
ETH Library

Automated generation of
consistent models using qualitative
abstractions and exploration
strategies

Journal Article

Author(s):
Babikian, Aren A.; Semerath, Oszkar; Li, Anqi; Marussy, Kristof; Varró, Dániel

Publication date:
2022-10

Permanent link:
https://doi.org/10.3929/ethz-b-000506675

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
Software and Systems Modeling 21, https://doi.org/10.1007/s10270-021-00918-6

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000506675
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10270-021-00918-6
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Software and Systems Modeling (2022) 21:1763–1787
https://doi.org/10.1007/s10270-021-00918-6

SPEC IAL SECT ION PAPER

Automated generation of consistent models using qualitative
abstractions and exploration strategies

Aren A. Babikian1 ·Oszkár Semeráth2 · Anqi Li3 · Kristóf Marussy2 · Dániel Varró1,2

Received: 27 February 2021 / Revised: 10 June 2021 / Accepted: 15 July 2021 / Published online: 17 September 2021
© The Author(s) 2021

Abstract
Automatically synthesizing consistent models is a key prerequisite for many testing scenarios in autonomous driving to ensure
a designated coverage of critical corner cases. An inconsistent model is irrelevant as a test case (e.g., false positive); thus, each
synthetic model needs to simultaneously satisfy various structural and attribute constraints, which includes complex geometric
constraints for traffic scenarios.While different logic solvers or dedicated graph solvers have recently been developed, they fail
to handle either structural or attribute constraints in a scalable way. In the current paper, we combine a structural graph solver
that uses partial models with an SMT-solver and a quadratic solver to automatically derivemodels which simultaneously fulfill
structural and numeric constraints, while key theoretical properties of model generation like completeness or diversity are
still ensured. This necessitates a sophisticated bidirectional interaction between different solvers which carry out consistency
checks, decision, unit propagation, concretization steps. Additionally, we introduce custom exploration strategies to speed up
model generation. We evaluate the scalability and diversity of our approach, as well as the influence of customizations, in the
context of four complex case studies.

Keywords Model generation · Partial model · Graph solver · SMT-solver · Numeric solver · Exploration strategy · Test
scenario synthesis

Communicated by S. Abrahão, E. Syriani, H. Sahraoui, and J. de Lara.

B Aren A. Babikian
aren.babikian@mail.mcgill.ca

Oszkár Semeráth
semerath@mit.bme.hu

Anqi Li
anqili@student.ethz.ch

Kristóf Marussy
marussy@mit.bme.hu

Dániel Varró
daniel.varro@mcgill.ca

1 Department of Electrical and Computer Engineering, McGill
University, 3480 Rue University, Montréal, QC H3A 0E9,
Canada

2 Department of Measurement and Information Systems,
Budapest University of Technology and Economics, Magyar
tudósok krt. 2, Budapest 1117, Hungary

3 Department of Computer Science, ETH Zürich, Rämistrasse
101, Zürich 8092, Switzerland

1 Introduction

Motivation. The recent increase in popularity of cyber-
physical systems (CPSs) such as autonomous vehicles has
resulted in a rising interest in their safety assurance. Since
existing tools and approaches commonly represent CPSs as
(typed and attributed) graph models [43], automated gener-
ation of test models has become a core challenge for their
effective testing. Recent testing approaches [9] use simu-
lators to place the CPS under test in challenging traffic
scenarios defined by (generated) test configurations. In such
approaches, the CPS is considered as a black box and its
safety is evaluated at the system level,without direct handling
of internal components and their interactions. In order to
synthesize adequate (realistic) test data for safety assurance
of CPSs, data generation approaches must handle complex
structural and numeric constraints.

Problem statement. Unfortunately, the automated syn-
thesis of consistent graph-based models that satisfy (or
deliberately violate) a set of well-formedness constraints is a
very challenging task.While various underlying logic solvers
like SAT, SMT (Satisfiability Modulo Theories) or CSP

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00918-6&domain=pdf

1764 A. A. Babikian et al.

(Constraint Satisfaction Problem) solvers have been repeat-
edly used for such purposes in tools, like in USE [26,27],
UML2CSP [15], Formula [38], various theorem provers [5],
or Alloy [35] thanks to many favorable theoretical proper-
ties (e.g., soundness or completeness) such solvers primarily
excel in detecting inconsistencies and not in deriving mod-
els used as test cases. Rather than being used to address the
model generation task as a whole, such specialized solvers
(e.g., dReal [23]) may be more useful for handling only spe-
cific aspects (e.g., numeric constraints) of model generation.
In fact, although there does exist research [4,75,76] that uses
such solvers for testing purposes, the use of such solvers as a
stand-alone model generation tools is frequently hindered by
the lack of scalability [71,82] (i.e., the size of generatedmod-
els is limited) and diversity [37,70] (i.e., generated models
often have similar or identical structure).

Recent model generators [71,81,82] have successfully
improved on scalability by lifting the model synthesis prob-
lem on the level of graph models by using meta-heuristic
search [81], possibly within a hybrid approach alongside
an SMT-solver [82]. Alternatively, partial model refine-
ment [71] can be used as search strategy, while efficient
query/constraint evaluation engines [83,86] validate the con-
straints during state space exploration. However, there are
also important restrictions imposed by these tools such as
lack of completeness [81,82] or lack of attribute handling
[71] in constraints.

Contributions. In this paper, we propose a model gen-
eration technique which can automatically derive consis-
tent graph models that satisfy both structural and attribute
constraints. For that purpose, the structural constraints
are satisfied along partial model refinement [71], while
attribute constraints are satisfied by repeatedly calling the
Z3 SMT-solver [17] or the dReal quadratic solver (like
[82]). We define refinement units (in analogy with an
abstract DPLL procedure modulo theories (Davis–Putnam–
Logemann–Loveland) [51] or SMT-solvers [50]) with con-
sistency checking, decision, unit propagation and concretiza-
tion steps to enable a bidirectional interaction between a
graph solver and a numeric solver where a decision in one
solver can be propagated to the other solver and vice versa.

Specific contributions of the paper include:

– Precise semantics: We define 3-valued logic semantics
for evaluating structural and attribute constraints over
partial models.

– Qualitative abstractions:Weproposequalitative abstrac-
tions to uniformly represent attribute constraints as
(structural) relations in a model.

– Mapping for numeric constraints: We define a map-
ping from attribute constraints to a numerical problem
interpreted by a numeric solver.

– Model generation approach: We propose a generic
model generation strategy with bidirectional interaction
between a structural solver and two numeric solvers to
handle int or double constraints.

– Custom exploration strategy: We propose a technique
to define custom explorations for model generation to
exploit domain-specific hints.

– Evaluation:We evaluate a prototype implementation of
the approach on four case studies to assess scalability and
diversity properties of model generation, as well as the
influence of customizations.

This paper extends our earlier work in [67] by

1. introducing a new motivating example for traffic scenario
generation with nonlinear constraints;

2. integrating an approximate numeric solver dReal [23] to
handle non-linear geometric constraints;

3. providing a detailed mapping from attribute constraints
to numerical problems;

4. introducing custom exploration strategies;
5. extending experimental evaluation with a complex case

study (traffic scenario) and research question.

Added value.Our approach provides good scalability for
automatically generating consistent models with structural
and attribute constraints while still providing completeness
and diversity. We also successfully generate models of traffic
scenarios operating in physical space, which is a promising
result toward complex simulation analysis for safety assur-
ance of CPSs.

Structure of the paper. The rest of the paper is struc-
tured as follows: Sect. 2 describes the motivating case study
related to traffic scenario generation. Section 3 presents a
running example and summarizes core concepts pertaining
to partial models and their refinements. Sections 4 and 5
detail our model generation approach that combines struc-
tural and numeric reasoning. Section 6 provides evaluation
results of our proposed approach for four case studies. Sec-
tion7overviews related approaches available in the literature.
Finally, Sect. 8 concludes the paper.

2 Motivating example

2.1 The Crossing Scenario domain

We illustrate various challenges of model generation
and state space exploration in the context of critical traf-
fic scenarios for autonomous driving. Specifically, we aim at
generating instances of traffic scenarios where the vision of
the vehicle-under-test (referred to as the ego-vehicle [25,60])
is obstructed by the presence of other actors. Such scenarios

123

Automated generation of consistent models using qualitative 1765

Fig. 1 Traffic scenario that
involves an area with limited
visibility

(a) (b)

have been identified as key challenges for the development
of autonomous vehicle safety 1. A sample scenario is shown
in Fig. 1, where the actors are placed in such a way that
the ego-vehicle (blue) is unable to see the pedestrian that is
crossing the road due to the presence of the orange vehicle.
As a result, there is a risk of collision between the ego-vehicle
and the pedestrian if both of these actors decide to cross the
intersection simultaneously.

By using the novel model generation techniques proposed
in this paper, we aim to automatically synthesize traffic sce-
narios where actors are positioned in such a way that the
ego-vehicle and the target pedestrian cannot see each other
initially. Furthermore, these actors are given velocities such
that they will collide with each other within a certain time
limit to enforce reaction. These requirements correspond to
complex geometric (numeric) constraints that must be han-
dled during model generation.

To precisely capture this modeling domain, we use a
metamodel (Sect. 2.2) and complex well-formedness (WF)
constraints defined by graph patterns (in the VQL language
[85,86]) in Sect. 2.3.

2.2 Metamodel

A CrossingScenario is composed Lanes, Actors
and Relations between actors. It also contains numeri-
cal attribute that act as bounds for actor positions (xSize
and ySize), actor speeds (maxXSpeed and maxYSpeed)
and collision time (maxTime) between actors.

Lane objects are static elements in the scenario which are
provided as input for model generation. In our metamodel,
we include abstractions for vertical and horizontal Lanes,
which refers to their orientation when seen from a bird’s-
eye view (see Fig. 12e for an example). This ensures that
the respective lanes in a scenario intersect with each other.
Each Lane contains a referenceCoord attribute which
designates the left boundary for vertical lanes, and the bottom

1 https://newsroom.intel.com/articles/rss-explained-five-rules-
autonomous-vehicle-safety/#gs.tfv0wh.

Fig. 2 Metamodel of the Crossing Scenario domain

boundary for the horizontal lanes. Lanes have a predefined
width, which is identical for all lanes.

Scenario specifications, such as the existence of certain
Actors or certain Relations between actors, are also
included as inputs for model generation. For example, in the
scenario shown in Fig. 1b, model generation inputs would
enforce the existence of two actors (the ego-vehicle and the
target pedestrian) which have their vision blocked and which
will eventually collide (if there is no change in their behav-
ior). It is the task of themodel generator to create a new actor,
place all actors appropriately and set their speeds such that
the scenario specifications are satisfied.

Actors are placed on a lane and have a concrete numeric
position (xPos, yPos), size (width, length) and speed
(xSpeed, ySpeed).

Relation objects defined over two actors (source
and target) represent qualitative abstractions of certain
sequences of events or trajectories. For the sake of brevity,
we only include two different types of Relations, namely
VisionBlocked and CollisionExists. Relation
VisionBlocked signifies that the source and target
actors are unable to see each other because their line of

123

https://newsroom.intel.com/articles/rss-explained-five-rules-autonomous-vehicle-safety/#gs.tfv0wh
https://newsroom.intel.com/articles/rss-explained-five-rules-autonomous-vehicle-safety/#gs.tfv0wh

1766 A. A. Babikian et al.

Fig. 3 Representative structural & numeric constraints from the Cross-
ing Scenario domain

sight (vision) is blocked by another actor which is physi-
cally placed between them. Relation CollisionExists
denotes that the two actors involved are given velocities such
that theywill collide at a time collisionTime. Themeta-
model can be extended to incorporate further Relation
types.

Such qualitative abstractions help enforce complex tra-
jectories and behaviors without the need for continuously
handling the exact attribute values. For example, if a relation
CollisionExists(A1,A2) exists between actorsA1 and
A2, then the numerical attributes of those actors are set up in
a way that they would surely collide along the default behav-
ior (without further control intervention like braking), but not
vice versa.

2.3 Well-formedness constraints

Our motivating example includes 32 constraints to restrict
various parts of the metamodel. Actors have bounded posi-
tions, sizes and speeds, which are further constrained by the
orientation and referenceCoord of the lane on which
they are placed. A minimum Euclidean distance is also
enforced between any pair of actor to avoid overlaps. Quali-
tative relations (see Sect. 2.2) enforce custom constraints on
attribute values.

This case study includes complex geometric constraints,
quadratic inequalities, non-constant divisions and numeric if-
then-else blocks. The violating cases of three representative

constraints, implemented as VQL graph patterns ([85,86]),
are shown in Fig. 3.

