝜑 and 𝑡 ) or terminal symbols (𝑥, 𝑓 , 𝑟,∧, ∃𝑥 : , . . .). We define a subformula to be a formula identified
with a subtree rooted at a node labelled 𝜑 , e.g. one representing a boolean sorted part of the formula.
The purpose of this is to distinguish between multiple occurences of syntactically equal parts within
a larger formula. As a running example, the formula 𝑥 = 1 ∧ ¬(𝑥 = 1) has four subformulas: itself,
¬(𝑥 = 1) and the two occurences of 𝑥 = 1. Its abstract syntax tree is depicted in Fig. 3. Although
syntactically equal, the two occurences of 𝑥 = 1 are represented by distinct parts of the abstract
syntax tree and thus considered different in our context.

Fig. 3. Abstract syntax tree of the formula 𝑥 = 1 ∧ ¬(𝑥 = 1), with all of its subformulas highlighted in green.
Note how the two subtrees labelled = represent the same formula 𝑥 = 1 but must be considered as separate
entities for our purposes: Mutations applied to either of them have the opposite effect on overall satisfiability
due to ¬ on the right side.

∧

= ¬

𝑥 1 =

𝑥 1

We now define a substitution which replaces a specific subformula as opposed to all occurences
as in conventional syntactic substitution. Let 𝜑 be a formula, 𝑇 be its abstract syntax tree and 𝐹

a subformula of 𝜑 . We define 𝜑 [𝐹 ↦→ 𝐺] to be the formula represented by 𝑇 where 𝐹 is replaced
with 𝐺 . In our running example, if 𝜑 is the overall formula, 𝐹 the subformula representing the
left occurence of 𝑥 = 1 and 𝐺 an abstract syntax tree representing 𝑦 = 2, then the substitution
𝜑 [𝐹 ↦→ 𝐺] yields 𝑦 = 2 ∧ ¬(𝑥 = 1) and not 𝑦 = 2 ∧ ¬(𝑦 = 1) as with conventional syntactic
substitution.

3.1.3 Weakening and strengthening. Next, we precise the notion of weaker and stronger formulas
and introduce the concept of 𝑝𝑎𝑟𝑖𝑡𝑦 of subformulas.

Definition 1 (weaker/stronger). Let 𝜑1, 𝜑2 be formulas such that 𝐹𝑉 (𝜑1) = 𝐹𝑉 (𝜑2). We call
𝜑1 weaker than 𝜑2 iff:

|= ∀𝑥1, . . . , 𝑥𝑛 : 𝜑2 → 𝜑1

where 𝑥1, . . . , 𝑥𝑛 = 𝐹𝑉 (𝜑1). Vice versa, we call 𝜑2 stronger than 𝜑1.

Definition 2 (parity). For a formula 𝜑 with a subformula 𝐹 , we define 𝑝𝑎𝑟𝑖𝑡𝑦 (𝐹, 𝜑) recursively
as6:

6Technically, the cases used in this definition are not non-overlapping and contain a slight ambiguity: If 𝐹 represents 𝜑
then one of the remaining cases also applies (except when 𝜑 = 𝑟 (𝑡1, . . . , 𝑡𝑛)). In this scenario the first case takes precedence
and the parity is 1.
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𝑝𝑎𝑟𝑖𝑡𝑦 (𝐹, 𝜑) :=



1 if 𝐹 represents 𝜑
−1 · 𝑝𝑎𝑟𝑖𝑡𝑦 (𝐹, 𝜑 ′) if 𝜑 = ¬𝜑 ′

𝑝𝑎𝑟𝑖𝑡𝑦 (𝐹, 𝜑1) if 𝜑 = 𝜑1 ∧ 𝜑2 and 𝐹 in 𝜑1

𝑝𝑎𝑟𝑖𝑡𝑦 (𝐹, 𝜑2) if 𝜑 = 𝜑1 ∧ 𝜑2 and 𝐹 in 𝜑2

𝑝𝑎𝑟𝑖𝑡𝑦 (𝐹, 𝜑 ′) if 𝜑 = ∃𝑥 : 𝜑 ′

If 𝑝𝑎𝑟𝑖𝑡𝑦 (𝐹, 𝜑) = 1, then 𝐹 is called positive and negative otherwise.

The 𝑝𝑎𝑟𝑖𝑡𝑦 function is the link between weakening and strengthening a subformula and its
overall semantic effect. More precisely, the parity of a subformula captures whether weakening or
strengthening it has the same or the oppositve effect on surrounding formula:

Lemma 1. Let 𝜑 be a formula with a subformula 𝐹 . For any 𝐺 weaker than 𝐹 , we have:

if 𝐹 positive in 𝜑 then |= ∀𝑥1, . . . , 𝑥𝑛 : 𝜑 → 𝜑 [𝐹 ↦→ 𝐺] (1)
if 𝐹 negative in 𝜑 then |= ∀𝑥1, . . . , 𝑥𝑛 : 𝜑 [𝐹 ↦→ 𝐺] → 𝜑 (2)

where 𝐹𝑉 (𝜑) = 𝑥1, . . . , 𝑥𝑛 .

Proof. By induction over 𝜑 .
Case 𝜑 = 𝐹 : Both implications (1) and (2) hold, since 𝑝𝑎𝑟𝑖𝑡𝑦 (𝐹, 𝜑) = 1 and 𝜑 [𝐹 ↦→ 𝐺] = 𝐺 .
Case 𝜑 = ¬𝜑1: Let 𝑥1, . . . , 𝑥𝑛 = 𝐹𝑉 (𝜑) = 𝐹𝑉 (𝜑1). Assume 𝑝𝑎𝑟𝑖𝑡𝑦 (𝐹, 𝜑) = 1, then 𝑝𝑎𝑟𝑖𝑡𝑦 (𝐹, 𝜑1) =
−1 and by induction hypothesis (2) for 𝜑1:

|= ∀𝑥1, . . . , 𝑥𝑛 : 𝜑1 [𝐹 ↦→ 𝐺] → 𝜑1

By contraposition, we obtain

|= ∀𝑥1, . . . , 𝑥𝑛 : ¬𝜑1 → ¬(𝜑1 [𝐹 ↦→ 𝐺])
⇐⇒ |= ∀𝑥1, . . . , 𝑥𝑛 : ¬𝜑1 → ¬𝜑1 [𝐹 ↦→ 𝐺]

so (1) holds for 𝜑 . The proof of (2) is symmetric.
Case 𝜑 = 𝜑1 ∧ 𝜑2: Let 𝑥1, . . . , 𝑥𝑛 = 𝐹𝑉 (𝜑). By symmetry, assume 𝐹 is a subformula of 𝜑1. Let

