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A B S T R A C T

Physics-based and data-driven models for remaining useful lifetime (RUL) prediction typically suffer from
two major challenges that limit their applicability to complex real-world domains: (1) the incompleteness of
physics-based models and (2) the limited representativeness of the training dataset for data-driven models.
Combining the advantages of these two approaches while overcoming some of their limitations, we propose a
novel hybrid framework for fusing the information from physics-based performance models with deep learning
algorithms for prognostics of complex safety-critical systems. In the proposed framework, we use physics-
based performance models to infer unobservable model parameters related to a system’s components health
by solving a calibration problem. These parameters are subsequently combined with sensor readings and used
as input to a deep neural network, thereby generating a data-driven prognostics model with physics-augmented
features. The performance of the hybrid framework is evaluated on an extensive case study comprising run-
to-failure degradation trajectories from a fleet of nine turbofan engines under real flight conditions. The
experimental results show that the hybrid framework outperforms purely data-driven approaches by extending
the prediction horizon by nearly 127%. Furthermore, it requires less training data and is less sensitive to
the limited representativeness of the dataset as compared to purely data-driven approaches. Furthermore, we
demonstrated the feasibility of the proposed framework on the original CMAPSS dataset, thereby confirming
its superior performance.
1. Introduction

The prediction of the failure time of complex systems has been
successfully addressed on the basis of models that capture the physics
of failure. Despite significant progress using physics-based models for
prognostics [1–3], physical degradation processes are only well un-
derstood for critical or relatively simple components. As a result, the
widespread deployment of physics-based models in practical applica-
tions has been limited.

The increased availability of system condition monitoring data has
facilitated the broader use of data-driven approaches for prognostics
and health management (PHM) of complex engineered systems. The
underlying assumption of data-driven approaches is that the relevant
information concerning the evolution of the system health and the
failure time can be learned from past data [4]. In particular, deep
learning has recently gained attention due to its ability to learn fault
patterns directly from raw sensor data [5]. A variety of supervised
and semi-supervised deep learning models have shown promise in
estimating the remaining useful life (RUL) from sensor data [6–10]
based on prognostics benchmark datasets, e.g., [11]. Most research
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studies on deep learning applications in PHM require a representative
dataset of run-to-failure degradation trajectories to obtain accurate
prognostics models. These trajectories must comprise a set of time se-
ries sensor readings along with the corresponding time-to-failure labels.
However, the collection of such a representative dataset for systems
subjected to periodic maintenance interventions can take a long time
because (a) failures may be rare, (b) the system can operate in different
environments and follow different mission profiles, thus resulting in a
large range of possible deterioration trajectories, and (c) maintenance
is performed before failure. In real application scenarios, the available
datasets generally contain only a small number of units and failure
modes and are, therefore, not fully representative of all potential future
degraded system conditions [12,13]. Moreover, for complex engineered
systems subject to continuous and increasing degradation, as well as
substantial variability in operating conditions, data-driven approaches
struggle to distinguish between the impact of changes in operating
conditions and the impact of degradation on the sensor readings in
scenarios of limited labeled data [13,14]. Consequently, data-driven
vailable online 17 September 2021
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methods have difficulties relating the condition monitoring data to the
asset failure time, limiting their practical application.

Although data-driven and physics-based methods have limitations
when applied in isolation, it is hypothesized here that the combined
use of both approaches can potentially lead to performance gains
by leveraging the advantages of each. In particular, while physics-
based approaches are generally hindered by their limited ability to
properly tune the parameters of models with high complexity or model
incompleteness, they do not require large amounts of data, retain the
interpretability of a model, and provide the opportunity to generate
synthetic data. In contrast, data-driven approaches are limited by the
representativeness of the training datasets but are simple to implement,
and one can use data-driven models to discover complex patterns from
large volumes of data. It follows that data-driven solutions can be
advantageous in enhancing or replacing inaccurate parts of physics-
based models. In addition, physics-based model information can help
to reduce the required amount of training data (i.e., overcome the lack
of time-to-failure trajectories) by generating synthetic data or providing
model parameters that are very informative for data-driven models. In
general, the physics-based system models can be used as ‘teachers’ to
guide the discovery of meaningful machine learning models.