– invalidBlocker: checks if any actor in a
VisionBlocked relation is not the blocking actor;

– visionBlocked1: checks (using slopes) that the
blocking actor of a VisionBlocked relation is phys-
ically placed between the source and target actors;

– minimumDistance: enforces a minimum Euclidean
distance of 5 between any pair of distinct actors.

In this paper, we use color coding to separate logic and
numeric reasoning. The first constraint is a structural con-
straint (i.e., only navigation along object references). The
second constraint is a numeric constraint which accesses the
xPos and yPos attributes of actors a1 and a2 to check
the Euclidean distance between them. The third constraint
contains both structural and numeric clauses which mutu-
ally depend on each other. (A) If the vision between a1 and
a2 is blocked by a new actor aB, then a new numeric con-
straint needs to be enforced between their positions and sizes
(logic→ numeric dependency). (B) If the positions and sizes
of actors a1, a2 and aB are already determined, then a new
blockedBy reference pointing to one of the actors may (or
must not) be added (numeric→logic dependency).

The Crossing Scenario domain extends [67] by show-
casing complex, nonlinear numeric constraints over real
numbers. These constraints can only be handled efficiently
by specialized numeric solvers, such as dReal [23], which
are limited in scalability and diversity when reasoning over
structural constraints.

Consistent model generation is further complicated by
the existence of mutual dependencies between structural
and numeric constraints. Thus, generating models that con-
form to the Crossing Scenario domain requires an intelligent
integration and bidirectional interaction between underlying
numeric and structural (graph) solvers. In the paper, the bidi-
rectional interaction is exemplified for numerical attributes,
but the conceptual framework is applicable to attributes of
other domains (e.g., strings, bitvectors) assuming the exis-
tence of an underlying solver (e.g., SMT-solver) for the
background theory of the respective attribute.

3 Preliminaries

3.1 Running example

To succinctly present the formal background of our model
generation approach, we present a simple running example
of family trees with a metamodel (Fig. 4) andWF constraints
defined by graph patterns (Fig. 5). This domain is inten-
tionally chosen to contain only few concepts, while it can

123

Automated generation of consistent models using qualitative 1767

Fig. 4 Metamodel of the Family Tree domain

Fig. 5 Structural & numeric constraints in the Family Tree domain

demonstrate all key technical challenges of constraint evalu-
ation.

A FamilyTree contains Members with an integer age
attribute. Members are related to each other by parents
relations. The violating cases of the threeWF constraints are
defined by VQL graph patterns that all consistent family tree
models need to respect:

– twoMembersHaveNoParent: There is at most one
member in a family tree without a parent;

– negativeAge: All age attributes of family members
are non-negative numbers;

– parentTooYoung: There must be more than 12 years
of difference between the age of a parent and a child.

3.2 Domain-specific partial models

Domain specification We formalize the concepts in a target
domain 〈�,α〉 using an algebraic representation with signa-
ture � and arity function α : � → N. Such a signature � =
{T1, . . . ,Tn,Rt , . . . ,Rr ,P1, . . . ,Pp,A1, . . . ,Aa, ε,∼} can
be easily derived from EMF-like formalisms [84].

– Unary predicate symbols {T1, . . . ,Tt } (α(Ti) = 1) are
defined for eachEClass andEEnum in the domain,Bool
denotes theEBoolean type,Int denotes integer numbers
types like EInt or EShort, etc.

– Binary predicate symbols {R1, . . . ,Rr } (α(Ri) = 2)
are defined for each EReference and EAttribute in the
metamodel. For example, parents represent the par-
ent reference between twoMembers, and age represents
the age attribute relation between aMember and an EInt.

– Structural predicate symbols {P1, . . . ,Pp} are n-ary
predicates derived from graph queries (α(Pi) = n, the
number of formal parameters of a graph query); e.g.,
parentTooYoung is a binary predicate symbol.

– Attribute predicate symbols {A1, . . . ,Aa} represent n-ary
predicates derived from attribute (check) expressions of
queries (α(Ai) = n); e.g.,checkp≤c+12(c, p) is a binary
attribute predicate with parameters c and p.

– The unary symbol ε denotes the existence of objects.
– The binary symbol ∼ explicitly represents the equiva-
lence relation between two objects.

Partial models Partial models can explicitly represent uncer-
tainty in models [18,64], which is particularly relevant for
intermediate steps of a model generation process. We use 3-
valued partial models where the traditional truth values true
(1) and false (0) are extended with a third truth value 1/2
to denote unknown structural parts of the model [29,61,72].
Similarly, we extend the domain of traditional numeric val-
ues (e.g., 1 or 2.1) with ? to denote an unknown numeric
value.

Definition 1 (Numerical partialmodel) For a signature 〈�,α〉,
a numerical partial model is a logic structure P =
〈OP , IP ,VP 〉 where:

– OP is the finite set of objects in the model,
– IP gives a 3-valued logic interpretation for each symbol
s ∈ � as IP (s) : (OP)α(s) → {0,1, 1/2},

– VP gives a numeric value interpretation for each object
in the model: VP : OP → R ∪ {?}.

Note that this definition uniformly handles domain objects
(e.g., Member) and data objects (e.g., Int), which is fre-
quently the case in object-oriented languages. Next, we
capture some regularity restrictions to exclude irrelevant
(irregular) partial models:

Definition 2 (Regular partial models) A partial model P =
〈OP , IP ,VP 〉 is regular, if it satisfies the following condi-
tions:

R1 ∀o ∈ OP : IP (ε)(o) > 0 (non-existing objects are
omitted)

R2 ∀o ∈ OP : IP (∼)(o, o) > 0 (∼ is reflexive)
R3 ∀o1, o2 ∈ OP : IP (∼)(o1, o2) = IP (∼)(o2, o1) (∼ is

symmetric)
R4 ∀o1, o2 ∈ OP : (o1
≡ o2) ⇒ IP (∼)(o1, o2) < 1 (two

different objects cannot be equivalent)

123

1768 A. A. Babikian et al.

R5 ∀o ∈ OP : [(IP(Int)(o) = 0) ∨ (IP (Real)(o) =
0)] ⇒ [VP (o) = ?] (domain objects have no values)

R6 ∀o ∈ OP : [VP (o)
= ?] ⇒ [(IP(Int)(o) = 1) ∨
(IP (Real)(o) = 1)] (objects with values are numbers)

R7 ∀o ∈ OP : [IP (Int)(o) = 1)] ⇒ [(VP (o) = ?) ∨
(VP (o) ∈ N)] (only natural numbers are bound to Int
objects)

Example 1 Figure 9 illustrates partial models. In State 1,
we have three concrete objects (where ε and ∼ are 1):
FamilyTree f 1 and a Member m1, and an unbound Int
data object a1 (with ? value). The partial model also con-
tains an abstract “new objects” node that represents multiple
potential new nodes (using 1/2 values for ε and dashed bor-
ders for ∼), and a “new integers” node representing the
potential new integers. In Fig. 9, predicates with value 1 are
denoted by solid lines (as for the member edge between f 1
andm1 in State 1) and predicates with value 1/2 are denoted
by dashed lines (like the potential parents edge in State
1).

3.3 Refinement and concretization

During model generation, the level of uncertainty in partial
models will be gradually reduced by refinements. In a refine-
ment step, uncertain 1/2 values can be refined to either 1
or 0, or unbound values ? are refined to concrete numeric
values. This is captured by an information ordering relation
X �L Y := (X = 1/2) ∨ (X = Y) where an X = 1/2 is
either refined to another value Y , or X = Y remains equal.
An information ordering can be defined between numeric
values x and y similarly x �N y := (x = ?) ∨ (x = y).

A refinement from partial model P to partial model Q is
a mapping that respects both information ordering relations
(�L / �N).

Definition 3 (Partial model refinements) A refinement P �
Q from regular partial model P to regular partial model Q is
defined by a refinement function between the objects of the
partial model ref : OP → 2OQ which respects information
ordering:

– For each n-ary symbol s ∈ �, each object p1, . . . , pn ∈
OP , and for each refinement q1 ∈ ref (p1), . . . , qn ∈
ref (pn):

IP (s)(p1, . . . , pn) �L IQ(s)(q1, . . . , qn).

– For each object p ∈ OP and its refinement q ∈ ref (p):

VP (p) �N VQ(q).

– All objects in Q are refined from an object in P , and
existing objects p ∈ OP must have a non-empty refine-
ment.

Model generation along refinements eventually resolves
all uncertainties to obtain a concrete model.

Definition 4 (Concrete partial model) A regular (see Defini-
tion 2) partial model P is concrete, if (a) IP does not contain
1/2 values, and (b) VP does not contain ? values for integer
and real data objects (for object o where IP (Int)(o) = 1
or IP (Real)(o) = 1).

Example 2 Figure 9 illustrates several refinement steps.
Between State 0 and State 1, new object is split into two
objects by refining ∼ to 0 between new object and m1,
creating one concrete object m1 by refining ∼ on m1 to
1. Moreover, type Member is refined to 1, FamilyTree
refined to 0, and reference members from f 1 to m1 is
refined to 1. Eventually, the value of data object a1 is refined
from ? to 2 in State 4.2.

3.4 Constraints over partial models

Syntax Both structural (logical) and numeric constraints can
be evaluated on partial models. For each graph pattern we
derive a logic predicate (LP) defined as P(v1, . . . , vn) ⇔ ϕ,
where ϕ is a logic expression (LE) constructed inductively
from the pattern body as follows (assuming the standard
precedence for operators).

– if s ∈ � is an n-ary predicate symbol (i.e., T, R, P, A, ε
or ∼) then s(v1, . . . , vn) is a logic expression;

– if ϕ1 and ϕ2 are logic expressions, then ϕ1 ∨ϕ2, ϕ1 ∧ϕ2,
and ¬ϕ1 are logic expressions;

– if ϕ is a logic expression, and v is a variable, then ∃v : ϕ

and ∀v : ϕ are logic expressions.

For each attribute constraint, we derive attribute predi-
cates (as helpers) by reification to enable seamless interaction
between structural and attribute solvers along a compatibility
(if and only if) operator ⇔ (see Fig. 6). In case of numbers,
such an attribute predicate is tied to a numerical predicate
defined as A(v1, . . . , vn) ⇔ ψ where ψ is constructed from
numerical expressions. The expressiveness of those expres-
sions is limited by the background theories of the underlying
backend numeric solver. Here we define a core language of
basic arithmetical expressions, which is supported by a wide
range of numeric solvers:

– each variable v, constant symbol and literal (concrete
number) c is a numerical expression,

– if ψ1 and ψ2 are numerical expressions, then ψ1 + ψ2,
ψ1−ψ2,ψ1×ψ2 andψ1÷ψ2 are numerical expressions.

123

Automated generation of consistent models using qualitative 1769

Fig. 6 Inductive semantics of graph predicates

– if ψ1 and ψ2 are numerical expressions, then ψ1 < ψ2,
ψ1 > ψ2, ψ1 ≥ ψ2, ψ1 ≤ ψ2, ψ1 = ψ2, ψ1
= ψ2 are
numerical predicates.

– if ϕ is a logic expression, and ψ1 and ψ2 are numerical
expressions, then ϕ ? ψ1 : ψ2 is a numerical expression
(standing for “if ϕ then ψ1 else ψ2”, commonly used in
programming languages).

Example 3 PatternparentTooYoung(child, parent)
of Fig. 5 is formalized as the following logic predicate:

parentTooYoung(child, parent) ⇔
parents(child, parent)∧
age(child, c) ∧ age(parent, p) ∧ checkp≤c+12(c, p)

checkp≤c+12(c, p) ⇔ p ≤ c+12 is a numerical predicate.
Later such predicates will help communicate between dif-

ferent solvers, e.g., if checkp≤c+12(c1, p1) is found to be
1 by the graph solver for some members c1 and p1, then the
numerical predicate p1 ≤ c1 + 12 needs to be enforced by a
numeric solver for the respective data objects and vice versa.

Semantics
A logic predicate P(v1, ..., vn) ⇔ ϕ can be evaluated on a

partial model P along a variable binding Z : {v1, . . . , vn} →

OP (denoted as �ϕ�PZ), which can result in three truth values:
1,0 or 1/2. The inductive semantic rules of evaluating a logic
expression are listed in Fig. 6. Note that min and max take
the numeric minimum and maximum values of 0, 1/2 and 1.

A numerical predicate A(v1, . . . , vn) ⇔ ψ can be eval-
uated on a partial model P along variable binding Z :
{v1, . . . , vn} → OP (denoted as �ψ�PZ) with a result of 1, 0
or 1/2. The inductive semantic rules of logic expressions are
listed in Fig. 6. Note that x 〈cmp〉 y means the truth value of
numerical comparison 〈cmp〉 (e.g., 3 < 5 is1), while x 〈op〉 y
means the numeric value of the result of an operation 〈op〉
(e.g., 3 + 5 is 8).
Constraint approximation When a predicate is evaluated on
a partial model, the 3-valued semantics of constraint evalua-
tion guarantees that certain (over- and under-approximation)
properties hold for all potential refinements or concretiza-
tions of the partial model. For all logic and numerical predi-
catesϕ andψ , if P � Q, then �ϕ�P �L �ϕ�Q and �ψ�P �L

�ψ�Q , thus:

– Logic under-approximation: If �ϕ�P = 1 in a partial
model P , then �ϕ�Q = 1 in any partial model Q where
P � Q.

