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Abstract—Hardware-accelerated multicore clusters have re-
cently emerged as a viable approach to deploy advanced digital
signal processing (DSP) capabilities in ultra-low-power extreme
edge nodes. As a critical basic block for DSP, Fast Fourier Trans-
forms (FFTs) are one of the best candidates for implementation
on a dedicated accelerator core; however, their peculiar memory
access patterns make direct integration of an FFT accelerator
with a core cluster challenging. In this paper, we compare two
different approaches for cluster-coupled FFT accelerators: one
with a large internal buffer to store and shuffle partial results; and
a buffer-less accelerator sharing all memory with the cluster cores.
Both versions can work on complex data with 8/16/32-bit real
and imaginary parts. We show that, thanks to a newly proposed
scheme to reorder data access and exploit full bandwidth also for
sub-word FFTs, the buffer-less accelerator can be made as fast
as the buffered one at only 0.26× the area cost. We report post-
layout performance and power results showing that the buffer-less
accelerator can provide up to 4/2/1 butterfly/cycle performance,
with an average power consumption of 4.1/5.5/6.8 mW @ 350 MHz,
0.65 V operating point in 22 nm CMOS technology, respectively
for complex data with 8/16/32-bit real and imaginary part. The
buffer-less accelerator is 8× faster than an optimized multicore
software implementation working on 16-bit data and compares
favorably with FFT accelerators presented in the recent literature.

Index Terms—Fixed-point FFT, cluster-coupled HW accelera-
tor, reordering scheme, energy-efficient architecture, buffer-less
accelerator.

I. INTRODUCTION

The coming of age of the internet-of-things (IoT) has in-
creased the demand for small ultra-low-power edge devices
with wireless interfaces. To reduce on-air time and bandwidth
requirements and achieve higher energy efficiencies, more and
more processing is performed on the edge, requiring advanced
digital signal processing (DSP) capabilities. Heterogeneous
systems augmented with domain-specific hardware accelerators
can enhance IoT systems-on-chip to achieve higher energy
efficiencies and meet tight timing constraints at a lower area
cost than purely homogeneous, software-based ones [1]. This
can also be seen as a side effect of the slowdown of Moore’s
law: power and performance improvements driven by technol-
ogy scaling are becoming less cost-effective, and parallelism,
domain specialization, and heterogeneity are needed to keep the
pace of progress required by applications [2], [3] and improve
silicon utilization [4], [5].

In most heterogeneous architectures, hardware accelerators
achieve massive speedup by exploiting dedicated memories for
internal buffering, which end up dominating area and power
consumption [1]. Many hardware-accelerated tasks are active
only for a fraction of an algorithm’s execution time, often
intermixed with software-based operations. This may lead to
poor utilization of silicon-expensive memory resources, and
requires marshaling and data transfers every time the execution
flips from hardware-accelerated to software-based.

In this paper, we investigate a possible avenue for optimiza-
tion: replacing internal buffers in domain-specific accelerators
with resources already allocated in the system, and shared
with other devices such as software cores, to improve area
and energy efficiency. We concentrate our study on hardware-
accelerated multicore clusters for ultra-low-power extreme edge
nodes, and in particular on fast Fourier transforms (FFTs) – a
critical and frequently used block in most modulation schemes
for communication, DSP, and audio processing frontend [6].
FFTs are often supported by hardware accelerator engines.
Several sensor applications require high-precision FFTs, using
16-bit to 32-bit number formats, while lower-precision 8-bit
FFTs may be employed as a pre-processing step for machine
learning algorithms such as quantized neural networks [7].

FFT acceleration is usually implemented either with ac-
celerators decoupled from the cores, requiring data copy, or
supported by instruction extensions within the pipeline of
processor cores, which do not require data copies, but have
lower potential for acceleration, due to the limited bandwidth
of the cores’ load/store interface. Cluster-coupled hardware
processing engines (HWPEs) have been recently proposed to
get the best of both worlds [8], [9]. In this scenario, all
cores – both general-purpose and HWPEs – cooperate by
directly sharing data through a low-latency multi-banked L1
data memory called tightly-coupled data memory (TCDM).
Contrary to traditional accelerators, HWPEs can do without an
internal buffer and rely entirely on the TCDM. With this design
choice, the area efficiency of the HWPE can be significantly
boosted, but questions arise on a potential bottleneck at the
accelerator interface with the TCDM. This is a major concern
for the specific case of FFT, which is well known to have
complex and critical memory access patterns.