A number of approaches have been proposed to combine physics-
based and data-driven approaches. Depending on what type of informa-
tion is processed and how the pieces of information are combined, dif-
ferent types of hybrid architectures have been suggested [15,16]. Some
examples of recent hybrid models for prognostics are [17–20]. In par-
ticular, hybrid systems combining thermodynamic performance models
and data-driven aging models have shown promising results on simpler
systems such as lithium batteries [17]. Recently, several physics-guided
machine learning approaches have been proposed, whereby physical
principles are used to inform the search for a physically meaning-
ful and accurate machine learning model. The architecture proposed
in [21], for example, enhances the input space of a data-driven system
model with outputs from a physics-based system model. The authors
showed how, as a result, the dynamic behavior of the system could
be approximated more accurately. In another variation of the physics-
guided machine learning idea, a recurrent neural network (RNN) cell
was modified to incorporate the information from the system model as
an internal state of the RNN. A related idea was applied to a variety
of prognostics problems, as in [18–20]. The underlying hypothesis of
this method is that the output of the physics-based model is informative
with regard to the degradation process and, consequently, the failure
time.

In contrast to the hybrid architectures cited above, the framework
presented in this paper leverages inferred unobserved virtual sensors
and unobservable parameters of physics-based system models closely
related to the system health in order to enhance the input space of
deep learning-based prognostics models. For the physics-based system
models, we focus on performance models (0D/1D models) that are
generally available for the design, control, or performance evaluation
of complex systems. Using as inputs the modeled system dynamics
along with the sensor readings from the condition monitoring (CM)
data, we solve a calibration problem in order to infer model parameters
(e.g., efficiency and flow modifiers) and unobserved process properties
(e.g., temperatures and pressures) that are informative regarding the
health condition and its evolution over time. The model parameters and
process properties (i.e., virtual sensors), as well as the calibrated system
model responses, are subsequently combined with sensor readings and
used as input to a deep neural network to generate a data-driven
prognostics model. An overview of the proposed framework is shown
in Fig. 1. A calibration-based hybrid framework was earlier applied to
a diagnostics problem in [14]. In this paper, we notably extend the
framework to address the problem of remaining useful life estimation.

The performance of the proposed hybrid framework is evaluated
on a synthetic dataset comprising a small fleet of nine turbofan en-
gines with run-to-failure degradation trajectories exhibiting a high
2

Fig. 1. Proposed hybrid prognostics framework fusing physics-based and deep learning
models. Given the system dynamics and sensor readings, we perform the calibration of
the system model to estimate unobservable model parameters 𝜃̂ that encode the health
condition of the system components. These parameters are subsequently combined with
sensor readings from the condition monitoring (CM) data and calibrated system model
responses, as well as unobserved process properties (i.e., virtual sensors), and used as
input to a deep neural network to generate the deep learning-based prognostics model.

variability in operating conditions. A scenario reflecting incomplete
representation of the test degradation conditions in the training dataset
is considered. The dataset was generated with the Commercial Modular
Aero-Propulsion System Simulation (CMAPSS) model [22]. Real flight
conditions, as recorded on board commercial jets, were used as input to
the CMAPSS model [23]. The performance of the approach is compared
to an alternative data-driven approach whereby only sensor data is used
as input to three types of deep neural networks (a multilayer perceptron
feed-forward neural network, a recurrent neural network (RNN), and
a convolutional neural network (CNN)). The proposed hybrid method
outperforms the equivalent data-driven approaches and provides supe-
rior results in RUL estimation under highly variable operating condi-
tions and incomplete representation of the training dataset. Further-
more, the hybrid framework requires less training data as compared to
the purely data-driven algorithms.

The remainder of the paper is organized as follows. In Section 2,
the background of the solution strategy is provided and the prognostics
problem is formally introduced. In Section 3, the proposed framework is
described. Section 4 introduces the case study. In Section 5, the results
are presented. In Section 6, limitations and future research directions
are discussed. Finally, a summary of the work and outlook are given in
Section 7.

2. Background

This section briefly introduces the basic concepts and notation
related to system performance models and calibration of physics-based
models, as they are the building blocks of the proposed framework. In
addition, it formally introduces the RUL estimation problem and lists
the assumptions the proposed framework is built upon.

