
ETH Library

Set-Centric Subgraph
Isomorphism

Bachelor Thesis

Author(s):
Kapp-Schwoerer, Lukas

Publication date:
2021-02-07

Permanent link:
https://doi.org/10.3929/ethz-b-000506421

Rights / license:
Creative Commons Attribution 4.0 International

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000506421
http://creativecommons.org/licenses/by/4.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Set-Centric
Subgraph Isomorphism

Bachelor Thesis

Lukas Kapp-Schwoerer

February 7, 2021

Advisors: Maciej Besta, Prof. Dr. Torsten Hoefler

Department of Computer Science, ETH Zürich





Abstract

We investigate techniques for accelerating subgraph isomorphism (SI).
SI is the task of finding occurrences of a pattern graph in a target graph
and relevant to many practical applications. Our key idea is to use set
algebra based formulations of SI. This facilitates employing set data
structures to test the feasibility of partial mappings from the pattern
graph to the target graph. The methods we use involve a range of
algorithm variants with different set-centric formulations of subgraph
isomorphism, different set data structures, and different parallelization
schemes. Our results show that our set-centric variants outperform the
baseline on some, but not all, pattern and target graphs. We conclude
that the relative performance of the algorithm variants is strongly im-
pacted by the choice of the input and propose further research direc-
tions to develop a more powerful algorithm.
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Chapter 1

Introduction

Subgraph isomorphism (SI) is the NP-complete problem to find occurrences
of a pattern graph in a target graph. It is an important problem in structural
pattern recognition with applications in biology [2, 16, 32], circuit design
[30] and social sciences [33, 34]. Solving subgraph isomorphism is also a
subroutine for other problems such as frequent subgraph mining [14, 20, 22].

Since the inception of VF2 [12] there has been continued research on acceler-
ating subgraph isomorphism. In recent years, this has included techniques
on parallel subgraph isomorphism [15, 4, 25]. On the other hand, for other
graph problems such as maximal clique listing and triangle counting set-
centric algorithms have been studied [17].

Our goal is to explore if such a set-centric approach can be applied for sub-
graph isomorphism. Many algorithms for subgraph isomorphism such as
VF [9, 10], VF2 [11], VF2+ [6], VF2++ [21], VF3 [5], VF3-Light [3], and RI
[2, 1] share the same algorithmic approach. They explore the state space of
partial mappings between pattern and target graph in a depth-first order,
while using heuristics to narrow down and speed up the search. We there-
fore focus on developing set-centric variants of one such algorithm with
relatively simple heuristics, namely set-centric variants of VF2 [11].

To this end, we 1) implement a set-centric version of the heuristics in VF2; 2)
develop an alternative set-centric formulation of subgraph isomorphism and
implement a corresponding algorithm variant; 3) test the algorithm variants
with set data structures based on roaring bitmaps [8, 24, 23] and robin hood
hashmaps [7, 13, 7]; 4) test the scaling behaviour of our algorithm variants
using different parallelization approaches with OMP [31].

We find that our set-centric VF2 variants outperform the non-set-based par-
allel baseline on some inputs. However, on many inputs, the baseline runs
faster than any of our set-centric variants. We conclude that the choice of
pattern and target graph heavily impacts how the analyzed algorithms per-
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1. Introduction

form relative to each other and propose further research directions to de-
velop a more powerful algorithm for subgraph isomorphism.
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Chapter 2

Notation

For quick reference we present an overview of our notation in the table
below.

Notation Description

G = (V, E, l) A labelled graph with label function l
GP A pattern graph (VP, EP, lP)
GT A target graph (VT, ET, lT)
M(s) ⊆ VP ×VT The mapping in state s
MP(s) The vertices of the Graph GP covered by M(s)
MT(s) The vertices of the Graph GT covered by M(s)
N(G, u) The neighborhood of vertex u in graph G
Pred(G, u) The predecessors of vertex u in graph G
Succ(G, u) The successors of vertex u in graph G

3



Chapter 3

Background

3.1 Subgraph Isomorphism

3.1.1 Problem Definition

The subgraph isomorphism (SI) problem is about finding occurrences of a
pattern graph GP in a target graph GT. It is a generalization of the graph
isomorphism problem, which seeks to find a bijection between two graphs.
In both problems, the mappings between the graphs can be constrained by
vertex and edge labels. For this purpose, we can define a labelled graph as
follows.

Definition 3.1 A labeled graph G = (V, E, l) is a graph with vertices E, directed
or undirected edges E and a label function l. The label function associates vertex
v ∈ V with label l(v) and edge e ∈ E with label l(e).

Formally graph isomorphism is defined by Shuming et al. [19] as

Definition 3.2 A graph G = (V, E, l) is isomorphic to H = (V ′, E′, l′) if and
only if there exists a bijective mapping f : V → V ′ such that 1. ∀u, v ∈ V :
(u, v) ∈ E ↔ ( f (u), f (v)) ∈ E′, 2. ∀u ∈ V : l(u) = l′( f (u)), 3. ∀(u, v) ∈ E :
l((u, v)) = l′(( f (u), f (v))).

With this definition, we can define the graph isomorphism problem as

Definition 3.3 The graph isomorphism problem is to decide whether two given
labeled graphs G = (V, E, l) and H = (V ′, E′, l′) are isomorphic.

As a generalization of definition 3.3 we can now define the subgraph iso-
morphism problem as

Definition 3.4 Given two labeled graphs GP = (VP, EP, lP) (called pattern) and
GT = (VT, ET, lT) (called target) the subgraph isomorphism problem is to decide
whether there exists a subgraph of GT that is isomorphic to GP.
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3.1. Subgraph Isomorphism

With these definitions we follow the convention of the authors of VF2,
Cordella et al. [12, 11], to define graph isomorphism based on induced
graphs, i.e. there may not be extra edges present in the target graph which
are not present in the pattern graph.

While definitions 3.3 and 3.4 are a decision problems, in many practical ap-
plications a listing or counting of the valid mappings is required [2, 16, 30].
We will focus on algorithmic approaches that count or list valid mappings
for subgraph isomorphism.

3.1.2 VF2 Algorithm

VF2 is an algorithm for listing subgraph isomorphisms given a pattern
graph GP = (VP, EP, lP) and a target graph GT = (VT, ET, lT). It was in-
troduced by Cordella et al. [12] and later improved by the same authors
[11]. In this work, we will refer with VF2 to this improved version.

The fundamental approach of VF2 is to recursively extend partial mappings
between the pattern graph and the target graph. To this end, a state s con-
tains a partial mapping M(s) ⊆ VP × VT and auxiliary variables for faster
computations. This algorithmic approach can be viewed as searching for
valid mappings in a state space as defined by [29]. VF2 traverses this state
space with a depth-first strategy starting with an empty mapping. Going
from a state s to a state s′ corresponds to adding a pair (u, v) to the partial
mapping M(s). To ensure listing only valid mappings, at each step, it is
verified that the new state s′ is consistent with the graph structures and la-
bels. Formally verifying that a state s′ is consistent means ensuring that the
vertices covered by M(s′) are isomorphic according to definition 3.2.