– Numeric under-approximation: If �ψ�P = 1 in a par-
tial model P , then �ψ�Q = 1 in any partial model Q
where P � Q.

– Logic over-approximation: If �ϕ�Q = 0 in a partial
model Q, then �ϕ�P ≤ 1/2 in a partial model P where
P � Q.

– Numeric under-approximation: If �ψ�Q = 0 in a par-
tial model Q, then �ψ�P ≤ 1/2 in a partial model P
where P � Q.

These properties ensure that model generation is a
monotonous derivation sequence of partial models which
starts from the most abstract partial model where all pred-
icate constraints are evaluated to 1/2. As the partial model
is refined, more and more predicate values are evaluated to
either 1 or 0. The under-approximation lemmas ensure that
when an error predicate is evaluated to 1, it will remain 1;
thus, exploration branch can be terminated without loss of
completeness [87]. The over-approximation lemmas assure
that if a partial model can be refined to a concrete model
where error predicate is 0, then it will not be dropped.

4 Model generation with refinement

4.1 Functional overview

Our framework takes the following inputs:

123

1770 A. A. Babikian et al.

Fig. 7 Schematic overview of a refinement unit

1. the signature of a domain 〈�,α〉 (derived from a meta-
model or ontology)with structural logic symbolsP1, . . . ,Pp

and numerical attribute symbols A1, . . . ,Aa ,
2. a logic theory consisting of the negation of the error pred-

icates and the compatibility of the predicate symbols with
their definition (i.e., the axioms):T = {¬E1, . . . ,¬Ee, (P1 ⇔
ϕP1), . . . , (Pp ⇔ ϕPp), (A1 ⇔ ψA1), . . . , (Aa ⇔ ψAa)}

3. some search parameters (e.g., the required size, or the
required number of models).

The output of the generator is a sequence of models
M1, . . . , Mm , where each Mi is consistent, which means

1. a regular concrete model of 〈�,α〉;
2. consistent with T (Mi |� T), i.e., for any i, j , no error

predicates have a match �¬E j �
Mi = 1 , and all pred-

icates P j and A j are compatible with their definition

�P j ⇔ ψP j �Mi = 1 and �A j ⇔ ψA j �Mi = 1;
3. adheres to search parameters (e.g., |OMi | = size).

Themodel generator combines individual refinement units
to solve structural and numerical problems. Each refinement
unit analyzes a partial model (which is an intermediate state
of the model generation), and it collaborates with other units
by refining it. This is in conceptual analogy with the inter-
action of background theories in SMT-solvers [50,51]. A
refinement unit provides four main functionalities (see Fig.
7):

– Consistency check:The refinement unit evaluateswhether
a partialmodelmay satisfy the target theory (thus it can be
potentially completed to a consistent model), or it surely
violates it (thus no refinement is ever consistent).

– Decision: The unit makes an atomic decision by a single
refinement in the partial model (e.g., adding an edge by
setting a 1/2 value to 1) which is consistent with the tar-
get theory. This new information makes the model more
concrete, thus reducing the number of potential solutions.

– Unit propagation: After a decision, the unit executes
further refinements necessitated by the consequences of
previous refinements wrt. the target theory without intro-
ducing new information or excluding potential solutions.

This step automatically does necessary refinements on
the partial model without making any decisions.

– Concretization: Finally, the unit attempts to complete
the partial model by setting all uncertain 1/2 edges to 0,
and checks if the concrete model is consistent with the
target theory or not.

In this paper, we combine two of such refinements units:
We reuse a graph solver [71] as structural refinement unit
to efficiently generate the structural part of models to rea-
son about �ϕ�PZ . Moreover, we propose a novel numerical
refinement unit that uses two efficient backend SMT-solvers
(Z3 [17] and dReal [23]) to solve the numerical problems
reasoning about �ψ�PZ . The refinement units interact with
each other bidirectionally via the refinement of partial mod-
els: The structural refinement unit refines truth values on
attribute predicates (based on the structural part of the error
predicates), which need to be respected by the numerical
refinement unit. Symmetrically, the numerical refinement
unit can refine attribute predicates (based on the numerical
part of the error predicates), which need to be respected by
the structural refinement unit in turn.

In case of circular dependencies between structural and
numeric constraints, the structural refinement unit first enu-
merates all possible non-isomorphic structures, then the
numerical refinement unit attempts to resolve the attribute
values, given the graph structure. Potential conflicts between
refinement units are handled during consistency checks in
subsequent exploration steps, as described in Sect. 4.2.
Nevertheless, more complex decision procedures may be
implemented to handle such circular constraints.

4.2 Default exploration strategy by refinements

Our model generation framework derives models by explor-
ing the search space of partial models along refinements
carried out by refinement units. Thus, the size of the par-
tial models is continuously growing up to a designated size,
while the default exploration strategy aims to intelligently
minimize the search space. The detailed steps of this default
strategy are shown in Fig. 8.

Our framework takes as input a domain metamodel pro-
vided by an engineer. Optionally, engineers may also provide
as input additional logic constraints and an initial partial
model, as well as some search parameters.

0. Initialization: First, we initialize our search space with
an initial partial model. This is derived either from an exist-
ing initial model provided as input (thus each solution will
contain this seed model as a submodel), or it can be the
most general partial model P0 = 〈OP0 , IP0 ,VP0〉 where
OP0 = {new} has a single element, VP0 is 1/2 for every
symbol, and VP0(new) = ?.

123

Automated generation of consistent models using qualitative 1771

Fig. 8 Overview of the default state space exploration strategy for model generation

1.Decision:Next,we select an unexplored decision candi-
date proposed by a refinement unit, and execute it to refine the
partial model by adding new nodes and edges, or by populat-
ing a data object with a concrete value. In the default strategy,
this decision step is executed mainly by the structural refine-
ment unit which has more impact on model generation. If no
decision candidates are left unexplored, the search concludes
with an UNSAT result and returns the models that have been
saved during previous iterations, if any.

2.Unit propagation:After a decision, the framework exe-
cutes unit propagation in all refinement units until a fixpoint
is reached in order to propagate all consequences of the deci-
sion.

3. State coding: The search can reach isomorphic partial
models along multiple trajectories. To prevent the repeated
exploration of the same state, a state code is calculated and
stored for a new partial model by using shape-based graph
isomorphism checking [55,56]. If exploration detects that a
partial model has already been explored, it drops the partial
model and continues search from another state. Otherwise,
the framework calculates the state code of the newly explored
partial model and continues with its evaluation.

4. Consistency check: Next, each refinement unit checks
whether the partial model contains any inconsistencies that
cannot be repaired. Structural refinement unit evaluates the
(logic) under-approximation of the error predicates (see Sect.
3.4), which can detect irreparable structural errors. The
numerical refinement unit carries out a satisfiability check
of the numeric constraint determined by a call to the numeric
solver.

5. Concretization: Then, the framework tries to con-
cretize the partial model to a fully defined solution candidate
by resolving all uncertainties, and checks its compliancewith
the target theory and model size. If no violations are found
and themodel reaches the target size, then the instancemodel
is saved as a solution. (Thus, consistency is ensured for all
solutions.) If this concretization fails, it indicates that some-
thing is missing from the model, so the refinement process
continues.

6.1. Approximate distance &Add to state space:When
a partial model is refined, our framework estimates its dis-

tance from a solution [44]. This heuristic is based on the
number of missing objects and the number of violations in
its concretization. Then, the new partial model is added to the
search space of unexplored decisions where the exploration
continues at 1. Decision.

Further heuristics:For selecting the next unexplored deci-
sion to refine, we use a combined exploration strategy with
best-first search heuristic, backtracking, backjumping and
random restarts with an advanced design space exploration
framework [31,71].

6.2. Save Model: If concretization is successful, the
instance model is saved as a solution. At this stage, if the
required number of models has been reached, the search con-
cludes with a SAT result and returns all the models that have
been saved. Otherwise, the refinement process continues.

7. Prevent identical attributes: After finding a concrete
instance model, we avoid finding duplicates during future
iterations by adding constraints to the logic theory. These
constraints ensure that the numeric attribute assignments are
not identical to assignments provided for a previous model.
Exploration then continues at 1. Decision.

Diversity in attributes: The feedback loop provided by
the 7. Prevent identical attributes step may also be used to
increase diversity in attribute values. For example, instead of
just preventing duplicate numeric solutions, onemay enforce
certain domain-specific coverage criteria during numeric
concretization (e.g., solutions must be generated such that
they are evenly distributed over an interval). One may also
implement equivalence classes for attribute values through
qualitative abstractions to further improve both structural and
numeric diversity. We plan to address these enhancements as
part of our future work.

Example 4 Figure 9 illustrates a model generation run to
derive a family tree. Search is initializedwith aFamilyTree
f1 as root and two (abstract) objects to represent new objects
and new integers.

State 1 highlights the execution of a decision that splits
the new object and the new integer, creating a new Member
m1 with its undefined age attribute.

123

1772 A. A. Babikian et al.

Fig. 9 Sample realization of the default strategy for state space exploration

In State 2.1, a loop parent edge is added as a decision.
When investigating error predicate parentTooYoung
(child, parent), the search reveals that all conditions of
the error predicate are surely satisfied on objects m1 and
a1 except for attribute predicate checkp≤c+12. There-
fore, the structural refinement unit can refine the partial
model by setting IS2.1(checkp≤c+12)(a1, a1) to 0 with-
out excluding any valid refinements, which implies that
�p ≤ c + 12�S2.1p �→a1,c �→a1 = 0. The numerical refinement
unit (with the help of an underlying numeric solver) can
detect that no value VS2.1(a1) can be bound to object a1
such that VS2.1(a1) ≤ VS2.1(a1) + 12 is false; therefore, the
model cannot be finished to a consistent model; thus, it can
be safely dropped.

In State 2.2, a new Member m2 is added to the
FamilyTree, and the framework attempts to concretize
the model by resolving all uncertainty in State 3.1. First,
the structural refinement unit concretizes in the structural
part of the model, all 1/2 values are set to 0 (e.g., all the
potential parent edges disappear). Then, sample valid
values are generated for the attributes by the numerical
refinement unit. When the concretization is checked, error
pattern twoMembersHaveNoParent(m1,m2) indicates
that there are missing parent edges, so the framework
drops the concretization but continues to explore State 2.2.

Eventually, after adding a parent edge in State 3.2, the
framework is able to concretize a (consistent) model in State
4.2 that satisfies the target theory. In this case,we only require
a single output instance model; thus, the search terminates.

4.3 Custom exploration strategies

The default exploration strategy in Sect. 4.2 handles model
generation domain-independently. As such, it cannot exploit
the specificities of a modeling domain to accelerate state
space exploration. Furthermore, the default approach han-
dles the constantly growing partial model representation as a
whole during refinements. Although this does simplify the
process, it also poses a scalability challenge for complex
model generation tasks like in the Crossing Scenario domain.

To address these issues, typical theorem proving prac-
tices expose the internal decision processes and enable
users to define custom search space exploration strategies.
The approach proposed in [24] explicitly provides preferred
states as hints to guide exploration towards preferred search
space regions. The authors of [59] place domain-independent
conditions to restrict the instantiation of quantifiers during
search. The Z3 SMT solver [17] provides tactics and probes,
as well as combinators to allow significant customization
of underlying decision processes. In all cases, the proposed
customizations allow users to strategically restrict the search
space, thus guiding exploration.

Here, we adapt similar concepts to model generation
and propose an approach to define domain-specific, custom
exploration strategies. These strategies are used to restrict the
search space and guide exploration towards desired search
space regions.Usersmay specify strategies (based on domain
knowledge and requirements), which can split the modeling

123

Automated generation of consistent models using qualitative 1773

domain into fragments2 that are handled consecutively in
accordance with the divide-and-conquer principle. An exam-
ple of such a strategy is proposed in [53] and is applied to
the context of test generation for Software Product Lines.

Syntax: A custom strategy is composed of phases, where
each phase is responsible for the creation of a concrete
fragment of the partialmodel.A phasemay contain one struc-
tural subphase (pertaining to structural decisions), followed
potentially by a numeric subphase (pertaining to numeric
decisions). Additionally, a strategy may include a final sub-
phase that is not associated with any phase and that marks
the end of the strategy. Furthermore, each phase contains a
set of relaxed constraints (not checked) which are excluded,
while the exploration is at the corresponding phase. Finally,
phases may also contain a set of preferred numeric solver,
only one of which may be used at each phase.