𝐹𝑉 (𝜑1) = 𝑥1, . . . , 𝑥𝑘 with 𝑘 ≤ 𝑛. Assume 𝑝𝑎𝑟𝑖𝑡𝑦 (𝐹, 𝜑) = 1, then 𝑝𝑎𝑟𝑖𝑡𝑦 (𝐹, 𝜑1) = 1 and by induction
hypothesis (1) for 𝜑1:

|= ∀𝑥1, . . . , 𝑥𝑘 : 𝜑1 → 𝜑1 [𝐹 ↦→ 𝐺]
Since 𝑥𝑘+1, . . . , 𝑥𝑛 ∉ 𝐹𝑉 (𝜑1) this extends vacuously to:

|= ∀𝑥1, . . . , 𝑥𝑛 : 𝜑1 → 𝜑1 [𝐹 ↦→ 𝐺]
We can then deduce (1) for 𝜑 :

|= ∀𝑥1, . . . , 𝑥𝑛 : 𝜑1 ∧ 𝜑2 → 𝜑1 [𝐹 ↦→ 𝐺] ∧ 𝜑2

⇐⇒ |= ∀𝑥1, . . . , 𝑥𝑛 : 𝜑1 ∧ 𝜑2 → (𝜑1 ∧ 𝜑2) [𝐹 ↦→ 𝐺]

Where the last equivalence holds because 𝐹 is a subtree in the abstract syntax tree of 𝜑1 and thus
the substitution has no effect when applied to 𝜑2. The proof of (2) is similar.

Case 𝜑 = ∃𝑥 : 𝜑1:
Assume 𝑝𝑎𝑟𝑖𝑡𝑦 (𝐹, 𝜑) = 1, then 𝑝𝑎𝑟𝑖𝑡𝑦 (𝐹, 𝜑1) = 1 and by induction hypothesis (1) for 𝜑1:
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|= ∀𝑥1, . . . , 𝑥𝑛 : 𝜑1 → 𝜑1 [𝐹 ↦→ 𝐺] (3)

where 𝑥1, . . . , 𝑥𝑛 = 𝐹𝑉 (𝜑1). If 𝑥 does not occur free in 𝜑1, then 𝐹𝑉 (𝜑) = 𝐹𝑉 (𝜑1) and we can
directly conclude (1) for 𝜑 :

|= ∀𝑥1, . . . , 𝑥𝑛 : (∃𝑥 : 𝜑1) → (∃𝑥 : 𝜑1 [𝐹 ↦→ 𝐺])
⇐⇒ |= ∀𝑥1, . . . , 𝑥𝑛 : (∃𝑥 : 𝜑1) → ((∃𝑥 : 𝜑1) [𝐹 ↦→ 𝐺])

If 𝑥 ∈ 𝐹𝑉 (𝜑1), let 𝑥 = 𝑥𝑛 . Then (3) implies:

|= ∀𝑥1, . . . , 𝑥𝑛−1 : (∃𝑥𝑛 : 𝜑1) → (∃𝑥𝑛 : 𝜑1 [𝐹 ↦→ 𝐺])
⇐⇒ |= ∀𝑥1, . . . , 𝑥𝑛−1 : (∃𝑥𝑛 : 𝜑1) → ((∃𝑥𝑛 : 𝜑1) [𝐹 ↦→ 𝐺])

Since 𝐹𝑉 (𝜑) = 𝐹𝑉 (𝜑1) − {𝑥}, this is exactly (1) for 𝜑 . The proof of (2) is similar. □

Given these two relations between implication of a subformula and implication of the overall
formula, we can derive four weakening and strengtheing rules:

Theorem 1. Let 𝐹, 𝐹𝑤, 𝐹𝑠 be formulas and 𝜑 sentence such that 𝐹 is a subformula of 𝜑 , 𝐹𝑤 is weaker
than 𝐹 and 𝐹𝑠 is stronger than 𝐹 . Then the following statements hold:

(1) 𝐹 positive, 𝜑 satisfiable =⇒ 𝜑 [𝐹 ↦→ 𝐹𝑤] satisfiable
(2) 𝐹 negative, 𝜑 satisfiable =⇒ 𝜑 [𝐹 ↦→ 𝐹𝑠 ] satisfiable
(3) 𝐹 negative, 𝜑 unsatisfiable =⇒ 𝜑 [𝐹 ↦→ 𝐹𝑤] unsatisfiable
(4) 𝐹 positive, 𝜑 unsatisfiable =⇒ 𝜑 [𝐹 ↦→ 𝐹𝑠 ] unsatisfiable

Proof. (1) By Lemma 1 we have:

|= 𝜑 → 𝜑 [𝐹 ↦→ 𝐹𝑤]

Thus, if a model of 𝜑 exists it must also be a model of 𝜑 [𝐹 ↦→ 𝐹𝑤].
(2) Consider 𝜑 [𝐹 ↦→ 𝐹𝑠 ] with negative subformula 𝐹𝑠 . Now 𝜑 weakens 𝐹𝑠 to 𝐹 in a negative

position, so by Lemma 1:

|= 𝜑 → 𝜑 [𝐹 ↦→ 𝐹𝑠 ]

(3) By Lemma 1 we have:
|= 𝜑 [𝐹 ↦→ 𝐹𝑤] → 𝜑

So if no model exists for 𝜑 , then no model can exist for 𝜑 [𝐹 ↦→ 𝐹𝑤].
(4) Consider the formula 𝜑 [𝐹 ↦→ 𝐹𝑠 ] with positive subformula 𝐹𝑠 . Now 𝜑 weakens 𝐹𝑠 to 𝐹 in a

positive position, so by Lemma 1:

|= 𝜑 [𝐹 ↦→ 𝐹𝑠 ] → 𝜑

□
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3.1.4 Ambiguous parities. Unfortunately, the fact that all subformulas have a parity is no longer
true when extending our small logic language to the full SMT-LIB language. More precisely, it is
not possible to simply extend definition 2 to the syntax of SMT-LIB predicates such that Lemma 1
and consequently Theorem 1 hold. A counterexample for boolean equality is given in List. 1. The
same issue occurs with the boolean operators shown in List. 2.

1 (= (= x 1) true) ; p1

2 (= (>= x 1) true) ; p2

3 ; p1 ==> p2

4 (= (= x 1) false) ; p3

5 (= (>= x 1) false) ; p4

6 ; p4 ==> p3

Listing 1. The same local weakening step from = x 1 to >= x 1 in the same syntactic position weakens p1 to
p2 but strengthens p3 to p4.

