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Abstract

Today’s Internet is built on decades-old networking protocols that lack
scalability, reliability and security. In response, the networking community
has developed path-aware Internet architectures that solve these issues while
simultaneously empowering end hosts. In these architectures autonomous
systems authorize forwarding paths in accordance with their routing poli-
cies, and protect paths using cryptographic authenticators. For each packet,
the sending end host selects an authorized paths and embeds it and its
authenticators in the header. This allows routers to efficiently determine
how to forward the packet. The central security property of the data plane,
i.e., of forwarding, is that packets can only travel along authorized paths.
This property, that we call path authorization, protects the routing policies of
autonomous from malicious senders. Further security properties are source
authentication, which allows routers and the destination to authenticate the
sender, and path validation, which allows the sender and the destination to
verify that the packet traversed the path embedded in the header.

Existing schemes that achieve these properties require long authenticators
to be embedded in each packet’s header. We propose EPIC, a family of
protocols that achieve the same guarantees with substantially reduced
overhead.

The fundamental role of packet forwarding in the Internet’s ecosystem
and the complexity of the authentication mechanisms employed call for a
formal analysis of EPIC, and of related protocols. We develop a parameter-
ized verification framework for data plane protocols in Isabelle/HOL. We
first formulate an abstract model without an attacker for which we prove
path authorization. We then refine this model by introducing a Dolev–Yao
attacker and by protecting authorized paths using (generic) cryptographic
validation fields. This model is parametrized by the path authorization
mechanism and assumes five simple verification conditions that allow us to
prove the refinement of the abstract model. We propose two novel attacker
models and two sets of assumptions on the underlying routing protocol
that allow us to classify protocols and distinguish them by how strong their
guarantees are. We validate our framework by instantiating it with several
concrete protocols and proving that they each satisfy the verification con-

iii



ditions (and hence path authorization). Invariants needed for the security
proof are proven in the parametrized model; instances do not need to show
invariants. Our framework thus supports low-effort security proofs for data
plane protocols. We extend our framework in multiple ways, to allow a wide
range of protocols and different attackers to be modeled. Our verification
results hold for arbitrary network topologies and sets of authorized paths, a
generality that state-of-the-art automated protocol verifiers cannot currently
provide.
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Zusammenfassung

Das heutige Internet basiert auf Jahrzehnte alten Netzwerkprotokollen,
denen es an Skalierbarkeit, Zuverlässigkeit und Sicherheit mangelt. Die
Netzwerk-Gemeinschaft hat daraufhin Internet-Architekturen geschaffen,
die path-aware sind, und damit diese Probleme lösen und gleichzeitig End-
hosts mehr Gewicht verschaffen. In diesen Architekturen können Autonome
Systeme Forwarding-Pfade gemäss ihrer Routing-Regeln autorisieren und
durch kryptografische Authentifikatoren schützen. Der sendende Endhost
selektiert für jedes Paket einen dieser autorisierten Pfade und bettet ihn
zusammen mit den Authentifikatoren in den Header ein. Dies erlaubt es
Routern effizient zu bestimmen, wie das Paket weiterzuleiten ist. Die zentra-
le Sicherheitseigenschaft der Data Plane d.h. des Forwardings ist, dass sich
Pakete nur entlang autorisierter Pfade bewegen. Diese Eigenschaft, welche
wir Pfadautorisierung nennen, schützt die Routing-Regeln von Autonomen
System vor angreifenden Sendern. Weitere Sicherheitseigenschaften sind
Quellenauthentifizierung, welche es Routern und dem Empfänger ermögli-
chen den Sender zu authentifizieren, und Pfadvalidierung, welche es dem
Sender und dem Empfänger ermöglichen zu verifizieren, dass der Pfad den
das Paket zurückgelegt hat, dem im Header eingebetteten Pfad entspricht.

Bestehende Protokolle die diese Eigenschaften erfüllen setzen voraus,
dass lange Authentifikatoren in die Header jedes einzelnen Paketes einge-
bettet werden. Wir schlagen EPIC vor, eine Familie an Protokollen, welche
die gleichen Garantien unter deutlich weniger Aufwand erreichen.

Die elementare Rolle von Paket-Forwarding im Internet und die Komple-
xität der Authentifizierungs-Mechanismen erfordern eine formale Analyse
von EPIC und von ähnlichen Protkollen. Wir entwickeln ein parametri-
sches Verifikations-Framework für Data-Plane-Protokolle in Isabelle/HOL.
Wir entwickeln zuerst ein abstraktes Modell ohne Angreifer, für welches
wir Pfadautorisierung zeigen. Wir verfeinern dann dieses Modell indem
wir einen Dolev–Yao-Angreifer hinzufügen, und indem wir autorisierte
Pfade durch (generische) kryptografische Validierungsfelder schützen. Die-
ses Modell ist über den Pfadautorisierungs-Mechanismus parametrisiert
und nimmt fünf einfache Verifikationsbedingungen an, mit deren Hilfe
wir die Verfeinerung des abstrakten Modells zeigen können. Wir schlagen
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zwei neue Angreifermodelle und zwei Arten von Annahmen über das
zugrundeliegende Routing-Protokoll vor, welche es uns ermöglichen Pro-
tokolle zu klassifizieren und zu bestimmen wie stark ihre Garantien sind.
Wir validieren unser Framework indem wir es mit mehreren konkreten
Protokollen instanziieren und zeigen, dass sie jeweils die Verifikationsbe-
dingungen (und damit Pfadautorisierung) erfüllen. Invarianten, welche für
den Sicherheitsbeweis notwendig sind, werden im parametrischen Modell
bewiesen. Instanzen müssen keine Invarianten zeigen. Unser Framework
erlaubt daher die Sicherheit von Data-Plane-Protokollen ohne grosse Mühe
zu beweisen. Wir erweitern unser Framework auf mehrere Arten um viele
verschiedene Protokolle und Angreifer modellieren zu können. Unsere
Verifikationsresultate sind für beliebige Netzwerktopologien und Mengen
an autorisierten Pfaden gültig. Diese Generalität kann von derzeitigen
automatisierten Protokoll-Verifikations-Tools nicht geleistet werden.
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Notation

Ai AS corresponding to the ith hop on the path; HS and HD are
located in A1 and A`, respectively

Ci cryptographic result used for authenticating and updating the
ith hop fields

HS, HD source and destination hosts of a packet

HI hii is hop information of AS i consisting of tsexp, ingress inter-
face, and egress interface

HVF hop validation field, a field that protects a hop field crypto-
graphically. In EPIC, this is defined as hvfi = 〈Vi, Si〉.

Ki secret symmetric key of Ai

KS
i host key shared between Ai, A1, and HS, which can be effi-

ciently calculated by Ai

I set of interfaces

KSD key shared between A1, HS, A`, and HD

` AS-level path length

lval, lseg length in bytes of Vi, Si

lPRF block size in bytes of PRF(·) and MAC(·)

MACK(·) message authentication code using key K

N set of natural numbers

N set of nodes

P, p = |P| packet payload and payload size

PO packet origin consisting of Src, TSpath, and tspkt

PRFK(·) pseudorandom function using key K

S(l)
i segment identifier in protocol level l allowing ASes to chain

hops to paths

xiii



xiv notation

σ
(l)
j hop authenticator in level l authorizing the jth hop as calcu-

lated by Aj during path exploration

Src (A1, HS); source AS and host address

TSpath path timestamp created during path exploration

tsexp expiration time of a hop field relative to TSpath

tspkt packet creation time relative to TSpath

V(l)
i;j validator in protocol level l corresponding to the ith hop after

processing by Aj; when its value stays constant, we omit j.

VSD destination validation field

Mathematical Notation

A× B, A∗ cartesian product, finite sequences

P(A), A⊥ powerset, option type (sum of A and {⊥})

A→ B total function

A ⇀ B partial function

dom( f ), ran( f ) function domain and range

(| x ∈ A, y ∈ B |) set of records

(| x = a, y = b |) concrete record

x(r), r(| x := v |) record field x access, and update

f (x := v) function update

〈〉, x # xs, 〈a, b, c〉 empty, cons, concrete sequence

xs ≤ ys, x ∈ xs sequence prefix, sequence membership

hd(xs), tl(xs) list head and tail if cons, else ⊥

xs · ys, rev(xs) concatenation of string or sequence, sequence reversal

xsJi:jK substring from position i (incl.) to position j (excl.) of
sequence xs



1
Introduction

While the advent of the Internet is undoubtedly one of the most significant
developments in human history, its quick popularization has created sub-
stantial technical challenges and raised profound societal questions. These
issues have reached the mainstream, and concerns about disinformation
and abuse on the Internet are frequent topics in popular media. Less atten-
tion has been paid to questions of the governance, security and reliability of
the underlying infrastructure of the Internet, in particular the network layer.
Since all Internet applications rely on this infrastructure, these questions
also deserve our attention.

Researchers have in recent years suggested that an answer should come
in the form of a reliable, open, decentralized and secure future Internet
architecture. This thesis works towards that goal.

We begin with a short history of the Internet and how its organic growth
from a small, trusted network into a global system with adversarial actors
allowed the problems to develop that the Internet is facing today. These
problems motivate the idea for new architectures that are secure from the
ground up. At the same time, the future Internet should shift control from
the network to end hosts. A central question is how protocols can achieve
security despite this shift in control. Our focus is on architectures that do so
using cryptographic authenticators in each packet. We show the limitations
of existing proposals for a secure future Internet architecture and set the
stage for our two main contributions: First, we propose EPIC, a protocol
suite aimed at providing secure forwarding at substantially lower overhead
than existing protocols. Second, we formally verify security properties of
EPIC and a number of other protocols. We do so in a symbolic model
using an interactive theorem prover and following a foundational approach.
Together, these contributions bring us closer to a formally verified, secure
and efficient Internet.
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2 introduction

1.1 The early Internet

Some of the first ideas of an Internet came from J.C.R. Licklider, who, in
1962, dreamed of a “Galactic Network”. Independently from Licklider,
Leonard Kleinrock proposed the use of packet-switching over circuit-
switching in networking. Lastly, Robert Taylor, working for ARPA (today
known as DARPA) sought to connect his organization’s high performance
computers across the United States.

The intersection of the work of these three researchers [72], who provided
the vision for the Internet, the technical groundwork to realize it, and the
concrete motivation to deploy such a network, resulted in the creation of
ARPANET in 1969, a precursor to the Internet [65]. Initially connecting four
different research sites, ARPANET later connected 19 such nodes. Eventually
networks of different kinds were connected in an “inter-networking” effort,
giving rise to name “Internet”.

ARPANET showed the feasibility of many new concepts that proved to
be important for the Internet, such as packet-switching, decentralization
and the interoperability of networks of different architectures. The usage
of protocol layers showed to be instrumental for the Internet, when Vinton
Cerf and Robert Kahn proposed the Internet Protocol (IP) as well as the
Transmission Control Protocol (TCP) [28] in 1974. The User Datagram
Protocol (UDP) was added in 1980 as an alternative networking layer.

1.1.1 Security

While the designers of the early Internet were concerned with its security,
a number of factors lead to the decision not to include cryptographic
protection into its design.

Network operators often knew, and trusted each other and thought they
could exclude troublemakers and adversaries from the Internet [99].

It was believed that adversaries would primarily be sophisticated, state-
sponsored attackers. Profit-seeking criminals were not seen as a major
threat [30]. The main concern of the US military and intelligence community
with respect to these adversaries was the confidentiality of communication,
instead of availability. To achieve confidentiality, the end-to-end encryption
of critical applications was more suitable, rather than securing the network
itself. The US intelligence community also preferred cryptographic protec-
tions to be limited in scope. The concern was that the uncontrolled and
widespread use of cryptography could be detrimental to their goals – a
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position that continues to clash with the arguments by security researchers
to this date.

Lastly, specialized hardware was required for cryptography, since imple-
mentations in software were too slow. Hence, securing individual applica-
tions also seemed more feasible than securing the network in a comprehen-
sive way.

1.1.2 Growing pains

At the core of the Internet is a routing protocol that allows connected entities
to exchange and propagate routing information and thus to discover paths
throughout the Internet. By 1989 it became clear that the existing protocols
were unable to cope with the massive increase in routes. When the Border
Gateway Protocol (BGP) was designed in that year to deal with these
growing pains of the Internet, it was intended as a quick fix that was simple
and fast to deploy.

By that time, it was also clear that security on the Internet played a
major role. The widespread effect of the previous year’s Morris worm and
other attacks were still in recent memory. But the rapid increase in new
routes required a fast solution, and BGP was only ever supposed to be
a temporary solution. The designers of BGP sketched out the design of
the future routing protocol on a few napkins, giving BGP the nickname
“three napkin protocol” [100], and decided against including cryptographic
features to secure the discovery and exchange of routes.

Once BGP was rolled out, secure protocols had no chance of deployment.
Companies that were increasingly commercializing the Internet and driving
its growth had little interest in security, arguing that the additional com-
plexity would hinder deployment, and that customers would be unwilling
to pay extra for security [100].

1.2 Today’s Internet

Since the deployment of BGP, the Internet has grown into a global network
of ca. 70,000 independently managed networks [14], called autonomous sys-
tems (ASes), which are run by entities such as Internet service providers
(ISPs), content providers, or public institutions. Despite being intended as
a temporary solution, BGP is still the main routing protocol between au-
tonomous systems. This protocol did surprisingly well given the Internet’s
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rapid growth since its introduction. However, the availability, performance
and security concerns associated with the BGP ecosystem are becoming
increasingly clear. We outline them here.

1.2.1 Scalability and reliability limitations

Networking in today’s Internet is plagued by numerous performance and
security problems. Forwarding uses longest-prefix matching on large rout-
ing tables, which scales poorly and requires expensive hardware support.
Networking using BGP relies on the convergence of the distributed state.
Changes to the network topology trigger routing updates that can lead to
outages lasting tens of minutes [60], and in some topologies, BGP does
not converge to a stable state at all [51]. These concerns about BGP are not
merely theoretical worst case analyses: BGP updates have been identified
as the cause of up to half of all disruptions in experimental Voice-over-IP
(VoIP) setups, and an even higher share of dropped calls [68].

1.2.2 Lack of security

The current Internet does not only have these efficiency and scalability
limitations, but also lacks security at the networking level. For instance, due
to the lack of authentication of packets’ sources, adversaries can launch
attacks with spoofed source addresses. While the widespread use of ingress
filtering, as proposed in BCP 38 [45], could prevent such attacks, as long
as such measures are voluntary, attackers can use networks without fil-
tering to spoof their origin. Even if a measure against source spoofing
was universally deployed, it would not solve the independent problem of
BGP hijacking attacks, in which ASes make malicious BGP announcements,
thereby illegitimately attracting traffic of IP prefix ranges. Without secure
routing, all of the ca. 70,000 ASes in the Internet must be trusted not to
carry out prefix hijacking attacks [10].

In response to these well-known and longstanding security problems,
the networking community has been working to augment BGP with ad-
ditional security mechanisms. Protocols such as BGPSec [74], S-BGP [62],
soBGP [104], psBGP [101], PGBGP [58] and BGP origin validation [23] add
security mechanism to the existing BGP infrastructure. Unfortunately, these
additions are insufficient to solve the Internet’s problems [31, 75, 91], or in-
troduce new problems such as high overhead [49, 86] and kill switches [91].
In short, they trade off security with performance and they fail to address
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the reliability problems of BGP’s convergence-based approach. As the net-
working layer already suffers from scalability and efficiency limitations,
solutions that amend BGP at the cost of performance are unlikely to be
deployed in the future.

1.2.3 Lack of path transparency and control

Another limitation of the current Internet is the lack of control that end
hosts have on the networking layer. Concretely, a host that sends a packet
has little or no influence on the packet’s path. While hosts can sometimes
select the first hop (through multi-homing) [34], the path beyond it is
outside of their control. Each AS decides on its own where traffic towards a
certain destination should be routed to. This decision is usually driven by
commercial interests, such as avoiding higher-cost links, rather than path
metrics that are relevant to the endpoints, such as latency or bandwidth.
Hence, cost-minimizing practices such as hot potato routing are used by
many ASes. Even if path metrics relevant to users were prioritized, selecting
a single path means balancing conflicting properties such as low latency
and high bandwidth. All packets from a given source would traverse the
same path to a given destination instead of each application using the path
that best fulfills its requirements.

The lack of path control also leads to many other problems, such as com-
pliance, when data is not allowed to leave a particular jurisdiction; privacy
leaks, when BGP hijacking attacks are used to de-anonymize users [98]; or
re-routing attacks being used to obtain fake certificates [20].

Even more limiting, the current Internet not only rules out path control
by end hosts, but it also lacks a way for end hosts to reliably verify the
actual path a packet took on its way to the recipient. While applications
such as traceroute enable network probing, the obtained information
does not necessarily reflect the actual network topology, as the tracing
packets can be treated differently by on-path routers. Furthermore, in an
adversarial environment, the results cannot be trusted with, due to the lack
of authentication in existing network probing techniques [3, 8].

1.3 A new Internet

Over the past 15 years, different architectures for a new Internet have been
proposed, many of which give transparency and choices to end hosts [5,



6 introduction

19, 50, 83, 88, 89, 106, 108]. Like most modern networking protocols, they
are composed of two parts: (i) the low-bandwidth control plane, in which
neighboring nodes exchange topology and path information, and (ii) the
high-bandwidth data plane, in which data packets containing user’s payloads
are forwarded across the network along the paths discovered in the control
plane.

In path-aware networking architectures, forwarding paths, which are
created in the control plane, are transparent to end hosts in the data plane.
Many architectures allow end hosts to not only see which paths are used for
forwarding, but also allow them to actively select paths. We focus on these
architectures and use the term path-aware networking to mean protocols
that shift at least some control from routers and network infrastructure
to hosts. While path-awareness enables end hosts to choose paths that
suit their applications’ needs – such as low latency, or high bandwidth
– full control, meaning that they can create arbitrary forwarding paths, is
not desirable. If arbitrary paths could be constructed (source routing), then
malicious end hosts could create paths that disrupt forwarding or are
uneconomical for the on-path ASes.

The path-aware Internet architectures that we consider allow each Internet
AS to restrict which paths end hosts are permitted to use. Typically, this
is done via a path policy of each AS that determines if a particular path
is permitted. The enforcement of these policies can be split between the
control and data plane: the control plane authorizes paths consistent with
each AS’ policy, and the data plane ensures that packets are only forwarded
along authorized paths. We call the latter property path authorization.

Path authorization can be realized either by storing allowed paths on
each border router [50, 106], or by cryptographically securing the publicly
distributed path information and verifying it during forwarding [5, 19, 83,
88–90]. Stateful solutions scale poorly to the inter-domain context, can suffer
from inconsistencies across distributed nodes, and are less efficient than
cryptographic solutions [64]. We thus focus on systems that use crypto-
graphic authenticators for each (AS-level) hop in the header of packets. In
these architectures, data packets themselves carry the path on which they
are to be forwarded, with a pointer indicating the packet’s position on the
path (packet-carried forwarding state). Hence, border routers do not need to
keep inter-AS routing tables or perform expensive lookup operations and
are essentially stateless.
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1.4 Existing path-aware networking architectures

In existing systems, fixing the length of per-hop authenticators poses a
dilemma. Sufficiently long authenticators cause a high communication
overhead as they are embedded in each packet. On the other hand, short
and efficient authenticators are insecure: An attacker can conduct an online
brute-force attack, i.e., send packets with fabricated authenticators between
two hosts under his control until a packet is successfully forwarded. Once
an authenticator is successfully brute-forced, the attacker can send an
unlimited number of packets along the unauthorized path. So far, there is
no solution that is both efficient and secure.

Parallel to the development of next-generation Internet architectures,
recognition grew that additional security properties are desirable [22, 24,
25, 27, 64, 83, 105]. End hosts and routers need to authenticate the source of
packets as well as other parts of packets’ headers and their contents (source
and packet authentication). Furthermore, the source and destination may need
to be able to reconstruct and validate a packet’s actual path (path validation).

A prime application of source authentication is defending against denial-
of-service (DoS) attacks, in which network links or end hosts are flooded
with excessive amounts of traffic. These attacks are often enabled by the
attacker’s ability to spoof her own address. Source authentication at net-
work routers protects both the network and the destination by filtering
unauthentic packets early and before they reach any bottleneck links. In
addition, more sophisticated DoS-defense mechanisms such as bandwidth-
reservation systems fundamentally depend on efficient source authentica-
tion mechanisms [13].

On the other hand, path validation protects the path choices made by
the source of packets; if messages need to follow a specific path due to,
e.g., compliance reasons, end hosts should be able to check whether their
path directive is actually obeyed by on-path routers. Also, in a path-aware
Internet, end hosts may be able to choose between several paths of different
properties and costs. If using and paying for a more expensive path (e.g.,
through a satellite network), end hosts have a legitimate interest in obtaining
proof that this path was actually traversed. Otherwise, malicious ASes could
re-route the packet along a cheaper path and avoid the high-cost path.

While solutions exist that provide source authentication and path valida-
tion, they come with significant communication and computation overhead:
ICING [83] and OPT [64, 88] have an overhead of hundreds of bytes per
packet for realistic path lengths. A recent proposal, PPV [105], reduces
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the overhead and reaches practically feasible efficiency, but only verifies
individual links on the path probabilistically and only enables source au-
thentication for the destination. However, as described above, filtering out
packets before they reach bottleneck links is important in defending against
DoS attacks; hence, for this application it is preferable for every packet to be
checked at every hop.

1.5 EPIC protocols

In this thesis, we propose EPIC, a family of cryptographic data plane proto-
cols for path-aware Internet architectures. These protocols have increasingly
strong security properties, including path authorization, source authentica-
tion, and path validation. EPIC is an acronym that stands for Every Packet Is
Checked.

The key insight of our protocols is how they escape the dilemma between
low communication overhead and security: On the one hand, we use rela-
tively short per-hop authentication fields in EPIC to limit communication
overhead. On the other hand, we ensure that an attacker with the ability
to forge a few of these fields by sending a large number of packets cannot
cause significant damage. We achieve this in two ways: First, by binding
the authenticators used on a path to a specific packet and by preventing the
same packet from being forwarded twice, EPIC ensures that a forged au-
thenticator does not allow an attacker to send more than a single packet. It
thus prevents volumetric DoS attacks based on unauthorized paths. Second,
EPIC uses a longer authentication field for the destination which is unforge-
able with high probability for even strong attackers, such that the very few
packets that were able to deceive intermediate routers are detectable at the
destination.

EPIC also uses the same field that proves the authorization of a path to
an AS to provide source authentication. Moreover, after an AS has validated
this field, it embeds a proof of its traversal in the same field, providing path
validation to the source and destination. Using a single per-hop field for
different properties decreases the communication overhead compared to
existing approaches that use different per-hop fields for each property.

As a result of using short per-hop authenticators and utilizing the same
authenticator field for different security mechanisms, EPIC has substantially
lower communication overhead, and scales better with the path length than
state-of-the-art protocols like ICING [83] and OPT [64].
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1.6 Formal verification

The complexity of data plane protocols such as EPIC and their central role
in a new Internet architecture calls for their formal verification. This will
yield strong guarantees of their correctness and security. There are several
payoffs from this effort. First, it enables the early detection of protocol flaws
and vulnerabilities, avoiding critical exploits and high costs for corrections
after deployment has begun. This is especially true for the data plane since
it will be implemented in high-performance software or hardware routers,
which are difficult to update after their deployment. Second, a formal proof
increases confidence in the architecture’s security, thereby fostering its
adoption. Third, in a given AS, the number of border routers can be orders
of magnitude higher than the number of control plane servers, making
changes that require their replacement very costly.

We focus our verification effort on path authorization. Data plane pro-
tocols exhibit characteristics that make the verification of this property
particularly challenging. First, we want to verify this security property over
arbitrary network topologies and authorized paths therein, as determined
by the control plane. Second, the formalism must be expressive enough to
describe (i) path authorization, which is a non-local property that involves
all ASes on a path, and (ii) assumptions on a control plane adversary’s
capabilities to shorten, modify, and extend certain authorized paths. Third,
the number of participants and the message sizes in a protocol run depend
on the (unbounded) length of the path embedded in a given packet. We
anticipate that state-of-the-art automated security protocol verifiers such
as Tamarin [82] and ProVerif [21] could only be used for bounded verifi-
cation of path authorization, instead of verification under arbitrary sets of
authorized paths.

For this reason, we employ a higher-order logic theorem prover, Is-
abelle/HOL [85], which allows us to model and verify data plane protocols
in their full generality. As research in novel path-aware Internet archi-
tectures has led to several interesting candidate (families of) data plane
protocols, we would like to verify these without the need to restart the
specification and verification effort from scratch for each protocol or variant.
Specifications and proofs should thus share as much structure as possible.
To achieve this, we propose a parametrized framework in Isabelle/HOL for
the verification of data plane protocols. Figure 1.1 gives an overview of our
framework.
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ICING
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 assume  conditions
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Figure 1.1: Overview of our verification framework and of protocol instance
models. Refinement and instantiation preserve properties.

We first develop a simple abstract model of a packet forwarding pro-
tocol without an attacker, for which we formulate and easily prove path
authorization. We then refine this model into a more concrete one, where
we introduce a Dolev–Yao adversary and (generic) cryptographic authen-
ticators, called hop validation fields (HVF), that protect each AS-level hop
along a forwarding path. A key insight is that the main difference between
path authorization mechanisms is how the HVF is computed. This allows
us to define a single skeleton protocol model, which we can instantiate
to a wide range of actual protocols. We achieve this by parametrizing the
concrete model by (i) a cryptographic hop validation field check that must
be performed by each AS locally to determine the authorization of the
forwarding path, (ii), a predicate that allows one to incorporate additional
assumptions on the set of authorized paths, (iii) a function that extracts
an entire forwarding path from a hop validation field, and (iv) a set of
(cryptographic) terms added to the attacker’s knowledge.

We identify five simple verification conditions on these parameters that suf-
fice to prove that the concrete model refines the abstract one and therefore
inherits the path authorization property. These conditions require the HVF
to be unforgeable and to contain the forwarding path.
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Our development is also parametrized by an arbitrary network topology
and a set of authorized paths constructed by the control plane. Our security
proofs hold for all network topologies and control planes that satisfy some
realistic assumptions.

To define a concrete data plane protocol in our framework, we instantiate
the parameters (i)-(iv) and discharge the five verification conditions. We do
so for the data plane of SCION [88], several protocols belonging to the EPIC
family, Anapaya-SCION [4], and ICING [84], as well as for variants of these
protocols. The instantiations and the associated proofs of the verification
conditions are substantially shorter, simpler, and more manageable than
redoing a full specification and security proof for each protocol. In particular,
discharging the conditions does not involve reasoning about state transitions
(unlike, e.g., proving an invariant).

We extend our framework in various ways to allow for (i) a wider range
of protocols to be modeled, (ii) more accurate modeling of protocols and
(iii) different attacker models. For instance, we add additional fields as
parameters, extend our term algebra with an abstraction of exclusive-or
(XOR), support certain header updates by on-path routers, and introduce
additional mechanisms that allow instances to define an oracle-based strong
attacker model.

We classify path authorization mechanisms depending on how paths are
authorized in the control plane: in undirected protocols, each on-path AS
authorizes the path in its entirety. In directed protocols, each such AS only
authorizes the path in one direction. Our verification framework supports
both classes of protocols. All protocols we have studied, except for ICING,
are directed.

Since path-aware Internet architectures have not yet been widely de-
ployed, they are not well-known outside of the networking community.
Hence, there is little existing verification work. The most closely related
works are the verification of a weaker AS-local form of path authoriza-
tion [29] and of different security properties [107] for such architectures.
Both of these works mechanize their proofs in Coq using a non-foundational
approach, i.e., relying on an axiomatization or external tools. We further
discuss related work in §4.9.
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1.7 Contributions

The contributions of this thesis can be split up into the EPIC work, which
proposes concrete new protocols, and the verification work, which formally
verifies security properties for a whole class of protocols.

1.7.1 EPIC protocols

In the work EPIC: Every Packet Is Checked in the Data Plane of a Path-Aware
Internet presented in the 29th USENIX Security Symposium by Markus Leg-
ner, Tobias Klenze, Marc Wyss, Christoph Sprenger, and Adrian Perrig [71],
our main contributions are:

• We propose EPIC, a series of protocols that use unique authenticators
for each packet to resolve the security–efficiency dilemma in the data
plane of path-aware Internet architectures.

• We propose a new attacker model that combines a Dolev–Yao [37]
adversary with a cryptographic oracle. This allows us to express
EPIC’s resilience against even powerful attackers. EPIC achieves all
desirable security goals in this stronger attacker model.

• We show that EPIC has a communication overhead that is 3–5 times
smaller compared to the state-of-the-art solutions OPT and ICING for
realistic path lengths.

• Using Intel’s Data Plane Development Kit (DPDK) [38], we imple-
ment EPIC and show that our router implementation running on
commodity hardware can saturate a 40 Gbps link while using only
four processing cores.

Markus Legner is the main author of the EPIC protocols. The protocols
were implemented by Marc Wyss and the performance analysis was per-
formed by Markus Legner and Marc Wyss. My contributions were primarily
in the security analysis and in proposing a novel attacker model.

1.7.2 Formal verification

In the work Formal Verification of Secure Forwarding Protocols in the 2021

IEEE 34rd Computer Security Foundations Symposium by Tobias Klenze,
Christoph Sprenger, and David Basin [66], our main contributions are:
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• We develop a generic framework for verifying security properties for a
general class of data plane protocols for arbitrary network topologies.
This framework has four protocol parameters that are required to
satisfy five simple verification conditions.

• The five conditions provide insight into the common structure under-
lying data plane protocols of path-aware Internet architectures.

• We instantiate our framework with nine different variants of realistic
data plane protocols proposed in the literature and prove that they
satisfy path authorization by establishing the parametrized model’s
verification conditions.

• All of our definitions and results are formalized in Isabelle/HOL
following a foundational approach, which only relies on the axioms
of higher-order logic and thus provides strong soundness guarantees.

This thesis presents three additional features of the framework and adds
a protocol instance. These contributions are not part of the work cited
above.

• We extend the verification framework by (i) mutable per-packet fields
that are updated by each on-path node, (ii) a parameter for addi-
tional protocol-specific control plane assumptions, and (iii) a novel
abstraction of XOR for authentication protocols.

• Using these extensions, we instantiate our framework with a proposed
successor to the authentication mechanism used in SCION [4], which
we call Anapaya-SCION.

1.8 Overview of the thesis

Chapter 2 gives background on path-aware Internet architectures, and
informally describes desirable data plane security properties. In Chapter 3,
we propose the EPIC protocol family, analyze its security informally, and
compare its performance performance to other protocols. We abstract from
EPIC and propose a parametrized framework for the verification of a wide
range of different data plane protocols in Chapter 4. We discuss related
work at the end of Chapters 3 and 4. We conclude in Chapter 5.

All results in the formal verification chapter of this thesis are formalized
in Isabelle/HOL and are available in the supplementary material.





2
Preliminaries

Path-aware Internet architectures are complex systems composed of multi-
ple components and protocols. We present the data plane requirements and
in particular, the security goals of individual actors and desirable properties,
in §2.1. We then describe path-aware future Internet architectures in more
detail, in particular the control plane mechanisms that are outside the scope
of our work, but that are relevant to it because they interact with the data
plane. This background is given in §2.2.