2.1. System performance models

The design of complex engineered systems involves modeling the
physical principles governing system performance and the thorough
validation of those models with field data. Hence, performance models
with different fidelity levels are typically available for the control and
performance evaluation of complex systems [24,25]. Some examples of
system performance models are thermodynamic, electrical, or hydraulic
0D/1D models. These system models typically have a moderate com-
putational load and are yet able to predict measured process variables
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(e.g., temperatures, pressures, or rotational speeds) as well as global
unmeasured system and sub-system performance (e.g., efficiencies and
power). Since, in the general case, there is no description given by
an explicit formula, the performance models are represented math-
ematically as coupled systems of nonlinear equations. The inputs of
the performance models are divided into scenario-descriptor operating
conditions 𝑤 and unobservable model parameters 𝜃. The unobservable
model parameters 𝜃 correspond to tuning parameters generally related
to the health condition of the sub-components of the system. The
outputs of the model are estimates of the measured physical properties
̂𝑠 and unobserved properties 𝑥̂𝑣 that are not part of the condition mon-
toring signals (i.e., virtual sensors). Hence, the nonlinear performance
odel is denoted as:

𝑥̂𝑠, 𝑥̂𝑣] = 𝐹 (𝑤, 𝜃) (1)

esides this compact formulation, system performance models of com-
lex systems, such as the aero-thermodynamic performance model used
n this work, often have the topology represented in Fig. 2. The perfor-
ance model includes two coupled models: (1) a aero-thermodynamic
odel and (2) a controller. The latter contains the operation and
rotection logic and allows the simulation of the system response over a
ide range of conditions (𝑤) while satisfying the safety and operational

imits. The former couples several stand-alone sub-component models.
hile the integration of the sub-component models resorts to well-

nderstood physical principles (i.e., energy, momentum, and mass con-
ervation), the sub-component models generally resort to a simplified
hysics (e.g., components maps and empirical correlations). As a result
f these simplifications, the performance prediction accuracy of the sys-
em model worsens as the degradation of the system increases through
peration over time, and the modeled physics of the sub-components
oes not account for changes in health-related process parameters such
s efficiency and capacity loss (i.e., sub-component outputs). Therefore,
he aero-thermodynamic model also includes model tuners 𝜃 that shift
he sub-component outputs to compensate for their missing physics.

.2. Calibration of physics-based models

Inference of system model parameters from observations 𝑥𝑠 is often
eferred to as calibration [26]. System model calibration is an inverse
roblem aimed at obtaining the values of the model parameters 𝜃 that
ake the system response follow the observations, i.e., 𝑥̂𝑠 ∼ 𝑥𝑠. There-

ore, the problem of calibration of physics-based models corresponds
o the problem of modeling a physical process as approximated by a
hysics-based model. Since both the observations and model parame-
ers are uncertain, model calibration is a stochastic problem. Ideally,
he calibration process aims at obtaining the posterior distribution of
he calibration factors given the data 𝑝(𝜃|𝑤, 𝑥𝑠). However, computing
he whole distribution is generally computationally expensive. There-
ore, in most cases, point value estimations of the parameters are
nferred. A typical compromise is to compute the maximum a posteriori
stimation (MAP), described by

̂MAP = argmax
𝜃

𝑝(𝜃|𝑤, 𝑥𝑠) (2)

everal methods have been proposed to address the problem of dy-
amic model calibration when the physics-based model structure is
ell-founded on known physical principles (e.g., aircraft thermody-
amic engine models). The majority of the available methods are
ither probabilistic or estimation approaches developed in the fields
f statistics [27] and optimal control [28]. Some examples of pop-
lar estimation methods include iterative reweighted least-squares
chemes [25], unscented Kalman filters (UKF) [29–31], particle fil-
ers [32], and Bayesian inference methods using Markov chain Monte
arlo [25,33]. Recently, deep learning methods based on reinforcement

earning and direct mappings with supervised learning have also been
3

roposed in [34].
.3. Problem formulation

Given are multivariate time series of sensor readings
𝑠𝑖 = [𝑥(1)𝑠𝑖 ,… , 𝑥(𝑚𝑖)

