
ETH Library

Variance Reduction for Non-
Convex Stochastic Optimization:
General Analysis and New
Applications

Master Thesis

Author(s):
Zhang, Liang

Publication date:
2021

Permanent link:
https://doi.org/10.3929/ethz-b-000507454

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000507454
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Variance Reduction for Non-Convex
Stochastic Optimization: General

Analysis and New Applications

Master Thesis

Liang Zhang

Thursday 9th September, 2021

Advisor: Prof. Dr. Niao He

Department of Computer Science, ETH Zürich

Abstract

We introduce a general algorithmic framework for smooth non-convex stochas-
tic optimization based on variance reduction techniques. Our framework
allows for flexible selections of batch sizes and stepsize, encapsulating many
popular variance reduction algorithms designed for non-convex optimization
as well as several new variants. When applying the general framework to
non-convex biased stochastic optimization, the algorithms match the optimal
complexity achieved by unbiased stochastic methods when the biased gradi-
ent estimates satisfy an average bias growth condition. We further apply the
general framework to a wide spectrum of structured stochastic optimization
problems, including stochastic bilevel optimization, stochastic minimax opti-
mization and stochastic compositional optimization, yielding a rich family
of near-optimal single-loop algorithms for each of these problems. When
combined with stochastic mirror descent, our general framework also solves
a class of non-smooth non-convex stochastic optimization problems with the
optimal oracle complexity, providing the first convergence result without
using large batch sizes in the non-Euclidean setting.

i

Contents

Contents ii

1 Introduction 1
1.1 Related Work . 2
1.2 Organization and Main Results . 4

2 General Analysis of Variance Reduction for Non-Convex Optimization 6
2.1 Problem Setting and Assumptions . 6
2.2 General Algorithm . 7
2.3 Convergence Analysis . 9
2.4 Parameter Choices and New Variants . 12

3 Variance Reduction for Biased Stochastic Optimization 15
3.1 General Framework with Biased Gradient Estimates 15
3.2 Stochastic Bilevel Optimization . 18
3.3 Stochastic Minimax Optimization . 25

3.3.1 Non-Convex Strongly-Concave Case 25
3.3.2 Non-Convex P-Ł Case . 28

3.4 Stochastic Compositional Optimization . 30

4 Variance Reduction for Stochastic Mirror Descent 34
4.1 Problem Setting . 34
4.2 Algorithm and Convergence Analysis . 36

5 Experiments 39

6 Conclusion 45

A Deferred Proofs 46
A.1 Proofs of Results in Chapter 2 . 46
A.2 Proofs of Results in Chapter 3 . 49

A.2.1 General Framework with Biased Gradient Estimates 49
A.2.2 Stochastic Bilevel Optimization . 50
A.2.3 Stochastic Minimax Optimization 54
A.2.4 Stochastic Compositional Optimization 59

A.3 Proofs of Results in Chapter 4 . 62

Bibliography 65

ii

Chapter 1

Introduction

Non-convex optimization has attracted more and more attentions with the huge success
of deep learning in various domains including image recognition [1], language under-
standing [2] and drug discovery [3]. One of the most important engines for solving
non-convex optimization problems encountered in modern machine learning is the
so-called stochastic gradient descent (SGD). For the stochastic optimization of the general
form:

min
x∈Rd

F(x) := Eξ[f (x; ξ)],

where we consider the case when F(x) is non-convex and smooth, SGD updates

xt+1 = xt − α∇ f (xt; ξt), t = 1, · · · , T,

with the stepsize α and the stochastic gradient ∇ f (xt; ξt) returned by some first-order
oracle at query point xt. SGD requires at least O(ε−4) oracle calls [4] to find an ε-
stationary point x̃ such that ‖∇F(x̃)‖ ≤ ε.

Variance reduction has emerged recently as a powerful technique to improve the complex-
ity result of SGD. After SVRG [5] and SAGA [6] achieved theoretically better convergence
rate in the convex regime, several variance reduction methods have been proposed for
non-convex optimization as well, for example SPIDER [7, 8], SARAH [9] and STORM
[10]. These methods have been proved to be effective and can obtain the O(ε−3) sample
complexity to guarantee an ε-stationary point, which is optimal when assuming average
smoothness [11]. In this work, we introduce the following general framework for a
unified analysis of different variance reduction methods in the non-convex regime.

General Framework:
xt+1 = xt − αht, t = 1, ..., T,

where

ht =

{
1
D ∑D

i=1∇ f (xt; ξi
t), if t ≡ 0 (mod Q);

(1− η)
(

ht−1 − 1
S ∑S

i=1∇ f (xt−1; ξi
t)
)
+ 1

S ∑S
i=1∇ f (xt; ξi

t), otherwise.

In the above framework, Q is the epoch length, D and S are batch sizes, α is the stepsize,
η ∈ [0, 1] is a momentum parameter, and {ξi

t} are independent and identically distributed
samples. The framework runs in epochs and at the beginning of each epoch, it takes a
potentially large batch size D to compute a mini-batch estimator of the true gradient
(referred to as checkpoint gradients); and a possibly smaller batch size S at other iterations
to compute a recursive gradient with control variate technique.

1

1.1. Related Work

The previous analysis for SGD and variance reduction methods relys on the construction
of unbiased gradient estimators. However, recent years have witnessed a dramatic
increase in machine learning applications where unbiased gradient estimators are costly
to obtain, e.g., solving Bellman equations in reinforcement learning [12], Wasserstein
robust models [13], robust learning over multiple domains [14], meta-learning [15],
and hyper-parameter optimization [16], to name a few. Notably, these applications
can often be formulated as some structured stochastic optimization such as stochastic
bilevel optimization [17], stochastic minimax optimization [18], stochastic compositional
optimization [19], conditional stochastic optimization [20], etc.

One common feature of these structured stochastic optimization problems is that the bias
in gradient estimators comes from either an estimation or an optimization subproblem.
Hence, the bias can often be controlled. In such cases, it is natural to design biased
gradient methods based on two different philosophies. The first one is to enforce small
bias within targeted accuracy at every iteration, which in general requires a double-loop
algorithm [21, 22]; the other is to adaptively reduce the bias of the gradient estimator,
which typically results in a simpler single-loop algorithm. However, existing single-loop
algorithms heavily rely on a case-by-case construction, whose convergence rates are
sometimes even sub-optimal [17, 18, 19].

Based on these observations, one may ask the question that if there exist optimal single-
loop algorithms for the aforementioned non-convex structured stochastic optimization
problems. To address the issues, we extend the proposed general framework for variance
reduction methods to biased stochastic settings where we only have access to some
(possibly white-box) stochastic oracle that gives a biased estimate ∇̄ f (x; ξ) of the true
gradient ∇F(x) at every query point x. Our results suggest that the optimal complexity
O(ε−3) is still achievable if the bias can be properly controlled, and thus we can give an
affirmative answer to the question before.

In addition to the biased case, another interesting variant of the original non-convex
stochastic optimization is the following non-smooth non-convex optimization:

min
x∈Rd

Φ(x) := F(x) + r(x) := Eξ[f (x; ξ)] + r(x),

where F(x) is still smooth and non-convex, but the second part r(x) is convex and non-
smooth. This optimization problem is also common in machine learning when adding
simple regularization, e.g. r(x) = ‖x‖1, to the objective function F(x). For example, the
objectives of LASSO [23] and 1-norm SVM [24] can be reformulated as the above form.
When combining the general framework with mirror descent [25], we naturally obtain a
general framework for solving non-smooth non-convex stochastic optimization, and the
sample complexity O(ε−3) is also achieved.

1.1 Related Work

Variance Reduction Methods SPIDER [7] and SARAH [9] were the first to apply vari-
ance reduction to non-convex optimization and obtained the optimal O(ε−3) sample
complexity. The original work for SPIDER required ε-dependent stepsize α and nor-
malized gradient descent. A follow up work proposed an improved version named
SpiderBoost [8] where constant stepsize is enough. Setting η = 0, our general framework
exactly recovers the updates of SpiderBoost. SARAH was designed for convex optimiza-
tion at first but found effective for non-convex case as well. It corresponds to setting
η = 0 and S = 1 in the framework. Compared to SPIDER/SpiderBoost, SARAH does not
need mini-batches for the computation of recursive gradients, but it has to use a smaller

2

1.1. Related Work

stepsize to control the error. Both SPIDER/SpiderBoost and SARAH are double-loop
algorithms with Q < T, and they all need very large batch size D, which might cause
some issues for practical applications.

STORM [10] introduced the use of momentum parameter η to the updates of SPIDER and
SARAH. The benefit of using momentum parameter is that no mini-batch is required at
all, and that single-loop is enough. Setting D = 1, S = 1, Q = T and using time-varying
stepsizes αt and ηt ∈ (0, 1), our framework recovers STORM. When η 6= 0 and S = 1, the
update of the recursive gradients becomes

ht = (1− η)(ht−1 −∇ f (xt−1; ξt)) +∇ f (xt; ξt)

= (1− η)ht−1 + η∇ f (xt; ξt) + (1− η)(∇ f (xt; ξt)−∇ f (xt−1; ξt)).

This is similar to adding momentum term to the update before, and thus we refer to
η as the momentum parameter. Another improved method for SPIDER/SARAH is a
recently proposed one called PAGE [26]. In each iteration of the algorithm, the recursive
gradient is computed with some probability, and the mini-batch or checkpoint gradient
is computed otherwise. In this way, PAGE becomes a single-loop algorithm and is easier
to implement in practice.

As mentioned above, our general framework includes the widely-used variance reduction
methods SPIDER [7, 8], SARAH [9] and STORM [10] as special cases under particular
selections of batch sizes, stepsize and momentum parameter. However, in practice, tuning
these parameters to satisfy the requirement imposed by these specific methods can be
difficult. Our analysis for the general framework suggests that a variety of combinations
of parameters provide guarantees for achieving optimal complexity O(ε−3). It justifies
more flexible parameter selection in variance reduction methods. Moreover, we also
provide the first extension for these variance reduction methods to the biased case. With
properly controlled bias, the optimal complexity is also achievable.

Biased Gradient Methods Recently, there exists a series of work on stochastic gradient
descent with biased gradients [27, 28, 29]. These papers assume that the bias comes
from some black-box oracles or additive noises with non-zero mean. Here our work
focuses on the general variance reduction framework with biased (white-box) oracles. In
particular, we are interested in structured stochastic optimization where one can utilize
the problem structure to construct biased oracle that adaptively reduces the bias and
obtain the optimal complexity. Compared to a few work on specific variance reduction
techniques for certain applications [30, 31], our framework is much more general.

Non-Convex Structured Stochastic Optimization For stochastic bilevel optimization,
when the lower-level problem is strongly convex and smooth, Ghadimi and Wang [21]
achieved an O(ε−6) complexity using a double-loop algorithm. Hong et al. [17] and Chen
et al. [32] considered single-loop algorithm and improved the complexity to O(ε−5) and
O(ε−4), respectively. For non-convex strongly-concave stochastic minimax optimization,
Luo et al. [31] and Xu et al. [33] showed that a double-loop algorithm can achieve an
O(ε−3) complexity. Huang et al. [34] achieved the same complexity with a simplified
single-loop algorithm using STORM [10]. For stochastic compositional optimization,
Chen et al. [35] demonstrated an oracle complexity of order O(ε−4) and Zhang and Xiao
[36] improved it to O(ε−3) using nested variance reduction.

Non-Smooth Non-Convex Stochastic Optimization For the non-smooth non-convex
stochastic optimization problem we consider, Ghadimi et al. [37] proposed ProxSGD
and achieved the O(ε−4) sample complexity with large batch sizes. Based on SVRG

3

1.2. Organization and Main Results

[5], Li and Li [38] improved the complexity to O(ε−10/3). Wang et al. [8] also extended
SpiderBoost to Prox-SpiderBoost for solving non-smooth stochastic optimization and
achieved the sample complexity O(ε−3) to guarantee an ε-stationary point.

1.2 Organization and Main Results

The thesis is organized as follows:

• In Chapter 2, we give a unified analysis for a rich family of variance reduction methods
by the general framework we proposed in the unbiased case. We show that the framework
achieves the optimal complexity guarantees under a wide range of parameter settings
(batch sizes, stepsize, momentum parameter). It encompasses popular variance reduction
algorithms, such as SPIDER [7, 8], SARAH [9] and STORM [10], as special cases and also
renders new interesting variants. Our result suggests that: (i) if no momentum term
is used (η = 0), one always need to compute the checkpoint gradient with batch size
O(ε−2) for O(ε−1) times; (ii) using momentum term helps reduce the checkpoint batch
size D, and the recursive batch size S and number of epochs T/Q can be set to 1; (iii)
there exists a tradeoff between the stepsize α and the batch size S if no momentum term
is used, and a tradeoff between α and D when introducing momentum, which could be
useful insights to guide the implementations and parameter tuning in practice.

• In Chapter 3, we first extend the framework to general biased case and prove that
when the bias of the gradient estimates satisfies an average bias growth condition, the
general framework achieves the optimal complexity of O(ε−3) in finding an ε-stationary
point. To the best of our knowledge, this is the first general result for convergence of
variance reduction methods in the non-convex and biased setting. This condition sheds
lights on the construction of biased stochastic oracle for various structured non-convex
stochastic optimization. Motivated by the analysis for the general biased case, we then
apply the framework to three non-convex structured stochastic optimization problems
including stochastic bilevel optimization, stochastic minimax optimization and stochastic
compositional optimization, yielding a family of single-loop near-optimal algorithms. In
the context of stochastic bilevel optimization, this closes the gap between the existing
best-known upper-bound O(ε−4) [32] and lower-bound O(ε−3) for non-convex stochastic
optimization [11].

• In Chapter 4, we consider a more general optimization problem where the objective
can be non-smooth as well. We combine our general framework with stochastic mirror
descent and demonstrate that the sample complexity O(ε−3) is still achievable, which
matches the best-known upper-bound. When using the parameter settings to recover
STORM [10], we also obtain the first single-loop algorithm to guarantee convergence
without using large batch sizes.

• Finally in Chapter 5, we provide some numerical experiments for the comparison
of variance reduction methods on three minimization problems, and give a practical
example for how to select all parameters in the general framework to recover different
methods. The experiment results verify some theoretical findings in Chapter 2, for
example constant stepsize is enough for SPIDER [8] and small stepsize is essential for
SARAH [9]. We also find that algorithms with momentum parameter η 6= 0 are often
more stable. The reason might be that these methods are single-loop algorithms and do
not require mini-batches.

Notations Let ‖ · ‖ denote the L2 norm ‖ · ‖2. A function f : Rd → R is `-Lipschitz
continuous if | f (x)− f (y)| ≤ `‖x− y‖ holds for any x, y ∈ Rd. A function f is L-smooth

4

1.2. Organization and Main Results

on Rd, if it is continuously differentiable on Rd and it holds that ‖∇ f (x)−∇ f (y)‖ ≤
L‖x− y‖ for any x, y ∈ Rd. We use ∇G(x, y) to denote the full gradient of function G
and ∇xG(x, y) to denote partial gradient of G on x.

5

Chapter 2

General Analysis of Variance Reduction for
Non-Convex Optimization

Overview In this chapter, we propose a general algorithmic framework for variance
reduction methods to solve smooth non-convex stochastic optimization with unbiased
gradient oracle. The problem setting and assumptions are given in Section 2.1, and the
general framework can be found in Section 2.2. In Section 2.3, we provide a unified
convergence analysis of the general framework and show its optimal O(ε−3) oracle
complexity. Finally in Section 2.4 we discuss the parameter choices and demonstrate
that our general framework recovers popular variance reduction methods including
SpiderBoost [8], SARAH [9] and STORM [10]. We also show that the general framework
allows other selections of parameters and helps find undiscovered interesting variants of
variance reduction methods.

2.1 Problem Setting and Assumptions

We first formally state the problem setting and the assumptions. The problem we consider
is the following smooth non-convex stochastic optimization:

min
x∈Rd

F(x) := Eξ[f (x; ξ)], (2.1)

where F(x) : Rd → R is a continuously differentiable function satisfying the assumptions
below.

Assumption 2.1 (Objective Function) The possibly non-convex objective function F(x) sat-
isfies that

• F(x) is LF-smooth with parameter LF > 0. This means for any x, y ∈ Rd, it holds that

F(y) ≤ F(x) +∇F(x)>(y− x) +
LF

2
‖x− y‖2.

• The optimal value F∗ := minx∈Rd F(x) is finite.

We are interested in the stochastic setting where one only has access to information
about F(x) via a first-order stochastic oracle SO. For a query point x, the oracle returns
a pair (f (x; ξ),∇ f (x; ξ)) for some well-defined random vector ξ with support Ω ⊆ Rd

and distribution P. In other words, we can only compute noisy estimates of the function
F(x) and its gradient ∇F(x) with ξ representing all the randomness. The goal is to
minimize F(x) = Eξ[f (x; ξ)] through access to the stochastic gradient ∇ f (x; ξ). The

6

2.2. General Algorithm

modelling above covers most scenarios in machine learning applications, e.g. the finite-
sum settings F(x) = 1

n ∑n
i=1 fi(x) in supervised learning and the pure stochastic settings

in reinforcement learning. In this chapter, we first study the case when the gradient
estimate returned by the oracle is unbiased:

Eξ[∇ f (x; ξ)] = ∇F(x), ∀x ∈ Rd.

In addition to unbiasedness, we make the following assumptions about the stochastic
gradient ∇ f (x; ξ).

Assumption 2.2 (Gradient Estimate) The unbiased gradient estimate ∇ f (x; ξ) returned by
the stochastic oracle SO satisfies that

Eξ‖∇ f (x; ξ)−∇F(x)‖2 ≤ σ2, (2.2)

Eξ‖∇ f (x1; ξ)−∇ f (x2; ξ)‖ ≤ ` f ‖x1 − x2‖, ∀x1, x2 ∈ Rd, (2.3)

for some constants σ > 0 and ` f > 0.

Before discussing the above assumption, we first define the complexity measures. For
general non-convex optimization, it is intractable to find the global minimum [25]. As
an alternative, we define the notion of ε-stationarity, which is a commmon surrogate for
non-convex objectives.

Definition 2.3 For some accuracy measure ε > 0, a point x is called an ε-stationary point for a
differentiable non-convex function F(x) if ‖∇F(x)‖ ≤ ε.

For smooth non-convex stochastic optimization with an unbiased gradient oracle satis-
fying bounded variance condition (2.2), Arjevani et al. [11] proved that any algorithm
requires at least O(ε−4) queries to find an ε-stationary point. The lower bound is tight
since it can be achieved by stochastic gradient descent (SGD).

In addition, if the oracle also satisfies the average smoothness property (2.3), Arjevani et
al. [11] showed a lower bound of O(ε−3) queries. The bound is also tight and achieved
by various variance reduction methods such as SPIDER [7], SpiderBoost [8], SARAH [9]
and STORM [10]. We will see later that the average smoothness condition is crucial for
these variance reduction techniques to achieve the O(ε−3) complexity.

We notice that all these variance reduction methods are very much similar not only in
the algorithms, but also in their convergence analyses. That’s why we want to propose a
general framework and provide a simple and unified analysis.

2.2 General Algorithm

The general algorithmic framework we propose for solving (2.1) is given in Algorithm 1.
In Algorithm 1, T is the total iteration number, Q denotes the epoch length, D and S are
batch sizes, α is the fixed stepsize and η is the momentum parameter used to compute
the recursive gradient. To be specific, let every Q iterations denote an epoch. At the
beginning of each epoch, one queries the oracle SO for D times and computes

ht =
1
D

D

∑
i=1
∇ f (xt; ξi

t).

We will refer to this as the checkpoint gradient. Note that the queries to the oracle are
independent, i.e. the random variables {ξi

t}D
i=1 are sampled independently from the same

7

2.2. General Algorithm

Algorithm 1 General Framework for Variance Reduction Methods

Input: T, Q, D, S, x0, α, η.
for t = 0, 1, · · · , T − 1 do

if t ≡ 0 (mod Q) then
Query SO for D times and compute ht =

1
D ∑D

i=1∇ f (xt; ξi
t).

xt+1 = xt − αht.
else

Query the oracle SO for 2S times.
ht = (1− η)

(
ht−1 − 1

S ∑S
i=1∇ f (xt−1; ξi

t)
)
+ 1

S ∑S
i=1∇ f (xt; ξi

t).
xt+1 = xt − αht.

end if
end for

Output: xτ with τ chosen uniformly at random from {0, 1, · · · , T − 1}.

distribution P. In other iterations, one queries the oracle SO for S times at both points
xt−1 and xt and computes the recursive gradient

ht = (1− η)

(
ht−1 −

1
S

S

∑
i=1
∇ f (xt−1; ξi

t)

)
+

1
S

S

∑
i=1
∇ f (xt; ξi

t). (2.4)

Here S is typically much smaller than D. After computing the gradient estimator ht of
the true gradient ∇F(xt), the update for xt+1 is just one gradient descent step using the
estimator ht with stepsize α.

When there is no momentum, i.e. η = 1, ht reduces to a mini-batch estimator of ∇F(xt)
and loses the variance recursion property. The framework thus reduces to mini-batch
SGD. When η < 1, ht has a similar form as the classical variance reduction technique
SPIDER and SARAH (when η = 0), and STORM (when using time-varying ηt ∈ (0, 1)).

The total number of calls to the oracle SO is O(T(2S + D/Q)), as shown in the lemma
below.

Lemma 2.4 The oracle complexity of Algorithm 1 is O
(

T
(

2S + D
Q

))
, where T stands for the

total number of iterations, Q is the epoch length, D is the batch size of the checkpoint gradients
and S is the batch size to compute recursive gradients.

Proof In iteration t = 0, Q, 2Q, · · · ,
⌊

T
Q

⌋
Q, we use a batch with size D, thus

(⌊
T
Q

⌋
+ 1
)

D
calls of oracle in total. In other iterations, we use a batch with size S and use 2S calls
per-iteration, leading to

(
T −

(⌊
T
Q

⌋
+ 1
))
· 2S calls in total. Adding these two, the oracle

complexity of Algorithm 1 is(⌊
T
Q

⌋
+ 1
)

D +

(
T −

(⌊
T
Q

⌋
+ 1
))
· 2S = 2TS +

(⌊
T
Q

⌋
+ 1
)
(D− 2S)

< 2TS +

(
T
Q

+ 1
)

D

= O
(

2TS + T
D
Q

)
.

We use the fact that
⌊

T
Q

⌋
≤ T

Q , S ≥ 1 and Q ≤ T in general. �

Before we move to the convergence analysis of Algorithm 1, we restate a well-known
result in Lemma 2.5 for recursive gradients in the variance reduction related literature

8

2.3. Convergence Analysis

and demonstrate the proof in Appendix A.1 for completeness. We define

At := E‖ht −∇F(xt)‖2

be the estimation error of the gradient estimator ht with the expectation taking over all
the randomness up to iteration t. By decomposing the recursive update (2.4) and using
the average smoothness assumption (2.3), we have the following results.

Lemma 2.5 For Algorithm 1, under Assumptions 2.2, supposing that 0 ≤ η < 1, we have

At+1 ≤ (1− η)At + 2σ2 η2

S
+ 2`2

f
α2

S
E‖ht‖2,

for t + 1 6≡ 0 (mod Q), i.e. in iterations where recursive gradients are used.

Lemma 2.5 suggests that the estimation error at iteration t + 1 can be traced back to
iteration t up to some additional error terms. This is different from what we have in
SGD. The equivalent term in SGD is At = E‖∇ f (xt; ξt)−∇F(xt)‖ ≤ σ2 by (2.2), which
is independent of other iterations.

Lemma 2.5 is the key to proving optimal O(ε−3) complexity for different variance
reduction methods. We will give more details in the next section.

2.3 Convergence Analysis

We provide a simple and unified convergence analysis for the general framework in
Algorithm 1 with different parameter setups. The setups we find not only recover popular
variance reduction methods such as SPIDER and SARAH, but also help discover novel
variants.

First of all, since F(x) is LF-smooth, the gradient update rule gives us

F(xt+1) ≤ F(xt)− α∇F(xt)
>ht +

LF

2
α2‖ht‖2

≤ F(xt)−
α

2
‖∇F(xt)‖2 − α

3
‖ht‖2 +

α

2
‖ht −∇F(xt)‖2,

(2.5)

where the last inequality uses 2a>b = ‖a‖2 + ‖b‖2 − ‖a− b‖2 and assumes α ≤ 1
3LF

.

Dividing α/2 on both sides of (2.5) and summing up from t = 0 to T − 1, we have

1
T

T−1

∑
t=0

E‖∇F(xt)‖2 ≤ 2[F(x0)− F∗]
αT

− 2
3T

T−1

∑
t=0

E‖ht‖2 +
1
T

T−1

∑
t=0

At, (2.6)

where we uses the fact that F(xT) ≥ F∗ = minx F(x) and At = E‖ht − ∇F(xt)‖2.
Equation (2.6) shows that the average squared gradient norm can be upper bounded
with the average estimation error 1

T ∑T−1
t=0 At incurred by recursive gradient estimator. We

then show that the average estimation error can be bounded by carefully selecting batch
sizes D, S, stepsize α, and other parameters η and Q in Algorithm 1 with the help of
Lemma 2.5.

We first show that the average estimation error satisfies the following bound, which is a
direct consequence of Lemma 2.5 by distinguishing two cases for η = 0 and η ∈ (0, 1).
The detailed proof can be found in Appendix A.1.

9

2.3. Convergence Analysis

Lemma 2.6 Under Assumptions 2.2, for a constant cη ∈ (0, 1/α2) we can choose, we have that

1
T

T−1

∑
t=0

At ≤

σ2

D + 2`2
f

Qα2

S ·
1
T

T−1
∑

t=0
E‖ht‖2, if η = 0;

σ2

cηαD
1

αT +
2cησ2

S
1

αT

T−1
∑

t=0
α3 +

2`2
f

cηS
1
T

T−1
∑

t=0
E‖ht‖2, if η = cηα2.

Note that the above bounds hold for any choice of D, S, Q, T, stepsize α and momentum
parameter η. The following main result shows that for specific choices of these parameters,
the average estimation error will not grow faster than the average square norm of the
gradient estimator ht, up to an additive diminishing term.

Theorem 2.7 Suppose that Assumption 2.2 holds, the average estimator error satisfies

1
T

T−1

∑
t=0

At ≤
σ2

αT
+ ρA ·

1
T

T−1

∑
t=0

E‖ht‖2, (2.7)

for some constant ρA > 0 we can select, under either of the following setups.

(i) η = 0, for any α such that (`−2
f ρA)

1/3 · T−1/3 ≤ α ≤ 1/(3LF), and

D = αT, S =
` f√
ρA

α3/2T1/2, Q =

√
ρA

2` f
α−1/2T1/2,

with oracle complexity 4 ρ−1/2
A ` f · α3/2T3/2 = O(α3/2T3/2).

(ii) η = 2`2
f α2/ρA, for α = ρ1/3

A (8`2
f · T)−1/3 ≤ 1/(3LF) if T large enough, and

D = ρA`
−2
f α−1, S = 1, Q = T,

with oracle complexity O(T).