2.1 Problem definition

We target the problem of securing the inter-domain data plane of path-aware
Internet architectures.

Each autonomous system (AS) has centralized control within its own net-
work, which simplifies managing and securing the intra-AS communication,
e.g., through software-defined networking [18]. By contrast, networking be-
tween ASes requires coordination between separate entities without central
control. Our work focuses on securing this inter-AS communication. We
exclude the equally important, but orthogonal problem of securing intra-AS
networking. Thus, in line with previous work [81], we abstract from the
internal networks of ASes and consider all security properties at the level
of ASes (or the end hosts that connect to them); in particular, throughout
the remainder of this thesis, “hop” stands for “AS-level hop”.

We also only focus on securing the data plane. We assume that the control
plane is secure and constructs paths according to the ASes’ policies and the
participants of our data plane protocols obtain the required symmetric keys
and path information via secure control-plane channels. While securing key
distribution and other control-plane functionality is itself a challenging task,
it is orthogonal to the challenges for the data plane: as we argue below, in
the control plane, asymmetric cryptography can be used to provide strong
security guarantees, whereas in the data plane only symmetric cryptography

15



16 preliminaries

A

B C

D

E

F G

(a) Auth. Paths

A

B C

D

E

F G

(b) Spliced Path

– Link – Left Path – Right Path – Attacker Path

Figure 2.1: If path authorization holds, a malicious sender at node F cannot splice
the two authorized paths in (a) to create the unauthorized forwarding
path in (b).

is sufficiently efficient. In practice, future Internet architectures propose the
use of public-key infrastructures to secure control-plane operations, such as
the Resource Public Key Infrastructure (RPKI) of today’s Internet [73].

EPIC, and other protocols protect the interests of both end hosts and
honest ASes. We present the security goals and properties of both types of
agents below. But first, we give some more detail on our network model.

2.1.1 Network properties

We model ASes as nodes in a graph. Figure 2.1 gives an example of a (tiny)
Internet topology to which we will return throughout this thesis. The
internal structure of an AS is shown in Figure 2.2. ASes are interconnected
at border routers, which sit at the edge of the internal network of each AS.
When a packet is received by a border router via an inter-AS link, there
are two cases: If the packet’s destination is inside the AS, the border router
forwards it through the internal network to the end host. Otherwise, the
border router determines the next inter-AS link and forwards it through the
internal network to the border router adjacent to that link (cf. Figure 2.2).
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AS

border router

internal router

Figure 2.2: Internals of AS E of Figure 2.1 with one path shown. The internal
path between border routers is decided by the AS.

As mentioned, the path-aware Internet architectures that we examine
provide end hosts with path control, which is the ability to choose from a set
of authorized forwarding paths for each destination. End hosts select their
desired forwarding path at the granularity of inter-AS links, and embed
the path alongside authenticators in each data packet. This packet-carried
forwarding state removes the need for border routers to keep state for inter-
AS forwarding. Path control empowers end hosts to make path choices that
are suitable for their applications’ needs. For instance, Voice-over-IP (VoIP)
requires little bandwidth but low latency, whereas data synchronization
requires high bandwidth, but latency is less important. These applications
can thus use different paths. Moreover, multipath routing allows multiple
paths between the same source-destination pair to be used simultaneously,
even by the same application.

2.1.2 Security requirements for end hosts

We consider two fundamental security properties for end hosts: path valida-
tion and packet authentication.
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Source and packet authentication

Packet authentication provides proof of a packet’s origin and content to the
destination, preventing source spoofing by the sender or packet modifica-
tion by routers that are possible in today’s Internet. Since packet authenti-
cation includes the authentication of the source address, we sometimes also
use the term source authentication.

Path validation

While path control allows sources to select a forwarding path, it is by itself
insufficient to protect the security interests of end hosts as it does not
provide any guarantees that the sender’s directives are actually obeyed.
Path validation enables the destination of a packet to verify that the actually
traversed path of the packet matches the path intended by the sender. The
destination can send this proof back to the sender, allowing the source to
also verify that its intended path was indeed traversed.

Key establishment and trust assumptions

Packet authentication can only be realized if there are keys shared be-
tween the source and the destination. Furthermore, path validation requires
additional keys between end hosts and on-path ASes.

Both properties can be realized by using public key cryptography, or
distributing symmetric keys between each pair of end hosts and each pair
of end host and AS. Using public key cryptography would either involve a
handshake to establish symmetric keys prior communication, an approach
that typically is only employed at a higher level in the protocol stack (such
as in TLS), or it would involve asymmetric cryptographic operations per
packet, which incurs a prohibitive computational overhead on end hosts
and routers (cf. §2.1.5). Alternatively, symmetric keys could be distributed
prior to communication, but setting these up between any pair of end hosts
would have a prohibitive overhead. These naïve solutions are unsuitable to
realize authentication and path validation properties on the network layer.

Dynamic key derivation techniques such as PISKES [92], DRKey (pro-
posed in OPT [64]) or non-interactive Diffie–Hellman (used in ICING [83])
are suitable alternatives. They scale significantly better, albeit at the cost of
additional trust assumptions or communication overhead.

DRKey / PISKES, the mechanism used by EPIC protocols, requires source
and destination hosts to trust both of their ASes due to the key-distribution
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mechanisms. Due to this additional trust assumption, network-level authen-
tication does not replace the security offered by higher-layer protocols such
as TLS. At the same time, higher-level authentication is not a replacement
for network-layer authentication: network-layer schemes can be used for
packet filtering that sets in prior to stateful TCP and TLS handshakes, and
is thus highly efficient.

We postpone the discussion of the concrete trust assumptions of EPIC to
§3.2, and only note here that similar assumptions are also part of in other
network-level authentication schemes that provide similar properties [64,
88].

2.1.3 Security requirements for ASes

For ASes, we consider four security properties: path authorization, detectabil-
ity, source authentication and path validation.

Path authorization

The end host’s power of choosing paths is balanced against the interest of
network providers, who express their routing policies in the control plane
by selectively authorizing paths. We describe these control plane processes
in §2.1.4, but crucially, each AS is driven by its own economic interests,
which gives rise to path policies that collectively define a set of authorized
paths.

Path authorization is the data plane property that all data packets traverse
the Internet only along authorized paths. Path authorization protects ASes
from malicious senders who could try to forge paths that are advantageous
to themselves (e. g., by using costly paths that they have not paid for and
violate the ASes’ path policies), detrimental to ASes (e. g., uneconomical
valley paths [46]), or disrupt forwarding entirely (e. g., through loops).

Note that path authorization is not just a local property; in particular, it is
not enough for each hop to authorize its local routing information (prev and
next interfaces), since that would still allow for attacks such as forwarding
loops. If a strictly hierarchical structure with defined provider–customer
and peering relationships is assumed, forwarding loops can be prevented
with local checks [47]. However, the same is not true of path policies in
general as our example in Figure 2.1a illustrates. In this example, two paths
leading to the destination node A are authorized: the left path F–E–D–B–A,
and the right path G–E–D–C–A. Node F is only authorized to use the left
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path and is forbidden to send packets to A via C. Path authorization implies
that an attacker at F cannot craft a packet that traverses the path given in
Figure 2.1b. Each AS only checking the authorization of its local forwarding
information cannot guarantee this.

We distinguish between two types of path authorization: In undirected
protocols, an AS on a path authorizes the full path. In directed protocols,
an AS only authorizes the partial path consisting of its own hop and all
subsequent hops in forwarding direction. Hops that are added before the
AS do not need to be authorized by it. For instance, in Figure 2.1a, AS D
could decide which of the partial paths D-B-A and D-C-A to allow, but once
authorization is granted, extensions authorized by E and E’s children are
also implicitly authorized by D. While in our formalization both types of
protocols achieve the same path authorization property, they do so under
different control plane assumptions.

Stateful routing protocols such as BGP allow ASes to inspect the (partial)
route before determining whether to add it to their own, local routing
table. In the data plane, each router simply follows the forwarding directive
in its table. Since forwarding is a local process on a router and not a
security protocol, a data plane attacker cannot influence it. Hence, the
current Internet technically achieves path authorization. However, the lack
of sufficient control plane security in the BGP ecosystem renders this
guarantee ineffective, since overall security is achieved only when both the
control and the data plane are secure. Attacks are possible in the control
plane, and a malicious upstream AS could trick an AS into adding entries
to their routing table that will result in forwarding paths that violate their
routing policy. Only the local routing information can be protected with
certainty.

Detectability

Since the entire forwarding path is contained in each packet, a malicious
source cannot hide her presence on the path. Detectability states that the
actual path that a packet traverses is contained in (i.e., a prefix or suffix of)
the path embedded in the packet’s header.

This property is sometimes called weak detectability, since it does not
prevent source spoofing. Rather, it ensures that if a source is spoofed, then
the attacker must be one of the nodes on the packet’s forwarding path, thus
ensuring basic accountability for data packets.
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Source authentication

Source authentication is a stronger property than detectability. It ensures
that routers can validate the origin of each packet, thus ruling out source
spoofing attacks. This is an important property, since in many DoS attacks
on the current Internet, the attacker spoofs the origin of attack traffic. While
some protocols (e.g., IPSec) enable source authentication, they typically
only filter traffic at the destination. Dropping malicious traffic early is
not only more efficient than destination filtering, it also protects against
DoS attacks that target the networking infrastructure itself [57, 97], rather
than an end host: source authentication by routers ensures that traffic is
filtered before any bottleneck links are reached. Furthermore, sophisticated
DoS-defense schemes such as bandwidth-reservation systems [13] rely
on source authentication to prevent adversaries from using up reserved
bandwidth of honest sources.

Path validation

Path validation is a property that has been proposed not only for the
sending and receiving end hosts (cf. §2.1.2), but also for on-path ASes.
This allows them to check that the path chosen by the sender was indeed
successfully traversed up to their own AS on the path.

Path validation for on-path ASes prevents path-switching attacks, in
which an intermediate router replaces the source-selected path by a different
path. For instance, if the source has paid for an expensive low-latency path,
an intermediate on-path AS could swap out that path by one that is cheaper.
However, this attack can also be prevented in different ways, for instance by
letting each on-path AS authenticate the packet’s header, including its path.

Another use case for path validation is that an AS may offer certain
services, such as virus-scanning or intrusion-detection on each packet that
traverses its network. Path validation allows checking that such an AS was
indeed traversed. However, it does not guarantee that the offered security
check was indeed executed on the packet.

While path validation for routers is a property that has been provided by
previous work [64, 83], it remains unclear if there are practically important
use cases. It seems that path validation by the destination or source and
packet authentication by either the destination or on-path ASes is sufficient
for the proposed use cases and to defend against the most important known
attacks. These properties are much easier to achieve than path validation
for routers.
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Trust assumptions

Similarly to the setting of security for end hosts, security for ASes requires
special trust assumptions. We discuss these in §3.2.

2.1.4 Other security properties

We outline some desirable properties the data plane cannot guarantee and
that are hence out of scope.

Control plane security

The control plane is responsible for authentically and efficiently discovering
and distributing paths (see §2.2.1) and ensuring that they do not contain
loops and fulfill the policies of ASes. However, a secure control plane
cannot substitute a secure data plane: the data plane needs to provide path
authorization, i.e., enforce the decisions that ASes make in the control plane
for data traffic.

Geofencing

A desirable security property is that a specific AS or set of ASes is avoided,
i. e., not traversed. Laws or compliance rules might impose rules on the
geographical area which packets are restricted to (geofencing). For instance,
communication between a bank and the central bank in the same country
should be forwarded only domestically, and not leave the country.

Unfortunately, neither path validation not any other property can guaran-
tee this in the presence of an on-path attacker. Such an attacker can always
forward a packet honestly while also sending a copy of the packet to an
off-path AS.

2.1.5 Efficiency requirements

The need to keep ever-growing forwarding tables on routers of the cur-
rent Internet requires expensive hardware and fundamentally limits its
scalability. It is therefore essential that a future Internet minimizes router
state.

The data plane must also have low communication and computation
overhead and minimize additional latency during setup and processing.
A simple calculation underscores this: Consider 400 Gbps links, which are
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currently being deployed in the Internet, and 500 B packets. To saturate
the link, a router needs to process one packet every 10 ns. Even taking
into account pipelining and parallelism, packet processing in the data
plane must proceed within hundreds of nanoseconds—ruling out any
asymmetric cryptography, which requires several microseconds for a single
operation [40]. In contrast, block ciphers with hardware acceleration such
as AES can be computed within tens of nanoseconds and are suitable to
use in the data plane [26, 52]. The validation of the MAC is substantially
faster, and scales better, than looking up authorized paths in a table on each
router [88].

2.1.6 Formal verification requirement

As outlined in the introduction, the data plane plays a critical role in
the Internet ecosystem. Testing and ad-hoc inspection of a protocol cannot
reliably be used to systematically uncover all bugs, or to prove its correctness
and security. A formal analysis can achieve this goal under reasonable
assumptions. Hence, formal verification is also a requirement in future
Internet architectures, and data plane protocols specifically.

2.2 Background and definitions

To provide the necessary context for constructing and verifying data plane
protocols, we sketch out an abstract path-aware control plane, in particular
the path-exploration and -registration mechanisms. This description is
loosely based on SCION’s control plane [88] but abstracts from many low-
level details. We postpone the discussion of how EPIC can be integrated
into real architectures to §3.5.2.

The background on the formal methods and the additional notation that
we use in our verification framework is introduced in §4.2 in the verification
chapter.

The table on page page xiii summarizes the notation and acronyms used
throughout the thesis.

2.2.1 Path exploration and registration

To discover paths between any pair of ASes, each AS periodically initiates
path exploration by sending beacons to their neighboring ASes. We illustrate
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Figure 2.3: Paths are explored by periodic beacons. Here, we show beacons
originating at AS A that are subsequently extended and forwarded by
other ASes. The numbers in the figure indicate AS-specific interface
identifiers; the tilde symbol above a variable name distinguishes
different values of these fields. Here, E chooses to disseminate the
beacons received from B and C selectively.
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this process in Figure 2.3. An AS can decide which paths to authorize by se-
lectively forwarding the authenticated beacons to neighbors and registering
them at public path servers.

Paths in the Internet can be viewed at different granularities, e.g., at
the level of ASes or individual routers. We consider paths at an AS-level
granularity, but include the ingress and egress interface IDs of each (AS-level)
hop that connect the AS to its neighbors. Each AS is free to assign these
identifiers to its external connections without coordination with other ASes.
Hence, they do not need to expose any information about their internal
network structure. The interface IDs along a path are recorded in the control
plane and later used for packet forwarding in the data plane.

The beacons that are used to discover paths are each initialized with an
absolute timestamp TSpath. An AS that spawns a new beacon or receives
a beacon and decides to disseminate it adds its own hop entry before
registering the beacon with a path server or sending it to a neighboring AS.
This hop entry consists of three parts: a hop information field HI that is used
in the data plane as a forwarding directive, a hop validation field HVF, which
protects the path (including the hop’s own HI field) in the data plane, and
a signature over the entire beacon used in the control plane to authenticate
the beacon.

The hop information field HI consists of an expiration time tsexp relative
to the beacon’s timestamp; the ingress interface, through which the beacon
was received; and the egress interface, through which it is forwarded. The
first and last hop information fields on a path only contain a single interface,
as there is no predecessor and successor AS, respectively.

In EPIC and in other path-aware networking protocols, the hop validation
field is a cryptographic value such as a message authentication code (MAC), a
cryptographic hash, or a tuple of such values. It allows the routers to verify
the authorization of the path during forwarding. The hop information HI of
an AS together with the authenticator HVF that protects it is called hop field.

Lastly, the signature that each AS adds to the beacon protects the bea-
con’s authenticity in the control plane. Since the hop authenticator, not
the signature, is used for authenticating the path during forwarding, this
signature is removed when beacons are turned into data plane paths by
end hosts. Thus, each hop entry is turned into a hop field.

The forwarding information consisting of a sequence of such hop fields
(the path) is fixed by the sending end host and remains static. A moving
path pointer indicates the current hop field. In the data plane, the border
routers of the AS check this MAC upon receiving a data packet. If it is valid,
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then the path was authorized in the control plane, and the border router
forwards the packet. Before the packet is sent out to the next AS, the path
pointer is incremented.

ASes can make decisions during path exploration about which paths to
authorize based on their own economic interests. To that end, ASes can
inspect the complete upstream path and only forward beacons that do not
contain loops and are consistent with their path policies to their customers.

Hop validation fields

We present different ways in which a HVF can serve to protect forwarding
information and thus provide path authorization in the following chapter.
Here, we show a simple mechanism that is similar to how SCION protects
path information.

In SCION, each AS A has a key KA that is shared among its border routers
and the control plane servers. As a HVF, SCION uses a hop authenticator σ.
It is defined as a MAC over the HI field of A, which we call hiA, and the
MAC of the next hop B:

σA = MACKA(〈hiA, σB〉) . (2.1)

Crucially, the MAC is created not only over the local routing information,
but also over the next MAC. This chains the MACs and protects the entire
subsequent path. During forwarding, each border router checks the validity
of its own MAC embedded in the packet header.

2.2.2 Path construction and forwarding

To simplify, we assume that packets are always forwarded in opposite
direction of beaconing. Protocols such as SCION allow paths to be reversed
in order to allow for forwarding in either direction, but this is not an
essential feature, as beaconing can occur bidirectionally as well.

In the data plane, we name the interfaces used for forwarding prev, for
the interface over which the packet is received, and next, for the interface
over which the packet is to be sent out. Since we consider forwarding to
only occurs in opposite direction to beaconing, prev is the egress interface on
the beacon, and next is the ingress interface of the beacon.

To create a forwarding path, an end host HS queries its local path server
(located in the same AS) for beacons from the intended destination AS A`

to his own AS A1. HS selects a beacon from those offered by the path server,
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and verifies its signatures. By removing the signatures from the beacon, the
beacon is turned into a path that can be directly embedded into the packet.
A data plane packet thus contains the entire forwarding state. For a path
from A1 to A` it has the format

Packet = 〈Path, ValHd, P〉, (2.2a)

Path = 〈TSpath, Src, Dest, HI1, · · · , HI`〉, (2.2b)

ValHd = 〈tspkt, HVF1, · · · , HVF`, VSD〉, (2.2c)

where P denotes the packet’s payload, Src = 〈A1, HS〉 denotes the source,
and Dest = 〈A`, HD〉 denotes the destination. ValHd contains fields nec-
essary for verifying the packet. The timestamp tspkt indicates the time at
which the packet is sent relative to TSpath and is used to provide freshness.
The destination validation field VSD allows the destination to authenticate the
packet and validate its path. Per AS-level hop there is a hop validation field
hvfi which is used to achieve various security properties.

The protocols EPIC Level 1–3 define hvfi = 〈Vi, Si〉, i. e., as a tuple of
two values. In these protocols, the segment identifier Si is a cryptographic
code based on σi used for path authorization. It can be created from σi and
uniquely identifies the portion of the path in between the beacon initiator
A` and Ai. The validator Vi is a cryptographic tag that is filled in by the
source host and allows the intermediate router to validate the packet. Hence,
the hop authenticator σ is not embedded directly in the packet, but it is
used to compute both Vi and Si.

We describe the EPIC protocols in terms of Si and Vi (in §3.1). Since the
other protocols that we formally verify do not have these two fields, we use
a generic field HVF in our formal models.

We define the packet origin as the triple of source, path timestamp, and
packet timestamp,

PO = (Src, TSpath, tspkt). (2.3)

The length of the timestamp field tspkt, i.e., the precision of the timestamp
in EPIC Level 1–3 is chosen such that it is different for each packet sent by a
source. Hence, the packet origin of each packet is unique in these protocols.

As the forwarding information for each AS-level hop is included in the
packet header, intermediate routers at the border of an AS can follow
the forwarding directive embedded in the packet (after cryptographically
validating it). Hence, they do not need to keep forwarding tables for inter-
AS forwarding. In case of a link failure, an end host can be notified and
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immediately switch to a backup path without needing to wait for the
network to reconverge.

2.2.3 Notation

This section presents the notation used in the next chapter, in which we
propose and analyze the EPIC protocols. The notation used in the chapter
presenting the formal models is different in some aspects, since these
models abstract from EPIC. We introduce that notation in §4.2.1.

Terminology

We use the term path in different ways. Depending on the context, it may
be a path in a graph, annotated with interface identifiers at each hop, or it
may be a sequence of hop fields (a data plane path), or a sequence of hop
entries (a control plane path).

In SCION, paths can be reversed and concatenated. To distinguish the
paths produced by the control plane from the paths that result from their
combination, the former are called segments in SCION. In this thesis, we
largely avoid this distinction, since neither the EPIC protocols nor our
formal framework incorporate segment combinations. Hence, segments are
called paths in this work.

Cryptographic notation

We explain some of the notation introduced in the table on page page xiii.
We denote the application of a pseudorandom function (PRF) and the
computation of a message authentication code (MAC) with key K as PRFK(·)
and MACK(·), respectively. We write lval and lseg for the lengths in bytes of
the validators and the segment identifiers, respectively. The block size of
PRFs and MACs in bytes is denoted by lPRF, where lPRF = 16 for AES. In
some protocols, validators are updated by intermediate routers; in this case,
we write Vi;j for the validator corresponding to Ai after processing by Aj
and use Vi;0 for their initial values. We use superscripts to distinguish the

different EPIC protocols, named L0–L3, e. g., V(0)
i , . . . V(3)

i . Concatenation
of (binary) strings is denoted by , , and XJi:jK is the substring from byte i
(inclusive) to byte j (exclusive) of X.
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2.2.4 Global symmetric-key distribution

Some of the protocols that we propose require the source host to create for
each packet authenticators, which either the destination or intermediate
routers verify. While asymmetric cryptography scales well in the number
of networking entities, the computation overhead of a per-packet usage is
prohibitive as shown in §2.1.2. On the other hand, the standard use of sym-
metric cryptography would require routers to store a key for each packet
source, which is infeasible on core routers in the Internet. In order to be
able to use symmetric cryptography without per-host state on intermediate
routers, we leverage the dynamically-recreatable-key (DRKey) / PISKES
system [64, 92], which we will summarize in this section.

With DRKey, one party, e. g., a router in an AS A, can derive symmetric
keys by simply applying PRFs to deterministic inputs, while the other party
has to fetch keys from a key server (over a secure control-plane channel).
DRKey defines AS-level keys shared between ASes A and B:

KA→B = PRFKA(B) . (2.4)

Here, KA is a secret key of the AS A, which is shared between all its (border)
routers and key servers but with no external entities, and B is a unique
and public identifier of AS B. The arrow in the derived key indicates the
asymmetry between A and B: AS A is able to quickly derive the keys on
the fly using symmetric cryptography, while AS B needs to fetch the key
KA→B by an explicit request to A’s key server, protected by asymmetric
cryptography. DRKeys are valid for time periods on the order of one day,
such that these key requests happen relatively infrequently.

Given an AS-level key, host-level keys can be derived by another applica-
tion of a PRF:

KA→B:HB = PRFKA→B(HB) (2.5a)

KA:HA→B:HB = PRFKA→B(HA, HB) . (2.5b)

An end host HB in AS B can query the key servers of B in order to obtain
the keys (2.5a) or (2.5b), which can be calculated by AS B from the AS-
level key (2.4). These keys are shared between all entities in the subscripts,
e. g., KA` :HD→A1 :HS is shared among A`, HD, A1, and HS. Therefore, when
authenticating sources using DRKey, no end-host-to-end-host guarantees
are obtained: A malicious AS A1 could claim that a packet originating from
HS came from a different host HS’ in A1. The destination host HD in AS A`

can only authenticate the source host under the assumption that A1 and



30 preliminaries

A` are honest. As discussed above, these are common restrictions in order
to accommodate the efficiency requirements of high-speed routers. As we
discuss in §3.3.5, using DRKeys introduces little communication overhead
and negligible additional latency.

Other AS-level key-establishment systems could be used for exchanging
AS-level symmetric keys. For example, Passport establishes symmetric
keys KA↔B between any pair of ASes by means of a Diffie–Hellman key
exchange on top of BGP announcements [76]. These keys can be used in
place of KA→B in Equation (2.5) but require also to input the AS identifier
in order to distinguish KA:H↔B from KA↔B:H . Furthermore, as they cannot
be recreated on the fly at border routers, a router would need to cache a
symmetric key to every other AS.

Irrespective of the system used to exchange AS-level keys, the commu-
nication between end hosts and key servers relies on secure control-plane
channels in order to prevent malicious entities from impersonating key
servers or discovering keys. As we explained above, this is an orthogonal
problem to securing the data plane, and thus outside the scope of this work.



3
EPIC: Every Packet is
Checked

We now present our EPIC protocol family. This chapter is structured as fol-
lows: §3.1 describes the EPIC Level 0-3 protocols. We analyze their security
properties in §3.2 and their performance and overhead in §3.3. §3.4 presents
an extension of EPIC Level 3 that achieves path validation for routers. We
discuss our results in §3.5, and related work in §3.6.

3.1 EPIC protocols

In this section, we develop three protocol levels 1–3 of EPIC with increas-
ingly strong security properties. We present the protocols in a step-by-step
development, thus explaining for each security property the mechanism
and prerequisites to achieve it. All protocols use the packet format given
in §2.2.2. As a starting point, we begin by describing a simple protocol
(referred to as “EPIC Level 0”) that represents the approach taken in the
SCION data plane (with minor simplifications) [88]. Its primary security
property is path authorization.

3.1.1 Level 0: Path authorization

EPIC Level 0 achieves path authorization using static MACs that are cal-
culated during path exploration and directly serve as validators for for-
warding. During the path-exploration process, an AS Ai calculates the hop
authenticator σ

(0)
i as a MAC over the beacon’s timestamp, the hop infor-

mation, and the previous (in beaconing direction) hop authenticator (σ(0)
j ),

truncated to lval bytes:

σ
(0)
i = MACKi

(
TSpath, hii, σ

(0)
j

)
J0:lvalK. (3.1)
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A

B

D

. . .

MACKA

(
TSpath, hiA

)
MACKB

(
〈TSpath, hiB, MACKA (hiA)〉

)
MACKD

(
〈TSpath, hiD, MACKB (〈hiB,MACKA (hiA)〉)〉

)

Figure 3.1: EPIC Level 0 hop authenticator that contain nested MACs. The fields
hii contain the local forwarding data of AS i.

For the AS initiating the beacon, there is no previous AS Aj and hence no

hop authenticator, so σ
(0)
j is not included. Figure 3.1 illustrates the nested

MACs.
This hop authenticator directly serves as the hop validation field in the

data plane, hvf(0)i = V(0)
i = σ

(0)
i ; segment identifiers and additional header

fields tspkt and VSD as defined in Equation (2.2) are therefore unused in
EPIC Level 0. The procedure to create and forward packets is the following:

source HS obtains a path, including all hop authenticators, from the path
server in its AS. It constructs the packet according to Equation (2.2)
by copying the path timestamp and the hop information and hop
authenticator for each hop.

transit At every AS Ai, the border router first checks that the packet was
received through the correct interface according to hii and that the hop
field is not expired. Then the router recalculates V(0)

i = σ
(0)
i according

to Equation (3.1) and checks that it coincides with the validator in the
packet header. If the packet passes both checks, the router forwards
it to the next hop specified in hii, otherwise it drops the packet. The
only state required on AS border routers is the AS’ secret key Ki and
intra-AS forwarding information.

The construction presented here ensures that end hosts and ASes can only
send packets on paths that are authorized by all on-path ASes. Chaining
hops by including the hop authenticator of the previous hop in the MAC
calculation defined in Equation (3.1) guarantees that complete upstream paths
are authorized and hosts cannot combine individual hops arbitrarily.
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3.1.2 Level 1: Improved path authorization

EPIC Level 0 suffers from a dilemma between secure hop fields and accept-
able communication overhead: Assuming short hop authenticators with
lval = 3 (the default length of hop authenticators in SCION [88]), these
fields are susceptible to online brute-force attacks. In certain topologies, an
attacker has to send at most 224 ≈ 1.6 · 107 probe packets to find a correct
MAC of an unauthorized hop, which takes under 10 seconds on a gigabit
link. Afterwards, the attacker can use the unauthorized hop field to send
arbitrary traffic until the eventual expiration of the path. MACs can be
made longer and thus harder to forge, but only at the expense of increased
communication overhead, see §3.3.3. The fundamental problem is that the
static validators can be directly reused to send additional packets.

With EPIC Level 1 we resolve this dilemma by replacing these static hop
authenticators by per-packet validators that cannot be reused for additional
packets. During path exploration, an AS Ai calculates its hop authenticator
σi as follows:

σ
(1)
i = MACKi

(
TSpath, hii, S(1)

j

)
. (3.2)

Here, S(1)
j is the segment identifier of the previous hop AS Aj during

the path exploration, which is obtained by simply truncating the hop
authenticator. For all i, we define:

S(1)
i = σ

(1)
i

q
0:lseg

y
. (3.3)

The hop authenticator is then subsequently used by the source host to
calculate the per-packet validators:

V(1)
i = MAC

σ
(1)
i
(tspkt, Src) J0:lvalK. (3.4)

As the hop authenticators are not part of the packet header to limit
communication overhead, the additional segment identifiers are required
for chaining hops. They allow ASes to derive the hop authenticators on
the fly. The aim of EPIC Level 1 is improving path authorization; the field
VSD is thus not used. An attacker trying to forge an unauthorized path
needs to find at least one validator that fulfills Equation (3.4) without access
to σi by sending a large number of probing packets. However, in contrast
to EPIC Level 0, this validator cannot be used to send additional packets,
which carry different packet timestamps.
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Even though each validator is only valid for a specific packet origin, an
attacker could launch a DoS attack by replaying packets for which he knows
the validators or simply reusing the packet timestamp. From L1 onward,
we employ a replay-suppression system in border routers or inside an AS’
network to prevent this [70]. This system tracks and uniquely identifies
packets based on the packet origin PO, i.e., source, path timestamp, and the
packet timestamp, see Equation (2.3). In order for the packet origin to serve
as a unique packet identifier, the packet timestamp must be sufficiently long,
see §3.5.4 for a more detailed discussion. The replay-suppression system
uses Bloom filters to identify duplicates but discards old packets in order
to make this process viable in high-bandwidth networking applications, see
§3.3.5. Note that packets are processed by the replay-suppression system
after being authenticated in order to prevent an attacker from poisoning the
system with unauthentic packets.

The procedure to create and forward packets is slightly more complicated
than for EPIC Level 0:

source HS obtains the desired path including all hop authenticators from
its path server. HS calculates the packet timestamp tspkt and adds it to
the header. The host then calculates the segment identifiers according to
Equation (3.3) and validators according to Equation (3.4) and constructs
all hop fields consisting of hii, S(1)

i , and V(1)
i .

transit An AS checks the interfaces and expiration in the same way as
in EPIC Level 0. It first recalculates the hop authenticator as in Equa-
tion (3.2) using the previous hop’s segment identifier (in construction
direction) and then recalculates its own segment identifier according
to Equation (3.3) and the validator as in Equation (3.4). If interfaces,
segment identifier, and validator are all correct, and the timestamp is
current, the AS forwards the packet, otherwise it drops it.