Definition 5 (Custom strategy) For a set D of decisions, a
set C of constraints and a set N of numeric solvers, a cus-
tom strategy is defined by a deterministic control flow graph
CFG = 〈S, s, T 〉, where

– S represents a finite set of subphases,
– s ∈ S is the initial subphase,
– T ⊆ S×2D×2C×2N×S represents the set of transitions
where a tuple (src, dec, rel, num, trg) ∈ T is composed
of the source subphase src, the set of allowed decisions
dec, the set of relaxed constraints rel, the set of preferred
numeric solvers num, and the target subphase trg.

Additionally, given a subphase c ∈ S and the set of
all its outgoing transitions {x0, . . . , xm} ⊂ T , where xi =
(c, di , ri , ni , ti), deterministic execution is enforced by {d j ∩
dk = ∅ : 0 ≤ j ≤ k ≤ m}.

Example 5 Figure 10 defines a 3-phase custom strategy for
the domain of critical traffic scenarios. Subphases are named
according to their corresponding phase, and colored accord-
ing to the nature of the decisions in their outgoing transitions
(structural or numeric). The control flow graph also contains
a final subphase F. Transitions are labeled with correspond-
ing decisions (Dec), relaxed constraints (Rel) and preferred
numeric solver (Numeric Solver), where applicable.

Figure 10 illustrates a sample strategy designed specifi-
cally for the domain of traffic scenarios. A different strategy
could be defined for the family tree domain (see Sect. 3.1),
which refer to concepts and attributes of that domain (e.g.,
family members or parenthood instead of vehicle speed and
visibility). As such, the main structural constituents of an

2 A fragment here refers to a subset of domain components, such as
metamodel classes or selected WF constraints unlike in [7] where it
refers to a part of the search space.

Fig. 10 Control flow graph defining a 3-phase custom strategy for
Crossing Scenario

exploration strategy (i.e., decisions, relaxed constraints and
preferred number solver)will always refer to domain-specific
concepts.

Semantics: Amodel generation run using a custom strat-
egy corresponds to a traversal of the associated control flow
graph which is defined by a sequence of transitions traver-
sals. Semantically, a transition traversal corresponds to an
iteration of the default exploration strategy. Thus, a traversal
potentially involves all four refinement unit functionalities
of Fig. 8.

A custom strategy can restrict the default strategy, but
cannot extend it: relaxed constraints are excluded, allowed
decisions are restricted and a preferred numeric solver is used
for numeric decisions. As a result, each transition traversal
addresses only a specific fragment of the modeling domain.
Therefore, a sequence of transition traversals may address
the entire modeling domain through a divide-and-conquer
approach.

Definition 6 (Execution of custom strategies) Let CFG =
〈S, s,T〉 be a custom strategy over a set of decisions D,
constraints C, and numeric solvers N. Iteration i from state
src to state trg conforms with CFG, if there is a transition
(src, dec, rel, num, trg) ∈ T, where:

– the refinement applies a decision d ∈ dec,
– the refinement excludes constraints in rel during consis-
tency check

– the refinement uses a numeric solver n ∈ num

An iteration sequence i1, . . . , in conforms with CFG, if:

– iteration i1 from initial state s conforms with CFG,
– for each pair (i j , i j+1) : 1 ≤ j ≤ n − 1 iteration i j
to state x conforms with CFG, and i j+1 from state x
conforms with CFG.

123

1774 A. A. Babikian et al.

Fig. 11 Sample traversal of the control flow graph defined shown in Fig. 10

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12 Object diagrams and visualizations for selected nodes in the CFG traversal shown in Fig. 11

Example 6 Figure 11 illustrates a traversal of the CFG for
the 3-phase custom strategy of Crossing Scenario in Fig.
10. Each column corresponds to a phase and includes the
associated subphases and transitions.

Key subphases are accompanied by corresponding object
diagrams (concretized from the underlying partial model)
and visualizations in Fig. 12. The objects diagrams show
existing (filled) attributes and structural components in black.
Unknownpartialmodel elements, such as attribute values and
relations, are highlighted in dark gray. Elements that have
been defined as a result of decisions executed during the

previous phase are colored according to their type (structural
or numeric). These elements are also explicitly indicated in
the corresponding phase blocks of Fig. 11.

P1.0 is the initial subphase, where the underlying par-
tial model (in Fig. 12e) contains an empty road map with 3
vertical lanes and 3 horizontal lanes. Figure 12a shows two
unplaced actors a1 and a2 that have their vision blocked and
that must eventually collide. At this stage, actor a1 is placed
on horizontal lanehl3, then assigned concrete numeric posi-
tion and size values.

123

Automated generation of consistent models using qualitative 1775

At P2.0, the strategy moves to P2.1 by setting a1 as the
vision blocking actor between itself and a2. After a struc-
tural consistency check, this partial model is dropped, and
the exploration backtracks.

P2.0 is reached for a second time. At this stage, a new
actor a3 is created and the exploration moves to P2.2. It
sets a3 as the vision-blocking actor and places actors a2
and a3 on horizontal lanes. Once the structural consistency
checks succeed, the exploration moves to P2.3 and assigns
concrete numeric position and size values to a2 and a3. The
exploration reaches P3.1, where a3 is clearly blocking the
vision between a1 and a2, as seen in Fig. 12g. However,
we notice that since all actors can only move in a horizontal
direction, there is no chance for any of them to collide. As
a result, when the exploration tries to enforce the collision
between actors a1 and a2 in P3.1, the consistency check
fails and the exploration backtracks.

P2.0 is reached for a third time. As in the previous traver-
sal, a new actor a3 is created, set as the blocking actor and
placed on a horizontal lane. However, actor a2 is placed on
a vertical lane. Once concrete position and size values are
provided to a2 and a3, the exploration moves to P3.2. At
this stage, a possible collision does exist between actors a1
and a2, as seen in Fig. 12h. The corresponding numeric deci-
sions are made and the exploration moves to state F, which
outputs the concrete model shown in Fig. 12d.

4.4 Summary

Our framework constructs models by applying partial model
refinements proposed by refinement units. This paper uses a
combination of three refinement units:

– a graph solver [71] as structural refinement unit;
– the Z3 SMT solver [17] as numerical refinement unit;
– the dReal solver [23] as numerical refinement unit.

The framework combines the refinement units to explore
the search space of potential refinements using different
strategies.

– Default strategy follows a general purpose execution plan
detailed in Sect. 4.2.

– A custom strategy restricts the exploration with domain-
specific hints to improve performance as illustrated on
generating traffic layouts in Sect. 4.3.

– Finally, a combined strategy applies a custom strategy
first, and if it fails, the exploration backs of to the default
exploration strategy. Therefore, the custom strategy is
used only as a heuristic to select the preferred refine-
ments, if possible.

5 Structural and numerical refinement units

In this section, we summarize the structural and numerical
refinement units used in this paper. We also detail a mapping
from a partial model to a numerical problem handled by an
underlying numeric solver.

5.1 Structural refinements by a graph solver

The structural consistency of a partial model can be veri-
fied by checking the compatibility of all predicates P as
�P ⇔ ϕP�PZ . If a predicate is incompatible with its defini-
tion, or an error predicate is satisfied, the partial model is
inconsistent (see Sect. 3.4).

Our framework operates on a graph representation of par-
tial models (without a mapping to a logic solver); thus,
structural predicates are evaluated directly on this graph rep-
resentation. The query rewriting technique [72] enables to
efficiently evaluate the 3-valued semantics of logic predi-
cates �ϕ�PZ by a high-performance incremental model query
engine [85,86], which caches and maintains the truth values
of logic predicates during exploration.

Structural refinements are implemented by graph transfor-
mations [71,87]. Decisions are simple transformation rules
that rewrite a single 1/2 value to a 1 in the partial model,
or an equivalence predicate ∼ to 0 to split an object to two
(like m1 is separated from new object in State 1). On the
other hand, concretization rewrites all 1/2 values to 0, and
self-equivalences to 1.

The compatibility of predicate symbols is checked by
structural unit propagation rules, which are derived from
error predicates to refine a partial model when needed to
avoid a match of an error predicate. We rely on two kinds of
unit propagation rules:

– We derive unit propagation rules from the structural
constraints imposed by the metamodel to enforce type
hierarchy, multiplicities, inverse references, and contain-
ment hierarchy [71]. For example, when a new Member
is created, a new Int is also created with an age predi-
cate between them.

– Unit propagation rules are derived from each error pred-
icate E(v1, . . . , vn) to check if a 1 (or 0) value would
satisfy the error predicate �E(v1, . . . , vn)�

P = 1. In such
cases, the value is refined to the opposite 0 (or 1). Such
unit propagation rules may add numerical implications
of error predicates.

5.2 Numerical refinements by numeric solvers

The numerical refinement unit is responsible for maintain-
ing the compatibility of numeric constraints and attribute

123

1776 A. A. Babikian et al.

(a)

(b)

Fig. 13 Numerical interfaces for two states in Fig. 9

predicates, checking consistency of numeric constraints, and
deriving concrete numeric values.

Numerical refinement is based on a purely numerical
interface of a partial model. Let P be a partial model with
attribute predicates A1, . . . ,Aa . Let ONum

P denote the set of
data objects where �Int(v) ∨ Real(v)�Pv �→o ≥ 1/2. The
numerical interface �P consists of the objects inONum

P , and
of the numerical predicate values of the logic interpretations
IP (A1), . . . , IP (Aa).

Example 7 We extract numerical interfaces of the partial
models for State 3.2 and for State 4.1 in Fig. 9. These numer-
ical interfaces are shown in Fig. 13, which contains edges,
representing attribute predicates, labeled with the nega-
tions of the corresponding numeric constraint. Constraint
negations are more common within partial models as their
violating cases are included in themodeling domain. For both
interfaces, the numeric objects areONum

S3.2 = ONum
S4.1 = {i1, i2}.

The numeric values for interpretations IS3.2 and IS4.1 of
predicates A1 and A2 are:

A1 p c value in IS3.2 value in IS4.1
check¬(p≤c+12) i1 i1 1/2 1/2
check¬(p≤c+12) i1 i2 1 1
check¬(p≤c+12) i2 i1 1/2 1
check¬(p≤c+12) i2 i2 1/2 1/2

A2 mAge value in IS3.2 value in IS4.1
check¬(mAge<0) i1 1 1
check¬(mAge<0) i2 1 1

A numeric solver is called on the numerical interface �P

of a partial model P . The solver call returns a truth value for
the satisfiability of �P . For satisfiable numerical interfaces,
the solver also returns a numeric value assignment for each
object in ONum

P .
A consistency check for partial models involves a numeric

solver call where only the satisfiability of the numerical
interface is verifiedwithout any value assignments. An unsat-
isfiable numerical interface�P implies that the partial model
P cannot be completed with consistent numeric values; thus,
it can be dropped.

If the interface is satisfiable, numeric value assignments
for elements in ONum

P are used to complete partial models
by providing an interpretation for all unbounded data objects
during concretization. Moreover, fixing potential values for
certain data objects can be used as a decision. Numerical
interfaces formulated on real numbers need special attention.
A numeric solver may provide either exact or approximated
solutions.

– An exact solution is a mathematically precise solution to
a given numerical interface.

– An approximated solution is a numeric solution that satis-
fies a δ-perturbed form of the input formula (as defined in
[22]), where the preciseness is controlledwith a δ approx-
imation parameter.

The numerical consequences of the constructed �P can
be used to refine a partial model during unit propagation. In
our framework, three kinds of unit propagation operations
are supported:

– Values→Predicate. When the values of numeric objects
o1, ..., on are known in a partial model (i.e., VP (oi)
=
?, 1 ≤ i ≤ n), then the truth value of a predicate
�ψAi (v1, ..., vn)�

P
v̄ �→ō can be evaluated and updated in the

model. This step can be done without calling the numeric
solver, as the numerical expression can be evaluated prag-
matically (e.g., check¬(p≤c+12) for p = 30 and c = 2
is 0).

– Predicate→Predicate. If an attribute predicate Ai has
an unknown value �Ai (v1, ..., vn)�

P
v̄ �→ō = 1/2, and

�P ∧ ψAi (o1, ..., on) is numerically inconsistent, then
IQ(Ai)(o1, . . . , on) can be refined to 0. Similarly, if
�P∧¬ψAi (o1, ..., on) is inconsistent, the attribute can be
refined to 1. For example, in partial model S3.2, a value
0 for predicate check¬(p≤c+12) on i1, i1 would cause
numerical inconsistency, so the framework can refine it
to 1. (In our case studies, this step was impractical thus
this feature was not used.)