To study this specific point, in this paper we focus on a



practical FFT use case. In FFT accelerators, the presence or
absence of an internal buffer is particularly relevant because
partial results have to be iteratively shuffled. This fact is well
known and has been extensively studied in the past. To exploit
data locality, various FFT accelerators [10]–[12] have been
designed with dedicated internal memories. Baas [13] proposed
an intermediate solution, including a smaller cache in the
accelerator, while other architectures, such as Texas Instruments
tightly-coupled accelerator [14], share the memory with cores.

The FFT algorithm introduces bit-reversed reordering in
the last stage of a decimation-in-time (DIT) FFT and leads
inevitably to the presence of banking conflicts in accessing
the multi-banked TCDM – most FFT accelerators have to be
designed around these issues. To achieve a conflict-free FFT
algorithm, Cohen [15] and Ma [16] propose different reordering
schemes of the butterfly sequence, which allow the two butterfly
inputs to be always in different memory banks. However, they
target single butterfly engines and do not consider sub-word
FFTs. In this work, we present:
1) Two novel designs for cluster-coupled FFT HWPEs: a

buffer-less architecture and a buffered one implemented,
in 22 nm CMOS at 0.65V. The former shares a 16-bank
TCDM with 8 cores in the cluster, reducing the hardware
footprint; the latter stores the FFT samples and intermediate
results internally, reducing memory traffic. Both HWPEs can
work at different fixed-point precisions with 8/16/32-bit
real and complex parts.

2) A novel reordering scheme, for the buffer-less design, that
boosts the HWPE performance allowing for conflict-free
accesses to the shared TCDM when computing sub-word
FFTs, with no compromise in terms of performance.

Our experimental results show that the buffer-less accelerator
offers a favorable area, performance, and energy design with
respect to the buffered one, and it outperforms state-of-the-art
accelerators [10]–[12], [14], [17].

II. RELATED WORK

As the most widespread algorithm in DSP applications, FFTs
are often computed on dedicated hardware blocks. FFT accel-
erators have been extensively investigated both by academia
and industry, exploring numerous fully parallel and iterative
implementations. Fully parallel architectures contain all the
butterfly units necessary for an N -point FFT, while iterative
accelerators work on a smaller datapath. The former provides
high performance, like the 2018 fastest FFT architecture by
Garrido et al. [18], but results in a large area for high values
of N . For this reason, iterative architectures are usually adopted
for embedded applications.

Iterative accelerators are typically memory-based, employing
internal buffers to store and shuffle partial results, which
dominate the area and power of such architectures. Chen et
al. [11] include two processing engines in their design, each
containing two butterfly units and 16KiB of dedicated memory.
Wang et al. [10] introduced a reconfigurable 2n3m5k FFT
accelerator implemented in 16 nm technology and working on

Fig. 1. PULP cluster with FFT HWPE.

24-bit precision. The accelerator occupies 0.37mm2 and has
been integrated with a RISC-V core. Their results show how
the dedicated internal memory dominates both the area and the
power consumption of the FFT accelerator. The NXP MAPLE-
B [19], a multi-radix decoupled accelerator, includes an I/O
data buffer, and the FFT module in the Infineon advanced
driver assistance subsystems [20], part of the AURIX™ family
- TC23xLA, also contains a RAM buffer for storing calculation
coefficients.

A different approach is followed by Texas Instruments
HWAFFT [14], an FFT accelerator tightly coupled to a DSP
core. The accelerator is located outside the core but shares
the core memory bandwidth. Such a design choice avoids
the need for an internal buffer but provides the accelerator
with a narrower memory bandwidth preventing high degrees
of parallelization. TI HWAFFT contains only a single radix-2
butterfly unit working on 16-bit precision.