1 (xor f1 f2 )

2 (= f1 f2 )

3 (distinct f1 f2 )

4 (ite f1 f2 f3)

Listing 2. Boolean operators with ambiguous parities where local weakening and strengthening is not directly
possible.

A similar issue can arise in let-terms, e.g. in (let ((x a1)) (and (not x) x)). Again, in this
formula the predicate a1 occurs in an ambiguous position. However, a1 can also have unambiguous
parity: Let 𝑝1, . . . , 𝑝𝑛 be the parities of all bound occurences of x in the let-body. If all 𝑝𝑖 are
unambiguous and equal, then a1 has that same parity. Otherwise, a1 has ambiguous parity as in the
example above. We grouped all of these ambiguities into three categories to be handled separately
via preprocessing:

• xor and Boolean-sorted =, distinct: We randomly rewrite each occurence of such an
operator with one of =>, and, or and re-classify the modified seed according to its
satisfiability.
• Boolean-sorted ite: Since ite terms are known to be involved in many rewrite rules which
are a challenging component of solvers and have been one source of unsoundness bugs in
the past [10], we decided to keep these terms and ignore (i.e. never mutate) the ambiguous
subformula.
• let with Boolean-sorted variables: These are only ambiguous if a boolean sorted variable

occurs in positive and negative positions inside the let-body. In such a case, we insert a not
around all negative occurrences, making the variable definition in the let itself positive.

3.2 Mutation algorithm
In fuzz testing we are generally trying to generate as diverse a set of mutants as possible. This
means mutations should keep moving away from seed tests in order to reach many different kinds
of inputs. Naturally, two iterative strategies for applying single mutation rules lend themselves.
With an incremental strategy we keep applying mutation steps to results of previous mutations. In
contrast, a non-incremental strategy keeps applying single mutation steps to seed tests, discarding
the mutant after testing it. At first glance, it seems that incremental mutation is clearly superior
to non-incremental mutation since it covers a lot more ground. One constraint with incremental
mutation is that mutation rules must not increase formula size, otherwise the fuzzer will run
out of memory rather sooner than later and we ran into this problem. Additionally, through our
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experiments we have discovered another subtle condition that the mutation rule set must meet in
order to work as expected. This is described in the next section (3.2.1) and leads us to our choice of
mutation algorithm (3.2.2).

3.2.1 Rule applicability and preserving it. Applying a mutation has the potential side effect of
changing the set of applicable rules. Consider for example the following two rules for integers:

𝑖1 = 𝑖2 =⇒ 𝑖1 ≤ 𝑖2 (4)
𝑖1 = 𝑖2 =⇒ |𝑖1 | = |𝑖2 | (5)

Note how applying rule (4) to a formula decreases the applicability of (5) in the result. Conse-
quently, when incrementally applying one of these two rules randomly, sooner or later the process
will eliminate rule (5) completely by replacing all = with ≤ via rule (4). If there are no other rules,
the fuzzer runs out of applicable mutations and gets stuck. As a solution, one could reasonably
propose to simply restart the fuzzer in such a case. However, say we were to swap out the second
rule for another one and use the following two rules:

𝑖1 = 𝑖2 =⇒ 𝑖1 ≤ 𝑖2 (6)
𝑖1 ≤ 𝑖2 =⇒ 𝑖1 + 𝑐 ≤ 𝑖2 + 𝑐 (7)

Rule (6) enables rule (7) which then preserves its own applicability while disabling (6). As a result,
the fuzzer does not get stuck but instead keeps applying rule (7). This particular behavior is what
we found in our earliest experiments with this fuzzing approach when using a purely incremental
strategy and decided it to be undesirable. The reason is that it makes the fuzzer abandon rule (6)
completely which makes it questionable whether this is preferable to a non-incremental strategy.
Note that the underlying problem is not easily quantified, as both strategies equally produce an
infinite set of distinct mutants. However, based on intuition we value a set of mutants generated by
distinct mutation rules higher than mutants generated by a single or few rules. In the following we
will refer to the above described phenomenon as trivial rule cycles and try to avoid it.

3.2.2 Final choice of mutation algorithm. The above considerations of trivial rule cycles led us
to add a parameter walk-length (𝑤𝑙), used to control the number of incremental mutation steps
performed. We write 𝑑𝑜𝑚(𝑚) for the domain of a mutation rule𝑚, i.e. the set of formulas to which
the rule is applicable and 𝑢.𝑎.𝑟 . for uniformly at random. Our mutation algorithm is parametrized
over a set of mutation rules𝑀 , the number of iterations per seed 𝑖 and the walk-length𝑤𝑙 :

Algorithm 1 Repeated incremental mutation
Input: An SMT formula 𝑠𝑒𝑒𝑑
𝑛 ← 0
𝑚𝑢𝑡𝑎𝑛𝑡 ← 𝑠𝑒𝑒𝑑

while 𝑛 < 𝑖 do
if 𝑛 mod 𝑤𝑙 = 0 then
𝑚𝑢𝑡𝑎𝑛𝑡 ← 𝑠𝑒𝑒𝑑

end if
𝑟𝑢𝑙𝑒 ← choose u.a.r. from {𝑟𝑢𝑙𝑒 ∈ 𝑀 |𝑚𝑢𝑡𝑎𝑛𝑡 ∈ 𝑑𝑜𝑚(𝑟𝑢𝑙𝑒)}
𝑚𝑢𝑡𝑎𝑛𝑡 ← 𝑟𝑢𝑙𝑒 (𝑚𝑢𝑡𝑎𝑛𝑡)
𝑡𝑒𝑠𝑡 (𝑚𝑢𝑡𝑎𝑛𝑡)

end while
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Fig. 4. Weakening of the relation (= String String Bool) to (str.contains String String Bool)
preserving the satisfiability of the formula.

1 (declare -const s String)

2 (assert (= s "." ))

3 (check -sat)

(a) A satisfiable formula asserting that s is equal to
".".

1 (declare -const s String)

2 (assert (str.contains s "."))

3 (check -sat)

A weakened version of (a) saying that s contains ".".

This design allows choosing independently the number of mutations performed on a single
seed and the number of mutations performend incrementally. In theory, this seems equivalent to
a purely incremental strategy with 𝑖 set to𝑤𝑙 as seeds are picked many times when the fuzzer is
running long enough. However, we wanted a seed once picked to generate multiple random walks
instead of just one before having to wait for a long time until it is picked again.