Proof When η = 0, by Lemma 2.6,

1
T

T−1

∑
t=0

At ≤
σ2

D
+ 2`2

f
Qα2

S
1
T

T−1

∑
t=0

E‖ht‖2 =
σ2

αT
+ ρA ·

1
T

T−1

∑
t=0

E‖ht‖2,

with the choice that

D = αT, 2`2
f
Qα2

S
= ρA. (2.8)

By Lemma 2.4, the number of total oracle calls required is

T(2S +
D
Q
) ≥ T · 2

√
2D · S

Q
= T · 2

√
2αT ·

2`2
f α2

ρA
=

4` f√
ρA

α3/2T3/2,

where the first inequality holds since a + b ≥ 2
√

ab for any a, b > 0, and the first
equality holds by (2.8). The minimum oracle complexity is thus 4 ρ−1/2

A ` f · α3/2T3/2 =

O(α3/2T3/2), and this complexity is achieved by setting 2S = D/Q. Solving for 2SQ =
D = αT and 2`2

f S−1Q = ρAα−2, we obtain that

Q =

√
ρA

2` f
α−1/2T1/2, S =

` f√
ρA

α3/2T1/2.

10

2.3. Convergence Analysis

The requirement that α ≥ (`−2
f ρA)

1/3 · T−1/3 comes from the fact that S ≥ 1. The
requirement that α ≤ 1/(3LF) makes sure that (2.5) at the beginning of Section 2.3 holds.

When η 6= 0, by Lemma 2.6, we obtain

1
T

T−1

∑
t=0

At ≤
1

cηαD
· σ2

αT
+

2cη

S

T−1

∑
t=0

α3 · σ2

αT
+

2`2
f

cηS
· 1

T

T−1

∑
t=0

E‖ht‖2

=
σ2

αT
+ ρA ·

1
T

T−1

∑
t=0

E‖ht‖2,

if the following condition holds:

αD =
2
cη

,
T−1

∑
t=0

α3 =
S

4cη
, cηS =

2`2
f

ρA
.

The requirements now have no explicit dependence on Q and thus we can select Q = T
to avoid multiple computations of the checkpoint gradients and obtain a single-loop
algorithm. In addition, the requirements also have better dependence on the batch sizes
S and D. Selecting cη = 2`2

f ρ−1
A , we can set S = 1, i.e. no mini-batch is required apart

from one checkpoint gradient at the beginning. Therefore, we immediately obtain that
α = 1/(4cηT)−1/3 = ρ1/3

A (8`2
f · T)−1/3 and D = 2/(cηα) = ρA`

−2
f α−1 = O(T1/3). When

S = 1 and Q = T, the oracle complexity is just O(T + D) = O(T). �

Based on the above results and equation (2.6), we immediately have the following
theorem.

Theorem 2.8 Suppose Assumption 2.1 and 2.2 hold. Let the choice of parameters be specified
as in Theorem 2.7 with ρA ∈ (0, 2

3]. Then the output of the general framework in Algorithm 1
satisfies that

Eτ‖∇F(xτ)‖2 ≤ 2[F(x0)− F∗] + σ2

αT
,

where xτ is a random output uniformly chosen from the iterates {xt}T−1
t=0 . This further implies

that to achieve an ε-stationary point, the total oracle complexity is O(ε−3), as shown in Remark
2.9 below.

Proof By equation (2.6) and (2.7), we immediately obtain that

Eτ‖∇F(xτ)‖2 =
1
T

T−1

∑
t=0

E‖∇F(xt)‖2 ≤ 2[F(x0)− F∗]
αT

− 2
3T

T−1

∑
t=0

E‖ht‖2 +
1
T

T−1

∑
t=0

At

≤ 2[F(x0)− F∗] + σ2

αT
−
(

2
3
− ρA

)
1
T

T−1

∑
t=0

E‖ht‖2

≤ 2[F(x0)− F∗] + σ2

αT
,

since ρA ≤ 2/3. By Assumption 2.1, F∗ is finite. If we select x0 such that F(x0) is
also finite, we have that Eτ‖∇F(xτ)‖2 ≤ O(1/(αT)). To guarantee ε-stationarity, by
Definition 2.3, we need Eτ‖∇F(xτ)‖2 ≤ ε2. Setting αT = O(ε−2) would satisfy the
requirement and lead to the O(ε−3) complexity as shown in Remark 2.9. �

Remark 2.9 (Oracle Complexity) To guarantee ε-stationarity, we need αT = O(ε−2). As a
result, the oracle complexity under parameter setup (i) is O(α3/2T3/2) = O(ε−3) and setup (ii)
is O(T) = O(ε−3) since α = O(T−1/3). Both conditions yield the oracle complexity of O(ε−3),

11

2.4. Parameter Choices and New Variants

Table 2.1: Summary of parameter selections for Algorithm 1 for finding an ε-stationary point. T
stands for iteration complexity, T/Q for number of epoches, D for batch size at checkpoints, S
for batch size at other iterations, η for the momentum parameter and α for the stepsize. Note that
SPIDER here refers to the follow-up and improved version SpiderBoost.

Parameters SPIDER SARAH STORM New 1 New 2
T O(ε−2) O(ε−3) O(ε−3) O(ε−5/2) O(ε−3)

T/Q O(ε−1) O(ε−1) 1 O(ε−1) 1
D O(ε−2) O(ε−2) O(1) O(ε−2) O(ε−1)

S O(ε−1) O(1) O(1) O(ε−1/2) O(1)
η (or ηt) 0 0 O(t−2/3) 0 O(ε2)

α (or αt) O(1) O(ε) O(t−1/3) O(ε1/2) O(ε)
Complexity O(ε−3) O(ε−3) Õ(ε−3) O(ε−3) O(ε−3)

which is known to be the optimal oracle complexity [11]. In the proof of Theorem 2.7, we also show
that O(α3/2T3/2) is the minimum complexity under setup (i) and O(T) is also the minimum
complexity the general framework allows under setup (ii) since S ≥ 1 and Q ≤ T. This suggests
the best complexity the framework can achieve is O(ε−3), also matching the lower bound.

2.4 Parameter Choices and New Variants

Combining Theorem 2.7 and 2.8, we then discuss the different settings of parameters
which help achieve the optimal rate and explain how our framework recovers popular
variance reduction methods. We also find new variations of variance reduction methods
as byproducts of the general analysis.

Under Parameter Setup (i) When η = 0 and we set αT = O(ε−2) to guarantee
an ε-stationary point, by the parameter selection rule in Theorem 2.7, we obtain that
D = αT = O(ε−2), T/Q = O(α1/2T1/2) = O(ε−1) and S/α = O(αT) = O(ε−1). This
means that one has to use a large checkpoint batch size D = O(ε−2) and compute the
checkpoint gradients for T/Q = O(ε−1) times, and there exhibits a tradeoff between the
per-iteration batch size S and stepsize α. When using small batch size S, a small stepsize
α is also required to control the error.

To give specific choice of all parameters in the order of ε, we let α = T−1/k ≥ T−1/3 for
k ≥ 3 without loss of generality. Then we have T = O(ε−2k/(k−1)) and α = O(ε2/(k−1))
since αT = O(ε−2). If we choose k = ∞ such that α = O(1), T = O(ε−2) and S = O(ε−1),
this reduces to SpiderBoost [8] where a constant level of stepsize is allowed. If we choose
k = 3 such that α = O(ε), T = O(ε−3) and S = O(1), this reduces to SARAH [9] where
we can set S = 1 to avoid the use of mini-batch for recursive gradients. If we choose
other k > 3, this leads to a set of new variations which have not been discovered before,
providing more flexibility in the selection of parameters. We summarize the different
choices of parameters for each methods recovered by our general framework in Table 2.1,
as well as a new variation New 1 with the choice that k = 5 as an example.

Under Parameter Setup (ii) When η > 0 and we set T = O(ε−3) to guarantee an
ε-stationary point, by the parameter selection rule in Theorem 2.7, we obtain that
α = O(T−1/3) = O(ε) and D = O(α−1) = O(ε−1). Introducing the momentum largely
reduces the batch sizes as S = 1 and D is smaller than before. Furthermore, setting
Q = T avoids computation of multiple checkpoint gradients, i.e. we only compute it at
iteration t = 0. This new single-loop algorithm is called New 2 in Table 2.1.

12

2.4. Parameter Choices and New Variants

Note that when one uses time-varying stepsizes αt and corresponding ηt, the framework
also recovers STORM [10] by setting stepsizes αt =

k
(ω+t)1/3 = O(t−1/3) and momentum

parameters ηt = cηα2
t for some constants cη , k and ω that one can choose. The benefit

of time-varying stepsizes is that we can choose D = 1, which means no mini-batch
is needed at all. However, it will introduce additional logarithmic terms in the oracle
complexity, leading to only near-optimal rate. We then give a more detailed analysis
below.

When using time-varying stepsizes {αt}T
t=0 for the update xt+1 = xt − αt+1ht and ηt =

cηα2
t for the computation of recursive gradient ht, Lemma 2.5 holds by replacing α and η

by αt+1 and ηt+1. With a slight modification of the proof of Lemma 2.6 for η > 0, we first
show that

ηt+1

αt+1
At +

At

αt
− At

αt+1
≤ At

αt
− At+1

αt+1
+

2c2
ησ2

S
α3

t+1 +
2`2

f

S
αt+1E‖ht‖2, (2.9)

by rearranging terms of the modified Lemma 2.5 and dividing αt+1 on both sides. The
selection of αt =

k
(ω+t)1/3 guarantees that α0 ≥ αt ≥ αt+1 ≥ αT and

ηt+1

αt+1
+

1
αt
− 1

αt+1
= cηαt+1 +

1
αt
− 1

αt+1
≥ (cη − cα)αt+1,

for some constant cα depending on k and ω [10, Proof of Theorem 1]. Taking summation
of (2.9) and dividing both sides by (cη − cα)αTT, we obtain

1
αTT

T−1

∑
t=0

αt+1At ≤
σ2

(cη − cα)α0D
1

αTT
+

2c2
ησ2

(cη − cα)S
1

αTT

T−1

∑
t=0

α3
t+1 +

2`2
f

(cη − cα)S
1

αTT

T−1

∑
t=0

αt+1E‖ht‖2.

We choose cη = cα + 2`2
f ρ−1

A such that S = 1. Furthermore, we can set D = 1 since now

α0 = O(1). However, we have that
T−1
∑

t=0
α3

t+1 = O
(

T−1
∑

t=0

1
t

)
= O(log T), and thus

1
αTT

T−1

∑
t=0

αt+1At ≤ O
(

1
αTT

)
+O

(
log T
αTT

)
+ ρA ·

1
αTT

T−1

∑
t=0

αt+1E‖ht‖2.

Combined with (2.5) by first taking summations and then dividing both sides by αTT/2,
we can show that

Eτ‖∇F(xτ)‖2 ≤ 1
αTT

T−1

∑
t=0

αt+1E‖∇F(xt)‖2

≤ 2[F(x0)− F∗]
αTT

− 2
3αTT

T−1

∑
t=0

αt+1E‖ht‖2 +
1

αTT

T−1

∑
t=0

αt+1At

≤ O
(

log T
αTT

)
−
(

2
3
− ρA

)
1

αTT

T−1

∑
t=0

αt+1E‖ht‖2

≤ O
(

log T
αTT

)
= O

(
log T
T2/3

)
,

since αt+1 ≥ αT = O(T−1/3) and we choose ρA ≤ 2/3. The oracle complexity is
thus O(T) = Õ(ε−3) with Õ hiding additional logarithmic terms in ε−1. Therefore,
STORM avoids mini-batch by time-varying stepsizes. However, the complexity is only
near-optimal. The parameter choice of STORM is also included in Table 2.1.

13

2.4. Parameter Choices and New Variants

Concluding Remarks In this chapter, we propose a general framework in Algorithm 1
for different variance reduction methods to solve smooth non-convex stochastic optimiza-
tion (2.1) with unbiased oracle satisfying Assumption 2.2. We provide a unified analysis
of the convergence rate of Algorithm 1 and show its optimal O(ε−3) oracle complexity.
With the proper parameter selection rules as given in Section 2.4, our general framework
encompasses popular variance reduction algorithms such as SPIDER [7, 8], SARAH [9]
and STORM [10] as special cases, and also renders other new interesting variants as
summarized in Table 2.1. In the next chapter, we will apply the general framework to
smooth non-convex stochastic optimization with biased gradients and show that we can
still achieve the optimal O(ε−3) oracle complexity as long as the bias can be properly
controlled.

14

Chapter 3

Variance Reduction for Biased Stochastic
Optimization

Overview In this chapter, we apply the general framework proposed in Section 2.2 of
the previous chapter to smooth non-convex stochastic optimization with biased gradient
estimates. In Section 3.1, we show that our general framework can still achieve O(ε−3)
oracle complexity if the bias satisfies a novel growth condition. In the next sections, we
apply the general framework to three well-known structured stochastic optimization
problems including stochastic bilevel optimization (Section 3.2), stochastic minimax
optimization (Section 3.3) and stochastic compositional optimization (Section 3.4). In all
three applications, we can only construct biased gradient oracles. However, we prove that
the bias can be properly controlled in a similar way as the growth condition in Section
3.1. Therefore, using the general framework to estimate different quantities of interest,
we can still achieve the optimal O(ε−3) convergence rate, which also demonstrates the
effectiveness of our general analysis in the previous chapter.

3.1 General Framework with Biased Gradient Estimates

The problem we consider in this chapter is still the smooth non-convex stochastic
optimization defined in (2.1) with the objective function F(x) satisfying Assumption 2.1,
i.e. F(x) is LF-smooth and the optimal value F∗ is finite. However, in this chapter we
study the case where we only have access to some (possibly white-box) biased gradient
oracle. Such problems where we can only construct biased gradient estimator have
appeared in many modern machine learning applications, and have received more and
more attentions recently. These applications can often be formulated as structured or
nested optimization, and we will discuss more about it in the following sections. In this
section, we first give a general analysis of the biased stochastic optimization problems.

For a query point x, the biased stochastic oracle SO returns some biased gradient
estimate of the true gradient ∇F(x). We define the biased gradient estimate as ∇̄ f (x; ξ)
to distinguish it from the unbiased case and denote the bias as

B(x) := Eξ[∇̄ f (x; ξ)]−∇F(x),

where B : Rd → R measures the bias at point x. Similar to Assumption 2.2, we also
assume the biased gradient estimate satisfies the bounded variance condition (3.1) and
the average smoothness condition (3.2) as follows.

15

3.1. General Framework with Biased Gradient Estimates

Assumption 3.1 (Biased Gradient Estimate) The biased gradient estimate ∇̄ f (x; ξ) returned
by the stochastic oracle SO satisfies that

Eξ‖∇̄ f (x; ξ)−Eξ[∇̄ f (x; ξ)]‖2 ≤ σ2, (3.1)

Eξ‖∇̄ f (x1; ξ)− ∇̄ f (x2; ξ)‖ ≤ ` f ‖x1 − x2‖, ∀x1, x2 ∈ Rd, (3.2)

for some constants σ > 0 and ` f > 0.

Everything is the same as Assumption 2.2 except that currently we only have the biased
gradient estimate ∇̄ f (x; ξ). The average smoothness assumption (3.2) allows the use of
variance reduction methods to achieve O(ε−3) oracle complexity.

Note that this stochastic oracle might be given by some black-box or possibly white-box
that allows us to utilize problem specific structure to construct the estimate ∇̄ f (x; ξ). We
shall elaborate this in various applications in the later sections.

Replacing ∇ f (x; ξ) in Algorithm 1 by ∇̄ f (x; ξ), we obtain the general framework for
solving biased optimization using variance reduction. We use the recursive gradient
estimator ht constructed via access to the biased oracle to estimate the true gradient
∇F(xt), and update xt+1 = xt − αht iteratively for some stepsize α > 0. The gradient
error term E‖ht −∇F(xt)‖2 can be decomposed as:

E‖ht −∇F(xt)‖2︸ ︷︷ ︸
(gradient error)

≤ 2 E‖ht −Eξt [∇̄ f (xt; ξt)]‖2︸ ︷︷ ︸
:=At(estimation error)

+2 E‖B(xt)‖2︸ ︷︷ ︸
:=Bt(bias)

,

by the inequality ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2. Compared to the unbiased case, in addition
to the estimation error At, we also have a bias term Bt. Thus by (2.5) and equivalent to
(2.6), under the assumption that F(x) is LF-smooth, we have that

1
T

T−1

∑
t=0

E‖∇F(xt)‖2 ≤ 2[F(x0)− F∗]
αT

− 2
3T

T−1

∑
t=0

E‖ht‖2 +
2
T

T−1

∑
t=0

At +
2
T

T−1

∑
t=0

Bt. (3.3)

The above equation shows that the average squared gradient norm in this case can be
upper bounded with the average estimation error 1

T ∑T−1
t=0 At incurred by the recursive

gradient estimator and the average bias 1
T ∑T−1

t=0 Bt incurred by the biased stochastic oracle.
Note that the bias depends solely on the biased oracle, whereas the average estimation
error is mainly determined by the parameter choices of our general framework.

The estimation error At does not depend on the bias. Thus simply replacing ∇ f (x; ξ)
by ∇̄ f (x; ξ) and F(xt) by Eξ[∇̄ f (x; ξ)], it is easy to see that Lemma 2.5, 2.6 and then
Theorem 2.7 holds for

At := E‖ht −Eξt [∇̄ f (xt; ξt)]‖2

in the biased case if Assumption 3.1 holds. Under the parameter choices as specified in
Theorem 2.7, we can control the average estimation error term by (2.7), and thus by (3.3),
we obtain that

1
T

T−1

∑
t=0

E‖∇F(xt)‖2 ≤ 2[F(x0)− F∗] + 2σ2

αT
−
(

2
3
− 2ρA

)
1
T

T−1

∑
t=0

E‖ht‖2 +
2
T

T−1

∑
t=0

Bt, (3.4)

for a constant ρA > 0 we can choose. Equation (3.4) suggests that if the bias term can be
properly controlled, we can obtain the same complexity result as the unbiased case. Next
we propose a novel growth condition to control the bias.

16

3.1. General Framework with Biased Gradient Estimates

Average Bias Growth Condition As discussed earlier, we are interested in cases when
the bias can be properly controlled. We first introduce a notion of strong bias growth
condition, namely, for any input x ∈ Rd,

‖B(x)‖2 ≤ ρ1‖∇F(x)‖2, (SBG)

for some ρ1 ∈ (0, 1
2), which says that the bias shrinks relative to the true gradient. This is

analogous to the strong growth condition on the stochastic gradients widely studied for
over-parametrized models [39, 40]. Indeed, this kind of condition can be very strong and
expensive to obtain. Instead, we will consider a relaxed condition, which we call average
bias growth condition:

1
T

T−1

∑
t=0

E‖B(xt)‖2 ≤ ρ0

αT
+ ρ1 ·

1
T

T−1

∑
t=0

E‖∇F(xt)‖2, (ABG)

for some ρ0 ≥ 0 and ρ1 ∈ [0, 1
2). Note that (ρ0, ρ1)-ABG condition is much weaker than

the ρ1-SBG condition, and only requires the average of the bias to shrink relative to the
average true gradient, up to a diminishing term.

We then show that SBG or ABG condition is sufficient for the general algorithm to
achieve the same efficiency as unbiased counterparts in Theorem 3.2 below. The proof
of Theorem 3.2 directly follows from (3.4) and the bias growth condition. We provide a
detailed proof of it in Appendix A.2.1 for completeness.

Theorem 3.2 Suppose Assumptions 2.1 and 3.1 hold, and either the ρ1-SBG condition or the
(ρ0, ρ1)-ABG condition holds for some ρ0 ≥ 0 and ρ1 ∈ [0, 1

2). Let the choice of parameters
be specified as in Theorem 2.7 with ρA ∈ (0, 1

3]. Then the output of the general framework in
Algorithm 1 satisfies that

Eτ‖∇F(xτ)‖2 ≤ 2[F(x0)− F∗] + 2σ2 + 2ρ0

(1− 2ρ1)αT
,

where xτ is a random output uniformly chosen from the iterates {xt}T−1
t=0 . This further implies

that to achieve an ε-stationary point, the total oracle complexity is O(ε−3) as shown in Remark
2.9.

The complexity O(ε−3) is known to be optimal even assuming unbiased oracle as in
Chapter 2. To the best of our knowledge, this is the first general analysis for the
convergence of stochastic variance reduction methods with biased stochastic oracles
in the non-convex setting. It is worth mentioning that our analysis is much simpler
comparing to existing analysis with unbiased oracle and accommodates a broad range of
parameter choices and algorithms as shown in Section 2.4.

Theorem 3.2 suggests that using the general framework even for functions with biased
stochastic oracle, as long as the SBG or ABG condition holds, we can achieve the optimal
rate. This shows the effectiveness of our general analysis. In the next sections, we give
some specific applications for which we can use the general framework to achieve the
optimal complexity. In these applications, the bias term or the gradient error term can be
controlled similarly to the bias growth condition. We find that although ABG condition
is very general and characterizes a certain class of biased optimization problems that
can be solved by our general framework to obtain optimal convergence rate, it is often
difficult to directly verify in practice. We add more discussions on the ABG condition
here before moving to specific examples.

17

3.2. Stochastic Bilevel Optimization

By (3.4), if the average bias can be bounded by the average square norm of the recursive
gradient up to a diminishing term, we can still prove the optimal rate. That is,

1
T

T−1

∑
t=0

E‖B(xt)‖2 ≤ ρ0

αT
+ ρ2 ·

1
T

T−1

∑
t=0

E‖ht‖2. (3.5)

If we have condition (3.5) for some constant ρ2 ∈ (0, 1
3], by (3.4) with the choice that

ρA ∈ (0, 1
3], we directly obtain that

Eτ‖∇F(xτ)‖2 ≤ 2[F(x0)− F∗] + 2σ2 + 2ρ0

αT
−
(

2
3
− 2ρA − 2ρ2

)
1
T

T−1

∑
t=0

E‖ht‖2

≤ 2[F(x0)− F∗] + 2σ2 + 2ρ0

αT
.

Similar to Theorem 2.8, we can achieve the O(ε−3) oracle complexity. As we will see in
the following sections, it is often easier to bound the average bias or the average gradient
error by 1

T ∑T−1
t=0 E‖ht‖2, thus not affecting too much. Therefore, we are actually only

verifying condition (3.5) in specific applications.

Although condition (3.5) is easier to verify, it is less general and informative than the
ABG condition since it would rely on the specific choice of the gradient estimator. We
then show that if the recursive gradient estimator is used as in the general framework,
we can prove that condition (3.5) implies the ABG condition.

Suppose condition (3.5) holds. Since E‖ht‖2 ≤ 2E‖∇F(xt)‖2 + 4At + 4Bt using the fact
that ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2 twice, by Theorem 2.7, we have

1
T

T−1

∑
t=0

E‖ht‖2 ≤ 2
T

T−1

∑
t=0

E‖∇F(xt)‖2 +
4
T

T−1

∑
t=0

At +
4
T

T−1

∑
t=0

Bt

≤ 4σ2

αT
+ 4ρA ·

1
T

T−1

∑
t=0

E‖ht‖2 +
2
T

T−1

∑
t=0

E‖∇F(xt)‖2 +
4
T

T−1

∑
t=0

Bt.

Choosing ρA < 1/4, we obtain

1
T

T−1

∑
t=0

E‖ht‖2 ≤ 4σ2

(1− 4ρA)αT
+

2
(1− 4ρA)T

T−1

∑
t=0

E‖∇F(xt)‖2 +
4

(1− 4ρA)T

T−1

∑
t=0

Bt.

Plugging this bound back into (3.5), we recover ABG condition by properly selecting ρ2.
We prove that ABG condition also holds if we can show condition (3.5). All discussions
above suggest that we can directly verify condition (3.5) in practice.

In the next sections, we apply the general framework in Algorithm 1 to several specific
examples including stochastic bilevel optimization, stochastic minimax optimization and
stochastic compositional optimization. In all these examples, similarly to condition (3.5),
we can prove that the average bias or the average gradient error can be bounded by the
average recursive gradient up to a diminishing term, and thus we can still obtain the
optimal complexity.

3.2 Stochastic Bilevel Optimization

We first apply the general framework to non-convex strongly-convex stochastic bilevel
optimization. Stochastic bilevel optimization solves the following problem:

min
x∈Rd1

F(x) := Eξ[f (x, y∗(x); ξ)], (upper)

s.t. y∗(x) ∈ arg min
y∈Rd2

G(x, y) = Eζ [g(x, y; ζ)]. (lower) (3.6)

18

3.2. Stochastic Bilevel Optimization

We assume that both upper-level function F : Rd1 → R and lower-level function G :
Rd1 ×Rd2 → R are continuously differentiable. The difficulty of bilevel optimization
lies in the fact that it is nested. The upper-level function depends on y∗(x), which is an
optimal solution to another lower-level optimization problems. In order to construct an
upper-level gradient estimator and minimize F(x), we need to solve another problem
miny G(x, y) at each iteration. When there is no closed-form solution of y∗(x), we
can only obtain an approximation and thus create bias. Such kind of optimization
problem has regained attention these years since its application in model-agnostic meta-
learning [41, 15, 42], hyper-parameter optimization [43, 16], reinforcement learning [17],
representation learning [44] and continual learning [45].

We consider the non-convex strongly-convex setting when G(x, y) is µg-strongly convex
in y for any x. Therefore, the lower-level optimal solution y∗(x) is unique for any given x.
This setting corresponds to adding strongly-convex regularization and also widely-used
in many aforementioned machine learning applications. Even when lower-level objective
is strongly-convex, bilevel optimization is still a challenging problem if no closed-form
solution of y∗(x) is known since we can only construct biased gradient estimators.

In the following, we first give a short review of related literature, then we list all the
necessary assumptions and explain how to construct the biased gradient oracle, finally
we present our algorithm and give its convergence analysis.

Related Work

Ghadimi and Wang [21] were the first to derive finite time convergence rate for non-
convex strongly-convex stochastic bilevel optimization. The algorithm they proposed
uses a double-loop structure and achieves Õ(ε−6) complexity to obtain an ε-stationary
point as defined in Definition 2.3. In each iteration t of the outer-loop for the update of x,
the algorithm runs multiple gradient descent in the inner-loop to minimize G(xt, y) and
find an accurate approximation of y∗(xt). Ji et al. [46] improved the rate to ˜O(ε−4) by
using large batch sizes.

Hong et al. [17] showed that double-loop structure is not necessary. In the early stages
when xt is far from optimal, there is no need to solve lower-level optimization to a high
accuracy. They thus proposed a single-loop algorithm that updates one step of x and
then one step of y alternately. The algorithm has to use two-timescale stepsizes for upper
and lower-level updates to control the bias, and achieves Õ(ε−5) complexity. Chen et al.
[32] and Khanduri [47] added correction terms to either lower-level update or upper-level
update, and were able to improve the rate to Õ(ε−4). A recent work by Chen et al. [48]
found that the optimal solution y∗(x) is actually smooth. With this hidden smoothness
property, they were able to prove that a single-loop algorithm with simple SGD step on
both levels achieves the Õ(ε−4) complexity.