– Predicate→Values. If there is only a single solution x for
a numeric object o, then the unique value of can be set
in an unit propagation step VP (o) = x . For example, if

123

Automated generation of consistent models using qualitative 1777

VS3.2(i2) = 13, then VS3.2(i1) = 0 would be the only
solution, and it can be refined in the partial model as a
unit propagation.

5.3 Mapping of numerical interfaces

In this section,we describe how a numerical interface�P of a
partialmodel P ismapped to a numerical problem that is han-
dled by an underlying numeric solver. As discussed in Sect.
5.2, �P is defined over the set of data objects ONum

P . It also
contains the numerical predicate values of the logic interpre-
tations IP (A1), . . . , IP (Aa) where A1, . . . ,Aa are attribute
predicates contained in P and defined by ψA1 , . . . , ψAa .

Each data object o ∈ ONum
P is mapped to a numeric vari-

able var(o) denoting its potential value. If �Int(v)�Pv �→o ≥
1/2, then the type of this variable is integer, while if
�Real(v)�Pv �→o ≥ 1/2, then it is real. The numerical problem
derived from �P is defined over those variables.

A numerical problem is constructed as the conjunction of
numerical assertions as follows. If the value of o is already
known in the partial model (VP (o)
= ?), then we assert
its value as a numerical equation: VP (o) = var(o). Addi-
tionally, for each attribute constraint A1 in P , we assert its
definition ψAi for all data objects:

– If IP (Ai (v1, ..., vn))v �→o = 1, then ψAi (var(o1), ...,
var(on))

– If IP (Ai (v1, ..., vn))v �→o = 0, then ¬ψAi (var(o1), ...,
var(on))

– If IP (Ai (v1, ..., vn))v �→o = 1/2, then nothing is asserted.

This mapping extends our previous work [69], where we
provide a complete mapping from structural constraints to
FOL.

Example 8 We illustrate thismapping for the numerical inter-
face shown in Fig. 13b, which corresponds to the partial
model for State 4.1 of Fig. 9. The values for the interpre-
tation IS4.1 of relevant attribute predicates are indicated in
Sect. 7.

Mapping outputs are shown in Fig. 14. We include the
logic formulation of the numerical interface as a Numerical
Problem. Furthermore,we provide a translation of the numer-
ical problem into the concrete SMT2 syntax that is handled
by numeric solvers such as Z3. We may notice that we only
include (negated) assertions for attribute constraints Ai with
logic interpretation IP (Ai) = 1, while predicates with inter-
pretation IP (Ai) = 1/2 are disregarded.

5.4 Soundness and completeness

With the combination of the structural and numerical refine-
ment units, our proposed approach generates models with

Fig. 14 Mapping outputs for the numerical interface shown in Fig. 13b

numerical attributes using partial model refinement. For an
input domain 〈�,α〉, theory (constraints) T and the required
number and size ofmodels, it generates a sequence ofmodels
M1, . . . , Mn .

In this section, we evaluate the theoretical properties and
guarantees of our approach in different configurations. The
model generator can be executed using one of the three fol-
lowing strategies:

– Default strategy (detailed in Sect. 4.2)
– Custom strategy (detailed in Sect. 4.3)
– Combined strategy (detailed in Sect. 4.4)

For numerical refinement units, the model generator has two
options:

– use exact numeric solvers only (like Z3).
– use approximate numeric solvers (like dReal).

With respect to decidability of the numerical problem:

– If the numerical fragment isdecidable, then the numerical
refinement unit always terminates.

– If the numerical fragment is undecidable, then the
numerical refinement unit may not terminate for certain
numerical problems.

Definition 7 (Consistency) A model generation approach is
(approximately) consistent, if every model in the generated
sequence Mi ∈ {M1, . . . , Mn} is consistent (approximately)
satisfies the theory T (M |� T) and adheres to the search
parameters.

According to this definition, our model generation is con-
sistent if it uses exact numeric solvers, and it is approximately
consistent, if it uses approximate numeric solvers. This is
guaranteed by the direct evaluation of the error predicates
and compatibility predicates on the final stage of model
refinement with the underlying refinement units (see 5. Con-
cretization in Sect. 4.2). Consistency is not influenced by
the decidability of the numerical problem, or the strategy.

To discuss completeness, model equivalence is defined
first.

123

1778 A. A. Babikian et al.

Definition 8 (Model isomorphism) Two partial models P
and Q are structurally isomorphic, if there is a bijective func-
tion m : OP → OQ , where for each n-ary symbol s ∈ �

and for all objects o1, . . . , on ∈ OP :

IP (o1, . . . , on) = IQ(m(o1), . . . ,m(on)).

Partial models P and Q are isomorphic, if for each object
o ∈ OP : VP (o) = VP (m(o)) is also satisfied. Twomodels P
and Q are (structurally) different, if they are not (structurally)
isomorphic.

Therefore, we can define completeness properties for the
model generator.

Definition 9 (Structural completeness) A model generation
approach is structurally complete, if for the given theory
T and a search parameters, it can generate a sequence
MI ∈ {M1, . . . , Mn} that contains all structurally different
and consistent models.

Our default exploration strategy approach is structurally
complete on decidable numerical refinement unit: For a given
scope (size), it is able to generate all models with differ-
ent graph structures, which is ensured by the approximation
lemmas in Sect. 3.4 and in [71,87]. We intentionally avoid
fulfilling numerical completeness, since even simple models
could have potentially infinite number of attribute bindings.
A custom strategy restricts the search space to improve the
performance of model generation at the cost of completeness
guarantees. As the combined strategy eventually terminates,
and continues with the default exploration strategy, it has the
same completeness guarantee as default exploration strategy.
If the numerical fragment is not decidable, then we cannot
ensure that the numeric solver is able to provide numeric
solutions for each structure, and we cannot guarantee com-
pleteness.

6 Evaluation

We conducted various measurements to address the follow-
ing research questions:

RQ1: How do the different exploration steps contribute to
the execution time for generating models?

RQ2: How does model generation scale to derive large
models with structural and attribute constraints?

RQ3: How do various exploration strategies influence the
efficiency of model generation?

RQ4: How structurally diverse are synthetic models?

6.1 Target domains

We perform model generation campaigns in four complex
case studies. The target domain artifacts, output models and
measurement results are available on GitHub3.

FAM: The FamilyTree domain is presented in Sect. 3.1 as
our running example. We use the metamodel shown in Fig.
4 which captures parenthood relations and the age of family
tree members (with 2 classes, 3 references and 1 numerical
attribute). Furthermore, 3 constraints are defined as graph
predicates that place structural and numerical restrictions on
family tree members. The initial model used for model gen-
eration contains a single FamilyTree node. While this
domain looks simple, there is a subtle mutual dependency
between structural and attribute constraints, which provides
extra challenges for the interaction of different solvers.

SAT: The Satellite domain (introduced in [32]) represents
interferometry mission architectures used for space mission
planning at NASA. Such an architecture consists of collab-
orating satellites and radio communication between them,
which are captured by a metamodel with 15 classes, 5 refer-
ences and 2 numerical attributes. Additionally, 18 constraints
are defined as graph predicates to capture restrictions on col-
laborating satellites. The initial model contains a single root
node as the starting point for model generation.

TAX: The Taxation domain (used in [81,82]) represents
the personal income tax management application used by
the Government of Luxembourg. We reused the original
metamodel which contains 54 classes (including 15 Enum
classes), 52 relations and 92 attributes, 44 of which are
numerical. Additionally, we replicated the OCL constraints
used in [82] as graph predicates.

To independently replicate the case study of [82] in a pure
EMF context with strict containment hierarchy (instead of
UML), we include a Resource class in the metamodel that
contains instances of the Household class, which was the
root class of the original Taxation metamodel. This allows
the instantiation of multiple Household instances within
the samemodel generation task. To enforce the same number
of objects, we include an initial model containing a prede-
fined number of Household instances and we prevent the
generation of further instances of that class as in [82].

CRO: The CrossingScenario domain is presented in Sect.
2 as our motivating example. We identify two variants of
this domain for our experimental evaluation: CRO1 is used
for RQ1 and CRO2 used for RQ3. Both variants use the
metamodel in Fig. 2 to capture the actors and lanes of a traf-
fic scenario, as well as certain spatial and temporal relations

3 https://github.com/ArenBabikian/publication-pages/wiki/
Automated-Generation-of-Consistent-Models-Using-Qualitative-
Abstractions-and-Exploration-Strategies.

123

https://github.com/ArenBabikian/publication-pages/wiki/Automated-Generation-of-Consistent-Models-Using-Qualitative-Abstractions-and-Exploration-Strategies
https://github.com/ArenBabikian/publication-pages/wiki/Automated-Generation-of-Consistent-Models-Using-Qualitative-Abstractions-and-Exploration-Strategies
https://github.com/ArenBabikian/publication-pages/wiki/Automated-Generation-of-Consistent-Models-Using-Qualitative-Abstractions-and-Exploration-Strategies

Automated generation of consistent models using qualitative 1779

between actors (with 10 classes, 7 references and 13 numer-
ical attributes).

CRO1 includes 10 constraints defined as graph predicates
that place structural and numerical restrictions on the posi-
tioning and size of actors with respect to their corresponding
lanes. Additionally, we include a (quadratic) constraint to set
a minimum Euclidean distance between any pair of actors
in the model. The initial model for this variant includes 5
vertical lanes and 5 horizontal lanes. The model generation
challenge is to populate the existing lanes by placing new
Actor objects (but without extra lanes or relations).

CRO2 includes 32 constraints defined as graph pred-
icates that place restrictions on all components of the
metamodel. We incorporate complex numeric constraints
such as quadratic inequalities, non-constant divisions and
numeric if-then-else blocks. The initial model for this variant
includes 4 vertical lanes and 4 horizontal lanes, as well as two
black actors (with empty attributes) which are connected by
a CollisionExists relation and a VisionBlocked
relation. The model generation task consists of placing the
actors on specific lanes and filling their attribute values such
that the constraints are satisfied. Additional actors may be
generated if required. This variation provides a significant
model generation challenge not only due to the complexity of
the included numeric constraints, but also due to their mutual
dependencies with structural constraints, which necessitates
a bidirectional interaction between the underlying solvers.

General setup:To account for warm-up effects andmem-
ory handling of the Java 8 VM, an initial model generation
task is performed before the actual measurements and the
garbage collector is called explicitly between runs. We per-
formed the measurements on an enterprise server4.

6.2 RQ1: cost of exploration phases

Measurement setup: We perform measurements in all
four domains to compare runtimes and their distribution
between the different phases of model generation. For each
domain, we run measurements twice, with different under-
lying numeric solvers (Z3 and dReal). Note that the numeric
solvers are only used to assess the numeric constraints of
the model generation task and not the structural constraint as
poor scalability was reported in [5,69] for the latter.

We generate models with an increasing minimum model
size of 20, 40, 60, 80 and 100. The range for numeric values
was not bounded a priori. We exclude larger model sizes to
ensure high success rates and to enable cross-domain com-
parison of execution phases. For the TAX domain, the initial
model contains one instance of the Household class for
every 20generated nodes (which is the typical size of a house-

4 12×2.2GHz CPU, 64GiB RAM, CentOS 7, Java 1.8, 12GiB Heap.

hold in the models generated in [82]) to balance the difficulty
of model generation regardless of the target model size.

Initial measurements showed that the complexity of
numeric constraints in CRO1 causes low success rates even
for small models. Thus, we generate models containing only
up to 21 nodes (with a step size of 3).

We execute 10 runs per target model size and take the
median runtime values. For each model generator run, we
aim to produce the first 10 models within a timeout of 5
minutes. For the CRO1 domain, we excluded the generation
of additional models due to the low success rates.

Analysis of results: The decomposition of runtime mea-
surements for all four domains is shown in Fig. 15. Each
phase of model generation is represented by a different color.
The initialization phase (0.9 seconds for FAM, 3.5 seconds
for SAT, 150 seconds for TAX, 0.4 seconds for CRO1) is
a one-time penalty which is proportional to the size of the
metamodel and to the number of additional WF constraints.

In the FAM domain, the runtime is dominated by numeric
solver calls. This is attributed to the fact that this domain
needs to enforce a global structural constraint (families must
have an acyclic graph structurewith respect to the parenthood
relation) by solving numeric constraints, while the numeric
constraints of other domains are dominantly local (e.g., to
fill attribute values). However, extra cost of generating sub-
sequent models is low.

In the SAT case study, generating the first model takes less
than 30 seconds (dominated by the time required for state
encoding), but the cost of incrementally generating the next
model is relatively larger. For the target model sizes, execu-
tion times in the TAX case study are still mostly dominated
by the initialization phase due to the large metamodel and
numerous constraints of the domain. However, we do notice
that a significant portion of the execution time is dedicated
to numeric solver calls, due to the large quantity of numeric
constraints.