3.3 Rule templates
3.3.1 Operator replacement. Our approach naturally accomodates for a subset of an existing, highly
effective fuzzing technique called Type-aware Operator Mutation [12]. This mutation strategy
replaces operators with other operators of conforming type, e.g. (+ 1 2) becomes (* 1 2). For
boolean operators (predicates) we can apply this strategy while satisfing the semantic constraints
of weakening and strengthening. Fig. 4 contains an example where the relation = is weakened to
str.contains.

Definition 3 (operator replacement rule). Let 𝑟1 : 𝜏𝑛 → 𝐵𝑜𝑜𝑙 , 𝑟2 : 𝜏𝑛 → 𝐵𝑜𝑜𝑙 such that

∀𝑥1, . . . , 𝑥𝑛 ∈ 𝜏 .𝑟1 (𝑥1, . . . , 𝑥𝑛) =⇒ 𝑟2 (𝑥1, . . . , 𝑥𝑛)
The corresponding operator replacement rule substitutes one for the other:

(r1 t1 . . . tn)⇒ (r2 t1 . . . tn)

Many intuitive rules (including operator replacement) can be seen as instantiations of the
following generic rule template:

Definition 4 (Homomorphism rule). Let 𝑅, 𝑆 be two sorts and 𝑛 ∈ N, 𝑟 : 𝑅𝑛 → 𝐵𝑜𝑜𝑙 , 𝑠 : 𝑆𝑛 →
𝐵𝑜𝑜𝑙 , 𝑓 : 𝑅 → 𝑆 , 𝑃 : 𝑟𝑛 → 𝐵𝑜𝑜𝑙 such that

∀𝑥1, . . . , 𝑥𝑛 ∈ 𝑅.𝑃 (𝑥1, . . . , 𝑥𝑛) ∧ 𝑅(𝑥1, . . . , 𝑥𝑛) ⇒ 𝑆 (𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑛))
This yields the following homomorphism rule template:

(R t1 . . . tn) =⇒ (=> (P t1 . . . tn) (S (f t1) . . . (f tn)))

An example is given in Fig. 5.

4 IMPLEMENTATION
Our Python implementation first parses and typechecks a given seed formula before running the
mutation algorithm described in 3.2.2. The 𝑡𝑒𝑠𝑡 method passes the mutant formula to all solvers
under test and records crash or unsoundness bugs. Typechecking allows us to apply rules only
when they are definitely applicable, for example the rule shown in Fig. 5 only applies to (> 2 1)
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Fig. 5. An example instance of our rule template for homomorphisms. The integer ordering relation < is
translated into the str.suffixof relation among substrings of the same string. Because of the semantics of
str.substr, this property only holds for non-negative integers which is encoded as the precondition (and
(>= 2 0) (>= 1 0)) on the right handside. Note that the rule holds for any string which is thus picked
randomly.

1 (declare -const s String)

2 (assert (= s "abc"))

3 (assert (> 2 1) )

4 (check -sat); sat

(a) The rule is applied to the highlighted subformula,
the highlighted part is implied by > 2 1.

1 (declare -const s String)

2 (assert (= s "abc"))

3 (assert (=>

4 (and (>= 2 0) (>= 1 0))

5 (str.suffixof

6 (str.substr s 2 (str.len s))

7 (str.substr s 1 (str.len s)))) )

8 (check -sat); sat

(b) The result of the mutation

2

for integers but not the syntactically equal formula for Reals. Another common occurence of this
dependency on typechecking are weakening or strengthening rules of the equality operator =, such
as the one in Fig. 4.

4.1 Mutation rules
A rule consists of two patterns, the left and right handside of an implication or equivalence. Free
variables are instantiated randomly as described in 4.2. Independent of its logical structure, a rule
can be implemented from left to right (weakening), right to left (strengthening) or both. Additionally,
equivalence rules work as weakening and strengthening rules in both directions. To illustrate why
we did not implement both directions for all rules, consider this rule (rule (11) below in 4.1.1):

(= t1 . . . tn)⇒ (= (f t1) . . . (f tn))

It says that for equal arguments, a function f returns equal results. Implementation in the
strengthening direction means simply removing the function application. But to completely imple-
ment this rule from left to right, we would need to provide a function matching the sort of the 𝑇𝑖 .
Thus, chose to only implement the strengthening direction in this case and a few others.

4.1.1 Core logic rules. This category collects first order logic implications without relying on
any theory semantics except core. In rules (19) and (20) we write [𝑥 ↦→ 𝐸] for the conventional
substitution operation, i.e. all occurences of 𝑥 are replaced by 𝐸. In rule (9) the symbol ⊕ stands for
the xor operator.
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𝜑1 ∧ 𝜑2 ⇒ 𝜑1 ∨ 𝜑2 (8)
𝜑1 ⊕ 𝜑2 ⇒ 𝜑1 ∨ 𝜑2 (9)
∀𝑥 .𝜑 ⇒ ∃𝑥 .𝜑 (10)

𝑥1 = . . . = 𝑥𝑛 ⇒ 𝑓 (𝑥1) = . . . = 𝑓 (𝑥2) (11)
𝜑1 ∨ 𝜑2 ⇒ ∃𝑏.𝑖𝑡𝑒 (𝑏, 𝜑1, 𝜑2) (12)

𝑖𝑡𝑒 (𝑏, 𝜑1, 𝜑2) ⇒ (𝑏 → 𝜑1) (13)
𝑖𝑡𝑒 (𝑏, 𝜑1, 𝜑2) ⇒ (¬𝑏 → 𝜑2) (14)
(𝜑1 → 𝜑2) ⇒ 𝑖𝑡𝑒 (𝜑1, 𝜑2,⊤) (15)
(𝜑1 → 𝜑2) ⇒ 𝑖𝑡𝑒 (¬𝜑1,⊤, 𝜑2) (16)
(𝜑1 → 𝜑2) ⇒ ∀𝑏.(𝜑1 ∧ 𝑏 ⇒ 𝜑2 ∧ 𝑏) (17)

𝜑1 ∨ 𝜑2 ⇒ (¬𝜑1 ⇒ 𝜑2) (18)
∀𝑥 .𝜑 ⇒ 𝜑 [𝑥 ↦→ 𝐸] (19)

𝜑 [𝑥 ↦→ 𝐸] ⇒ ∃𝑥 .𝜑 (20)
𝜑1 ⇒ 𝜑1 ∨ 𝜑2 (21)

𝜑1 ∧ 𝜑2 ⇒ 𝜑1 (22)

4.1.2 Integer and Real rules. The rules from this category transform relations among integers and
reals. In rules (29), (30) and (31) we use the symbol ⊙ as a placeholder for the relations =, <, >, ≤, ≥,≠
since we implemented many of the possible combinations. Note that depending on the choice of
relations, positivity or negativity of the constant 𝑐 must be controlled as well.