Note that O(ε−4) is the optimal rate even for classical non-convex minimization [11]. As
stochastic bilevel optimization is also a special case of non-convex optimization, we are
able to obtain near-optimal algorithms. This suggests that non-convex strongly-convex
stochastic bilevel optimization is no-harder than classical non-convex minimization
measured in sample complexity.

We also know that the optimal complexity is O(ε−3) if we assume that the stochastic
gradient satisfies average smoothness assumption [11]. Thus we wonder whether this
rate is also achievable for bilevel optimization. We are the first to give an affirmative
answer. As shown later, we propose a single-loop algorithm with both upper and lower-
level gradients estimated using the general framework, and prove its Õ(ε−3) sample
complexity. The results imply that any variance reduction methods are able to achieve

19

3.2. Stochastic Bilevel Optimization

Table 3.1: Comparison of the sample complexity of different algorithms to achieve an ε-stationary
point defined in Definition 2.3 for solving non-convex strongly-convex stochastic bilevel optimiza-
tion. Õ in the table hides additional logarithmic terms in ε−1. AS means that the oracle satisfies
average smoothness assumption as in Assumption 3.1, and Non-AS represents the case when
average smoothness condition (3.2) does not hold.

Algorithm Structure Batch Size Oracle Complexity
Ghadimi and Wang [21] Double-Loop Õ(1) Non-AS Õ(ε−6)

Ji et al. [46] Double-Loop Õ(ε−2) Non-AS Õ(ε−4)
Hong et al. [17] Single-Loop Õ(1) Non-AS Õ(ε−5)
Chen et al. [32] Single-Loop O(1) Non-AS Õ(ε−4)
Chen et al. [48] Single-Loop Õ(1) Non-AS Õ(ε−4)

Khanduri et al. [47] Single-Loop Õ(1) AS Õ(ε−4)
Khanduri et al. [49] Single-Loop Õ(1) AS Õ(ε−3)
Guo and Yang. [50] Single-Loop Õ(1) AS Õ(ε−3)

Yang et al. [51] Double-Loop Õ(ε−2) AS Õ(ε−3)
This work (η = 0) Double-Loop Õ(ε−2) AS Õ(ε−3)
This work (η > 0) Single-Loop Õ(1) AS Õ(ε−3)

the optimal rate for bilevel optimization when applied on both levels. After we submitted
our work to a conference, we found that there are several recent papers [49, 50, 51]
obtaining the same complexity result. They either used SPIDER [7] or STORM [10] to
construct the gradient estimator and thus can be regarded as special case of our results.
See Table 3.1 for a comparison of different algorithms we mentioned above.

Assumptions and Basic Properties

Before presenting our algorithm and its convergence analysis, we first list all the necessary
assumptions which are common in the related literature.

Assumption 3.3 The upper-level function f (x, y; ξ) is differentiable and satisfies that

• ∇x f (x, y; ξ) is Lipschitz continous w.r.t. both x and y for any given ξ with constant
L fx > 0, i.e. ‖∇x f (x1, y1; ξ)−∇x f (x2, y2; ξ)‖ ≤ L fx(‖x1 − x2‖+ ‖y1 − y2‖).

• ∇y f (x, y; ξ) is Lipschitz continous w.r.t. both x and y for any given ξ with constant
L fy > 0, i.e. ‖∇y f (x1, y1; ξ)−∇y f (x2, y2; ξ)‖ ≤ L fy(‖x1 − x2‖+ ‖y1 − y2‖).

• For any x and y, ‖∇y f (x, y; ξ)‖ ≤ C fy for some constant C fy > 0.

The lower-level function g(x, y; ζ) is twice-differentiable and satisfies that

• For any given x, g(x, y; ζ) is µg-strongly convex and Lg-smooth w.r.t. y, and that
µg I � ∇2

yyg(x, y; ζ) � Lg I.

• ∇2
xyg(x, y; ζ) is Lipschitz continous w.r.t. both x and y for any given ζ with constant

Lgxy > 0. ∇2
yyg(x, y; ζ) is Lipschitz continous w.r.t. both x and y for any given ζ with

constant Lgyy > 0.

• For any x and y, ‖∇2
xyg(x, y; ζ)‖2 ≤ Cgxy for some constant Cgxy > 0.

The estimates ∇x f (x, y; ξ), ∇y f (x, y; ξ), ∇yg(x, y; ζ), ∇2
xyg(x, y; ζ) and ∇2

yyg(x, y; ζ) are
unbiased and satisfy bounded gradient conditions.

• Eξ‖∇x f (x, y; ξ)−Eξ[∇x f (x, y; ξ)]‖2 ≤ σ2
fx

for some constant σfx > 0.

• Eξ‖∇y f (x, y; ξ)−Eξ[∇y f (x, y; ξ)]‖2 ≤ σ2
fy

for some constant σfy > 0.

20

3.2. Stochastic Bilevel Optimization

• Eζ‖∇yg(x, y; ζ)−∇yG(x, y)‖2 ≤ σ2
g for some constant σg > 0.

• Eζ‖∇2
xyg(x, y; ζ)−∇2

xyG(x, y)‖2 ≤ σ2
gxy

for some constant σgxy > 0.

Assumption 3.3 is just a summary of Assumptions 1, 2, and 3 in Ghadimi and Wang
[21], but for the stochastic functions f (x, y; ξ) and g(x, y; ζ). This is slightly stronger than
average smoothness but we can still assume all properties hold under expectations and
obtain the same results.

Let F(x, y) := Eξ[f (x, y; ξ)] for simplicity. With Assumption 3.3, by implicit function
theorem, the upper-level gradient is well defined [21, Lemma 2.1]:

∇F(x) = ∇xF(x, y∗(x))−∇2
xyG(x, y∗(x))[∇2

yyG(x, y∗(x))]−1∇yF(x, y∗(x)).

Since y∗(x) is generally not accessible, a common choice is to approximate it by some y
and thus we define a surrogate as

∇̄F(x, y) = ∇xF(x, y)−∇2
xyG(x, y)[∇2

yyG(x, y)]−1∇yF(x, y).

As the surrogate contains the need to inverse the Hessian matrix, we construct the
following widely-used biased oracle [21, Algorithm 3] that computes an approximation:

∇̄ f (x, y; ξ̄) = ∇x f (x, y; ξ)−∇2
xyg(x, y; ζ)

[
K
Lg

k

∏
i=1

(
I − 1

Lg
∇2

yyg(x, y; ζ(i))
)]
∇y f (x, y; ξ),

where ξ̄ := {ξ, ζ, ζ(1), ζ(2), · · · , ζ(K)} uses a sample ξ and K + 1 i.i.d. samples ζ and
{ζ(i)}K

i=1, and k is selected uniformly at random from {1, ..., K}. For the lower-level, we
simply use the unbiased stochastic oracle ∇yg(x, y; ζ).

Under Assumption 3.3, we can show that F(x) is L f -smooth and both oracles satisfy
Assumption 3.1, i.e. the bounded variance assumption with constants σ2

f and σ2
g respec-

tively and the average smoothness assumption with constants ` f and `g. As shown in
the two lemmas below.

Lemma 3.4 [21, Lemma 2.2] Under assumptions 3.3, we can show that F(x) is LF-smooth and
y∗(x) is Ly-Lipschitz. Moreover, the error ‖∇̄F(x, y)−∇F(x)‖ can be bounded. That is, for all
x1, x2, x ∈ Rd1 and y ∈ Rd2 ,

‖∇F(x1)−∇F(x2)‖ ≤ LF‖x1 − x2‖, (3.7)
‖∇̄F(x, y)−∇F(x)‖ ≤ L‖y− y∗(x)‖, (3.8)
‖y∗(x1)− y∗(x2)‖ ≤ Ly‖x1 − x2‖. (3.9)

For the constants defined in Assumption 3.3, the above parameters are:

L = L fx +
L fy Cgxy

µg
+ C fy

(
Lgxy

µg
+

Lgyy Cgxy

µ2
g

)
,

LF = L fx +
(L fy + L)Cgxy

µg
+ C fy

(
Lgxy

µg
+

Lgyy Cgxy

µ2
g

)
, Ly =

Lg

µg
.

The above lemma guarantees that F(x) is well-defined and the error induced by approxi-
mating y∗(x) by some y can be controlled.

21

3.2. Stochastic Bilevel Optimization

Lemma 3.5 Under Assumption 3.3, we can show that both the upper and lower-level oracle
satisfy bounded variance assumption and average smoothness assumption. For the upper-level
biased gradient oracle ∇̄ f (x, y; ξ), we have

Eξ̄‖∇̄ f (x, y; ξ̄)−Eξ̄[∇̄ f (x, y; ξ̄)]‖ ≤ σ2
f , (3.10)

Eξ̄‖∇̄ f (x1, y1; ξ̄)− ∇̄ f (x2, y2; ξ̄)‖ ≤ `2
f (‖x1 − x2‖2 + ‖y1 − y2‖2), (3.11)

where (3.10) comes from Lemma 11 in Hong et al. [17] for

σ2
f = σ2

fx
+

3
µ2

g

[
(σ2

fy
+ C2

fy
)(σ2

gxy
+ 2C2

gxy
) + σ2

fy
C2

gxy

]
,

and (3.11) follows from Lemma 4.1 in Khanduri et al. [47] for

`2
f = 2L2

fx
+

6C2
gxy

L2
fy

K

2µgLg − µ2
g
+

6L2
gxy

C2
fy

K

2µgLg − µ2
g
+

6C2
gxy

C2
fy

L2
gyy

K3

(Lg − µg)2(2µgLg − µ2
g)

.

For the lower-level unbiased oracle ∇yg(x, y; ζ), we also have

Eζ‖∇yg(x, y; ζ)−∇yG(x, y)‖2 ≤ σ2
g , (3.12)

Eζ‖∇g(x1, y1; ζ)−∇g(x2, y2; ζ)‖ ≤ `2
g(‖x1 − x2‖2 + ‖y1 − y2‖2). (3.13)

Both (3.12) and (3.13) directly comes from Assumption 3.3.

The above lemma shows that the upper-level biased oracle satisfies Assumption 3.1 and
the lower-level unbiased oracle satisfies Assumption 2.2. Thus we can apply variance
reduction methods to obtain better convergence rate.

Algorithm and Convergence Analysis

We propose the following single-loop algorithm

yt+1 = yt − βhg
t ,

xt+1 = xt − αh f
t ,

with both hg
t estimating ∇yG(xt, yt) and h f

t estimating Eξ̄t
[∇̄ f (xt, yt+1; ξ̄t)] via the general

framework in Algorithm 1, and α, β be the corresponding stepsizes. The detailed
algorithm is described in Algorithm 2.

Similar to the analysis before, the key is to bound the gradient error E‖h f
t −∇F(xt)‖2,

and it can be decomposed to the estimation error A f
t := E‖h f

t −Eξ̄t
[∇̄ f (xt, yt+1; ξ̄t)]‖2

and the bias ‖B(xt, yt+1)‖2 = ‖Eξ̄t
[∇̄ f (xt, yt+1; ξ̄t)]−∇F(xt)‖2.

We first handle the estimation error A f
t . In the following analysis, we also denote

Ag
t := E‖hg

t −∇yG(xt, yt)‖2 as the lower-level estimation error and call A f
t the upper-

level estimation error. Since now the necessary average smoothness condition (3.11)
to obtain the desired bound of A f

t depends on y as well, with a slight modification of
Lemma 2.5, we have

A f
t+1 ≤ (1− η)A f

t + 2σ2
f

η2

S
+

2
S

E‖∇̄ f (xt+1, yt+2; ξ̄t+1)− ∇̄ f (xt, yt+1; ξ̄t+1)‖2

≤ (1− η)A f
t + 2σ2

f
η2

S
+ 2`2

f
α2

S
E‖h f

t ‖2 + 2`2
f

β2

S
E‖hg

t+1‖
2.

22

3.2. Stochastic Bilevel Optimization

Algorithm 2 Variance Reduction for Stochastic Bilevel Optimization

Input: T, Q, D, S, x0, y0, α, β, η.
for t = 0, 1, · · · , T − 1 do

if t ≡ 0 (mod Q) then
Sample Dg

t = {ζ1
t , ζ2

t , · · · , ζD
t } and compute hg

t = 1
D ∑D

i=1∇yg(xt, yt; ζ i
t).

yt+1 = yt − βhg
t .

Sample D f
t = {ξ̄1

t , ξ̄2
t , · · · , ξ̄D

t } and compute h f
t = 1

D ∑D
i=1 ∇̄ f (xt, yt+1; ξ̄i

t).
xt+1 = xt − αh f

t .
else

Sample Sg
t = {ζ1

t , ζ2
t , · · · , ζS

t }.
hg

t = (1− η)
(

hg
t−1 −

1
S ∑S

i=1∇yg(xt−1, yt−1; ζ i
t)
)
+ 1

S ∑S
i=1∇yg(xt, yt; ζ i

t).

yt+1 = yt − βhg
t .

Sample S f
t = {ξ̄1

t , ξ̄2
t , · · · , ξ̄S

t }.
h f

t = (1− η)
(

h f
t−1 −

1
S ∑S

i=1 ∇̄ f (xt−1, yt; ξ̄i
t)
)
+ 1

S ∑S
i=1 ∇̄ f (xt, yt+1; ξ̄i

t).

xt+1 = xt − αh f
t .

end if
end for

Output: xτ with τ chosen uniformly at random from {0, 1, · · · , T − 1}.

Note that there is an additional error term in E‖hg
t+1‖2. Thus we also need to apply

variance reduction for the lower-level gradient to cancel this additional term. We then
obtain the bound for both upper and lower-level gradient estimation error in Lemma
3.6. This is a direct consequence of Theorem 2.7 and the average smoothness assumption
(3.11) and (3.13).

Lemma 3.6 Supposing Assumption 3.3 holds, with all the settings in Algorithm 2 for parameters
D, S, Q, η and α selected according to Theorem 2.7 for some constant ρA > 0 we define later and
the choice that β = α/cβ for some constant cβ we define later, i.e.,

(i) η = 0, D = αT, S = ρ−1/2
A ` f α3/2T1/2, Q = ρ1/2

A (2` f)
−1α−1/2T1/2 for any α such that

(ρA`
−2
f)1/3T−1/3 ≤ α ≤ 1/(3LF) with the smooth parameter LF defined in (3.7) and

β = α/cβ;

(ii) η = 2`2
f α2/ρA, α = ρ1/3

A (8`2
f · T)−1/3, β = α/cβ, D = ρA`

−2
f α−1, S = 1 and Q = T,

then we have

1
T

T−1

∑
t=0

A f
t ≤

σ2
f

αT
+ ρA ·

1
T

T−1

∑
t=0

E‖h f
t ‖2 +

ρA

c2
β

· 1
T

T−1

∑
t=0

E‖hg
t+1‖

2,

1
T

T−1

∑
t=0

Ag
t+1 ≤

σ2
g

αT
+ ρA

`2
g

`2
f
· 1

T

T−1

∑
t=0

E‖h f
t ‖2 +

ρA

c2
β

`2
g

`2
f
· 1

T

T−1

∑
t=0

E‖hg
t+1‖

2.

Then we analysis the bias ‖B(xt, yt+1)‖ = ‖Eξ̄t
[∇̄ f (xt, yt+1; ξ̄t)] − ∇F(xt)‖. With As-

sumption 3.3, the bias term can be bounded by

‖B(xt, yt+1)‖ ≤ ‖Eξ̄t
[∇̄ f (xt, yt+1; ξ̄t)]− ∇̄F(xt, yt+1)‖+ ‖∇̄F(xt, yt+1)−∇F(xt)‖

≤ Cgxy C fy µ−1
g (1− µg/Lg)

K︸ ︷︷ ︸
approximation of inverse Hessian

+ L‖yt+1 − y∗(xt)‖︸ ︷︷ ︸
approximation of y∗(x)

, (3.14)

23

3.2. Stochastic Bilevel Optimization

where the first part follows from Lemma 11 in Hong et al. [17], and the second part
holds by (3.8) in Lemma 3.4. Choosing K = O(log ε−1), the bias which comes from
approximating Hessian inverse is less than ε. The rest is to bound the bias introduced by
approximating y∗(xt) by yt+1, i.e. ‖yt+1 − y∗(xt)‖2. We bound it by lower-level descent
in the lemma below.

Lemma 3.7 Under Assumption 3.3, for Algorithm 2 with the choice that β = α/cβ for some
constant cβ to be determined, assuming β ≤ 1

2(µg+Lg)
, we have

1
T

T−1

∑
t=0

E‖yt+1 − y∗(xt)‖2 ≤
2cβ

cgαT
‖y1 − y∗(x0)‖2 +

4L2
yc2

β

c2
g
· 1

T

T−1

∑
t=0

E‖h f
t ‖2

− 1
µgT

T−1

∑
t=0

E‖hg
t+1‖

2 +

(
4

µg
+

2
c2

g

)
1
T

T−1

∑
t=0

Ag
t+1,

where cg =
µg

µg+Lg
.

Note that the lemma above is similar to what we have in (3.3), with an additional error
term bounded by 1

T ∑T−1
t=0 E‖h f

t ‖2. That is why we can achieve the optimal rate by the
discussion of condition (3.5) at the end of Section 3.1. With the help of Lemma 3.6 to
handle the estimation error and Lemma 3.7 to bound the bias, we can show the following
convergence theorem. The detailed proof of Lemma 3.6, 3.7 and Theorem 3.8 can be
found in Appendix A.2.2.

Theorem 3.8 For non-convex strongly-convex stochastic bilevel optimization defined in (3.6),
under Assumption 3.3, with the parameters D, S, Q, η and α selected according to Lemma 3.6 for

ρA = min

{
1
12

,
µg`2

f

96L2`2
g

,
c2

g`
2
f

48L2`2
g

,
c2

β`
2
f

16`2
g

,
c2

gc2
β`

2
f

8µg`2
g

,
c2

βL2

µg

}
,

and the choice of β = α
cβ

for constant cβ =
cg

4
√

6LLy
and cg =

µg
µg+Lg

, supposing α ≤ cβ

2(µg+Lg)
,

with K = O(log ε−1), we can show that the output of Algorithm 2 satisfies

Eτ‖∇F(xτ)‖2 ≤
[

2[F(x0)− F∗] +
8cβL2‖y1 − y∗(x0)‖2

cg
+ 2σ2

f +

(
16
µg

+
8
c2

g

)
L2σ2

g + 2

]
/(αT).

To make sure that xτ is an ε-stationary point, similar to the analysis in Remark 2.9, we can show
that the sample complexity is Õ(ε−3).

Note that constructing ∇̄ f (x, y; ξ̄) uses K + 2 = O(log ε−1) samples. That’s why the
batch size for algorithms in Table 3.1 is at least Õ(1). Hence, the sample complexity
is also Õ(ε−3). Compared with existing single-loop algorithms in Hong et al. [17] and
Chen et al. [32], we improve their complexity from Õ(ε−5) and Õ(ε−4) to Õ(ε−3) under
the average smoothness condition, closing the gap between the upper-bounds and the
lower-bound for non-convex stochastic minimization problems. The contemporaneous
works [49, 50, 51] obtained the same rate as we do. However, they all focused on a
specific variance reduction technique, e.g. STORM. In comparison, we focus on a general
variance reduction framework that includes STORM as a special case as shown in Section
2.4. Our framework allows more versatility in parameter choices during implementation,
and our analysis provides guidelines for design of new algorithms on other biased
stochastic optimization problem rather than just on bilevel optimization.

24

3.3. Stochastic Minimax Optimization

3.3 Stochastic Minimax Optimization

In this section, we consider the stochastic minimax optimization:

min
x∈Rd1

F(x) := max
y∈Y⊆Rd2

G(x, y), where G(x, y) := Eξ[g(x, y; ξ)], (3.15)

where G : Rd1 ×Rd2 → R is continuously differentiable. Minimax optimization has
many interesting applications in machine learning including generative adversarial
networks (GANs) [52], robust optimization [53, 54], adversarial machine learning [13, 55],
reinforcement learning [56, 57] and so on. There are plenty of works establishing
convergence theory for solving (3.15) under strongly-convex strongly-concave setting
[58, 59] or general convex-concave setting [60, 61, 62]. However, non-convex minimax
problems are more popular in practice, especially when neural networks are involved as
in GANs. Therefore, in this work, we focus on the smooth non-convex stochastic setting
with non-convex strongly-concave case shown in Section 3.3.1 and non-convex P-Ł case
given in Section 3.3.2. Minimax optimization can be regarded as a special case of bilevel
optimization when lower-level objective in (3.6) is replaced with −Eξ[f (x, y; ξ)]. Thus
we will see that the algorithm and its analysis in this section are very much similar to
what we have in Section 3.2 for bilevel optimization.

3.3.1 Non-Convex Strongly-Concave Case

We first consider the non-convex strongly-concave setting where G(x, y) is µ-strongly
concave in y. See Table 3.2 for a brief comparison of sample complexity of the related
algorithms to obtain an ε-stationary point. Without average smoothness assumption,
Rafique et al. [63] and Jin et al. [64] achieved the optimal O(ε−4) rate through a double-
loop algorithm. Lin et al. [18] proposed a single-loop algorithm and achieved the optimal
rate with large batch sizes. The single-loop algorithm for solving (3.15) is also called
gradient descent ascent (GDA), i.e. one descent step for x and one ascent step for y.
Chen et al. [48] extended their work for bilevel optimization to minimax case and proved
that single-loop alternating GDA without large batch sizes is already optimal. However,
assumptions in their paper are much stronger.

When average smoothness assumption holds, Luo et al. [31] and Xu et al. [33] obtained
the optimal O(ε−3) sample complexity when applying SARAH on both updates of x and
y. For each update of x, the algorithms run multi-steps for y, and thus are actually triple-
loop algorithms. Huang et al. [34] used STORM and obtained a single-loop algorithm
achieving the optimal complexity.

Before presenting our results, we first make the following standard assumptions. Suppose
that Y is convex and compact, G is L-smooth with respect to (x, y) and G(x, y) is µ-
strongly concave in y for any given x, as listed below.

Assumption 3.9 The objective G and domain Y satisfy

• G is L-smooth in (x, y) and G(x, ·) is µ-strongly concave for any given x.

• Y is convex and compact.

The condition number is defined as κ := L/µ. When Assumption 3.9 holds, we have the
following lemma to guarantee that F(x) is LF-smooth and y∗(x) := arg maxy∈Y G(x, y)
is κ-Lipschitz continuous, which is simlar to Lemma 3.4 for bilevel optimization. The
lemma also shows how to compute ∇F(x), as given by Danskin’s Theorem [65] when Y
is convex and compact.

25

3.3. Stochastic Minimax Optimization

Table 3.2: Comparison of the sample complexity of different algorithms to achieve an ε-stationary
point defined in Definition 2.3 for solving non-convex strongly-concave stochastic minimax
optimization. Õ in the table hides additional logarithmic terms in ε−1. AS means that the oracle
satisfies average smoothness assumption as in Assumption 3.1, and Non-AS represents the case
when average smoothness condition (3.2) does not hold.

Algorithm Structure Batch Size Oracle Complexity
Rafique et al. [63] Double-Loop O(1) Non-AS O(ε−4)

Jin et al. [64] Double-Loop O(1) Non-AS O(ε−4)
Lin et al. [18] Single-Loop O(1) Non-AS O(ε−5)
Lin et al. [18] Single-Loop O(ε−2) Non-AS O(ε−4)

Chen et al. [48] Single-Loop O(1) Non-AS O(ε−4)
Luo et al. [31] Triple-Loop O(ε−2) AS O(ε−3)
Xu et al. [33] Triple-Loop O(ε−2) AS O(ε−3)

Huang et al. [34] Single-Loop O(1) AS Õ(ε−3)
This work (η = 0) Double-Loop O(ε−2) AS O(ε−3)
This work (η > 0) Single-Loop O(1) AS O(ε−3)

Lemma 3.10 [18, Lemma 4.3] Supposing Assumption 3.9 holds, then for function F(x) defined
in (3.15) and y∗(x) := arg maxy∈Y G(x, y), we have

• F(x) is LF-smooth with LF = 2κL and ∇F(x) = ∇zG(z, y∗(x))|z=x.

• y∗(x) is κ-Lipschitz continuous.

We have access to the unbiased gradient oracle ∇xg(x, y; ξ) and ∇yg(x, y; ξ) satisfying
the following classical assumptions, i.e. bounded variance assumption and average
smoothness assumption.

Assumption 3.11 Let ∇g(x, y; ξ) denote the full gradient of g. We assume that

• Eξ‖∇g(x, y; ξ)−∇G(x, y)‖2 ≤ σ2.

• Eξ‖∇g(x1, y1; ξ)−∇g(x2, y2; ξ)‖2 ≤ `2(‖x1 − x2‖2 + ‖y1 − y2‖2).

Similar as what we do for bilevel optimization, we estimate both ∇yG(xt, yt) and
∇xG(xt, yt+1) with Algorithm 1 and obtain a single-loop algorithm that is similar to
alternating GDA. We denote the estimators as hy

t and hx
t respectively. The algorithm

updates one ascent step of y to find an approximation yt+1 for y∗(xt), and then updates
one descent step of x using yt+1. The detailed algorithm is in Algorithm 3, and the
projection step of y is to ensure that yt+1 ∈ Y .

We first analyse the estimation error Ay
t = E‖hy

t − ∇yG(xt, yt)‖2 and Ax
t = E‖hx

t −
∇xG(xt, yt+1)‖2. Similar to the bilevel optimization, we have the bound in Lemma 3.12.
This is simpler than Lemma 3.6 since we have the same Lipschitz parameter for both
∇xg(x, y; ξ) and ∇yg(x, y; ξ). The proof directly follows from Lemma 3.6 for bilevel
optimization.

Lemma 3.12 Supposing Assumption 3.11 holds, with all the settings in Algorithm 3 for parame-
ters D, S, Q, η and α selected according to Theorem 2.7 for some constant ρA > 0 we define later
and the choice that β = α/cβ for some constant cβ we define later, i.e.,

(i) η = 0, D = αT, S = ρ−1/2
A `α3/2T1/2, Q = ρ1/2

A (2`)−1α−1/2T1/2 for any α such that
(ρA`

−2)1/3T−1/3 ≤ α ≤ 1/(3LF) with the smooth parameter LF defined in Lemma 3.10
and β = α/cβ;

(ii) η = 2`2α2/ρA, α = ρ1/3
A (8`2 · T)−1/3, β = α/cβ, D = ρA`

−2α−1, S = 1 and Q = T,

26

3.3. Stochastic Minimax Optimization

Algorithm 3 Variance Reduction for Stochastic Minimax Optimization

Input: T, Q, D, S, x0, y0, α, β, η.
for t = 0, 1, · · · , T − 1 do

if t ≡ 0 (mod Q) then
Sample Dy

t = {ξ1
t , ξ2

t , · · · , ξD
t } and compute hy

t = 1
D ∑D

i=1∇yg(xt, yt; ξi
t).

yt+1 = ΠY (yt + βhy
t).