3.1.3 Level 2: Authentication

We now extend the previous protocol by a mechanism to allow intermediate
routers to authenticate the source of a packet and the destination to authen-
ticate the entire packet. The hop authenticators σi, segment identifiers Si,
and the additional header field tspkt are unchanged. We define the host keys

KS
i = KAi→A1 :HS (3.5a)
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for every on-path AS Ai and an additional key

KSD = KA` :HD→A1 :HS (3.5b)

shared between source and destination. These keys are based on the deriva-
tion defined in Equation (2.5) and can be used to provide path authorization
and source authentication in a single validator:

V(2)
i = MACKS

i
(tspkt, Src, σi) J0:lvalK. (3.6)

The destination host HD can authenticate the source of the packet and verify
that neither the path (as defined in Equation (2.2b)) nor the payload was
modified through the additional destination validation field

V(2)
SD = MACKSD(tspkt, Path, P) . (3.7)

The procedure to create and forward packets is as follows:

source In addition to EPIC Level 1, the source HS fetches all necessary
host keys from the local key server and subsequently calculates the
validators according to Equation (3.6) as well as VSD according to
Equation (3.7).

transit In addition to the checks in EPIC Level 1, every AS needs to
recalculate the host key KS

i according to Equations (2.4), (2.5a), and
(3.5a) and then check if the validator in the packet header satisfies
Equation (3.6). As all keys can be locally calculated, no key fetching or
per-host state is necessary.

destination HD obtains the key KSD from its local key server and vali-
dates V(2)

SD according to Equation (3.7).

3.1.4 Level 3: End-host path validation

EPIC Level 3 further extends the security properties of EPIC Level 2 by
enabling the source and destination of a packet to perform path validation.
To that end, on-path ASes overwrite their validators with proofs to the
source and destination that they have processed the packet. Upon receiving
the packet, the destination can directly validate the path based on the
destination validation field and enables path validation for the source by
replying with a confirmation message. We define

Ci = MACKS
i
(tspkt, Src, σi) , (3.8)
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which is equal to Equation (3.6) without truncation. This cryptographic re-
sult has a length of lPRF bytes, which is generally longer than the validators
that we propose in this work. This allows us to split the result into multiple
separate pieces, which are uncorrelated as we assume the MAC to be a PRF;
in particular, under the assumption lPRF ≥ 2 · lval, we can define

C[1]
i = CiJ0:lvalK, C[2]

i = CiJlval:2lvalK. (3.9)

The source then performs the same setup as for EPIC Level 2, setting each
validator to V(3)

i;0 = C[1]
i (which equals V(2)

i ). The router in AS Ai calculates
the Ci defined in Equation (3.8) and checks that the validator is correct.

Finally, it updates the validator with V(3)
i;i = C[2]

i . Without requiring any
additional cryptographic computation, the router thus leaves a confirmation
for HS that it successfully validated and forwarded the packet (assuming
that A1 is honest), since only Ai, HS, and A1 can compute C[2]

i . We allow
HD to also validate this confirmation (under the further assumption that
HS and A` are honest) by including the correct final values V(3)

i;` in the
destination validation field:

V(3)
SD = MACKSD

(
tspkt, Path, V(3)

1;` , · · ·, V(3)
`;` , P

)
. (3.10)

Note that, as each validator is only updated once, we have V(3)
i;` = V(3)

i;i . In
order to allow HS to validate the path, HD needs to send a confirmation
message containing the timestamps of the original message together with
the updated values V(3)

i;` . To prevent circular confirmations, such a message
must be sent to HS as an EPIC Level 2 (or lower) packet (cf. §4.8). To validate
the path, HS stores the expected validators upon sending a packet. When
it receives a reply by the destination that contains the values V(3)

i;` that
the destination received, it validates them against the stored values. If no
correct confirmation is received after some timeout, the source can conclude
that the original packet has been lost or redirected.

Both source and destination host are free in their reaction to failed path
validation: The destination can choose to ignore it and rely on the source
to take appropriate action (soft fail) or reject the corresponding packets
(hard fail). The source can switch paths on a short timescale and, in case of
frequent failures, switch its Internet provider. Note that fault localization in
general is a very complex problem and cannot be achieved through EPIC
alone in an adversarial environment [12].
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1: procedure Initialization by HS
Require: Src, Dest, TSpath, KSD, P, ∀i ∈ {1, . . . , `}: hii, σi, KS

i

2: construct Path according to Equation (2.2b)
3: tspkt ← (current time)− TSpath

4: for all i ∈ {1, . . . , `} do
5: Si ← σi

q
0:lseg

y
. segment identifier (Equation (3.3))

6: Ci ← MACKS
i

(
tspkt , Src , σi

)
7: C[1]

i ← CiJ0:lvalK; C[2]
i ← CiJlval:2lvalK

8: Vi ← C[1]
i . initial value of validator

9: Vi;` ← C[2]
i . final value of validator

10: VSD ←MACKSD

(
tspkt , Path , V1;`, . . . , V`;`, P

)
11: send Packet according to Equation (2.2)
12: store Vi;` for all i under key (TSpath, tspkt) for validation

13: procedure Validation at HS
Require: KSD

14: receive EPIC Level 2 packet with payload TSpath , tspkt , and V1 . . . V`

15: if EPIC Level 2 verification failed then
16: return “validation failed”
17: if 〈 TSpath , tspkt 〉 is not a valid key in store then

18: return “validation failed”
19: retrieve Vi;` for all i under key 〈 TSpath , tspkt 〉
20: for all i ∈ {1, . . . , `} do
21: if Vi 6= Vi;` then

22: return “validation failed”
23: return “validation succeeded”

algorithm 1: Initialization and path validation at HS in EPIC Level 3. The second
procedure is executed upon receiving a reply packet that contains
the path validation proof for the source. Packet contents such as
header fields are denoted by Field and← is an initialization or
assignment. For readability, some superscripts omitted.
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1: procedure Forwarding by AS Ai
Require: Ki

2: if packet is not received through the interface prev in hii then
3: drop packet

4: if tsexp in hii is expired then

5: drop packet . hop field is expired

6: if (current time)− TSpath − tspkt 6∈ [−ε, L + ε] then

7: drop packet . packet timestamp invalid (lifetime L, clock skew ε)

8: (A1 : HS)← Src

9: KAi→A1 ← PRFKi (A1) . derive AS-level DRKey (Equation (2.4))
10: KS

i ← PRFKAi→A1
(HS) . derive host-level DRKey (Equation (3.5))

11: σi ← MACKi

(
TSpath , hii , Sj

)
. hop authenticator (Equation (3.2))

12: if Si 6= σi
q

0:lseg
y

then . check segment identifier (Equation (3.3))

13: drop packet

14: Ci ← MACKS
i

(
tspkt , Src , σi

)
15: C[1]

i ← CiJ0:lvalK; C[2]
i ← CiJlval:2lvalK

16: if Vi 6= C[1]
i then . authenticate packet

17: drop packet

18: Vi ← C[2]
i . update validator

19: forward packet according to hii

algorithm 2: Packet validation and updates at intermediate routers in
EPIC Level 3. Syntax as in Algorithm 1.
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1: procedure Validation and Reply at HD
Require: KSD

2: VSD
′ ← MACKSD

(
tspkt , Path , V1 , . . . , V` , P

)
3: if VSD 6= VSD

′ then

4: return “validation failed”
5: if (current time) - TSpath - tspkt 6∈ [−ε, L + ε] then

6: return “validation failed” . timestamp expired or in the future

7: send EPIC Level 2 packet to HS with payload
8: 〈TSpath, tspkt, V1, . . . , V`〉
9: return “validation succeeded”

algorithm 3: Packet and path validation at HD in EPIC Level 3. Syntax as in
Algorithm 1.

The algorithms for initialization, validation, and update in EPIC Level 3

are shown in Algorithms 1–3. These algorithms do not include the replay-
suppression system, which we assume is an external system in each AS
that inspects the packet origin of all authenticated packets and eliminates
any duplicates. Algorithms 2 and 3 both enforce the validity of the ab-
solute timestamp TSpath + tspkt: the packet must neither exceed a fixed
lifetime L nor must this timestamp lie in the future. These checks take into
account a maximum clock skew of ε.

3.2 Security analysis

In this section we define the security properties in turn and compare our
protocols with ICING [83], OPT [64], and PPV [105]. An overview is shown
in Table 3.1.

We propose different variants of a Dolev-Yao adversary, but we do not
give any proofs in this chapter. The formal models and proofs of path
authorization are presented in Chapter 4.

3.2.1 Basic and strong attacker models

basic-attacker model A Dolev–Yao adversary can typically observe,
drop, inject, replay, or alter packets anywhere in the network [37]. However,
if an attacker can re-route packets arbitrarily, it becomes impossible to
ensure that packets follow authorized paths. We therefore consider all
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who add. honesty assums. packets

P1: path authorization Ai – non-oracle

P2: freshness Ai, HD – all

P3: packet authentication HD HS, A1, A` all

P4: source authentication Ai HS, A1 non-oracle

P5: path validation HS A1 all

P6: path validation HD HS, A1, A` all

L0 L1 L2 L3 ICING OPT PPV

(BA) (SA) (SA) (SA) (BA) (BA) (BA)

P1: path author. 3 3 3 3 3 3 7

P2: freshness 7 3 3 3 (3) (3) 7

P3: packet authen. 7 7 3 3 32 3 3

P4: source authen. 7 7 3 3 32 31 7

P5: path validation 7 7 7 3 32 3 7

P6: path validation 7 7 7 3 32,3 3 (3)3

1 Ai has to additionally assume
the honesty of HD.

2 A1 and A` do not need to be
honest.

3 A1 and HS do not need to be
honest.

Table 3.1: The lower table lists 3 satisfied, (3) partially satisfied, and 7 unsatisfied
properties of our protocols EPIC Levels 0–3, as well as of ICING, OPT,
and PPV. The upper table defines the scope and trust assumptions
of the properties. The 2nd column list for whom the property holds.
These entities are assumed to be honest. The 3rd column lists additional
entities that have to be assumed to be honest for the property to hold.
For protocols evaluated in the strong-attacker model (SA) rather than
the basic-attacker model (BA), the 4th column indicates if the property
holds only for packets that do not originate from the oracle, or for all
packets.
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packets that the attacker sends as new packets. An attacker can compromise
one or multiple ASes, including their routers, end hosts, and cryptographic
keys. This attacker can only send and receive packets at the compromised
(and colluding) AS locations. It represents our basic attacker.

As is standard in Dolev–Yao models, our model assumes cryptography
to be perfect. Consequently, the cryptographic primitives that the protocol
is built on must be secure. In particular, this requires that cryptographic
keys and authentication fields be sufficiently long to prevent an attacker
from brute-forcing authentication fields. If short keys or fields are used, the
model’s assumptions are violated and the security guarantees no longer
hold. For instance, in the case of EPIC Level 0, if a short hop authenticator
was used, in certain topologies an attacker would only need to forge a
single hop field to create an unauthorized path that could be used to send
an arbitrary number of malicious packets that violate path authorization.
Consequently, EPIC Level 0 must use long authentication fields to be secure.

strong-attacker model In contrast, our protocols EPIC Levels 1–3

are designed to decrease communication overhead by using short validators
and segment identifiers. A malicious sender could therefore send large
amounts of probing packets—and, with a small chance, guess the correct
values for these fields in individual packets.

To reflect the attacker’s ability to brute-force the validators and segment
identifiers in the model, we propose a strong-attacker model, which weakens
the assumption of perfect cryptography of the basic attacker. In particular,
this model allows a malicious sender to obtain valid validators and segment
identifiers of the validation header by querying an oracle.

We define for EPIC levels l ∈ {1, 2, 3} oracle(l) as the function that
for given PO and HI fields produces valid validators Vi and segment
identifiers Si:

oracle(l)(PO, hi1, ..., hi`) = (V(l)
1 , ..., V(l)

` , S(l)
1 , ..., S(l)

` ). (3.11)

The attacker can thus query the oracle and learn the Vi and Si (but not σi
or VSD). As this allows him to trivially construct packets that violate the
security properties for ASes, we restrict the security guarantees to packets
whose origin PO was not part of an oracle query. Security under this model
then means that, while the attacker may be able to forge individual packets
(obtained from the oracle in the model), this does not help him to craft
different packets that violate the guarantees.
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Additionally, we need to argue in our security analysis that forging
individual packets (as modeled by an oracle invocation) does not represent
a serious risk for the security of the system: in the next subsection, we will
show that the likelihood of success of such an attack is low in many practical
cases and, even if it succeeds, its impact is severely limited. Consequently,
the attacker’s benefit from brute-forcing a packet is small compared to the
computational costs involved.

Protocols that are secure under the basic-attacker model are not neces-
sarily less secure than those under the strong-attacker model, but their
implementations must ensure that authenticators are long enough to rule
out any practical brute-force attacks. The length of the authenticators is
crucial for the communication overhead, which we discuss later.

3.2.2 Low risk of forging individual packets

The strong-attacker model explicitly acknowledges the ability of an at-
tacker to brute-force individual validators and segment identifiers in the
EPIC Levels 1–3 through its oracle. However, in practice, the risk of such
an attack is limited in four ways.

First, forging even a single packet (i. e., at least one validator) is expensive
as it cannot be performed locally but only by sending packets. Second, a
forged packet will be forwarded at most once. The validators are bound
to the packet origin (source and timestamp). If the attacker brute-forces a
validator and creates an unauthorized (but valid) path, she can violate path
authorization or source authentication at routers, but only for a specific
PO. Any packets with an outdated timestamp in their PO will be dropped
immediately by routers, meaning that the attack can only happen in a
short time frame. Furthermore, the replay-suppression system prevents
more than one packet with the same PO from being forwarded. Third, in
many practical attacks more than a single validator needs to be brute-forced
and the attack becomes exponentially harder in the number of fields to
be forged. The probability of forging n validators and segment identifiers
for any packet is given by 2−8n(lval+lseg). Fourth, the security guarantees for
end hosts are not affected, since they are based on the validation field VSD,
which is cryptographically strong.

Attacks that only allow a tiny number of packets to be falsely validated
by ASes do not pose a grave threat to them. Their concerns regarding path
authorization are primarily driven by economic interests, and it suffices
if path-policy enforcement works for the vast majority of packets. On the
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other hand, the main application of source authentication at routers is DoS
defense by filtering out unauthentic packets before they reach a bottleneck
and enforcing bandwidth reservations through source attribution. For these
in-network security applications a small number of forged packets that fool
routers (but not the destination) have minimal consequences.

3.2.3 Path authorization

The following property protects the path policies of ASes:

P1 Path authorization: Packets traverse the network only along paths
authorized by all honest on-path ASes.

This enforces the control-plane choices in the data plane and prevents path-
splicing attacks: in these, a malicious source would combine hop fields
from multiple authorized paths to create an unauthorized path. An on-
path attacker can exchange the authorized path that the source picked by a
different authorized path. Nevertheless, each portion of the path that the
packet traverses along honest ASes is still authorized.

epic level 0 and opt EPIC Level 0 satisfies path authorization due
to its chained hop authenticators: each authenticator contains in its MAC
recursively all previous authenticators (in beaconing direction). Thus, the
MAC binds the entire portion of the path from the authenticating AS to the
end (in forwarding direction). Since the property is only achieved in the
basic-attacker model, hop authenticators have to be long enough to prevent
brute-force attacks. Otherwise, attackers could forge a path and not only
use it to send a single packet, but use it for arbitrarily many packets until a
hop field expires (based on tsexp) or the ASes’ long-term keys Ki are rotated.
OPT also only satisfies P1 in the basic-attacker model since its mechanism
is based on SCION / EPIC Level 0.

epic levels 1–3 EPIC Level 1 and onward achieve property P1 in the
strong-attacker model. These protocols create a validator for each hop,
which is a MAC containing both the hop authenticator σ and the packet
origin fields (Src, TSpath, and tspkt).1 The former ensures path authorization,
similar to EPIC Level 0. The latter ensures that this property holds even
under the strong attacker: an attacker who obtains a validator for a specific

1 TSpath is indirectly contained in the validator through the hop authenticator.
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PO from the oracle cannot use it to create a validator that is valid for a
different PO, as the validator is bound to its PO.

Both the segment identifier and the validator directly appear in the packet
and are truncated for efficiency reasons. In contrast, the hop authenticator σ
itself does not appear in the packet and thus does not need truncation as it
can be recomputed on demand. The combination of long hop authenticators
and short validators and segment identifiers minimizes risk; on one hand,
a successful brute-forcing attack on a 16 B hop authenticator is practically
infeasible; on the other hand, such an attack on a validator or segment
identifier, which is possible by sending a large number of probing packets,
has limited impact, as we have discussed in §3.2.2.

icing and ppv ICING achieves path authorization in the basic-attacker
model through its proofs of consent (PoCs), which are used to calculate
authenticators. PPV does not consider path authorization.

3.2.4 Freshness

In order to prevent DoS attacks by repeated packet resending, we require
that each packet’s origin (PO) is unique.

P2 Freshness: Packets are uniquely identifiable and cannot be replayed.

EPIC Levels 1–3 achieves freshness using a replay-suppression system
where PO, i. e., the combination of source, path timestamp, and packet
timestamp, serves as a unique packet identifier. With such a system in place,
the attacker can send at most one unauthorized packet per forged validator,
which is an enormous cost for a very limited return value.

EPIC Level 0 lacks unique packet identifiers required for replay suppres-
sion; ICING and OPT have limited support for replay suppression but do
not discuss this in their work. PPV does not use sequence numbers or
timestamps and instead uses a “PacketID” based on source, destination,
and the hash of the payload. This is insufficient to uniquely identify packets
or to enable an efficient replay-suppression system.

3.2.5 Packet and source authentication

Packet and source authentication are desirable properties at the network
layer. We formulate authentication as non-injective agreement proper-
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ties [77]. Together with property P2 and enforcement of the timestamp’s
validity, they yield strong recent-injective-agreement properties [77].

P3 Packet authentication for HD: The destination HD agrees with the source
HS on the packet origin, path, and payload unless HS, its AS, or HD’s
AS are corrupted.

P4 Source authentication for routers: On-path ASes agree with the source
on the packet origin unless the source or its AS are corrupted.

epic EPIC Levels 0–1 do not provide any authentication. EPIC Levels 2–3

achieve P3 in the strong-attacker model by computing the destination
validation field VSD as the MAC under KSD of the packet timestamp tspkt,
the path (including TSpath), and the payload, see Equations (3.7) and (3.10).
Since we assume that VSD is unforgeable (it is not included in oracle(l)’s
output), any source, path, payload, or timestamp modifications by an
attacker can be detected by the destination.

EPIC Levels 2–3 achieve P4 since their validators are computed as the
MAC under the host key KS

i of the packet timestamp, the source, and the
hop authenticator (which is calculated based on the path timestamp). The
reasoning is similar to the one for property P3 above, with the difference that
individual validators are forgeable by sufficiently strong attackers (included
in oracle(l)’s output). The modification of part of the packet origin, i. e., the
timestamps or the source, requires forging all honest ASes’ validators on the
path from the attacker to the destination. As a consequence, these routers
may falsely authenticate the source of a packet, but, due to freshness (P2),
this is limited to individual packets, see also §3.2.2.

opt OPT authenticates the source and payload, but it achieves prop-
erty P4 only in the basic-attacker model and only under the additional
assumption that HD is honest. This is due to the use of DRKeys of the
form KAi→A1 :HS,A` :HD , which are not only shared between HS and the inter-
mediate AS Ai, but also with HD. This weakens the source-authentication
property compared to EPIC as all validators could also have been created
by A` or HD. For example, if source authentication is used for bandwidth
attribution, a malicious destination could slander the source by fabricating
packets or sharing this key.

icing and ppv ICING achieves both authentication properties P3–P4

through its proofs of provenance (PoPs). PPV achieves property P3 through
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its “PacketID”, which is calculated using a secret key shared between HS
and HD. There is no mechanism in PPV for authentication to routers (P4).

honesty assumptions In all schemes discussed here except for ICING
(which is not based on DRKey), an end host’s use of a host key shared with
its AS requires the host’s trust in its AS. While this may appear like a strong
assumption, a malicious source or destination AS would need to launch
an active attack to circumvent the authentication mechanisms, which hosts
can detect by comparing authenticators out of band. Hosts have contracts
with their ASes and could have a legal remedy when misbehavior occurs.
This is in stark contrast to today’s Internet, where hijacks can be performed
by an off-path adversary with no relationship to the affected hosts, and no
common jurisdiction to settle disputes.

The alternatives to using DRKey in the data plane are using asymmetric
cryptography or using symmetric cryptography with pairwise end-to-end
keys, which both violate our efficiency requirements (see Sections 2.1.5 and
2.2.4).

3.2.6 Path validation

Path-validation properties ensure that the actual path corresponds to the
sender’s intended path. This is primarily interesting to the end points,
for instance if there are compliance rules that mandate certain paths. It
can be considered the dual property to path authorization: while path
authorization protects the routing decisions of ASes from malicious end
hosts, path validation protects the path choices of end hosts from malicious
on-path ASes.

P5 Path validation for HS: Upon receiving a reply from HD, the source HS
can verify that the original packet traversed all honest ASes on the
path intended by HS.

P6 Path validation for HD: HD can verify that the packet traversed all
honest ASes on the path from HS to HD intended by HS.

Both P5 and P6 are achieved by EPIC Level 3 in the strong-attacker model
through the destination validation field VSD (for which the attacker’s ability
to forge validators is irrelevant).

ICING and OPT also satisfy path-validation properties P5 and P6. They
additionally ensure that ASes are traversed in the correct order. PPV does
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not allow the source to validate the path (P5) and only probabilistically
validates individual links at the destination (P6).

honesty assumptions For EPIC Level 3 and OPT, property P5 re-
quires that the source assumes the honesty of its own AS, since they share
the host key. Likewise, for property P6, the destination must assume the
honesty of its own AS and also of the source and its AS, since all validation
fields are computed by HS. This assumption is not needed for ICING, which
does not rely on DRKey and uses separate keys for the destination. PPV
also uses a key which is not shared with the source to achieve property P6

and therefore does not need to assume the source to be honest.

3.3 Implementation and evaluation

In this section, we describe our prototype implementation and evaluate
its performance. In addition, we analyze the communication overhead of
EPIC, OPT, ICING, and PPV as well as of supporting systems. For this
analysis, we assume the sizes for various fields in the EPIC header shown
in Table 3.2.

3.3.1 Implementation and measurement setup

To show that EPIC is practically feasible, we implemented and evaluated
EPIC Level 3 prototypes for the source, the routers, and the destination
according to the algorithm specification in Algorithms 1–3 using Intel
DPDK [38]. As other EPIC levels have a strict subset of processing steps,
they would achieve strictly better performance.

In summary, the following evaluation shows that the system can be im-
plemented efficiently even on commodity hardware, it is parallelizable and
scales well to core links on the Internet, has significantly lower communica-
tion overhead compared to existing systems, requires virtually no state on
routers, and limits additional control-plane overhead.

epic packet structure In our prototype implementation, we follow
the packet structure of Equation (2.2), using the field sizes specified in
Table 3.2, and extend it with some auxiliary fields (a pointer to the current
hop field, the total path length, a version number, and additional flags) and
an Ethernet header.
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field content # size

TSpath path timestamp 1 4

Src source AS and host 1 8

Vi validator ` 3

Si segment identifier ` 2

tspkt packet timestamp offset 1 8

VSD destination validation field 1 16

Table 3.2: Size in bytes and number of occurrences (#) of various header fields in
a path of length `.

cryptographic primitives As we calculate many PRFs and MACs
over short inputs and want to avoid the overhead due to subkey generation
of CMAC [56], we use the AES-128 block cipher in CBC mode for both
PRFs and MACs. As we calculate MACs over variable-length inputs, we
prepend the input length and use zero padding such that the CBC-MAC
indeed fulfills all properties of a PRF and a MAC [17]. Because EPIC and
DRKey heavily rely on MAC and PRF calculations, we use Intel’s AES-NI
hardware instructions [93], available on all modern Intel CPUs, to reduce
the computation time.

hvf store at the source The store of validators of sent packets at the
source is implemented as a hash table as it enables insertion and retrieval
of data using the 12-byte key (TSpath, tspkt) with average complexity O(1)
and there exists a ready-to-use hash-table implementation in DPDK.

measurement setup The prototypes are evaluated using a Spirent
SPT-N4U test module, which serves as packet generator and bandwidth
monitor, and a commodity machine with an 18-core Intel Xeon 2 GHz
processor executing the component to be tested, i.e., the source or router.
The two machines are connected with a 40 Gbps Ethernet link.

We evaluate the performance of the prototype as a function of the
EPIC Level 3 payload. However, the size of the EPIC header depends on the
AS-level path length and therefore contributes dynamically to the Ethernet
packet content. To test the prototypes using the same EPIC Level 3 payload
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range, independent of the path length, we enable jumbo-frame support
(Ethernet frames with more than 1500 B payload) on both machines.

The current average path length in the Internet is less than 4 AS-level
hops [55, 79, 102, 105]. However, as we expect that number to increase due
to the benefits of being an AS in a path-aware Internet, we consider path
lengths of up to 16 AS-level hops in our evaluation (the current average
number of router-level hops is 13).

3.3.2 Performance evaluation

In this section, we evaluate the performance of our implementation in terms
of throughput (total traffic) and goodput (payload traffic). Note that we
account for the full header overhead as described above when referencing
the goodput.

source For the evaluation of the source we assume that it has already
fetched the necessary hop authenticators and DRKeys, which corresponds
to the situation of an existing connection. The throughput achieved by
the source (using a single CPU core) is shown in Figure 3.2. For packets
of p ≥ 500 B and path lengths of ` ≤ 8, the prototype implementation
consistently achieves throughput above 2 Gbps. Figures 3.8 and 3.9 in §3.3.4
further illustrate the parallelizability of the implementation, which enables
throughputs of tens of Gbps, and the linear increase of the processing time
with both payload size and path length.

The processing at the source and destination is similar for ICING, OPT,
and PPV; in all protocols either a MAC or hash is calculated over the
packet’s payload, which dominates the computational effort. In the future,
these cryptographic computations could be offloaded to multiple dedicated
hardware units in network-interface cards (NICs).

router Figure 3.3 shows the forwarding performance of an EPIC Level 3

router for a path of length ` = 8. In these measurements, we assume no
cached hop authenticators or DRKeys, they are always recalculated on the
fly. For packets with a payload p ≥ 500 B, the 40 Gbps link is saturated
for all path lengths using only 4 cores; using 16 cores, the link is even
saturated for small packets (p = 100 B). As the implementation is easily
parallelizable (see Figure 3.7 in §3.3.4), it can be used even on 100 Gbps or
400 Gbps links by adding more processing cores or dedicated hardware.
An important observation is that the processing time of the router is 445 –
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Figure 3.2: EPIC Level 3 packet throughput generated by the source on a single
core for different payload sizes.

460 ns independent of both payload size and path length. The forwarding
performance in terms of Mpps (million packets per second) is thus also
independent of these parameters and amounts to approximately 2 Mpps
per processing core. These results are further illustrated by Figures 3.5–3.7
in §3.3.4.

The processing on routers is similar for all levels of EPIC, OPT, and PPV,
which all have a small constant number of cryptographic operations. In
ICING, every router calculates both a hash and a MAC over the payload and
in addition performs ` symmetric cryptographic operations (one for each
router). In the software implementation provided by ICING’s authors [83],
each router has a processing time of ∼50 µs for ` = 10, which is two
orders of magnitude slower than EPIC. If keys are not cached, additional
Diffie–Hellman computations are necessary, leading to processing times of
≥ 100 ms [40].

comparison to ip Comparing the performance of EPIC to IP is chal-
lenging due to the strong impact of routing-table sizes on software per-
formance and hardware cost for IP. Highly optimized software switch
implementations like DPDK vSwitch achieve throughputs of ∼11 Mpps
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L0 L1 L2–L3 ICING OPT PPV

3` 5`+ 8 5`+ 24 42`+ 13 19`+ 52 64

for ` = 8 24 48 64 349 204 64

Table 3.3: Communication overhead in bytes in EPIC, ICING, OPT, and PPV due
to security-related fields.

on a single core (corresponding to a processing time of approximately
90 ns) [41]. However, these values are only valid for small routing tables
when no memory accesses are necessary (as a single DRAM access takes
∼70 ns). Our prototype implementation is approximately five times slower
at ∼2 Mpps, but the throughput is independent of the number of concurrent
flows due to packet-carried forwarding state. Furthermore, the processing
time could be further reduced through optimizations such as concurrent
execution of cryptographic operations.

Hardware implementations, which are particularly relevant in a produc-
tion deployment, compare even more favorably. IP routers require large
amounts of expensive ternary content-addressable memory (TCAM) for
longest-prefix matching. In contrast, EPIC requires very little additional
hardware for its cryptographic operations. Naous et al. [83] have com-
pared the gate count of FPGA implementations of ICING and IP routers
and found comparable values (13.4 million vs. 8.7 million gates) even for
very small amounts of TCAM in the IP router; in comparison, hardware
implementations of AES are very efficient and only require 13,000 gates [2].

3.3.3 Communication overhead

In addition to processing overhead and performance, we also evaluate the
communication overhead of EPIC and compare it to other systems. To
allow for a meaningful comparison, we evaluate only the overhead owed
to security here, since the normal routing headers (e.g., IPv4/v6, SCION)
depend on the underlying networking architecture. Thus, we use HD to
refer to the size of all security-related header fields (in EPIC, these are
tspkt, VSD, and Si, Vi for all hops i). We define the goodput ratio as the
ratio between goodput and throughput, or, equivalently, as the ratio of
payload and total packet size, GR = p

p+HD . Table 3.3 shows the size of the
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security-related header for all considered systems, Figure 3.4 depicts the
goodput ratio.

We find that the goodput ratio is high for all variants of EPIC. For
` = 8, the security-related header is between 24 B for EPIC Level 0 and 64 B
for EPIC Level 3, which corresponds to a goodput ratios 98 % and 94 %,
respectively, for payloads of size p = 1000 B. The goodput ratio of OPT is
significantly worse with GR ∼ 83 % for the same values of ` and p, and
does not scale as well as the overhead of EPIC with the length of the paths.
For ICING, we find a five times larger overhead than EPIC Levels 2–3 and
GR ∼ 74 % for these parameters. As PPV performs checks at only two
routers along the path, its overhead is constant in the path length. Still,
EPIC Levels 2–3 have a higher goodput ratio than PPV for path lengths up
to ` = 8.

In Table 3.3, authenticators for path authorization are 3 B for EPIC Level 0

and OPT (the default for SCION on which they are based). This is despite
only achieving property P1 in the basic-attacker model, meaning that brute-
force attacks are unmitigated and exploitable for practical attacks. To correct
for this, the size of validators would need to be increased to a similar length
of other brute-force-resistant fields like the destination validation field,
i.e., 16 B. Considering these modifications, which are shown by “sec. L0”
and “sec. OPT” in Figure 3.4, the goodput ratio is even more favorable for
EPIC Levels 1–3, which significantly outperform both protocols.