𝑠𝑖 ]𝑇 and their corresponding RUL, i.e.,
𝑖 = [𝑦1𝑖 ,… , 𝑦𝑚𝑖

𝑖 ]𝑇 , from a fleet of 𝑁 units (𝑖 = 1,… , 𝑁). Each
bservation 𝑥(𝑡)𝑠𝑖 ∈ 𝑅𝑝 is a vector of 𝑝 raw measurements taken under

operating conditions 𝑤(𝑡)
𝑖 ∈ 𝑅𝑠. The length of the sensory signal for the

ith unit is given by 𝑚𝑖, which can, in general, differ from unit to unit.
The total combined length of the available dataset is 𝑚 =

∑𝑁
𝑖=1 𝑚𝑖. More

compactly, we denote the available dataset as  = {𝑤𝑖, 𝑥𝑠𝑖 , 𝑦𝑖}
𝑁
𝑖=1. In

addition to the condition monitoring (CM) data, i.e., {𝑤𝑖, 𝑥𝑠𝑖}
𝑁
𝑖=1, and

he RUL label, i.e., {𝑦𝑖}𝑁𝑖=1, we have access to a performance system
odel 𝐹 (𝑤, 𝜃) and a reference 𝜃, i.e., 𝜃𝑟𝑒𝑓 , which provides the expected
ynamic response of a non-degraded reference unit (i.e., 𝜃 = 𝜃ref).
tarting from an unknown initial health condition, the CM data of each
nit records the degradation process of the system’s components. The
ystem’s components experience normal (linear) degradation until point

in time 𝑡𝑠𝑖 , when an abnormal (exponential) condition arises, leading to
an eventual failure at 𝑡EOL𝑖 (end-of-life).

Given this setup, the task is to obtain a predictive model  that
provides a reliable RUL estimate (𝐲̂) on a test dataset of 𝑀 units
𝑇 ∗ = {𝑤𝑗∗, 𝑥𝑠𝑗∗}

𝑀
𝑗=1, where 𝑥𝑠𝑗∗ = [𝑥1𝑠𝑗∗,… , 𝑥

𝑘𝑗
𝑠𝑗∗] are multivariate time

series of sensor readings taken under operating conditions 𝑤(𝑡)
𝑗∗. The

total combined length of the test dataset is 𝑚∗ =
∑𝑀

𝑗=1 𝑘𝑗 .

2.3.1. Problem assumptions
The problem formulation described above implies assumptions

about the availability of the information upon which the proposed
framework is built. For clarity, in this section they are explicitly listed
as follows:

• Full run-to-failure trajectories of a fleet of assets. In other words,
the proposed approach needs recorded degradation trajectories
until failure. While data-driven algorithms also require access
to a set of run-to-failure trajectories, the number of required
trajectories for the proposed approach is smaller, as demonstrated
within this research.

• Access to a physics-based performance model or a surrogate
model that provides estimates of the measured sensor read-
ings, additional virtual sensor, and health-related parameters
while maintaining a moderate computational load. The proposed
method excludes lower level representation of the physical pro-
cess and, in particular, a damage model.

• The fidelity of the performance model in approximating the real
process is not a prerequisite. It is assumed that complex phys-
ical processes cannot be modeled in full detail with reasonable
computational cost. The available performance model, therefore,
relies on modeling assumptions and simplifications of the com-
plex physics within the system. As a result of this simplification,
the accuracy of the performance prediction of the model worsens
as degradation of the system increases with operation over time
and the modeled physics does not account for physics of degra-
dation. However, it is assumed that the resulting reality gap can
be attributed to shifts in the values of certain model parameters
governing the physics of the real process.

• Past operation is sufficient to predict RUL. In other words, it is
assumed that future operation will be ‘similar’ to that previously
observed.

3. Proposed framework: Deep learning-based prognostics with
physics-inferred inputs

In this work, we propose combining a calibrated, physics-based
performance model with deep learning architectures to obtain accurate
hybrid prognostics models. The calibration of physics-based perfor-

̂
mance models provides estimates of the model parameters (𝜃) that



Reliability Engineering and System Safety 217 (2022) 107961M. Arias Chao et al.
Fig. 2. General topology of an aero-thermodynamic performance model.
encode and explain the deteriorated behavior of their sub-components.
The resulting calibrated model, i.e., 𝐹 (𝑤, 𝜃̂), yields high-confidence
estimates of unobserved process variables 𝑥̂𝑣 that may be sensitive to
fault signatures as well as filtered estimates of the measured process
variables 𝑥̂𝑠. As a result, model calibration increases the amount of
information available for developing a data-driven prognostics model.