Sample Dx
t = {ξ̃1

t , ξ̃2
t , · · · , ξ̃D

t } and compute hx
t = 1

D ∑D
i=1∇xg(xt, yt+1; ξ̃i

t).
xt+1 = xt − αhx

t .
else

Sample Sy
t = {ξ1

t , ξ2
t , · · · , ξS

t }.
hy

t = (1− η)
(

hy
t−1 −

1
S ∑S

i=1∇yg(xt−1, yt−1; ξi
t)
)
+ 1

S ∑S
i=1∇yg(xt, yt; ξi

t).

yt+1 = ΠY (yt + βhy
t).

Sample Sx
t = {ξ̃1

t , ξ̃2
t , · · · , ξ̃S

t }.
hx

t = (1− η)
(

hx
t−1 − 1

S ∑S
i=1∇xg(xt−1, yt; ξ̃i

t)
)
+ 1

S ∑S
i=1∇xg(xt, yt+1; ξ̃i

t).
xt+1 = xt − αhx

t .
end if

end for
Output: xτ with τ chosen uniformly at random from {0, 1, · · · , T − 1}.

then we have

1
T

T−1

∑
t=0

Ax
t ≤

σ2

αT
+ ρA ·

1
T

T−1

∑
t=0

E‖hx
t ‖2 +

ρA

c2
β

· 1
T

T−1

∑
t=0

E‖hy
t+1‖

2,

1
T

T−1

∑
t=0

Ay
t+1 ≤

σ2

αT
+ ρA ·

1
T

T−1

∑
t=0

E‖hx
t ‖2 +

ρA

c2
β

· 1
T

T−1

∑
t=0

E‖hy
t+1‖

2.

Next we analyse the bias term. Although both ∇yg(xt, yt; ξt) and ∇xg(xt, yt+1; ξ̃t) are
unbiased, we can only construct biased oracle for ∇F(xt) since y∗(xt) is unknown. The
corresponding bias B(xt, yt+1) := ∇xG(xt, yt+1)−∇F(xt) can be bounded by

‖B(xt, yt+1)‖ = ‖∇xG(xt, yt+1)−∇xG(xt, y∗(xt))‖ ≤ L‖yt+1 − y∗(xt)‖, (3.16)

since G is L-smooth. With the similar analysis for bilevel optimization, we obtain the
following lemma to bound 1

T ∑T−1
t=0 E‖yt+1 − y∗(xt)‖2 which is equivalent to the bias.

Lemma 3.13 Under Assumption 3.9 and 3.11, for Algorithm 3 with the choice that β = α/cβ

for some constant cβ to be determined, assuming β ≤ 1
4κµ , we have

1
T

T−1

∑
t=0

E‖yt+1 − y∗(xt)‖2 ≤
4κcβ

αT
‖y1 − y∗(x0)‖2 + 16κ4c2

β ·
1
T

T−1

∑
t=0

E‖hx
t ‖2

− 1
µT

T−1

∑
t=0

E‖hy
t+1‖

2 +

(
4κ

µ
+ 8κ2

)
1
T

T−1

∑
t=0

Ay
t+1,

where κ = L/µ is the condition number.

Now we have Lemma 3.12 for the estimation error and Lemma 3.13 for the bias, thus
we can obtain the following convergence theorem. The proofs for both Lemma 3.13 and
Theorem 3.14 can be found in Appendix A.2.3.

27

3.3. Stochastic Minimax Optimization

Theorem 3.14 For non-convex strongly-concave stochastic minimax optimization defined in
(3.15), under Assumption 3.9 and 3.11, with the parameters D, S, Q, T, η and α selected
according to Lemma 3.12 for

ρA = min

{
1

12
,

1
48κ2L

,
1

96κ2L2 ,
c2

β

16κ
,

c2
β

32κL
,

κLc2
β

2

}
,

supposing that α ≤ cβ

4κµ and β = α
cβ

for a constant cβ = 1
8
√

3κ2L
, then the output of Algorithm 3

satisfies

Eτ‖∇F(xτ)‖2 ≤
[
2[F(x0)− F∗] + 8κL2cβ‖y1 − y∗(x0)‖2 + (2 + 8κ2L + 16κ2L2)σ2]/(αT).

To make sure that xτ is an ε-stationary point, similar to the analysis in Remark 2.9, we can show
that the sample complexity is O(ε−3), which is optimal w.r.t. ε.

In this section, we provide a single-loop algorithmic framework for non-convex strongly-
concave stochastic minimax optimization. It achieves a sample complexity of O(ε−3) as
shown in Theorem 3.14, matching the best known result achieved by two multi-loop
algorithms by Luo et al. [31] and Xu et al. [33]. However, Algorithm 3 is much simpler
and more general. If one relaxes the fixed stepsize requirement as mentioned in Section
2.4, our algorithm also recovers Huang et al. [34] as a special case. Such relaxation comes
with a cost and the sample complexity has an additional log(ε−1) term, which is Õ(ε−3).

3.3.2 Non-Convex P- L Case

We are also interested in the setting when G(x, y) is possibly non-convex in y but satisfies
the well-studied Polyak-Łojasiewicz (P-Ł) condition. We provide a definition of P-Ł
condition here for reference.

Definition 3.15 (Polyak-Łojasiewicz Condition) A differentiable function f (x) with the
minimum value f ∗ := minx f (x) satisfies µ-Polyak-Łojasiewicz condition if for any x, it holds
that

1
2
‖∇ f (x)‖2 ≥ µ(f (x)− f ∗).

The definition of P-Ł condition does not require convexity, and that a function can be
non-convex and still satisfy P-Ł condition [66]. For functions satisfying P-Ł condition,
Karimi et al. [66] proved that gradient descent (GD) converges to the global minimum at
a linear rate under deterministic settings and SGD also converges globally at a sublinear
rate under stochastic settings. Both convergence rates match the results for strongly-
convex functions. Karimi et al. [66] also showed that P-Ł condition is weaker than other
conditions (e.g. quadratic growth (QG) condition defined later in Lemma 3.18) that have
been explored to show linear convergence rates without strong convexity.

Actually, many optimization problems that appear in practical applications have been
verified to satisfy the P-Ł condition, e.g. training over-parameterized deep networks
[67] and learning linear quadratic regulator (LQR) models [68]. For the minimax opti-
mization we discuss in this section, P-Ł condition also holds for objectives in generative
adversarial imitation learning with LQR dynamics [69, 70]. This motivates us to study
the convergence rate for non-convex P-Ł minimax optimization.

Nouiehed et al. [71] obtained a double-loop algorithm for solving (3.15) under P-Ł setting.
The algorithm requires O(log ε−1) ascent steps in each iteration and thus achieves Õ(ε−4)

28

3.3. Stochastic Minimax Optimization

sample complexity to find an ε-stationary point. Recently, Xie et al. [72] studied non-
convex P-Ł minimax optimization in the context of federated learning. Their work
implies that a single-loop GDA can obtain O(ε−4) complexity when using large batch
sizes, and it can also achieve Õ(ε−3) rate when using STORM [10] to estimate both
gradients under average smoothness assumptions. In a different line of research, Yang et
al. [73] studied the case when G(x, y) satisfies P-Ł condition for both x and y (two-sided
P-Ł), and proved a linear rate for alternating GDA to find a global optimum.

We consider the one-sided P-Ł case in this section and prove that Algorithm 3 still
requires O(ε−3) samples to obtain an ε-stationary solution defined in Definition 2.3
for the problem (3.15). We first formally state all the assumptions. For the stochastic
oracle, we use the same gradient estimates satisfying Assumption 3.11 as in Section
3.3.1 for strongly-concave case. In this section, we consider the P-Ł case as given in the
assumption below.

Assumption 3.16 The objective function G(x, y) defined in (3.15) satisfies that

• G is L-smooth in (x, y).

• For any x ∈ Rd1 , −G(x, ·) satisfies P-Ł condition, that is

1
2
‖∇yG(x, y)‖2 ≥ µ(max

y
G(x, y)− G(x, y)), ∀y ∈ Rd2 .

The above condition directly follows from Definition 3.15 noticing that miny−G(x, y) =
−maxy G(x, y). We still denote the condition number as κ := L/µ. The Danskin type
lemma in the P-Ł case to guarantee that F(x) is well-defined and show how to compute
∇F(x) is given below.

Lemma 3.17 [71, Lemma A.5] In the minimax problem, when −G(x, ·) satisfies P-Ł condition
for any x with constant µ and G(x, y) is L-smooth, then the function F(x) := maxy∈Y G(x, y) is
LF-smooth with LF := 2κL and ∇F(x) = ∇xG(x, y∗(x)) for any y∗(x) ∈ arg maxy∈Y G(x, y).

Following the above lemma, the compactness requirement on the domain Y can be
removed. Thus in this section, we let Y = Rd2 and the projection step in Algorithm 3 can
be omitted. Then we analysis its convergence rate for P-Ł case. The bound for estimation
error remains the same as in Lemma 3.12. We proceed with the bias term. We first give a
helpful lemma which shows the relation between P-Ł condition and another well-known
QG condition.

Lemma 3.18 [66, Theorem 2] For some function f (x), if it is L-smooth and satisfies P-Ł
condition with constant µ, then it also satisfies quadratic growth (QG) condition with µ, i.e.,

f (x)− f ∗ ≥ µ

2
‖xp − x‖2,

where f ∗ = minx f (x) is the optimal value and xp is the projection of x onto the optimal set
arg minx f (x).

Since y∗(x) may not be unique anymore when G(x, y) is possibly non-convex in y, we
can not control the bias by directly bounding the error ‖yt+1 − y∗(xt)‖ like in Section
3.3.1 for the strongly-concave case. However, with the help of Lemma 3.18, if we choose
y∗(xt) to be the projection of yt+1 onto the optimal set arg maxy G(xt, y), the bias term

29

3.4. Stochastic Compositional Optimization

satisfies

‖B(xt, yt+1)‖2 = ‖∇xG(xt, yt+1)−∇F(xt)‖2

(a)
= ‖∇xG(xt, yt+1)−∇xG(xt, y∗(xt))‖2

(b)
≤ L2‖yt+1 − y∗(xt)‖2

(c)
≤ 2L2

µ

(
G(xt, y∗(xt))− G(xt, yt+1)

)
(d)
= 2κL(F(xt)− G(xt, yt+1)), (3.17)

where (a) comes from Lemma 3.17, (b) holds by smoothness of G, (c) follows from Lemma
3.18 since −G(xt, ·) satisfies P-Ł condition and (d) follows from definition of F(x) in
(3.15). Although the optimal point may not be unique, the optimal function value is
unique. Then we can bound the bias in Lemma 3.19 below.

Lemma 3.19 Under Assumption 3.16 and 3.11, for Algorithm 3 with the choice that β = α/cβ

for some constant cβ to be determined, assuming β < 1/µ, we have

1
T

T−1

∑
t=0

E
[

F(xt)− G(xt, yt+1)
]
≤ F(x0)− G(x0, y1)

βµT
+

(
1− 1

βµ

)
F(x0)− F(xT)

T

+
cβ

2µ
(3 + αL) · 1

T

T−1

∑
t=0

E‖hx
t ‖2 +

cβ

2µ
· 1

T

T−1

∑
t=0

Ax
t

− 1
2µ

(1− βL) · 1
T

T−1

∑
t=0

E‖hy
t+1‖

2 +
1

2µ
· 1

T

T−1

∑
t=0

Ay
t+1.

With Lemma 3.19 to control the bias and Lemma 3.12 to control the variance, we can
derive the following theorem for the output of Algorithm 3. We provide a detailed proof
of both Lemma 3.19 and Theorem 3.20 in Appendix A.2.3.

Theorem 3.20 For non-convex P-Ł stochastic minimax optimization defined in (3.15), under
Assumption 3.16 and 3.11, with the parameters D, S, Q, T, η and α selected according to
Lemma 3.12 for ρA = c2

β/4, supposing that α < min
{

3
L , cβ

µ , cβ

4L

}
and β = α/cβ for a constant

cβ = 1/(36κ2), then the output of Algorithm 3 satisfies

Eτ‖∇F(xτ)‖2 ≤ 2[F(x0)− F∗] + [F(x0)− G(x0, y1)]/9 + (37/18 + 2κ2)σ2

αT
,

where κ = L/µ is the condition number.

Algorithm 3 also achieves the O(ε−3) sample complexity for non-convex P-Ł stochastic
minimax optimization, matching the lower-bound for smooth non-convex optimization
with average smoothness assumption [11], and we are the first to explicitly close this gap
under non-convex P-Ł settings.

3.4 Stochastic Compositional Optimization

Finally we discuss the application to stochastic compositional optimization of the form:

min
x∈Rd2

F(x) := F1(F2(x)) = Eξ[f1(F2(x); ξ)] for F2(x) := Eζ [f2(x; ζ)], (3.18)

30

3.4. Stochastic Compositional Optimization

Table 3.3: Comparison of the sample complexity of different algorithms to achieve an ε-stationary
point defined in Definition 2.3 for solving stochastic compositional optimization. AS means that
the oracle satisfies average smoothness assumption as in Assumption 3.1, and Non-AS represents
the case when average smoothness condition (3.2) does not hold.

Algorithm Structure Batch Size Oracle Complexity
Wang et al. [19] Single-Loop O(1) Non-AS O(ε−8)
Wang et al. [76] Single-Loop O(1) Non-AS O(ε−4.5)

Ghadimi et al. [77] Single-Loop O(1) Non-AS O(ε−4)
Chen et al. [35] Single-Loop O(1) Non-AS O(ε−4)

Zhang and Xiao [30] Double-Loop O(ε−2) AS O(ε−3)
Zhang and Xiao [36] Double-Loop O(ε−2) AS O(ε−3)

Hu et al. [78] Double-Loop O(ε−2) AS O(ε−3)
This work (η = 0) Double-Loop O(ε−2) AS O(ε−3)
This work (η > 0) Single-Loop O(1) AS O(ε−3)

where f1 : Rd1 → R and f2 : Rd2 → Rd1 are continuously differentiable functions. We
have easily accessible unbiased estimates f2(x; ζ), ∇ f2(x; ζ) and ∇ f1(y; ξ). However,
∇ f2(x; ζ1)>∇ f1(f2(x; ζ2); ξ) is only a biased estimate of the true gradient ∇F(x) =
∇F2(x)>∇F1(F2(x)), where ζ1 and ζ2 are drawn independently. The difficulty comes
from the fact that we have no access to F2(x) and need to estimate it through ∇ f2(x; ζ).

Stochastic compositional optimization (3.18) has many applications in risk management
[74], policy evaluation in reinforcement learning [75] and model-agnostic meta-learning
[41]. Wang et al. [19] gave the first non-asymptotic analysis of stochastic compositional
optimization and proposed a two-timescale stochastic compositional gradient descent
(SCGD) algorithm. They further provided an accelerated version of SCGD and improved
the rate to O(ε−4.5) [76]. Ghadimi et al. [77] developed a single-timescale approach and
Chen et al. [35] added some corrections term to SCGD. They both achieved the optimal
O(ε−4) complexity. When assuming average smoothness and using variance reduction,
Zhang and Xiao [30] achieved O(ε−3) sample complexity for a special case when F1(x) is
deterministic. They improved their work to general multi-level stochastic case in Zhang
and Xiao [36] and proved the same sample complexity. Hu et al. [78] used SARAH [9] to
estimate all the stochastic parts and also obtained O(ε−3) complexity. Table 3.3 provides
a summary of all related algorithms.

The stochastic compositional optimization in (3.18) can be reformulated as a special case
of bilevel optimization [48]:

min
x∈Rd2

F(x) := Eξ[f1(y∗(x); ξ)] for y∗(x) = arg min
y∈Rd1

‖y− f2(x; ζ)‖2.

Motivated by Algorithm 2 for solving bilevel optimization (3.6), we propose Algorithm 4
for stochastic compositional optimization. The algorithm uses the general framework in
Algorithm 1 to estimate F2(xt) using yt through access to f2(xt; ζt), and then constructs
the biased gradient estimator ht for ∇F(xt) through queries for ∇ f2(xt; ζ̃t)>∇ f1(yt; ξt).
Note that we use independent samples ζt and ζ̃t to ensure that

Eζ̃t,ξt
[∇ f2(xt; ζ̃t)

>∇ f1(yt; ξt)] = ∇F2(xt)
>∇F1(yt),

since yt is independent from ζ̃t. Therefore, ht is actually estimating ∇F2(xt)>∇F1(yt),
creating some bias depending on ‖yt − F2(xt)‖. The update step is still xt+1 = xt − αht.

We make the following assumptions that are common in the related literature. Note that
it is slightly stronger than the average smoothness condition in Assumption 3.1.

31

3.4. Stochastic Compositional Optimization

Algorithm 4 Variance Reduction for Stochastic Compositional Optimization

Input: T, Q, D, S, x0, α, η.
for t = 0, 1, · · · , T − 1 do

if t ≡ 0 (mod Q) then
Sample Dy

t = {ζ1
t , ζ2

t , · · · , ζD
t } and compute yt =

1
D ∑D

i=1 f2(xt; ζ i
t).

Sample Dh
t = {(ζ̃1

t , ξ1
t), (ζ̃

2
t , ξ2

t), · · · , (ζ̃D
t , ξD

t)}.
ht =

1
D ∑D

i=1∇ f2(xt; ζ̃ i
t)
>∇ f1(yt; ξi

t).
else

Sample Sy
t = {ζ1

t , ζ2
t , · · · , ζS

t }.
yt = (1− η)

(
yt−1 − 1

S ∑S
i=1 f2(xt−1; ζ i

t)
)
+ 1

S ∑S
i=1 f2(xt; ζ i

t).

Sample Sh
t = {(ζ̃1

t , ξ1
t), (ζ̃

2
t , ξ2

t), · · · , (ζ̃S
t , ξS

t)}.
ht = (1− η)

(
ht−1 − 1

S ∑S
i=1∇ f2(xt−1; ζ̃ i

t)
>∇ f1(yt−1; ξt)

)
+ 1

S ∑S
i=1∇ f2(xt; ζ̃ i

t)
>∇ f1(yt; ξt).

end if
Update xt+1 = xt − αht.

end for
Output: xτ with τ chosen uniformly at random from {0, 1, · · · , T − 1}.

Assumption 3.21 For any ξ and ζ, the function f1(y; ξ) and f2(x; ζ) satisfy that

• f1(y; ξ) is M f1-Lipschitz continuous and L f1-smooth.

• f2(x; ζ) is M f2-Lipschitz continuous and the Jacobian ∇ f2(x; ζ) is L f2-Lipschitz continu-
ous.

• The estimate ∇ f1(y; ξ) has bounded variance, i.e. Eξ‖∇ f1(y; ξ)−∇F1(y)‖2 ≤ σ2
f1

.

• The bounded variance condition for f2(x; ζ) also holds, i.e. Eζ‖ f2(x; ζ)− F2(x)‖2 ≤ σ2
f2

and Eζ‖∇ f2(x; ζ)−∇F2(x)‖2 ≤ σ2
f ′2

.

With Assumption 3.21, it is easy to verify that F(x) is LF-smooth [30, Appendix A] with
LF = M2

f2
L f1 + M f1 L f2 . Moreover, the gradient error satisfies

E‖ht −∇F(xt)‖2 = E‖ht −∇F2(xt)
>∇F1(yt) +∇F2(xt)

>∇F1(yt)−∇F2(xt)
>∇F1(F2(xt))‖2

≤ 2E‖ht −∇F2(xt)
>∇F1(yt)‖2 + 2E‖∇F2(xt)

>[∇F1(yt)−∇F1(F2(xt))]‖2

≤ 2 E‖ht −∇F2(xt)
>∇F1(yt)‖2︸ ︷︷ ︸

At

+2M2
f2

L2
f1

E‖yt − F2(xt)‖2︸ ︷︷ ︸
Bt

. (3.19)

The last inequality holds since F2(x) is M f2-Lipschitz continuous and F1(y) is L f1-smooth
by Assumption 3.21. The first term At is the estimation error of ht and the second bias
term Bt is the estimation error of yt. We then show that both terms can satisfy equation
(2.7) with parameters selected according to Theorem 2.7.

Lemma 3.22 Supposing Assumption 3.21 holds, with all the settings in Algorithm 4 for parame-
ters D, S, Q, η and α selected according to Theorem 2.7 for some constant ρA > 0 we define later,
i.e.,

(i) η = 0, D = αT, S = ρ−1/2
A ` f α3/2T1/2 and Q = ρ1/2

A (2` f)
−1α−1/2T1/2 for any α

such that (ρA`
−2
f)1/3T−1/3 ≤ α ≤ 1/(3LF) with the smooth parameter LF = M2

f2
L f1 +

M f1 L f2 ;

(ii) η = 2`2
f α2/ρA, α = ρ1/3

A (8`2
f · T)−1/3, D = ρA`

−2
f α−1, S = 1 and Q = T,

32

3.4. Stochastic Compositional Optimization

then we have

1
T

T−1

∑
t=0

At ≤
{

σ2/(αT) + ρA · 1
T ∑T−1

t=0 E‖ht‖2, if (i) ;
(σ2 + 12M2

f2
L2

f1
σ2

f2
)/(αT) + 2ρA · 1

T ∑T−1
t=0 E‖ht‖2, if (ii) ,

1
T

T−1

∑
t=0

Bt ≤
σ2

f2

αT
+ ρA

M2
f2

`2
f
· 1

T

T−1

∑
t=0

E‖ht‖2,

where σ2 := 2M2
f2

σ2
f1
+ 2M2

f1
σ2

f ′2
and `2

f := 4M4
f2

L2
f1
+ 2M2

f1
L2

f2
with all constants defined in

Assumption 3.21.

Similar to the analysis before, with Lemma 3.22 to bound both the estimation error and
the bias, we can obtain the following convergence theorem. The proofs of Lemma 3.22
and Theorem 3.23 are given in Appendix A.2.4.

Theorem 3.23 For smooth non-convex stochastic compositional optimization defined in (3.18),
under Assumption 3.21, with the parameters D, S, Q, η and α selected according to Lemma 3.22
for ρA = 1/12, we have that the output of Algorithm 4 satisfies

Eτ‖∇F(xτ)‖2 ≤
2[F(x0)− F∗] + 2σ2 + 26M2

f2
L2

f1
σ2

f2

αT
,

where σ2 := 2M2
f2

σ2
f1
+ 2M2

f1
σ2

f ′2
. To make sure that xτ is an ε-stationary point, similar to the

analysis in Remark 2.9, one can show that the sample complexity is O(ε−3), which is optimal.

In comparison, Wang et al. [76] and Ghadimi et al. [77] considered moving average
estimators of F2(x) and∇F2(x) in the form of ht = (1− η)ht−1 + zt, where zt are unbiased
estimates returned by the first-order stochastic oracle. Without variance reduction, they
achieved O(ε−4) sample complexity to find an ε-stationary point defined in Definition
2.3. When assuming average smoothness condition (3.2) holds and applying variance
reduction, our result matches the optimal complexity obtained by Zhang and Xiao [36]
and Hu et al. [78], which can be viewed as a special case of our Algorithm 4 with
η = 0. Moreover, when setting η > 0, our algorithm is the first single-loop algorithm to
achieve O(ε−3) sample complexity without using large batch sizes. This allows simpler
implementation and reduces the cost for practical applications.

Concluding Remarks In this chapter, we extend the general analysis in Chapter 2 from
unbiased smooth non-convex stochastic optimization to the biased case. As long as the
biased stochastic oracle satisfies the average smoothness condition (3.2) in Assumption
3.1, we can still apply variance reduction methods, and then Lemma 2.6 and Theorem 2.7
hold. In Section 3.1, we first consider the general biased optimization and prove that if
the bias term satisfies the SBG or ABG condition, Algorithm 1 still achieves the optimal
O(ε−3) complexity. We further apply the general framework to three concrete examples,
i.e. stochastic bilevel optimization in Section 3.2, stochastic minimax optimization in
Section 3.3 and stochastic compositional optimization in Section 3.4. We explain why we
can only construct biased gradient oracles and provide general frameworks for solving
these structured optimization problems using variance reduction. By properly analyzing
the specific bias terms and showing that the gradient error can be bounded similar to
the ABG condition, we prove that the sample complexity of our proposed algorithms is
O(ε−3). In the previous chapter and this chapter, we consider the smooth non-convex
stochastic optimization and prove the optimal complexity for our general algorithms.
In the next chapter, we will apply the general framework for variance reduction in
Algorithm 1 to non-smooth non-convex stochastic optimization. When combined with
stochastic mirror descent, Algorithm 1 also solves this class of non-convex stochastic
optimization with O(ε−3) sample complexity.

33

Chapter 4

Variance Reduction for Stochastic Mirror
Descent

Overview We have seen the effectiveness of our general framework and corresponding
analysis for variance reduction methods in previous chapters. When applied to smooth
non-convex stochastic optimization, we are able to show the O(ε−3) sample complexity.
In this chapter, we consider a more general problem where the objective function can be
non-smooth as well. Although we assume that the non-smooth part is relatively simple,
such optimization problem has many practical applications. We combine the general
framework in Algorithm 1 with stochastic mirror descent and prove that the sample
complexity is still O(ε−3) to achieve an ε-stationary point for non-smooth non-convex
stochastic optimization.

4.1 Problem Setting

In this chapter, we study the following non-smooth non-convex stochastic optimization
problem:

min
x∈X⊆Rd

Φ(x) := F(x) + r(x) = Eξ[f (x; ξ)] + r(x), (4.1)

where F(x) := Eξ[f (x; ξ)] is smooth but non-convex, and r(x) is non-smooth but convex.
When r(x) = 0, the problem reduces to smooth non-convex stochastic optimization that
we have discussed in the previous chapters. When r(x) 6= 0 and is relatively simple, for
example L1-regularizer r(x) = λ‖x‖1 and indicator function

r(x) =

{
0, if x ∈ C,
+∞, otherwise,

for some convex domain C, the problem becomes more general and covers a wide
spectrum of optimization problems arising in machine learning applications such as
LASSO [23], sparse logistic regression [79] and 1-norm SVM [24]. Actually, when adding
non-smooth convex regularization (e.g. L1) to smooth non-convex objectives or solving
smooth non-convex optimization constrained on a convex domain (e.g. probability
simplex), the problems can be formulated as (4.1).

For smooth optimization problems, we can directly compute the gradients and perform
(stochastic) gradient descent. When it comes to the non-smooth case, lots of algorithms
based on mirror descent [25] have been proposed for solving (4.1), and nearly all of them
can be generalized as the following iterative updates:

xt+1 = arg min
x∈X

{
r(x) + h>t x +

1
α

Vω(x, xt)

}
, (4.2)

34

4.1. Problem Setting

where α is the step-size, ht is some gradient estimator of ∇F(xt) and Bregman distance
Vω(x, y) is defined in Definition 4.1.

Definition 4.1 (Bregman Distance) For some continuously differentiable and µ-strongly con-
vex function ω(x) : X → R, we define the corresponding Bregman distance as

Vω(x, y) = ω(x)−ω(y)−∇ω(y)>(x− y).