For many inputs the fraction of consistent states among all possible states is
small. VF2 exploits this by not only ensuring consistency when traversing
from s to s′, but also by using additional heuristics called k-look-ahead-rules
that exclude some states for which after k steps no consistent successor ex-
ists. Both the checking of consistency for adding (u, v) to s and the k-look-
ahead-rules are subsumed as feasibility rules. These can be split up as

F(s, u, v) = Fsyn(s, u, v) ∧ Fsem(s, u, v), (3.1)

where syntactic feasibility rules Fsyn(s, u, v) ensure consistency with regards
to the structure of the graph and semantic feasibility rules Fsem(s, u, v) en-
sure consistency with regards to the labels. These rules will be discussed in
detail later.

A high-level overview of the VF2 algorithm is displayed in figure 3.1. For
traversing recursively through the state space, VF2 starts with an empty
partial mapping. On each level of the recursion it first generates a list of
candidate pairs P ⊆ VP×VT that could be added to current state s. For each
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3. Background

Algorithm 1: VF2

Input: An intermediate state s.

Output: Mappings between the graphs.

1 if |VP| = |M(s)| then
2 output M(s);

3 else
4 P = Candidates(s)

5 foreach (u, v) ∈ P do
6 if Feasible(s, u, v) then
7 s′ = NewSate(s, u, v) ; // (u, v) added to M(s)

8 VF2(s′);

9 end

10 end

11 end

Figure 3.1: VF2 algorithm

such pair p = (u, v) ∈ P it is checked if the feasibility rules F(s, u, v) are
fulfilled. If F(s, u, v) evaluates to true for a candidate (u, v), the successor
state s′ is generated by adding (u, v) to the partial mapping in s and VF2 is
recursively called on s′.

Auxiliary variables

[11] use several auxiliary variables that are derived from the partial mapping
M(s). These are used in the candidate generation as well as feasibility rules
and are defined as follows. The vertices of the pattern graph, VP, respectively
of the target graph, VT, which are covered by M(s) are denoted by MP(s)
respectively MT(s). Formally

MP(s) = {u | ∃v : (u, v) ∈ M(s)}, (3.2)
MT(s) = {v | ∃u : (u, v) ∈ M(s)}. (3.3)

The vertices that are neighboring a vertex in MP(s) respectively MT(s) but
are not covered by M(s) are denoted by Tout

P (s) for outgoing edges from
MP(s) and Tin

P (s) for ingoing edges to MP(s), respectively Tout
T (s) and Tin

T (s).
With Pred(G, u) denoting the predecessors of a vertex u in a graph G and
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3.1. Subgraph Isomorphism

Succ(G, u) denoting its successors, this can be formally written as

Tout
P (s) = (

⋃
u∈MP(s)

Succ(GP, u))−MP(s), (3.4)

Tin
P (s) = (

⋃
u∈MP(s)

Pred(GP, u))−MP(s), (3.5)

Tout
T (s) = (

⋃
v∈MT(s)

Succ(GT, v))−MT(s), (3.6)

Tin
T (s) = (

⋃
v∈MT(s)

Pred(GT, v))−MT(s). (3.7)

These variables are combined to terms using ingoing and outgoing edges,
namely

TP(s) = Tout
P (s) ∪ Tin

P (s), (3.8)

TT(s) = Tout
T (s) ∪ Tin

T (s). (3.9)

Lastly, the remaining vertices that are neither in the partial mapping nor
adjacent to a vertex in the partial mapping are denoted by ṼP(s) and ṼT(s).
Formally this can be expressed as

ṼP(s) = VP −MP(s)− TP(s), (3.10)
ṼT(s) = VT −MT(s)− TT(s). (3.11)

Candidate Generation

A state can be reached through several paths in the state space. To reach each
consistent state exactly once VF2 defines an arbitrary total order relation ≺
on VT. With this total order relation a pair (u, v) ∈ VP × VT is only added
to the candidate pairs if the partial mapping does not already contain a pair
(u′, v′) with v′ ≺ v.

Given this total order relation ≺ on VT the candidates are generated accord-
ing to algorithm 2 in figure 3.2. Firstly, in line 1 the possible mappings
between vertices in Tout

P (s) and Tout
T (s) are considered. Recall from equa-

tions 3.4 and 3.6 that these are those vertices not yet in the partial mapping
MP(s) respectively MT(s), which are connected to a vertex already in the
partial mapping by an edge going out of MP(s) respectively MT(s). If there
are no such candidates, the same cartesian product is considered for ingoing
edges in line 3. Finally, if this still has not yielded any candidates, then the
cartesian product of all vertices not yet mapped is considered in line 6. Note
that this can not be empty as long as the mapping is partial, and that this
case is always taken when the routine is first called with empty partial map-
pings. From this procedure to generate candidate it immediately follows
that the the obtained mapping is injective. For later use, we formalize this
in the following corollary.

7



3. Background

Algorithm 2: Candidates

Input: An intermediate state s.

Output: Candidate pairs for extending the partial mapping of s.

1 P = {(u, v) | (u, v) ∈ Tout
P (s)× Tout

T (s) ∧ v ≺ min(MT(s))};

2 if P = ∅ then
3 P = {(u, v) | (u, v) ∈ Tin

P (s)× Tin
T (s) ∧ v ≺ min(MT(s))};

4 end

5 if P = ∅ then
6 P = {(u, v) | (u, v) ∈ (VP(s)−MP(s))× (VT(s)−MT(s)) ∧ v ≺

min(MT(s))};

7 end

8 return P

Figure 3.2: VF2 candidate pair generation

Corollary 3.5 At any point during the execution of VF2 it holds for the state s
that M(s) represents an injective mapping from MP(s) ⊆ VP to MT(s) ⊆ VT, as
well as an injective mapping from MT(s) ⊆ VT to MP(s) ⊆ VP, i.e.

M(s) ⊆ VP ×VT

and
∀(u, v), (u′, v′) ∈ M(s) : u = u′ ↔ v = v′.

Feasibility Rules

When adding a pair (u, v) ∈ VP × VT to the partial mapping M(s), VF2
checks the feasibility rules F(s, u, v). In the high-level overview of VF2 in
figure 3.1 this is done on line 6. In equation 3.1 we have seen that the
feasibility rules are the conjunction of syntactic and semantic feasibility. We
will now look at these in more detail.

The rules for syntactic feasibility F(s, u, v) ensure that the partial mapping
M(s) ∪ {(u, v)} is consistent with regards to the structure of the graphs, i.e.