Although the physics-inferred information can be combined with
the CM data in multiple ways, in this work, we propose enhancing
the input feature space of a data-driven prognostics model with the
process variables [𝑥̂𝑠, 𝑥̂𝑣, 𝜃̂] in order to develop a hybrid prognostics
model. In particular, to benefit from the learning ability brought about
by recent advances in deep learning, we propose combining the physics-
based performance models with deep learning architectures. Fig. 3
shows a block diagram of the proposed calibration-based hybrid prog-
nostics approach that is demonstrated in Section 4. The deep learning
prognostics model receives scenario-descriptor operating conditions 𝑤,
sensor readings 𝑥𝑠, and model variables [𝑥̂𝑠, 𝑥̂𝑣, 𝜃̂] as input features.
Contrary to a standard data-driven approach aiming to learn a mapping
function from the CM signals to the RUL target 𝐲 (i.e., [𝐰, 𝐱𝑠] ⟼ 𝐲),
we first obtain a more informative representation 𝐱 with additional
health-related features inferred through the calibration of a physics-
based system model ([𝐱𝐬, 𝐹 (𝐰, ⋅)] ⟼ 𝜃̂). In a subsequent step, we find
an optimal mapping  ∶ 𝐱 ⟼ 𝐲 from the enhanced feature space
𝐱 = [𝑤, 𝑥𝑠, 𝑥̂𝑠, 𝑥̂𝑣, 𝜃̂] to perform RUL estimation. The hybrid framework is
very flexible and can be combined with any type of calibration method
and deep learning architecture.

3.1. Calibration of the system performance model

In this work, instead of focusing on one particular model calibration
method, we aim to demonstrate the benefits of combining physics-
inferred model parameters, representing sub-model health, with deep
learning models in order to generate accurate prognostics models.
Furthermore, the goal is to evaluate the impact of different levels of
calibration accuracy on the performance of the proposed prognostics
framework. Since calibration of the performance model itself is not
within the scope of this research, we apply a state-of-the-art approach
to calibration: an unscented Kalman filter [29] to infer the values of
the model-correcting parameters 𝜃̂. The rationale for this choice is that
our models of interest are nonlinear and that UKF provides a good
compromise between computational cost and performance. In fact, UKF
is widely applied for purposes of aircraft engine health evaluation [14,
4

28,31]. However, we would like to stress that the proposed framework
is adaptable to the chosen model calibration approach.

Model parameter estimation with UKF involves a traditional state-
space formulation. In this solution strategy, the state vector comprises
the health parameters, which are modeled as a random walk. The
measurement equation depends on the states and input signals at the
present time step 𝑡. The measurement equation is readily available
from the system model 𝐹 . Hence, we consider a nonlinear discrete-time
system of the form:

𝜃(𝑡) = 𝜃(𝑡−1) + 𝜉(𝑡) (3)

𝑥(𝑡)𝑠 = 𝐹 (𝑤(𝑡), 𝜃(𝑡)) + 𝜖(𝑡) (4)

where 𝜉 ∼ 𝑁(0, 𝑄) is a Gaussian noise with covariance 𝑄 and 𝜖 ∼
𝑁(0, 𝑅) is a Gaussian noise with covariance 𝑅. At each time step, the
estimation of the state vector 𝜃 and state covariance 𝑄 is carried out
with the UKF (see Algorithm 2). A more detailed explanation of this
problem formulation applied to the monitoring of gas turbine engines
can be found in [31].