In all of the above cases, we notice that dReal requires
more time than Z3 (by an order of magnitude for FAM and
TAX) to handle the numeric constraints. Thus, we conclude
that for simple numeric constraints, Z3 is the more perfor-
mant underlying numeric solver.

However, we notice that dReal is the better performing
numeric solver for the CRO1 domain. Figure 15g and 15h
shows that the runtime is significantly dominated by numeric
solver calls, as expected. The figures also show the decreas-
ing success rate for model generation runs for both numeric
solvers. We notice that although runtimes for Z3 are slightly
faster than for dReal, we can see that success rates of Z3
decrease more rapidly. This is attributed to the underlying
background theories used in dReal, which make it more
suitable for complex, nonlinear constraints such as those in
CRO1.

123

1780 A. A. Babikian et al.

(a) (b) (c)

(d) (e)

(g)

(f)

(h)

Fig. 15 Runtimes of different exploration steps when generating models of increasing size

RQ1: Different phases of model generation can be
dominating for modeling problems with different char-
acteristics. For domains with global numeric constraints
such as FAM and CRO1, runtime is dominated by
numeric solver calls. For structure-dominant challenges,
such as SAT, runtime is dominated by state encoding,
and the incremental time required to generate additional
models is larger. For domains with a large metamodel
such as TAX, the initialization phase can be substantial,
but the sheer complexity of the domain does not directly
influence the actual model generation. We also conclude
that Z3 is better at handling simple numeric constraints,
while dReal is successful more frequently for complex,
non-linear constraints.

6.3 RQ2: scalability of model generation

Measurement setup: We perform measurements in the
FAM, SAT and TAX domains with increasing model sizes
starting from 100 objects with a step size of 50/100 objects
and timeout of 1 hour.We exclude theCRO domain from this
experiment considering its low success rates for smallmodels
reported in RQ1. A single model is generated in each run. A
campaign of 10 runs is executed for each measurement point
and the median of successful execution times is taken (i.e.,
that provide a finite model as result within the given time).
Additionally, we only gather measurement data for model
sizes where 100% of runs are successful. In other words, we
terminate the scalabilitymeasurements for a domain if any of
the 10 runs at a particular size fails to output a finite model.
For the TAX domain, we provide Household instances as

123

Automated generation of consistent models using qualitative 1781

(a) (b) (c)

Fig. 16 Model generation runtimes for large models

part of the initial model following the 1-to-20 ratio discussed
in Sect. 6.2.

Analysis of results: Measurement results for RQ2 are
shown in Fig. 16. Interestingly, the proposed approach scaled
best for the largest metamodel of the TAX case derivingmod-
els with 1100 objects within an hour. Furthermore, we were
able to generate models with 1200 objects within the same
time limit with a success rate of 80%.Model generation with
100% success rate scaled up to 300 objects for the FAM and
SAT domains. However, root cause of scalability limits was
very different (the numeric solver in FAM and graph solver in
SAT). Interestingly, FAM turned out to be the most complex
case study for assessing the use of numeric solvers.

RQ2: Our approach can generate consistent models
with 300 objects for all three case studies within an hour.
For the TAX case, scalability is comparable to figures
reported in [82] with well over 1000 objects.

6.4 RQ3: influence of exploration strategy

Measurement setup: We compare five state space explo-
ration strategies:

– Def (used as a baseline) calls a numeric solver at every
model generation step to repeatedly evaluate numeric
constraints using the default strategy;

– Qual includes manually added qualitative abstractions of
numeric constraints, which are assessed at every model
generation step;

– LowB explicitly sets a lower bound of one for the number
of newly created actors, which is the minimum require-
ment for CRO2 (this new actor will block the vision
between the two actors included in the initial model);

– Qual-LowB incorporates the additional constraints used
in Qual and in LowB;

– Cust uses the custom exploration strategy presented in
Sect. 4.3 without additional qualitative abstractions or
scope constraints.

The default exploration strategy Cont is used as our base-
line. Qual, LowB and Qual-LowB also follow the default
strategy with additional constraints which implicitly enforce
particular decisions at each iteration. Due to the poor results

Fig. 17 Numeric solver call time and success rate for exploration strate-
gies

reported in [67], we excludemeasurements for a strategy that
only makes numeric solver calls as a postprocessing step.

For RQ3, we perform measurements exclusively in the
CRO2 domain, which has complex dependencies between
structural and numeric constraints as well as complex
numeric constraints. In fact, the complexity of the underly-
ing numerical problem is shown inRQ1 to pose a significant
challenge when used with Def, which makes CRO2 an
adequate case study for testing the influence of different
exploration strategies. For the variations of the default strat-
egy, we only use dReal as it is the more successful numeric
solver which performed better for this domain (as shown in
Sect. 6.2).

We aim to generate a single model that satisfies the con-
straints of CRO2. Ten runs are executed for each approach
with a timeout of 5 minutes. Since the runtime of model gen-
eration is dominated by numeric solver calls (see RQ1), we
calculate only the runtime of numeric solver calls and the
success rates.

Analysis of results: Results are shown in Fig. 17. When
using the default strategy without any additional hints (Def),
we indicate a numeric solver call time of 12.601 s, with a
90% success rate. Adding qualitative abstractions of numeric
constraints (Qual and Qual-LowB) does significantly reduce
the numeric solver call time, as expected, given our result
in [67], but also reduces the success rate. However, when
qualitative abstractions are not included, we notice that when
adding scope constraints (LowB) is detrimental to numeric
solver call time. This is due to the heuristic used in the default
strategy that is negatively affected by the additional scope
constraint for this case study.

Despite achieving impressive runtime reductions by man-
ually adding different constraints to the modeling domain,
we notice that the most significant improvement is provided
by the custom exploration strategy (cust). The latter reduces

123

1782 A. A. Babikian et al.

Fig. 18 Internal diversity distributions

numeric solver call time by a factor of 40 without decreasing
success rate.

RQ3: Scope constraints may conflict with decision
heuristics, thus leading to longer numeric solver call
times. Qualitative abstractions of numeric constraints
significantly accelerate model generation by introduc-
ing an approximate causality at the expense of lower
success rates. Custom exploration strategies may intel-
ligently divide the modeling domain into fragments, and
thus significantly improve numeric solver call time with-
out deteriorating success rate.

6.5 RQ4: diversity

Measurement setup: To evaluate the structural diversity
of the generated models, we used a neighborhood-based
[57] internal diversity metric [70,73], which correlates with
mutation score inmutation testing scenarios. This metric cal-
culates the proportion of different local neighborhoods of
nodes included in a graph model. For this research question,
we checked the structural diversity of models only.

We used a neighborhood range=4, which classifies two
objects to be identical, if they cannot be distinguished with
atmost 4 links (hops). Tomeasure structural diversity, the val-
ues of data objects are not taken into account (but data objects
count as objects). We measured the diversity of 10×10 mod-
els (we execute 10 runs, where each run produces 10models)
for case studies FAM, SAT and TAX with 100 objects, and
measured the diversity of CROwith 18objects.Wecompared
the diversity of models generated with dReal and Z3.

Analysis of Results: The distribution of internal diver-
sity is illustrated in Fig. 18. The proportion of different
object neighborhoods with respect to the number of objects
is measured in percentage. FAM, and CRO showed high
internal diversity (between 65 and 80%), and SAT provided
even higher diversity (around 90% median). TAX provided
the lowest internal diversity (44%), which can be partially
explained by the large number of similar attributes of the
domain. Numeric solvers Z3 and dReal provided similar
diversity.

RQ4: Our approach provides relatively high structural
diversity when generating consistent models with struc-
tural and numeric constraints regardless of the backend
numeric solver.

6.6 Threats to validity

Construct validity. We have selected the CRO domain as a
representative case study for the generation of critical traffic
scenarios. In fact, it has been identified by Intel 5 as a funda-
mental safety principle for autonomous vehicles. However,
we do use various approximations (i.e., actors aremodeled as
rectangles, lanes have a fixed width) when implementing the
case study to simplify the model generation task. We intend
use the CRO domain as a proof of concept for generating
critical traffic scenarios using our proposed approach.

We replicated the TAX case study [82] in a new tech-
nological context, which involved (1) to create an Ecore
metamodel from an equivalent UMLdiagram and (2) toman-
ually transform the OCL constraints into equivalent VQL
graph patterns. The Ecore metamodel was kindly provided to
us by the authors of [82], while we validated each replicated
OCL constraint by performing manual equivalence checks.
We used similar number of Household objects as in [82] and
investigated the output models by graph visualization tools
to ensure that similar model generation outputs are obtained,
butwe refrain fromdirect numerical comparison of execution
times due to those technological differences.

Internal Validity. To strengthen internal validity, our
experiments include a warm-up run executed prior to the
actual measurements to decrease the fluctuation of runtimes
caused by the Java VM instead of the natural fluctuation of
solver runtimes. As the exploration strategy relies on some
randomness, our scalability measurements only report cases
with over 90% success rate—except for the CRO domain,
where all success rates are reported explicitly.

External Validity. We mitigate threats to external valid-
ity by including a diverse set of case studies which involve
calls to both a structural and a numeric solver. Furthermore,
we incorporate and compare two distinct numeric solvers.
We focused on numerical attributes as they are the most
frequent data types. Handling models containing different
kinds of attributes (e.g., string or bitvectors) can be a chal-
lenge in terms of performance (although Z3 does promise
efficient background theorems for both [17,89]). Addition-
ally, the numeric values derived by the underlying numeric
solver may not be diverse.

5 https://newsroom.intel.com/articles/rss-explained-five-rules-
autonomous-vehicle-safety/#gs.tfv0wh.

123

https://newsroom.intel.com/articles/rss-explained-five-rules-autonomous-vehicle-safety/#gs.tfv0wh
https://newsroom.intel.com/articles/rss-explained-five-rules-autonomous-vehicle-safety/#gs.tfv0wh

Automated generation of consistent models using qualitative 1783

7 Related work

We provide an overview of graph generation approaches that
derive consistent graphs. We also discuss some key numer-
ical abstractions and decision procedures, as well as traffic
scenario generation approaches.

Logic solver approaches. These approaches translate
graphs and WF constraints into a logic formulae and use
underlying solvers to generate graphs that satisfy them.
Back-end technologies used for this purpose include SMT
solver such as Z3 [36,66,88], SAT-based model finders
(like Alloy [35]) [3,6,13,33,40,46,49,69,74,77,78,80], CSP-
solvers [12,14,15,28], theorem provers [5], first-order logic
[8], constructive query containment [54], higher-order logic
[30] and an incremental query engine [71].

For most of these approaches, scalability is limited to
small models/counter-examples. These approaches are either
a priori bounded (where the search space needs to be
restricted explicitly) or they have decidability issues. Fur-
thermore, handling of numeric constraints is not available
for some of these approaches, particularly ones based on
SAT-solvers and first-order logic formulations.

Uncertainmodels. Partial models are similar to uncertain
models, which offer a rich specification language [18,62]
amenable to analysis. They provide a more intuitive, user-
friendly language compared to 3-valued interpretations, but
without handling additional WF constraints. Potential con-
crete models compliant with an uncertain model can be
synthesized by the Alloy Analyzer [64], or refined by graph
transformation rules [63].

Strategies. Iterative approaches generate models by mul-
tiple solver calls. An iterative approach is proposed specif-
ically for allocation problems in [39] based on Formula. In
[74], models are generated by calling Alloy in multiple steps,
where each step extends the instance model by a few ele-
ments. Finally, an iterative, counterexample-guided synthesis
is proposed for higher-order logic formulae in [47]. For these
approaches, when scalability evaluation is included, it is lim-
ited to 50 nodes.

Some logic and numeric solvers provide an interface
to configure the background theories and the strategy of
the solving process. For example, the Z3 SMT solver [17]
provides tactics and probes, and combinators to guide the
solver. Similarly, portfolio solvers like [10] provide options
to split reasoning tasks between a set of independent theorem
provers.

Symbolic model generation techniques. Certain tech-
niques use abstract (or symbolic) graphs for analysis pur-
poses. A tableau-based reasoning method is proposed for
graph properties [1,52,65], which automatically refines solu-
tions based onWF constraints, and handles the state space in
the form of a resolution tree as opposed to a partial model.

When scalability evaluation is included, these techniques
demonstrated to derive only small graphs (< 10 objects).

Different approaches use abstract interpretation [57], or
predicate abstraction [19,29,58] for partialmodeling. In those
approaches, concretization is used to materialize (typically
small) counterexamples for designated safety properties in
a graph transformation system. However, their focus is to
supportmodel checking of abstract graph transformation sys-
tems, which can evaluate complex trajectories, but do not
scale in the size of the models.