The recently proposed cluster-coupled HWPEs [8] represent
a further alternative, directly sharing data with cores through
a low-latency multi-banked data memory. Nevertheless, the
absence of an internal buffer and FFT peculiar memory ac-
cess patterns require a reordering scheme to avoid systematic
conflicts when accessing the TCDM. Many reordering schemes
have been proposed in the past two decades. Some well-known
schemes such as Cohen [15], Johnson [21], and Ma [16]
only targeted architectures including single butterflies units.
Baek and Choi [22] introduced an address generation scheme
for FFT architectures containing multiple radix-2 butterflies.
Nonetheless, their proposal, as well as Sorokin and Takala’s
[23] and Xia et al.’s [17] methods, requires the input samples
not to be initially stored inside the memory in natural order.
This is not ideal since reordering data before the computation
is costly. However, this overhead can be mitigated when em-
ploying an internal buffer since buffered architectures require
explicit copy-in and copy-out phases that can be exploited to
shuffle the samples.

Due to the large variety of applications requiring FFTs,
different precision and range have been targeted. Bo et al. [24]



Fig. 2. Buffer-less FFT HWPE architecture.

proposed an application-specific instruction-set processor using
8-bit or 16-bit precision, Wang et al. [10] employed 24-bit
fixed-point data, the FFT accelerator contained in the Infineon
FFT accelerator [20] works on 16-bit or 32-bit values, while
Chen et al. [11] used floating-point data. However, to the best
of our knowledge, an accelerator supporting low, mid, and high
precision is still missing.

In this work, we present two cluster-coupled FFT accelera-
tors, one including a large internal buffer and one sharing the
memory with the cores. The buffer-less accelerator employs a
newly proposed reordering scheme to efficiently make use of
the external memory. Both accelerators can work with 8/16/32-
bit precision.

III. ARCHITECTURE

The architecture template we build upon is based on the
open-source multicore PULP cluster [25], augmented with
cluster-coupled HWPE1.

A. PULP Cluster

The PULP cluster, shown in Fig. 1, contains eight RISC-
V cores enhanced with DSP instruction set architecture ex-
tensions [26], sharing a 4KiB instruction cache and 64KiB
of TCDM divided into 16 banks, implementing word-level
interleaving to reduce the probability of contention. The cluster
also includes a DMA, a peripheral interconnect, an AXI bus,
and provides support for a software-controlled tightly-coupled
hardware accelerator. The cluster cores, the DMA, and the
HWPE are connected to the memory banks through a high-
bandwidth logarithmic interconnect and can access the TCDM
with a 1-cycle latency. The HWPE and the cluster cores
communicate through the peripheral interconnect for control
plane interactions.

An open-source example of HWPE2 provides a template to
build hardware accelerators conceived to be integrated into a
PULP cluster. The fixed environment around the accelerator
allows various internal modules to be reused for different

1https://github.com/pulp-platform/hwpe-doc
2https://github.com/pulp-platform/hwpe-mac-engine

HWPEs, speeding up the design of new accelerators. Such units
only require to be tailored to each particular implementation
and contain the interface towards the TCDM and the cluster
cores. The rest of the accelerator is intrinsically application-
dependent, requiring ad-hoc designs.

B. Buffer-less FFT HWPE Architecture

The proposed FFT accelerator is organized in a pipelined
architecture and supports different bit-widths. It can compute
up to 512/1024/2048-point FFT, respectively for complex data
with 8/16/32-bit real and imaginary parts. Let us define for
conciseness these formats as C16/C32/C64. We show the
structure of the buffer-less HWPEs in Fig. 2. The accelerator
implements the radix-2 Cooley-Tukey FFT algorithm [27] in
its DIT flavor and consists of several submodules.