54 epic : every packet is checked

2 4 6 8 10 12 14 16

70

75

80

85

90

95

100

AS-Level Path Length `

G
oo

dp
ut

R
at

io
[%

]

L0

L1

L2, L3

PPV
sec. L0

OPT
sec. OPT
ICING

Figure 3.4: Goodput ratio of different protocols as a function of the AS-level path
length ` for a 1000 B payload, calculated from Table 3.3. “sec. L0” and
“sec. OPT” correspond to L0 and OPT with authenticators of 16 B that
are required to rule out brute-force attacks. For GR < 2/3, the total
packet size exceeds the maximum size for an Ethernet payload.



3.3 implementation and evaluation 55

3.3.4 Additional evaluation results

processing-time analysis Figure 3.5 shows a fine-grained processing-
time analysis of the router for EPIC Level 3, highlighting the overhead
caused by cryptographic operations. The times include necessary copying
and padding of the input to the AES block cipher.

Figure 3.6 shows the processing time of an EPIC Level 3 router for dif-
ferent path lengths and EPIC payload sizes. As expected, the processing
time is independent of the path length and payload size and shows low
deviation of only a few percent.

parallelizability As shown in Figure 3.7, the router implementation
achieves almost perfectly linear speedup when parallelized over multiple
CPU cores. As a consequence, the EPIC router can be easily scaled to larger
network links by adding more processing cores or dedicated hardware. The
source shows a similar linear speedup as a function of the number of cores,
see Figure 3.8.

processing time at the source The processing time at the source
for EPIC Level 3 is depicted in Figure 3.9. It increases linearly with both
the AS-level path length (due to the validator for each hop) and in the EPIC
payload (due to the destination validation field).
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different EPIC payload sizes and path lengths.

3.3.5 Other overhead

state at routers In EPIC, routers can perform all cryptographic
checks and updates with a single AS-specific secret value, there is no per-
host or per-flow state required. This is equivalent to OPT and PPV, which
both rely on DRKey, but a significant advantage compared to ICING, which
requires per-flow state [64, 83]. In terms of routing information, border
routers only need to store intra-AS information as packet headers contain
the inter-AS forwarding information. This is a huge improvement over
the current Internet, shared by all architectures based on packet-carried
forwarding state.

replay suppression All EPIC levels except L0 depend on a replay-
suppression system for freshness (P2), which has additional state and
overhead. Since this task can be taken over by dedicated machines, we did
not include it in the router measurements above. Prototypes that are entirely
implemented in software have been deployed successfully on 10 Gbps
links [70]. In turn, EPIC Levels 1–3 provide important properties for replay
suppression: (i) the system can use the timestamp to discard packets that
are expired, thus limiting the number of packets that need to be tracked
in Bloom filters, and (ii) by authenticating all packet contents tracked by
the replay-suppression system, attackers are prevented from modifying
unauthenticated fields and replaying packets. If the replay-suppression
system were not deployed, the packet timestamp could still be used to filter
out expired packets, and an attacker could only replay packets in a very
short time window due to the check in line 6 of Algorithm 2.
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control-plane overhead In EPIC, end hosts have to request paths
from the path server and, for EPIC Levels 2–3, host-level symmetric keys
from the key server, before they can communicate with a new destination.
We assume that the underlying path-aware Internet architecture minimizes
latency by locally caching public paths, e.g., at path servers in SCION [88].
End hosts also cache paths themselves, such that only the initial packet
to a new destination requires a path lookup. This caching strategy can
also be applied to EPIC’s hop authenticators and the host keys required
in EPIC Levels 2–3. Concretely, AS-level keys can be set up between every
pair of ASes ahead of time (either using PISKES / DRKey or Passport)
such that local key servers can immediately respond to requests by end
hosts. In the current Internet, storing 16 B keys for each AS only amounts to
∼1 MB [80]. Given that path and key information is available at local ASes,
the additional latency incurred in EPIC is minimal: only the round-trip
time between the source host and its own AS, and the destination host and
its AS is added to the connection setup. End hosts can cache both paths
and host keys, which eliminates additional latency for subsequent packets.
Further optimization would be possible by combining DNS, path, and key
requests, which would eliminate all additional latency for the initial packet
compared to today’s Internet.

3.4 Path validation for routers

As we argued in §2.1.3, path validation is primarily interesting to the
end points. Despite this, ICING and OPT allow not only the source and
destination to validate the path of a packet, but also enable intermediate
routers to validate the portion of the path that has already been traversed.
The authors of ICING and OPT provide little motivation to provide path
validation for routers, and since we are not aware of any important use cases
of this feature we have omitted it from our main protocols EPIC Levels 1–3.

However, for the sake of completeness we describe EPIC Level 4, which
extends EPIC Level 3 by a security mechanism to also satisfy path validation
for routers:

P7 Path validation for routers: Each router Ai can verify that the packet
traversed all honest ASes from HS to Ai on the path intended by HS.

This protocol otherwise has the same security properties and communi-
cation overhead as EPIC Level 3.
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after processing by

validator HS A1 A2 A3 A4

V(4)
1 C[1]

1 C[2]
1 C[2]

1 C[2]
1 C[2]

1

V(4)
2 C[1]

2 ⊕ C[3]
1 C[1]

2 C[2]
2 C[2]

2 C[2]
2

V(4)
3 C[1]

3 ⊕ C[3]
2 ⊕ C[3]

1 C[1]
3 ⊕ C[3]

2 C[1]
3 C[2]

3 C[2]
3

V(4)
4 C[1]

4 ⊕ C[3]
3 ⊕ C[3]

2 C[1]
4 ⊕ C[3]

3 ⊕ C[3]
2 C[1]

4 ⊕ C[3]
3 C[1]

4 C[2]
4

Table 3.4: Values of validators in EPIC Level 4 as a packet is forwarded from A1

to A4. Colors indicate α in C[α]
i .

In EPIC Level 4, the source of the packet obfuscates the validators of all
ASes by XORing them with cryptographic results of previous ASes. Unless
the previous ASes on the path reverse this obfuscation, the validator of
an AS is invalid. As obfuscation values, we propose to use another piece
C[3]

i = CiJ2lval:3lvalK of Ci defined in Equation (3.8) (assuming lPRF ≥ 3 · lval).
The source of a packet now initializes the validator by

V(4)
i;0 = C[1]

i ⊕ C[3]
i−20 ⊕ C[3]

i−21 ⊕ · · · ⊕ C[3]
i−2k (3.12)

and hence in an obfuscated way. The intermediate ASes update future
validators by XORing them with C[3]

i and hence each remove a layer of

obfuscation. Note that an obfuscation value C[3]
i is not used to obfuscate the

validation fields V(4)
j for all subsequent j. As we show below, obfuscating

the values of all subsequent ASes would enable colluding ASes to easily
skip ASes on the path and deceive subsequent routers. Instead, we only
use obfuscation at exponentially growing distances.

Table 3.4 presents the evolution of the validator values V(4)
i as the packet

traverses four ASes. The source obfuscates the validators such that they
will have the value C[2]

i upon reception by the destination if and only if all
routers processed the packet successfully.

For EPIC Level 4, path validation for routers (P7) is achieved under the
following honesty assumption in addition to those described in Table 3.1:
on any contiguous part of the path of at least three hops there is a majority
of honest ASes.
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Hop-skipping attack

For property P7 in EPIC Level 4, colluding ASes may in some cases be
able to deceive ASes on the future path to accept a packet, even if ASes
on the past path were skipped, by analyzing validators and recovering the
obfuscation values C[3]

i for skipped ASes i. An example with two skipped
ASes is shown in Figure 3.10.

Note that in EPIC Level 4, if the validators Vi were obfuscated with C[3]
j

for all j < i (instead using exponential distances), two colluding ASes could
always recover the obfuscation values of the ASes between them. Assume
that there are colluding ASes i and j on the path and a number of honest
ASes in between them. To skip the honest ASes, the malicious AS j after the
skipped honest ASes would take the packet after it is processed by the first
malicious AS i, compute it’s own C[1]

j and XOR it to the V(4)
j;i field contained

in the packet. The result is the XOR of the C[3]
k values for all skipped ASes

k, i.e., C[3]
i+1 ⊕ · · · ⊕ C[3]

j−1. AS j then XORs this value onto the V(4) fields of
all following hops. Thus, any two colluding ASes could create a wormhole
that would be detectable by HS and HD but not by subsequent ASes.

Using exponential distances in obfuscation has an additional advantage:
packet processing scales better with the path length, as fewer hop fields
have to be updated by each router.

While the honesty assumption of a majority of honest ASes on any
contiguous portion of the path of at least three hops seems safe, we have
not proven the property under this (or any) honesty assumption. This
honesty assumption is also rather strong, and it seems likely that there is a
weaker assumption that accurately reflects the fact that EPIC Level 4 rules
out attacks on path validation in many other scenarios. Finding a weaker
honesty assumption and proving that it is sufficient to rule out attacks
against EPIC’s path validation is left for future work.

3.5 Discussion

3.5.1 Low communication overhead of EPIC

The benefit of EPIC’s lower overhead compared to OPT comes in part from
the fact that EPIC does not use separate fields for path authorization on the
one hand, and for authentication and path validation on the other hand.
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Am Am+1 Am+2 An An+1 An+2

actual path

C[3]
m+1 C[3]

m+1
C[3]

m+1

C[3]
m+2 C[3]

m+2

⊕obfuscation values

{

Figure 3.10: Example where colluding malicious ASes Am, An, and An+1 skip
two intermediate ASes (n = m + 3) and deceive future ASes on the
path to accept the diverted packet. The pattern of obfuscation values
produced by Am+1 and Am+2 for following ASes is drawn below

their nodes. From V(4)
n;m and V(4)

n+1;m that are embedded in the packet

and the values C[1]
n and C[1]

n+1 known to the attacker, the attacker

can deduce the two values C[3]
m+1 ⊕ C[3]

m+2 and C[3]
m+2. Hence, he can

remove the obfuscation normally removed by Am+1 and Am+2 from
all future validators. If only An but not An+1 were controlled by

the attacker, he would only be able to deduce C[3]
m+1 ⊕ C[3]

m+2 and
therefore could not deceive An+1.

The larger contributor to a lower overhead is however the shorter length of
validators in EPIC of 3 B, compared to the 16 B OPV fields in OPT. While
a shorter authenticator translates to easier brute-force attacks (and thus
seemingly weaker security), we have shown the practical usefulness of such
attacks is severely limited by EPIC, as the attacker can only send a single
packet that traverses an unauthorized path, and in EPIC Level 2-3 that
packet will be discarded by the destination, see §3.2.2. EPIC is the first data
plane protocol designed to limit the consequences of a successful brute-force
attack to a single packet; previous protocols rely on long authenticators to
prevent harmful attacks.
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3.5.2 Deployment on path-aware architectures

Our data plane protocols are generic and applicable to a wide range of
path-aware networking protocols. We now describe how EPIC fits into these
architectures.

In SCION, the authenticators used in EPIC can be used directly instead of
the built-in MACs that protect hop fields. However, a difference to EPIC is
that in SCION only a subset of ASes called cores (typically, Tier-1 providers)
initiate beacons. These beacons have limited reach and do not discover
the entire Internet topology for scalability reasons. Thus, end hosts must
combine paths from multiple beacons to obtain global end-to-end paths.
SCION defines rules for combining multiple segments to rule out loops
and uneconomical routes (such as valley paths [47] [88]) and allows paths
to be used in either direction. While our presentation of EPIC abstracts
from these aspects, we designed the protocols with path combinations and
bidirectionality in mind. For combined paths, path authorization holds for
each segment individually while path validation applies to the complete
path.

Besides SCION, multiple other path-aware Internet architectures cryp-
tographically protect forwarding directives in packet headers, including
NEBULA [5, 83], PoMo [19], and Platypus [89, 90]. PoMo introduces an
abstract “motivation” header that can be calculated in the same way as the
validators of EPIC. NEBULA uses “proofs of consent” for path authoriza-
tion and, with the ICING extension, achieves source authentication and
path validation through its “proofs of provenance”. EPIC can be used to
replace these proofs to significantly reduce both computation and commu-
nication overhead while only slightly weakening security properties. The
“bindings” in Platypus already implement a system similar to EPIC Level 1;
they could, however, easily be augmented with source authentication and
path validation with EPIC Levels 2–3.

3.5.3 Incremental deployment

The (incremental) deployment of a new Internet architecture is very chal-
lenging but is facilitated by the reuse of existing intra-domain infrastructure
and protocols. An extensive discussion of (incremental) deployment is pro-
vided for the SCION architecture [88]. In turn, the incremental deployment
of EPIC on an existing path-aware architecture—e.g., as a premium product
for customers requiring stronger security properties such as the financial
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and healthcare sectors—is benefited precisely by their path awareness: EPIC
only requires support by on-path ASes and can thus be supported on some
paths without requiring global coordination. An upgraded end host can
then favor these paths, providing benefits to early adopters.

3.5.4 Timestamps and time synchronization

The path timestamp TSpath encodes Unix time with second-level precision;
both the expiration time of hop fields (tsexp) and the packet timestamp
introduced in EPIC (tspkt) are relative to TSpath. The length of the tsexp field
determines a maximum lifetime for hop fields. As a path expires when one
of its hop fields expires, the packet timestamp offset tspkt only needs to
cover the period between creation and expiration of a beacon. For instance,
in SCION, this period is at most one day [88]. An 8 B field then corresponds
to a granularity of ∼5 fs. This enables end hosts to send 2 · 10

14 packets
with unique timestamps per second, which is sufficient for any practical
application. We can consequently use the packet origin, i. e., the triple of
source, path timestamp, and packet timestamp defined in Equation (2.3), to
uniquely identify all packets in the network.

The timestamps serve multiple purposes in EPIC: they (i) allow routers
to drop packets that are too old or use expired paths, (ii) uniquely identify
packets, and (iii) ensure that the replay-suppression system only needs to
track recent packets. For the first purpose, a coarse global time synchro-
nization providing a precision of multiple seconds is sufficient. The second
purpose does not require time synchronization at all, as packets are uniquely
identified based on the packet origin, which also includes the source. The
third purpose has been shown to work based on per-AS sequence numbers
and therefore only requires relatively precise time synchronization within
an AS [70]. The higher-order bits of the packet timestamp can serve as
sequence numbers in this replay-suppression system.

3.5.5 Key distribution

The use of DRKeys in EPIC Levels 2–3 creates potential issues of circular
dependencies: how is it possible to exchange DRKeys when they themselves
are required for sending packets? In a steady state, this is unproblematic as
ASes can proactively exchange new AS-level keys before the current keys
expire using EPIC Levels 2–3 packets. For an initial key exchange, which
only happens very infrequently, we propose to support EPIC Level 1 in
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addition, such that key requests can be sent over this lower-level protocol.
Although EPIC Level 1 has lower security guarantees and may be suscepti-
ble to DoS attacks, these issues are mitigated by the fact that only a single
request and response are needed for fetching a key. Even in a persistent,
powerful DoS attack, such an exchange would succeed eventually.

3.5.6 Confirmation packets in EPIC Level 3

In EPIC Level 3, the confirmation message that allows the source to validate
the path of its packets is sent as an EPIC Level 2 packet. This is necessary
as each confirmation message would otherwise trigger yet another confir-
mation and consequently cause an infinite sequence of such confirmations.
Using EPIC Level 2 means that the path of the original packet but not the
confirmation message can be validated; all other security properties are
retained (see also Table 3.1). Even in case a malicious on-path AS is able to
modify the path of the confirmation message without being detected, this
does not deteriorate the security properties of the original packet.

There are a number of possible optimizations for the confirmation mes-
sage similar to acknowledgments in TCP: Instead of directly sending confir-
mation message for every received packet, the receiver can batch several
confirmation messages and send them in a single packet. Confirmation
messages can also be “piggy-backed” on normal data packets sent from
the receiver to the source. Finally, instead of sending all validators, only a
hash of them can be returned to the source and validated against the stored
values.

3.5.7 Failure scenarios

As the EPIC protocols depend on several additional systems, a failure of
any of these systems could potentially break connectivity. Most failure
scenarios are comparable to similar issues in today’s Internet: Failures
of path or key servers are similar to failures of DNS servers today and
can be prevented with similar techniques (e.g., replication, access control).
Concerning potential misconfigurations, EPIC may actually increase the
networks resilience as some concepts of new Internet architectures such as
SCION’s isolation domains ensure that the effects of misconfigurations are
locally confined [88].

The most notable additional prerequisite of EPIC is time synchronization;
it is possible that (i) a host, (ii) some router or server in an AS, or (iii) a
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complete AS is unsynchronized with the Internet. The first case can be
handled by the host’s AS replying with a corresponding control message
triggering a re-synchronization. Cases (ii) and (iii) can be detected through
increased packet-drop rates and can thus trigger a re-synchronization within
the AS or with its neighbors. All cases may cause brief outages but can be
resolved within a short time period (one second or less in most cases).

3.6 Related work

Over the past 15 years, much research was conducted on path-aware Internet
architectures and routing schemes including Platypus [89, 90], PoMo [19],
Pathlet Routing [50], NIRA [106], NEBULA [5], and SCION [88, 108]. Many
of these systems recognized the need to find a balance of control between
end hosts and ASes. This is why PoMo includes a “motivation” field
containing a proof to routers that either the sender or receiver is a paying
customer [19], NEBULA requires a “proof of consent” for the complete
path of traversed ASes [5, 83], and SCION secures the authorization of its
hop fields using MACs [88]. These solutions correspond to EPIC Level 0

in terms of the path authorization properties achieved. NIRA and Pathlet
Routing obtain similar properties by restricting allowed paths (NIRA) and
keeping state in routers (NIRA and Pathlet Routing) [50, 106]. Platypus
uses a system similar to Level 1 presented in §3.1.2 where each network
capability is secured by a “binding”, but it does not address the issue of
chaining multiple hops to paths [89, 90].

In addition, since PFRI (integrated into PoMo) discussed a high-level
outline for a path-validation system via an “accountability” field in pack-
ets [27], multiple path-validation schemes have been proposed. ICING [83]
is integrated into the NEBULA architecture and provides path validation
using a validation field for each hop [83]. It uses aggregate MACs [59] in
order to limit the bandwidth overhead but still requires each router to per-
form one symmetric cryptographic computation for each other router on the
path (and, if keys are not cached, an additional asymmetric Diffie–Hellman
computation), which makes it very expensive. Subsequent proposals try to
reduce the complexity through different means: OPT reduces the required
cryptographic computations to a constant number by sacrificing some
guarantees for intermediate routers, yet it still has a high communication
overhead [64, 88]. OSV tries to create a more efficient system by replacing
cryptographic primitives by orthogonal sequences based on Hadamard
matrices [24, 25]. Finally, PPV reduces both computation and communi-
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cation overhead by only probabilistically validating a single link for each
packet [105].





4
Formal Verification of Data
Plane Protocols

Future Internet architectures offers more control to end users, higher ef-
ficiency and better security. While experience and testing can be used to
evaluate the first two promises, they cannot be used to conclusively show
the security of these systems. Testing does not cover all possible behaviors
of a system, in particular of a distributed system with infinitely many
behaviors. To show the security of such a system, one needs to find suitable
abstractions, such that all behaviors can be reasoned about. Such techniques
are provided by formal verification methods.

In this chapter, we formally verify secure data plane protocols. Since no
such protocol is widely deployed yet on the Internet, and no likely winner
can be determined at this point, we further abstract our formal proofs to
not only capture the behaviors of a single protocol, but all behaviors of a
class of protocols. This class of protocols includes EPIC Level 0–2 and a
number of other data plane protocols.

We begin in §4.1 with the scope of this verification work. Section 4.2
introduces some formal notation and definitions. Section 4.3 presents an
abstract model of a data plane protocol without an adversary, in which the
security properties hold trivially. This model has environment parameters,
for instance, to define the network topology and set of authorized paths.
The concrete model in §4.4 introduces both an attacker and cryptographic
checks to defend against the attacker. It is parametrized not only over the
environment, but also introduces protocol parameters that abstract the secu-
rity mechanisms used by protocols. As we show in §4.5, the concrete model
refines the abstract model, and hence inherits the security properties. This
refinement requires a set of assumptions on the environment parameters
and a set of conditions on the protocol parameters.

We give concrete protocols in §4.6. These instance models define the
protocol parameters and prove the associated conditions, thereby showing
that they inherit the security properties.

69
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Our actual formalization has a number of additional features, which
for presentational reasons we do not include in the models presented in
Sections 4.3–4.6. We introduce these as extensions of our framework in §4.7.
Finally, we discuss our results in §4.8 and provide related work in §4.9.

4.1 Scope of verification

In this section, we describe the scope of our verification effort. We state the
security properties that we verify and our attacker model. A formal account
is given in Sections 4.3 and 4.4.

Our work applies to a wide range of future Internet architectures that
follow a clean-slate path-aware approach [5, 19, 50, 83, 88, 89, 106, 108] and
use cryptographic authenticators to establish path authorization.

4.1.1 Security properties that we verify

We verify two security properties: path authorization and detectability (cf. §2.1).
They primarily protect ASes against malicious senders, but our attacker
model (§4.4.3) also includes colluding on-path adversaries.

4.1.2 Security properties that we do not verify

Source and packet authentication allow border routers or the destination to
authenticate the sender and packet. Path validation allows the destination to
verify that the path contained in the packet was actually traversed. We do
not verify these data plane properties, for reasons given in §4.8.5.

As in the previous chapter, intra-AS forwarding is out of scope, since
each AS exercises control over its own network, and global coordination
is not required for intra-AS security. We also do not specify or verify the
control plane, as its properties are independent from those of the data plane.
For instance, path authorization is independent of the property that a path
authorized by the control plane is in accordance with the routing policies
of all on-path ASes.



4.2 preliminaries 71

4.1.3 Verified data plane protocols

Our verification framework applies to both directed and undirected proto-
cols. We analyze four data plane protocols, plus variants of these protocols,
and prove path authorization and detectability:

• SCION [88], a complete future Internet architecture. We formalize its
directed data plane.

• EPIC [71], a family of directed data plane protocols that provide three
levels of security guarantees. We verify levels 1 and 2. EPIC levels 2

and 3 add authentication and path validation mechanisms, which we
do not verify.

• Anapaya-SCION [4], a proposed successor to SCION, which uses
mutable fields and XOR to accumulate authenticators.

• ICING [84], the undirected data plane protocol in the NEBULA Inter-
net architecture [5]. It also provides path validation, which we do not
verify.

We will formalize these protocols in §4.6 as instances of our parametrized
framework.

4.2 Preliminaries

In this section, we provide background on event systems, refinement, and
model parametrization. We also describe the differences in the packet
format, notation and protocol features to the previous chapter. For instance,
since our formalization abstracts from the control plane beaconing process,
we refer to paths in forwarding direction, which is opposite to the beaconing
direction used in SCION and EPIC.

Despite our use of Isabelle/HOL, we largely use standard mathematical
notation and deliberately blur the distinction between types and sets.

4.2.1 Differences to previous chapter

The previous chapter presented the EPIC protocol suite. In order to spec-
ify these protocols as concretely as possible and to allow for a precise
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evaluation, we provided a detailed description that included low-level char-
acteristics such as the length of individual header fields. Naturally, our
formalization lacks such specificity and abstracts from several details.

For instance, the definition of packets (Equation (2.2), page 27) includes
source and destination fields Src, Dest, a payload field P, and the destina-
tion validation field VSD. None of these fields are important for the path
authorization and detectability security properties, hence they are not part
of our models.

Furthermore, since our formal models are generic and apply to a wide
range of different data plane protocols, we abstract from certain protocol-
specific idiosyncrasies of EPIC. For instance, we have just a single field hvfi
for each AS i instead of a separate validator Vi and segment identifier Si.
When we instantiate our parametrized model with EPIC Level 1 in §4.6.2,
we define hvfi as a pair of Vi and Si.

Lastly, the presentation of our formalization is simplified for ease of
understanding. For instance, our formal model includes an authenticated
per-packet field that can be used to include a timestamp (TSpath in the case
of SCION and EPIC). We leave this field out of the definitions below. We
also support a strong attacker model using an oracle, but leave out the
required parameters and associated conditions. We introduce these features
of our model in the section §4.7, which presents extensions of our simplified
framework.

4.2.2 Event systems, invariants, and refinement

Event systems are labeled transition systems, where transitions are labeled
with events. Formally, an event system is of the form E = (S, s0, E, { e−→}e∈E),
where S is a set of states, s0 ∈ S is the initial state, E is a set of events,
and e−→ ⊆ S × S is the transition relation corresponding to event e. As
usual, we write s e−→ s′ for (s, s′) ∈ e−→. The set of states reachable from
a state s, written reach(E , s), is inductively defined by s ∈ reach(E , s), and
s′ ∈ reach(E , s) and s′ e−→ s′′ implies s′′ ∈ reach(E , s). A state property P is
a subset of S (or, equivalently, a predicate on S). A state property P is an
invariant of E , written E |= P, if reach(E , s0) ⊆ P.

Given an abstract event system Ea = (Sa, s0
a, Ea, { e−→a}e∈Ea) and a concrete

event system Ec = (Sc, s0
c , Ec, { e−→c}e∈Ec) we say that Ec refines Ea if there are

refinement mappings π0 : Sc → Sa on states and π1 : Ec → Ea on events
such that π0(s0

c) = s0
a and for all sc, s′c ∈ Sc and ec ∈ E such that sc

ec−→c s′c
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we have π0(sc)
π1(ec)−−−→a π0(s′c). This is functional forward simulation [78]

with event mappings added. Refinement preserves invariants from the
abstract to the concrete model, i. e., Ea |= P implies that Ec |= π−1

0 (P),
where π−1

0 (P) = {s ∈ Sc | π0(s) ∈ P}.
In our models, we often use parametrized events and states structured as

records. We use the notation

e(x̄) : g(x̄, v̄) . w̄ := ū(x̄, v̄)

to specify such events, where x̄ are the event’s parameters (the bar rep-
resenting a vector), v̄ are the state record’s fields, g(x̄, v̄) is the guard
predicate defining the executability of the event, w̄ ⊆ v̄ are the updated
fields, and ū are update functions (one for each variable in w̄). This no-

tation denotes the transition relation defined by s
e(x̄)−−→ s′ iff g(x̄, s(v̄))

holds, s′(w̄) = ū(x̄, s(v̄)) and, for the state fields z̄ = v̄ − w̄ that are
not updated, s′(z̄) = s(z̄). We often use updates of parametrized chan-
nel fields holding sets of messages. For example, if m is an integer, the
event send(A, B, m) : m > 0 . ch(A, B) += m adds packet m to the
channel ch between A and B if m is positive, i. e., the intended update is
ch(A, B) := ch(A, B) ∪ {m}. Otherwise the state remains unmodified, in
particular, ch(A′, B′) := ch(A′, B′) for all (A′, B′) 6= (A, B).

4.2.3 Parametrization

The generality of our models rests on their parametrization. A parametrized
model may include assumptions on its parameters. An instance must define
the parameters and prove the assumptions. For easy identification, we will
highlight parameters in gray when they are first introduced. We also list all
environment and protocol parameters in Table 4.1.

Parametrization is independent of refinement. For instance, a model can
be parametrized and concrete at the same time (as is the case in our frame-
work). In our Isabelle/HOL formalization, we implement parametrization
using locales [11].

4.3 Abstract model

We define an event system that models the abstract data plane of a path-
aware network architecture. This model includes neither cryptography nor
an attacker. We prove that it satisfies path authorization and detectability.
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To distinguish definitions of this abstract model from those of the concrete
model that refines it (§4.4), we use subscripts ‘a’ and ‘c’, respectively.

4.3.1 Environment parameters

We model the Internet as a multigraph, where nodes represent ASes and
edges represent the network links between them. More precisely, a network
topology is a triple (N , I , target), where N is a set of nodes, I is a set of
interfaces, and target is an environment parameter to our model with the
type

target : N ×I ⇀ N ×I . (4.1)

This formalizes that target is a partial bijective function that models links
between ASes.1 We say that an interface i is valid for a node A, if (A, i) ∈
dom(target), whereby target(A, i) = (B, j) denotes the node B and interface
j at the other end of the link. Our definition thus allows for multiple links
between a given pair of nodes, with possibly different routing policies.

We often reason directly about paths in the network, rather than the
network topology. These paths are defined in terms of both nodes and their
interfaces. We define a path to be a finite sequence of hop information fields
from the set

HI = (| id ∈ N, prev ∈ I⊥, next ∈ I⊥ |). (4.2)

Each hop information field contains the local routing information of a
node, i. e., its node identifier and the interfaces that identify the links to
the previous and the next hop on the path. Both interfaces are defined as
option types, indicated by the subscript ⊥. When there is no previous or
next hop, we assign ⊥ to the respective interface. The hop fields that will
be introduced in the concrete model below augment the hop information
fields with a cryptographic hop validation field. Since our abstract model
does not contain an adversary, such authenticators are not required here.

Our model’s second environment parameter is

autha ⊆ HI∗, (4.3)

the set of authorized paths along which packets are allowed to travel. Packets
can also traverse just a part of an authorized path. To account for such

1 The bijectivity of the target mapping models unicast communication (in contrast to, e.g.,
broadcast), however this is not required as an assumption for our proofs.
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partial paths, we define auth�a , the fragment closure of autha, as the set of
paths his such that there exist a his′ ∈ autha and paths his1, his2 ∈ HI∗ such
that his′ = his1 · his · his2.

Note that authorized paths cannot be assumed to be actual paths in the
network multigraph, since attackers in the control plane can interfere with
the path construction (see §4.5.1).

Our third parameter is the set of compromised nodes

Nattr ⊆ N . (4.4)

All other nodes are called honest. This environment parameter only becomes
relevant after introducting the adversary in the concrete model (§4.4.3),
where the attacker has access to the keys of compromised nodes. We
nevertheless introduce it here, since using the same environment parameters
in all of our models simplifies our presentation.

The environment assumptions (ASM) expressed over these parameters
are introduced for the refinement of the abstract to the concrete model
(§4.5.1).

4.3.2 State

We model packet forwarding from a node’s internal network to an inter-
node link, and vice-versa, using two types of asynchronous channels: in-
ternal (one per node) and external (two per interface-node pair, one in each
direction). We represent these channels as sets of packets PKTa, defined
below. We define the state as

Sa = (| int ∈ N → P(PKTa),

ext ∈ N ×I ×N ×I → P(PKTa) |).

The initial state s0
a is the state in which all channels are empty. We

overload the set inclusion operator to apply to states: A packet m is in
state s, m ∈ s, iff m ∈ ran(int(s)) ∪ ran(ext(s)). For a valid interface i of
A with target(A, i) = (B, j), we define ext send(A, i) = ext(A, i, B, j) and
ext recv(A, i) = ext(B, j, A, i).