Hybrid approaches. These approaches divide the model
generation task into multiple sub-tasks and use a different
underlying techniques to resolve each one. The PLEDGE
model generation tool [82] provides such a scalable imple-
mentation by combining metaheuristic search for model
structure generation with an SMT-solver based approach
for attribute handling. The Evacon tool [34] implements
a search-based evolutionary testing approach, followed by
symbolic execution to generate tests for object-oriented
programs. Autograph [66] sequentially combines a tableau-
based approach for model structure generation with an
SMT-solver-based approach for attribute handling. Such
approaches combinemultiple techniques in a sequentialman-
ner, which is a conceptual restriction for mutually dependent
structural and numeric constraints. Moreover, none of these
techniques assure completeness of model generation.

Another category of hybrid approaches involves assess-
ing multiple components of the model generation task in
parallel. This requires the implementation of a certain deci-
sion procedure such as DPLL(T) [21,51] to iterate between
underlying techniques, or combine them by sharing variables
in their proofs [50]. Such decision procedures are presented
alongside their associated properties (e.g., soundness and
completeness) at an abstract level in [11,51], which allows
for formal reasoning about their implementations. However,
those approaches handle graph-based models inefficiently
[74,87]; thus, the scalability of those techniques is limited.

Numerical abstractions. Handling numeric (integer or
real) variables and constraints in model generation scenar-
ios requires their abstract interpretation through numerical
abstract domains [48,79]. Numerical abstract domains may
be used to summarize object attributes in value analy-
sis of heap programs [19,41,45]. Summarized dimensions
[29] were introduced to succinctly represent attributes of
a potentially unbounded set of objects via multi-objects.
This approach enables attribute handling in 3-valued par-
tial models, and allows checking for refinements by abstract
subsumption [2]. But these approaches do not generate graph
models.

The uniqueness of our approach lies in combining numer-
ical abstractions with partial models to guarantee soundness
and completeness, while generating models with favorable
scalability.

123

1784 A. A. Babikian et al.

Generating traffic scenarios.Recently, testing autonomous
vehicles with synthetic traffic scenarios has become a popu-
lar target for model generation. AsFault [20] proposes an
approach using metaheuristic search and procedural con-
tent generation to derive challenging world maps for testing
autonomous vehicles. This tool only generates static parts
of a scenario: it provides no reasoning for dynamic com-
ponents such as vehicles or pedestrians. A more complete
scenario generation approach is proposed in [9], which uses a
learnable evolutionary algorithm to guide exploration toward
critical regions of the search space, and ultimately toward
critical scenarios. Despite being able to generate both static
and dynamic components, this approach lacks numeric rea-
soning, since numeric attributes are taken from a predefined
finite set.

Other approaches use an underlying parametrized repre-
sentation of scenarios. Paracosm [42] applies Halton sam-
pling on the parameter space to generate scenarios according
to coverage criteria. The approach proposed in [60] com-
bines combinatorial interaction testing, backtracking and
motion planning to generate test cases for regression test-
ing of autonomous vehicles. The authors of [16] propose a
weighted search-based approach to find test scenarios with
avoidable collisions. In these cases, key information of the
generated scenarios (e.g., the road map) must be provided as
input, and only certain parameters (e.g., weather condition)
are varied. This provides limited expressivity compared to
our approach where we generate the entire underlying graph
structure of the scenario from scratch.

8 Conclusions

In this paper, we proposed an automated model generation
approach to derive consistent models that satisfy struc-
tural and complex numeric constraints, which necessitates
a bidirectional interaction between a graph solver and a
numeric (SMT or quadratic) solver. As a conceptual nov-
elty, we proposed refinement units that carry out consistency
checking, decision, unit propagation and concretization steps
in conceptual analogy with background theories used in
SMT-solvers as part of an abstract DPLL procedure [51].
Therefore, refinement units can seamlessly incorporate dif-
ferent kinds of solvers (similarly to [50]) for handling
attribute constraints in the presence of a graph solver that han-
dles partial models. Additionally, the interactions between
refinement units can be customized as domain-specific strate-
gies. We implemented our approach in the Viatra Solver
framework [68]. The source code of our approach is publicly
available (https://github.com/viatra/VIATRA-Generator).

We carried out a detailed experimental evaluation of our
approach in four complex case studies to assess scalability,
diversity and the influence of custom strategies. We obtained

favorable scalability results by consistently deriving models
with over 250 objects in two cases within an hour, and mod-
els with over 1000 objects in a third case with same time
limits. These model sizes are substantially larger than logic
solver-basedmodel generation approaches (e.g., Alloy or Z3)
could derive in the presence of structural constraints (see
[5,71,82]). In the fourth case study, which contains complex
numeric constraints, we show the significant positive impact
on runtime of custom exploration strategies. Moreover, our
approach maintains other favorable quality attributes such as
diversity and completeness investigated in depth in [70,87].

Acknowledgements We would like to thank Ghanem Soltana and
Lionel C. Briand for their help in running the Taxation case study. This
paper is partially supported by the NSERC RGPIN-04573-16 project,
the Natural Sciences and Engineering Research Council of Canada
(NSERC) PGSD3-546810-2020, the NRDI Fund based on the charter
of bolster issued by the NRDI Office under the auspices of the Ministry
for Innovation and Technology, and by the ÚNKP-20-4 New National
Excellence Program of the Ministry for Innovation and Technology
from the source of the National Research, Development and Innovation
Fund. During the development of the achievements, we took into con-
sideration the goals set by the Balatonfüred System Science Innovation
Cluster and the plans of the “BME Balatonfüred Knowledge Center,”
supported by EFOP 4.2.1-16-2017-00021.

Funding Open access funding provided by Budapest University of
Technology and Economics.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Al-Sibahi, A.S., Dimovski, A.S., Wasowski, A.: Symbolic execu-
tion of high-level transformations. In: SLE 2016, pp. 207–220.
Springer (2016)

2. Anand, S., Păsăreanu, C.S., Visser, W.: Symbolic execution with
abstraction. Int. J. Softw. Tools Technol. Transf. 11(1), 53–67
(2009)

3. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges
of model transformation from UML to Alloy. Softw. Syst. Model.
9(1), 69–86 (2010)

4. Aydal, E.G., Paige, R.F., Utting, M., Woodcock, J.: Putting formal
specifications under the magnifying glass: Model-based testing for
validation. In: Proceedings - 2nd International Conference on Soft-
ware Testing, Verification, andValidation, ICST 2009, pp. 131–140
(2009)

5. Babikian, A.A., Semeráth, O., Varró, D.: Automated generation of
consistent graph models with first-order logic theorem provers. In:

123

https://github.com/viatra/VIATRA-Generator
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Automated generation of consistent models using qualitative 1785

International Conference on Fundamental Approaches to Software
Engineering, pp. 441-461. Springer (2020)

6. Bak, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., Wasowski, A.:
Clafer: unifying class and feature modeling. Softw. Syst. Model.
1–35, (2013)

7. Baudry, B.: TestingModel Transformations: A case for Test Gener-
ation from Input DomainModels. In: Babau, J.-P., Blay-Fornarino,
M., Champeau, J., Gèrard, S., Robert, S., Sabetta, A. (eds.) Model
Driven Engineering for Distributed Real-time Embedded Systems.
ISTE (2009)

8. Beckert, B., Keller, U., Schmitt, P.H.: Translating the Object Con-
straint Language into First-order Predicate Logic. Proc. VERIFY,
Workshop at FLoC (2002)

9. Ben Abdessalem, R., Nejati, S., C. Briand, L., Stifter, T.: Testing
vision-based control systems using learnable evolutionary algo-
rithms. In: ICSE, pp. 1016–1026 (2018)

10. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shep-
herd your herd of provers. In: Boogie 2011: First International
Workshop on Intermediate Verification Languages, pp. 53–64. ,
Wrocław, Poland (2011)

11. Brain, M., DSilva, V., Haller, L., Griggio, A., Kroening, D.: An
abstract interpretation of DPLL(T). In: Giacobazzi, R., Berdine,
J., Mastroeni, I. (eds.) Verification, Model Checking, and Abstract
Interpretation, pp. 455–475. Springer, Berlin (2013)

12. Büttner, F., Cabot, J.: Lightweight string reasoning for OCL. In:
A. Vallecillo, J.P. Tolvanen, E. Kindler, H. Störrle, D.S. Kolovos
(eds.) ECMFA 2012, LNCS, vol. 7349, pp. 244–258. Springer
(2012)

13. Büttner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of ATL
transformations using transformation models and model finders.
In: ICFEM, pp. 198–213. Springer (2012)

14. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal
verification of UML/OCL models using constraint programming.
In: ASE 2017, pp. 547–548. ACM (2007)

15. Cabot, J., Clarisó, R., Riera, D.: On the verification of UML/OCL
class diagrams using constraint programming. J. Syst. Softw.
(2014)

16. Calò, A., Arcaini, P., Ali, S., Hauer, F., Ishikawa, F.: Generating
avoidable collision scenarios for testing autonomous driving sys-
tems. In: 2020 IEEE 13th International Conference on Software
Testing, Validation and Verification (ICST), pp. 375-386 (2020)

17. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Tools
andAlgorithms for the Construction andAnalysis of Systems, 14th
International Conference (TACAS 2008), LNCS, vol. 4963, pp.
337–340. Springer (2008)

18. Famelis, M., Salay, R., Chechik, M.: In: In: ICSE, (ed.) Partial
models: Towards modeling and reasoning with uncertainty, pp.
573–583. IEEE Computer Society (2012)

19. Ferrara, P., Fuchs, R., Juhasz, U.: TVAL+: TVLA and value analy-
ses together. In: SEFM2012, LNCS, vol. 7504, pp. 63–77. Springer
(2012)

20. Gambi, A., Mueller, M., Fraser, G.: Automatically testing self-
driving cars with search-based procedural content generation. In:
Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2019, p. 318–328. Asso-
ciation for Computing Machinery, New York, NY, USA (2019)

21. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli,
C.: DPLL(T): Fast decision procedures. In: R. Alur, D.A. Peled
(eds.) Computer Aided Verification, pp. 175–188 (2004)

22. Gao, S., Avigad, J., Clarke, E.M.: δ-complete decision procedures
for satisfiability over the reals. In: Gramlich, B., Miller, D., Sat-
tler, U. (eds.) Automated Reasoning, pp. 286–300. Springer, Berlin
(2012)

23. Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT solver for non-
linear theories over the reals. In: Bonacina, M.P. (ed.) Automated
Deduction - CADE-24, pp. 208–214. Springer, Berlin (2013)

24. Ge, Y., de Moura, L.: Complete instantiation for quantified formu-
las in satisfiabiliby modulo theories. In: Bouajjani, A., Maler, O.
(eds.) Computer Aided Verification, pp. 306–320. Springer, Berlin
(2009)

25. Geyer, S., Baltzer, M., Franz, B., Hakuli, S., Kauer, M., Kienle,
M., Meier, S., Weigerber, T., Bengler, K., Bruder, R., Flemisch,
F., Winner, H.: Concept and development of a unified ontology for
generating test and use-case catalogues for assisted and automated
vehicle guidance. IET Intell. Transp. Syst. 8(3), 183–189 (2014)

26. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based spec-
ification environment for validating UML and OCL. Sci. Comput.
Programm. 69(1), 27–34 (2007)

27. Gogolla,M.,Hilken, F.,Doan,K.:Achievingmodel quality through
model validation, verification and exploration.Comput. Lang. Syst.
Struct. 54, 474–511 (2018)

28. González, C.A., Büttner, F., Clarisó, R., Cabot, J.: EMFtoCSP: a
tool for the lightweight verification of EMF models. FormSERA
2012, 44–50 (2012)

29. Gopan, D., DiMaio, F., Dor, N., Reps, T., Sagiv, M.: Numeric
domains with summarized dimensions. In: TACAS 2004, LNCS,
vol. 2988, pp. 512–529. Springer (2004)

30. Grönniger, H., Ringert, J.O., Rumpe, B.: System model-based def-
inition of modeling language semantics. In: FORTE, LNCS, vol.
5522, pp. 152–166. Springer (2009)

31. Hegedüs, Á., Horváth, Á., Varró, D.: A model-driven framework
for guided design space exploration. Autom. Softw. Eng. 22(3),
399–436 (2015)

32. Herzig, S.J.I., Mandutianu, S., Kim, H., Hernandez, S., Imken, T.:
Model-transformation-based computational design synthesis for
mission architecture optimization. IEEE Aerospace Conference.
IEEE (2017)

33. Hilken, F., Gogolla, M., Burgueño, L., Vallecillo, A.: Testing mod-
els andmodel transformations using classifying terms. Softw. Syst.
Model. 17(3), 885–912 (2018)

34. Inkumsah, K., Xie, T.: Improving structural testing of object-
oriented programs via integrating evolutionary testing and sym-
bolic execution. In: 2008 23rd IEEE/ACM International Confer-
ence on Automated Software Engineering, pp. 297-306 (2008)