Butterfly Unit: the computational module of the accelerator.
It is fully combinational and contains one C64, one C32,
and two C16 butterfly engines. The HWPE reuses larger
engines to compute lower-precision butterflies. Therefore, the
accelerator can compute either one C64, two C32, or four C16
butterflies each cycle. Each butterfly engine employs fixed-point
arithmetic in the format Q0.x, requiring the inputs to be smaller
than 0.5 and dividing the outputs by 2 (except in the last FFT
stage) to prevent overflow, as presented for example in [28].

Twiddle Factor lookup tables (LUTs): the twiddle factors
corresponding to the maximum number of FFT points are
stored in LUTs. An N -point FFT requires N/2 different
twiddle factors. However, when N is a power-of-two, only
(N/8+1) twiddle factors are necessary, as the remaining can be
obtained by exploiting trigonometric identities. For this reason,
we only store M/8 twiddle factors in the LUT, where M
is the maximum number of supported FFT points. Since we
need up to four twiddle factors each cycle and the accelerator
supports low, mid, and high precision, we include one C64
LUT containing 65 elements, one C32 LUT including 129
values, and two C16 LUTs with 257 twiddle factors. Higher-
precision LUTs are still used when computing lower-precision
FFTs, rounding their values to reduce the precision.

https://github.com/pulp-platform/hwpe-doc
https://github.com/pulp-platform/hwpe-mac-engine


Fig. 3. Buffer-less FFT HWPE pipeline. The example shows the beginning of
a 64-point C64 FFT first stage. One C64 sample occupies one 64-bit register.
In case of lower-precision FFTs, samples are packed inside 64-bit registers.

Streamer: a specialized DMA unit. This module manages the
communication from/to memory. The buffer-less FFT HWPE
contains eight 32-bit memory ports; four are used as output
ports, and four as input ports. The communication with the
TCDM is based on ready/valid handshakes.

Controller: the unit that controls the whole computation. It
communicates and aligns all the modules in the accelerator. The
controller contains an FSM that organizes the FFT computation,
the logic to select each cycle the right twiddle factors from the
LUT, and a set of registers software-programmed by the cores
to communicate with the accelerator. In particular, a core will
communicate to the HWPE when to start the FFT computation,
the number of FFT points, the base address of the vector to be
transformed, its bit-width, and whether or not to implement
the final bit-reversed reordering. If the results are reordered,
they are stored in the memory locations following the input
vector, while non-reordered results overwrite the input samples.
Non-reordered FFTs may be employed to speed up FFTs that
require a higher number of points than the supported one. For
example, all the stages of a C32 2048-point FFT, except the
last one, can be computed using two non-reordered C32 1024-
point FFT [14].

Butterfly Registers: two sets of four 64-bit registers located
around the butterfly and used to shuffle inputs and outputs.

Gather-Scatter: the Scatter unit reorganizes the data coming
from the memory in the set of registers before the butterfly unit,
while the Gather unit reads processed data from the registers,
rearranges them, and passes them to the Streamer.

C. Buffer-less FFT HWPE Reordering Scheme

To avoid the need for an internal buffer and to shuffle partial
results, we propose a new scheme to reorder the butterfly
sequence and the memory access patterns. Such a scheme
considers having access to N ≥ 16 memory banks and always
loads/stores data at consecutive memory locations, preventing
data races and conflicts between loads and stores, and allowing
to access two C16 samples with one 32-bit memory port. Fur-
thermore, it can be guaranteed that the load and store operations
are not simultaneously trying to access the same memory banks
by tuning the number of banks and the accelerator’s pipeline
latency. Due to its pipeline depth, the HWPE takes 6 cycles
between a load request and a store request addressing the same

memory locations. With 16 TCDM banks available, conflicts
never happen. An example is provided in Fig. 3, where the
first simultaneous requests are shown. The load requests the
samples of indices (6, 7), while the store request addresses the
samples of indices (0, 1). Since a C64 example is presented,
each sample occupies two consecutive memory locations; thus,
the load requires access to banks (12, 13, 14, 15), while the
store to banks (0, 1, 2, 3).