In the following definition of packets, we abstract from the payload and
only model the packet-carried forwarding state:

PKTa = (| past ∈ HI∗, fut ∈ HI∗, hist ∈ HI∗ |).
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Parameter Introduced Description Used to express

target Equation (4.1) network topology
ASMautha Equation (4.3) authorized paths


COND

Nattr Equation (4.4) attacker nodes

ψ Equation (4.8) crypt. check of HVF

auth-restrict Equation (4.9) restr. on auth. paths

extract Equation (4.11) extracts path from HVF

ik+0 Equation (4.12) add. attr. knowledge

Table 4.1: Environment (1–3) and protocol (4–7) parameters.

dispatch-inta(A, m) :

fut(m) ∈ auth�a ∧
hist(m) = 〈〉

. int(A) += m

dispatch-intc(A, m) :

m ∈ DY(ik) ∧
hist(m) = 〈〉

. int(A) += m.

dispatch-exta(A, i, m) :

fut(m) ∈ auth�a ∧
hist(m) = 〈〉 ∧
(A, i) ∈ dom(target)

. ext send(A, i) += m.

dispatch-extc(A, i, m) :

m ∈ DY(ik) ∧
hist(m) = 〈〉
(A, i) ∈ dom(target)

. ext send(A, i) += m.

Figure 4.1: Dispatching events of the abstract (left) and concrete (right) model,

with differences highlighted.
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senda(A, m, hi, i) :

hi = hd(fut(m)) ∧
hi 6= ⊥∧
A = id(hi) ∧
i = next(hi) ∧
m ∈ int(A) ∧
(A, i) ∈ dom(target)

. ext send(A, i) += fwda(m).

sendc(A, m, hf, i) :

hf = hd(fut(m)) ∧
hf 6= ⊥∧
A = id(hf) ∧
i = next(hf) ∧
m ∈ int(A) ∧
(A, i) ∈ dom(target) ∧
ψ(hf, hd(tl(fut(m))), tok(m))

. ext send(A, i) += fwdc(m).

recva(A, m, hi, i) :

hi = hd(fut(m)) ∧
hi 6= ⊥∧
A = id(hi) ∧
m ∈ ext recv(A, i) ∧
(A, i) ∈ dom(target)

. int(A) += m.

recvc(A, m, hf, i) :

hf = hd(fut(m)) ∧
hf 6= ⊥∧
A = id(hf) ∧
m ∈ ext recv(A, i) ∧
(A, i) ∈ dom(target) ∧
i = prev(hi) ∧
ψ(hf, hd(tl(fut(m))), tok(m))

. int(A) += m.

delivera(A, m, hi) :

fut(m) = 〈hi〉 ∧
A = id(hi) ∧
m ∈ int(A)

. int(A) += fwda(m).

deliverc(A, m, hf) :

fut(m) = 〈hf〉 ∧
A = id(hf) ∧
m ∈ int(A) ∧
ψ(hf,⊥, tok(m)) ∧

. int(A) += fwdc(m).

Figure 4.2: Other events of the abstract (left) and concrete (right) model, with

guards added in the concrete model highlighted.



78 formal verification of data plane protocols

A packet consists of the desired future path fut, and the (presumed) tra-
versed path past, stored in reverse direction. The full path is rev(past(m)) ·
fut(m). While this splitting of the path simplifies our proofs, the forwarding
path could equivalently be defined as a single sequence with a moving
pointer indicating the current position on the path. We call a packet m autho-
rized, if fut(m) ∈ auth�a . Additionally, each packet records a path hist, also
in the reverse direction. This path represents the packet’s actual trajectory
and is used to express security properties. This can be seen as an auxilliary
history variable [1], meaning that it is not part of the protocol, but serves to
specify and prove properties of protocol executions.

4.3.3 Events

The events of the abstract model are given on the left-hand side of Fig-
ures 4.1 and 4.2. The life cycle of a packet is captured by the following
events: dispatch-inta creates a new packet containing an authorized future
path in the internal channel of a node. The packet is transferred with al-
ternating senda and recva events between internal and external channels,
according to the forwarding path contained in the packet. Finally, the packet
is delivered to the end host with an event delivera. The events dispatch-inta
and delivera model the interaction with end hosts, whereas senda and recva
represent the border routers’ packet forwarding actions. The additional
dispatch-exta event creates and sends a packet directly to an ext channel.
This event is not required for normal data plane operations, but serves to
introduce a malicious sender at an inter-AS link in the refinement.

We now describe these events in more detail. The dispatch-inta and
dispatch-exta events create an authorized packet by setting its future path
to (a fragment of) an authorized path and inserting it into an internal or
external channel. The history is set to the empty sequence in both events,
and the past path can be set arbitrarily to allow the refinement into attacker
events, where the attacker may disguise the origin of the packet. The senda
and recva events both use the current hop information field, i. e., the hop
information field at the head of the future path, to determine where the
packet should be forwarded. Hence, they require a non-empty future path.
The recva event transfers a packet from the external channel at (A, i) to
A’s internal channel. The senda event takes a packet m from the internal
channel and places the transformed packet fwda(m) on the external channel
at (A, i). The partial function fwda : PKTa ⇀ PKTa moves the current hop
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information field of m into the past path and adds it to the history. It is
defined for m with fut(m) 6= 〈〉 by

fwda(m) = (|past = hd(fut(m)) # past(m), fut = tl(fut(m)),

hist = hd(fut(m)) # hist(m)|).
We define the functions head hd : HI∗⊥ → HI⊥ and tail tl : HI∗⊥ → HI∗⊥ by
hd(x # xs) = x and tl(x # xs) = xs and by mapping 〈〉 and ⊥ to ⊥ in both
functions.

The delivera event models delivering a packet m containing a single hop
information field in its future path to an end host. However, we do not
explicitly model end hosts and their state. Hence, we simply add the packet
fwda(m) to the internal channel of the AS and thereby push the last hop
information field into the past and hist paths.

4.3.4 Properties

Path authorization states that packets can only traverse the network along au-
thorized paths. This ensures that the data plane enforces the control plane’s
routing policies. Formally, for all packets m in a state s, rev(hist(m)) ∈ auth�a .
Recall that the order of nodes is reversed in hist. We strengthen this to an
inductive invariant by adding the future path:

∀m ∈ s. rev(hist(m)) · fut(m) ∈ auth�a . (4.5)

The proof in this abstract model is straightforward. New packets are re-
quired to have an authorized future path and an empty history. For existing
packets, rev(hist(m)) · fut(m) remains invariant during their forwarding.
The past path is irrelevant for path authorization.

We furthermore formalize detectability and show that it is an invariant: all
traversed hops are recorded on (i.e., a prefix of) the past path:

∀m ∈ s. hist(m) ≤ past(m). (4.6)

This property is independent of autha and follows directly from the events’
definitions. Our presentation will focus on path authorization, as it is the
data plane’s central security property.

4.4 Concrete model

We refine the abstract forwarding protocol into a concrete model. In this
model, the packets’ hop fields include (generic) cryptographic hop vali-
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dation fields to secure the authorized paths against a Dolev–Yao attacker
(§4.4.3). We present the concrete model’s events in §4.4.4 and the refinement
in §4.5.

The concrete model retains the environment parameters of the abstract
model (§4.3.1), and adds four protocol parameters, which we introduce be-
low. One of them is the cryptographic check that ASes apply to their
hop validation fields, which allows us to abstract from the concrete crypto-
graphic mechanism used. We focus on the setting for directed path autho-
rization here, and defer the treatment of undirected path authorization to
§4.7.3. We compare both classes of protocols in §4.8.1.

4.4.1 Cryptographic terms, hop fields, packets and states

We introduce an algebra T of cryptographic terms:

T = N | I⊥ |N | KN | 〈T, T, . . . , T〉 | H(T).

Terms consist of node identifiers, interfaces, natural numbers (e. g., for
timestamps), keys (one per node), as well as finite sequences, and crypto-
graphic hashes of terms. We define message authentication codes (MACs)
using hashing by MACk(m) = H(〈k, m〉). Our framework also supports
encryption and signatures, which we do not use here.

Hop fields (HF), used in the concrete model, extend the hop information
fields (HI), used in the abstract model, with a hop validation field (HVF). This
is a cryptographic authenticator that authenticates the hop information:

HF = (| id ∈ N, prev ∈ I⊥, next ∈ I⊥, HVF ∈ T |). (4.7)

In the concrete model, path refers to a sequences of HFs. We define the
function abstr-hf : HF → HI projecting concrete hop fields to abstract hop
information fields by dropping HVF and we lift it element-wise to paths. To
keep our notation compact, we write hfA and hfs to denote the application
of abstr-hf to hop fields and sequences of hop fields.

We next define concrete packets as follows:

PKTc = (| tok ∈ T, past ∈ HF∗, fut ∈ HF∗, hist ∈ HI∗ |).

The past and future paths are sequences of concrete hop fields, while
the history remains a sequence of HI fields. Concrete packets contain an
additional packet token field (tok), which is used by instances for various
purposes, for instance as a source-supplied unique packet identifier.
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The concrete state space Sc has the same record structure as the abstract
Sa, but the channels now carry concrete packets:

Sc = (| int ∈ N → P(PKTc),

ext ∈ N ×I ×N ×I → P(PKTc) |).

The initial state s0
c is defined similarly to s0

a as the empty channel state.

Auxiliary functions

We define the overloaded function terms for hop fields (terms : HF→ P(T)),
paths (terms : HF∗ → P(T)) and packets (terms : PKTc → P(T)) as follows:

terms(hf) = {HVF(hf)}
terms(hfs) =

⋃
hf∈hfs

terms(hf)

terms(pkt) = {tok(pkt)} ∪ terms(past(pkt)) ∪ terms(fut(pkt)).

For a set T of terms and for a hop field, path, or packet x, we write x ∈ T
for terms(x) ⊆ T.

We define a function hi-term : HI→ T that maps hop information fields
to terms as

hi-term(hi) = 〈id(hi), prev(hi), next(hi)〉.

We leave the conversion of HI fields to terms via this function implicit
below.

4.4.2 Protocol parameters and authorized paths

We define four protocol parameters. The first is a cryptographic validation
check

ψ : HF×HF⊥ ×T→ B, (4.8)

which each border router performs to check the validity of its hop field. This
parameter abstracts the cryptographic structure of the hop validation field,
which is only determined in concrete protocol instances. Here, ψ(hfA, hfB, u)
holds iff the hop field hfA is valid given the next hop field hfB (if any, and
⊥ otherwise) and the packet’s tok field u.

We also define a function Ψ : HF∗ ×T → HF∗, which we apply to the
future path of a packet to obtain the longest prefix of hfs such that for every
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hop field hfA on the path, and its successor hop field hfB (⊥, if none exists)
and the tok field u, ψ(hfA, hfB, u) holds:

Ψ(hfA # hfB # hfs, u) = hfA # Ψ(hfB # hfs, u) if ψ(hfA, hfB, u)

Ψ(〈hfA〉, u) = 〈hfA〉 if ψ(hfA,⊥, u)

Ψ(hfs, u) = 〈〉 otherwise.

We use this function in the mapping of future paths from the concrete
model to the abstract model (§4.5.3) to truncate the path at the first invalid
hop field. This does not reduce the system’s possible behavior, since for-
warding is performed by honest agents that do not forward packets along
invalid hop fields. We call a path hfs or a packet pkt with fut(pkt) = hfs
cryptographically valid (for u) if Ψ(hfs, u) = hfs.

Instances restrict the set of concrete authorized paths to incorporate
additional constraints that the respective control plane guarantees. The
second parameter of our model is a predicate

auth-restrict : HF∗ ×T→ B, (4.9)

which decides if a given concrete path and tok field satisfy these constraints.
Note that we cannot simply incorporate these constraints into the local check
ψ(hfA, hfB, u) performed by routers. First, because these may be control
plane assumptions rather than checks performed by routers. Second, they
are required to limit the intruder knowledge in ways that ψ cannot. In
the next section we define that the intruder learns a value u if there is an
authorized paths hfs with Ψ(hfs, u) = hfs. Without restriction, this would
allow the attacker to learn arbitrary terms, since hfs = 〈〉 is authorized and
valid for any u value.

We define the set of concrete authorized paths, authc ∈ T→ P(HF∗), as
the set of paths hfs that are cryptographically valid for a tok field u, satisfy
the restriction and whose projection to HI∗ is authorized:

authc(u) = {hfs | Ψ(hfs, u) = hfs∧ auth-restrict(hfs, u) ∧ hfs ∈ autha}.
(4.10)

We overload authc and define the set authc ⊆ HF∗ as the union of authc(u)
over all u. Similar to the abstract model, a concrete packet m is authorized
if fut(m) is a fragment of an authorized path, i.e., fut(m) ∈ auth�c .

To achieve path authorization, protocols use the HVF to protect the future
(abstract) path. The third protocol parameter is

extract : T→ HI∗, (4.11)
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which is intended to extract this path from a given HVF. For instance, in
SCION, the hop validation field consists of a MAC over the hop’s id and
interfaces and, the next hop’s HVF, allowing for a recursive extraction. This
function is only required in proofs and not in the definition of the event
system. Hence it may use features that would be infeasible to implement in
the actual system, such as inverting hashes and MACs.

We lift extract to hop fields by extract(hf) = extract(HVF(hf)) and to paths
by defining extract(〈〉) = 〈〉 and extract(hf # hfs) = extract(hf). In §4.5.2,
we will define a consistency condition (to be discharged by each instance
model) that implies that extract coincides with · on those paths that are
both cryptographically valid and derivable by the attacker.

The fourth protocol parameter is a set of cryptographic terms

ik+0 ⊆ T. (4.12)

It allows protocol instances to give the attacker additional terms and is used
in the definition of the intruder knowledge below.

ik+0 and auth-restrict are parameters that allow modeling the protocol-
dependent intruder knowledge. While they are important in the instance
models, they do not play an important role for the refinement proof in the
concrete model.

4.4.3 Attacker model

In §3.2.1, we proposed a Dolev–Yao adversary who is restricted to sending
and receiving packets at compromised locations. For path authorization,
this attacker can be strengthened. We allow the attacker to eavesdrop on
and inject new packets in all int and ext channels, but has access only to
the keys of compromised nodes. We first define the attacker’s message
derivation capabilities, which are used in the attacker events introduced
in §4.4.4.

As usual, we model the attacker’s knowledge as a set of terms and her
message derivation capabilities as a closure operator DY : P(T)→ P(T)
on sets of terms. Our formalization of DY is based on Paulson [87] and
defines DY(H) = DY↑(DY↓(H)) for a set of terms H as the composition of
two closure operators defined by the rules in Figure 4.3. The decomposition
closure DY↓(H) closes H under the projection of sequences to their elements
and the composition closure DY↑(H) includes all public terms (i. e., node
identifiers, interfaces, and numbers) and closes H under the construction of
sequences and hashes.
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t ∈ H

t ∈ DY↓(H)

〈t1, . . . , tn〉 ∈ DY↓(H)

ti ∈ DY↓(H)
1 ≤ i ≤ n

t ∈ H

t ∈ DY↑(H)

t ∈ N ∪I⊥ ∪N

t ∈ DY↑(H)

t ∈ DY↑(H)

H(t) ∈ DY↑(H)

t1 ∈ DY↑(H) · · · tn ∈ DY↑(H)

〈t1, . . . , tn〉 ∈ DY↑(H)

Figure 4.3: Rules for Dolev–Yao message decomposition (DY↓) and composition
(DY↑).

We define the intruder knowledge in a state s ∈ Sc as the Dolev–Yao
closure (DY) of the set of terms ik(s), defined by

ik0 =
⋃
{terms(x) ∪ {u} | x ∈ authc(u)} ∪ {Ki | i ∈ Nattr}, (4.13)

ik(s) = ik0 ∪ ik+0 ∪
⋃

m∈s
terms(m). (4.14)

The set ik(s) is the union of the initial intruder knowledge ik0, additional
terms ik+0 , and all terms in packets of state s. The set ik0 consists of autho-
rized paths (the HVF of their hop fields and the tok field with which they
are valid) and compromised nodes’ keys.

4.4.4 Events

Each event of the abstract model is refined into a similar event of the
concrete model (Figures 4.1 and 4.2, right, where differences between the
models are highlighted in yellow). In the events’ guards we omit the state
and just write ik. The concrete model retains the packet life-cycle of the
abstract model (§4.3.3). The dispatch-intc and dispatch-extc events can send
arbitrary attacker-derivable packets, instead of only authorized packets as
in the abstract model. To defend against the attacker, we introduce interface
and cryptographic checks in sendc, recvc, and deliverc. We now discuss
the concrete model’s events in more detail.
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Attacker events

The two attacker events dispatch-intc and dispatch-extc model that the
attacker is active: she has the capability to send a packet on any AS’ internal
or external channel, regardless of whether the AS is honest or compromised.
In both events, the packet m created by the attacker may contain arbitrary
past and future paths, but its hop validation fields and packet token field
must be derivable from the intruder knowledge, i. e., terms(m) ⊆ DY(ik(s)).
Note that the event dispatch-intc still covers honest senders, as the attacker
knows all authorized paths.

Similar to their abstract counterparts, both events set the history hist to 〈〉.
The motivation for this is to exclude attacks where an attacker modifies
a packet’s forwarding path en-route, since these attacks are unavoidable
in the presence of a sufficiently strong on-path adversary. For example,
consider Figure 2.1a (page 16) and suppose that the attacker has access to
D’s external channels. Then D may receive a packet arriving on the left path
from F, exchange its forwarding path by the right path, and forward the
modified packet to C. This would (trivially) violate path authorization. By
resetting the history, we effectively consider all packets sent by the attacker
as new ones. An additional reason for this modeling choice is that an on-
path attacker can not only re-route packets, but also modify their contents
arbitrarily. This makes it generally impossible to correlate packets sent by
the attacker with those the attacker has previously received. Consequently,
path authorization must hold separately for the packets before and after
the replacement of the forwarding path by the attacker.

Note that in the dispatch-extc event, the attacker’s hop information field
is not recorded in the history. This is because the attacker could modify
her own hop field in arbitrary ways, and even omit it entirely. The attacker
node is still identifiable in the history via the target function because the
interface identifier prev of the next hop points to the link between it and the
source AS of the packet.

Honest events

The honest events are sendc, recvc, and deliverc. To secure the protocol
against the attacker introduced in this model, border routers now perform
two validation checks. First, upon receiving a packet from another node,
recvc includes the guard i = prev(hf) to check that interface i over which
the packet is received matches the interface prev of the packet’s current hop
field hf. Second, all honest events check the cryptographic hop validation field
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that is added to hop fields in this refinement using the check ψ(hf, hf′, u),
where hf, hf′, and u are the packet’s current hop field, next hop field, and
tok field, respectively. This check ensures that the hop field (and indeed the
whole or partial path) is authorized.

The events sendc and deliverc use the function fwdc to forward a packet:

fwdc(m) = (|tok = tok(m), past = hd(fut(m)) # past(m), fut = tl(fut(m)),

hist = hd(fut(m)) # hist(m)|).

This function is defined similarly to fwda, but the tok field is not modified
and the hop field being moved from the future to the past path is converted
from HF to HI using · before it is added to hist(m).

Constant intruder knowledge

In reachable states s, all packets m ∈ s are derivable from the static intruder
knowledge ik0 ∪ ik+0 . Hence, the attacker does not learn any new messages
during the protocol execution. Under the Dolev–Yao closure, we can hence
drop the state-dependent part

⋃
m∈s terms(m) of the intruder knowledge

and use DY(ik0 ∪ ik+0 ) instead of DY(ik(s)). We show the following lemma
as an invariant.

Lemma 1: Constant intruder knowledge

For all reachable states s, DY(ik(s)) = DY(ik0 ∪ ik+0 ).

Proof. Invariant proof. By definitions of events.

4.5 Refinement

We prove the following refinement theorem for the abstract event system
Ea = (Sa, s0

a, Ea, { e−→a}e∈Ea) and the concrete event system Ec = (Sc, s0
c , Ec,

{ e−→c}e∈Ec), where for i ∈ {a, c}, Si and s0
i are as defined in the previous

sections,

Ei = {dispatch-inti, dispatch-exti, sendi, recvi, deliveri},
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and e−→i for all e ∈ Ei as in Figures 4.1 and 4.2. The assumptions (ASM), and
conditions (COND), as well as the refinement mappings π0 and π1 will be
defined in this section.

Theorem 1: Concrete model refines abstract model

Ec refines Ea under the refinement mappings π0 : Sc → Sa on states
and π1 : Ec → Ea on events, assuming ASM and COND.

The refinement proof rests on several global assumptions (ASM) about the
control plane and on a set of conditions (COND) about the authentication
mechanism used. To establish that a concrete protocol satisfies the path
authorization and detectability properties, it suffices to define the protocol’s
authentication mechanism by instantiating the protocol parameters and
discharge the associated conditions, which we do for several protocols
in §4.6.

In this section, we first introduce the assumptions and conditions. After-
wards we define the state and event refinement mappings. Finally, we show
the interesting cases in the refinement of the attacker event, which is the
crux of Theorem 1. The full refinement proof, formalized in Isabelle/HOL,
is accessible in the supplementary material.

4.5.1 Control plane assumptions

We define environment assumptions about the authorized paths autha
constructed by the control plane. There are two types of assumptions. First,
there are two assumptions about the correct functioning of the control plane,
which is independent of the data plane. Second, additional assumptions
close the set of authorized paths in order to exclude trivial attacks on the
routing policies of colluding ASes. These provide upper and lower bounds
on the set autha, respectively.

Correctness assumptions

The first control plane assumption is that authorized paths are terminated:
the first hop information field’s prev is ⊥ and the last hop information field’s
next is ⊥, except for when the respective hop information field belongs to
an attacker. Second, we assume that authorized paths are interface-valid:
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interfaces of adjacent hop information fields on a path point to the same link,
except for when both hop fields belong to attacker nodes. This exception
accounts for unavoidable out-of-band communication by adversaries, so-
called wormholes [54].

To formalize interface validity, we introduce the interface validity predi-
cate

φ : HI×HI⊥ → B.

In the following, we let hiA (respectively hiB) denote a hop information field
for which id(hiA) = A (resp. id(hiB) = B). We also use this shorthand for
hop fields hfA. The parameters of φ are the current hop information field
hiB and a preceding hop information field hiA. If there is no previous hop
field, no interface must be checked.

φ(hiB,⊥) = true

φ(hiB, hiA) = (target(A, next(hiA)) = (B, prev(hiB)))

∨ (A ∈ Nattr ∧ B ∈ Nattr)

We define a function Φ : HI∗ ×HI⊥ → HI∗ as follows. For the longest
prefix of a sequence of hop information fields his and the initial previous
hop information field hiprev, Φ(his, hiprev) returns the longest prefix of his
such for all fields hiB on his and their respective predecessor hiA on his,
φ(hiB, hiA) holds. For the first hop information field on his, φ must hold
with hiprev as the predecessor. We write Φ(his) as a shorthand for Φ(his,⊥).

Formally, we define

Φ(〈〉, hiprev) = 〈〉
Φ(hi # his, hiprev) = hi # Φ(his, hi) if φ(hi, hiprev)

Φ(hi # his, hiprev) = 〈〉 otherwise.

ASM 1 and ASM 2 formalize the correctness of the control plane.

ASM 1: Terminated
A hop information field hi with id(hi) /∈ Nattr on hi # his ∈ autha
(resp. on his · 〈hi〉 ∈ autha) has prev(hi) = ⊥ (resp. next(hi) = ⊥).

ASM 2: Interfaces valid
All paths his ∈ autha are interface-valid, namely Φ(his) = his.

Closure assumptions

We have chosen a strong attacker model, in which both end hosts send-
ing packets and ASes (including on-path ASes) can be compromised. As
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a consequence, we need to make assumptions on the attacker’s behav-
ior in the control plane. Concretely, we assume that if all honest on-path
ASes consent to the authorization of a path (and create corresponding
hop validation fields), then the compromised on-path ASes consents as
well. This is necessary because in the data plane the attacker can craft a cor-
responding forwarding path using the honest nodes’ hop validation fields.
It is also acceptable to regard such paths as being authorized, since all
honest agents consented to their authorization. In the extreme case in which
all ASes are compromised, all paths must be assumed to be authorized as
well.

Formally, we assume that the set of authorized paths is closed under
certain path modifications. In this section, we only present path modifica-
tions possible in directed protocols. The closure assumptions for undirected
protocols are given in §4.7.3.

For example, assume that ASes E and F in Figure 2.1 (page 16) are
compromised. Since E is on the right path G–E–D–C–A, she can take the
suffix E–D–C–A, change her own hop field (and issue a new HVF using
the compromised key) such that prev points to F, and prepend a new hop
field for F to obtain the path F–E–D–C–A. None of these changes require
consent from the other on-path nodes, since each AS only decides on the
authorization of the partial paths with its respective AS at the beginning
and path extensions are implicitly authorized. Hence, this does not impact
any honest AS’ policy. We accept such path modifications as authorized in
ASM 3–ASM 6.

ASM 3: Empty & Single
〈〉 ∈ autha and 〈hi〉 ∈ autha for all id(hi) ∈ Nattr.

ASM 4: Prepend
If the first hop information field belongs to the attacker, she
can prepend another attacker hop information field. Formally,
if hiB # his ∈ autha, B ∈ Nattr, and A ∈ Nattr then hiA # hiB # his ∈
autha.

ASM 5: Suffix
The attacker can take a path’s suffix if her hop information field
is the suffix’ head. Formally, if his′ · hiA # his ∈ autha and A ∈ Nattr
then hiA # his ∈ autha.

ASM 6: Modify
If the first HI field belongs to the attacker, she can modify its prev.
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Formally, if hiA # his ∈ autha, next(hi′A) = next(hiA), and A ∈ Nattr
then hi′A # his ∈ autha. Note that id(hi′A) = id(hiA) = A.

These are not merely assumptions of our protocol model but are inherent
to the path authorization mechanism of directed protocols. Undirected
protocols (such as ICING) require that the entire path is authorized by each
on-path AS. As we show in §4.7.3, ASM 3–ASM 6 can then be replaced by
weaker assumptions. Note also that the assumptions are only required since
we assume a very strong attacker model in which the end host attacker
colludes with on-path ASes. This is in stark contrast to BGP, which does
not achieve security even when there are only off-path attackers. When all
compromised ASes are off-path, then in our model of SCION, the above
closure assumptions are not needed.

With the assumption that the empty path is authorized (ASM 3), the
importance of auth-restrict in the definition of authc becomes apparent.
Ψ(〈〉, u) = 〈〉 holds for all values of u. Hence, without adding a restriction,
〈〉 ∈ authc(u) would hold for all u, giving the attacker all terms, including
keys, via ik0 (cf. Equation (4.13)).

4.5.2 Conditions on authentication mechanisms

We define five conditions that relate the protocol parameters ψ, auth-restrict,
extract, and ik+0 introduced in Equations (4.8), (4.9), (4.11), and (4.12) with
each other and with the environment parameters Nattr and autha (via authc).
These conditions are used in the refinement proof in §4.5.4. We will have to
prove these conditions for any instance of the concrete model.

COND 1 and COND 2 together require that the attacker cannot derive
valid hop fields for honest nodes that are not already contained in authc.
They also constrain the parameter ik+0 , such that instances cannot provide
the attacker with terms that allow her to create valid but unauthorized hop
fields.

COND 1: Attacker knowledge derivation:
hf ∈ DY(ik0 ∪ ik+0 ), ψ(hf, hf′, u), and id(hf) /∈ Nattr imply hf ∈
DY↓(ik0 ∪ ik+0 ).

COND 2: Attacker knowledge decomposition:
hf ∈ DY↓(ik0 ∪ ik+0 ) and ψ(hf, hf′, u) imply ∃hfs ∈ authc. hf ∈ hfs.

Note that all valid hop fields that belong to attacker-controlled nodes and
are derivable using her keys are already contained in the set of authorized
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paths by ASM 3–ASM 6, hence COND 1 does not need to cover these hop
fields.

COND 3 and COND 4 relate Ψ(hfs, u), the longest cryptographically
valid prefix of hfs, to extract(hfs), which extracts the subsequent path from
the first hop field in hfs. In particular, on a cryptographically valid path
they coincide (modulo the projection to abstract paths, · ). For instance,
consider the SCION path given in Figure 3.1. hvfD is

MACKD

(
〈hiD,MACKB

(
〈hiB,MACKA(hiA)〉

)
〉
)

.

In this instance extract would be defined to extract the forwarding data
from the nested MACs, i.e., extract(hvfD) = 〈hiD, hiB, hiA〉. This is exactly
the HI-level path in Figure 3.1 of D and the following ASes.

COND 3: Path prefix of extract: Ψ(hfs, u) ≤ extract(hfs).

COND 4: Extract prefix of path:
If Ψ(hfs, u) = hfs and auth-restrict(hfs, u), then extract(hfs) ≤ hfs.

Finally, COND 5 requires the HVF to protect the tok field. This ensures that
a hop field that is valid for a certain value for tok cannot be used to forward
a packet with a different value.

COND 5: tok protected:
ψ(hf, hf′, u) and ψ(hf, hf′′, u′) imply u′ = u.

4.5.3 Refinement mappings

We define the refinement mapping π0 : Sc → Sa on states as the element-
wise mapping of the int and ext channels under a function that maps
concrete packets to abstract packets. We define toa : PKTc ×HI⊥ → PKTa
by

toa(m, hiprev) =(| past = past(m),

fut = Φ(Ψ(fut(m), tok(m)), hiprev),

hist = hist(m) |).

Because of the interface and cryptographic checks that we introduce in the
concrete model, no forwarding occurs on invalid hop fields, and they may
be safely truncated. Since the abstract model does not have such checks, the
abstraction function must truncate them in order to establish a refinement
relation.
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For int channels, we map all concrete packets m to abstract packets
toa(m,⊥). We set hiprev = ⊥ since the interface of the first hop information
field does not need to be checked against a preceding hop information
field. For packets in ext channels (A, i, B, j), we need to check that the
first hop information field is interface-valid with the channel that carries
the packet (i.e., id = B, prev = j). We do so by giving the parameter
hiprev = (| id = A, prev = ⊥, next = i |) in the toa mapping of each packet.
Hence, if the first hop information field does not have the correct interface
and id, then the packet’s future path is mapped to 〈〉.

The refinement mapping π1 : Ec → Ea maps each event on the right side
of Figures 4.1 and 4.2 to the corresponding event on the left side, where
packet and hop field parameters are transformed using toa and · , e. g.
sendc(A, m, hf, i) is mapped to senda(A, toa(m), hf, i).

4.5.4 Refinement proof

In the refinement proof, we first show that the concrete initial state maps
to the abstract initial state under π0, i.e., π0(s0

c) = s0
a. This holds trivially,

since in both event systems the initial state does not contain any packets.
We then show that each concrete event e can be simulated by its abstract

counterpart π1(e). This is straightforward for the honest events, since the
concrete model only adds guards and the concrete guards imply the validity
of the first hop field (ensuring that fut is not mapped to 〈〉 under toa). The
state updates of these events preserve the refinement relation. The difficult
cases are the attacker events. In particular, we must show that the concrete
dispatch events’ guards imply their abstract counterparts. This is formalized
as Theorem 2 below, stating that the attacker can only derive paths that,
restricted to their valid prefix, are authorized.

To improve readability, we will often omit the parameter tok from ψ,
auth-restrict, and Ψ.

Lemmas

We first prove two lemmas that are helpful for the attacker refinement proof
below. The first lemma states that the extraction of a cryptographically valid
path is the path itself (modulo · ).
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Lemma 2: Extract is path for valid paths

If Ψ(hfs) = hfs and auth-restrict(hfs), then extract(hfs) = hfs.