𝑛1 = 𝑛2 ⇒ 𝑛1 ≥ 𝑛2 (23)
𝑛1 > 𝑛2 ⇒ 𝑛1 ≥ 𝑛2 (24)
𝑛1 = 𝑛2 ⇒ 𝑛1 ≤ 𝑛2 (25)
𝑛1 < 𝑛2 ⇒ 𝑛1 ≤ 𝑛2 (26)
𝑛1 < 𝑛2 ⇒ 𝑛1 ≠ 𝑛2 (27)
𝑛1 > 𝑛2 ⇒ 𝑛1 ≠ 𝑛2 (28)
𝑛1 ⊙ 𝑛2 ⇒ (𝑛1 + 𝑐) ⊙ (𝑛2 + 𝑐) (29)
𝑛1 ⊙ 𝑛2 ⇒ 𝑛1 ⊙ (𝑛2 + 𝑐) (30)
𝑛1 ⊙ 𝑛2 ⇒ (𝑛1 + 𝑐) ⊙ 𝑛2 (31)

4.1.3 String rules. In the following, we use some convenience syntax in order to make the rules
more readable, e.g. ≤𝑠 stands for str.<= and from the other operators we omit the prefix str. in
their proper SMT-LIB names [11].
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𝑠1 = 𝑠2 ⇒ 𝑠1 ≠ (𝑠1 ++ 𝑠3) (32)
𝑝𝑟𝑒 𝑓 𝑖𝑥𝑜 𝑓 (𝑠1, 𝑠2) ⇒ ∃𝑖 : 𝑠𝑢𝑏𝑠𝑡𝑟 (𝑠2, 0, 𝑖) (33)
𝑠𝑢𝑓 𝑓 𝑖𝑥𝑜 𝑓 (𝑠1, 𝑠2) ⇒ ∃𝑖 : 𝑠𝑢𝑏𝑠𝑡𝑟 (𝑠2, 𝑖, 𝑙𝑒𝑛(𝑠2) − 𝑖) (34)

𝑠1 = 𝑠2 ⇒ 𝑝𝑟𝑒 𝑓 𝑖𝑥𝑜 𝑓 (𝑠1, 𝑠2) ∧ 𝑠𝑢𝑓 𝑓 𝑖𝑥𝑜 𝑓 (𝑠1, 𝑠2) (35)
𝑠1 = 𝑠2 ⇔ 𝑝𝑟𝑒 𝑓 𝑖𝑥𝑜 𝑓 (𝑠1, 𝑠2) ∧ 𝑝𝑟𝑒 𝑓 𝑖𝑥𝑜 𝑓 (𝑠2, 𝑠1) (36)
𝑠1 = 𝑠2 ⇔ 𝑠𝑢𝑓 𝑓 𝑖𝑥𝑜 𝑓 (𝑠1, 𝑠2) ∧ 𝑠𝑢𝑓 𝑓 𝑖𝑥𝑜 𝑓 (𝑠2, 𝑠1) (37)

𝑝𝑟𝑒 𝑓 𝑖𝑥𝑜 𝑓 (𝑠1, 𝑠2) ∨ 𝑠𝑢𝑓 𝑓 𝑖𝑥𝑜 𝑓 (𝑠1, 𝑠2) ⇒ 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑠2, 𝑠1) (38)
𝑠1 ≤𝑠 𝑠2 ⇒ 𝑠1 ≤𝑠 (𝑠2 ++ 𝑠3) (39)
𝑠1 ≤𝑠 𝑠2 ⇒ 𝑠𝑢𝑏𝑠𝑡𝑟 (𝑠1, 0, 𝑖𝑡𝑒 (0 ≤ 𝑖 ≤ 𝑙𝑒𝑛(𝑠1) − 1, 𝑖, 𝑙𝑒𝑛(𝑠1))) ≤𝑠 𝑠2 (40)

𝑠𝑢𝑓 𝑓 𝑖𝑥𝑜 𝑓 (𝑠1, 𝑠2) ⇒ 𝑙𝑒𝑛(𝑠1) ≤ 𝑙𝑒𝑛(𝑠2) (41)
𝑝𝑟𝑒 𝑓 𝑖𝑥𝑜 𝑓 (𝑠1, 𝑠2) ⇒ 𝑙𝑒𝑛(𝑠1) ≤ 𝑙𝑒𝑛(𝑠2) (42)
𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑠1, 𝑠2) ⇒ 𝑙𝑒𝑛(𝑠1) ≥ 𝑙𝑒𝑛(𝑠2) (43)
𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑠1, 𝑠2) ⇒ 𝑙𝑒𝑛(𝑠1) ≥ 𝑙𝑒𝑛(𝑠2) (44)

4.1.4 Regex rewrites. This category of rewrites applies to terms of the form (str.in_re s r) by
rewriting r. The concept of weakening and strengthening naturally extends to the type RegLan and
we write 𝑟1 ⇒ 𝑟2 as a shorthand for the mutation rule (str.in_re s r1)⇒ (str.in_re s r2).
The quantifier in (49) is added around the str.in_re operator. The implementation of rule (50)
chooses 𝑠3 and 𝑠4 such that the implication holds, i.e. the corresponding range is larger than that of
𝑠1 and 𝑠2.

𝑟 ⇒ 𝑟+ (45)
𝑟 ⇒ 𝑙𝑜𝑜𝑝 (1, 𝑛, 𝑟 ) (46)
𝑟 ⇔ 𝑜𝑝𝑡 (𝑟 ) (47)

𝑟1 ++ . . . ++ 𝑟𝑛 ⇒ 𝑢𝑛𝑖𝑜𝑛(𝑟1, . . . , 𝑟𝑛)𝑛 (48)
𝑟 ⇒ ∀𝑥 : 𝑢𝑛𝑖𝑜𝑛(𝑟, 𝑥) (49)

𝑟𝑎𝑛𝑔𝑒 (𝑠1, 𝑠2) ⇒ 𝑟𝑎𝑛𝑔𝑒 (𝑠3, 𝑠4) (50)
𝑟 ⇒ 𝑖𝑛𝑡𝑒𝑟 (𝑟, 𝑟 ) (51)
𝑟 ⇒ 𝑢𝑛𝑖𝑜𝑛(𝑟, 𝑟 ) (52)
𝑟+ ⇒ 𝑟 ∗ (53)

𝑖𝑛𝑡𝑒𝑟 (𝑟1, 𝑟2) ⇒ 𝑢𝑛𝑖𝑜𝑛(𝑟1, 𝑟2) (54)

4.2 Generating random terms
In many of our mutation rules, there are terms that can be chosen freely. For example, the two
quantifier instantiation rules (19) and (20) from 4.1.1 contain a free term variable 𝐸:

∀𝑥 .𝜑 =⇒ 𝜑 [𝑥 ↦→ 𝑒]
𝜑 [𝑥 ↦→ 𝑒] =⇒ ∃𝑥 .𝜑

For mutant diversity and complexity, we adopt the following two-step generation process to
produce a random instance for 𝐸:
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(1) Search the current SMT-file for terms of the required sort. If there are any, choose one
uniformly at random.