Since the distance between the left wing of a butterfly and its
right wing is fixed, the buffer-less FFT HWPE loads first a set
of left wings at consecutive memory addresses, and then, during
the following cycle, the right wings of the same butterflies.
After loading new samples, the Scatter unit reorganizes the
data, storing them into two of the four 64-bit registers in front
of the butterfly unit. Once the four registers are full, both
the left and right wings of some butterflies are stored in the
registers, and the butterfly unit can start to fetch and process
data. Once the registers are full, the Scatter decides each cycle
where to store the new inputs, overwriting the samples just
processed by the butterfly engines. An example is provided in
Fig. 3, where the samples of indices (2, 3) overwrite (0, 32)
after the first butterfly has been computed. After the butterfly
unit, the situation is similar, partial results are stored into two
of the other four 64-bit registers, and the Gather unit behaves
complementary to the Scatter, rearranging the butterfly outputs
and passing them to the Streamer.

In a DIT radix-2 FFT algorithm, the outputs are provided in
bit-reversed order. Reordering data from natural to bit-reversed
orders requires some additional techniques not to produce bank
conflicts systematically. The new reordering scheme allows us
to write two bit-reversed samples every cycle. During the last
FFT stage, the inputs of a butterfly are at consecutive indices.
Therefore, the HWPE loads the samples to compute butterflies
whose bit-reversed outputs are consecutive two-by-two. E.g.,
for a 64-point C32 FFT, we can load first (0, 1, 2, 3), and then
(32, 33, 34, 35). Now, we can compute the butterflies (0, 1) and
(32, 33), whose bit-reversed output are (0, 32) and (1, 33). We
cannot store all the results in one cycle since we would generate
conflicts. We can exploit only half of the bandwidth, storing
first (0, 1), and then (32, 33), stalling the pipeline for one
cycle not to overwrite meaningful data inside the accelerator
registers. For C64 FFTs, since we store two samples per cycle,
we can exploit the full output bandwidth, while for C16 FFTs,
only one-fourth of the bandwidth can be used. Bank conflicts
can still arise between the load and store requests, but not
systematically. Other conflicts can happen if the HWPE and
the cores try to access the same banks simultaneously. All the
residual conflicts are handled by the accelerator, delaying the
load request by one cycle and stalling its pipeline.

D. Buffered FFT HWPE

The buffered accelerator, in Fig. 4, is structured similarly
to the buffer-less HWPE, implementing only a couple of
architectural modifications. The two sets of registers around
the butterfly unit are replaced by a large internal memory. Such



Fig. 4. Buffered FFT HWPE architecture.

Fig. 5. Area comparison of buffered and buffer-less FFT HWPE synthesized
at 200 MHz.

buffer consists of 4KiB of standard cell memory [29], divided
into four banks containing C16 words, each providing two
input and two output ports. The buffer is organized in multi-
ported banks to avoid conflicts when reordering and shuffling
data. The internal buffer size limits the maximum number of
FFT points supported by the buffered HWPE. A smaller set
of registers is still kept around the butterfly unit to break the
system’s critical path. Furthermore, since data are never loaded
and stored simultaneously, only four 32-bit memory ports are
needed and used both as input and output ports. Consequently,
the Streamer is much simpler than in the buffer-less case,
while some additional logic is necessary to generate the sample
addresses inside the buffer.

The buffered FFT HWPE first loads the samples from the
TCDM to the internal buffer; then the computational phase
start and, each cycle, data are read from the buffer, processed
through the butterfly unit, and written back to the buffer; finally,
data are read from the buffer and stored into the TCDM.
During the initial loading and the final storing of the buffer,
no computation is performed. In the buffered accelerator, we
implement the bit-reversed reordering when loading the inputs.
The buffer structure allows us to write two bit-reversed samples
every cycle, similarly to the buffer-less case. However, due to
the presence of the dual-ported buffer, reordering the butterfly
sequence is not necessary for such implementation.

Fig. 6. Area breakdown buffer-less FFT HWPE synthesized at 200 MHz.

IV. EXPERIMENTAL RESULTS

To evaluate the different versions of our FFT HWPEs, we
integrated them in a PULP cluster [25], Fig. 1.