∀(u′, v′), (u′′, v′′) ∈ M(s) ∪ {(u, v)} : (u′, u′′) ∈ EP ↔ (v′, v′′) ∈ ET. (3.12)

If s is consistent, then to guarantee the consistency of s′ obtained by adding
(u, v) to M(s) it is sufficient to check neighbors of u and v. This is what the

8



3.1. Subgraph Isomorphism

rules Rpred(s, u, v) and Rsucc(s, u, v) check for predecessors and successors,
formally

RPred(s, u, v)⇔
(∀u′ ∈ MP(s) ∩ Pred(GP, u) ∃v′ ∈ Pred(GT, v) : (u′, v′) ∈ M(s)) ∧
(∀v′ ∈ MT(s) ∩ Pred(GT, v) ∃u′ ∈ Pred(GP, u) : (u′, v′) ∈ M(s))

(3.13)
RSucc(s, u, v)⇔

(∀u′ ∈ MP(s) ∩ Succ(GP, u) ∃v′ ∈ Succ(GT, v) : (u′, v′) ∈ M(s)) ∧
(∀v′ ∈ MT(s) ∩ Succ(GT, v) ∃u′ ∈ Succ(GP, u) : (u′, v′) ∈ M(s))

(3.14)

These two rules would be sufficient to ensure equation 3.12. However,
Cordella et al. [11] add the rules Rin and Rout that are regarding syntac-
tic feasibility for states s′′ succeeding s′ in the state space (1-look-ahead) and
Rnew for states s′′′ succeeding s′′ (2-look-ahead). These additional rules are
not sufficient but necessary for equation 3.12 to be true. Hence they are
heuristics that can exclude some states for which it is guaranteed that they
do not have any consistent successors when looking one respectively two
levels ahead. Concretely, these rules are

Rin(s, u, v)⇔ |Succ(GP, u) ∩ Tin
P (s)| ≥ |Succ(GT, v) ∩ Tin

T (s)| ∧
|Pred(GP, u) ∩ Tin

P (s)| ≥ |Pred(GT, v) ∩ Tin
T (s)|

(3.15)

Rout(s, u, v)⇔ |Succ(GP, u) ∩ Tout
P (s)| ≥ |Succ(GT, v) ∩ Tout

T (s)| ∧
|Pred(GP, u) ∩ Tout

P (s)| ≥ |Pred(GT, v) ∩ Tout
T (s)|

(3.16)

Rnew(s, u, v)⇔ |ṼP(s) ∩ Pred(GP, u)| ≥ |ṼT(s) ∩ Pred(GP, v)| ∧
|ṼP(s) ∩ Succ(GP, u)| ≥ |ṼT(s) ∩ Succ(GP, v)|

(3.17)

With these rules we define the syntactic feasibility rule as

Fsyn(s, u, v) = RPred ∧ RSucc ∧ Rin ∧ Rout ∧ Rnew. (3.18)

The semantic feasibility ensures consistency between vertex / edge labels.
Such semantic feasibility is case specific. For example, the labels can be
symbolic and require exact equivalence, or they can be numeric and only
require similarity within some tolerance. For VF2 [11] define a compatibil-
ity relation ≈ between node / vertex labels that needs to be fulfilled for a
mapping to be consistent. With this compatibility relation we express the
semantic feasibility rule Fsem(s, u, v) for adding (u, v) ∈ VP × VT to M(s) as
the requirement of the vertex labels being compatible, i.e. u ≈ v, as well as
the edges incident to u being compatible to the edges incident to v. Note
that the existence of the edges is ensured by the syntactic feasibility, so for

9



3. Background

semantic feasibility it is sufficient to ensure compatibility of the labels. For-
mally this combination of the compatibility of u, v as well as of their incident
edges can be expressed as

Fsem(s, u, v)⇔ u ≈ v
∧ ∀(u′, v′) ∈ M(s) : (u, u′) ∈ EP → (u, u′) ≈ (v, v′)
∧ ∀(u′, v′) ∈ M(s) : (u′, u) ∈ EP → (u′, u) ≈ (v′, v).

(3.19)

The feasibility rules introduced by Cordella et al. for VF2 [12, 11] are in
this form already fairly set-centric. However, Cordella et al. explicitly use
vectors for their data structures.

3.2 Data-Structures for Sets

In this section, we will introduce data structures for sets. First we introduce
fundamental data structures in 3.2.1. Building on these fundamental data
structures we will present roaring bitmaps in 3.2.2 and robin hood hashmaps
in 3.2.3. These will be used in chapter 4 for developing a set-centric imple-
mentation for the subgraph isomorphism.

3.2.1 Arrays, Dense Bitmaps

Arrays

An array is a collection of elements such that the ith element is stored at the
ith position. For integers, this typically means that each integer is encoded
in base 2 with a fixed length. Arrays can be sorted or unsorted. Sorted
arrays allow fast look-up through binary search.

Dense Bitmaps

A dense bitmap represents a domain on size d with d bits. The ith bit is
set to one if and only if the ith element of the domain is present in the
data structure. For integers, this typically means that an interval [a, b] is
represented by setting the ith bit to 1 if and only if the a+ith integer is
present.

3.2.2 Roaring Bitmaps

Roaring Bitmaps were introduced by [8] to provide a data structure for inte-
gers with both a relatively small memory footprint, as well as fast look-up,
insertion and removal times. This is achieved by combining several more
fundamental data structures.

10



3.2. Data-Structures for Sets

Arrays are efficient when the elements are very sparse. In contrast, dense
bitmaps are efficient when the elements are dense. Roaring bitmaps com-
bine these properties by partitioning the domain of possible elements into
chunks. Each chunk is represented by a container. A container can assume
one of several fundamental data structures.

In the original version by Chambi et al. [8] containers can either be arrays or
dense bitmaps. In the follow-up paper by Lemire et al. [24] containers can
assume a third type: run containers. Run containers represent the elements
by containing several tuples (a, l). Each tuple indicates that the integers in
the interval [a, a + l] are present in the container. We are using the latest
version of roaring containers by Lemire et al. [23]. This version improved
on the previous ones by using SIMD for vectorized instructions of up to
256-bit vectors.

3.2.3 Robin Hood Hashmap

Another library for a set data structure that we are using is based on robin
hood hashing. Robin hood hashing was introduced by Celis et al. [7] and has
attracted widespread analysis [13, 28]. The basic principle is to implement a
hash function that, in case of collision, allows the element that has travelled
the furthest away to stay in its position.

This simple hashing scheme has an exponentially faster search time than
open addressing hashing with a first come first served collision strategy [13]
and low variance, even when alternating insertions and deletions [28].

The library we were provided with uses robin hood hashing to store ele-
ments of a set data structure. When calculating the intersection of two sets,
it iterates through the elements in the set with smaller cardinality and tests
for their membership in the other set.

11



Chapter 4

Set-Centric Subgraph Isomorphism

In this chapter, we will develop a parallel baseline and set-centric implemen-
tation. Both are based on a reference implementation of VF2 as described
in section 3.1 that was made available to us. The set-centric variant uses the
same mechanics as the parallel baselines to achieve parallelism but draws
on section 3.2 for set-centric data structures and operations. For simplic-
ity, the implementation considers all edges as undirected and labels are not
considered.

4.1 Parallel Baseline

For parallelizing VF2 the Open Multi-Processing (OMP) 4.5 framework in
C++ developed by [31] is used. The implementation of the high-level VF2
function is displayed in figure 4.1. In this figure key components of the
algorithm are abstracted by functions, such as the generation of candidate
pairs in line 11, the checking of feasibility in line 18, and the adding of a
pair to a state in line 21. The high-level VF2 function can be parallelized by
using OMP without changing the lower-level functions.