(2) Otherwise, choose uniformly at random from a set of literals.

5 INCOMPLETENESS TESTING
Besides finding bugs, we use the approach for incompleteness testing of SMT solvers. In general we
refer to a formula for which a solver returns unknown as an incompleteness. Such cases routinely
occur when testing SMT solvers with randomly generated formula, so we propose additional
constraints for an incompleteness to be interesting from a testing perspective. Let 𝜑𝑛−1, 𝜑𝑛 be two
consecutive mutants in the fuzzing process. By design, either 𝜑𝑛−1 is satisfiable and 𝜑𝑛−1 ⇒ 𝜑𝑛 or
𝜑𝑛−1 is unsatisfiable and 𝜑𝑛 ⇒ 𝜑𝑛−1. Moreover, in both cases the implication comes from a local
weakening or strengthening of a subformula in 𝜑𝑛−1. We investigate two scenarios:

Definition 5 (Incompleteness types). Let 𝑆 be a solver and 𝑆𝑜𝑙𝑑 an earlier version of it. We
distinguish the following two types of incompletenesses:
• Regression (type 1): 𝑆𝑜𝑙𝑑 (𝜑𝑛) = 𝑠𝑎𝑡/𝑢𝑛𝑠𝑎𝑡 ∧ 𝑆 (𝜑𝑛) = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛

• Unsupported implication (type 2): 𝑆 (𝜑𝑛−1) = 𝑠𝑎𝑡/𝑢𝑛𝑠𝑎𝑡 ∧ 𝑆 (𝜑𝑛) = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛

The rationale for type 1 incompletenesses is simple: A recent development has removed support
for a previously decidable formula. But of course, with the complexity of the problem domain we
cannot and do not expect SMT solvers to increase their completeness monotonically only. But
fuzzing for such cases could reveal regressions which turn out to be surprising to the developers and
help them discover unwanted side effects of their code changes that do not manifest as soundnenss
bug or lead to a crash. With regressions we aim at revealing subtle problems early on during the
development process. Note that this type of incompleteness does not require the mutation strategy
to be metamorphic, as the mutants are simply tested differentially across multiple solver versions.

List. 3 contains an example of such a regression, found and reported by us in June 2021 and fixed
within a week by the Z3 developers.

1 (assert (forall ((v Int)) (= 0 v)))

2 (assert (= 0 (mod 0 0)))

3 (check -sat)

Listing 3. An unsatisfiable formula which we reported on the Z3 issue tracker in June 2021. The solver’s
previous release (Z3 version 4.8.10) decided this formula as unsat, while the development version could no
longer do so and returned unknown at the time. (https://github.com/Z3Prover/z3/issues/5338)

Type 2 has a different goal, namely to help improve completeness of solvers by searching for two
semantically related formulas of which one is decided but the other is not. The idea is that such
pairs could suggest improvements to formula rewriters used by solvers in order to rewrite 𝜑𝑛 into
a form close enough to 𝜑𝑛−1 such that it becomes decidable. Thus, unsupported implications are
not suggested to be defects in solvers but aim to reveal potential for improved rewriting strategies.
For example, in the formula 𝜑 in List. 4 the obvious simplification of (or false (= 0.0 s))

to (= 0.0 s) suggests itself. At the time of writing, July 2021, the development version of CVC5
cannot decide 𝜑 , returning unknown. But when the rewrite is performed manually, the solver readily
returns sat for the modified formula. The same behavior occurred using the latest previous release
at the time. Thus, from a user perspective it seems as if the solver does not apply the simplifcation,
which is undesirable for such a simple proof step. More interestingly, the solver definitely had this
simplification implemented and the developers deemed the observed behavior worth investigating.
It turned out that the rewrite was indeed applied, but as a side effect led the solver onto an infeasible
path and returning unknown. CVC5 is sensitive to the order of operands in or and the rewrite

https://github.com/Z3Prover/z3/issues/5338
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affected this order in an intermediate form of the formula. Two developers indicated in their
feedback that this behavior is undesirable but unfortunately also not feasible to avoid in general.

1 (declare -const s Real)

2 (assert (or (or false (= 0.0 s)) (< (* s (+ 6 (* s 12))) (- 1))))

3 (check -sat)

Listing 4. A formula we reported on the CVC5 issue tracker since it returns unknown, although when manually
rewriting (or false (= 0.0 s)) to (= 0.0 s) it is decided correctly. https://github.com/cvc5/cvc5-
projects/issues/279.

Bearing in mind that this is a slightly special case: the mutation is an equivalence instead of
just an implication. Thus, the fuzzer finds this case by rewriting (= 0.0 s) to (or false (= 0.0
s)) which, in the other direction, is then exactly the suggested rewrite step. In general this is not
required and our search is more open-ended as we select interesting cases manually based on rules
which are mostly not equivalences.

6 EVALUATION
6.1 Experimental setup
At the time of writing, our fuzzing campaign has been running for five months during which
we concurrently developed the fuzzer. For the first three months we searched exclusively for
unsoundness and crash bugs before starting incompleteness testing around three months into
the campaign. We deployed the fuzzer on a AMD Ryzen Threadripper 3990X 64-Core Processor
with 256GB of RAM running Ubuntu 18.04. The specific fuzzing configuration was continuously
experimented with, but typically the number of iterations per seed (𝑖) was set to 50 − 500, the
number of incremental mutations (𝑤𝑙) to 10 − 100 and the solver timeout to 3 − 30 seconds. We
tested multiple solver configurations of daily rebuilt development versions of Z3 and CVC5. As
seed files we used a publicly available, labelled set by the YinYang project7. We reduced all found
bugs with ddsmt [9].