A. Area

We synthesized the PULP cluster first with the buffered
FFT HWPE and then with the buffer-less accelerator, using
Synopsys Design Compiler in GLOBALFOUNDRIES 22FDX,
with topographical synthesis. We targeted 200MHz of clock
frequency under worst-case conditions (SSG, 0.59V, −40 ◦C).
The buffer-less HWPE occupies 3.8× less area than the
buffered design, and around 2× the area of a RISC-V core. We
show the area comparison in Fig. 5, and the area breakdown of
the buffer-less accelerator in Fig. 6. As can be noticed in the
buffer-less HWPE, the area is dominated by the butterfly unit,
where around 70% of the area is dedicated to the C64 butterfly
engine. Furthermore, for the buffered accelerator, modifying the
maximum number of supported FFT points, requires changing
both the internal buffer size and the twiddle factor LUTs, while,
for the buffer-less HWPE, only the LUTs have to be adapted.
Since the current twiddle factor LUTs occupy only 5% of the
buffer-less accelerator area, the maximum number of supported
FFT points may be increased involving a low area overhead,
highlighting another advantage of implementing buffer-less
architectures. In the buffered case, the internal buffer already



Fig. 7. Butterfly utilization of the buffer-less FFT HWPE for (a) FFTs excluding the bit-reversed reordering and (b) FFTs including the bit-reversed reordering.
C64 1024/2048-point and C32 2048-point FFTs are not shown since not supported by the proposed architecture.

TABLE I
PERFORMANCE OF THE BUFFER-LESS AND BUFFERED HWPES FOR ALL

THE SUPPORTED BIT-WIDTHS AND NUMBER OF FFT POINTS*

Buffer-less FFT HWPE Buffered FFT HWPE

N
[points]

C16 FFT
[cycles]

C32 FFT
[cycles]

C64 FFT
[cycles]

C16 FFT
[cycles]

C32 FFT
[cycles]

C64 FFT
[cycles]

64 118 158 249 115 171 282
128 211 305 520 221 349 605
256 415 661 1116 447 735 1311
512 845 1399 2434 929 1569 2549

1024 1791 3005 - 1955 3363 -
2048 3875 - - 4133 - -

*All the reported values refer to FFTs including bit-reversed reordering.

counted for more than 75% of the HWPE area. Increasing the
number of FFT points for such an architecture would then be
highly costly.

B. Butterfly Unit Utilization

The butterfly utilization of the buffer-less HWPE for FFTs,
including and excluding bit-reversed reordering, is shown in
Fig. 7. Since the output bandwidth is not fully exploited
when reordering C16/C32 results, C16/C32 FFTs without bit-
reversed reordering present higher butterfly utilization.

When doubling the data precision, the number of available
butterfly engines halves, thus doubling the number of butterfly
cycles. Therefore, the HWPE reaches the same utilization for
an N -point p-bit FFT and an N/2-point 2p-bit FFT without
the bit-reversed reordering. This is not true for FFTs including
the bit-reversed reordering, where the final reordering prevents
from using the whole output bandwidth for C16/C32 data,
resulting in a different butterfly utilization. Despite reaching
a lower percentage of butterfly utilization, thanks to the larger
number of butterflies computed per cycle, the HWPE provides
higher performance when less precision is required. For a
reordered 512-point C16/C32/C64 FFT, the accelerator takes
835/1399/2434 cycles.

In both bit-reversed reordered and non-reordered cases, the
utilization grows when increasing the number of FFT points.

Fig. 8. Execution time of the optimized FFT SW running on 8 cores vs. the
buffered and buffer-less FFT HWPEs.

For high numbers of FFT points, the control overhead and the
time spent to fill and empty the pipeline decreases more and
more with respect to the butterfly cycles. For C16/C32/C64
2048/1024/512 FFTs, the HWPE reaches over 97% of but-
terfly cycles, when excluding the bit-reversed reordering, and
73%/85%/95% when including the bit-reversed reordering.
The 2% utilization drop in the case of a C64 512-point
FFT is due to stalls introduced during the last stage to
prevent conflicts between natural-order loads and bit-reversed
stores. The buffered HWPE reaches a slightly lower utiliza-
tion due to the time spent copying in/out the data. For a
C16/C32/C64 2048/1024/512 FFT, including bit-reversed
reordering, it achieves 68%/76%/90% of butterfly cycles.