OMP is a framework which allows adding preprocessing directives called
OMP pragmas to C++ code. These preprocessing directives instruct the
compiler to generate parallel cause by using the parallelizing abstractions
provided by OMP. One such abstraction is OMP tasks. An OMP task is
defined by [31] as "A specific instance of executable code and its data envi-
ronment", which is "generated when a thread encounters a task, taskloop,
[or one of several other constructs]". It is a collection of code and data that
a thread can work on, while other threads work on different tasks.

In OMP, we have to specify that we want to use multiple threads before
creating tasks that these threads can work on. This is done using the omp
parallel pragma. As can be seen in figure 4.2 we do this by surrounding the

12



4.1. Parallel Baseline

1 void VF2 : : so lve ( const CSRGraph &t a r g e t , const CSRGraph &pattern ,
2 S t a t e &s t a t e , Resul t &r e s u l t )
3 {
4 // i f M1 i s already f u l l , save r e s u l t
5 i f ( s t a t e . patternMappedNodes . s i z e ( ) == s t a t e . patternVertexCount )
6 {
7 s t a t e . saveToResult ( r e s u l t ) ;
8 re turn ;
9 }

10
11 std : : vector <std : : pair <NodeId , NodeId>> P = genCandidates ( s t a t e ) ;
12
13 f o r ( auto p = P . begin ( ) ; p != P . end ( ) ; p++)
14 {
15 const NodeId u = p−> f i r s t ;
16 const NodeId v = p−>second ;
17
18 i f ( f e a s i b l e ( s t a t e , t a r g e t , pat tern , u , v ) )
19 {
20 {
21 s t a t e . addNewPair ( u , v ) ;
22 solve ( t a r g e t , pat tern , s t a t e , r e s u l t ) ;
23 }
24 }
25 }
26 }

Figure 4.1: High-level VF2 function

initial call to the recursive VF2 solve function with a omp parallel pragma. To
execute this initial call to the VF2 solve function not once per thread but only
one single time, we have to add a omp single pragma. With this combina-
tion of omp parallel and omp single, we can create tasks which are distributed
among threads. Note that both omp parallel and omp single act as implicit
synchronization barriers for the threads so that all tasks get completed be-
fore any thread is terminated. Furthermore we enable nested parallelism in
line 1 of figure 4.2 in order for tasks to be able to create tasks.

1 omp_set_nested ( t rue ) ;
2 #pragma omp p a r a l l e l
3 {
4 #pragma omp s i n g l e
5 {
6 solve ( Target , Pattern , s t a t e ) ;
7 }
8 }

Figure 4.2: Initial call to VF2 with omp pragmas
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4. Set-Centric Subgraph Isomorphism

Using multiple threads means that different threads could concurrently find
a valid isomorphism and execute the code in line 7 of figure 4.1 with a race
condition. We therefore replace the saving of results with the code in figure
4.3. Thereby the results are saved in a separate data structure per thread
and combined at the end of the execution.

1 // i f M1 i s already f u l l , save r e s u l t
2 i f ( s t a t e . patternMappedNodes . s i z e ( ) == s t a t e . patternVertexCount )
3 {
4 s t a t e . saveToResult ( r e s u l t s [ omp_get_thread_num ( ) ] ) ;
5 re turn ;
6 }

Figure 4.3: Saving the number of isomorphisms with multiple threads

One possibility for parallelizing the high level VF2 function in figure 4.1
with the OMP abstraction of tasks is by creating one task for each feasible
state. This is done in figure 4.4 by adding an omp task pragma around the
creation of a new state and the recursive call for that new state which is in
lines 21-22 of figure 4.1. As parameters of the new task we specify how the
data environment of this task is created. First we specify default (none) in
line 3 of figure 4.4 to make explicit that only data which is mentioned in
the other parameters is added to the data environment. Next, we specify in
line 4 which data is shared between the previous data environment and the
created task’s new data environment. We share std::cout to be able to write
to stdout from all tasks. Furthermore we share pattern and target which are
constant data structures representing GP and GT. Lastly, we specify first-
private(state, n, m). This instructs copies of state, n, m to be private variables
of the task’s data environment. With these shared and private variables we
can finally add the candidate pair in line 7 of 4.4 and recursively call the
VF2 solve function in line 8.

1 i f ( f e a s i b l e ( s t a t e , t a r g e t , pat tern , n , m) )
2 {
3 #pragma omp task d e f a u l t ( none )
4 shared ( std : : cout , pat tern , t a r g e t )
5 f i r s t p r i v a t e ( s t a t e , n , m)
6 {
7 s t a t e . addNewPair ( n , m) ;
8 solve ( t a r g e t , pat tern , s t a t e ) ;
9 }

10 }

Figure 4.4: Parallelizing over feasible states

14



4.2. Set-Centric Implementation

An alternative to parallelizing over feasible states as displayed in figure 4.4
is to parallelize over candidate pairs. To this end the omp taskloop pragma
can be used to parallelize the for loop in line 13 of figure 4.1. This variant
is displayed in figure 4.5. Similar to the previous variant in figure 4.4, in
figure 4.5 lines 1-3 we specify the creation of the data environment. For the
OMP taskloop there is the additional parameter grainsize in line 4 of figure
4.5, which specifies how many iterations of the for-loop should be combined
into one task.

1 #pragma omp taskloop d e f a u l t ( none )
2 shared ( P , s td : : cout , pat tern , t a r g e t )
3 f i r s t p r i v a t e ( s t a t e )
4 g r a i n s i z e ( t a s k l o o p _ g r a i n s i z e )
5 f o r ( auto p = P . begin ( ) ; p != P . end ( ) ; p++)

Figure 4.5: Parallelizing over candidate pairs

The variants of parallelizing over feasible states as displayed in figure 4.4 or
over candidate pairs as displayed in figure 4.5 can be chosen alternatively to
each other, or both can be implemented in combination. Hence in chapter 5
all possibilities will be tested.

4.2 Set-Centric Implementation

As we have seen in section 3.1 the feasibility constraints of VF2 have a nat-
ural expression with set operations. Nevertheless, the data structures being
described by [11] in the paper and those used in their implementation are
not sets. Since most of the computational effort is spent on evaluating fea-
sibility constraints, the focus of our set-centric implementation is to use set
operations for the checking of feasibility constraints.

We will now discuss possible implementations of the syntactic feasibility
constraints one by one.

Core rule: RPred and RSucc

Since we’re considering all edges to be undirected, RPred and RSucc can be
combined to

RCore(s, u, v)⇔
(∀u′ ∈ MP(s) ∩ N(GP, u) ∃v′ ∈ N(GT, v) : (u′, v′) ∈ M(s)) ∧
(∀v′ ∈ MT(s) ∩ N(GT, v) ∃u′ ∈ N(GP, u) : (u′, v′) ∈ M(s)),

(4.1)

where N(G, u) is the neighborhood of u in G. Naming this rule Rcore is
taken from [6] to express that it is the main rule in the sense that it implies
the state obtained by adding (u, v) is consistent.
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4. Set-Centric Subgraph Isomorphism

A set-centric implementation of RCore is displayed in figure 4.6. In order
to evaluate the rule efficiently for a given input s, u, v, we first compute
MP(s) ∩ N(GP, u) and MT(s) ∩ N(GT, v) in lines 4-7. We can then iterate
over the vertices in these intersections and check for their membership in
N(GP, u) respectively N(GT, u). As discussed in section 3.2, how efficiently
the intersection and the membership are computed depends on which set
representation is used.