6.2 Statistical properties of the generated mutants
In this section we present a few statistics of the mutant set generated during a 24 hour long example
run under the same experimental conditions as described above. The fuzzer configuration used
is typical of what was used during the whole campaign: 300 iterations per seed, 50 incremental
iterations, a solver timeout of 10 seconds and 50 concurrent such fuzzer instances. This tested 6043
seeds, generated a total of 1, 331, 576 mutants8 of which 99.6% were unique. These mutants were
tested on 8 solver configurations (four of Z3 and CVC5 each) resulting in 10′658′346 solver calls of
which:

• 215, 011 timed out (0.02%).
• 127, 920 returned unknown (0.01%).

6.2.1 Rule applicability. Referring back to our considerations of rule applicability during design,
Fig. 6 shows the number of applicable rules per iteration on average over all seeds. The emerging
pattern is very clear: The combination of seeds and rule we chose yields roughly 13 mutation rules
that can be applied to a seed. Interestingly, this number consistently increases during incremental
mutation before dropping back to 13 when the seed is reset (each 50 iterations in this configuration).
This is consistent with our reservations about purely incremental mutation, as the increase is
7https://github.com/testsmt/semantic-fusion-seeds
8The number of mutants is smaller than the expected 300 · 6043 = 1′812′900 because the experiment was terminated without
letting all last instances run to the end of their 300 iterations.

https://github.com/cvc5/cvc5-projects/issues/279
https://github.com/cvc5/cvc5-projects/issues/279
https://github.com/testsmt/semantic-fusion-seeds
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most likely due to increased size of the formulas. It also suggests that we have likely avoided the
problem of trivial rule cycles, explained in Section 3.2.1. Since the mutation rule is always chosen
uniformly at random from all applicable ones, increasing the number of applicable rules decreases
the probability of the fuzzer choosing the same few rules in succession.

Fig. 6. The average number of applicable rules per iteration from a test run with 50 incremental mutations.

6.2.2 Rule diversity. In Fig. 7, another perspective on rule applicability is taken by inspecting how
often individual rules apply. The diagram depicts the number of applications per rule as percentage
of the total number of mutations performed in this experiment. The distribution shows a slight
skew towards a few rules, but only the top 5 rules take more than 5% each:

(1) DROPCONJ: 6.6%
(2) ADDDISJ: 6.0%
(3) NUMRELSHIFTBALANCED: 5.9%
(4) NUMRELSHIFTSKEWED: 5.7%
(5) EQUAL[STRTOINT]: 5.4%
We interpret this as further evidence that our fuzzer avoids running through the same mutation

cycles as this would manifest itself in a drastic skew towards the rules involved in such cycles.
Instead, there are simple explanations for these rules to come out on top: DROPCONJ weakens
the prevalent operator and without further constraints. ADDDISJ is applicable to every seed and
mutant as it transforms an arbitrary boolean term T into (or T S), where S is chosen randomly
(c.f. 4.2). Rules number 3 and 4 are slightly concerning, as this is exactly the type of rule used
in our illustration of trivial mutation cycles. But again, these rules should be expected to come
out on top as their target syntax (=, <=, <, etc.) is widely used in seeds. Moreover, both rules are
applicable and implemented as weakening and strengthening to any of those operators. The rule
EQUAL[STRTOINT] is a rewrite rule among equal terms which can be applied in both directions.
Thus it applies to its own result which gives it high applicability.

6.3 Results
6.3.1 Soundness and crash bugs. We first look at the effectiveness of our fuzzing approach in a
conventional sense, i.e. when testing for unsoundness and crash bugs. We found only three such
bugs during our six month fuzzing campaign, listed in Tab. 2. One of the bugs is shown in List. 5,
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Fig. 7. The ratio of how many times each of our mutation rules used in our evaluation run has been applied.
The top five rules and their percentages are listed in 6.2.2.

Table 2. The three conventional bugs found by our fuzzing campaign from February 2021 to July 2021 when
testing for soundness and crashes. The formulas can be found in the corresponding reports in Appendix B.

solver options type status

Z3 proof=true crash fixed
Z3 model_validate=true invalid model fixed

CVC5 -q --strings-exp --full-saturate-quant crash confirmed/open

where Z3 correctly returned sat but generated an invalid model for the formula. Most notably,
no unsoundness bugs were found at all. To put this into perspective, searching the issue trackers
we find 70+ soundness bug reports submitted during the time of our campaign. This number
includes duplicates and bugs in solver configurations not tested by us. Still, we do not think that
our approach is inherently incapable of finding unsoundness bugs as our fuzzer readily finds them
in older solver versions and experimental configurations. In 6.5 we illustrate some of the potential
difficulties involved.

1 (declare -const ar_7 String)

2 (assert (str.in_re ar_7 (re.++ (str.to_re ar_7) ((_ re.loop 1) (re.range "" ""))))

)
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Table 3. The number of reports from our incompleteness testing campaign.

solver type reported confirmed fixed rejected

CVC5 1 9 9 1 0
Z3 1 21 10 6 4
total 1 30 19 7 4
CVC5 2 2 2 0 0
Z3 2 0 0 0 0
total 2 2 2 0 0

3 (check -sat)

Listing 5. A formula error using regular expressions which we reported on the Z3 issue tracker in June 2021
because it triggered an invalid model error . It was confirmed after three days and fixed after one month.
https://github.com/Z3Prover/z3/issues/5343.

6.3.2 Incompleteness reports. Combining Z3 and CVC5, we reported 35 cases of which 9 were fixed
and 4 rejected. The feedback by the developers from both Z3 and CVC5 was generally positive, they
discussed and fixed several issues in both solvers. Some of our reports were false positives in the
sense that we simply discovered an SMT feature not supported in reasoning engines by the solvers,
for example str.replace_all9 and similar string operations10. This is only a small drawback to
the overall testing effort, as after one such report we simply filtered out the corresponding cases.

6.4 Developer feedback on incompleteness testing
The most important feedback is whether developers confirm and fix our bug reports which we
evidence with two examples.

6.4.1 Discovering a lost ite rewrite in CVC5. Although not previously exposed to, developers were
generally open to our reports of completeness regressions. List. 6 contains one of our reported
cases and illustrates the potential benefits of testing completeness boundaries of solvers.