C. Performance

We report the performance of our FFT accelerators in Table I.
The buffer-less version provides slightly better performance
than the buffered HWPE since it always operates in a compute
phase, not requiring the initial loading and final storing of the
buffer when no butterflies are computed. We compared the
performance of our HWPEs with a highly optimized fixed-point
FFT software, running on the 8 cluster cores and exploiting
their DSP custom instructions. The results are shown in Fig. 8.



TABLE II
COMPARISON OF FFT HARDWARE ACCELERATORS, STAND-ALONE (TOP SIX ROWS), AND IN A FULL-SYSTEM CONTEXT (BOTTOM THREE ROWS)

Design Peak Performance
[butterfly/cycle] Technology Voltage Frequency Area Performance

(1024-point)
Average Power

(1024-point)
Energy Efficiency

(1024-point)

Buffer-less FFT HWPE 4 C16 / 2 C32 / 1 C64 22 nm 0.65V 350MHz 0.024mm2 3005 cycles 5.5mW (12.2mW)a 47nJ/FFT (105nJ/FFT)a

Buffered FFT HWPE 4 C16 / 2 C32 / 1 C64 22 nm 0.65V 350MHz 0.093mm2 3363 cycles 12.6mW (13.2mW)a 121nJ/FFT (127nJ/FFT)a

Wang et al. [10] C48 mixed-radix 16 nm 0.57V 320MHzc 0.37mm2 1905 cyclesb 22.6mWc 135nJ/FFTb

Chen et al. [11] 4 FP C64 45 nm 0.9V 1GHz 2.4mm2 1380 cycles 91.3mW 126nJ/FFT
Xia et al. [17] C32 mixed-radix 55 nm 1.08V 122.88MHz 1.063mm2 972 cyclesb 26.3mWb 208nJ/FFTb

Guo et al. [12]d 4 FP C64 65 nm 1V 500MHz 4.6mm2 1403 cycles 172.3mW 483nJ/FFT

Cluster w/ Buffer-less HWPE 4 C16 / 2 C32 / 1 C64 22 nm 0.65V 350MHz 0.44mm2 3005 cycles 18.5mW 159nJ/FFT
Cluster w/ Buffered HWPE 4 C16 / 2 C32 / 1 C64 22 nm 0.65V 350MHz 0.51mm2 3363 cycles 19.5mW 187nJ/FFT
TI HWAFFT [14] 1 C32 not available 1.3V 100MHz not available 7315 cycles 38.5mW 2820.6nJ/FFT

a Values between parenthesis take into account both the HWPE and TCDM contributions.
b Results for 972-point FFTs (the authors do not report results for 1024-point FFTs).

c Wang et al. report a range of values. The highest result was considered for frequency and power.
d The results for Guo et al.’s accelerator [12] are taken from Chen et al.’s comparison table [11].

Our solutions are around 7× (buffered) and 8× (buffer-less)
faster than the optimized software, while adding 22% of area
to the PULP cluster in the buffered case and only 6% in the
buffer-less case. The buffer-less architecture is then 4.25× more
area-efficient than the buffered one.

D. Power

We placed and routed the PULP cluster containing the buffer-
less/buffered FFT HWPE using Cadence Innovus. We simulated
FFT computations with Mentor Questasim, back-annotating the
switching activity data. Then, we extracted the related average
power consumption with Synopsys PrimeTime under typical
conditions (TT, 0.65V, 25 ◦C), at 350MHz, the maximum
frequency the designs could reach in this corner. Since the
critical block for timing is the butterfly unit, the buffer-less and
buffered accelerator achieve the same maximum frequency. The
buffer-less accelerator consumes on average 4.1/5.5/6.8mW
at 350MHz, respectively for C16/C32/C64 2048/1024/512
FFT at full throughput; while the buffered consumes around
9% more power than the buffer-less one, even including the
TCDM read/write power contribution. This is because the
multi-ported structure of the buffer banks nullifies potential
energy improvements related to the use of an internal buffer.
For lower-precision FFTs, the buffer-less HWPE consumes
less power mainly due to the final reordering, which allows
using one-fourth, half, or the whole output bandwidth for
C16/C32/C64 data. For higher-precision FFTs, the accelerator
reaches a higher butterfly utilization, increasing its average
power consumption.