The strongly-convex function ω(x) is often called the distance generating function.

Remark 4.2 (Examples of Bregman Distance) If we choose the generating function ω(x) =
1
2‖x‖2, then its Bregman distance is Vω(x, y) = 1

2‖x − y‖2, and thus the update step (4.2)
reduces to (projected) subgradient descent. In the simplest case when X = Rd and r(x) = 0,
it is just (stochastic) gradient descent xt+1 = xt − αht. We can also choose other distance
generating functions. For example, if ω(x) = ∑d

i=1 xi ln(xi), the Bregman distance Vω(x, y) =
∑d

i=1 xi ln(xi/yi) recovers the well-known Kullback-Leibler divergence which measures the differ-
ence between two distributions.

The stochastic mirror descent step (4.2) involves the computation of another simple
optimization problem at each iteration. In this chapter, we assume that the step is easily
solvable since r(x) is relatively simple. The update step is also referred to as proximal
operator in the related literature, and that is why the related algorithms are often called
proximal algorithms.

Ghadimi et al. [37] gave the first non-asymptotic convergence analysis for solving (4.1).
When using ht as the true gradient ∇F(xt) or its mini-batch estimator in the update
(4.2), they proposed ProxGD in the deterministic setting and ProxSGD in the stochastic
setting, respectively. Reddi et al. [80] proposed ProxSVRG/SAGA for solving (4.1) in the
finite-sum case based on the variance reduction methods SVRG [5] and SAGA [6]. The
algorithms compute ht using SVRG/SAGA to estimate ∇F(xt) and consider the special
case when ω(x) = 1

2‖x‖2. Li and Li [38] improved the analysis and parameter choices
of ProxSVRG, and the improved version is named ProxSVRG+. Li et al. [81] further
extended ProxSVRG+ to general generating function ω(x) and proposed SVRAMD.
The best sample complexity so far for solving (4.1) is achieved by Prox-SpiderBoost
[8], which is the proximal version of SpiderBoost. This motivates us to combine our
general framework with stochastic mirror descent and provide a general analysis. Not
surprisingly, our algorithm matches the complexity of Prox-SpiderBoost and includes it
as a special case when ω(x) = 1

2‖x‖2 and η = 0.

We measure the performances of all algorithms by both iteration complexity and sample
complexity to find an ε-stationary point of (4.1). We are also interested in the iteration
complexity since we need to solve the update (4.2) at each iteration, which might be
costly in some scenarios. We first define the concept of stationarity for non-smooth
objectives considered in this chapter.

The gradient mapping corresponding to the estimator ht is defined as

Gα(xt, ht) :=
1
α
(xt − xt+1), (4.3)

for the update (4.2). Gα(xt, ht) will reduce to ht when r(x) = 0, ω(x) = 1
2‖x‖2 and

X = Rd by Remark 4.2. This is called the gradient mapping since the update is
equivalent to xt+1 = xt − αGα(xt, ht) by the definition above. Similar to the smooth case,
we aim to find a point such that the true gradient is small. Naturally, the mapping of the
true gradient in the non-smooth setting is

Gα(xt,∇F(xt)) :=
1
α
(xt − x+t), (4.4)

35

4.2. Algorithm and Convergence Analysis

Table 4.1: Comparison of the sample complexity of different algorithms to achieve an ε-stationary
point defined in Definition 4.3 for solving non-smooth non-convex stochastic optimization in (4.1).
For double-loop algorithms, Batch (D) stands for the batch size used for checkpoint gradients
in the out-loop and Batch (S) stands for the batch size used in the inner-loop. For single-loop
algorithms, Batch (D) stands for the batch size used for checkpoint gradients at the beginning and
Batch (S) stands for the batch size used in other iterations. Iteration means the total number of
iterations required and Sample means the total number of samples required. Õ hides additional
logarithmic terms in ε−1.

Algorithm Structure Batch (D) Batch (S) Iteration Sample
ProxSGD [37] Single-Loop O(ε−2) O(ε−2) O(ε−2) O(ε−4)

ProxSVRG+ [38] Double-Loop O(ε−2) O(ε−4/3) O(ε−2) O(ε−10/3)

SVRAMD [81] Double-Loop O(ε−2) O(ε−4/3) O(ε−2) O(ε−10/3)
Prox-SpiderBoost [8] Double-Loop O(ε−2) O(ε−1) O(ε−2) O(ε−3)
This work (SPIDER) Double-Loop O(ε−2) O(ε−1) O(ε−2) O(ε−3)
This work (SARAH) Double-Loop O(ε−2) O(1) O(ε−3) O(ε−3)
This work (New 2) Single-Loop O(ε−1) O(1) O(ε−3) O(ε−3)

This work (STORM) Single-Loop O(1) O(1) Õ(ε−3) Õ(ε−3)

for x+t defined as follows to avoid confusions:

x+t = arg min
x∈X

{
r(x) +∇F(xt)

>x +
1
α

Vω(x, xt)

}
, (4.5)

i.e. replacing ht by the true gradient ∇F(xt) in the update (4.2). For simplicity of the
notation, we will use Gα(xt) instead of Gα(xt,∇F(xt)) in the following analysis. Gα(xt)
reduces to ∇F(xt) by the similar arguments above.

Definition 4.3 (ε-Stationary Point) For some accuracy measure ε > 0, a point x is called an
ε-stationary point of the non-smooth non-convex function Φ(x) defined in (4.1) if ‖Gα(x)‖ ≤ ε
with the gradient mapping Gα(x) defined in (4.4).

Table 4.1 provides a comparison of all aforementioned algorithms to achieve an ε-
stationary point for solving (4.1). Under average smoothness assumption, our algorithm
improves upon ProxSGD and ProxSVRG+, and achieves the best O(ε−3) sample com-
plexity. When using the parameter selection rules to recover New 2 or STORM [10] as
mentioned in Section 2.4, our algorithm is the first to guarantee convergence without
large batch sizes. However, the improvement comes at the cost of increased iteration
complexity.

4.2 Algorithm and Convergence Analysis

When using the general variance reduction framework in Algorithm 1 to estimate the
gradient, we obtain the variance reduced stochastic mirror descent in Algorithm 5. Before
analyzing the convergence rate of Algorithm 5, we first formally state all the necessary
assumptions.

Assumption 4.4 (Objective Function) The function Φ(x) = F(x) + r(x) defined in (4.1)
satisfies that

• The possibly non-convex function F(x) is LF-smooth.

• The possibly non-smooth function r(x) is convex, that is, ∀x, y ∈ X , we have that

r(y) ≥ r(x) + g>x (y− x),

36

4.2. Algorithm and Convergence Analysis

Algorithm 5 Variance Reduced Stochastic Mirror Descent

Input: T, Q, D, S, x0, α, η, ω(x).
for t = 0, 1, · · · , T − 1 do

if t ≡ 0 (mod Q) then
Query SO for D times and compute ht =

1
D ∑D

i=1∇ f (xt; ξi
t).

else
Query the oracle SO for 2S times.
ht = (1− η)(ht−1 − 1

S ∑S
i=1∇ f (xt−1; ξi

t)) +
1
S ∑S

i=1∇ f (xt; ξi
t).

end if
xt+1 = arg min

x∈X

{
r(x) + h>t x + 1

α Vω(x, xt)
}

.

end for
Output: xτ with τ chosen uniformly at random from {0, 1, · · · , T − 1}.

for any subgradient gx ∈ ∂ r(x).

In addition, we assume that the optimal value Φ∗ := minx∈X Φ(x) is finite.

In this chapter, we assume an unbiased gradient oracle SO for the function F(x). Given
some query point x ∈ X , the oracle returns an estimate ∇ f (x; ξ) for the true gradient
∇F(x) such that Eξ[∇ f (x; ξ)] = ∇F(x). To apply variance reduction methods, we
assume that the oracle also satisfies Assumption 2.2, and we restate it here.

Assumption 4.5 (Gradient Estimate) The unbiased gradient estimate ∇ f (x; ξ) returned by
the stochastic oracle SO satisfies that

Eξ‖∇ f (x; ξ)−∇F(x)‖2 ≤ σ2, (4.6)
Eξ‖∇ f (x1; ξ)−∇ f (x2; ξ)‖ ≤ ` f ‖x1 − x2‖, ∀x1, x2 ∈ X , (4.7)

for some constants σ > 0 and ` f > 0.

We first give two technical lemmas in Ghadimi et al. [37] to analysis the behaviors of
the gradient mapping Gα(xt, ht) and the relation between Gα(xt, ht) and Gα(xt). The
detailed proofs can be found in Appendix A.3, and the proofs follow from the optimality
condition of the update step (4.2).

Lemma 4.6 [37, Lemma 1] For the mirror descent update (4.2) and corresponding gradient
mapping Gα(xt, ht) defined in (4.3), if the generating function ω(x) is µ-strongly convex, we
have

h>t Gα(xt, ht) ≥
1
α

(
r(xt+1)− r(xt)

)
+ µ‖Gα(xt, ht)‖2, (4.8)

for any stepsize α > 0 and xt ∈ X .

Lemma 4.7 [37, Lemma 2] If we define Gα(xt, ht) in (4.3) and define Gα(xt) in (4.4), assuming
that the generating function ω(x) is µ-strongly convex, then it holds that

‖Gα(xt, ht)− Gα(xt)‖2 ≤ 1
µ2 ‖ht −∇F(xt)‖2, (4.9)

for any stepsize α > 0 and xt ∈ X .

We then analyze the estimation error term At = E‖ht −∇F(xt)‖2. By Lemma 2.5 in
Chapter 2, under Assumption 4.5, the estimation error satisfies

At+1 ≤ (1− η)At + 2σ2 η2

S
+

2`2
f

S
E‖xt+1 − xt‖2

≤ (1− η)At + 2σ2 η2

S
+ 2`2

f
α2

S
E‖Gα(xt, ht)‖2,

37

4.2. Algorithm and Convergence Analysis

by the definition of Gα(xt, ht) in (4.3). Then by Lemma 2.6 and Theorem 2.7, we obtain
that the average estimation error

1
T

T−1

∑
t=0

At ≤
σ2

αT
+ ρA ·

1
T

T−1

∑
t=0

E‖Gα(xt, ht)‖2,

with parameter choices specified in Theorem 2.7. Therefore, with the help of Lemma 4.6
and 4.7, we can show the following convergence theorem for Algorithm 5. The complete
proof of Theorem 4.8 is provided in Appendix A.3.

Theorem 4.8 Suppose Assumption 4.4 and 4.5 hold. Let the selections of parameters be specified
as in Theorem 2.7 with the choice that ρA = µ2

3 and one additional requirement that α ≤
µ

3LF
. Assuming that the generating function ω(x) is µ-strongly convex, then the output xτ of

Algorithm 5 satisfies

Eτ‖Gα(xτ)‖2 ≤ 16[Φ(x0)−Φ∗]/µ + 10 σ2/µ2

αT
.

To guarantee an ε-stationary point as defined in Definition 4.3, by Remark 2.9, the sample
complexity is O(ε−3).

The sample complexity for Algorithm 5 to achieve an ε-stationary point defined in
Definition 4.3 is O(ε−3), improving on the O(ε−4) complexity of ProxSGD [37] without
variance reduction and the O(ε−10/3) complexity of ProxSVRG+ [38]. Prox-SpiderBoost
[8] also achieved O(ε−3) sample complexity, but it is a special case of Algorithm 5. The
iteration complexity O(T), i.e. the number of times to compute the update (4.2), varies
with different parameter selections of our algorithm. When setting η = 0 and α = O(1)
to recover Prox-SpiderBoost, we are able to achieve O(ε−2) iteration complexity, also
matching the best known results. More interestingly, when setting η 6= 0 to recover
New 2 or STORM [10], our algorithm is the first to guarantee convergence without using
large batch sizes and also achieves O(ε−3) sample complexity. However, the iteration
complexity when η 6= 0 is also O(ε−3), which is worse than other algorithms.

Concluding Remarks In this chapter, we consider the non-smooth non-convex stochastic
optimization problem defined in (4.1). When combining the general framework in
Algorithm 1 with stochastic mirror descent, we propose Algorithm 5 and show that
the sample complexity is still O(ε−3) to guarantee an ε-stationary point as defined in
Definition 4.3. The convergence analysis for Algorithm 5 is greatly simplified with
results in Chapter 2. This further shows the effectiveness and convenience of our general
analysis for variance reduction methods.

38

Chapter 5

Experiments

In this chapter, we present some numerical experiments to compare different variance
reduction methods designed for non-convex stochastic optimization. Although these
variance reduction methods are very powerful in theoretical analysis, there has been
a lack of empirical evidence to verify their effectiveness in practical applications. For
example, Defazio and Bottou [82] studied the behaviors of SVRG [5] for its application
in convolutional neural networks. They found that SVRG fails to reduce the variance
and fails to improve upon the performance of SGD, especially for large models. The
work mainly studied SVRG and its variants such as SAGA [6] and SCSG [83]. Since
such variance reduction methods are mainly designed for convex and strongly-convex
objectives, it remains unknown whether the same holds true for non-convex variance
reduction methods such as SPIDER [7] and STORM [10] measured by ε-stationarity.

Cutkosky and Orabona [10] thought the failure of SVRG and SPIDER in non-convex
optimization applications stems from the use of non-adaptive stepsizes and large batch
sizes, and that’s why they proposed STORM. They compared the performance of STORM
to the widely-used AdaGrad [84] and Adam [85] on an image recognition task using
a ResNet [1] model, and showed that STORM is marginally better. PAGE [26] also
included empirical comparison on the image recognition task for different deep learning
architectures. The experiments show that PAGE is marginally better than SGD. These
pioneer works for the application of variance reduction in practical non-convex problems
might suggest that single-loop algorithms or algorithms without the use of large batch
sizes should be our choice.

As a benefit of our general framework, all variance reduction methods were implemented
through Algorithm 1 and recovered according to different parameter choices discussed
in Section 2.4. We mainly compared the performances of SpiderBoost [8], SARAH [9],
STORM [10] and New 2 on three minimization problems. The parameter selections for
individual method follow from Table 2.1. We provide the configuration used in our
experiments in Table 5.1 to give an example on how to select them in practice.

We mainly tuned the stepsize α and the momentum parameter η (for New 2 and STORM)
in specific applications, and other parameters were fixed to the values in Table 5.1. For
STORM, we let αt =

k
(ω+t)1/3 and ηt = cα2

t according to the original paper [10], and tuned
k, ω and c. Table 5.1 is just one example, and other configurations are also possible. All
parameters are selected such that each algorithm is clearly separated from the others
by their characterizations listed in Table 2.1. For example, SPIDER requires large batch
sizes for both D and S with D > S; SARAH allows small batch size S but need larger
Q. Note that in theoretical analysis, we let S = 1 or D = 1 to avoid mini-batches. In
our experiments, we instead use small batch size S = 32, which is a common choice in

39

Table 5.1: Parameter settings for Algorithm 1 in our experiments to recover the variance reduction
methods according to Table 2.1. SPIDER refers to its improved version SpiderBoost. Since the
general framework recovers SGD by setting η = 1 and D = S, we also include it here. PAGE [26]
is the loopless version of SPIDER/SARAH. For single-loop algorithms SGD, New 2 and STORM,
Q is set to be T. The momentum parameter η for New 2 and STORM, as well as the stepsize α
for all algorithms are tuned for different problems.

Parameters SGD SPIDER SARAH PAGE New 2 STORM
η 1 0 0 0 - -
D 32 1024 1024 1024 256 32
S 32 256 32 32 32 32
Q - 32 256 - - -

practical applications. The settings of New 1 is between SPIDER and SARAH, and thus
generating similar performance, so we leave it out.

Toy Example We first consider a toy example:

min
x∈Rd

f (x) = ln
(

1
2
‖Ax− b‖2 + 1

)
, (5.1)

where A ∈ Rn×d and b ∈ Rn. The objective above is non-convex and smooth with
one global minimum when ‖Ax − b‖ = 0 and several other stationary points when
‖Ax− b‖ → ∞. It highly relates to linear regression when regarding A as the feature
matrix and b as labels. Here we implemented a pure stochastic setting by adding random
noise to the true gradient, and an average of all the samples in the batch is returned if
involving mini-batches. A and b were generated in the following two ways.

• We let n = 200 and d = 100. Each entry of A and b was sampled independently
from the standard Gaussian distribution N (0, 1). At each query point, a random
vector with every entry sampled independently from N (0, 10) was added to the
true gradient, leading to an unbiased gradient estimate.

• We used the well-known Boston house prices dataset [86] for the feature matrix
A and label b. The number of instances is 506. For each instance, there are 13
attributes representing basic information of the house, i.e. n = 506 and d = 13. The
goal is to predict the price. Similar to the above case, we added a random vector
with every entry sampled independently from N (0, 1) to the true gradient.

For both cases, we swept α over the same logarithmically spaced grid for all algorithms
except STORM. The best choice of SGD is α = 0.001 for randomly generated data and
α = 10−5 for Boston house prices dataset. The best choice of other algorithms is α = 0.01
for both types of data. This is aligned with our theoretical analysis, since the stepsize
for SGD should be O(1/

√
T), which is of order O(ε2) to guarantee an ε-stationary point

and is smaller comparing to variance reduction methods as listed in Table 2.1. For New2,
η = 10−4 generates the best performance, and it is of order O(α2). For STORM, the best
setting is k = ω = 0.1 and c = 0.01. We measure the performance of each algorithm by
Euclidean norm of the true gradient and plot it against the number of samples used in
Figure 5.1. The performance of every method is averaged over 10 different runs.

Figure 5.1 suggests that variance reduction methods with momentum parameter η 6= 0,
i.e. New 2 and STORM, are much better than others. They converge faster to some
stationary point with the smallest gradient norm. SARAH and PAGE are better than
SPIDER, and all variance reduction methods are better than SGD. It is worth mentioning

40

(a) Simulated Data (b) Boston House Prices

Figure 5.1: The performances of different algorithms to solve (5.1). Logarithmic scale is adopted
for the norm of the true gradients. (a) is the case when A and b are randomly sampled, while in
(b) the real-world Boston house prices dataset are used.

that SGD actually converges to the global optimum and variance reduction methods
converge to other stationary points. This coincides with the intuition that the noise in
SGD helps to escape local optima.

Robust Linear Regression Then we extend the toy example (5.1) to one practical variant,
i.e. robust linear regression considered in SpiderBoost [8]. Given a dataset {ai, bi}n

i=1
with vectors ai ∈ Rd representing features and bi ∈ R representing the target labels, the
goal is to find some vector x ∈ Rd such that aT

i x is close to bi for each instance i. We
want to minimize the following objective function:

min
x∈Rd

f (x) =
1
n

n

∑
i=1

ln
(

1
2
(a>i x− bi)

2 + 1
)

. (5.2)

The objective above is more robust to outliers comparing to the general linear regression.
Equation (5.2) is of finite-sum form and is slightly different from (5.1). The gradient
estimate in this case is computed at one randomly sampled instance i, and is unbiased
when taking expectations. When involving mini-batches, an average of all instances in
the batch is simply returned.

We tested all algorithms on the California housing dataset [87] with information of the
houses as feature vectors and prices as targets. The number of instances is n = 20640
and the number of attributes for each instance is d = 8. The dataset was splitted to a
training set with size 15480 and a test set with size 5160. We optimized the objective
on the training set and then tested the performance on the test set. The same as before,
we swept α over logarithmically spaced grid and tuned η for New 2, and k, ω, c for
STORM. For SPIDER, the best stepsize is α = 0.1. For other algorithms, the best stepsize
is α = 0.01. This verifies the analysis in Chapter 2 that SPIDER allows larger stepsize.
We let η = 0.001 for New 2 and k = ω = 0.1 and c = 1 for STORM.

We measured the performances of all algorithms by three metrics plotted in Figure
5.2. The training loss and training gradient norm show the optimization ability of each
methods, and the test mean squared error (MSE) 1

|Dtest| ∑i∈Dtest
(a>i x− bi)

2 if we denote
the test set as Dtest measures the generalization ability. The performance of every method
is averaged over 10 different runs. Figure 5.2 shows that New 2 and STORM have the
best performances, and SGD is better than the remaining methods. SPIDER converges

41

(a) Training Gradient Norm (b) Training Loss (c) Test Mean Squared Error

Figure 5.2: Behaviors of different algorithms for solving (5.2) on California housing dataset. All
metrics are plotted against number of samples with ntrain = 15480 as the training size, and
logarithmic scale is used. (a) shows the Euclidean norm of the true gradient during training, (b)
plots the training objective values and (c) compares the mean squared error on the test dataset.

slightly faster than SGD due to the larger stepsize, but the final training loss and test MSE
are slightly worse. We also find that all methods converge to similar levels of training
loss and test MSE, although the convergence speed differs a lot. There is some small
oscillation for the training gradient norm of STORM, and it is periodic between each pass
of the training set. This happens because we reset the stepsize to be k/ω1/3, i.e. t = 0, at
the beginning of each pass, and we found this actually generated better performance.

Multi-Class Classification The last example is a multi-class classification task on the
commonly-used MNIST dataset [88]. The dataset contains 60000 images of hand-written
digits, each with size 28× 28. The task is to classify every image to the correct number
it represents. We used 50000 data for training and the rest 10000 for testing, and each
image was flattened to a feature vector of size 784.

We first compared the performances of each algorithm using multi-class logistic regres-
sion as follows.

min
x∈R784×10

f (x) =
1
n

n

∑
i=1

`(x; ai, bi) + λ
784

∑
i=1

9

∑
j=0

x2
ij

1 + x2
ij

,

where {ai, bi}n
i=1 is the dataset with ai ∈ R784 representing the flattened image and

bi ∈ {0, 1, · · · , 9} representing the digit, and `(x; ai, bi) is the cross-entropy loss given by

`(x; ai, bi) = − ln

(
exp(a>i xbi)

∑9
j=0 exp(a>i xj)

)
.

Besides the original cross-entropy loss, we added some non-convex regularization with
λ = 0.1 to make the objective non-convex [8].

We tuned all parameters in the same way as before. The best choice is α = 0.001 for SGD,
New 2 and PAGE, α = 0.005 for SPIDER and α = 5× 10−4 for SARAH. We see again
that the stepsize for SPIDER is larger, and we also notice that the stepsize for SARAH is
smaller, as suggested by our theoretical analysis. Other parameters are η = 0.1 for New
2, and k = 0.01, ω = 10 and c = 104 for STORM. Different from previous cases, η is large
for both New 2 and STORM. Note that c = 104 is valid when iteration T is large, and this
leads to the same level of η as New 2 in most iterations. We measured the performances
of all methods by training loss and test accuracy as a convention. The results are shown
in Figure 5.3.

42

(a) Training Loss (b) Test Accuracy

Figure 5.3: The performances of different algorithms for the multi-class classification task on the
MNIST dataset using logistic regression. Both metrics are plotted against number of samples
used during training with ntrain = 50000 as the training size.

Figure 5.3 shows that STORM performs the best. It converges the fastest and the final test
accuracy is also the highest. New 2 and SGD perform similarly, and are both better than
the remaining three methods. However, the final loss and accuracy of all the algorithms
do not differ too much. The only concern is the convergence speed. The reason might be
that classification task on MNIST is not very challenging, and that the objective function
is not too non-convex. Thus variance reduction methods can not take full advantages
compared with SGD.

(a) Training Loss (b) Test Accuracy

Figure 5.4: The performances of different algorithms for the multi-class classification task on the
MNIST dataset using a three-layer neural network. Both metrics are plotted against number of
samples used during training with ntrain = 50000 as the training size.

We then tested all the algorithms on a three-layer fully-connected neural network. The
objective is

min
x

f (x) =
1
n

n

∑
i=1

`(x; ai, bi),

where x denotes the parameters of the network and `(x; ai, bi) represents a forward pass
given data sample ai and bi. The network consisted of two hidden layers with 128 and 64
units respectively. ReLU activation function was used for hidden layers and Softmax was
used to compute the outputs. The objective is non-convex, and we implemented it with

43

PyTorch [89].

The best choice is α = 0.001 for SGD, New 2 and PAGE, α = 10−4 for SPIDER and
α = 5× 10−5 for SARAH. This again verifies that SARAH requires smaller stepsizes. We
chose η = 0.1 for New 2 and k = 0.01, ω = 10 and c = 104 for STORM. The performance
results are given in Figure 5.4. In Figure 5.4, New 2 and STORM still perform better
than SGD, and SGD is better than SPIDER, SARAH and PAGE. This again suggests that
single-loop algorithms without using large batch sizes are better than others.

Concluding Remarks In this chapter, we provide experiments on three non-convex min-
imization problems to compare different variance reduction methods. Our experiments
suggest that New 2 and STORM perform better than other algorithms, thus introducing
the momentum parameter η 6= 0 indeed helps to improve the practical performances.
Note that the new variant New 2 performs similar to the state-of-the-art algorithm
STORM, showing the benefits of our general framework. To our best knowledge, this
is the first result to empirically compare different variance reduction methods for non-
convex optimization. We hope this will provide some useful hints for the application of
variance reduction methods in practice.

44

Chapter 6

Conclusion

The thesis provides a general framework for the analysis of a class of variance reduction
methods designed for non-convex stochastic optimization. In the unbiased setting, we
observe many potential parameter choices that can achieve the optimal oracle complexity
for non-convex stochastic optimization. In the biased setting, we identify the condition
on the bias to achieve the optimal complexity. The condition serves as a guideline
and a common recipe for white-box biased stochastic oracle constructions of structured
non-convex stochastic optimization. Based on that, we obtain a family of single-loop near-
optimal algorithms for stochastic bilevel optimization, stochastic minimax optimization
and stochastic compositional optimization. We further study the case when the objective
function can be non-smooth as well. Our results suggest that these variance reduction
methods can be directly extend to non-smooth case via stochastic mirror descent, and
that the optimal complexity results also hold.

As for future studies, we provide three potential directions.

• It remains interesting to apply the general framework to more applications where
the oracle is biased or the objective function is non-smooth. It is also interesting
to find other variants of the original non-convex stochastic optimization problems
where our general framework is still helpful.

• Our analysis focus on the dependence on ε and ignores most constants e.g. smooth-
ness parameter LF. In stochastic bilevel optimization and stochastic minimax
optimization, the dependence on the condition number κ is also important. It
would be interesting to see whether our framework can be combined with acceler-
ating techniques to obtain better dependence on κ.

• Since there has been very few empirical evidence to show the improved complexity
of variance reduction methods compared to SGD, it would be interesting to conduct
more experiments for different large-scale dataset and different models, especially
in deep learning. The experiments on structured optimization problems such as
bilevel optimization and minimax optimization will also be valuable, as they can
be direct applied to several recent machine learning problems, e.g. meta-learning,
hyper-parameter optimization and adversarial learning.

45

Appendix A

Deferred Proofs

A.1 Proofs of Results in Chapter 2

We give proofs of Lemma 2.5 and Lemma 2.6 in this section. The proof of Lemma 2.6 is
divided into two parts, i.e., Lemma A.1 for the case when η = 0, and Lemma A.2 for the
case when η 6= 0.

We first give proof of Lemma 2.5 for completeness.