In order to speed up the learning process of the UKF algorithm, a
discrete-time counterpart of the physics-based model 𝐹 in the form of
a deep neural network (DNN) is used. The resulting dynamic system 𝐷
approximates the expected system response given the previous observa-
tions 𝑥(𝑡−1)𝑠 , control variables 𝑤(𝑡), and model parameters 𝜃(𝑡), resulting
in:

[𝑥̂(𝑡)𝑠 , 𝑥̂(𝑡)𝑣 ] = 𝐷(𝑤(𝑡), 𝑥(𝑡−1)𝑠 , 𝜃(𝑡)) (5)

3.2. Deep learning-based prognostics with physics-inferred inputs

The inferred model parameters 𝜃̂ are informative regarding the
health state of the system but do not directly relate to the end-of-
life time. Together with the scenario-descriptor operating conditions
𝑤, they comprise the ‘expected’ independent factors of variation of
sensor readings (𝑥𝑠). Consequently, the inferred model parameters 𝜃̂
can be useful for disentangling the contribution of system degradation
and operating condition change 𝑤 from the observed system responses.
Following this reasoning, the model-correcting parameters are used to
complement the raw sensor readings for the generation of data-driven
prognostics models.

Since deep learning models have shown an excellent ability to reveal
hidden complex functional mapping between inputs and target labels,
we choose a deep neural network to discover a mapping  that relates
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Fig. 3. Overview of the hybrid prognostics framework fusing physics-based and deep learning models. The deep learning prognostics model receives as input the scenario-descriptor
operating conditions (𝑤) and estimates of the condition monitoring signals (𝑥̂𝑠), as well as the virtual sensors (𝑥̂𝑣) and unobservable model parameters (𝜃̂). The calibration of the
system model (i.e., the estimation of the unobservable model parameters 𝜃) is carried out with a state-space formulation using a UKF. We use a discrete-time counterpart of the
physics-based model 𝐹 to speed up the calibration process. The dynamic system 𝐷 is modeled by a deep neural network. A convolutional neural network (CNN) architecture is
depicted as a deep learning-based prognostics model (see Section 4.4 for further details).
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the enhanced input 𝑥 = [𝑤, 𝑥𝑠, 𝑥̂𝑠, 𝑥̂𝑣, 𝜃̂] to a target label 𝐲 given a
training set 𝑆𝑇 ⊊ . Again, multiple learning strategies are possible
for this task (supervised or semi-supervised learning). In this research,
we chose the standard supervised learning strategy (SL), i.e., a 𝐝𝐢𝐫𝐞𝐜𝐭
mapping from input 𝐱 to a target label 𝐲. The main reasons for this
choice are the simplicity and suitability to the problem formulation in
Section 2.3. Under this solution strategy, RUL predictions at inference
time are obtained with forward past of the prognostics network ()
with weights and bias  given the CM data and the physics-inferred
features.

𝑦̂(𝑗) ∼ (𝑤(𝑡)
∗ , 𝑥(𝑗)𝑠∗ , 𝑥̂

(𝑗)
𝑠∗ , 𝑥̂

(𝑗)
𝑣∗ , 𝜃̂

(𝑗)
∗ ;) (6)

It should be pointed out that under a slightly different problem
formulation, a semi-supervised learning [35] or domain adaptation
strategy [36] could also be potentially applied. To obtain the mapping
function , a deep fully-connected neural network (FNN), a recurrent
neural network (RNN), and a convolutional neural network (CNN) are
evaluated within the proposed framework. As already mentioned ear-
lier, different types of architectures could be used within the proposed
framework. Section 4.4 provides further details about the architecture.

The entire procedure for the training of  and RUL prediction
is summarized in Algorithm 1. An overview of the individual steps
involved in the proposed hybrid approach is presented in Fig. 4.

4. Case study

4.1. A small fleet of turbofan engines

The proposed methodology is demonstrated and evaluated on a
synthetic dataset with run-to-failure degradation trajectories of a small
fleet comprising nine turbofan engines with unknown and different ini-
tial health conditions. The dataset was generated with the Commercial
Modular Aero-Propulsion System Simulation (CMAPSS) model [22].
Real flight conditions, as recorded on board commercial jets, were
taken as input to the CMAPSS model. Fig. 5 (left) shows the kernel
density estimations of the simulated flight envelopes given by the
scenario-descriptor variables 𝑊 : altitude (alt), flight Mach number
5

Algorithm 1: Deep Learning-Based Prognostics with Physics-
Inferred Inputs
1 Prognostics Network Training with Physics-Inferred Features -