E. SoA Comparison

We compared our solutions with state-of-the-art accelerators
in Table II. Our performance, power, and energy results refer to
a C32 application. First, we compared our HWPEs with four
stand-alone FFT accelerators with internal buffers proposed
by Wang et al. [10], Chen et al. [11], Xia et al. [17], and
Guo et al. [12]. Chen et al. and Guo et al. include four
C64 floating-point butterfly engines. Chen et al. reach an
energy efficiency comparable to our buffered solution; while

our buffer-less accelerator is 20% more energy-efficient than
their implementation, and 4.6× more efficient than Guo et
al.’s implementation. Wang et al. and Xia et al. achieve higher
performance than our HWPEs thanks to their mixed-radix
butterfly engines. Since the authors did not report the results
for 1024-point FFTs, we considered their results for 972-point
FFTs. Wang et al. target C48 data, while Xia et al. use C32
values. Our buffer-less HWPE is 2× and 28.5% more energy-
efficient than Xia et al. and Wang et al., respectively. Note that
the energy efficiency gap would widen when considering the
cost of copy-in and copy-out of data needed for the accelerators
including internal buffers. The buffer-less HWPE provides the
smallest-area solution, although part of the extra area needed
for the considered state-of-the-art accelerators is dedicated to
the larger floating-point or mixed-radix butterfly engines.

Finally, we compared the results obtained for the PULP
clusters enhanced with the HWPEs with TI HWAFFT [14]
since it reports energy efficiency numbers related to a full
system. TI HWAFFT can only compute C32 FFT and contains
one butterfly unit. While our HWPE also supports higher and
lower precisions, addressing a wider range of applications. The
PULP cluster enhanced with our buffer-less HWPE is 2.4×
faster for a 1024-point C32 FFT than TI HWAFFT, and around
18× more energy-efficient. Since Texas Instruments reports the
accelerator performance also when computing FFTs without
the bit-reversed reordering, we were able to identify in the
final reordering the responsible for our 2.4× speed-up when
computing a complete FFT. Without bit-reversed reordering,
our HWPE is 2× faster due to a double number of C32 butterfly
engines. A 1024-point C32 FFT without reordering takes 5244
cycles on TI HWAFFT, while 2626 cycles on our buffer-less
HWPE.

V. CONCLUSION

We presented a comparison between buffered and buffer-
less multicore cluster accelerators, using FFT HWPEs as a
use case, and introduced a new reordering scheme that allows
conflict-free memory accesses also for sub-word FFTs. Our
accelerators can work with complex data with 8/16/32-bit



real and imaginary parts, addressing a wide range of appli-
cations. While being around 8× faster than an optimized FFT
software implementation running on the 8 cluster cores, the
buffer-less implementation occupies only 0.26× the area of
the buffered HWPE and adds only 6% of area overhead to
a PULP cluster. Furthermore, since the internal buffer size
contributes to the constraint on the number of maximum
FFT points, increasing the limit on the FFT length would be
highly costly for the buffered implementation, while it can be
achieved at a low area overhead for the buffer-less accelerator.
The buffer-less HWPE consumes around 4.1/5.5/6.8mW at
350MHz when computing 2048/1024/512-point FFTs. Also
energy-wise, the buffer-less accelerator dominates the buffered
accelerator, thanks to the lower execution time and the slightly
lower power consumption. Finally, we compared our buffer-
less implementation with state-of-the-art accelerators, showing
energy efficiency improvements.
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