Proof. By COND 3 and COND 4.

The second lemma asserts that the valid prefix of any extension of an
attacker-extractable hop field is authorized.

Lemma 3: Valid prefix of extension of derivable hf is authorized

Suppose hf ∈ DY↓(ik0 ∪ ik+0 ) for some hop field hf. Then Ψ(hf # hfs) ∈
auth�a for all paths hfs.

Proof. If hf is invalid, i. e., ¬ψ(hf, hd(hfs)), then Ψ(hf # hfs) = 〈〉 and the
conclusion holds trivially.

Otherwise, we can apply COND 2 and obtain hfs′, hfs0, hfs1, and hfs2 such
that hfs′ ∈ authc, hfs′ = hfs0 · hfs1, and hfs1 = hf # hfs2. Since hfs′ ∈ authc,
Ψ(hfs′) = hfs′ and thus also Ψ(hfs1) = hfs1. Then we can apply Lemma 2

and obtain extract(hfs1) = extract(hf) = hfs1. Since hfs1 is a suffix of the
authorized path hfs′, we have extract(hf) ∈ auth�a .

Finally, from COND 3, we have Ψ(hf # hfs) ≤ extract(hf). Since auth�a is
closed under prefixing, Ψ(hf # hfs) ∈ auth�a .

Attacker refinement proof

Theorem 2: Attacker Refinement

If a packet m ∈ DY(ik0 ∪ ik+0 ) then Φ(Ψ(fut(m)), hiprev) ∈ auth�a .

Proof. We prove this theorem by induction over hfs = fut(m). Here, we
only sketch the proof and focus on the interesting cases in which at
least two hop fields are left, i. e., hfs = hfA # hfB # hfs′, and both have valid
hop validation fields and interfaces. Recall that the subscript identifies the
node; i. e., we use hfA to denote a hop field for which id(hfA) = A holds.
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• A 6∈ Nattr: If the attacker can derive hfA without KA, then by COND 1

hfA must already be in DY↓(ik0 ∪ ik+0 ). Then by Lemma 3, we have
Ψ(hfs) ∈ auth�a and by fragment closure also Φ(Ψ(hfs), hiprev) ∈
auth�a as required.

• A ∈ Nattr and B 6∈ Nattr: This is the most difficult case. By COND 1,
hfB ∈ DY↓(ik0 ∪ ik+0 ), and by COND 2, we obtain hfsgen such that
hfsgen ∈ authc and hfB ∈ hfsgen. Paths in autha and, by extension, paths
in authc are terminated (ASM 1). However, by the case assumption,
hfB is interface-valid with hfA as the preceding AS and thus cannot
be terminated. Hence, there must be a hf’ preceding hfB on hfsgen. As
hfsgen ∈ authc, there exist hfspre and hfspost such that

hfsgen = hfspre · hf’ # hfB # hfspost ∈ authc.

Since hf’ ∈ DY↓(ik0 ∪ ik+0 ), we can apply Lemma 3 and have

Ψ(hf’ # hfB # hfs′) ∈ auth�a .

Also, as hop fields in authc are valid, ψ(hf’, hfB) Hence for some his′pre
and his′post

his′pre · (hf’ # Ψ(hfB # hfs′)) · his′post ∈ autha.

Finally, we use the assumptions on authorized paths to show that the
attacker can remove the hop information fields his′pre preceding hf’
(ASM 5) and swap out hf’ for hfA (ASM 6). To apply these assump-
tions, we must show that id(hf’) ∈ Nattr and, respectively, that hf’ and
hfA have the same id and next. hfB is interface-valid with the prede-
cessor hfA (by the case assumption) and with the predecessor hf’ (by
the assumption on the interface-validity of authorized paths, ASM 2).
Thus hfA and hf’ must have the same AS identifier id(hf’) = A ∈ Nattr

and interface next(hf’) = next(hfA). Hence, we have Ψ(hfs) ∈ auth�a
and by fragment closure also Φ(Ψ(hfs), hiprev) ∈ auth�a .

• A ∈ Nattr and B ∈ Nattr: This case uses the suffix and prepend as-
sumptions on authorized paths of §4.5.1. By the induction hypothesis

Φ(Ψ(hfB # hfs′), hiprev) ∈ auth�a .

By case assumption of the validity of hfB, there is a hispre, hispost such
that

hispre · hfB # Φ(Ψ(hfs′), hfB) · hispost ∈ autha.
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By ASM 5, we can take the suffix:

hfB # Φ(Ψ(hfs′), hfB) · hispost ∈ autha.

Finally, ASM 4 allows prepending hfA to this authorized path.

COND 5 is required to show that hfs and hfsgen are valid for the same tok in
the second case above (however, we have elided packet token fields from
the presentation). ASM 3 is needed in cases we have not shown, e.g., when
A ∈ Nattr and hfB is invalid.

4.6 Instances

We now instantiate the concrete parametrized model to several protocols
from the literature and variants thereof. To do so, we instantiate the model’s
protocol parameters and prove the associated conditions (§4.5.2). Since
refinement and instantiation preserve properties, the path authorization
and detectability security properties proven for the abstract model also hold
for these instance models.

4.6.1 SCION

SCION embeds a MAC in each hop validation field. In this instance, hvfA
for each hop A with a next hop B is the MAC computed over the abstract
hop information field of A (containing prev, next and id), the abstract hop
field of B, and the hvfB field, using the symmetric key KA shared by all
border routers in the AS A:

hvfA = MACKA(〈hiA, hiB, hvfB〉) . (4.15)

The last AS A has no successor, so hvfA = MACKA(hiA). Our model includes
the timestamp TSpath in the MAC computation as well, but we defer its
presentation to §4.7.6.

We instantiate ψ with the check of Equation (4.15) and set ik+0 = ∅. In
SCION, the tok field is not used. We simply set auth-restrict(hfs, u) = (u = 0)
(where 0 is a term containing the natural number "0") to ensure that this
field does not leak any new terms that the intruder cannot otherwise derive.
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In this and all following instances, we only define extract for valid pat-
terns; all other patterns are mapped to 〈〉.

extract(MACKA(hiA)) = hiA

extract(MACKA(〈hiA, hiB, hvfB〉)) = hiA # extract(hvfB)

To show that this model of SCION inherits the security properties proven
in the parametrized models, we prove the parametrized model’s condi-
tions COND 1–COND 5 (§4.5.2). First, we observe that the intruder knowl-
edge only contains keys and MACs, which cannot be decomposed, hence
DY↓(ik0 ∪ ik+0 ) = ik0. With this simplification in place, we easily prove
COND 1, COND 2, and COND 5 by unfolding the definitions of ik0, authc,
and ψ. We establish COND 3 and COND 4 by routine inductions over hfs.

variants By dropping hiB from Equation (4.15) we obtain the variant
described in §2.2.1 where we instantiate ψ with the check Equation (2.1).
The proof of the conditions is almost identical.

4.6.2 EPIC

EPIC Level 1 uses a hop authenticator σ (which is a static authenticator
almost identical to Equation (2.1)) to compute the segment identifier S,
which is static, and VA, which changes with each packet. Packets contain a
packet origin, which is a triple of the source address, path timestamp, and
packet timestamp offset. The time given by the timestamp and the offset is
precise enough to guarantee that the packet origin of each packet is unique.

We define the hop validation field hvfA as follows:

hvfA = 〈SA, VA〉. (4.16)

The values σA, SA and VA are computed as follows.

σA = MACKA(〈hiA, SB〉) (4.17)

VA = MACσA
(tok) . (4.18)

SA = H(σA). (4.19)

If A has no successor, then σA = MACKA(hiA). In the EPIC protocol specifi-
cation from the previous chapter, we set SA to be the value of σA shortened
to a few bytes. Here, we model truncation as a hash function. We discuss
this and other differences between protocols and their models in §4.8.2.
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To check the validity of the HVF, a border router A re-computes its
own σA (using its key KA and SB from the successor hop field) and then
re-computes hvfA from σA and the tok included in the packet.

formalization We defined tok as a natural number, i.e., a public value,
which represents the packet origin. Making use of an extension presented in
the next section that parametrizes its type, we do not need to use auth-restrict
to restrict this field. We instantiate the predicate ψ with the conjunction of
the four equations given above. We define extract such that it first extracts
the hop authenticator, and then the path. Patterns not covered below map
to 〈〉.

extract(〈SA,MACσA
(tok)〉) = extract’(σA)

extract’(MACKA(hiA)) = hiA

extract’(MACKA(〈hiA,H(σB)〉)) = hiA # extract’(σB)

According to our definition of the intruder knowledge given in Equa-
tion (4.13), the attacker knows the HVF values of all authorized paths. We
define ik+0 such that the attacker additionally knows all hop authenticators
of authorized paths, since these are public in EPIC protocols.

We show that EPIC is an instance of our concrete parametrized model,
and thus inherits the security properties proven in the abstract model. The
proof is closely related to that of the SCION instance, but requires additional
case distinctions since ik+0 provides the attacker with more ways to derive
terms, i. e., from hop authenticators. We also need to prove a lemma stating
that if a hop authenticator from ik+0 is used to create a HVF of a valid hop
field with some tok value, then that hop field is contained in an authorized
path.

variants As presented in the previous chapter of this thesis, the hop
validation field and the segment identifier are shortened to a few bytes
in EPIC, and can, with considerable but realistic effort, be brute-forced
by an attacker. This allows the attacker to send packets that have valid
authenticators, but are unauthorized. While the shortening of the hop fields
is not reflected in the above model, it is reflected in the strong attacker
model via the attacker’s brute-force capabilities. We will present this strong
attacker model as an extension of our framework in §4.7.2.

In addition to verifying EPIC level 1 in the standard attacker model,
we verify it also in the strong attacker model. We verify level 2, also in
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A

B

D

. . .

tokA

tokB

tokD

RND

RND⊕MACKA (〈hfA, RND〉)

RND⊕MACKA (〈hfA, RND〉)⊕
MACKB (〈hfB, RND⊕MACKA (〈hfA, RND〉)〉)

Figure 4.4: Values that the mutable tok field has in Anapaya-SCION as a packet
traverses the network from D to A. It is updated by the receiving
router according to Equation (4.20). The tok displayed next to each
AS i is used to compute the HVF of AS i according to Equation (4.21).

the strong attacker model. We do not model or verify the separate replay
suppression system.

4.6.3 Anapaya-SCION

The SCION protocol as presented in §4.6.1 was first published in 2011 [108].
In 2019, the company Anapaya that commercializes the SCION architecture,
proposed to change the way in which MACs are nested [4]. In this variant,
which we call Anapaya-SCION, the HVF of each hop field is a MAC over
the local routing information hi and the tok field. The tok field is updated
by routers during the forwarding of a packet, and combines the HVFs of all
subsequent hops with exclusive-or (XOR), thereby including the upstream
path similar to the MAC chaining of SCION and EPIC.

The control plane creates forwarding paths such that for each hop on
the path, the tok value embedded in its HVF is the XOR of the HVFs of
all previous hops in beaconing direction and of a random initialization
value RND. Since paths are reversed on the data plane, there, the HVFs
of all following hops in forwarding direction are included in the tok field.
During forwarding along authorized segments, the updates of the tok field
by routers successively remove (by the cancellation property of XOR) the
HVFs that were added during beaconing until finally, only RND remains
on tok.

We will use the topology and tok fields given in Figure 4.4 as a running
example.
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motivation In the original SCION protocol, there are a number of
different cases for switching between different segments. In our models,
these cases are not visible, since we abstract from segment switching. How-
ever, when implementing the SCION router, engineers found that fields in
multiple variable memory locations needed to be fetched depending on the
type of segment switching occurring. In particular, not only the location
of the current hop field, but also the locations of other hop fields used to
compute the HVF are variable. Implementations needed to either (i) first
fetch the fields that allow making the required case distinction and then
only load the memory locations required for the case at hand or (ii) already
from the beginning load all the fields that are required in any of the cases.
Neither option is efficient, in particular in hardware implementations.

This motivated creating the Anapaya-SCION protocol, in which only the
location of the current hop field is variable, and the locations of all other
fields needed for forwarding are fixed in the packet header. This simplifies
the protocol by reducing the number of case distinctions and allows routers
to process packets more quickly.

While the implementation of Anapaya-SCION may indeed be simpler,
formally proving its security is more difficult than for the other instances
and requires the use of several extensions presented below.

protocol description The packet token field is mutable. When an
AS receives a packet from an inter-AS channel, it updates its tok field using
the following function, which takes the current tok field u and the current
hop field:

upd-tok(u, hf) = u⊕HVF(hf), (4.20)

where ⊕ is exclusive-or. The receiving router first updates the tok field and
then proceeds normally by checking the interface and HVF. The tok field
update only needs to be performed once per AS. Hence, the sending router
(which forwards an intra-AS packet to an inter-AS channel) does not need
to perform the update before computing the HVF. The HVF is computed
as:

hvfA = MACKA(〈hiA, tok〉) . (4.21)

example Assume that, given the topology in Figure 4.4, an end host in
AS D sends a packet to an end host in AS A. The packet is initialized by the
end host with tokD as the tok field. The sending router at D checks the hvfD
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based on the initial tok value. It then pushes the current hop field into the
past path and forwards the packet to the inter-AS channel between D and B.
The receiving router at AS B first checks the interface over which the packet
was received. It then updates the tok field. To do so, it XORs the current
tokD field with the (unvalidated) hvfB embedded in the packet, yielding tokB.
Only after updating the tok field can the router check the validity of the hvfB
field, by recomputing the MAC based on tokB. The forwarding between AS
B and AS A proceeds similarly. Note that the initial value RND, which is
random, does not need to be checked by AS A.

Formalization

required extensions In order to formalize this instance, we need to
extend the framework presented in the previous section in three ways. First,
by adding an abstract XOR operator, second, by parametrizing the type of
tok, and third, by allowing tok fields to be updated en-route.

Since the focus here is on the Anapaya-SCION protocol, we only briefly
introduce these extensions, and defer their full description to Sections 4.7.1,
4.7.4, and 4.7.5.

• We extend our framework with an abstraction of XOR by adding
a constructor XOR for finite sets of terms (of type Pfin(T)) to the
datatype T. XOR H represents the XORing of all elements of H. We
define the operator ⊕ : Pfin(T)×Pfin(T) → Pfin(T), for combining
finite sets of terms with XOR, as the symmetric difference of these
sets and the identity element {} as the empty set. Our XOR abstrac-
tion captures the algebraic properties of XOR while simplifying the
interface with the attacker. The XOR extension requires changes to the
Dolev–Yao model formalization, but no other changes in the concrete
model.

• We parametrize the type of tok. Instead of T it is of the abstract type
’TOK. This requires an additional protocol parameter to extract the
intruder knowledge from a given tok field, but requires no extra proof
effort.

• We allow for updatable packet token fields by adding the update
function upd-tok : ’TOK×HF→ ’TOK as a new parameter to the con-
crete model. This requires adding two simple conditions. Definitions
and proofs of the concrete model must be changed to account for the
mutable field.
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With these extensions in place, the formalization of the update function
upd-tok as in Equation (4.20) is straightforward. We instantiate the type
of ’TOK with Pfin(T), i.e., finite sets of terms, since tok accumulates terms
using XOR. We define the hvfA follows:

hvfA = MACKA

(
〈hfA, u〉

)
.

Note that the next hop field hfB is not required in this definition.

restriction As in the other protocols, we need to ensure that the tok
field of authorized paths does not leak arbitrary terms to the attacker. Ac-
cording to the protocol specification, the tok field is initialized on the control
plane by some random value RND. The randomness in the initialization is
not required to achieve the security properties, and it is unclear why the
protocol designers chose to include it.

In our model, we verify a simplified version in which we assume that tok
fields are initialized with the identity element {}. We define auth-restrict as
follows:

auth-restrict(hfs · 〈hfZ〉, u) = ψ(hfZ,⊥, {})
auth-restrict(〈〉, u) = (u = {})

The first case is that of a non-empty path. We require that the last hop field
on the path is valid for the tok field with the identity element. This implies
that for valid paths Ψ(hfs, u) = hfs, u does not contain any terms besides
the HVFs of subsequent hop fields. For an empty path, u itself has to be the
identity element. This ensures that no unintended terms are leaked to the
attacker via the set of authorized paths.

extract The extract function for Anapaya-SCION is more difficult to
define than in the other instances. Using the definite description operator
the and the is-next predicate defined below, it is defined as follows:

extract(MACKA(〈hiA, u〉)) = hiA # (if ∃hfB. is-next(hfB, u)

then extract(HVF(the hfB. is-next(hfB, u)))

else 〈〉).

As in the other models, extract first takes the current HVF, and if it is of
the correct form (as defined in Equation (4.21)), the HI embedded in the
MAC of the HVF is extracted. If there is a next hop field hfB, then extract
recursively calls itself on that next hop’s HVF embedded in the MAC. If
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there is no such element, the extract function does not recurse. In contrast
to SCION, the next hop’s HVF is not directly embedded in the MAC of the
current HVF. Instead, the tok field is embedded, which accumulates via
XOR all HVFs remaining on the path. The extract function needs to identify
and pick out the next hop’s HVF among this set.

The difficulty in formally defining extract is determining the next hop
field. To this end, we define the predicate is-next : HF× ’TOK→ B below,
where is-next(hfB, u) holds if hfB is the next hop field on the tok field u. As
we show, there is at most one hop field that satisfies this predicate for a
given u. Hence, if this hop field exists, we can use the definite description
operator the to refer to it.

We observe that on paths that are valid and satisfy auth-restrict, if the
tok field is not empty, then it contains exactly one element hvfB that is
a MAC created using the all other elements of the tok set, i.e., hvfB =
MACKB(hiB, tok \ {hvfB})) (where \ is set difference). Let hfB be the hop
field such that HVF(hfB) = hvfB and hfB = hiB. This hop field satisfies the
following predicate, i.e., is-next(hfB, tok) holds.

is-next(X, u) = (HVF(X) = MACKid(X)

(
X, upd-tok(u, X)

)
).

The predicate can only hold if HVF(X) ∈ u, in which case upd-tok(u, X)
is equivalent to u \ {HVF(X)}. To see this, assume, HVF(X) 6∈ u. Then
HVF(X) contains itself under a constructor,

HVF(X) = MACKid(X)

(
X, u ∪ {HVF(X)}

)
,

leading to a contradiction with is-next(X, u) if we consider the size of the
term.

example Consider in Figure 4.4 that we extract the path from D’s hop
validation field, which is defined as

hvfD = MACKD (〈hiD, tokD〉) .

Given tokD, a possible value X such that is-next(X, tokD) holds is the hop
field hfB, where HVF(hfB) = hvfB, hfB = hiB and hvfB = MACKB(〈hiB, tokB〉),
since upd-tok(tokD, hvfB) = tokB. This is not just some value that satisfies
is-next given tokD, but it is the only value to do so. Hence, extract(hvfD) =
hiD # extract(hvfB). If we repeat these steps, we obtain extract(hvfD) =
〈hiD, hiB, hiA〉, as expected.
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proofs We first show that if a term t is contained in a tok field u, and
authc(u) is not empty (i.e., there exists a path with u as the tok field), then
t is a HVF of an authorized path, and hence already contained in the
intruder knowledge. We thus do not need to consider tok fields in the initial
intruder knowledge. With this simplification proven, the use of XOR does
not complicate the proofs in the instance model.

Yet, proving the conditions is more difficult in Anapaya-SCION than in
other protocol instances, in particular COND 3 and COND 4, due to the
complex definition of extract.

4.6.4 ICING

Among the protocols we study, ICING [84] provides the strongest security
properties, albeit at the cost of the highest overhead [71]. In particular,
ICING allows ASes to authorize the entire path and is thus an instance of
the undirected setting. This requires a separate concrete model, whose pa-
rameters, assumptions, and conditions slightly differ from those presented
above. We discuss this model in §4.7.3.

ICING uses proofs of consent (PoCs) to achieve path authorization. These
are created by applying a pseudorandom function (PRF) using a tag key
on the entire forwarding path. The tag key for each AS is derived from its
master key KA, and the local hop field hfA.

formalization In our symbolic model, PRFs and MACs are modeled
identically, we thus use MACs in our definitions. We use these PoCs as
hop validation fields:

hvfA = MAC〈KA , hfA〉(rev(past(m)) · fut(m)) . (4.22)

We define ik+0 = ∅. The function extract requires extracting the entire
path (past and future) in the undirected setting:

extract(MAC〈KA , hfA〉(hfs)) = hfs. (4.23)

variants We verified two other versions of the protocol. In the first
one, the hop validation field consists of ICING’s path authenticator, which
includes an expiration timestamp and a path hash besides the PoC. These
additional details are not essential for achieving path authorization and
detectability but reduce the gap between the model and proposed protocol.
We define ik+0 to consist of all authorized PoCs, since the attacker cannot
extract them directly from the packets in this version.
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Extension SCION EPIC Anap. ICING

Type parametrization 3 3 3 3

Strong attacker model 7 (3) 7 7

Undirected setting 7 7 7 3

Exclusive-or 7 7 3 7

Mutable tok fields 7 7 3 7

Additional auth. fields 3 3 3 3

Figure 4.5: Extensions used by protocol models. (3) means that the extension is
used by some (but not all) variants.

The second version is a further simplified variant of ICING compared
to the one presented first, which omits the hop field in the key input of
the MAC computation. Proving the concrete model’s conditions is straight-
forward for all three versions. However, the simplest one requires the
additional assumption that an AS cannot have two different hop fields on
the same path, since otherwise they would have the same MAC, despite
having different local forwarding information.

4.7 Extensions

We now describe a number of features of our formalization that we elided
to simplify the presentation. Figure 4.5 lists which extensions are used in
the individual protocol models presented in the previous section.

4.7.1 Type parametrization in parametrized models

While we have presented all definitions of the concrete model with specific
types for simplicity, our formalization uses type parameters for some fields.
This allows for greater flexibility in the modeling of protocols.

When the type of a field is only determined by the instances, defining
the intruder knowledge in the parametrized model requires an additional
protocol parameter. This parameter defines what terms an attacker can
learn from analyzing the field.
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For instance, the type of tok is the abstract type ’TOK. We add a parameter
which captures what an attacker can learn from analyzing a tok field:

analz-tok : ’TOK→ P(T). (4.24)

We change the definition of terms for packets to use analz-tok(tok(pkt))
instead of {tok(pkt)}.

Instances

In Anapaya-SCION, we instantiate the type of tok to finite sets of T and de-
fine analz-tok as the identity function. In SCION, ’TOK is T and analz-tok(t) =
{t}. We note that for all valid hop fields in EPIC (and in SCION), tok is a
natural number, which the attacker can already derive. Hence, we simplify
the model when formalizing the EPIC protocols and set ’TOK to N and
analz-tok(t) = {}.

4.7.2 Strong attacker model

In §3.2.1, we proposed a strong attacker model for EPIC protocols, which
reflects the fact that an adversary can with some effort brute-force correct
HVF fields for individual tok values. In Equation (3.11) we defined oracle(l)
for each EPIC protocol level l ∈ {1, 2, 3}. Given the PO of a packet and its
hi fields, this oracle returns valid validators Vi and segment identifiers Si.

We model the oracle slightly differently in our formalization, in order to
abstract from EPIC and allow for a more generic oracle. We add a predicate

O : ’TOK→ B (4.25)

as an additional environment parameter of the concrete parametrized
model, which is true for all tok values for which the attacker queried
the oracle. In instances that make use of the strong attacker model (i.e.,
EPIC), the ik+0 set is defined to additionally contain all valid HVF fields of
(possibly unauthorized) paths which are created over tok values such that
O(tok) holds.

While this strictly strengthens the attacker, her events must be restricted to
rule out trivial attacks, in which the attacker sends a valid but unauthorized
packet with a tok value for which she queried the oracle. We add the guard
¬O(tok(m)) to the dispatch-intc and dispatch-extc events to prevent the
attacker from sending packets whose HVF fields are directly obtained
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from the oracle. We also add ¬O(tok(m)) to the premises of COND 1 and
COND 2.

The instance proofs for the EPIC protocols are similar to the proof in
the basic attacker model. However, they must additionally account for the
attacker obtaining valid hop fields from the oracle.

4.7.3 Undirected authorization schemes

For brevity, we have focused on directed authorization schemes, where each
AS only controls the authorization of the traversal of subsequent ASes (in
forwarding direction) and the traversal of previous ASes is outside of its
control. This setting allows the attacker to legitimately extend and change
her own path in the control plane without consent by subsequent ASes, and
hence requires the control plane assumptions ASM 3–ASM 6.

We have a separate parametrized model for the undirected authorization
scheme, where the entire path must be approved by all on-path ASes. The
control plane assumptions can be relaxed, and ASM 3–ASM 6 are replaced
by the following weaker assumption stating that an attacker can create
authorized paths consisting entirely of compromised nodes.

ASM 7: Fully compromised paths
his ∈ autha if id(hi) ∈ Nattr for all hi ∈ his.

In this model, the cryptographic check parameter has the entire path (includ-
ing the past path) as an argument: ψ : HF×HF∗ ×T→ B. The parameter
extract retains its type, but returns the entire path (including past path)
instead of just the future path. Since each hop validation field contains the
entire path, COND 3 and COND 4 are replaced by COND 6, which states
that for a valid hf, extract returns the entire path. Formally,

COND 6: Undirected extract:
ψ(hf, hfs, tok) implies extract(hf) = hfs.

Formalization and proofs

In the undirected setting, the entire path is embedded in each HVF and
cannot be modified unless it is completely under the attacker’s control.
Induction is neither required to show the refinement of the dispatch events
in the concrete model nor to show the conditions in the ICING instance
model. Hence, proofs are substantially easier than in the directed setting.
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We again utilize parametrization to avoid redundancy and duplicated
proof efforts in our models. Rather than having one concrete model for the
directed setting and another concrete model for the undirected setting, we
use an intermediate model which generalizes the definitions in the directed
and undirected models. The concrete model’s event system definition, in-
variant proof and refinement proof all belong to this common intermediate
model, which interfaces with the directed and undirected concrete models
via a number of parameters and conditions. In particular, it interfaces with
these models by assuming Theorem 2. The proof of this theorem is done
separately, since it differs between the directed and undirected setting.

4.7.4 Exclusive-or abstraction

We extend our framework with an abstraction of exclusive-or (XOR), which
is used in the Anapaya-SCION instance.

The XOR operator ⊕ can be characterized by the following equations
for associativity (A), commutativity (C), the identity element 0 (I) and
self-inverseness (S).

(x⊕ y)⊕ z = x⊕ (y⊕ z) (A) (4.26)

x⊕ y = y⊕ x (C) (4.27)

x⊕ 0 = x (I) (4.28)

x⊕ x = 0. (S) (4.29)

This operator is particularly difficult to support in symbolic protocol analy-
sis.

Existing modeling approaches

Most automated protocol verifiers that support equational theories cannot
straightforwardly implement XOR via the above equations, as they do
not form a subterm-convergent equational theory. Simply speaking, this
means that XOR cannot be characterized by a set of equations that each
simplify a given term by replacing it with a subterm or a constant. This is
in contrast to, for instance, symmetric encryption, which can be modeled
by a subterm-convergent equational theory described by the single equa-
tion dec(k, enc(k, m)) = m. While there are some security protocol verifiers
that support XOR and other non-subterm-convergent theories, verifying
protocols that make use of this constructor remains difficult.



108 formal verification of data plane protocols

A generic approach to incorporating a large class of equational theories
into verifiers is provided by Escobar et al. [43], who propose an approach
that they call folding variant narrowing. While this technique is powerful and
applicable to a wide range of equational theories, modeling and reasoning
about equality modulo axioms as required by their approach requires
considerable effort in protocol verification by interactive theorem proving.
An alternative way of modeling XOR is to use term normalization to ensure
that any two terms that are equal under the equational theory are equivalent
under normalization. With this approach, if we normalize all terms under
consideration, then equality does not require equational theories.

For a binary ⊕ operator, such a normalization could be solved by (i)
removing parentheses from terms being XORed and putting them into
a sequence, (ii) linearly ordering the sequence and (iii) applying (I) and
(S) exhaustively as simplification rules. For instance, assuming that x, y
and z are non-XOR terms and that x < y < z, the term (z⊕ x)⊕ (y⊕ z)
would be successively transformed to (i) XOR〈z, x, y, z〉, (ii) XOR〈x, y, z, z〉,
(iii) XOR〈x, y, 0〉 and finally XOR〈x, y〉. Since terms are enumerable, one
can define a linear order on them. The approach of modeling XOR as a
binary operator and defining normalization is taken by Schaller et al. [94]
in their Isabelle/HOL formalization.

Our XOR model

We introduce a new term constructor

XOR (Pfin(T))

to the definition of T. This constructor takes a finite set of T and rep-
resents XORing all elements of that set. In particular, {} represents the
identity 0. Finite sets are unordered and hence do not require a linear order.
Moreover, each element occurs at most once, which models the self-inverse
property (S).

We define a binary exclusive-or function ⊕ : Pfin(T)×Pfin(T)→ Pfin(T)
as the symmetric difference of two sets:

X⊕Y = (X ∪Y) \ (X ∩Y). (4.30)

If a term is contained in both X and Y, it is not in X⊕Y according to this
definition. Our definition of XOR satisfies the four properties given above.
We extend the rules for term derivation below to incorporate the new XOR
constructor.
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Normal terms

The use of finite sets greatly helps to reduce the ways in which a value can
be represented by different terms. For instance, {x} ⊕ {y} and {y} ⊕ {x}
are not different terms that represent the same value, they are identical
terms (as are {x} ⊕ {x} and {}). However, the above abstraction does not
ensure that each value is represented by at most one term. For instance,
XOR {x, XOR {y, z}} and XOR {x, y, z} represent the same value. To rule
this out, we define a predicate normal, which prohibits directly nested XOR
constructors.

normal(H(x)) = normal(x)

normal(〈x0, . . . , xn〉) = ∀t ∈ {x0 . . . , xn}. normal(t)

normal(XOR {x0, . . . , xn}) = ∀t ∈ {x0 . . . , xn}. normal(t) ∧ ∀Y. t 6= XOR Y

normal(x) = true (for all other x).

For instance, if x, y and z are normal, non-XOR terms, then the term
XOR {x, XOR {y, z}} is not normal, but XOR {x,H(XOR {y, z})} is.

Rather than defining a normalization function that turns an arbitrary
term into a normal term, we define our event system such that all terms
in reachable states are already normal, i.e., do not contain directly nested
XOR constructors. We show this below.

Model limitations

Two different normal terms represent distinct values. However, there is
a notable exception to this: XOR-terms over single (non-XOR) elements
represent the same values as the elements themselves, despite being distinct
terms. Concretely, x and XOR {x} are different terms and both normal
(assuming that x is non-XOR and normal), even though in an implementa-
tion they may be represented by the same bitstring. This is similar to how
the terms XOR {}, 〈〉 and the term containing the natural number 0 may
all have the same bitstring representation, even though these are different
terms in the model. XOR terms are modeled with their own constructor
and hence are different from non-XOR terms in the model.