Input : {𝑤(𝑖), 𝑥(𝑖)𝑠 , 𝑦(𝑖)}𝑚𝑖=1 & D
Output:  - Prognostics network weights and bias

2 Phase 1: Obtain physics-inferred features i.e., 𝑥̂(𝑖)𝑠 , 𝑥̂(𝑖)𝑣 , 𝜃̂(𝑖)

3 for 𝑖 = 1 ∶ 𝑚 do
4 𝜃̂(𝑖) ← argmax𝜃 𝑝(𝜃(𝑖)|𝑤(𝑖), 𝑥(𝑖)𝑠 ;𝐷)
5 [𝑥̂(𝑖)𝑠 , 𝑥̂(𝑖)𝑣 ] = 𝐷(𝑤(𝑖), 𝑥(𝑖−1)𝑠 , 𝜃̂(𝑖)) i.e., Eq. (5)
6 end
7 Phase 2: Obtain prognostics network weights and bias  given

{𝑤(𝑖), 𝑥(𝑖)𝑠 , 𝑥̂(𝑖)𝑠 , 𝑥̂(𝑖)𝑣 , 𝜃̂(𝑖), 𝑦(𝑖)}
𝑚𝑆𝑇
𝑖=1 ∈ 𝑆𝑇

8 while 𝑖 ≤ 𝐸𝑠 (i.e., number of epochs) do
9 repeat
0  ← Update parameters in  using Stochastic Gradient
1 Descent
2 until convergence of 
3 end
4 end

5 RUL Inference with Prognostics Neural Network
Input : {𝑤(𝑗)

∗ , 𝑥(𝑗)𝑠∗ }
𝑚∗
𝑗=1,  & D

Output: 𝑦̂(𝑗)
6 for 𝑗 = 1 ∶ 𝑚∗ do
7 𝜃̂(𝑗)∗ ← argmax𝜃 𝑝(𝜃(𝑗)|𝑤

(𝑗)
∗ , 𝑥(𝑗)𝑠∗ ;𝐷)

8 [𝑥̂(𝑗)𝑠∗ , 𝑥̂
(𝑗)
𝑣∗ ] = 𝐷(𝑤(𝑗)

∗ , 𝑥(𝑗−1)𝑠∗ , 𝜃̂(𝑗)∗ )
9 𝑦̂(𝑗) ∼ (𝑤(𝑡)

∗ , 𝑥(𝑗)𝑠∗ , 𝑥̂
(𝑗)
𝑠∗ , 𝑥̂

(𝑗)
𝑣∗ ;) i.e., Eq. (6)

0 end
1 end

(XM), throttle-resolver angle (TRA), and total temperature at the fan

inlet (T2) for 𝑁 = 6 training units (𝑢 = 2, 5, 10, 16, 18 & 20) and
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Fig. 4. Overview of the individual steps of the proposed calibration-based hybrid prognostics approach. Both training and inference are represented. The proposed framework uses
a physics-based system model (𝐹 ) - or, optionally, a deep neural network model approximating the complex system dynamics - and a training dataset as inputs (). The training
dataset comprises CM data, i.e., [𝑤, 𝑥𝑠], from run-to-failure degradation trajectories and their corresponding RUL labels (𝑌 ). In an initial, optional step, the physics-based system
model can be replaced by a surrogate dynamic model in the form of an NN (i.e., 𝐷) to reduce the computational load of the framework. Training: Step 1 - using a calibration
method, the model parameters 𝜃̂ are inferred given the CM data and the modeled system dynamics (𝐹 or 𝐷) (see Section 3.2). The calibration process also provides the calibrated
system model response 𝑥̂𝑠 and virtual sensors 𝑥̂𝑠. Step 2 - the CM data is fused with the model-derived features i.e., 𝑥̂𝑠, 𝑥̂𝑠, and 𝜃̂. Step 3 - training of the prognostics network
with the increased feature space (𝑥) and the corresponding RUL labels (𝑌 ). Inference: Following steps 1 to 3, the test dataset (∗) is processed. Finally, Step 4 performs inference
with the trained prognostics network at test conditions 𝑥(𝑡)∗ .
𝑀 = 3 test units (𝑢 = 11, 14 & 15). It is worth noting that test units 14
and 15 have an operation distribution significantly different from those
of the training units. Concretely, test units 14 and 15 operate shorter
and lower altitude flights compared to other units. The training dataset
contains, therefore, flight profiles that are not fully representative of the
test conditions of these two units. This is a more difficult learning and
generalization task. We have chosen this example due to its relevance
for practical applications where observed operating conditions of new
units may not correspond to the past operating conditions of other units
in the fleet. Purely data-driven approaches generally require domain
adaptation strategies for this type of setup [37].