1 bool checkCoreRule ( const S t a t e &s t a t e , const Graph &G1 ,
2 const Graph &G2 , const NodeId n , const NodeId m)
3 {
4 auto targetMappedNeighbors = GT. out_neigh ( n ) . i n t e r s e c t (
5 s t a t e . targetMappedNodes ) ;
6 auto patternMappedNeighbors = G2 . out_neigh (m) . i n t e r s e c t (
7 s t a t e . patternMappedNodes ) ;
8
9 f o r ( auto targetMappedNeighbor : targetMappedNeighbors ) {

10 auto patterMappedNode = s t a t e . mappingTargetToPattern
11 [ targetMappedNeighbor ] ;
12 i f ( ! patternMappedNeighbors . conta ins ( patterMappedNode ) ) {
13 re turn f a l s e ;
14 }
15 }
16
17 f o r ( auto patternMappedNeighbor : patternMappedNeighbors ) {
18 auto targetMappedNode = s t a t e . mappingPatternToTarget
19 [ patternMappedNeighbor ] ;
20 i f ( ! targetMappedNeighbors . conta ins ( targetMappedNode ) ) {
21 re turn f a l s e ;
22 }
23 }
24 re turn true ;
25 }

Figure 4.6: Core rule variant 1

A variation of the RCore rule implementation in figure 4.6 is displayed in
figure 4.7. It is based on the following theorem.
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4.2. Set-Centric Implementation

Theorem 4.1 Under the assumption of corollary 3.5, the RCore(s, u, v) rule

(∀u′ ∈ MP(s) ∩ N(GP, u) ∃v′ ∈ N(GT, v) : (u′, v′) ∈ M(s))
∧ (∀v′ ∈ MT(s) ∩ N(GT, v) ∃u′ ∈ N(GP, u) : (u′, v′) ∈ M(s))

(4.2)

is equivalent to the expression

|{v′ | ∃u′ : u′ ∈ MP(s) ∩ N(GP, u) ∧ (u′, v′) ∈ M(s)} ∩ N(GT, v)|
= |MP(s) ∩ N(GP, u)|
= |MT(s) ∩ N(GT, v)|.

(4.3)

Proof We will first proof that equation 4.2 implies equation 4.3 (⇒), and
then that equation 4.3 implies equation 4.2 (⇐).

⇒

Suppose equation 4.2 holds. From the first term in the conjunction of equa-
tion 4.2 we know that every element in MP(s) ∩ N(GP, u) is mapped to an
element in N(GT, v). By corollary 3.5 this mapping is injective and hence ev-
ery element in MP(s)∩N(GP, u) is mapped to a unique element in N(GT, v),
i.e.

|{v′ | ∃u′ : u′ ∈ MP(s) ∩ N(GP, u) ∧ (u′, v′) ∈ M(s)} ∩ N(GT, v)|
= |MP(s) ∩ N(GP, u)|.

(4.4)

We have already established that every element in MP(s) ∩ N(GP, u) is in-
jectively mapped to an element in N(GT, v). Since all mapped elements in
N(GT, v) are in MT(s) ∩ N(GT, v), it follows that every element in MP(s) ∩
N(GP, u) is injectively mapped to an element in MT(s)∩N(GT, v), and hence

|MP(s) ∩ N(GP, u)|
≤|MT(s) ∩ N(GT, v)|.

(4.5)

By the second term in the conjunction of equation 4.2 every element in
MT(s) ∩ N(GT, v) is mapped to an element in N(GP, u). From corollary 3.5
we know that this mapping in injective. Since furthermore every mapped
element in N(GP, u) is in MP(s) ∩ N(GP, u), it follows that every element in
MT(s) ∩ N(GT, v) in injectively mapped to an element in MT(s) ∩ N(GT, v),
and hence

|MT(s) ∩ N(GT, v)|
≤|MP(s) ∩ N(GP, u)|.

(4.6)

Combining equations 4.5 and 4.6 gives

|MP(s) ∩ N(GP, u)| = |MT(s) ∩ N(GT, v)|. (4.7)

Equation 4.7 combined with equation 4.4 gives equation 4.3.
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4. Set-Centric Subgraph Isomorphism

⇐

Suppose equation 4.3 holds. Assume for contradiction that equation 4.2 is
false.

Since equation 4.2 is false at least one of the terms in its conjunction is false,
which implies that at least one of the following holds: 1) There exists a u′ ∈
MP(s) ∩ N(GP, u) for which there is no v′ ∈ N(GT, v) with (u′, v′) ∈ M(s),
or 2) there exists a v′ ∈ MT(s)∩N(GT, v) for which there is no u′ ∈ N(GP, u)
with (u′, v′) ∈ M(s).

Case 1: ∃u′ ∈ MP(s) ∩ N(GP, u)@v′ ∈ N(GT, v) : (u′, v′) ∈ M(s)
By the assumption of the case there exists a u′ ∈ MP(s)∩N(GP, u) for which
there is no v′ ∈ N(GT, v) with (u′, v′) ∈ M(s). Since this u′ ∈ MP(s), u′ is
mapped, i.e. there exists a v′ with (u′, v′) ∈ M(s). By the assumption of the
case it holds for this v′ that v′ 6∈ N(GT, v). This can be rewritten as

∃v′ ∈ {v′ | ∃u′ : u′ ∈ MP(s) ∩ N(GP, u) ∧ (u′, v′) ∈ M(s)} : v′ 6∈ N(GT, v)
(4.8)

which implies that

|{v′ | ∃u′ : u′ ∈ MP(s) ∩ N(GP, u) ∧ (u′, v′) ∈ M(s)} ∩ N(GT, v)|
< |{v′ | ∃u′ : u′ ∈ MP(s) ∩ N(GP, u) ∧ (u′, v′) ∈ M(s)}|.

(4.9)

On the other hand, since by corollary 3.5 M(s) is an injective mapping, it
holds for any set S that

|{v′ | ∃u′ : u′ ∈ S ∧ (u′, v′) ∈ M(s)}| ≤ |S|. (4.10)

By instantiating S = MP(s) ∩ N(GP, u) it follows that

|{v′ | ∃u′ : u′ ∈ MP(s) ∩ N(GP, u) ∧ (u′, v′) ∈ M(s)}|
≤ |MP(s) ∩ N(GP, u)|.

(4.11)

Combining equations 4.9 and 4.11 gives

|{v′ | ∃u′ : u′ ∈ MP(s) ∩ N(GP, u) ∧ (u′, v′) ∈ M(s)} ∩ N(GT, v)|
< |MP(s) ∩ N(GP, u)|,

(4.12)

contradicting equation 4.3.