Successful verification in our model does not rule out type-flaw attacks,
including attacks that exploit x and XOR {x} having the same bitstring
representation. A possible solution to this limitation is to require implemen-
tations to tag each field with its type [53], including an “XOR type”. This
would cause x and XOR {x} to be represented by different bitstrings, and
ensure that each bitstring corresponds to at most one value.
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XOR {t1, . . . , tn} ∈ DY↓(H)

ti ∈ DY↓(H)
1 ≤ i ≤ n

t1 ∈ DY↑(H) · · · tn ∈ DY↑(H)

XOR {t1, . . . , tn} ∈ DY↑(H)
∀t ∈ {t0 . . . , tn}. ∀Y. t 6= XOR Y

Figure 4.6: Rules added to the Dolev–Yao message decomposition (DY↓) and
composition (DY↑) presented in Figure 4.3. The composition rules out
directly nested XOR constructors (c.f. §4.7.4).

Attacker capability overapproximation

Broadly speaking, XOR is utilized in security protocols for two different
purposes. First, XOR is used to achieve secrecy. Plaintext values can be
masked using XOR with values unknown to the attacker. The prototypical
example for this use is the One-Time Pad encryption scheme, in which
a plaintext message is XORed with a key (of equal length) to obtain the
ciphertext. Second, XOR is used as a compression function. As opposed
to one-way compression functions, XOR is trivial to invert if one of the
inputs is known. Nevertheless, XOR is used in many protocols because it is
simple, implementations in hardware are highly efficient and one-wayness
is sometimes not required.

We observe that none of the properties of interest in data plane protocols
are secrecy properties. Since XOR is used only as a compression function,
we can overapproximate the attacker capabilities when analyzing terms
containing XOR. We do this by adding the derivation rules in Figure 4.6
to the Dolev–Yao closure. We simply model that the attacker learns both
terms x and y when analyzing a term x⊕ y, or, in terms of our formalization,
the attacker learns all t ∈ Y when analyzing XOR Y. This behavior is
captured by the first derivation rule of the above figure, which covers term
decomposition. The second rule allows the attacker to construct new XOR
terms. Its side condition ensures that this rule (like other construction rules)
preserves term normality.

As an alternative to the overapproximation that we propose, XOR could
be modeled such that a term x can be decomposed from x ⊕ y if and
only if y is known. Hence, the set of terms derivable from an XOR-term
would depend on other terms known. Our overapproximation of the at-
tacker derivation capabilities greatly simplifies reasoning about the intruder
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knowledge and the derivation of terms, since the decomposition of XOR
terms is defined without reference to other terms.

Protocol instances

We only use the XOR abstraction in the Anapaya-SCION instance. We could
use this extension to formalize the use of XOR in EPIC Level 3 and in ICING.
In both protocols, the use of XOR is unrelated to path authorization and
would additionally require updatable hop fields, which are currently not
supported in our framework. Hence, we do not verify EPIC Level 3 and
only verify a simplified version of ICING without XOR.

To show that all terms contained in an instance model are normal, first we
observe that all messages in a state are contained in the intruder knowledge
ik(s). By the constant intruder knowledge invariant proven in the concrete
model, Lemma 1, we can reduce the normality of terms in ik(s) to the
normality of terms in DY(ik0 ∪ ik+0 ). We prove that all terms derivable from
the initial intruder knowledge ik0 ∪ ik+0 are normal by showing that (i) all
terms in the initial intruder knowledge are normal, and (ii) that normality
is closed under term derivation. The former has to be shown separately
for each instance (i.e., for Anapaya-SCION), whereas the latter is proven in
general in the concrete model.

4.7.5 Mutable packet token fields

This extension is used to model protocols in which routers receiving a
packet from an inter-AS channel update the tok field. We extend our frame-
work by an update parameter

upd-tok : ’TOK×HF→ ’TOK. (4.31)

This function is called to update a tok field u given a hop field hf, resulting
in the new tok field upd-tok(u, hf).

We introduce a function upd-pkt : PKTc → PKTc, which applies upd-tok
to update a packet’s tok field using the first hop field of the future path. It
is defined as

upd-pkt(m) = m(| tok := upd-tok(tok(m), hf) |) if fut(m) = hf # hfs

upd-pkt(m) = m otherwise.
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The recvc event’s guard is changed as follows: instead of requiring that
ψ holds on (fields of) m, we require the check to hold on upd-pkt(m). Fur-
thermore, the update of the event is changed and instead of m, upd-pkt(m)
is added to int(A). Hence, the receiving router updates the tok field prior
to processing, whereas the sending router pushes the first hop field of the
future path into the past path post processing.

This extension requires a number of changes to the framework, such as
modifications of the definition of Ψ to account for the tok update. Three
additional conditions are needed. First, to ensure that the update function
does not reveal anything that the attacker could not already derive, second,
that auth-restrict is closed under updates and third, that O is closed under
updates.

The refinement proof presented in §4.5 remains structurally the same,
but has a number of modifications to keep track of changes in the tok field.

Lifting updates to paths

Our proofs often involve reasoning about path fragments. For instance, the
suffix hf # hfspost of an authorized path hfsfull = hfspre · hf # hfspost ∈ authc(u)
is valid, i.e., Ψ(hf # hfspost, u′) = hf # hfspost for some u′. Since the packet’s tok
field changes as the packet is forwarded, hf # hfspost and hfsfull are potentially
valid for different values u′ 6= u. In order to obtain the correct tok value
u′ for hf # hfspost given the tok value u for the full path hfsfull, we define a
function that lifts upd-tok to paths. We can use this function to apply the tok
field update given the preceding path hfspre.

Unfortunately, obtaining u′ given the original u valid for hfsfull does
not simply involve applying upd-tok iteratively for each hop field on hfspre.
When we reason about hop field validity (and valid prefixes of hop field
sequences), we assume that the update function has already been applied
to the current head of the path. Hence, assuming that hfspre = hf′ # hfs′, we
need to update tok for each hop field on hfs′ · 〈hf〉, i.e., we drop the first hop
field of hfspre and add the next hop field after hfspre in the sequence of hop
fields for which an update has to be performed. This “shifted” reasoning
requires additional case distinctions and adds some complexity to our
definitions and proofs.
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Instances

Anapaya-SCION updates the tok field using XOR, as defined in Equa-
tion (4.20). The other protocol instances do not update the tok field and
hence define the upd-tok to return a given tok field unmodified.

Instances need to discharge the three additional conditions, which is
straightforward for Anapaya-SCION (and trivial for the other instances).

4.7.6 Additional authenticated fields

To allow for more accurate modeling of protocols, our formalization in-
cludes additional per-hop and per-packet fields, which are included in
autha and must thus be included in the authentication mechanisms defined
by instances.

For instance, in SCION, packet headers include an expiration time that is
fixed in the control plane and is included in the MAC computation of the
hop validation field. Consequently, paths have a limited lifespan and must
be replaced on a regular basis. To model this, our formalization includes
an authenticated info field associated with each packet. In all of our instance
models, this field contains a natural number representing the time at which
the path expires.2

ICING allows ASes to include arbitrary forwarding information that
is authenticated in the control plane in an opaque string called tag. Our
formalization defines abstract and concrete hop fields in an extensible way,
such that additional data can be added in instances. This can be used to
model additional forwarding data that must be protected, such as ICING’s
tag.

These extra fields enable a more realistic modeling of existing protocols
and make it more likely that future protocols can be modeled. For instance,
if a new protocol includes flags indicating a path’s priority, or introduces
access control fields to allow only some user classes to use certain paths,
no changes to the abstract and concrete models are required to create an
instance model that proves the protocol’s security.

2 In SCION and EPIC protocols, there is a per-path absolute timestamp TSpath and each hop
information field contains a relative offset tsexp, such that the hop field expires at time
TSpath + tsexp. Since the property that we verify does not take expiration of paths into account
and routers in our model do not check for timestamp expiration, we simplify and only model
an absolute expiration timestamp being authenticated.
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Formalization

This extension requires changes throughout our framework. Here, we
describe some of the modifications in the abstract model. The concrete
model requires similar changes.

We add per-packet authenticated info fields to PKTa and per-packet ad-
ditional authenticated hop information to the definition of HI. We use type
parameters ’AINFO and ’AAHI for these fields. To distinguish definitions of
this extensions from those presented above we add “ext” to their name.

HI-ext = (| id ∈ N, prev ∈ I⊥, next ∈ I⊥, aahi ∈ ’AAHI |)
PKT-exta = (| ainfo ∈ ’AINFO, past ∈ HI-ext∗, fut ∈ HI-ext∗, hist ∈ HI-ext∗ |).

The type of authorized paths is as follows:

auth-exta ⊆ ’AINFO×HI-ext∗. (4.32)

Adding these fields requires changes to the definitions, parameters, assump-
tions, conditions and lemmas of both the models presented in the previous
sections and in the above extensions. Moreover, we define an additional
parameter (similar to §4.7.1) that can be set by instances to extend the in-
truder knowledge by the values of both kinds of fields. While the extension
requires numerous changes, the use of these additional fields does not add
significant complexity and is not essential to the insights provided by our
proofs. Hence, we have elided their presentation above.

4.8 Discussion

4.8.1 Undirected vs. directed protocols

We briefly compare undirected and directed protocols. As shown in §4.7.3,
undirected protocols achieve path authorization under weaker assumptions.
While this sounds desirable, the undirected protocol also have disadvan-
tages.

In the data plane, existing undirected protocols require each hop to incor-
porate the entire path into the hop validity check. This incurs a processing
overhead linear in the path length. In contrast, the directed protocols that
we study only need to check a constant number of fields.

In the control plane, the ways in which paths are authorized in undirected
architectures have two drawbacks. First, the beacons creating paths in
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undirected protocols must complete a round-trip: the first leg to discover
the path and the second leg to authorize it. In contrast, directed protocols
can achieve both in a single leg, where forwarding along a path is in the
opposite direction of path construction. Second, the control plane must
mediate between conflicting path policies by ASes. If there is no path that
satisfies the constraints by all on-path ASes, then no forwarding can occur.
In directed protocols it is simpler to exclude this possibility, for instance by
mandating that each AS disseminates at least one beacon from a given AS
to each of its neighbors.

In summary, there is a trade-off between these protocol classes that
depends highly on the control plane and overall architecture.

4.8.2 Differences between models and real protocols

We now discuss how the protocols from the literature relate to our formal-
ization of them.

Our models abstract from real protocols in ways that are typical for proto-
col verification. Real protocols operate on bitstrings rather than typed terms,
and they contain fields that we do not model, since they are unimportant
to the path authorization security mechanism. For instance, real protocols
include version numbers and other header fields that are not present in
our model. Our model also allows more behaviors than the actual protocol,
for instance, by allowing honest senders to include a non-empty past path.
For the purpose of verifying our properties, which are all safety proper-
ties, such overapproximations are sound. Our events accurately model the
checks that border routers perform. The sendc and recvc events correspond
to the actions of real routers (modulo the queuing of incoming packets).
In particular, a router receiving a packet from another AS will check the
validity of the interface, and both the receiving and the sending routers
will validate the hop validation field as specified in our instance models.
While our events accurately model the checks that border routers perform,
the interaction with end hosts is simplified, as we do not differentiate end
hosts within an AS and do not model intra-AS topologies.

In contrast to our models, the protocols do not include the AS identifier
(id) in hop fields. Nevertheless, a HVF uniquely identifies the AS for which
the hop field is valid, since the key of the AS is used in the MAC computa-
tion. Hence, it would be possible to refine the instance models to models
in which hop fields do not explicitly contain the identifier. Alternatively,
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one could change the parametrized model to remove the AS identifier. This
would likely require additional conditions.

Other than these abstractions, our instance models differ from the actual
protocols in the following ways:

SCION

SCION is a complex architecture that includes many features that are neces-
sary for Internet-scale operation. Beacons do not directly establish paths be-
tween any pair of ASes, but only between large ASes (e. g., Tier 1 providers)
and their customer ASes and between the large-scale ASes themselves.
Such partial paths (called segments) can then be reversed and concatenated
(as discussed in §2.2.2) by end hosts to connect distant ASes. While path
authorization only holds for each segment individually, segments cannot be
combined arbitrarily: there are rules that ensure that the economic interests
of ASes are respected, similar to those of the Gao–Rexford model [47].
Nevertheless these rules only provide local properties and not global prop-
erties (such as path authorization, which is expressed over entire paths).
SCION also allows peering links between ASes, which similarly to segment
combinations, are only authorized locally. For these reasons, we do not
include segment combinations or peering links in our framework.

EPIC

EPIC trims hop authenticators σ to a short length to reduce space overhead.
We model the trimming of σ by a hash function. Similar to hashing, trim-
ming makes it difficult to recover the original value. The trimming enables
brute-force attacks, which we model by the oracle discussed in §4.7.2.

Anapaya-SCION

As mentioned above, our formalization does not include the initialization
value RND for the tok field.

ICING

We leave out ICING’s proofs of provenance. They are cryptographic authenti-
cators used for path validation and are unrelated to path authorization. In
the original specification, they are combined with the PoCs using XOR.
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4.8.3 Formalization details and statistics

Our formalization in Isabelle/HOL closely follows the models and proofs
described in this paper, modulo differences in notation and changes re-
quired for the extensions, as discussed above. Most of the proof burden is
handled in the abstract and concrete parametrized models. In particular, the
crux of the proof, Theorem 2, is part of the concrete model. A substantial
portion of the instance models is boilerplate definitions and proofs that
only vary slightly between the instances. Figure 4.7 gives an overview of
the different parts of our framework and the lines of Isabelle/HOL code
associated with them.

4.8.4 Consistency of environment assumptions and executabil-
ity of event system

All instance models are still parametrized by the environment parameters,
i.e., the underlying Internet topology defined by target, the set of authorized
paths autha, the set of compromised nodes Nattr ⊆ N and the oracle predi-
cate O . We instantiate these parameters with the topology and authorized
paths given in Figure 2.1, Nattr = {F}, and an O function that always pro-
duces false. We discharge the associated assumptions ASM 1–ASM 6 from
§4.5.1 in this example model to show their consistency. Furthermore, we
show the executability of the instantiated event system for the EPIC level 1

protocol in the strong attacker model, showing that it is indeed possible to
send a packet from a source to a destination, i. e., the model’s events can be
executed in the correct order.

4.8.5 Unverified data plane security properties

Source and packet authentication

These properties allow for the identification of a packet’s origin and in
some cases its header and content by ASes or the destination. The challenge
in designing protocols that provide these properties is that they require
keys between the source and the authenticating entity. As mentioned in
the introduction, naïve solutions, such as using public key cryptography
per packet, or distributing symmetric keys between each pair of entities are
prohibitively inefficient. Hence, protocols often use dynamic key derivation
techniques such as DRKey [64, 92] (proposed in OPT [64] and used in
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Formalization of framework LoC

Infrastructure (Dolev-Yao, Event System, etc.) 3802

Abstract Model & Network Model 699

Concrete Model (w/o Theorem 2) 852

Theorem 2 for directed setting 638

Theorem 2 for undirected setting 276

Total 6267

Formalization of instances LoC

SCION 323

SCION simplified 319

EPIC Level 1 Basic Attacker 397

EPIC Level 1 Strong Attacker 439

EPIC Level 2 Strong Attacker 466

Anapaya-SCION 568

ICING 330

ICING simplified 258

ICING further simplified 267

Executability proof for EPIC Level 1 SA 425

Total 3792

Figure 4.7: Overview of formalization in Isabelle/HOL.
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EPIC [71]) or non-interactive Diffie–Hellman (used in ICING [84]). These
scale better, but come with additional trust assumptions or communication
overhead. With shared keys in place, authentication by a router or the
destination can be easily implemented, modeled, and verified as a single-
message two-party protocol. In contrast to network-wide properties like
path authorization and detectability, the verification of source and packet
authentication does not require any of the special features listed in the
introduction. In particular, the set of authorized paths is irrelevant for this
property, the number of protocol participants is fixed, and a protocol run
does not depend on the length of the path. This makes it feasible to use
automated tools such as Tamarin and ProVerif, in which protocol analysis
is simpler than in Isabelle/HOL. For these reasons, we exclude source and
packet authentication from our verification framework.

Path validation

This property proves to subsequent ASes and the destination that all pre-
vious hops on the path embedded in the packet were indeed traversed.
While path validation is provided by some architectures [22], including
EPIC Level 3-4, there are several reasons why it is less critical than the
properties presented above. First, path validation only establishes a lower
bound on the set of ASes that have been traversed and does not stop on-
path attackers from sending copies of packets to ASes that are not part of
the sender’s intended path. Second, if there is at most one on-path attacker,
then the much simpler packet authentication property is sufficient to imply
path validation for the destination. We outline this in §5.1.1. Third, path
validation protects honest end hosts against malicious on-path ASes that re-
route their packets. ASes are legal entities that have business relationships
and contracts in defined jurisdictions and could suffer legal consequences
when misbehavior is detected. In contrast, the properties presented above
defend against malicious sources (in some cases, with colluding ASes). Mali-
cious end hosts are a ubiquitous threat to Internet security and legal rulings
are often not enforceable.

For these reasons, we do not verify path validation in this work.

4.9 Related work

As mentioned in the introduction, there exists relatively little work on
the verification of path authorization for packet forwarding in path-aware
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internet architectures. We review those works here as well as other research
on the verification of secure routing (i. e., path construction) protocols.

4.9.1 Data plane protocols for path-aware architectures

Over the past two decades, several other path-aware architectures have
been developed [19, 50, 89, 106]. Several of these use forwarding tables or
other state on routers (instead of cryptographic authenticators) to achieve
path authorization [50, 106], which does not fit into our framework. Others
are not specified in sufficient detail to allow for formal verification [19] or
only achieve local properties without considering full path authorization
over multiple hops [89]. Finally, some data plane protocols [22], including
OPT [64], focus only on source authentication and path validation, neither
of which we verify.

4.9.2 Verification of secure data plane protocols

Chen et al. [29] define SANDLog, a Prolog-style declarative language for
specifying both data and control plane protocols. They also present an
invariant proof rule for SANDLog programs and a verification condition
generator, which targets Coq. They verify route authenticity of S-BGP and
both route authenticity (in the control plane) and data path authenticity
(in the data plane) of SCION. Hence, their coverage of SCION is more
comprehensive than ours. However, their data plane property is weaker
than our path authorization, as it only guarantees that each traversed hop
appears on some authorized path, but does not relate successively traversed
hops.

Zhang et al. [107] prove source authentication and path validation prop-
erties of the OPT packet forwarding protocols [64]. These properties differ
from those that we formally prove in this thesis. They use LS2, a logic for
reasoning about secure systems, in combination with axioms from Protocol
Composition Logic (PCL) [35]. They directly embed their logic’s axioms
and prove the protocols’ properties in Coq. As PCL does not have a formal
semantics (cf. [33]), the soundness of their approach is questionable. In
contrast, we use a foundational approach that only relies on the axioms of
higher-order logic and on definitions.
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4.9.3 Verification of secure routing protocols

Cortier et al. [7] propose a process calculus for modeling routing protocols,
including a model of the network topology and a localized Dolev-Yao
adversary. They propose two constraint-based NP decision procedures for
analyzing routing protocols for a bounded number of sessions. The first one
analyzes a protocol for any network topology, i.e., it decides whether there
exists a network topology for which there is an attack on the protocol. The
second procedure analyzes a protocol for a given network topology. They
also define a logic to express properties such as loop-freedom and route
validity. They analyze two ad-hoc routing protocols from the literature. This
work is extended to protocols with recursive tests in [6].

Cortier et al. [32] prove a reduction result showing that for proving path
validity it is sufficient to consider just five topologies of four nodes. Path
validity is similar to our ASM 2 but omitting interfaces. They then analyze
two ad-hoc routing protocols using ProVerif.

4.9.4 Verification of network configurations

A different line of research is devoted to the verification of network config-
urations. Earlier work focused purely on the data plane [61, 63, 67] while
more recent work also takes the control plane into account [15, 16, 44, 48,
103]. Verified properties include reachability, isolation, way-pointing, and
loop freedom. These works are restricted to a setting with a fixed, concrete
network topology and they do not consider security properties.

4.9.5 Parametrization in security protocol verification

Parametrization is a common abstraction technique. It has been used in
security protocol verification to achieve the verification of more than one
protocol. For instance, Lallemand et al. [69] use parametrization for an
abstract realization of channels with different security properties, also in
the context of refinement. Schaller et al. [94] employ parametrization to
verify physical properties of a number of different wireless protocols.
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4.9.6 Exclusive-or in security protocol verification

Automated security protocol verifiers, such as Maude-NPA [42], AKISS [9],
and Tamarin [39] have incorporated support for exclusive-or (XOR). Yet it is
widely recognized that XOR is a challenging feature to support in security
protocol verification. Some verification works abstract from XOR, if the
protocol’s security properties do not depend on it [36]. This is the approach
that we follow for the ICING protocol instance (§4.8.2), which uses addi-
tional authenticators that are used to achieve properties that are unrelated
to path authorization. However, it cannot be applied to Anapaya-SCION,
since Anapaya-SCION’s use of XOR is central for achieving its security
properties.

Schaller et al. [94, 95] formalize XOR for a Dolev–Yao model in Is-
abelle/HOL. Their formalization models XOR as a binary operator, and
uses normalization to reduce equality in the theory of XOR to syntactic
equality on terms.

Escobar et al. [43] provide a generic approach for a wide range of non-
subterm-convergent equational theories. Given an equational theory that
satisfies the finite variant property, they divide it up into a set of oriented
equations that can be used as rewrite rules that are safe to perform (for
instance, because they are subterm convergent) and into a set of “axioms”
that are not. Equality of terms is decided by narrowing along the safe
rewrite rules, and comparing the resulting terms modulo axioms. In the
case of XOR, which they introduce as an example instance of their generic
approach, (A) and (C) are axioms, and (I) and (S) are rewrite rules. Their
approach requires carefully defining the set of equations in order to make
them coherent with the set of axioms. In the case of XOR, this is achieved by
adding x⊕ x⊕ y = y to the set of equations. Their approach can be used
not only to model XOR, but also to decide the unification problem for the
equational theories that fullfil the finite variant property.
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Discussion and Conclusion

5.1 Discussion

5.1.1 Data plane properties

We distinguish between (i) the path intended by the sender, (ii) the path
embedded in the packet header when it reaches the destination and (iii) the
actual path that the packet traversed. Figure 5.1 gives an overview of these
different kinds of paths from the destination end host’s perspective, and
how properties relate them.

The equivalence between paths (i)–(iii) is achieved when the destination is
provided with packet authentication and path validation. Note that packet
authentication alone is sufficient to ensure their equivalence in case there
is at most one on-path attacker. By having the destination authenticate a
packet (including the embedded path), any change of the embedded path
by an on-path attacker will be detected by the destination even without
a mechanism that provides path validation. The attacker can only avoid
detection by reinstating the original path at a second compromised on-path
AS. Only the path in between two attacker nodes can diverge from the
sender’s intended path. Hence, path validation becomes only relevant for
the destination if there are at least two colluding on-path attackers.

5.1.2 Assumed security of control plane

Our formal models and proofs depend on the correctness and the security of
the control plane, which we formalized in as six assumptions (for directed
protocols) in §4.5.1. Underlying our definition of authorized paths in the
concrete model there is an additional assumption: all authorized paths have
correct hop validation fields.

This assumption could be violated if the attacker controls beacon servers
in the control plane. Consequently, there is a class of potential attacks on
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Path Authorization

Observed 
Path

Authorized 
PathsReal Path

Intended 
Path

Path Validation 
by destination

Equivalence
Set element

Packet 
Authentication

Packet 
Authentication

Equivalence only in special cases

Figure 5.1: Relationship between different types of paths. We consider a scenario,
where a packet has reached its destination, which is assumed to
be honest and to have validated the packet successfully. The dotted
property edge is only sufficient to guarantee equivalence when there
is at most one on-path attacker.

data plane properties that include both a control- and data plane attacker.
We have identified one attack in this class that applies to SCION, which
we present below. Similar attacks are most likely also possible in EPIC
protocols and in Anapaya-SCION. In undirected protocols, such as ICING,
this particular attack does not seem to be feasible, since each hop field’s
MAC contains the entire path directly, rather than via a nesting of MACs.

We discuss below a number of ways in which this attack can be mitigated.

The beacon MAC switching attack

This attack uses a combination of a control- and data plane attacker. Con-
sider for instance, that in Figure 2.1 on page 16, the beacon server of node D
is compromised. Additionally, a malicious end host in node F wants to send
data plane packets along the red path. All border routers are assumed to
be honest in this scenario.

Normally (without an adversary), the beacon server at AS D would create
two hop information fields and two hop validation fields, one of each for
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the left and the right beacon. We mark the values for the right beacon with
a tilde.

hvfD = MACKD (〈hiD, hvfB〉)

h̃vfD = MACKD

(
〈h̃iD, h̃vfC〉

)
In this attack, the control plane attacker at the beacon server of node D
processes the right beacon coming from AS C as usual and amends it
with its own hop entry (i.e. hop field, and signature). However, for the left
beacon, instead of including the appropriate MAC hvfD alongside hiD (with
interfaces leading to B and E), the compromised beacon server at AS D can
include any MAC in its hop entry. In particular, it can include h̃vfD, i.e., the
MAC for the hop field that it adds to the right beacon (i.e., with interfaces
leading to C and E and C’s MAC as predecessor). The resulting hop field
consisting of hiD and h̃vfD is invalid. However, the signature created by the
compromised beacon server is a correct signature over this forged hop field.

The beacon servers at ASes E and F only check the validity of the sig-
nature of the hop entry of AS D; they cannot detect that the MAC h̃vfD
that AS D included in the beacon is invalid for the hiD field given in the
hop entry. Since the signature is valid, ASes E and F extend the beacon,
believing they are extending a beacon corresponding to the left path.

The resulting beacon will have valid signatures, although it is not valid
for forwarding. If a packet is sent along the path, MAC validation will fail at
the border router of D, which is assumed to be honest. However, a malicious
source at AS F can use the resulting beacon to splice its path together with
the path given by the right beacon, resulting in the red forwarding path. To
do so, the sender creates the unauthorized but valid path consisting of the
hop fields hfF, hfE, h̃fD, h̃fC and h̃fA.

Proposed solutions

The border routers sending out packets on an inter-AS link could have
special handling for beacons and check that the hop field embedded in the
most recent AS entry on the beacon is valid. This defense works unless the
border router is also compromised.

However, this solution may not always be desirable. For instance, it could
be that two ASes exchange beacons only via a special control plane link, and
not over the links over which forwarding occurs. Such a control plane design
would be incompatible with our proposed solution. Furthermore, requiring
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border routers to apply special rules to beacons makes their specification
and implementation more complex, and adds potential sources for errors.

Alternatively, each AS receiving a beacon could attempt to send a packet
alongside it, before registering it. The above attack produces beacons that
do not correspond to valid paths. If the beacon server at AS E sends a
packet to D with the beacon’s path embedded, and the honest border router
at D returns an error, E can discard the beacon.

Fundamentally, the lack of a secure link between the MAC and the
signature allows this attack to occur. MACs are opaque to entities that do
not have a key, hence they cannot detect if the MAC was created over the
correct value. For instance, an AS that extends a given beacon cannot verify
that a MAC already embedded in the beacon is correct for the corresponding
hop field that is also embedded in the beacon. Crucially, the AS cannot
exclude the possibility that this MAC is valid for another hop field that
belong to a different forwarding path. The signature does not help, since
the compromised beacon server could include a correct signature over the
incorrect hop field.

SCION already mandates that ASes regularly rotate their symmetric keys.
The protocol could state that they must reveal expired keys. With the keys
revealed, any entity can check a posteriori the validity of the hop fields
signed by ASes. While this does not prevent attacks, it makes attacks on
publicly registered beacons visible after a certain amount of time.

Discussion

This attack assumes a compromised beacon server and end host. We note
that the attacker can achieve the same consequences as in this combined
control- and data plane attack by launching a pure data plane attack that
is both trivial to execute and cannot be avoided in the protocol design. In
the pure data plane attack, the attacker compromises a router instead of a
beacon server, in addition to the sending end host. Then, the compromised
router can simply exchange the packet’s forwarding path en route. Hence,
the combined control- and data plane attack that we have discovered is only
practically important in the presence of an attacker that is strong enough to
compromise a beacon server, but not capable of compromising a router.

However, our attack is also of theoretical interest, since it raises the
question of whether there are other, unknown combined control- and data
plane attacks of higher severity. Our formal models, which assume the
control plane’s security, cannot answer this question. Further research is
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needed to study this class of attacks and to define properties that express
the security of entire networking systems.

5.1.3 Other attacks discovered

We accompanied the development of the SCION Internet architecture as
it matured, and turned from an academic project into one with a real-
life deployment. In the early prototyping phase, we discovered several
attacks. With the exception of the combined control and data plane attack
outlined above, all attacks are related to segment switching aspects in
the prototype router, for instance missing checks. The most severe attack
allowed malicious sources to create arbitrary forwarding paths. This could
be used to create forwarding loops (although the number of iterations
in the loop is bound by the maximum header size). Due to the relative
simplicity of the attacks that we found, we did not implement proof-of-
concepts. However, we confirmed the presence of these attacks by studying
prototype implementations of the border router and by obtaining feedback
from the SCION development team. Fortunately, all bugs found turned out
to be easily fixable and were fixed by the SCION development team in the
protocol description and implementations.

The attacks relating to segment switching were found early on during
the effort to understand the protocol in order to model it precisely. In this
early phase of the protocol’s development, the specification was lacking
detail and the only resource giving a precise specification was the reference
prototype implementation, in which some of these bugs were discovered.
Due to the lack of a sufficiently precise independent specification at the
time, it remains unclear if these should be classified as protocol bugs or as
implementation bugs.

As shown by our formal proofs, the cryptographic mechanisms employed
in path-aware protocols are secure in principle. However, close attention has
to be paid to how these mechanisms are used in entire Internet architectures.

5.2 Conclusion

Several path-aware Internet architectures proposed in recent years promise
to improve the security and efficiency of the Internet by providing path
control to end hosts. However, this shift of control requires mechanisms
to protect the routing policies of ASes from malicious end hosts on the
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one hand, and raises the challenge of verifying that the path directives
were followed by ASes on the other hand. Previous systems for both path
authorization and path validation faced a dilemma between security and
efficiency in terms of communication overhead.

The highly efficient EPIC protocols proposed in this thesis resolve this
dilemma, and furthermore enable all on-path routers and the destination
to authenticate the source of a packet. Thus, by ensuring that the source
and path of every packet is checked efficiently at the network layer, EPIC
enables a wide range of additional in-network security systems like packet
filtering for DoS-defense systems and provides a secure foundation for the
data plane of a future Internet.

Proposing new protocols is necessary, but not enough. We also need to
verify that the claimed security properties actually hold. The verification
of future Internet architectures, and in particular path authorization, is a
challenging problem, since (i) automated protocol verification tools lack
the expressiveness to reason about arbitrary sets of authorized paths and
(ii) the relevant protocols are likely to undergo changes before their even-
tual standardization and widespread deployment. General guarantees for
evolving protocols require general specifications and proofs that abstract
from the idiosyncrasies of particular protocol instances. Our parametrized
framework provides a solution to these challenges. It substantially reduces
the per-protocol specification and verification work compared to restarting
verification from scratch for each protocol. For each instance, one must
only define the parameters and prove the static conditions to establish path
authorization and detectability. Our abstractions are general enough to
cover a whole class of protocols proposed in the literature.

