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Abstract

This paper investigates the observable response times of commercial cruise control systems.
The behavioral comparison is performed based on empirical observations from three
well-known experimental campaigns in the literature. In recent years, apart from the
already commercially available Adaptive Cruise Control (ACC), an upcoming system
called Cooperative Adaptive Cruise Control (CACC) has been developed to control the
speed of vehicles. The goal of this work is to compare the behavior of these systems on the
basis of response time, that is the delay from the moment of a stimulus until the reaction
of the controller. Observations from two datasets with ACC and CACC experiments, the
OpenACC dataset, developed by the European Commission and the CARMA dataset
developed by the U.S. Department of Transporation, were considered. Three state-of-the-
art techniques were implemented to provide quantitative results for the vehicles’ response
times. The benefits and downsides of each technique are discussed as well. The results
show that ACC does not exhibit a significant improvement compared to human drivers,
yet it can be concluded that the additional vehicle-to-vehicle communication incorporated
in the CACC system allows a significantly lower response time.
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1 Introduction

In recent years, more and more commercially available vehicle models are equipped with
Automated Driver Assistance Systems that support the driver by taking over particular
driving tasks and enhance safety standards. The ongoing evolution towards full automation
and vehicle connectivity will effect the characteristics of road transportation substantially
(European Commission. Joint Research Centre, 2019). Not only the road safety, but also
the road capacity and the vehicle travel times within a network are limited due to human
driving behavior. Automated systems appear with a promise to eliminate the lack of
reliability human drivers show and aim at making road transportation safer, faster and
more comfortable. However, literature studies show that such positive impacts should not
be taken for granted.

A system that has been on the market for over 25 years is the Adaptive Cruise Control
(ACC). ACC controls the longitudinal movement of a vehicle (Driel, 2007). ACC either
holds a particular speed preset or, different from conventional cruise control, adapts the
ego vehicles speed if there is a slower vehicle ahead. The next step after the development
of ACC is Cooperative Adaptive Cruise Control (CACC). CACC is based on the same
functionality as ACC, but additionally, uses wireless communication between vehicles (V2V-
communication) or between the vehicle and traffic infrastructure (V2I-communication)
(Milanés et al., 2014). An application within the field of vehicle automation is to establish
car-platoons, which consist of several vehicles following each other in the same lane.
Advanced automated systems such as CACC make it possible to couple the individual
vehicles within the platoon and therefore achieve a more refined driving behavior. Hereby,
the development of automated systems will enhance road capacity and reduce travel times
(He et al., 2019).

The response time (or reaction time) for vehicle drivers is a time-related property that
has a physical meaning and resembles the delay between a stimulus and the response of
the driver or system. This property is used in microsimulation modeling as well, and its
values are directly related to the observed traffic flow. The estimation of the response
time in real-world observations is a challenging task, mainly due to complexity of the
controller’s operation and the noise in measurements. The estimated response time from
real-world is named as observable response time and it is different than the theoretical
response time that the system could have under ideal conditions. For human drivers,
it has been found that the reaction time (including perception, decision, and action) is
about 1.2 s (with a standard deviation of 0.3 s), see Lanaud et al. (2021). For ACC
systems, the corresponding response time has been found with similar values and it is





       

not, by any means, instantaneous, i.e. below 0.4s, under normal driving conditions, see
Makridis et al. (2020); Li et al. (2021). Regarding CACC, only preliminary findings exist
in the literature and this is a gap that the present paper aims to fill. The present paper
aims to systematically study the response time of ACC and CACC system in different
datasets and with different methodological approaches. The goal is to provide results
that are holistic (for both technologies), independent of the particularities of each dataset
and independent of the benefits and downsides of each theoretical approach. Three state
of the art approaches described in literature to estimate the response time, proposed in
Makridis et al. (2020), Lanaud et al. (2021) and Li et al. (2021), have been implemented
and applied on real-world observations. The three experimental campaigns used to provide
quantitative estimates of this property can be found in Tiernan et al. (2017), Tiernan
et al. (2019), and Makridis et al. (2021).