Case 2: ∃v′ ∈ MT(s) ∩ N(GT, v)@u′ ∈ N(GP, u) : (u′, v′) ∈ M(s)
For every u′ ∈ MP(s) ∩ N(GP, u) there exists v′ ∈ MT(s) with (u′, v′) ∈ M.
Since by corollary 3.5 this mapping is injective, and by the case assumption
there exists v′ ∈ MT(s) ∩ N(GT, v)@u′ ∈ N(GP, u) : (u′, v′) ∈ M(s), and by
equation 4.3 it holds that |MP(s)∩N(GP, u)| = |MT(s)∩N(GT, v)|, it follows
that there exists u′ ∈ MP(s) ∩ N(GP, u) for which there exists v′ ∈ MT(s) \
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4.2. Set-Centric Implementation

N(GT, v) with (u′, v′) ∈ M(s). Since by corollary 3.5 M(s) is injective this is
equivalent to ∃v′ ∈ MT(s) ∩ N(GT, v)@u′ ∈ N(GP, u) : (u′, v′) ∈ M(s). We
have already shown in case 1 that this implies equation 4.12, contradicting
equation 4.3. �

We have proven that under the assumption of corollary 3.5 the core rule of
the feasibility constraints from equation 4.2 can be rewritten to the equiva-
lent equation 4.3. This core rule is both necessary and sufficient for ensuring
that the obtained mapping is a consistent subgraph isomorphism. In other
words, rewriting the core rule has given us a new set-centric formulation of
subgraph isomorphism.

Using theorem 4.1 we obtain a variant of the code in figure 4.6 with the
equivalent feasibility check from the theorem. The resulting implementation
is displayed in figure 4.7.

1 bool checkCoreRule ( const S t a t e &s t a t e , const Graph &G1 ,
2 const Graph &G2 , const NodeId n , const NodeId m)
3 {
4 auto targetMappedNeighbors = GT. neigh ( n ) . i n t e r s e c t (
5 s t a t e . targetMappedNodes ) ;
6 auto patternMappedNeighbors = G2 . neigh (m) . i n t e r s e c t (
7 s t a t e . patternMappedNodes ) ;
8
9 Set vDash ;

10 f o r ( auto targetMappedNeighbor : targetMappedNeighbors ) {
11 vDash . add ( s t a t e . mappingTargetToPattern
12 [ targetMappedNeighbor ] ) ;
13 }
14
15 i n t i n t e r s e c t _ c o u n t = vDash . i n t e r s e c t _ c o u n t (
16 patternMappedNeighbors ) ;
17
18 i f ( i n t e r s e c t _ c o u n t != targetMappedNeighbors . c a r d i n a l i t y ( ) ) {
19 re turn f a l s e ;
20 }
21
22 i f ( i n t e r s e c t _ c o u n t != patternMappedNeighbors . c a r d i n a l i t y ( ) ) {
23 re turn f a l s e ;
24 }
25
26 return true ;
27 }

Figure 4.7: Core rule variant 2
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4. Set-Centric Subgraph Isomorphism

1-look-ahead rule: RIn and ROut

Using the simplification of treating all edges as undirected edges, the rules
Rin and Rout can be implemented as displayed in figure 4.8.

1 bool checkTermRule ( const S t a t e &s t a t e , const Graph &G1 ,
2 const Graph &G2 , const NodeId n , const NodeId m)
3 {
4 uint count1 = G1 . neigh ( n )
5 . i n t e r s e c t _ c o u n t ( s t a t e . t a r g e t O u t F r o n t i e r ) ;
6 uint count2 = G2 . neigh (m)
7 . i n t e r s e c t _ c o u n t ( s t a t e . pat ternOutFront ier ) ;
8 re turn count1 >= count2 ;
9 }

Figure 4.8: 1-look-ahead rule

2-look-ahead rule: Rnew

Using the simplification of treating all edges as undirected edges, the rule
Rnew can be implemented as displayed in figure 4.9.

1 bool checkNewRule ( const S t a t e &s t a t e , const Graph &G1 ,
2 const Graph &G2 , const NodeId n , const NodeId m)
3 {
4 uint count1 = G1 . neigh ( n ) . d i f f e r e n c e (
5 s t a t e . targetMappedNodes
6 . union_with ( s t a t e . t a r g e t O u t F r o n t i e r )
7 ) . c a r d i n a l i t y ( ) ;
8 uint count2 = G2 . neigh (m) . d i f f e r e n c e (
9 s t a t e . patternMappedNodes

10 . union_with ( s t a t e . pat ternOutFront ier )
11 ) . c a r d i n a l i t y ( ) ;
12 re turn count1 >= count2 ;
13 }

Figure 4.9: 2-look-ahead rule
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Chapter 5

Experiments

In this section we will present our experimental results. To this end, we will
first describe our experimental setup in section 5.1 followed by our results
in section 5.2.

5.1 Experimental Setup

Throughout the conduction and presentation of our results we strive to ad-
here to the guidelines recommended by Hoefler et al. for scientific bench-
marking of parallel computing systems [18]. To this end we first present
our hardware and software setups, followed by some remark on our mea-
surement and reporting procedure. Later we present the pattern and target
graphs used for our experiments.

5.1.1 Hardware and software setup

Our experiments were each run separately on a single node that was other-
wise load-free. The node has two 64-core AMD EPYC 7742 processors with
disabled hyper-threading and 504 GiB DDR4-3200 RAM. The storage and
filesystem setup does not impact our results. All codes were compiled with
gcc version 9.2.0 and OpenMP version 4.5.

5.1.2 Measurement and reporting procedure

As recommended by Hoefler et al. [18] we exclude the first measurement
per run in order to allow for a warmup period. We also follow their advice
to use the whole node for our result, i.e. we conduct all experiments with up
to 128 threads (the number of cores available) independent of how well the
code scales to this number of threads. Finally, we implement their guideline
of reporting confidence intervals where appropriate, though it is still left
open to test the implicit normal distribution assumption.
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5. Experiments

5.1.3 Pattern and target graphs

Graph Nodes Edges Density
Max
Deg

Min
Deg

Mean
Deg

bio-celegans 453 2’025 0.020 237 1 8
bio-celegansneural 297 2’346 0.053 134 1 15
bio-diseasome 516 1’188 0.009 50 1 4
bio-yeast 1’458 1’948 0.002 56 1 2
dimacs-brock200-2 200 9’876 0.496 114 78 98
dimacs-c-fat200-1 200 1’534 0.077 17 14 15
dimacs-c-fat200-2 200 3’235 0.163 34 32 32
dimacs-c-fat200-5 200 8’473 0.426 86 83 84
dimacs-c-fat500-1 500 4’459 0.036 20 17 17
dimacs-c-fat500-2 500 9’139 0.073 38 35 36
dimacs-c125-9 125 6’963 0.898 119 102 111
misc-erdos992 6’100 7’515 0.0004 61 0 2
delaunay-n10 1’024 3’056 0.006 12 3 5
dimacs-hamming6-2 64 1’824 0.905 57 57 57
dimacs-johnson16-2-4 120 5’460 0.765 91 91 91
dimacs-keller4 171 9’435 0.649 124 102 110
dimacs-mann-a9 45 918 0.927 41 40 40
san200-0-7-1 200 13’930 0.700 155 125 139

Figure 5.1: Target graphs

Figure 5.2: The graph we refer to as
Graph(n=6, m=10)

For testing our algorithm variants we use
different pattern and target graphs. The
generation of input graphs for subgraph
isomorphism is a research area in its own
[36, 27, 26]. Our target graphs cover a wide
range of real-world and synthetic data.
They are sourced from the Network Data
Repository [35]. An overview of their char-
acteristics is displayed in figure 5.1.