1 (declare -const T Bool)

2 (declare -const v String)

3 (assert (ite T T true))

4 (assert (or T (and (str.prefixof v "") (exists ((x Int)) (= "t" (str.substr v 0 x)

)))))

5 (check -sat)

Listing 6. The term (ite T T true) is equivalent to true, but CVC5 at the time was unable to perform this
simplification and returned unknown. The report led to the discovery of unwanted side effects produced by a
newer set of rewrite rules over older ones. (https://github.com/cvc5/cvc5/issues/6717)

The formula is satisfiable by setting T to true. Similarly to List. 4, a manual rewrite step replacing
(ite T T true) with true is enough for the solver to correctly decide the formula. Moreover the
previous releases of the solver correctly decided this case, i.e. it is a type 1 incompleteness. Through
our report, the developers discovered that a set of newer rewrite rules taking precedence over older
ones accidentally prevented this simple term to be fully rewritten. They promptly adjusted the
precedences and successfully closed the incompleteness11.
9https://github.com/Z3Prover/z3/issues/5344#issuecomment-861695688
10https://github.com/cvc5/cvc5/issues/6742#issuecomment-860225800
11https://github.com/cvc5/cvc5/pull/6723

https://github.com/Z3Prover/z3/issues/5343
https://github.com/cvc5/cvc5/issues/6717
https://github.com/Z3Prover/z3/issues/5344#issuecomment-861695688
https://github.com/cvc5/cvc5/issues/6742#issuecomment-860225800
https://github.com/cvc5/cvc5/pull/6723
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6.4.2 Discovering a lost str.replace rewrite in Z3. A similar case occured with Z3 when we
found the formula shown in List. 7. It contains the term (str.replace "" va "") which can be
rewritten to "". Z3 returned unknown for the shown formula, but correctly decided it as sat after
we manually performed this rewrite step. To fix the issue, the developers added this exact rewrite
step to the string rewriter component of the solver12.

1 (declare -const x Int)

2 (declare -const T Int)

3 (declare -const va String)

4 (assert (distinct (str.from_int T) (str.replace va (str.replace "" va "") (str.

from_int (- x)))))

5 (check -sat)

Listing 7. At the time of reporting, Z3 returned unknown for this formula. The term (str.replace "" va
"") is equal to "" irrespective of the value of va, since (str.replace s t t’) replaces all occurrences of t
in s with t’[11]. Manually performing this rewrite thus creates an equivalent formula, for which Z3 then
returned sat. (https://github.com/Z3Prover/z3/issues/5399)

6.5 Example: Reconstructing a previously known soundness bug
As an illustration of the constraints involved in our approach, we look at a soundness bug found
by another fuzzer and try to recreate it using weakening and strengthening rules. This could hint
at reasons for the ineffectiveness of our approach as a soundness testing technique. To this end,
consider formula 𝜑 given in List. 8. We are asking if and how our fuzzer could have found this bug.
Since this is an unsatisfiable formula, our fuzzer can only produce it via a strengthening step from
an unsatisfiable 𝜑 ′, i.e. 𝜑 ⇒ 𝜑 ′ should hold by one of our rules. More precisely, a strengthening
step is either a strengthening of a positive subformula or a weakening of a negative subformula.
Additionally, the mutation should reveal the bug which means that Z3 should return the correct
result unsat for 𝜑 ′. Does such a 𝜑 ′ exist for this specific case? Here are three of our rules which
potentially apply:
• Rule (25) from 4.1.2: This would mean that = is a strengthening of ≤. But applying the rule

in the reverse direction, replacing = with ≤ in List. 8, also results in sat which means that
this rule does not reveal the bug.
• Rule (23) from 4.1.2: As the rule above, this would produce the ’=’ as a strengthening of ’>=’.

However, the formula with ’>=’ is satisfiable which means that our fuzzer only weakens but
never strengthens it and thus cannot discover the bug this way.
• Rule (11) from 4.1.1: For this rule, there are infinitely many possibilites and we only inspect

two. The rule instantiated with the function abs still has the bug. With a fresh uninterpreted
function f the formula becomes satisfiable.

1 (declare -const x String)

2 (assert (= 0 (str.to_int (str.++ (str.replace "" x "")

3 (str.replace "" x (str.substr x 1 0))))))

4 (check -sat)

Listing 8. A string formula that was reported on the Z3 GitHub issue tracker because it returned sat but the
formula is unsatisfiable (https://github.com/Z3Prover/z3/issues/5096).

While this illustrates the constraints our approach has to work under, there are two caveats to
be aware of here. First, the formula in List. 8 is a highly reduced version of the issue. Typically fuzz
testing produces larger mutants which are then reduced to a minimal reproducing example, so
12https://github.com/Z3Prover/z3/commit/0f8d2d1d51b814edda853dacd8a7b88a45fad33a

https://github.com/Z3Prover/z3/issues/5399
https://github.com/Z3Prover/z3/issues/5096
https://github.com/Z3Prover/z3/commit/0f8d2d1d51b814edda853dacd8a7b88a45fad33a


0:20 Mauro Bringolf

in practice the fuzzer does not need to find this small formula in order to find the bug. In larger
formulas there are likely more applicable strengthening and weakening rules, so the analysis above
is a bit too strict. Second, we only considered single step mutations whereas the fuzzer was usually
configured to perform 10-50 incremental mutations (See 3.2).

7 CONCLUSION
We presented the weakening and strengthening approach for fuzz-testing SMT solvers. With our
implementation, we tested Z3 and CVC5 for unsoundness, crashes and incompleteness over the
course of five months, resulting in a total of 35 reports of which 9 were fixed. Of those reports, two
are crashes, one is an invalid model bug and none are unsoundness bugs. This could be due to a
saturation process after continuous efforts in fuzz-testing SMT solvers in recent years, but we cannot
exclude a fundamental ineffectiveness of our approach. The rest of the reports are incompletenesses
and were well received by the developers, leading to the discovery of regressions and missing
rewrite steps in both solvers. This evidence suggests that there is potential for incompleteness
testing to improve the quality of SMT solvers in ways that conventional fuzz-testing cannot.
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A LIST OF FIXED INCOMPLETENESS REPORTS
• https://github.com/Z3Prover/z3/issues/5381
• https://github.com/Z3Prover/z3/issues/5376
• https://github.com/Z3Prover/z3/issues/5349
• https://github.com/Z3Prover/z3/issues/5340
• https://github.com/Z3Prover/z3/issues/5338
• https://github.com/Z3Prover/z3/issues/5399
• https://github.com/cvc5/cvc5/issues/6717

B LIST OF SOUNDNESS AND CRASH REPORTS
• https://github.com/Z3Prover/z3/issues/5197
• https://github.com/Z3Prover/z3/issues/5343
• https://github.com/cvc5/cvc5/issues/6750
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