2 Discussion on different methods for response time
analysis

The response time corresponds to the temporal delay a vehicle within the platoon shows
when reacting to a change in speed performed by a preceding vehicle. The observable
response time that can be estimated from the data consists of several factors. It does
not only include the controller’s physical limit but also the delay in communication with
the subsystem and eventually the response strategy implemented by the manufacturer
(Makridis et al., 2020). The balance between a fast reaction time and a comfortable
driving experience must be found. Short response times would lead to frequent speed
adjustments and therefore result in uncomfortable acceleration and braking behavior.
Long response times, on the other hand, are a potential safety risk, when a preceding
vehicle applies hard braking.

In this work, the response time is estimated for the automated systems ACC and CACC.
The experiments were designed with longer periods where the platoon drives at a stable
speed (also called equilibrium speed) followed by an acceleration or deceleration performed
by the leading vehicle. The following vehicles’ controller adapts its speed as well, since it
tries to hold a constant time-gap. After this so called perturbation, the platoon settles
again either on the same or on a new equilibrium speed. Slices of the data around these
perturbation events, between 30 and 70 seconds long, are used to estimate the observable
response time within all the three estimation methods. Figure 1 shows exemplarily a





       

perturbation event from the ZalaZone campaign with ACC vehicles, where Vehicle L is
the leading vehicle and Vehicle 1 - 4 are the following vehicles. It is obvious from the
plot that there is a certain delay for the reaction of each following vehicle. Makridis et al.
(2020) mention that the response time for acceleration perturbations is similar to the
response time for deceleration perturbations. Therefore, it was not to be seen necessary
to differentiate between the acceleration and deceleration events when estimating the
reaction.

Figure 1: The platoon’s speed profiles from the ZalaZone campaign during a perturbation
imposed by the leading vehicle.

Three different approaches described in literature to estimate the response time have
been implemented and applied on the data. The first method proposed in Makridis et al.
(2020) (Ma) uses cross-correlation to determine the time delay of two signals. The second
method proposed by Lanaud et al. (2021) (La) and the third method by Li et al. (2021)
(Li) determine the time instants a vehicle starts its perturbation. In these cases, the
response time corresponds to the difference between the time instants of two successive
vehicles. In the subsections below, the three methods and their implementation will be
discussed and presented in detail.





       

2.1 Cross-Correlation Response Time Method

This method proposed in Makridis et al. (2020) uses the cross-correlation of two signals to
identify the time lag between the signals. Since the speed difference between two successive
vehicles is the decisive factor for the controller’s reaction (acceleration), the speed difference
4vl−v,t is considered as the first signal. The second signal is the acceleration of the follower
af,t. To begin with, the cross-covariance function σ4v,af (T ) between the two signal is
computed (Equation 1). Since the acceleration signal is shifted over the speed difference
signal, a time delay T is applied to the acceleration signal. In the cross-covariance function,
µ4v and µa describe the means of each signal and N is the number of measurements
(length of the time series in seconds multiplied with the frequency, e.g., 10 Hz).

σ4v,af (T ) =
1

N − 1

N∑
t=1

(4vl−f,t − µ4v)(af,t−T − µa) (1)

To compute the cross-correlation from the cross-covariance function, a normalization
has to be performed. The cross-correlation r4v,af (T ) corresponds to the cross-covariance
divided by the square root of the product of the variances of both signals (σ2

4v and σ2
af
)

(Equation 2). Finally, the delay where the cross-correlation is at maximum (τdelay) can be
considered as the estimated response time (Equation 3).

r4v,af (T ) =
σ4v,af (T )√
σ2
4vσ

2
af

(2)

τdelay = argmax(r4v,af (T )) (3)