5.3 Future work

As future work, the framework could be extended to handle SCION’s down-
segments as well as segment combinations and peering links. Furthermore,
security properties such as packet authentication and path validation could
be included in the verification framework. Since not all protocols achieve
these properties, an interesting question is how they could be incorporated
in a modular fashion without requiring separate parametrized models with
duplicated proof effort.

As our next step, we plan to verify the Anapaya-SCION router imple-
mentation and to use the Igloo methodology [96] to soundly link protocol
and code verification. This will require introducing protocol aspects that
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our models abstract from, such as peering links, segment switching, and
buffering of packets.

More generally, it would be interesting to investigate the existence of
a reduction result for path authorization and other data plane security
properties in the vein of [32].





Bibliography

[1] Martın Abadi and Leslie Lamport. “The Existence of Refinement
Mappings”. In: Theor. Comput. Sci. 82.2 (1991).

[2] Abdallah Alma’aitah and Zine-Eddine Abid. “Transistor level op-
timization of sub-pipelined AES design in CMOS 65nm”. In: Pro-
ceedings of the International Conference on Microelectronics (ICM). IEEE.
2011.

[3] Lisa Amini, Anees Shaikh, and Henning Schulzrinne. “Issues with
inferring Internet topological attributes”. In: Computer Communica-
tions 27.6 (2004).

[4] Anapaya Systems. SCION Header Specification. https://scion.docs.
anapaya.net/en/latest/protocols/scion-header.html. 2021.

[5] Tom Anderson, Ken Birman, Robert Broberg, Matthew Caesar, Dou-
glas Comer, Chase Cotton, Michael J. Freedman, Andreas Haeberlen,
Zachary G. Ives, Arvind Krishnamurthy, William Lehr, Boon Thau
Loo, David Mazières, Antonio Nicolosi, Jonathan M. Smith, Ion Sto-
ica, Robbert van Renesse, Michael Walfish, Hakim Weatherspoon,
and Christopher S. Yoo. “The NEBULA Future Internet Architec-
ture”. In: The Future Internet. Springer, 2013.

[6] Mathilde Arnaud, Véronique Cortier, and Stéphanie Delaune. “De-
ciding Security for Protocols with Recursive Tests”. In: Automated
Deduction - CADE-23 - 23rd International Conference on Automated De-
duction, Wroclaw, Poland, July 31 - August 5, 2011. Proceedings. Ed. by
Nikolaj Bjørner and Viorica Sofronie-Stokkermans. Vol. 6803. Lecture
Notes in Computer Science. Springer, 2011, 49.

[7] Mathilde Arnaud, Véronique Cortier, and Stéphanie Delaune. “Mod-
eling and verifying ad hoc routing protocols”. In: Inf. Comput. 238

(2014), 30.

[8] Brice Augustin, Xavier Cuvellier, Benjamin Orgogozo, Fabien Viger,
Timur Friedman, Matthieu Latapy, Clémence Magnien, and Renata
Teixeira. “Avoiding Traceroute Anomalies with Paris Traceroute”. In:

131

https://scion.docs.anapaya.net/en/latest/protocols/scion-header.html
https://scion.docs.anapaya.net/en/latest/protocols/scion-header.html


132 bibliography

Proceedings of the ACM SIGCOMM conference on Internet measurement.
2006.

[9] D. Baelde, S. Delaune, I. Gazeau, and S. Kremer. “Symbolic Verifi-
cation of Privacy-Type Properties for Security Protocols with XOR”.
In: 2017 IEEE 30th Computer Security Foundations Symposium (CSF).
2017, 234.

[10] Hitesh Ballani, Paul Francis, and Xinyang Zhang. “A study of prefix
hijacking and interception in the Internet”. In: ACM SIGCOMM
Computer Communication Review 37.4 (2007).

[11] Clemens Ballarin. “Locales: A Module System for Mathematical
Theories”. In: J. Autom. Reason. 52.2 (2014), 123.

[12] Cristina Basescu, Yue-Hsun Lin, Haoming Zhang, and Adrian Perrig.
“High-Speed Inter-Domain Fault Localization”. In: Proceedings of the
IEEE Symposium on Security and Privacy. 2016.

[13] Cristina Basescu, Raphael M. Reischuk, Pawel Szalachowski, Adrian
Perrig, Yao Zhang, Hsu-Chun Hsiao, Ayumu Kubota, and Jumpei
Urakawa. “SIBRA: Scalable Internet Bandwidth Reservation Archi-
tecture”. In: Proceedings of the Symposium on Network and Distributed
System Security (NDSS). 2016.

[14] Tony Bates, Philip Smith, and Geoff Huston. CIDR Report. https:
//www.cidr-report.org/as2.0/. 2020.

[15] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. “A
General Approach to Network Configuration Verification”. In: Pro-
ceedings of the Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM 2017, Los Angeles, CA, USA, August 21-25,
2017. ACM, 2017, 155.

[16] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. “Ab-
stract interpretation of distributed network control planes”. In: Proc.
ACM Program. Lang. 4.POPL (2020), 42:1.

[17] Mihir Bellare, Joe Kilian, and Phillip Rogaway. “The security of the
cipher block chaining message authentication code”. In: Journal of
Computer and System Sciences 61.3 (2000).

[18] Kamal Benzekki, Abdeslam El Fergougui, and Abdelbaki Elbelrhiti
Elalaoui. “Software-defined networking (SDN): a survey”. In: Secu-
rity and Communication Networks 9.18 (2016).

https://www.cidr-report.org/as2.0/
https://www.cidr-report.org/as2.0/


bibliography 133

[19] Bobby Bhattacharjee, Ken Calvert, Jim Griffioen, Neil Spring, and
James P. G. Sterbenz. “Postmodern internetwork architecture”. In:
NSF Nets FIND Initiative (2006).

[20] Henry Birge-Lee, Yixin Sun, Anne Edmundson, Jennifer Rexford,
and Prateek Mittal. “Bamboozling Certificate Authorities with BGP”.
In: Proceedings of the USENIX Security Symposium. 2018.

[21] Bruno Blanchet. “An Efficient Cryptographic Protocol Verifier Based
on Prolog Rules”. In: 14th IEEE Computer Security Foundations Work-
shop (CSFW-14 2001), 11-13 June 2001, Cape Breton, Nova Scotia, Canada.
IEEE Computer Society, 2001, 82.

[22] Kai Bu, Avery Laird, Yutian Yang, Linfeng Cheng, Jiaqing Luo,
Yingjiu Li, and Kui Ren. “Unveiling the Mystery of Internet Packet
Forwarding: A Survey of Network Path Validation”. In: ACM Comput.
Surv. 53.5 (2020).

[23] R. Bush. Origin Validation Operation Based on the Resource Public Key
Infrastructure (RPKI). RFC 7115. 2014.

[24] Hao Cai and Tilman Wolf. “Source Authentication and Path Valida-
tion in Networks Using Orthogonal Sequences”. In: Proceedings of
the International Conference on Computer Communication and Networks
(ICCCN). 2016.

[25] Hao Cai and Tilman Wolf. “Source authentication and path vali-
dation with orthogonal network capabilities”. In: Proceedings of the
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). 2015.

[26] CALOMEL. AES-NI SSL Performance: a study of AES-NI accelera-
tion using LibreSSL, OpenSSL. https://calomel.org/aesni_ssl_
performance.html. 2018.

[27] Kenneth L. Calvert, James Griffioen, and Leonid Poutievski. “Sepa-
rating routing and forwarding: A clean-slate network layer design”.
In: Proceedings of the International Conference on Broadband Communica-
tions, Networks and Systems (BROADNETS). 2007.

[28] V. Cerf and R. Kahn. “A Protocol for Packet Network Intercom-
munication”. In: IEEE Transactions on Communications 22.5 (1974),
637.

https://calomel.org/aesni_ssl_performance.html
https://calomel.org/aesni_ssl_performance.html


134 bibliography

[29] Chen Chen, Limin Jia, Hao Xu, Cheng Luo, Wenchao Zhou, and
Boon Thau Loo. “A Program Logic for Verifying Secure Routing
Protocols”. In: Logical Methods in Computer Science Volume 11, Issue
4 (2015).

[30] David D. Clark. Designing an Internet. 1st. The MIT Press, 2018.

[31] Danny Cooper, Ethan Heilman, Kyle Brogle, Leonid Reyzin, and
Sharon Goldberg. “On the risk of misbehaving RPKI authorities”. In:
Proceedings of the ACM Workshop on Hot Topics in Networks (HotNets).
2013, 1.

[32] Véronique Cortier, Jan Degrieck, and Stéphanie Delaune. “Analysing
Routing Protocols: Four Nodes Topologies Are Sufficient”. In: Princi-
ples of Security and Trust - First International Conference, POST 2012,
Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012, Pro-
ceedings. Ed. by Pierpaolo Degano and Joshua D. Guttman. Vol. 7215.
Lecture Notes in Computer Science. Springer, 2012, 30.

[33] Cas Cremers. “On the Protocol Composition Logic PCL”. In: Proceed-
ings of the 2008 ACM Symposium on Information, Computer and Com-
munications Security. Association for Computing Machinery, 2008,
66.

[34] DARPA. Internet Protocol. RFC 791. 1981.

[35] Anupam Datta, Ante Derek, John C. Mitchell, and Arnab Roy. “Pro-
tocol Composition Logic (PCL)”. In: Electr. Notes Theor. Comput. Sci.
172 (2007), 311.

[36] Alexandre Debant and Stéphanie Delaune. “Symbolic Verification
of Distance Bounding Protocols”. In: Principles of Security and Trust.
Ed. by Flemming Nielson and David Sands. Cham: Springer Inter-
national Publishing, 2019, 149.

[37] Danny Dolev and Andrew Chi-Chih Yao. “On the security of public
key protocols”. In: IEEE Trans. Information Theory 29.2 (1983).

[38] DPDK Project. Data Plane Development Kit. https://dpdk.org.

[39] J. Dreier, L. Hirschi, S. Radomirovic, and R. Sasse. “Automated
Unbounded Verification of Stateful Cryptographic Protocols with
Exclusive OR”. In: 2018 IEEE 31st Computer Security Foundations
Symposium (CSF). 2018, 359.

[40] ECRYPT. eBATS: ECRYPT Benchmarking of Asymmetric Systems.
https://bench.cr.yp.to/results-dh.html. 2019.

https://dpdk.org
https://bench.cr.yp.to/results-dh.html


bibliography 135

[41] Paul Emmerich, Daniel Raumer, Florian Wohlfart, and Georg Carle.
“Assessing soft-and hardware bottlenecks in PC-based packet for-
warding systems”. In: ICN (2015).

[42] Santiago Escobar, Catherine Meadows, and José Meseguer. “Maude-
NPA: Cryptographic Protocol Analysis Modulo Equational Prop-
erties”. In: Foundations of Security Analysis and Design V: FOSAD
2007/2008/2009 Tutorial Lectures. Ed. by Alessandro Aldini, Gilles
Barthe, and Roberto Gorrieri. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, 1.

[43] Santiago Escobar, Ralf Sasse, and José Meseguer. “Folding variant
narrowing and optimal variant termination”. In: The Journal of Logic
and Algebraic Programming 81.7 (2012). Rewriting Logic and its Ap-
plications, 898.

[44] Seyed Kaveh Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd
D. Millstein, Vyas Sekar, and George Varghese. “Efficient Network
Reachability Analysis Using a Succinct Control Plane Representa-
tion”. In: 12th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016.
Ed. by Kimberly Keeton and Timothy Roscoe. USENIX Association,
2016, 217.

[45] P. Ferguson. Best Current Practice 38: Network Ingress Filtering: Defeat-
ing Denial of Service Attacks which employ IP Source Address Spoofing.
https://tools.ietf.org/html/bcp38. 2000.

[46] Lixin Gao. “On inferring autonomous system relationships in the
Internet”. In: IEEE/ACM Transactions on Networking 9.6 (2001), 733.

[47] Lixin Gao and Jennifer Rexford. “Stable Internet routing with-
out global coordination”. In: IEEE/ACM Transactions on Networking
(2001).

[48] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and
Ratul Mahajan. “Fast Control Plane Analysis Using an Abstract Rep-
resentation”. In: Proceedings of the ACM SIGCOMM 2016 Conference,
Florianopolis, Brazil, August 22-26, 2016. Ed. by Marinho P. Barcellos,
Jon Crowcroft, Amin Vahdat, and Sachin Katti. ACM, 2016, 300.

[49] Yossi Gilad, Avichai Cohen, Amir Herzberg, Michael Schapira, and
Haya Shulman. “Are We There Yet? On RPKI’s Deployment and
Security.” In: NDSS. 2017.

https://tools.ietf.org/html/bcp38


136 bibliography

[50] P. Brighten Godfrey, Igor Ganichev, Scott Shenker, and Ion Stoica.
“Pathlet Routing”. In: Proceedings of ACM SIGCOMM. 2009.

[51] Timothy G. Griffin and Gordon Wilfong. “An Analysis of BGP Con-
vergence Properties”. In: Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication.
SIGCOMM ’99. Cambridge, Massachusetts, USA: ACM, 1999, 277.

[52] Shay Gueron. “Intel® advanced encryption standard (AES) new
instructions set”. In: Intel Corporation (2010).

[53] J. Heather, G. Lowe, and S. Schneider. “How to prevent type flaw
attacks on security protocols”. In: Proceedings 13th IEEE Computer
Security Foundations Workshop. CSFW-13. 2000, 255.

[54] Yih-Chun Hu, Adrian Perrig, and David B Johnson. “Wormhole
attacks in wireless networks”. In: IEEE journal on selected areas in
communications 24.2 (2006), 370.

[55] Bradley Huffaker, Marina Fomenkov, Daniel J. Plummer, David
Moore, and Kimberly Claffy. “Distance metrics in the Internet”. In:
Proceedings of the IEEE International Telecommunications Symposium
(ITS). 2002.

[56] Tetsu Iwata, Junhyuk Song, Jicheol Lee, and Radha Poovendran. The
AES-CMAC Algorithm. RFC 4493. 2006.

[57] Min Suk Kang, Soo Bum Lee, and Virgil D. Gligor. “The Crossfire
Attack”. In: IEEE Symposium on Security and Privacy. 2013.

[58] Josh Karlin, Stephanie Forrest, and Jennifer Rexford. “Pretty good
BGP: Improving BGP by cautiously adopting routes”. In: Proceedings
of the IEEE International Conference on Network Protocols. IEEE. 2006.

[59] Jonathan Katz and Andrew Y. Lindell. “Aggregate Message Au-
thentication Codes”. In: Topics in Cryptology – CT-RSA. Springer,
2008.

[60] Ethan Katz-Bassett, Colin Scott, David R. Choffnes, Ítalo Cunha,
Vytautas Valancius, Nick Feamster, Harsha V. Madhyastha, Thomas
E. Anderson, and Arvind Krishnamurthy. “LIFEGUARD: practical
repair of persistent route failures”. In: SIGCOMM 2012. Ed. by Lars
Eggert, Jörg Ott, Venkata N. Padmanabhan, and George Varghese.
ACM, 2012, 395.



bibliography 137

[61] Peyman Kazemian, George Varghese, and Nick McKeown. “Header
Space Analysis: Static Checking for Networks”. In: Proceedings of the
9th USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI 2012. Ed. by Steven D. Gribble and Dina Katabi. USENIX
Association, 2012, 113.

[62] S. Kent, C. Lynn, and K. Seo. “Secure Border Gateway Protocol
(S-BGP)”. In: IEEE Journal on Selected Areas in Communications 18.4
(2000).

[63] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and
Philip Brighten Godfrey. “VeriFlow: Verifying Network-Wide Invari-
ants in Real Time”. In: Proceedings of the 10th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2013, Lombard, IL,
USA, April 2-5, 2013. 2013, 15.

[64] Tiffany Hyun-Jin Kim, Cristina Basescu, Limin Jia, Soo Bum Lee, Yih-
Chun Hu, and Adrian Perrig. “Lightweight Source Authentication
and Path Validation”. In: Proceedings of the 2014 ACM Conference on
SIGCOMM. Association for Computing Machinery, 2014, 271.

[65] L. Kleinrock. “An early history of the internet [History of Commu-
nications]”. In: IEEE Communications Magazine 48.8 (2010), 26.

[66] Tobias Klenze, Christoph Sprenger, and David Basin. “Formal Verifi-
cation of Secure Forwarding Protocols”. In: 2021 IEEE 34rd Computer
Security Foundations Symposium (CSF). IEEE, 2021.

[67] Dexter Kozen. “NetKAT – A Formal System for the Verification
of Networks”. In: Programming Languages and Systems - 12th Asian
Symposium, APLAS 2014, Singapore, November 17-19, 2014, Proceedings.
Ed. by Jacques Garrigue. Vol. 8858. Lecture Notes in Computer
Science. Springer, 2014, 1.

[68] Nate Kushman, Srikanth Kandula, and Dina Katabi. “Can You Hear
Me Now?! It Must Be BGP”. In: SIGCOMM Comput. Commun. Rev.
37.2 (2007), 75.

[69] Joseph Lallemand, David Basin, and Christoph Sprenger. “Refining
Authenticated Key Agreement with Strong Adversaries”. In: 2017
IEEE European Symposium on Security and Privacy (EuroS P). 2017, 92.

[70] Taeho Lee, Christos Pappas, Adrian Perrig, Virgil Gligor, and Yih-
Chun Hu. “The Case for In-Network Replay Suppression”. In: Pro-
ceedings of the ACM Asia Conference on Computer and Communications
Security (ASIACCS). 2017.



138 bibliography

[71] Markus Legner, Tobias Klenze, Marc Wyss, Christoph Sprenger, and
Adrian Perrig. “EPIC: Every Packet Is Checked in the Data Plane of a
Path-Aware Internet”. In: 29th USENIX Security Symposium (USENIX
Security). USENIX Association, 2020, 541.

[72] Barry M Leiner, Vinton G Cerf, David D Clark, Robert E Kahn,
Leonard Kleinrock, Daniel C Lynch, Jon Postel, Larry G Roberts, and
Stephen Wolff. “A brief history of the Internet”. In: ACM SIGCOMM
Computer Communication Review 39.5 (2009), 22.

[73] M. Lepinski and S. Kent. An Infrastructure to Support Secure Internet
Routing. RFC 6480. 2012.

[74] Matthew Lepinski and Kotikalapudi Sriram. BGPsec Protocol Specifi-
cation. RFC 8205. 2017.

[75] Qi Li, Yih-Chun Hu, and Xinwen Zhang. “Even rockets cannot
make pigs fly sustainably: Can BGP be secured with BGPsec?” In:
Proceedings of the NDSS Workshop on Security of Emerging Networking
Technologies (SENT). Internet Society. 2014.

[76] Xin Liu, Ang Li, and Xiaowei Yang. “Passport: Secure and Adoptable
Source Authentication”. In: 2008.

[77] Gavin Lowe. “A Hierarchy of Authentication Specification”. In: 10th
Computer Security Foundations Workshop (CSFW ’97), June 10-12, 1997,
Rockport, Massachusetts, USA. IEEE Computer Society, 1997.

[78] Nancy A. Lynch and Frits W. Vaandrager. “Forward and Backward
Simulations: I. Untimed Systems”. In: Inf. Comput. 121.2 (1995).

[79] Damien Magoni and Jean-Jacques Pansiot. “Internet topology mod-
eler based on map sampling”. In: Proceedings of the International
Symposium on Computers and Communications (ISCC). 2002.

[80] Patrick Maigron. Autonomous System Number statistics. https://www-
public.imtbs-tsp.eu/~maigron/RIR_Stats/RIR_Delegations/

World/ASN-ByNb.html.

[81] James McCauley, Yotam Harchol, Aurojit Panda, Barath Raghavan,
and Scott Shenker. “Enabling a Permanent Revolution in Internet
Architecture”. In: Proceedings of ACM SIGCOMM. Beijing, China,
2019.

https://www-public.imtbs-tsp.eu/~maigron/RIR_Stats/RIR_Delegations/World/ASN-ByNb.html
https://www-public.imtbs-tsp.eu/~maigron/RIR_Stats/RIR_Delegations/World/ASN-ByNb.html
https://www-public.imtbs-tsp.eu/~maigron/RIR_Stats/RIR_Delegations/World/ASN-ByNb.html


bibliography 139

[82] Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin.
“The TAMARIN Prover for the Symbolic Analysis of Security Pro-
tocols”. In: Computer Aided Verification - 25th International Conference,
CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings. Ed.
by Natasha Sharygina and Helmut Veith. Vol. 8044. Lecture Notes
in Computer Science. Springer, 2013, 696.

[83] Jad Naous, Michael Walfish, Antonio Nicolosi, David Mazieres,
Michael Miller, and Arun Seehra. “Verifying and enforcing network
paths with ICING”. In: Proceedings of the ACM International Conference
on emerging Networking EXperiments and Technologies (CoNEXT). 2011.

[84] Jad Naous, Michael Walfish, Antonio Nicolosi, David Mazières,
Michael Miller, and Arun Seehra. “Verifying and enforcing network
paths with ICING”. In: Proceedings of the 2011 Conference on Emerging
Networking Experiments and Technologies, Co-NEXT ’11, Tokyo, Japan,
December 6-9, 2011. 2011, 30.

[85] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL - A Proof Assistant for Higher-Order Logic. Vol. 2283.
Springer, 2002.

[86] NIST. RPKI Monitor. https://rpki-monitor.antd.nist.gov. 2020.

[87] Larry Paulson. “The inductive approach to verifying cryptographic
protocols”. In: J. Computer Security 6 (1998).

[88] Adrian Perrig, Pawel Szalachowski, Raphael M. Reischuk, and Lau-
rent Chuat. SCION: A Secure Internet Architecture. Springer, 2017.

[89] Barath Raghavan and Alex C. Snoeren. “A system for authenticated
policy-compliant routing”. In: ACM SIGCOMM Computer Communi-
cation Review 34.4 (2004).

[90] Barath Raghavan, Patric Verkaik, and Alex C. Snoeren. “Secure and
Policy-Compliant Source Routing”. In: IEEE/ACM Transactions on
Networking 17.3 (2009).

[91] Benjamin Rothenberger, Daniele E. Asoni, David Barrera, and Adrian
Perrig. “Internet Kill Switches Demystified”. In: Proceedings of the
European Workshop on Systems Security (EuroSec). 2017.

[92] Benjamin Rothenberger, Dominik Roos, Markus Legner, and Adrian
Perrig. “PISKES: Pragmatic Internet-Scale Key-Establishment Sys-
tem”. In: Proceedings of the 15th ACM Asia Conference on Computer and
Communications Security. ASIA CCS ’20. Taipei, Taiwan: Association
for Computing Machinery, 2020, 73.

https://rpki-monitor.antd.nist.gov


140 bibliography

[93] Jeffrey Rott. “Intel advanced encryption standard instructions (AES-
NI)”. In: Technical Report, Intel (2010).

[94] P. Schaller, B. Schmidt, D. Basin, and S. Capkun. “Modeling and
Verifying Physical Properties of Security Protocols for Wireless Net-
works”. In: 2009 22nd IEEE Computer Security Foundations Symposium.
2009, 109.

[95] Benedikt Schmidt, Patrick Schaller, and David Basin. “Impossibility
results for secret establishment”. In: 2010 23rd IEEE Computer Security
Foundations Symposium. IEEE. 2010, 261.

[96] Christoph Sprenger, Tobias Klenze, Marco Eilers, Felix A. Wolf, Peter
Müller, Martin Clochard, and David Basin. “Igloo: Soundly Linking
Compositional Refinement and Separation Logic for Distributed
System Verification”. In: Proc. ACM Program. Lang. 4. OOPSLA (2020).

[97] Ahren Studer and Adrian Perrig. “The Coremelt Attack”. In: Pro-
ceedings of the European Symposium on Research in Computer Security
(ESORICS). 2009.

[98] Yixin Sun, Anne Edmundson, Laurent Vanbever, Oscar Li, Jennifer
Rexford, Mung Chiang, and Prateek Mittal. “RAPTOR: Routing
Attacks on Privacy in Tor”. In: Proceedings of USENIX Security Sym-
posium. 2015.

[99] Craig Timberg. Net of insecurity. Part I: A flaw in the design. https:
//www.washingtonpost.com/sf/business/2015/05/30/net-of-

insecurity-part-1/. 2015.

[100] Craig Timberg. Net of insecurity. Part II: The long life of a quick ’fix’.
https://www.washingtonpost.com/sf/business/2015/05/31/net-

of-insecurity-part-2/. 2015.

[101] Tao Wan, Evangelos Kranakis, and Paul C van Oorschot. “Pretty
Secure BGP, psBGP.” In: NDSS. 2005.

[102] Cun Wang, Zhengmin Li, Xiaohong Huang, and Pei Zhang. “Infer-
ring the average AS path length of the Internet”. In: Proceedings of
the IEEE International Conference on Network Infrastructure and Digital
Content (IC-NIDC). 2016.

[103] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D. Ernst,
Arvind Krishnamurthy, and Zachary Tatlock. “Scalable Verification
of Border Gateway Protocol Configurations with an SMT Solver”. In:
Proc. ACM Program. Lang. OOPSLA 2016. Amsterdam, Netherlands:
Association for Computing Machinery, 2016, 765.

https://www.washingtonpost.com/sf/business/2015/05/30/net-of-insecurity-part-1/
https://www.washingtonpost.com/sf/business/2015/05/30/net-of-insecurity-part-1/
https://www.washingtonpost.com/sf/business/2015/05/30/net-of-insecurity-part-1/
https://www.washingtonpost.com/sf/business/2015/05/31/net-of-insecurity-part-2/
https://www.washingtonpost.com/sf/business/2015/05/31/net-of-insecurity-part-2/


bibliography 141

[104] Russ White. “Securing BGP through secure origin BGP (soBGP)”. In:
Business Communications Review 33.5 (2003), 47.

[105] Bo Wu, Ke Xu, Qi Li, Zhuotao Liu, Yih-Chun Hu, Martin J. Reed,
Meng Shen, and Fan Yang. “Enabling Efficient Source and Path
Verification via Probabilistic Packet Marking”. In: Proceedings of the
IEEE/ACM International Symposium on Quality of Service (IWQoS).
2018.

[106] Xiaowei Yang, David Clark, and Arthur W. Berger. “NIRA: A New
Inter-Domain Routing Architecture”. In: IEEE/ACM Transactions on
Networking (2007).

[107] Fuyuan Zhang, Limin Jia, Cristina Basescu, Tiffany Hyun-Jin Kim,
Yih-Chun Hu, and Adrian Perrig. “Mechanized Network Origin
and Path Authenticity Proofs”. In: Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS). 2014.

[108] Xin Zhang, Hsu-Chun Hsiao, Geoffrey Hasker, Haowen Chan,
Adrian Perrig, and David Andersen. “SCION: Scalability, Control,
and Isolation On Next-Generation Networks”. In: Proceedings of the
IEEE Symposium on Security and Privacy. 2011.


	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	Notation
	1 Introduction
	1.1 The early Internet
	1.1.1 Security
	1.1.2 Growing pains

	1.2 Today's Internet
	1.2.1 Scalability and reliability limitations
	1.2.2 Lack of security
	1.2.3 Lack of path transparency and control

	1.3 A new Internet
	1.4 Existing path-aware networking architectures
	1.5 EPIC protocols
	1.6 Formal verification
	1.7 Contributions
	1.7.1 EPIC protocols
	1.7.2 Formal verification

	1.8 Overview of the thesis

	2 Preliminaries
	2.1 Problem definition
	2.1.1 Network properties
	2.1.2 Security requirements for end hosts
	2.1.3 Security requirements for ASes
	2.1.4 Other security properties
	2.1.5 Efficiency requirements
	2.1.6 Formal verification requirement

	2.2 Background and definitions
	2.2.1 Path exploration and registration
	2.2.2 Path construction and forwarding
	2.2.3 Notation
	2.2.4 Global symmetric-key distribution


	3 EPIC: Every Packet is Checked
	3.1 EPIC protocols
	3.1.1 Level 0: Path authorization
	3.1.2 Level 1: Improved path authorization
	3.1.3 Level 2: Authentication
	3.1.4 Level 3: End-host path validation

	3.2 Security analysis
	3.2.1 Basic and strong attacker models
	3.2.2 Low risk of forging individual packets
	3.2.3 Path authorization
	3.2.4 Freshness
	3.2.5 Packet and source authentication
	3.2.6 Path validation

	3.3 Implementation and evaluation
	3.3.1 Implementation and measurement setup
	3.3.2 Performance evaluation
	3.3.3 Communication overhead
	3.3.4 Additional evaluation results
	3.3.5 Other overhead

	3.4 Path validation for routers
	3.5 Discussion
	3.5.1 Low communication overhead of EPIC
	3.5.2 Deployment on path-aware architectures
	3.5.3 Incremental deployment
	3.5.4 Timestamps and time synchronization
	3.5.5 Key distribution
	3.5.6 Confirmation packets in EPIC Level 3
	3.5.7 Failure scenarios

	3.6 Related work

	4 Formal Verification of Data Plane Protocols
	4.1 Scope of verification
	4.1.1 Security properties that we verify
	4.1.2 Security properties that we do not verify
	4.1.3 Verified data plane protocols

	4.2 Preliminaries
	4.2.1 Differences to previous chapter
	4.2.2 Event systems, invariants, and refinement
	4.2.3 Parametrization

	4.3 Abstract model
	4.3.1 Environment parameters
	4.3.2 State
	4.3.3 Events
	4.3.4 Properties

	4.4 Concrete model
	4.4.1 Cryptographic terms, hop fields, packets and states
	4.4.2 Protocol parameters and authorized paths
	4.4.3 Attacker model
	4.4.4 Events

	4.5 Refinement
	4.5.1 Control plane assumptions
	4.5.2 Conditions on authentication mechanisms
	4.5.3 Refinement mappings
	4.5.4 Refinement proof

	4.6 Instances
	4.6.1 SCION
	4.6.2 EPIC
	4.6.3 Anapaya-SCION
	4.6.4 ICING

	4.7 Extensions
	4.7.1 Type parametrization in parametrized models
	4.7.2 Strong attacker model
	4.7.3 Undirected authorization schemes
	4.7.4 Exclusive-or abstraction
	4.7.5 Mutable packet token fields
	4.7.6 Additional authenticated fields

	4.8 Discussion
	4.8.1 Undirected vs. directed protocols
	4.8.2 Differences between models and real protocols
	4.8.3 Formalization details and statistics
	4.8.4 Consistency of environment assumptions and executability of event system
	4.8.5 Unverified data plane security properties

	4.9 Related work
	4.9.1 Data plane protocols for path-aware architectures
	4.9.2 Verification of secure data plane protocols
	4.9.3 Verification of secure routing protocols
	4.9.4 Verification of network configurations
	4.9.5 Parametrization in security protocol verification
	4.9.6 Exclusive-or in security protocol verification


	5 Discussion and Conclusion
	5.1 Discussion
	5.1.1 Data plane properties
	5.1.2 Assumed security of control plane
	5.1.3 Other attacks discovered

	5.2 Conclusion
	5.3 Future work

	 Bibliography