Proof (Lemma 2.5) Subtracting ∇F(xt) from both sides of the recursive update (2.4), we
decompose the error as the following.

ht −∇F(xt) = (1− η)

(
ht−1 −

1
S

S

∑
i=1
∇ f (xt−1; ξi

t)

)
+

1
S

S

∑
i=1
∇ f (xt; ξi

t)−∇F(xt)

= (1− η)(ht−1 −∇F(xt−1)) +
1
S

S

∑
i=1
∇ f (xt; ξi

t)−∇F(xt)

+ (1− η)

(
∇F(xt−1)−

1
S

S

∑
i=1
∇ f (xt−1; ξi

t)

)

= (1− η)(ht−1 −∇F(xt−1)) + η

(
1
S

S

∑
i=1
∇ f (xt; ξi

t)−∇F(xt)

)

+ (1− η)

(
1
S

S

∑
i=1

δ(ξi
t)−Eξt [δ(ξt)]

)
, (A.1)

where we denote δ(ξt) := ∇ f (xt; ξt)−∇ f (xt−1; ξt). For notation simplicity, we let

∆1 =
1
S

S

∑
i=1
∇ f (xt; ξi

t)−∇F(xt),

∆2 =
1
S

S

∑
i=1

δ(ξi
t)−Eξt [δ(ξt)].

Note that when taking expectation w.r.t. St := {ξ1
t , · · · , ξS

t }, the last two terms of (A.1)
become 0 and thus

At = E

∥∥∥(1− η)(ht−1 −∇F(xt−1)) + η∆1 + (1− η)∆2

∥∥∥2

(a)
= (1− η)2At−1 + E‖η∆1 + (1− η)∆2‖2

(b)
≤ (1− η)At−1 + 2η2E‖∆1‖2 + 2E‖∆2‖2, (A.2)

46

A.1. Proofs of Results in Chapter 2

where (a) uses the fact that the cross terms

ESt [∆
>
1 (ht−1 −∇F(xt−1))] = ESt [∆

>
2 (ht−1 −∇F(xt−1)] = 0,

since ht−1 and xt−1 do not depend on St, and (b) uses the fact that ‖a + b‖2 ≤ 2‖a‖2 +
2‖b‖2 and 1− η ∈ [0, 1].

For E‖∆1‖2, using the fact that each sample is independent from each other and bounded
variance condition (2.2) in Assumption 2.2, we have that

E‖∆1‖2 = E

∥∥∥∥∥ 1
S

S

∑
i=1
∇ f (xt; ξi

t)−∇F(xt)

∥∥∥∥∥
2

=
1
S2

S

∑
i=1

E‖∇ f (xt; ξi
t)−∇F(xt)‖2 ≤ σ2

S
.

For E‖∆2‖2, we also have that

E‖∆2‖2 = E

∥∥∥∥∥ 1
S

S

∑
i=1

δ(ξi
t)−Eξt [δ(ξt)]

∥∥∥∥∥
2

=
1
S

E‖δ(ξt)−Eξt [δ(ξt)]‖2

(a)
≤ 1

S
E‖∇ f (xt; ξt)−∇ f (xt−1; ξt)‖2

(b)
≤
`2

f

S
E‖xt − xt−1‖2 =

`2
f

S
α2E‖ht−1‖2,

where (a) follows from the fact that

Eξt‖δ(ξt)−Eξt [δ(ξt)]‖2 = Eξt‖δ(ξt)‖2 − ‖Eξt [δ(ξt)]‖2 ≤ Eξt‖δ(ξt)‖2,

and (b) uses average smoothness condition (2.3) in Assumption 2.2. The proof is complete
if we plug the two bounds for E‖∆1‖2 and E‖∆2‖2 into (A.2) and replace t with t + 1.�

With the help of the above lemma, we analyze the average estimation error 1
T ∑T−1

t=0 At.
We first look at the case when η = 0.

Lemma A.1 For Algorithm 1 with η = 0, supposing Assumption 2.2 holds, we have

1
T

T−1

∑
t=0

At ≤
σ2

D
+ 2`2

f
Qα2

S
· 1

T

T−1

∑
t=0

E‖ht‖2.

Proof When η = 0, Lemma 2.5 becomes

At ≤ At−1 + 2`2
f
α2

S
E‖ht−1‖2,

for t ∈ {1, 2, · · · , Q− 1} ∪ {Q + 1, Q + 2, · · · , 2Q− 1} ∪ · · · , i.e. iterations that t 6≡ 0
(mod Q). Define t = ktQ + bt := k̃t + bt with kt =

⌊
t
Q

⌋
and bt = t− Q

⌊
t
Q

⌋
< Q, such

that k̃t ≤ t < k̃t + Q. We can trace the error At back to Ak̃t
. First, it is easy to see

At ≤ At−1 + 2`2
f
α2

S
E‖ht−1‖2 ≤ At−2 + 2`2

f
α2

S

t−1

∑
r=t−2

E‖hr‖2.

47

A.1. Proofs of Results in Chapter 2

Then by induction, we have

At ≤ Ak̃t
+ 2`2

f
α2

S

t−1

∑
r=k̃t

E‖hr‖2 ≤ σ2

D
+ 2`2

f
α2

S

t−1

∑
r=k̃t

E‖hr‖2. (A.3)

The last inequality holds since for iteration k̃t = ktQ, by bounded variance condition (2.2)
in Assumption 2.2,

Ak̃t
= E

∥∥∥∥∥ 1
D

D

∑
i=1
∇ f (xk̃t

; ξi
k̃t
)−∇F(xk̃t

)

∥∥∥∥∥
2

≤ σ2

D
.

By convention, we let ∑k̃t−1
r=k̃t

E‖hr‖2 = 0. Thus we have (A.3) for any t = 0, 1, · · · , T − 1.
Summing up from t = 0 to t = T − 1, we obtain

T−1

∑
t=0

At ≤
T−1

∑
t=0

σ2

D
+ 2`2

f
α2

S

T−1

∑
t=0

t−1

∑
r=k̃t

E‖hr‖2

≤ T
σ2

D
+ 2`2

f
Qα2

S

T−1

∑
t=0

E‖ht‖2.

To see the last inequality, we denote Ht = ∑t−1
r=k̃t

E‖hr‖2. For each t, Ht sums from k̃t to

t− 1, involving at most t− k̃t = bt < Q entries. Equivalently, for each t, the entry E‖ht‖2

only appears in Ht+1, Ht+2, · · · , Hk̃t+Q−1. To explain why, let t′ > t be some iteration after
t. If t′ ≤ k̃t + Q− 1, we have k̃t′ = k̃t ≤ t, and thus E‖ht‖2 appears in Ht′ . If t′ ≥ k̃t + Q,
then k̃t′ = k̃t + Q > t since bt < Q, and thus E‖ht‖2 does not appear in Ht′ . Therefore,
in the double sum ∑T−1

t=0 Ht, each E‖ht‖2 only appears k̃t + Q− 1− t = Q− bt − 1 < Q
times. As a result, we have

T−1

∑
t=0

t−1

∑
r=k̃t

E‖hr‖2 ≤
T−2

∑
t=0

Q ·E‖ht‖2 ≤
T−1

∑
t=0

Q ·E‖ht‖2, (A.4)

and the proof is complete by dividing T on both sides. �

Lemma A.1 implies that, when η = 0, we need large D and small Q to control the error.
It means that we need to compute multiple checkpoint gradients, each with a large batch
size. This can be avoided by introducing the momentum parameter η > 0.

Lemma A.2 For Algorithm 1 with η 6= 0, supposing Assumption 2.2 holds, we have

1
T

T−1

∑
t=0

At ≤
σ2

cηαD
1

αT
+

2cησ2

S
1

αT

T−1

∑
t=0

α3 +
2`2

f

cηS
1
T

T−1

∑
t=0

E‖ht‖2,

with the choice that η = cηα2 for some constant cη ∈ (0, 1/α2).

Proof For any t = 0, 1, · · · , Q− 2, Lemma 2.5 holds true. Rearranging terms and dividing
both sides by α, we have

η

α
At ≤

At

α
− At+1

α
+

2σ2

S
η2

α
+

2`2
f α

S
E‖ht‖2.

Under the choice that η = cηα2, we have for any t = 0, 1, · · · , Q− 2,

cηαAt ≤
At

α
− At+1

α
+

2c2
ησ2

S
α3 +

2`2
f α

S
E‖ht‖2.

48

A.2. Proofs of Results in Chapter 3

Summing up from t = 0 to t = Q− 2, since AQ−1 ≥ 0, we obtain

cηα
Q−2

∑
t=0

At ≤
A0

α
+

2c2
ησ2

S

Q−2

∑
t=0

α3 +
2`2

f α

S

Q−2

∑
t=0

E‖ht‖2

≤ σ2

αD
+

2c2
ησ2

S

Q−2

∑
t=0

α3 +
2`2

f α

S

Q−2

∑
t=0

E‖ht‖2. (A.5)

The last inequality holds since in iteration t = 0, we compute a checkpoint gradient with
batch size D. Different from Lemma A.1, we already have the bound for summation of
At and there is no double-sum involved. Thus we can just set Q = T.

For the case when t = Q− 1 = T − 1, to make sure that Lemma 2.5 holds, for simplicity
of the analysis, we can run one additional recursive gradient update to compute hT and
thus AT is well-defined. This will not affect the sample complexity and output of the
Algorithm. Therefore, the summation in (A.5) can be extended to t = T − 1 and the
proof is complete by dividing both sides by cηαT. �

From Lemma A.2, when η 6= 0, we can set Q = T and the bound has a better dependence
on D. This means that we only need to compute the checkpoint gradient for one time
with a much smaller batch size at the beginning of the algorithm.

Combining Lemma A.1 and A.2, the proof of Lemma 2.6 is complete.

A.2 Proofs of Results in Chapter 3

This section contains the proof of Theorem 3.2 for the convergence rate of Algorithm
1 with general biased oracle under ABG condition, and proofs of three convergence
theorems for applications of the general framework to different examples.

A.2.1 General Framework with Biased Gradient Estimates

We give the proof of Theorem 3.2 below.

Proof (Theorem 3.2) For completeness, we repeat here the analysis to obtain (3.3). Since
F(x) is LF-smooth by Assumption 2.1, we have

F(xt+1) ≤ F(xt) +∇F(xt)
>(xt+1 − xt) +

LF

2
‖xt+1 − xt‖2

(a)
= F(xt)− α∇F(xt)

>ht +
LF

2
α2‖ht‖2

(b)
= F(xt)− α

(
1
2
‖∇F(xt)‖2 +

1
2
‖ht‖2 − 1

2
‖ht −∇F(xt)‖2

)
+

LF

2
α2‖ht‖2

(c)
≤ F(xt)−

α

2
‖∇F(xt)‖2 − α

3
‖ht‖2 +

α

2
‖ht −∇F(xt)‖2,

where (a) uses the update rule, (b) follows from the fact that 2a>b = ‖a‖2 + ‖b‖2 − ‖a−
b‖2 and (c) uses the choice that α ≤ 1

3LF
.

After taking full expectations, rearranging terms and dividing both sides by α/2, we get

E‖∇F(xt)‖2 ≤ 2
α

E[F(xt)− F(xt+1)]−
2
3

E‖ht‖2 + E‖ht −∇F(xt)‖2.

49

A.2. Proofs of Results in Chapter 3

We proceed by bounding the last term using the inequality that ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2.

E‖ht −∇F(xt)‖2 = E‖ht −Eξt [∇̄ f (xt; ξt)] + Eξt [∇̄ f (xt; ξt)]−∇F(xt)‖2

≤ 2E‖ht −Eξt [∇̄ f (xt; ξt)]‖2 + 2E‖Eξt [∇̄ f (xt; ξt)]−∇F(xt)‖2

= 2At + 2Bt.

Therefore, we have

E‖∇F(xt)‖2 ≤ 2
α

E[F(xt)− F(xt+1)]−
2
3

E‖ht‖2 + 2At + 2Bt.

By the fact that Eτ‖∇F(xτ)‖2 = 1
T ∑T−1

t=0 E‖∇F(xt)‖2, summing up from t = 0 to t =
T − 1 and dividing both sides by T, we have

Eτ‖∇F(xτ)‖2 ≤ 2
αT

T−1

∑
t=0

E[F(xt)− F(xt+1)]−
2

3T

T−1

∑
t=0

E‖ht‖2 +
2
T

T−1

∑
t=0

At +
2
T

T−1

∑
t=0

Bt

≤ 2[F(x0)− F∗]
αT

− 2
3T

T−1

∑
t=0

E‖ht‖2 +
2
T

T−1

∑
t=0

At +
2
T

T−1

∑
t=0

Bt,

since F(xT) ≥ F∗ := minx F(x). Utilizing the bound in Theorem 2.7 for the estimation
error At and the (ρ0, ρ1)-ABG condition (note that ρ1-SBG condition implies (0, ρ1)-ABG
condition) for the bias Bt, we have for ρA ∈ (0, 1/3],

Eτ‖∇F(xτ)‖2 ≤ 2[F(x0)− F∗] + 2σ2 + 2ρ0

αT
−
(

2
3
− 2ρA

)
1
T

T−1

∑
t=0

E‖ht‖2 + 2ρ1Eτ‖∇F(xτ)‖2

≤ 2[F(x0)− F∗] + 2σ2 + 2ρ0

αT
+ 2ρ1Eτ‖∇F(xτ)‖2.

As a result, if ρ1 ∈ [0, 1/2), it holds that

Eτ‖∇F(xτ)‖2 ≤ 2[F(x0)− F∗] + 2σ2 + 2ρ0

(1− 2ρ1)αT
,

and the proof is complete. By Assumption 2.1, F∗ is finite, and then Eτ‖∇F(xτ)‖2 =
O(1/(αT)). The oracle complexity is thus O(ε−3) by Remark 2.9 when setting αT =
O(ε−2) to guarantee an ε-stationary point. �

A.2.2 Stochastic Bilevel Optimization

Here we present the proof of Theorem 3.8, i.e. the convergence rate of Algorithm 2 to
solve stochastic bilevel optimization (3.6). In order to prove Theorem 3.8, we also give
the proofs of Lemma 3.6 and 3.7 to control the estimation error and the bias.

We first prove Lemma 3.6.

Proof (Lemma 3.6) The bound for 1
T ∑T−1

t=0 A f
t immediately follows from similar argu-

ments as Lemma 2.6 and Theorem 2.7 by the setting that β2 = α2/c2
β. The bound for

1
T ∑T−1

t=0 Ag
t+1 can be obtained in a similar way. By (3.13), the lower-level estimation error

satisfies

Ag
t+1 ≤ (1− η)Ag

t + 2σ2
g

η2

S
+

2
S

E‖∇g(xt+1, yt+1; ζt+1)−∇g(xt, yt; ζt+1)‖2

≤ (1− η)Ag
t + 2σ2

g
η2

S
+ 2`2

g
α2

S
E‖h f

t ‖2 + 2`2
g

β2

S
E‖hg

t ‖2.

50

A.2. Proofs of Results in Chapter 3

Note that we use the same set of parameters when estimating both the upper-level and
the lower-level gradients. Then with similar arguments, we have

1
T

T−1

∑
t=0

Ag
t+1 ≤

σ2
g

αT
+ ρA

`2
g

`2
f
· 1

T

T−2

∑
t=0

E‖h f
t+1‖

2 +
ρA

c2
β

`2
g

`2
f
· 1

T

T−2

∑
t=0

E‖hg
t+1‖

2.

The reason why we can only sum up from 0 to T − 2 comes from (A.4) and (A.5).
The proof is complete since ∑T−2

t=0 E‖h f
t+1‖2 = ∑T−1

t=1 E‖h f
t ‖2 ≤ ∑T−1

t=0 E‖h f
t ‖2 and that

∑T−2
t=0 E‖hg

t+1‖2 ≤ ∑T−1
t=0 E‖hg

t+1‖2. The selection of ρA and cβ is explained in the proof of
Theorem 3.8. �

Then we give the proof of Lemma 3.7.

Proof (Lemma 3.7) To make sure that yT+1 is well-defined and to simplify the analysis,
we run one additional step yT+1 = yT − βhg

T after obtaining xT. For t = 1, · · · , T, by the
update yt+1 = yt − βhg

t ,

E‖yt+1 − y∗(xt)‖2 = E‖yt − y∗(xt)‖2 + β2E‖hg
t ‖2 − 2βE

[(
hg

t
)>(yt − y∗(xt)

)]
= E‖yt − y∗(xt)‖2 + β2E‖hg

t ‖2 − 2βE
[
∇yG(xt, yt)

>(yt − y∗(xt)
)]

+ 2βE
[(
∇yG(xt, yt)− hg

t
)>(yt − y∗(xt)

)]
. (A.6)

Since y∗(xt) is the lower-level optimal solution given xt, we have ∇yG(xt, y∗(xt)) = 0,
then

E
[
∇yG(xt, yt)

>(yt − y∗(xt)
)]

= E
[(
∇yG(xt, yt)−∇yG(xt, y∗(xt))

)>(yt − y∗(xt)
)]

(a)
≥

µg

µg + Lg
E‖yt − y∗(xt)‖2 +

1
µg + Lg

E‖∇yG(xt, yt)−∇yG(xt, y∗(xt))‖2

=
µg

µg + Lg
E‖yt − y∗(xt)‖2 +

1
µg + Lg

E‖∇yG(xt, yt)‖2

=
µg

µg + Lg
E‖yt − y∗(xt)‖2 +

1
µg + Lg

E‖hg
t −

(
hg

t −∇yG(xt, yt)
)
‖2

(b)
≥

µg

µg + Lg
E‖yt − y∗(xt)‖2 +

1
2(µg + Lg)

E‖hg
t ‖2 − 1

µg + Lg
E‖hg

t −∇yG(xt, yt)‖2,

(A.7)

where (b) follows from the inequality ‖a− b‖2 ≥ 1
2‖a‖2−‖b‖2 and (a) uses a well-known

result [90] that for any µ-strongly convex and L-smooth function f (x), the following is
true: (

∇ f (x)−∇ f (y)
)>(x− y

)
≥ µ

µ + L
‖x− y‖2 +

1
µ + L

‖∇ f (x)−∇ f (y)‖2.

Plugging (A.7) into (A.6), we get

E‖yt+1 − y∗(xt)‖2 ≤
(

1−
2µgβ

µg + Lg

)
E‖yt − y∗(xt)‖2 − β

(
1

µg + Lg
− β

)
E‖hg

t ‖2

+
2β

µg + Lg
Ag

t + 2βE
[(
∇yG(xt, yt)− hg

t
)>(yt − y∗(xt)

)]
. (A.8)

By the inequality 2a>b ≤ ‖a‖2 + ‖b‖2, for some γ1 > 0, we have

2E
[(
∇yG(xt, yt)− hg

t
)>(yt − y∗(xt)

)]
≤ 1

γ1
E‖hg

t −∇yG(xt, yt)‖2 + γ1E‖yt − y∗(xt)‖2.

(A.9)

51

A.2. Proofs of Results in Chapter 3

We define cg =
µg

µg+Lg
such that 1

µg+Lg
=

cg
µg

and choose γ1 = cg. Combining (A.8) and
(A.9), we obtain

E‖yt+1 − y∗(xt)‖2 ≤ (1− cgβ)E‖yt − y∗(xt)‖2 − β

(
cg

µg
− β

)
E‖hg

t ‖2 +

(
2cg

µg
+

1
cg

)
βAg

t .

To handle E‖yt − y∗(xt)‖2 and trace it back to E‖yt − y∗(xt−1)‖2, we have the bound

E‖yt − y∗(xt)‖2 = E‖yt − y∗(xt−1) + y∗(xt−1)− y∗(xt)‖2

(a)
≤ (1 + γ2)E‖yt − y∗(xt−1)‖2 +

(
1 +

1
γ2

)
E‖y∗(xt−1)− y∗(xt)‖2

(b)
≤ (1 + γ2)E‖yt − y∗(xt−1)‖2 +

(
1 +

1
γ2

)
L2

yE‖xt−1 − xt‖2

(c)
= (1 + γ2)E‖yt − y∗(xt−1)‖2 +

(
1 +

1
γ2

)
L2

yα2E‖h f
t−1‖

2,

where (a) uses 2a>b ≤ ‖a‖2 + ‖b‖2 again for some γ2 > 0, (b) follows from property (3.9)
in Lemma 3.4 and (c) holds because of the update rule.

We choose γ2 =
cgβ

2(1−cgβ)
such that (1− cgβ)(1 + γ2) = 1− cg

2 β and (1− cgβ)(1 + 1
γ2
) <

1 + 1
γ2

= 2
cg β − 1 < 2

cgβ , therefore

E‖yt+1 − y∗(xt)‖2 ≤
(

1−
cg

2
β
)

E‖yt − y∗(xt−1)‖2 +
2L2

yα2

cgβ
E‖h f

t−1‖
2

− β

(
cg

µg
− β

)
E‖hg

t ‖2 +

(
2cg

µg
+

1
cg

)
βAg

t .

After rearranging terms and dividing both sides by cg
2 β, we obtain

E‖yt − y∗(xt−1)‖2 ≤ 2
cgβ

(
E‖yt − y∗(xt−1)‖2 −E‖yt+1 − y∗(xt)‖2

)
+

4L2
y

c2
g
· α2

β2 E‖h f
t−1‖

2

− 2
µg

(
1−

µg

cg
β

)
E‖hg

t ‖2 +

(
4

µg
+

2
c2

g

)
Ag

t

≤ 2
cgβ

(
E‖yt − y∗(xt−1)‖2 −E‖yt+1 − y∗(xt)‖2

)
+

4L2
yc2

β

c2
g

E‖h f
t−1‖

2

− 1
µg

E‖hg
t ‖2 +

(
4

µg
+

2
c2

g

)
Ag

t ,

since α
β = cβ and that β ≤ cg

2µg
. Summing up from 1 to T and dividing both sides by T,

we get

1
T

T−1

∑
t=0

E‖yt+1 − y∗(xt)‖2 ≤ 2
cgβT

‖y1 − y∗(x0)‖2 +
4L2

yc2
β

c2
g
· 1

T

T−1

∑
t=0

E‖h f
t ‖2

− 1
µgT

T−1

∑
t=0

E‖hg
t+1‖

2 +

(
4

µg
+

2
c2

g

)
1
T

T−1

∑
t=0

Ag
t+1,

and the proof is complete since β = α/cβ for constant cβ we define in the proof of
Theorem 3.8. �

52

A.2. Proofs of Results in Chapter 3

Now we can prove Theorem 3.8.

Proof (Theorem 3.8) By (3.3) or the proof of Theorem 3.2, we get

Eτ‖∇F(xτ)‖2 ≤ 2[F(x0)− F∗]
αT

− 2
3T

T−1

∑
t=0

E‖h f
t ‖2 +

1
T

T−1

∑
t=0

E‖h f
t −∇F(xt)‖2

≤ 2[F(x0)− F∗]
αT

− 2
3T

T−1

∑
t=0

E‖h f
t ‖2 +

2
T

T−1

∑
t=0

A f
t +

2
T

T−1

∑
t=0

E‖B(xt, yt+1)‖2,

where B(xt, yt+1) defined in (3.14) satisfies

E‖B(xt, yt+1)‖2 ≤
2C2

gxy
C2

fy

µ2
g

(1−
µg

Lg
)2K + 2L2E‖yt+1 − y∗(xt)‖2,

by the inequality ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2. The first term, i.e. the bias induced by

approximating inverse Hessian, is less than 1/(αT) for K ≥ Lg
2µg

log
(

2C2
gxy C2

fy

µ2
g

αT
)

since

µg ≤ Lg. The second term, the error from approximating lower-level optimal solution
y∗(xt) by yt+1, comes from (3.8) in Lemma 3.4.

Putting everything together, by Lemma 3.7, we obtain

Eτ‖∇F(xτ)‖2 ≤ 2[F(x0)− F∗] + 2
αT

− 2
3T

T−1

∑
t=0

E‖h f
t ‖2 +

2
T

T−1

∑
t=0

A f
t + 4L2 · 1

T

T−1

∑
t=0

E‖yt+1 − y∗(xt)‖2

≤ 2[F(x0)− F∗] + 2
αT

− 2
3T

T−1

∑
t=0

E‖h f
t ‖2 +

2
T

T−1

∑
t=0

A f
t +

16L2L2
yc2

β

c2
g

· 1
T

T−1

∑
t=0

E‖h f
t ‖2

+
8cβL2

cgαT
‖y1 − y∗(x0)‖2 − 4L2

µgT

T−1

∑
t=0

E‖hg
t+1‖

2 +

(
16
µg

+
8
c2

g

)
L2 · 1

T

T−1

∑
t=0

Ag
t+1

≤
2[F(x0)− F∗] + 2 + 8cβL2‖y1 − y∗(x0)‖2/cg

αT

−
(

2
3
−

16L2L2
yc2

β

c2
g

)
1
T

T−1

∑
t=0

E‖h f
t ‖2 +

2
T

T−1

∑
t=0

A f
t

− 4L2

µg
· 1

T

T−1

∑
t=0

E‖hg
t+1‖

2 +

(
16
µg

+
8
c2

g

)
L2 · 1

T

T−1

∑
t=0

Ag
t+1,

where we observe some symmetry between the upper-level and lower-level descent.
Using Lemma 3.6 to bound both A f

t and Ag
t+1, we have

Eτ‖∇F(xτ)‖2 ≤
2[F(x0)− F∗] + 2 + 8cβL2‖y1 − y∗(x0)‖2/cg + 2σ2

f + (16/µg + 8/c2
g)L2σ2

g

αT

−
(

2
3
−

16L2L2
yc2

β

c2
g

− 2ρA −
(

16
µg

+
8
c2

g

)
L2 `

2
g

`2
f
ρA

)
1
T

T−1

∑
t=0

E‖h f
t ‖2

−
(

4L2

µg
− 2ρA

c2
β

−
(

16
µg

+
8
c2

g

)
L2 `

2
g

`2
f

ρA

c2
β

)
1
T

T−1

∑
t=0

E‖hg
t+1‖

2.

If we choose cβ =
cg

4
√

6LLy
such that

16L2L2
yc2

β

c2
g

= 1
6 , and

ρA = min

{
1
12

,
µg`2

f

96L2`2
g

,
c2

g`
2
f

48L2`2
g

,
c2

βL2

µg
,

c2
β`

2
f

16`2
g

,
c2

gc2
β`

2
f

8µg`2
g

}

53

A.2. Proofs of Results in Chapter 3

such that

2
3
−

16L2L2
yc2

β

c2
g

− 2ρA −
(

16
µg

+
8
c2

g

)
L2 `

2
g

`2
f
ρA ≥ 0,

4L2

µg
− 2ρA

c2
β

−
(

16
µg

+
8
c2

g

)
L2 `

2
g

`2
f

ρA

c2
β

≥ 0,

we get the desired result. If ‖y1 − y∗(x0)‖2 is bounded, and this can be achieved at least
by some additional steps for miny g(x0, y), we can choose αT = O(ε−2) to obtain an
ε-stationary point. The sample complexity is thus Õ(ε−3) since K = O(log(αT)) =
O(log ε−1) and the total number of samples required for Algorithm 2 is O(T(S +
D/Q)(1 + K)). The requirement for β ≤ 1/2(µg + Lg) in Lemma 3.7 can be satis-
fied by choosing α with an additional requirement that α ≤ cβ/2(µg + Lg) in Lemma 3.6
since β = α/cβ. �

A.2.3 Stochastic Minimax Optimization

In this section, for Algorithm 3 to solve stochastic minimax optimization (3.15), we
prove its convergence rate in Theorem 3.14 for the non-convex strongly-concave case and
Theorem 3.20 for the non-convex P-Ł case.