To keep the required computation time for
the experiments in a feasible range we
chose to only use two different pattern
graphs. One of them is a triangle and the other one drawn uniformly at
random among all undirected graphs with 6 nodes and 10 vertices. This
randomly drawn graph is displayed in figure 5.2 and will be referred to as
Graph(n=6, m=10).
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5.2 Results

In this section, we will evaluate the performance of VF2 variants we have de-
veloped. Since the search space is so vast, we will analyze different aspects
of the algorithm independently.

5.2.1 Performance distribution over all variants

Before we compare specific variations of VF2, we take a look at the per-
formance distribution over all VF2 variants to see how large the range of
performance results is.

In figure 5.3 we see the performance of all tested versions per combination
of pattern and target graph when using 1 thread in 5.3a and 16 threads in
5.3b. For the 5.3b only parallel variants of VF2 have been used.

We note that with 1 thread the shortest and the longest execution time per
pattern and graph combination are typically a factor of 5-10x apart. With 16
threads we observe that the longest and fastest execution time per pattern
and target combination are typically a factor of circa 10x apart, with some
being as far as a factor of 100x apart. From this high-level analysis, we
conclude that the developed VF2 variants vary widely in performance. In
the following sections we will take a closer look at the underlying aspects of
this variability.

5.2.2 Performance comparison of specific VF2 variants

Sequential vs. 1-Thread Parallel

As described in section 4.1 we have used OMP to parallelize VF2. To test
whether this parallelization includes thread management which may deteri-
orate performance even when using only 1 thread, we compare the parallel
baseline against a sequential baseline. The sequential baseline is equivalent
to the parallel baseline without OMP primitives. The result can be seen in
figure 5.4.

We note that with 1 thread, the parallel baseline’s performance is very simi-
lar compared to the performance of the sequential baseline, except for some
pattern and target combinations for which the runtime is low. This holds for
all variants of OMP parallelization introduced in section 4.1, namely using
the OMP task primitive, taskloop primitive, or both simultaneously.

Parallelization options OMP task vs. OMP taskloop

In this part we will compare the parallelization variants introduced in sec-
tion 4.1. In particular, we will analyze the performance of using the prim-
itives OMP task, OMP taskloop, or both simultaneously for parallelization.
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(a) 1 thread

(b) 16 threads

Figure 5.3: Distribution of average execution times per combination of pattern and target
graphs across (a) variants of VF2 using 1 thread and (b) across parallel variants using 16
threads

We will also investigate the influence of different grainsizes (how many loop
iterations to combine into one task) when parallelizing over a for-loop with
OMP taskloop.

Since the search space would be too vast when combining the variability of
OMP pragmas with other changes to VF2, we use only the parallel baseline
in this comparison. That means we use the non-set-centric data structures
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5.2. Results

Figure 5.4: distribution of average execution times per combination of pattern and target graphs
across non-set-centric variants of VF2 with 1 threads

with all look-ahead rules as described by [11].

The results for some input and target graphs can be seen in figure 5.5. For
the pattern Graph(n=6, m=10) in both figures 5.5b and 5.5d using the OMP
task primitive performs best. In fact, with the pattern Graph(n=6, m=10) the
OMP task primitive has outperformed OMP taskloop and combining both
primitives with any target graph we have tested.

For the triangle target graph, the results are more mixed. In some runs
such as 5.5a OMP taskloop performs best, in others such as 5.5c OMP task
performs best. However, in no experiment using both task and taskloop
simultaneously performed best.

We also note that the overall performance scaling varies widely across the
experiments. For many algorithm variants and pattern/target graph com-
binations, speedups linear with the number of cores are observed when
scaling wth 1-32 threads, such as in figure 5.5b for the OMP task paralleliza-
tion. However, for target graphs where the sequential algorithm with the
triangle pattern has an execution time of less than 200ms we see bad scal-
ing behaviour, sometimes even when increasing runtime when scaling from
1 to 2 threads. Figure 5.5d is an example of this scaling behavior. There-
fore, we exclude target graphs with such short execution times from further
experiments.

Recall from section 4.1 that the taskloop has a grainsize parameter that con-
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(a) dimacs-johnson16-2-4 (density 0.765),
pattern triangle

(b) dimacs-johnson16-2-4 (density 0.765),
pattern Graph(n=6, m=10)

(c) misc-erdos992 (density 0.0004),
pattern triangle

(d) misc-erdos992 (density 0.0004),
pattern Graph(n=6, m=10)

Figure 5.5: Execution time with 95% confidence interval across OMP parallelization op-
tions for some pattern and target graph combinations

trols how many loop-iterations are combined to one task, with the default
being a grainsize of 1. To get more insight into the parallelization behaviour
we have conducted a series of experiments with the parallel baseline using
the OMP taskloop primitive and varying grainsize. The results for some
combinations of pattern and target graphs can be seen in figure 5.6.

We tested grainsizes 1, 2, 4, 8, and 16. We observe that among these the
grainsize 8 or 16 is optimal for most tested combinations of pattern and
target graph (such as 5.6a, 5.6b and 5.6c). The only exception among all
tested combinations is the combination of pattern Graph(n=6, m=10) and
target graph bio-celegans displayed in figure 5.6d. Here grainsize 1 follows
best, followed by 16, 2, 8, 4. Note that these results are averaged over 3 runs
with low variance, the 95% confidence interval is displayed in the figures.
This order persisted also after re-running the experiment.
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(a) dimacs-johnson16-2-4 (density 0.765),
pattern triangle

(b) dimacs-johnson16-2-4 (density 0.765),
pattern Graph(n=6, m=10)

(c) dimacs-c125-9 (density 0.898),
pattern triangle

(d) bio-celegans (density 0.020),
pattern Graph(n=6, m=10)

Figure 5.6: Execution time with 95% confidence interval across the grainsize for OMP
taskloops for some pattern and target graph combinations

Set-Centric variants vs. parallel baseline

We will now study how the non-set-based parallel baseline from 4.1 com-
pares to the set-centric variants from 4.2. For the set-centric variants, we have
different parallelization options, variants of feasibility rules, and set-types.
We have already studied the parallelization options for the non-set-based
parallel baseline in the previous section. To confine the search space, we
limit the parallelization option for the set-centric variants to the OMP task
primitive and focus on varying the feasibility rules and the set-type.