35. Jackson, D.: Alloy: a lightweight object modelling notation. Trans.
Softw. Eng. Methodol. 11(2), 256–290 (2002)

36. Jackson, E.K., Levendovszky, T., Balasubramanian, D.: Reason-
ing about metamodeling with formal specifications and automatic
proofs. In: Model Driven Engineering Languages and Systems, pp.
653–667. Springer (2011)

37. Jackson, E.K., Simko, G., Sztipanovits, J.: In: Diversely enumer-
ating system-level architectures, p. 11. IEEE Press (2013)

38. Jackson, E.K., Sztipanovits, J.: In: In: EMSOFT, (ed.) Towards
a formal foundation for domain specific modeling languages, pp.
53–62. , ACM, New York, NY, USA (2006)

39. Kang, E., Jackson, E., Schulte,W.:An approach for effective design
space exploration. In: Monterey Workshop, LNCS, vol. 6662, pp.
33–54. Springer (2010)

40. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive validation of
OCL models by integrating SAT solving into USE. TOOLS ’11,
LNCS 6705, 290–306 (2011)

41. Magill, S., Berdine, J., Clarke, E., Cook, B.: Arithmetic strength-
ening for shape analysis. In: SAS 2007, LNCS, vol. 4634, pp.
419–436. Springer (2007)

42. Majumdar, R., Mathur, A., Pirron, M., Stegner, L., Zufferey, D.:
Paracosm: A Test Framework for Autonomous Driving Simula-
tions, pp. 172–195. Springer, Cham (2021)

43. Majzik, I., Semeráth, O., Hajdu, C., Marussy, K., Szatmári, Z.,
Micskei, Z., Vörös, A., Babikian, A.A., Varró, D.: In: Towards
system-level testing with coverage guarantees for autonomous
vehicles, pp. 89–94. IEEE (2019)

123

1786 A. A. Babikian et al.

44. Marussy, K., Semeráth, O., Varró, D.: Automated generation of
consistent graph models with multiplicity reasoning. Submitted to
the IEEE for possible publication. (2020)

45. McCloskey, B., Reps, T., Sagiv, M.: Statically inferring complex
heap, array, and numeric invariants. In: SAS2010,LNCS, vol. 6337,
pp. 71–99. Springer (2010)

46. Meng, B., Reynolds, A., Tinelli, C., Barrett, C.: Relational con-
straint solving in SMT. In: CADE 2017, LNCS, vol. 10395, pp.
148–165. Springer (2017)

47. Milicevic, A., Near, J.P., Kang, E., Jackson, D.: Alloy*: A general-
purpose higher-order relational constraint solver. In: ICSE 2015,
pp. 609–619. IEEE (2015)

48. Miné, A.: Weakly relational numerical abstract domains. Ph.D.
thesis (2004)

49. Mottu, J.M., Sen, S., Tisi, M., Cabot, J.: Static analysis of model
transformations for eective test generation. In: Proceedings - Inter-
national Symposium on Software Reliability Engineering, ISSRE,
pp. 291-300 (2012)

50. Nelson, G., Oppen, D.C.: Simplification by cooperating decision
procedures. ACM Trans. Programm. Languag. Syst. (TOPLAS)
1(2), 245–257 (1979)

51. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and
SATmodulo theories: From an abstract Davis-Putnam-Logemann-
Loveland procedure to DPLL(T). J. ACM 53(6), 937–977 (2006)

52. Pennemann, K.H.: Resolution-like theorem proving for high-level
conditions. In: ICGT2008,LNCS, vol. 5214, pp. 289–304. Springer
(2008)

53. Perrouin,G., Sen, S., Klein, J., Baudry, B., LeTraon,Y.:Automated
and scalable T-wise test case generation strategies for Software
Product Lines. In: ICST 2010 - 3rd International Conference on
Software Testing, Verification and Validation, pp. 459-468 (2010)

54. Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-Lite:
Finite reasoning on UML/OCL conceptual schemas. Data Knowl.
Eng. 73, 1–22 (2012)

55. Rensink, A.: Canonical graph shapes. In: ESOP, pp. 401–415.
Springer (2004)

56. Rensink, A.: Isomorphism checking in groove. Electronic Com-
munications of the EASST 1 (2007)

57. Rensink, A., Distefano, D.: Abstract graph transformation. Elec-
tron Notes Theor. Comput. Sci. 157(1), 39–59 (2006)

58. Reps, T.W., Sagiv, M., Wilhelm, R.: Static program analysis via
3-valued logic. In: International Conference on Computer Aided
Verification, pp. 15-30 (2004)

59. Reynolds, A., Tinelli, C., Goel, A., Krstić, S.: Finite model find-
ing in SMT. In: Sharygina, N., Veith, H. (eds.) Computer Aided
Verification, pp. 640–655. Springer, Berlin (2013)

60. Rocklage, E., Kraft, H., Karatas, A., Seewig, J.: Automated sce-
nario generation for regression testing of autonomous vehicles.
In: 2017 IEEE 20th International Conference on Intelligent Trans-
portation Systems (ITSC), pp. 476-483 (2017)

61. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-
valued logic. ACM Trans. Programm. Languages Syst. (TOPLAS)
24(3), 217–298 (2002)

62. Salay, R., Chechik, M.: A generalized formal framework for par-
tial modeling. In: Egyed, A., Schaefer, I. (eds.) Fundamental
Approaches to Software Engineering, LNCS, vol. 9033, pp. 133–
148. Springer, Berlin (2015)

63. Salay, R., Chechik,M., Famelis,M., Gorzny, J.: Amethodology for
verifying refinements of partial models. J. Object Technol. 14(3),
3:1-31 (2015)

64. Salay, R., Famelis, M., Chechik, M.: In: In: FASE, (ed.) Lan-
guage independent refinement usingpartialmodeling, pp. 224–239.
Springer (2012)

65. Schneider, S., Lambers, L., Orejas, F.: Symbolic model generation
for graph properties. In: FASE 2017, LNCS, vol. 10202, pp. 226–
243. Springer (2017)

66. Schneider, S., Lambers, L., Orejas, F.: Automated reasoning for
attributed graph properties. STTT 20(6), 705–737 (2018)

67. Semeráth, O., Babikian, A.A., Li, A.,Marussy, K., Varró, D.: Auto-
mated generation of consistent models with structural and attribute
constraints. In: Proceedings of the 23rd ACM/IEEE International
Conference onModelDrivenEngineeringLanguages andSystems,
pp. 187-199 (2020)

68. Semeráth, O., Babikian, A.A., Pilarski, S., Varró, D.: In: VIATRA
Solver: A framework for the automated generation of consistent
domain-specific models, pp. 43–46. IEEE (2019)

69. Semeráth, O., Barta, Á., Horváth, Á., Szatmári, Z., Varró, D.: For-
mal validation of domain-specific languages with derived features
and well-formedness constraints. Softw. Syst. Model 16(2), 357–
392 (2017)

70. Semeráth, O., Farkas, R., Bergmann, G., Varró, D.: Diversity of
graphmodels andgraphgenerators inmutation testing. Int. J. Softw.
Tools Technol. Transf. 22(1), 57–78 (2020)

71. Semeráth, O., Nagy, A.S., Varró, D.: A graph solver for the auto-
mated generation of consistent domain-specific models. In: ICSE,
pp. 969–980. ACM (2018)

72. Semeráth, O., Varró, D.: Graph Constraint Evaluation over Partial
Models by Constraint Rewriting. In: ICMT, pp. 138–154 (2017)

73. Semeráth, O., Varró, D.: Iterative generation of diverse models
for testing specifications of DSL tools. In: FASE, pp. 227–245.
Springer (2018)

74. Semeráth, O., Vörös, A., Varró, D.: Iterative and incrementalmodel
generation by logic solvers. In: FASE, pp. 87–103. Springer (2016)

75. Sen, S.: Découverte automatique de modèles effectifs (Auto-
matic Effective Model Discovery). University of Rennes 1, France
(2010).. (Ph.D. thesis)

76. Sen, S., Baudry, B., Mottu, J.M.: On combining multiformalism
knowledge to select models for model transformation testing. In:
Proceedings of the 1st International Conference on Software Test-
ing, Verification and Validation, ICST 2008, pp. 328-337 (2008)

77. Sen, S., Baudry, B., Mottu, J.M.: Automatic model generation
strategies for model transformation testing. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics), vol. 5563
LNCS, pp. 148–164. Springer, Berlin, Heidelberg (2009)

78. Shah, S.M.A., Anastasakis, K., Bordbar, B.: From UML to Alloy
and back again. In: MoDeVVa ’09: Proceedings of the 6th Inter-
national Workshop on Model-Driven Engineering, Verication and
Validation, pp. 1-10. ACM (2009)

79. Singh, G., Püschel, M., Vechev, M.: A practical construction for
decomposing numerical abstract domains. Proc. ACM Program.
Lang. 2(POPL) (2018). Article no. 2

80. Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler,
R.: Verifying UML/OCL models using boolean satisfiability. In:
DATE’10, pp. 1341–1344. IEEE (2010)

81. Soltana, G., Sabetzadeh, M., Briand, L.C.: Synthetic data genera-
tion for statistical testing. In: ASE, pp. 872–882 (2017)

82. Soltana, G., Sabetzadeh, M., Briand, L.C.: Practical constraint
solving for generating system test data. ACM Trans. Softw. Eng.
Methodol. 29(2) (2020)

83. The Object Management Group: Object Constraint Language, p.
v2.4. (2014)

84. The Eclipse Project: Eclipse Modeling Framework. (2019). http://
www.eclipse.org/emf

85. Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B.,
Ráth, I., Szatmári, Z., Varró, D.: EMF-IncQuery: An integrated
development environment for live model queries. Sci. Comput.
Program. 98, 80–99 (2015)

86. Varró, D., Bergmann, G., Hegedüs, Á., Horváth, Á., Ráth, I., Ujhe-
lyi, Z.: Road to a reactive and incremental model transformation
platform: three generations of the VIATRA framework. Softw.
Syst. Model. 15(3), 609–629 (2016)

123

http://www.eclipse.org/emf
http://www.eclipse.org/emf

Automated generation of consistent models using qualitative 1787

87. Varró, D., Semeráth, O., Szárnyas, G., Horváth, Á.: Towards the
automated generation of consistent, diverse, scalable and realistic
graph models. In: Graph Transformation, Specifications, and Nets
- In Memory of Hartmut Ehrig, LNCS, vol. 10800, pp. 285–312.
Springer (2018)

88. Wu,H.,Monahan, R., Power, J.F.: Exploiting attributed type graphs
to generate metamodel instances using an SMT solver. In: TASE,
pp. 175–182 (2013)

89. Zheng, Y., Zhang, X., Ganesh, V.:ACM, : Z3-str: a Z3-based string
solver for web application analysis. In: Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, pp. 114-
124. ACM (2013)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Aren A. Babikian is a PhD stu-
dent at the Department of Elec-
trical and Computer Engineering
at McGill University. His research
focuses on using model gener-
ation techniques for the safety
assurance of autonomous cyber-
physical systems. He has
published a related research paper
at the international FASE 2020
conference.

Oszkár Semeráth is a research
fellow at the Department of Mea-
surement and Information
Systems at Budapest University of
Technology. His research focuses
on modeling technologies, and the
application and development of
specialized logic solvers for graph
generation. He is the lead devel-
oper of the VIATRA Solver graph
generator framework. He is a co-
author of a book chapter, five jour-
nal papers with impact factor, 17
conference papers, and won
IEEE/ACM best paper award at
the MODELS 2013 conference.

Anqi Li is a master’s student at
the Department of Computer Sci-
ence at ETH Zürich. She obtained
her Bachelor’s Degree of Soft-
ware Engineering from McGill
University in 2020. Her study
focuses on secure and reliable sys-
tems as well as theoretical com-
puter science. She is also a co-
author of a related paper at the
MODELS 2020 conference.

Kristóf Marussy is a PhD student
at the Department of Measure-
ment and Information Systems at
Budapest University of Technol-
ogy and Economics. His research
interest includes the modeling and
analysis of extra-functional prop-
erties of cyber-physical systems,
and the synthesis of reliable archi-
tectures.

Dániel Varró Daniel Varro is a
full professor at McGill Univer-
sity and at Budapest University of
Technology and Economics. He is
a co-author of more than 170 sci-
entific papers with seven Distin-
guished Paper Awards, and three
Most Influential Paper Awards. He
serves on the editorial board of
Software and Systems Modeling
and Journal of Object Technology
periodicals, and served as a pro-
gram co-chair of MODELS 2021,
SLE 2016, ICMT 2014, FASE
2013 conferences. He delivered

keynote talks at numerous conferences (incl. CSMR, SOFSEM and
SAM) and international summer schools. He is a co-founder of the
VIATRA open-source model query and transformation framework,
and IncQuery Labs, a technology-intensive Hungarian company.

123