Non-Convex Strongly-Concave Case

We first give the proof of Lemma 3.13. The proof is very much similar to the proof of
Lemma 3.7 for bilevel optimization.

Proof (Lemma 3.13) By non-expansion of projection, we have

E‖yt+1 − y∗(xt)‖2 ≤ E‖yt + βhy
t − y∗(xt)‖2

= E‖yt − y∗(xt)‖2 + β2E‖hy
t ‖2 + 2βE

[(
(hy

t
)>(yt − y∗(xt)

)]
= E‖yt − y∗(xt)‖2 + β2E‖hy

t ‖2 + 2βE
[
∇yG(xt, yt)

>(yt − y∗(xt)
)]

+ 2βE
[(

hy
t −∇yG(xt, yt)

)>(yt − y∗(xt)
)]

. (A.10)

We know that −G(x, y) is L-smooth and µ-strongly convex in y. The ascent step to maxi-
mize over G(x, ·) is equivalent to the descent step to minimize over −G(x, ·). Therefore,
the same as the proof of Lemma 3.7 for −G(x, ·), by (A.7), we obtain that

E
[
∇yG(xt, yt)

>(yt− y∗(xt)
)]
≤ − 1

1 + κ
E‖yt− y∗(xt)‖2− 1

2µ(1 + κ)
E‖hy

t ‖2 +
1

µ(1 + κ)
Ay

t .

(A.11)
By (A.9) with γ1 = 1

1+κ , we have

2E
[(
∇yG(xt, yt)− hy

t
)>(yt − y∗(xt)

)]
≤ (1 + κ)Ay

t +
1

1 + κ
E‖yt − y∗(xt)‖2. (A.12)

Since y∗(x) is Lipschitz continuous by Lemma 3.10, we know

E‖yt − y∗(xt)‖2 ≤ (1 + γ2)E‖yt − y∗(xt−1)‖2 +

(
1 +

1
γ2

)
E‖y∗(xt−1)− y∗(xt)‖2

≤ (1 + γ2)E‖yt − y∗(xt−1)‖2 +

(
1 +

1
γ2

)
κ2E‖xt−1 − xt‖2

= (1 + γ2)E‖yt − y∗(xt−1)‖2 +

(
1 +

1
γ2

)
κ2α2E‖hx

t−1‖2. (A.13)

54

A.2. Proofs of Results in Chapter 3

Plugging (A.11), (A.12) and (A.13) into (A.10) and choosing γ2 in the same way as in the
proof of Lemma 3.7, we obtain

E‖yt+1 − y∗(xt)‖2 ≤
(

1− β

2(1 + κ)

)
E‖yt − y∗(xt−1)‖2 +

2(1 + κ)κ2α2

β
E‖hx

t−1‖2

− β

(
1

µ(1 + κ)
− β

)
E‖hy

t ‖2 +

(
2

µ(1 + κ)
+ (1 + κ)

)
βAy

t

≤
(

1− β

4κ

)
E‖yt − y∗(xt−1)‖2 + 4κ3 α2

β
E‖hx

t−1‖2

− β

(
1

2µκ
− β

)
E‖hy

t ‖2 +

(
1
µ
+ 2κ

)
βAy

t ,

since κ ≥ 1. After rearranging terms and dividing both sides by β
4κ , we obtain

E‖yt − y∗(xt−1)‖2 ≤ 4κ

β

(
E‖yt − y∗(xt−1)‖2 −E‖yt+1 − y∗(xt)‖2

)
+ 16κ4 α2

β2 E‖hx
t−1‖2

−
(

2
µ
− 4κβ

)
E‖hy

t ‖2 +

(
4κ

µ
+ 8κ2

)
Ay

t

≤ 4κ

β

(
E‖yt − y∗(xt−1)‖2 −E‖yt+1 − y∗(xt)‖2

)
+ 16κ4c2

βE‖hx
t−1‖2

− 1
µ

E‖hy
t ‖2 +

(
4κ

µ
+ 8κ2

)
Ay

t ,

since α
β = cβ and that β ≤ 1

4κµ . Summing up from 1 to T and dividing both sides by T,
we get

1
T

T−1

∑
t=0

E‖yt+1 − y∗(xt)‖2 ≤ 4κ

βT
‖y1 − y∗(x0)‖2 + 16κ4c2

β ·
1
T

T−1

∑
t=0

E‖hx
t ‖2

− 1
µT

T−1

∑
t=0

E‖hy
t+1‖

2 +

(
4κ

µ
+ 8κ2

)
1
T

T−1

∑
t=0

Ay
t+1.

The proof is complete by replacing β with α/cβ for cβ given in the proof of Theorem
3.14. �

With Lemma 3.12 and 3.13, we give the proof of Theorem 3.14.

Proof (Theorem 3.14) By (3.3) or the proof of Theorem 3.2 for the general biased oracle,
we get

Eτ‖∇F(xτ)‖2 ≤ 2[F(x0)− F∗]
αT

− 2
3T

T−1

∑
t=0

E‖hx
t ‖2 +

2
T

T−1

∑
t=0

Ax
t +

2
T

T−1

∑
t=0

E‖B(xt, yt+1)‖2

≤ 2[F(x0)− F∗]
αT

− 2
3T

T−1

∑
t=0

E‖hx
t ‖2 +

2
T

T−1

∑
t=0

Ax
t + 2L2 · 1

T

T−1

∑
t=0

E‖yt+1 − yt‖2,

by (3.16). Since Lemma 3.13 holds and that κ = L
µ , we have

Eτ‖∇F(xτ)‖2 ≤
2[F(x0)− F∗] + 8κL2cβ‖y1 − y∗(x0)‖2

αT

−
(

2
3
− 32κ4L2c2

β

)
1
T

T−1

∑
t=0

E‖hx
t ‖2 +

2
T

T−1

∑
t=0

Ax
t

− 2κL · 1
T

T−1

∑
t=0

E‖hy
t+1‖

2 + (8κ2L + 16κ2L2)
1
T

T−1

∑
t=0

Ay
t+1.

55

A.2. Proofs of Results in Chapter 3

By Lemma 3.12 with an additional requirement that α ≤ cβ

4κµ to guarantee that β ≤ 1
4κµ ,

we obtain

Eτ‖∇F(xτ)‖2 ≤
2[F(x0)− F∗] + 8κL2cβ‖y1 − y∗(x0)‖2 + (2 + 8κ2L + 16κ2L2)σ2

αT

−
(

2
3
− 32κ4L2c2

β − 2ρA − (8κ2L + 16κ2L2)ρA

)
1
T

T−1

∑
t=0

E‖hx
t ‖2

−
(

2κL− 2ρA

c2
β

− (8κ2L + 16κ2L2)
ρA

c2
β

)
1
T

T−1

∑
t=0

E‖hy
t+1‖

2.

If we choose cβ = 1
8
√

3κ2L
such that 32κ4L2c2

β = 1
6 , and

ρA = min

{
1
12

,
1

48κ2L
,

1
96κ2L2 ,

κLc2
β

2
,

c2
β

16κ
,

c2
β

32κL

}
such that

2
3
− 32κ4L2c2

β − 2ρA − (8κ2L + 16κ2L2)ρA ≥ 0,

2κL− 2ρA

c2
β

− (8κ2L + 16κ2L2)
ρA

c2
β

≥ 0,

we get the desired result. Note that the number of samples required for Algorithm 3 is
O(T(2S + 2D/Q)). By Remark 2.9, since ‖y1 − y∗(x0)‖2 is bounded by Assumption 3.9,
if we choose αT = O(ε−2) to guarantee an ε-stationary point, the sample complexity is
O(ε−3). �

Non-Convex P- L Case

We give the proof of Lemma 3.19 below.

Proof (Lemma 3.19) Let t = 1, 2, · · · , T. We know that −G(x, y) is L-smooth w.r.t. y,
thus

−G(xt, yt+1) ≤ −G(xt, yt)−∇yG(xt, yt)
>(yt+1 − yt) +

L
2
‖yt+1 − yt‖2

(a)
= −G(xt, yt)− β∇yG(xt, yt)

>hy
t +

L
2

β2‖hy
t ‖2

(b)
= −G(xt, yt)−

β

2
‖∇yG(xt, yt)‖2 − β

2
(1− βL)‖hy

t ‖2 +
β

2
‖hy

t −∇yG(xt, yt)‖2

(c)
≤ −G(xt, yt)− βµ

(
F(xt)− G(xt, yt)

)
− β

2
(1− βL)‖hy

t ‖2 +
β

2
‖hy

t −∇yG(xt, yt)‖2,

where (a) follows from the update rule of yt in Algorithm 3, (b) holds by the inequality
that 2a>b = ‖a‖2 + ‖b‖2− ‖a− b‖2, and (c) uses Assumption 3.16 that −G(x, y) satisfies
P-Ł condition and the definition (3.15) that F(xt) = maxy G(xt, y).

Adding F(xt) on both sides of the above inequality, we obtain

F(xt)− G(xt, yt+1) ≤ (1− βµ)
(

F(xt)− G(xt, yt)
)
− β

2
(1− βL)‖hy

t ‖2 +
β

2
‖hy

t −∇yG(xt, yt)‖2

= (1− βµ)
(

F(xt−1)− G(xt−1, yt) + G(xt−1, yt)− G(xt, yt) + F(xt)− F(xt−1)
)

− β

2
(1− βL)‖hy

t ‖2 +
β

2
‖hy

t −∇yG(xt, yt)‖2. (A.14)

56

A.2. Proofs of Results in Chapter 3

We first handle the term G(xt−1, yt)− G(xt, yt). Since −G(x, y) is also L-smooth w.r.t. x,
we have

G(xt−1, yt)− G(xt, yt) ≤ −∇xG(xt−1, yt)
>(xt − xt−1) +

L
2
‖xt − xt−1‖2

= α∇xG(xt−1, yt)
>hx

t−1 +
L
2

α2‖hx
t−1‖2

=
α

2
‖∇xG(xt−1, yt)‖2 +

α

2
(1 + αL)‖hx

t−1‖2 − α

2
‖hx

t−1 −∇xG(xt−1, yt)‖2

≤ α

2
(3 + αL)‖hx

t−1‖2 +
α

2
‖hx

t−1 −∇xG(xt−1, yt)‖2, (A.15)

and the last inequality holds by the fact that

‖∇xG(xt−1, yt)‖2 = ‖hx
t−1 − (hx

t−1 −∇xG(xt−1, yt))‖2

≤ 2‖hx
t−1‖2 + 2‖hx

t−1 −∇xG(xt−1, yt)‖2.

Let ∆t = F(xt)− G(xt, yt+1) for simplicity, by (A.14) and (A.15), we obtain

∆t ≤ (1− βµ)∆t−1 + (1− βµ)(F(xt)− F(xt−1))

+
α

2
(3 + αL)(1− βµ)‖hx

t−1‖2 +
α

2
(1− βµ)‖hx

t−1 −∇xG(xt−1, yt)‖2

− β

2
(1− βL)‖hy

t ‖2 +
β

2
‖hy

t −∇yG(xt, yt)‖2,

with the choice that β < 1/µ. Rearranging terms of the above inequality and dividing
both sides by βµ, we have

∆t−1 ≤
∆t−1 − ∆t

βµ
+

(1− βµ)

βµ
(F(xt)− F(xt−1))

+
cβ

2µ
(3 + αL)‖hx

t−1‖2 +
cβ

2µ
‖hx

t−1 −∇xG(xt−1, yt)‖2

− 1
2µ

(1− βL)‖hy
t ‖2 +

1
2µ
‖hy

t −∇yG(xt, yt)‖2,

since 0 < 1− βµ < 1 and the definition cβ = α/β. Summing up the above inequality
from t = 1 to T and dividing T on both sides, we obtain

1
T

T−1

∑
t=0

∆t ≤
∆0 − ∆T

βµT
+

(1− βµ)

βµT
(F(xT)− F(x0))

+
cβ

2µ
(3 + αL) · 1

T

T−1

∑
t=0
‖hx

t ‖2 +
cβ

2µ
· 1

T

T−1

∑
t=0
‖hx

t −∇xG(xt, yt+1)‖2

− 1
2µ

(1− βL) · 1
T

T−1

∑
t=0
‖hy

t+1‖
2 +

1
2µ
· 1

T

T−1

∑
t=0
‖hy

t+1 −∇yG(xt+1, yt+1)‖2.

Note that ∆0 = F(x0)− G(x0, y1) and ∆T ≥ 0 by definition of F(x), finally we obtain

1
T

T−1

∑
t=0

E[∆t] ≤
F(x0)− G(x0, y1)

βµT
+

(
1− 1

βµ

)
F(x0)− F(xT)

T

+
cβ

2µ
(3 + αL) · 1

T

T−1

∑
t=0

E‖hx
t ‖2 +

cβ

2µ
· 1

T

T−1

∑
t=0

Ax
t

− 1
2µ

(1− βL) · 1
T

T−1

∑
t=0

E‖hy
t+1‖

2 +
1

2µ
· 1

T

T−1

∑
t=0

Ay
t+1. �

57

A.2. Proofs of Results in Chapter 3

Now we can give the proof of Theorem 3.20.

Proof (Theorem 3.20) By Lemma 3.17, F(x) is LF-smooth with LF = 2κL. With the same
analysis as in the proof of Theorem 3.2, since (3.17) holds, we have that

Eτ‖∇F(xτ)‖2 ≤ 2[F(x0)− F(xT)]

αT
− 2

3T

T−1

∑
t=0

E‖hx
t ‖2 +

2
T

T−1

∑
t=0

Ax
t +

2
T

T−1

∑
t=0

E‖B(xt, yt+1)‖2

≤ 2[F(x0)− F(xT)]

αT
− 2

3T

T−1

∑
t=0

E‖hx
t ‖2 +

2
T

T−1

∑
t=0

Ax
t +

4κL
T

T−1

∑
t=0

E
[

F(xt)− G(xt, yt+1)
]
,

Since Lemma 3.19 holds,

Eτ‖∇F(xτ)‖2 ≤
(2 + 4κ2(µα− cβ))[F(x0)− F(xT)]

αT
+

4κ2cβ(F(x0)− G(x0, y1))

αT

−
(

2
3
− 2κ2Lcβ · α− 6κ2cβ

)
· 1

T

T−1

∑
t=0

E‖hx
t ‖2 + (2 + 2κ2cβ) ·

1
T

T−1

∑
t=0

Ax
t

− 2κ2(1− βL) · 1
T

T−1

∑
t=0

E‖hy
t+1‖

2 + 2κ2 · 1
T

T−1

∑
t=0

Ay
t+1.

By Lemma 3.12 with an additional requirement that α <
cβ

µ to guarantee that β < 1
µ , we

obtain

Eτ‖∇F(xτ)‖2 ≤
(2 + 4κ2(µα− cβ))[F(x0)− F(xT)] + 4κ2cβ∆0 + (2 + 2κ2 + 2κ2cβ)σ

2

αT

−
(

2
3
− 2κ2Lcβ · α− 6κ2cβ − (2 + 2κ2 + 2κ2cβ)ρA

)
· 1

T

T−1

∑
t=0

E‖hx
t ‖2

−
(

2κ2 − 2κ2L · β− (2 + 2κ2 + 2κ2cβ)
ρA

c2
β

)
· 1

T

T−1

∑
t=0

E‖hy
t+1‖

2.

We choose cβ = 1
36κ2 and α ≤ 3

L such that 6κ2cβ = 1
6 and 2κ2Lcβ · α ≤ 1

6 . We choose
β ≤ 1

4L such that 2κ2L · β ≤ κ2

2 . Then if ρA satisfies

ρA = min

{
1

18
,

1
18κ2 ,

1
18κ2cβ

,
κ2c2

β

4
,

c2
β

4
,

cβ

4

}
=

c2
β

4
,

such that
2
3
− 2κ2Lcβ · α− 6κ2cβ − (2 + 2κ2 + 2κ2cβ)ρA ≥ 0

2κ2 − 2κ2L · β− (2 + 2κ2 + 2κ2cβ)
ρA

c2
β

≥ 0,

we get that

Eτ‖∇F(xτ)‖2 ≤
(2 + 4κ2(µα− cβ))[F(x0)− F(xT)] + 4κ2cβ∆0 + (2 + 2κ2 + 2κ2cβ)σ

2

αT

≤ 2[F(x0)− F∗] + ∆0/9 + (37/18 + 2κ2)σ2

αT
,

where the last inequality holds since for α <
cβ

µ ,

(2 + 4κ2(µα− cβ))[F(x0)− F(xT)] = (2− 1/9 + 4κ2µα)[F(x0)− F(xT)]

≤ (2− 1/9 + 4κ2µα)[F(x0)− F∗]
≤ 2[F(x0)− F∗].

58

A.2. Proofs of Results in Chapter 3

Note that the number of samples required for Algorithm 3 is O(T(2S + 2D/Q)). By
Remark 2.9, if we choose αT = O(ε−2) to guarantee an ε-stationary point, the sample
complexity is O(ε−3). �

A.2.4 Stochastic Compositional Optimization

The last example is the stochastic compositional optimization defined in (3.18). We
provide a detailed proof of Lemma 3.22 and Theorem 3.23 to show the O(ε−3) sample
complexity of Algorithm 4 in this section.

Before proving Lemma 3.22, we first verify that the biased oracle ∇ f2(xt; ζ̃t)>∇ f1(yt; ξt)
satisfies Assumption 3.1, i.e. bounded variance condition (3.1) and average smoothness
condition (3.2). This allows us to apply the general analysis in Chapter 2.

The bounded variance condition holds with constant σ2 := 2M2
f2

σ2
f1
+ 2M2

f1
σ2

f ′2
as shown

below.

Eζ̃,ξ‖∇ f2(x; ζ̃)>∇ f1(y; ξ)−∇F2(x)>∇F1(y)‖2

= Eζ̃,ξ‖∇ f2(x; ζ̃)>(∇ f1(y; ξ)−∇F1(y)) + (∇ f2(x; ζ̃)−∇F2(x))>∇F1(y)‖2

≤ 2Eζ̃‖∇ f2(x; ζ̃)‖2 ·Eξ‖∇ f1(y; ξ)−∇F1(y)‖2 + 2Eζ̃‖∇ f2(x; ζ̃)−∇F2(x)‖2 · ‖∇F1(y)‖2

≤ 2M2
f2

σ2
f1
+ 2M2

f1
σ2

f ′2
:= σ2, (A.16)

since f2(x; ζ̃) is M f2-Lipschitz and F1(y) is M f1-Lipschitz by Assumption 3.21. The
average smoothness condition can be proved in a similar way.

Eζ̃,ξ‖∇ f2(x1; ζ̃)>∇ f1(y1; ξ)−∇ f2(x2; ζ̃)>∇ f1(y2; ξ)‖2

= Eζ̃,ξ‖∇ f2(x1; ζ̃)>(∇ f1(y1; ξ)−∇ f1(y2; ξ)) + (∇ f2(x1; ζ̃)−∇ f2(x2; ζ̃))>∇ f1(y2; ξ)‖2

≤ 2Eζ̃‖∇ f2(x1; ζ̃)‖2 ·Eξ‖∇ f1(y1; ξ)−∇ f1(y2; ξ)‖2

+ 2Eζ̃‖∇ f2(x1; ζ̃)−∇ f2(x2; ζ̃)‖2 ·Eξ‖∇ f1(y2; ξ)‖2

≤ 2M2
f2

L2
f1
‖y1 − y2‖2 + 2M2

f1
L2

f2
‖x1 − x2‖2, (A.17)

with all constants defined in Assumption 3.21. Now we give the proof of Lemma 3.22.

Proof (Lemma 3.22) We use ht to estimate ∇F2(xt)>∇F1(yt) via ∇ f2(xt; ζ̃t)>∇ f1(yt; ξt)
by the general framework. Let At = E‖ht −∇F2(xt)>∇F1(yt)‖2 be the estimation error.
Note that Eζ̃t,ξt

[∇ f2(xt; ζ̃t)>∇ f1(yt; ξt)] = ∇F2(xt)>∇F1(yt), similar to (A.2) in the proof
of Lemma 2.5, by (A.16) and (A.17), we obtain

At ≤ (1− η)At−1 + 2σ2 η2

S
+

2
S

E‖∇ f2(xt; ζ̃t)
>∇ f1(yt; ξt)−∇ f2(xt−1; ζ̃t)

>∇ f1(yt−1; ξt)‖2

≤ (1− η)At−1 + 2σ2 η2

S
+

4M2
f2

L2
f1

S
E‖yt − yt−1‖2 +

4M2
f1

L2
f2

S
E‖xt − xt−1‖2. (A.18)

Then we analyze the term E‖yt − yt−1‖2. The equivalent term in bilevel and minimax

59

A.2. Proofs of Results in Chapter 3

case is handled by lower-level descent. Here we bound it by the recursive update of y.

E‖yt − yt−1‖2 (a)
= E

∥∥∥∥∥ 1
S

S

∑
i=1

f2(xt; ζ i
t)− ηyt−1 − (1− η)

1
S

S

∑
i=1

f2(xt−1; ζ i
t)

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1
S

S

∑
i=1

(
f2(xt; ζ i

t)− f2(xt−1; ζ i
t)
)
− η

(
yt−1 −

1
S

S

∑
i=1

f2(xt−1; ζ i
t)

)∥∥∥∥∥
2

≤ 2
S2 E

∥∥∥∥∥ S

∑
i=1

(
f2(xt; ζ i

t)− f2(xt−1; ζ i
t)
)∥∥∥∥∥

2

+ 2η2E

∥∥∥∥∥yt−1 −
1
S

S

∑
i=1

f2(xt−1; ζ i
t)

∥∥∥∥∥
2

(b)
≤ 2

S

S

∑
i=1

E‖ f2(xt; ζ i
t)− f2(xt−1; ζ i

t)‖2 + 4η2E‖yt−1 − F2(xt−1)‖2

+ 4η2E

∥∥∥∥∥F2(xt−1)−
1
S

S

∑
i=1

f2(xt−1; ζ i
t)

∥∥∥∥∥
2

(c)
≤ 2M2

f2
E‖xt − xt−1‖2 +

4η2

S
σ2

f2
+ 4η2E‖yt−1 − F2(xt−1)‖2,

where (a) follows from the update step of yt in Algorithm 4, (b) holds by the inequality
that ‖a1 + a2 + · · · + ak‖2 ≤ k(‖a1‖2 + ‖a2‖2 + · · · ‖ak‖2) which comes from Cauchy-
Schwarz inequality, and (c) uses Assumption 3.21 that f2(x; ζ i

t) is M f2-Lipschitz continu-
ous. Plugging the bound for E‖yt − yt−1‖2 back into (A.18), we obtain

At ≤ (1− η)At−1 + 2(σ2 + 8M2
f2

L2
f1

σ2
f2

/S)
η2

S
+ (4M4

f2
L2

f1
+ 2M2

f1
L2

f2
)

2
S

E‖xt − xt−1‖2

+ 16M2
f2

L2
f1

η2

S
E‖yt−1 − F2(xt−1)‖2

= (1− η)At−1 + 2(σ2 + 8M2
f2

L2
f1

σ2
f2

/S)
η2

S
+ 2`2

f
α2

S
E‖ht−1‖2 + 16M2

f2
L2

f1

η2

S
Bt−1,

where we use xt+1 = xt − αht, Bt = E‖yt −∇F2(xt)‖ and let `2
f := 4M4

f2
L2

f1
+ 2M2

f1
L2

f2
for

notation simplicity. The equation above is almost the same as Lemma 2.5, but has one
additional term in the order of η2Bt−1. We then show this term does not affect too much.

When η = 0, by Lemma 2.6 or Lemma A.1 in Appendix A.1, we have

1
T

T−1

∑
t=0

At ≤
σ2

D
+ 2`2

f
Qα2

S
· 1

T

T−1

∑
t=0

E‖ht‖2,

thus by parameter selection rule (i) in Theorem 2.7, we obtain that

1
T

T−1

∑
t=0

At ≤
σ2

αT
+ ρA ·

1
T

T−1

∑
t=0

E‖ht‖2.

When η 6= 0, by Lemma 2.6 or Lemma A.2 in Appendix A.1, we have

1
T

T−1

∑
t=0

At ≤
1

cηαD
· σ2

αT
+

2cη

S

T−1

∑
t=0

α3 ·
σ2 + 8M2

f2
L2

f1
σ2

f2
/S

αT
+

2`2
f

cηS
· 1

T

T−1

∑
t=0

E‖ht‖2

+ 16M2
f2

L2
f1

cηα2

S
· 1

T

T−1

∑
t=0

Bt,

60

A.2. Proofs of Results in Chapter 3

and then by parameter selection rule (ii) in Theorem 2.7, we obtain that

1
T

T−1

∑
t=0

At ≤
σ2 + 8M2

f2
L2

f1
σ2

f2

αT
+ ρA ·

1
T

T−1

∑
t=0

E‖ht‖2 +
4M2

f2
L2

f1

αT
· 1

T

T−1

∑
t=0

Bt, (A.19)

since cηα2/S = 1/(4αT).

Then we analyse Bt, i.e. the estimation error of yt, in a similar way. We use yt to estimate
F2(xt) via f2(xt; ζt). Under Assumption 3.21, similar to (A.2) in the proof of Lemma 2.5,
the error term satisfies

Bt ≤ (1− η)Bt−1 +
2η2σ2

f2

S
+

2
S

E‖ f2(xt; ζ)− f2(xt−1; ζ)‖2

≤ (1− η)Bt−1 +
2η2σ2

f2

S
+ 2M2

f2

α2

S
E‖ht−1‖2.

Note that we use the same set of parameters for the estimation of F2(xt) and∇F2(xt)>∇F1(yt)
for simplicity. By Lemma 2.6 and the parameter selection rules in Theorem 2.7, we obtain
that

1
T

T−1

∑
t=0

Bt ≤
σ2

f2

αT
+ ρA

M2
f2

`2
f
· 1

T

T−1

∑
t=0

E‖ht‖2.

Without loss of generality, when T is large enough, we have αT ≥ O(T2/3) ≥ 1. Replacing
1
T ∑T−1

t=0 Bt in (A.19) by the above inequality, we have

1
T

T−1

∑
t=0

At ≤
σ2 + 8M2

f2
L2

f1
σ2

f2

αT
+ ρA ·

1
T

T−1

∑
t=0

E‖ht‖2 + 4M2
f2

L2
f1
· 1

T

T−1

∑
t=0

Bt

≤
σ2 + 12M2

f2
L2

f1
σ2

f2

αT
+ ρA

(
1 +

4M4
f2

L2
f1

`2
f

)
1
T

T−1

∑
t=0

E‖ht‖2

≤
σ2 + 12M2

f2
L2

f1
σ2

f2

αT
+ 2ρA ·

1
T

T−1

∑
t=0

E‖ht‖2,

since `2
f = 4M4

f2
L2

f1
+ 2M2

f1
L2

f2
. Thus the proof is complete. �

Lemma 3.22 is a direct consequence of Lemma 2.6 and Theorem 2.7. Then we can prove
Theorem 3.23 and explain how we select ρA.