For the choice of the feasibility rules we have the following options: With
theorem 4.1 we have proven that the core rule can be rewritten and imple-
mented as either variant 1 displayed in figure 4.6 or variant 2 displayed in
figure 4.7.

We start by assessing variant 1 of the core rule vs. variant 2 of the core rule
since we expect this comparison to be independent of other variability. The
result can be seen in figure 5.7.

From the experiments in figure 5.7 we can see that with both roaring bitmaps
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(a) dimacs-johnson16-2-4 (density 0.765),
pattern triangle

(b) dimacs-johnson16-2-4 (density 0.765),
pattern Graph(n=6, m=10)

Figure 5.7: Execution time with 95% confidence interval across variant 1 and variant 2 of
the core rule for some pattern and target graph combinations

and robin hood hashmaps the variant 1 of the core rule either outperforms
the variant 2 (5.7b) or performs not significantly different than variant 2
(5.7a). This holds beyond the displayed combinations of pattern and target
graph for all experiments we have conducted. We are hence using variant 1
of the core rule in the following experiments.
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Finally, we compare the set-based variants against the parallel baselines.
Since our experiments have shown that variant 2 of the set-centric core rule
outperforms variant 1, we will only use variant 1 for these experiments.
With the experiments on OMP parallelization options having been incon-
clusive but the choice of parallelization option presumably not influencing
this comparison, we decide to use parallelization with the OMP task primi-
tive. The results can be seen in figure 5.8.

(a) dimacs-johnson16-2-4 (density 0.765),
pattern triangle

(b) dimacs-johnson16-2-4 (density 0.765),
pattern Graph(n=6, m=10)

(c) dimacs-c-fat200-5 (density 0.426),
pattern triangle

(d) dimacs-c-fat200-5 (density 0.426),
pattern Graph(n=6, m=10)

Figure 5.8: Execution time with 95% confidence interval across various data structures
for some pattern and target graph combinations

We note that in figure 5.8a and 5.8c with pattern triangle the robin hood
data structure performs best. In contrast, in 5.8b and 5.8d with the pat-
tern Graph(n=6, m=10) the non-set-centric parallel baseline performs best.
Indeed across all our experiments with the pattern Graph(n=6, m=10) the
non-set-centric parallel baseline performs best. For many of the experiments
with the triangle pattern robin hood performs best, in some cases the paral-
lel baseline performs best, though never the roaring set version.
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Chapter 6

Other Research Directions

Throughout this project, we worked on several other lines of research that
are related to the idea of set-centric subgraph isomorphism. We present a
brief overview of this work here.

6.1 Frequent Subgraph Mining

As stated in the introduction, subgraph isomorphism is a central subroutine
to algorithms in frequent subgraph mining [14, 20]. For finding frequent
subgraphs in a graph, pattern graphs in a set of candidate graphs are iter-
atively grown. At each level it is tested with subgraph isomorphism which
candidates have as much support as a threshold parameter requires.

Since we have been working on improving subgraph isomorphism, ques-
tions arise on the impact of a more set-centric algorithm for subgraph iso-
morphism on frequent subgraph mining. In particular, we are interested
in methods that go beyond regarding the subgraph isomorphism routine in
frequent subgraph isomorphism as a black box. For example, exploiting in-
tersections between the candidates in frequent subgraph mining for faster
subgraph isomorphism detection seems worth pursuing.

6.2 Improving Sparse Bitmaps

There has been recent work on optimizing bitmaps for sparse data with
sparse bitmaps. Han et al. [17] suggest a bitmap data structure where the
domain is displayed into chunks. For each chunk the common bit-prefix
of the elements in that chunk is used as an index. The indices of non-
empty chunks are stored in one data structure, and the non-empty chunks
are stored as dense bitmaps in a separate data structure. Each entry in the
array of chunk indices also contains a pointer to the corresponding chunk.
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6.2. Improving Sparse Bitmaps

This allows searching through the index data structure with binary search
and only accessing the dense bitmaps of the corresponding chunk after-
wards.

6.2.1 Relabeling Vertices

Consider such a data structure being used for graphs, e.g. to store a vertex
neighborhood. We realized that both the access times and memory require-
ment of such a data structure depends strongly on the indices of the vertices:
ideally many of the vertices present in the data structure are labelled with
indices in the same chunk as other indices.

Therefore, sparse bitmaps can be optimized by relabeling the vertices with
different indices. This optimization problem shares interesting parallel with
the relabeling of vertices in subgraph isomorphism. Bonnici et al. [1] have
explored heuristics for vertex relabeling on subgraph isomorphism algo-
rithms. VF3 [5] also introduced a heuristic for determining a good total
order relationship on the vertices, which is equivalent to the relabeling the
vertices with a given total order relationship.

6.2.2 Multiple Levels of Indirection

Recall that Han et al. [17] use an array to store the indices of non-empty
chunks, alongside with pointers to the corresponding chunks. When search-
ing for an element, this allows for one level of indirection: Instead of search-
ing through all chunks directly, they search if the chunk index correspond-
ing to the searched element is present in the array of chunk indices. Only if
this chunk index is found in the array of chunk indices, they search through
the chunk that the index is associated with.

Storing indices of non-empty chunks in an array is what we refer to as one
level of indirection. It is possible to have multiple levels of indirection: Instead
of storing the chunk indices in array, these chunk indices themselves can be
stored in a more complex data-structure.

One concrete way to achieve this that we have prototyped is to use a sparse
bitmap to store the indices of a sparse bitmap. However, it became apparent
that only special distributions of elements would profit from this, namely
those that are sparse except for some chunks, where each such chunk itself
is sparse except for dense subdomains. Unfortunately, we do not know of
any real-world data having such properties.
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Chapter 7

Conclusion

We have developed a multitude of VF2 variants for finding subgraph iso-
morphisms. These include different set-centric data structures, different set-
centric feasibility rules, and variations of parallelism with OMP.

Our results show that our set-centric VF2 variants outperform the non-set-
based parallel baseline on some inputs. In particular, we have developed a
set-centric VF2 variant using robin hood hashmaps as primary data struc-
ture which outperforms both a set-centric VF2 variant using roaring bitmaps
and the non-set-based parallel baseline, for some combinations of pattern
and target graphs.

However, across all combinations of input graphs and algorithm variants
which we have tested results are mixed. While a set-centric variant with
robin hood hashmaps outperformed the non-set-based parallel baseline on
some inputs, on many inputs the non-set-based parallel baseline performed
better. We have also shown that the performance of parallelization primi-
tives depends strongly on the specific input graphs.

We conclude that the choice of pattern and target graph heavily impacts
how the analyzed algorithms perform relative to each other. Thus we pro-
pose as further research direction to develop a more powerful algorithm for
subgraph isomorphism. This could include adaptive data structures similar
to roaring bitmaps but with more variability and an adaptive parallelization
scheme. The depth-first traversal of the state space employed by VF2 and
other subgraph isomorphism algorithms would allow such an adaptive al-
gorithm to sample trajectories through the state space and choose variants
of parallelization schemes and data structures accordingly.
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