Figure 2 shows the actual speed difference and acceleration in the first subplot. The
second subplot shows the cross-correlation function, where the estimated response time
corresponds to the time delay at the maximum of this function. In the third subplot,
the acceleration is shifted by this delay. One can clearly see that both signals match
relatively well if the y-axis is scaled with the ratio of the standard deviations from the
signals. Additionally, the value of the correlation coefficient provided by this method is
a measure for the certainty of the estimation. Events with a coefficient lower than 0.95
have been excluded from the results. Moreover, the method is on the one hand robust
with respect to noisy measurements, because it considers the whole slice of data in its





       

correlation. On the other hand, the method reflects the average response time over the
whole signal length, whereas the two methods following below focus on the response time
directly at the beginning of the perturbation.

Figure 2: Cross-correlation of the speed difference (between two successive vehicles and
the acceleration of the follower) to estimate the observable response time.





       

2.2 Acceleration Threshold Response Time Method

The method presented in Lanaud et al. (2021) determines the speed change instant,
where a vehicle absolves a designated acceleration after driving at a stable speed. The
difference between the speed change instants of two successive vehicles can be considered
as the response time. The procedure for determining the speed change instants works as
follows:

At the beginning, the rolling standard deviation of the vehicle’s speed is calculated for a
window of one second. Then, the gradient of the standard deviation is computed for each
time step. Finally, the total variance over the whole data is calculated as the standard
deviation of the gradient. To identify a speed change instant, the gradient, which reflects
the acceleration, must stay below the total variance for a certain set time. Afterwards,
the gradient has to exceed the threshold given by the total variance for a shorter period
of time. Only if both conditions are met when iterating through the time series, a speed
change is detected and the corresponding time stamp is saved. There are some parameters
that may be adjusted so that the method fits to the data. The time periods, for instance,
in which the vehicle’s acceleration needs to be below the threshold or in which it needs to
exceed the threshold can be changed. Furthermore, a factor applied to the total variance
threshold allows to tune the sensitivity of the method.

It can be concluded that the method proposed by Lanaud et al. (2021) works well on
the CARMA2 data, for which this method was originally designed. Yet when applying it
to data from OpenACC dataset, the parameters mentioned above need to be adjusted
for the method to work. The ACC vehicles are less stable around an equilibrium speed
and the acceleration is not as strong compared to the CACC vehicles from the CARMA2
campaign. The detected response times have a high variation and they often prove as
unreliable.

2.3 Oblique Speed and Wavelet Transform Response Time Method

This method proposed by Li et al. (2021) tries to detect the point in time where the
acceleration or deceleration starts. It can be achieved by calculating the oblique speed
profile and consequently by applying the wavelet transformation. To calculate the oblique
speed, the speed profile of the whole perturbation is cropped to the moment, when the
perturbation magnitude is highest. The next step in this procedure is computing a linear





       

function from the speed at the beginning of the speed profile to the speed at the end of
the now cropped slice of data.

Figure 3: Speed (a), oblique speed (b), wavelet transform coefficients (c), and average
wavelet energy (d) to identify the beginning of a perturbation.

The first subplot (a) of Figure 3 depicts the original speed profile of a vehicle and the
linear function passing through the speed at the beginning to the speed at the end of
the slice. The oblique speed is calculated by subtracting the linear function from the
original speed profile. As shown in the second subplot (b) of Figure 3, the beginning of
the perturbation is thereby emphasized, which will lead to a better recognition in the now
following wavelet transformation.

The application of the wavelet transform to vehicles’ speed profiles was originally presented
by Zheng et al. (2011) to identify the location of a bottleneck. A so-called Mexican hat
wavelet is applied to the oblique speed, with wavelet widths (scales) between 1 and 64. At





       

the maximum value of the average wavelet energy across all 64 scales, the starting point
of the perturbation is detected. The wavelet energy for the range of wavelet widths is
presented in the third subplot (c). The fourth subplot (d) shows the absolute average
energy across all these scales. Figure 4 shows the detected points on the speed profile of
the leading and the following vehicle.