Proof (Theorem 3.23) With Assumption 3.21, it is easy to verify [30, Appendix A] that
F(x) is LF-smooth with LF = M2

f2
L f1 + M f1 L f2 . Similar to (3.3) or the proof of Theorem

3.2, we obtain

Eτ‖∇F(xτ)‖2 ≤ 2[F(x0)− F∗]
αT

− 2
3T

T−1

∑
t=0

E‖ht‖2 +
1
T

T−1

∑
t=0

E‖ht −∇F(xt)‖2

≤ 2[F(x0)− F∗]
αT

− 2
3T

T−1

∑
t=0

E‖ht‖2 +
2
T

T−1

∑
t=0

At + 2M2
f2

L2
f1

1
T

T−1

∑
t=0

Bt,

by (3.19). The bound for At has two cases in Lemma 3.22, and we use the second one
since it is slightly worse. By results in Lemma 3.22, we obtain

Eτ‖∇F(xτ)‖2 ≤
2[F(x0)− F∗] + 2σ2 + 26M2

f2
L2

f1
σ2

f2

αT

−
(

2
3
− 4ρA −

2M4
f2

L2
f1

`2
f

ρA

)
1
T

T−1

∑
t=0

E‖ht‖2.

61

A.3. Proofs of Results in Chapter 4

If we choose ρA in Lemma 3.22 as ρA = min
{

1
12 ,

`2
f

6M4
f2

L2
f1

}
= 1

12 since `2
f ≥ 4M4

f2
L2

f1
, we

have
2
3
− 4ρA −

2M4
f2

L2
f1

`2
f

ρA ≥ 0,

and the proof is complete. Note that the total number of samples required for Algorithm 4
is O(T(3S + 3D/Q)), which is O(ε−3) by setting αT = O(ε−2) to achieve an ε-stationary
point by similar arguments in Remark 2.9. �

A.3 Proofs of Results in Chapter 4

We provide proofs of Lemma 4.6 and 4.7 for completeness. We first state the concept of
the optimaity condition for reference. For constrained convex optimization minx∈X f (x),
x∗ is an optimal solution if and only if the following holds true:

∇ f (x∗)>(x− x∗) ≥ 0, ∀x ∈ X . (A.20)

If f (x) is not differentiable, the above also holds by replacing ∇ f (x∗) with some subgra-
dient g∗ ∈ ∂ f (x∗).

Proof (Lemma 4.6) The optimization problem in the update (4.2) is convex. Then by its
optimality condition as shown in (A.20) and Definition 4.1 of Bregman distance, for a
subgradient gt+1 ∈ ∂ r(xt+1) and ∀u ∈ X , we have(

gt+1 + ht +
1
α
[∇ω(xt+1)−∇ω(xt)]

)>
(u− xt+1) ≥ 0.

Let u = xt in the above inequality, we obtain

h>t (xt − xt+1) ≥ g>t+1(xt+1 − xt) +
1
α

(
∇ω(xt+1)−∇ω(xt)

)>
(xt+1 − xt)

≥ r(xt+1)− r(xt) +
µ

α
‖xt+1 − xt‖2,

where the last inequality holds since r(x) is convex and ω(x) is µ-strongly convex.
Dividing both sides of the above inequality by α, we have

h>t Gα(xt, ht) ≥
1
α

(
r(xt+1)− r(xt)

)
+ µ‖Gα(xt, ht)‖2,

where Gα(xt, ht) =
1
α (xt − xt+1) is the gradient mapping. �

Proof (Lemma 4.7) By the definition of Gα(xt, ht) and Gα(xt) in (4.3) and (4.4), we have

Gα(xt, ht)− Gα(xt) =
1
α
(xt − xt+1)−

1
α
(xt − x+t) =

1
α
(x+t − xt+1).

By the optimality condition of (4.2), for any u ∈ X and some subgradient gt+1 ∈ ∂ r(xt+1)
we have

h>t (u− xt+1) ≥ g>t+1(xt+1 − u) +
1
α

(
∇ω(xt+1)−∇ω(xt)

)>
(xt+1 − u)

≥ r(xt+1)− r(u) +
1
α

(
∇ω(xt+1)−∇ω(xt)

)>
(xt+1 − u),

62

A.3. Proofs of Results in Chapter 4

where the last inequality follows from the convexity of r(x). Setting u = x+t in the above
inequality, we obtain

h>t (x+t − xt+1) ≥ r(xt+1)− r(x+t) +
1
α

(
∇ω(xt+1)−∇ω(xt)

)>
(xt+1 − x+t). (A.21)

By the optimality condition of (4.5), for any u ∈ X and some subgradient g+t ∈ ∂ r(x+t)
we have

∇F(xt)
>(u− x+t) ≥ (g+t)

>(x+t − u) +
1
α

(
∇ω(x+t)−∇ω(xt)

)>
(x+t − u)

≥ r(x+t)− r(u) +
1
α

(
∇ω(x+t)−∇ω(xt)

)>
(x+t − u),

where the last inequality follows from the convexity of r(x). Setting u = xt+1 in the
above inequality, we obtain

∇F(xt)
>(xt+1 − x+t) ≥ r(x+t)− r(xt+1) +

1
α

(
∇ω(x+t)−∇ω(xt)

)>
(x+t − xt+1). (A.22)

Summing up (A.21) and (A.22), we have

(∇F(xt)− ht)
>(xt+1 − x+t) ≥

1
α

(
∇ω(xt+1)−∇ω(x+t)

)>
(xt+1 − x+t)

≥ µ

α
‖xt+1 − x+t ‖2,

since ω(x) is µ-strongly convex. Then by Cauchy-Schwarz inequality,
µ

α
‖xt+1 − x+t ‖2 ≤ ‖ht −∇F(xt)‖‖xt+1 − x+t ‖.

Since xt+1 6= x+t in general, we know

µ

α
‖xt+1 − x+t ‖ ≤ ‖ht −∇F(xt)‖,

and that

‖Gα(xt, ht)− Gα(xt)‖2 =
1
α2 ‖xt+1 − x+t ‖2 ≤ 1

µ2 ‖ht −∇F(xt)‖2. �

With the help of the Lemma 4.6 and 4.7, we show the proof of Theorem 4.8 below.

Proof (Theorem 4.8) Since F(x) is LF-smooth by Assumption 4.4, we have

F(xt+1) ≤ F(xt) +∇F(xt)
>(xt+1 − xt) +

LF

2
‖xt+1 − xt‖2

(a)
= F(xt)− α∇F(xt)

>Gα(xt, ht) +
LFα2

2
‖Gα(xt, ht)‖2

= F(xt)− αh>t Gα(xt, ht) + α(ht −∇F(xt))
>Gα(xt, ht) +

LFα2

2
‖Gα(xt, ht)‖2

(b)
≤ F(xt)− r(xt+1) + r(xt)−

α

2
(2µ− αLF)‖Gα(xt, ht)‖2 + α(ht −∇F(xt))

>Gα(xt, ht),

where (a) follows from the definition of Gα(xt, ht) in (4.3) and (b) holds by Lemma 4.6.
Note that Φ(x) = F(x) + r(x) by (4.1), thus

Φ(xt+1) ≤ Φ(xt)−
α

2
(2µ− αLF)‖Gα(xt, ht)‖2 + α(ht −∇F(xt))

>Gα(xt, ht)

≤ Φ(xt)−
α

2
(µ− αLF)‖Gα(xt, ht)‖2 +

α

2µ
‖ht −∇F(xt)‖2, (A.23)

63

A.3. Proofs of Results in Chapter 4

where in the last inequality we use Young’s inequality that for any γ > 0,

2(ht −∇F(xt))
>Gα(xt, ht) ≤ γ‖Gα(xt, ht)‖2 +

1
γ
‖ht −∇F(xt)‖2,

and we choose γ = µ > 0. Rearranging terms of (A.23) and taking full expectations, we
have

α

2
(µ− αLF)E‖Gα(xt, ht)‖2 ≤ E[Φ(xt)−Φ(xt+1)] +

α

2µ
E‖ht −∇F(xt)‖2.

Summing up the above inequality from t = 0 to T − 1 and then dividing both sides by
αT/2, we obtain

(µ− αLF) ·
1
T

T−1

∑
t=0

E‖Gα(xt, ht)‖2 ≤ 2[Φ(x0)−Φ∗]
αT

+
1

µT

T−1

∑
t=0

E‖ht −∇F(xt)‖2, (A.24)

since Φ(xT) ≥ Φ∗. We use ht to estimate ∇F(xt) by the general variance reduced
framework, thus by Theorem 2.7 in Chapter 2 with the constant ρA to be determined, we
have that

1
T

T−1

∑
t=0

E‖ht −∇F(xt)‖2 ≤ σ2

αT
+ ρA ·

1
T

T−1

∑
t=0

E‖Gα(xt, ht))‖2. (A.25)

Plugging (A.25) into (A.24), we obtain(
µ− αLF −

ρA

µ

)
· 1

T

T−1

∑
t=0

E‖Gα(xt, ht)‖2 ≤ 2[Φ(x0)−Φ∗] + σ2/µ

αT
.

With the choice that α ≤ µ/(3LF) and ρA = µ2/3 such that µ− αLF − ρA/µ ≥ µ/3, we
then obtain that

1
T

T−1

∑
t=0

E‖Gα(xt, ht)‖2 ≤ 6[Φ(x0)−Φ∗]/µ + 3 σ2/µ2

αT
. (A.26)

What we need to bound is Eτ‖Gα(xτ)‖2 = 1
T ∑T−1

t=0 E‖Gα(xτ)‖2. By Young’s inequality,

‖Gα(xt)‖2 = ‖(Gα(xt)− Gα(xt, ht)) + Gα(xt, ht)‖2

≤ 2‖Gα(xt)− Gα(xt, ht)‖2 + 2‖Gα(xt, ht)‖2

≤ 2‖Gα(xt, ht)‖2 +
2
µ2 ‖ht −∇F(xt)‖2,

where the last inequality follows from Lemma 4.7. Thus

Eτ‖Gα(xτ)‖2 ≤ 2 · 1
T

T−1

∑
t=0
‖Gα(xt, ht)‖2 +

2
µ2 ·

1
T

T−1

∑
t=0
‖ht −∇F(xt)‖2

≤ 2σ2

µ2αT
+

(
2ρA

µ2 + 2
)
· 1

T

T−1

∑
t=0
‖Gα(xt, ht)‖2

≤ 2σ2

µ2αT
+

(
2ρA

µ2 + 2
)
· 6[Φ(x0)−Φ∗]/µ + 3 σ2/µ2

αT

=
16[Φ(x0)−Φ∗]/µ + 10 σ2/µ2

αT
,

by (A.25), (A.26) and the choice that ρA = µ2/3. �

64

Bibliography

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 770–778, 2016.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[3] Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre,
Tim Green, Chongli Qin, Augustin Žı́dek, Alexander WR Nelson, Alex Bridgland,
et al. Improved protein structure prediction using potentials from deep learning.
Nature, 577(7792):706–710, 2020.

[4] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for
nonconvex stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368,
2013.

[5] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using
predictive variance reduction. Advances in neural information processing systems,
26:315–323, 2013.

[6] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental
gradient method with support for non-strongly convex composite objectives. In
Advances in neural information processing systems, pages 1646–1654, 2014.

[7] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal
non-convex optimization via stochastic path-integrated differential estimator. In
Advances in Neural Information Processing Systems, pages 689–699, 2018.

[8] Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, and Vahid Tarokh. Spiderboost and
momentum: Faster variance reduction algorithms. In Advances in Neural Information
Processing Systems, pages 2406–2416, 2019.

[9] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel
method for machine learning problems using stochastic recursive gradient. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
2613–2621. JMLR. org, 2017.

[10] Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in
non-convex sgd. Advances in Neural Information Processing Systems, 32:15236–15245,
2019.

65

Bibliography

[11] Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and
Blake Woodworth. Lower bounds for non-convex stochastic optimization. arXiv
preprint arXiv:1912.02365, 2019.

[12] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[13] Aman Sinha, Hongseok Namkoong, and John Duchi. Certifying some distributional
robustness with principled adversarial training. In International Conference on Learning
Representations, 2018.

[14] Qi Qian, Shenghuo Zhu, Jiasheng Tang, Rong Jin, Baigui Sun, and Hao Li. Robust
optimization over multiple domains. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 4739–4746, 2019.

[15] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-
learning with implicit gradients. In Proceedings of the 33rd International Conference on
Neural Information Processing Systems, pages 113–124, 2019.

[16] Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated
back-propagation for bilevel optimization. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 1723–1732. PMLR, 2019.

[17] Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale
framework for bilevel optimization: Complexity analysis and application to actor-
critic. arXiv preprint arXiv:2007.05170, 2020.

[18] Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for nonconvex-
concave minimax problems. In International Conference on Machine Learning, pages
6083–6093. PMLR, 2020.

[19] Mengdi Wang, Ethan X Fang, and Han Liu. Stochastic compositional gradient
descent: algorithms for minimizing compositions of expected-value functions. Math-
ematical Programming, 161(1-2):419–449, 2017.

[20] Yifan Hu, Xin Chen, and Niao He. Sample complexity of sample average ap-
proximation for conditional stochastic optimization. SIAM Journal on Optimization,
30(3):2103–2133, 2020.

[21] Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel program-
ming. arXiv preprint arXiv:1802.02246, 2018.

[22] Tianyi Lin, Chi Jin, and Michael I Jordan. Near-optimal algorithms for minimax
optimization. In Conference on Learning Theory, pages 2738–2779. PMLR, 2020.

[23] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[24] Ji Zhu, Saharon Rosset, Robert Tibshirani, and Trevor J Hastie. 1-norm support
vector machines. In Advances in neural information processing systems, page None.
Citeseer, 2003.

[25] Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and
method efficiency in optimization. Wiley-Interscience, 1983.

66

Bibliography

[26] Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. Page: A simple and
optimal probabilistic gradient estimator for nonconvex optimization. In International
Conference on Machine Learning, pages 6286–6295. PMLR, 2021.

[27] Bin Hu, Peter Seiler, and Laurent Lessard. Analysis of biased stochastic gradient
descent using sequential semidefinite programs. Mathematical Programming, pages
1–26, 2020.

[28] Ahmad Ajalloeian and Sebastian U Stich. On the convergence of sgd with biased
gradients. arXiv preprint arXiv:2008.00051, 2020.

[29] Belhal Karimi, Blazej Miasojedow, Eric Moulines, and Hoi-To Wai. Non-asymptotic
analysis of biased stochastic approximation scheme. In Conference on Learning Theory,
pages 1944–1974, 2019.

[30] Junyu Zhang and Lin Xiao. A stochastic composite gradient method with in-
cremental variance reduction. Advances in Neural Information Processing Systems,
32:9078–9088, 2019.

[31] Luo Luo, Haishan Ye, Zhichao Huang, and Tong Zhang. Stochastic recursive gradi-
ent descent ascent for stochastic nonconvex-strongly-concave minimax problems.
Advances in Neural Information Processing Systems, 33, 2020.

[32] Tianyi Chen, Yuejiao Sun, and Wotao Yin. A single-timescale stochastic bilevel
optimization method. arXiv preprint arXiv:2102.04671, 2021.

[33] Tengyu Xu, Zhe Wang, Yingbin Liang, and H Vincent Poor. Gradient free min-
imax optimization: Variance reduction and faster convergence. arXiv preprint
arXiv:2006.09361, 2020.

[34] Feihu Huang, Shangqian Gao, Jian Pei, and Heng Huang. Accelerated zeroth-order
and first-order momentum methods from mini to minimax optimization. arXiv
preprint arXiv:2008.08170, 2020.

[35] Tianyi Chen, Yuejiao Sun, and Wotao Yin. Solving stochastic compositional opti-
mization is nearly as easy as solving stochastic optimization. IEEE Transactions on
Signal Processing, 2021.

[36] Junyu Zhang and Lin Xiao. Multilevel composite stochastic optimization via nested
variance reduction. SIAM Journal on Optimization, 31(2):1131–1157, 2021.

[37] Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic approx-
imation methods for nonconvex stochastic composite optimization. Mathematical
Programming, 155(1-2):267–305, 2016.

[38] Zhize Li and Jian Li. A simple proximal stochastic gradient method for nonsmooth
nonconvex optimization. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, pages 5569–5579, 2018.

[39] Mark Schmidt and Nicolas Le Roux. Fast convergence of stochastic gradient descent
under a strong growth condition. arXiv preprint arXiv:1308.6370, 2013.

[40] Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster convergence
of sgd for over-parameterized models and an accelerated perceptron. In The 22nd
International Conference on Artificial Intelligence and Statistics, pages 1195–1204. PMLR,
2019.

67

Bibliography

[41] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for
fast adaptation of deep networks. In International Conference on Machine Learning,
pages 1126–1135. PMLR, 2017.

[42] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. On the convergence
theory of gradient-based model-agnostic meta-learning algorithms. In International
Conference on Artificial Intelligence and Statistics, pages 1082–1092. PMLR, 2020.

[43] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano
Pontil. Bilevel programming for hyperparameter optimization and meta-learning.
In International Conference on Machine Learning, pages 1568–1577. PMLR, 2018.

[44] Sanjeev Arora, Simon Du, Sham Kakade, Yuping Luo, and Nikunj Saunshi. Prov-
able representation learning for imitation learning via bi-level optimization. In
International Conference on Machine Learning, pages 367–376. PMLR, 2020.

[45] Zalán Borsos, Mojmı́r Mutnỳ, and Andreas Krause. Coresets via bilevel optimization
for continual learning and streaming. Advances in Neural Information Processing
Systems 33, 2020.

[46] Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis
and enhanced design. In International Conference on Machine Learning, pages 4882–
4892. PMLR, 2021.

[47] Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and
Zhuoran Yang. A momentum-assisted single-timescale stochastic approximation
algorithm for bilevel optimization. arXiv e-prints, pages arXiv–2102, 2021.

[48] Tianyi Chen, Yuejiao Sun, and Wotao Yin. Tighter analysis of alternating stochastic
gradient method for stochastic nested problems. arXiv preprint arXiv:2106.13781,
2021.

[49] Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and
Zhuoran Yang. A near-optimal algorithm for stochastic bilevel optimization via
double-momentum. arXiv preprint arXiv:2102.07367, 2021.

[50] Zhishuai Guo and Tianbao Yang. Randomized stochastic variance-reduced methods
for stochastic bilevel optimization. arXiv preprint arXiv:2105.02266, 2021.

[51] Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably faster algorithms for bilevel
optimization. arXiv preprint arXiv:2106.04692, 2021.

[52] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.
Advances in neural information processing systems, 27, 2014.

[53] Soroosh Shafieezadeh Abadeh, Peyman M Mohajerin Esfahani, and Daniel Kuhn.
Distributionally robust logistic regression. Advances in Neural Information Processing
Systems, 28:1576–1584, 2015.

[54] Hongseok Namkoong and John C Duchi. Stochastic gradient methods for dis-
tributionally robust optimization with f-divergences. In NIPS, volume 29, pages
2208–2216, 2016.

68

Bibliography

[55] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. stat,
1050:9, 2017.

[56] Hoi To Wai, Zhuoran Yang, Mingyi Hong, and Zhaoran Wang. Multi-agent rein-
forcement learning via double averaging primal-dual optimization. Advances in
Neural Information Processing Systems, 2018:9649–9660, 2018.

[57] Bo Dai, Albert Shaw, Lihong Li, Lin Xiao, Niao He, Zhen Liu, Jianshu Chen,
and Le Song. Sbeed: Convergent reinforcement learning with nonlinear function
approximation. In International Conference on Machine Learning, pages 1125–1134.
PMLR, 2018.

[58] Paul Tseng. On linear convergence of iterative methods for the variational inequality
problem. Journal of Computational and Applied Mathematics, 60(1-2):237–252, 1995.

[59] Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. A unified analysis of
extra-gradient and optimistic gradient methods for saddle point problems: Proximal
point approach. In International Conference on Artificial Intelligence and Statistics, pages
1497–1507. PMLR, 2020.

[60] Arkadi Nemirovski. Prox-method with rate of convergence o (1/t) for variational
inequalities with lipschitz continuous monotone operators and smooth convex-
concave saddle point problems. SIAM Journal on Optimization, 15(1):229–251, 2004.

[61] Yurii Nesterov. Dual extrapolation and its applications to solving variational in-
equalities and related problems. Mathematical Programming, 109(2):319–344, 2007.

[62] TaeHo Yoon and Ernest K Ryu. Accelerated algorithms for smooth convex-concave
minimax problems with o (1/kˆ 2) rate on squared gradient norm. In International
Conference on Machine Learning, pages 12098–12109. PMLR, 2021.

[63] H Rafique, M Liu, Q Lin, and T Yang. Non-convex min–max optimization: provable
algorithms and applications in machine learning. arXiv preprint arXiv:1810.02060,
1810.

[64] Chi Jin, Praneeth Netrapalli, and Michael I Jordan. Minmax optimization: Sta-
ble limit points of gradient descent ascent are locally optimal. arXiv preprint
arXiv:1902.00618, 2019.

[65] John M Danskin. The theory of max-min, with applications. SIAM Journal on Applied
Mathematics, 14(4):641–664, 1966.

[66] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient
and proximal-gradient methods under the polyak-łojasiewicz condition. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, pages
795–811. Springer, 2016.

[67] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent
finds global minima of deep neural networks. In International Conference on Machine
Learning, pages 1675–1685. PMLR, 2019.

[68] Maryam Fazel, Rong Ge, Sham Kakade, and Mehran Mesbahi. Global convergence of
policy gradient methods for the linear quadratic regulator. In International Conference
on Machine Learning, pages 1467–1476. PMLR, 2018.

69

Bibliography

[69] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances
in neural information processing systems, 29:4565–4573, 2016.

[70] Qi Cai, Mingyi Hong, Yongxin Chen, and Zhaoran Wang. On the global conver-
gence of imitation learning: A case for linear quadratic regulator. arXiv preprint
arXiv:1901.03674, 2019.

[71] Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D Lee, and Meisam Raza-
viyayn. Solving a class of non-convex min-max games using iterative first order
methods. arXiv preprint arXiv:1902.08297, 2019.

[72] Jiahao Xie, Chao Zhang, Yunsong Zhang, Zebang Shen, and Hui Qian. A fed-
erated learning framework for nonconvex-pl minimax problems. arXiv preprint
arXiv:2105.14216, 2021.

[73] Junchi Yang, Negar Kiyavash, and Niao He. Global convergence and variance-
reduced optimization for a class of nonconvex-nonconcave minimax problems. arXiv
preprint arXiv:2002.09621, 2020.

[74] Darinka Dentcheva, Spiridon Penev, and Andrzej Ruszczyński. Statistical estimation
of composite risk functionals and risk optimization problems. Annals of the Institute
of Statistical Mathematics, 69(4):737–760, 2017.

[75] Christoph Dann, Gerhard Neumann, Jan Peters, et al. Policy evaluation with
temporal differences: A survey and comparison. Journal of Machine Learning Research,
15:809–883, 2014.

[76] Mengdi Wang, Ji Liu, and Ethan X Fang. Accelerating stochastic composition
optimization. Journal of Machine Learning Research, 2017.

[77] Saeed Ghadimi, Andrzej Ruszczynski, and Mengdi Wang. A single timescale
stochastic approximation method for nested stochastic optimization. SIAM Journal
on Optimization, 30(1):960–979, 2020.

[78] Wenqing Hu, Chris Junchi Li, Xiangru Lian, Ji Liu, and Huizhuo Yuan. Efficient
smooth non-convex stochastic compositional optimization via stochastic recursive
gradient descent. Advances in Neural Information Processing Systems, 32:6929–6937,
2019.

[79] Jun Liu, Jianhui Chen, and Jieping Ye. Large-scale sparse logistic regression. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 547–556, 2009.

[80] Sashank J Reddi, Suvrit Sra, Barnabas Poczos, and Alexander J Smola. Proximal
stochastic methods for nonsmooth nonconvex finite-sum optimization. Advances in
neural information processing systems, 29:1145–1153, 2016.

[81] Wenjie Li, Zhanyu Wang, Yichen Zhang, and Guang Cheng. Variance reduction on
adaptive stochastic mirror descent. arXiv preprint arXiv:2012.13760, 2020.

[82] Aaron Defazio and Leon Bottou. On the ineffectiveness of variance reduced op-
timization for deep learning. Advances in Neural Information Processing Systems,
32:1755–1765, 2019.

70

Bibliography

[83] Lihua Lei and Michael Jordan. Less than a single pass: Stochastically controlled
stochastic gradient. In Artificial Intelligence and Statistics, pages 148–156. PMLR, 2017.

[84] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. Journal of machine learning research, 12(7),
2011.

[85] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
International Conference on Learning Representations, 2015.

[86] David Harrison Jr and Daniel L Rubinfeld. Hedonic housing prices and the demand
for clean air. Journal of environmental economics and management, 5(1):81–102, 1978.

[87] R Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Probabil-
ity Letters, 33(3):291–297, 1997.

[88] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[89] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. Advances in neural
information processing systems, 32:8026–8037, 2019.

[90] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2003.

71

Acknowledgements

This work was done within the Optimization and Decision Intelligence Group at the
Department of Computer Science of ETH Zurich. First of all, I would like to thank my
supervisor Prof. Dr. Niao He for giving me this great opportunity to work with the
group. She provided many insightful suggestions and excellently guided me to delve
into this interesting research area. Most of the work was also co-supervised by one of
the PhD students in the group, Yifan Hu. He first brought up this topic and provided
me with a lot of help in understanding the area. The ideas of the thesis came from
discussions with Prof. Niao He and Yifan Hu during our weekly meetings. I am grateful
to their support and time. The main part of the thesis was based on our paper “The
All-in-one Recipe for Structured Nonconvex Smooth Stochastic Optimization” which has
been submitted to NeurIPS. I would also like to thank all the useful comments given by
the reviewers of this paper. The suggestions helped to make the thesis in better shape.

The thesis was written between March and September in 2021, which was still a difficult
time because of COVID-19. It was the company of my parents and girlfriend Jingpu Guo
that supported me to get through this time and successfully complete the thesis. The
daily chatting and video calls with my girlfriend gave me great comfort. Although we
were in different countries, I could still feel her love and care. Finally I would like to
thank my roommates and friends for their kind help during my life at Zurich. I am very
lucky to meet them.

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.

__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):

For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that

− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information
sheet.

− I have documented all methods, data and processes truthfully.

− I have not manipulated any data.

− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

Variance Reduction for Non-Convex Stochastic Optimization: General Analysis and New
Applications

Zhang Liang

Zurich, on 09.09.2021