Figure 4: Detected perturbation starting points for a leading and following vehicle.

By reflecting the applicability of the method, it becomes clear that the detected point
depends on the length of the time series data and the perturbation magnitude. On the
one hand, including a longer period of the equilibrium speed before the perturbation
occurs leads to a more flattened oblique speed and the acceleration or deceleration point is
detected early. On the other hand, a high perturbation magnitude does make the oblique
speed steeper and the detected point tends to be later. In case the following vehicle shows
overshooting behavior, its oblique speed is steeper than the oblique speed of the leading
vehicle and the maximum average wavelet energy turns out to be slightly later. Due to
the delayed detection of perturbations with higher magnitudes for vehicles that are string
unstable, the method is biased towards longer response times. Since the ACC vehicles
with a small headway setting from the experiments used in this work are string unstable,
the method results in higher reaction times for these vehicles.





       

3 Results

In this section, the results of the response time estimation with the three methods are
presented and discussed in greater details. Firstly, the response times over all methods are
reported and secondly, the differences between the methods are discussed. The response
time for the vehicles in the AstaZero ACC platoon is estimated to be around 1.3 to 2.5
seconds. Furthermore, the response times observed for the ZalaZone ACC platoon are
roughly between 0.5 and 2 seconds, and they are slightly increased for longer headway
settings. The CARMA2 CACC platoon features by far the smallest response times with
values between 0 and 1 second.

The difference of the estimated values between methods apparently results from the various
functioning of the methods. Due to the opportunity of filtering the response times for
their cross-correlation coefficient in the method from Makridis et al. (2020), the estimated
values show less variation than the estimated values from the other methods. A high cross-
correlation coefficient indicates good matching between the series and therefore a high
estimation quality. However, the methods from Lanaud et al. (2021) and Li et al. (2021) do
not provide such a key indicator. One has to examine the detected response times closely
to ensure that the methods work properly. Another interesting difference is that these
two methods result on average in slightly higher response times than the cross-correlation
method from Makridis et al. (2020). Since they detect individual points in the speed
data, they are very sensitive to the vehicles’ behavior at the beginning of a perturbation.
Especially the acceleration and deceleration sharpness effect the response time within the
method from Lanaud et al. (2021). A less sharp reaction of a following vehicle leads to
a delayed detection and therefore to higher response times. The method from Li et al.
(2021) is influenced in particular by the perturbation magnitude of the follower. Following
vehicles that dampen the perturbation, as it is the case within the CARMA2 platoon, have
a smaller magnitude than the leading vehicle. The speed transition is detected earlier,
which results in a lower response time. In the case of string instability, the opposite
happens and the detected response time becomes larger.

In summary, all three methods exhibit the same evolution for CACC vehicles towards
remarkably lower response times. The method proposed by Makridis et al. (2020) can be
considered as the most robust approach to estimate the response time from the methods
implemented in this work.





       

4 Conclusion

It was the goal of this work to achieve a better understanding of the behavior of advanced
automated systems and more particularly the response time capabilities of systems that
are commercially available (or will be soon) and are already considered the predecessors
of autonomous vehicles. Car-platoon data from empirical observations of independent
vehicle platooning experiments have been used to provide quantitative results on vehicles’
response times. The two datasets used were the OpenACC dataset, developed by the
European Commission and the CARMA2 dataset developed by the U.S. Department
of Transportation. Three different techniques for the estimation of a vehicle’s response
time were implemented. The analysis has led to revealing results. Whereas the ACC
response time is similar to the human driver’s reaction, the CACC vehicles’ response time
is significantly shorter. More specifically, the response times for ACC have been observed
to be in the range between 1.3 and 2.5 seconds. Furthermore, the response times for the
CACC vehicles in the CARMA2 platooning campaign have been estimated between 0.1
and 0.5 seconds, that are impressively low values. Research done on the facets of response
time in automated assistance systems show prospective results and further investigations
will particularly focus on such effect on traffic flow.
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