Two distinctive failure modes are present in the available dataset
(). Units 2, 5, and 10 have failure modes of an abnormal high-
pressure turbine (HPT) efficiency degradation. Units 16, 18, and 20 are
subject to a more complex failure mode that affects the low-pressure
turbine (LPT) efficiency and flow in combination with the high-pressure
turbine (HPT) efficiency degradation. Test units are subjected to the
same complex failure mode. Fig. 6 shows degradation profiles induced
in the nine units of the fleet. The initial deterioration state of each
unit is different and corresponds to an engine-to-engine variability
equivalent to 10% of the health index. The degradation of the affected
6

system components follows a stochastic process with a linear normal
degradation followed by a steeper abnormal degradation. The degrada-
tion rate of each component varies within the fleet. The transition
from normal to abnormal degradation is smooth and occurs at different
cycle times for each unit. The transition time (𝑡𝑠) is dependent on the
operating conditions, i.e., flight and degradation profile. It should be
noted that although the degradation profiles of individual components
show nearly overlapping trajectories, the combined profile (i.e., the
profile in three dimensions) is clearly different.

An overview of the transition times 𝑡𝑠, the end-of-life times 𝑡𝐸𝑂𝐿,
and the number of samples from each unit of the fleet 𝑚𝑖 is provided
in Table 1. The sampling rate of the data is 0.1 Hz, resulting in a
total dataset size of 0.53M samples for model development and 0.12M
samples for testing. It is worth noting that while test unit 14 is a short
flight engine with the lowest amount of flight time (0.16M seconds),
it has the largest number of flight cycles. More details about the
generation process and a more recent version of this dataset (i.e., DS02)

can be found in [23].
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Fig. 5. Left. Kernel density estimations of the simulated flight envelopes (i.e., climb, cruise, and descent flight conditions) given by recordings of altitude, flight Mach number,
throttle-resolver angle (TRA), and total temperature at the fan inlet (T2) for complete run-to-failure trajectories of six training units (𝑢 = 2, 5, 10, 16, 18 & 20) and three test units
(𝑢 = 11, 14 & 15). Right. An example of a typical single flight cycle given by traces of the scenario-descriptor variables for unit 10. Climb, cruise, and descent flight conditions
(with alt > 10,000 ft), corresponding to different flight routes taken by the aircraft, are covered.
Fig. 6. Traces of the degradation imposed on the high-pressure turbine efficiency
(HPT_Eff_mod), low-pressure turbine efficiency (LPT_Eff_mod), and low-pressure turbine
flow (LPT_flow_mod) for each unit of the fleet. The onset of the abnormal degradation
(i.e., 𝑡𝑠) of each unit is indicated by dashed vertical lines.

4.2. System performance model

As indicated in Section 2.3.1, in addition to the CM data and the
RUL labels from a training dataset, the proposed hybrid approach
requires a system performance model 𝐹 (𝑤, 𝜃) or a surrogate model
thereof. In this case study, a surrogate model (𝐷) was used in the form
of a deep neural network (i.e., DNN). Concretely, the surrogate model
𝐷 approximates the expected system dynamics given the previous
observations 𝑥(𝑡−1)𝑠 , the control variables 𝑤(𝑡), and model parameters 𝜃(𝑡)
as described in (5). The development of this surrogate model, given an
7

Table 1
Size (𝑚𝑢), the transition cycle time (𝑡𝑠) and end-of-life time (𝑡𝐸𝑂𝐿 ) of each unit within
the development () and test datasets (𝑇 ∗).

Development dataset - 

Unit (𝑢) 𝑚𝑖 𝑡𝑠 𝑡𝐸𝑂𝐿 Failure mode

2 0.085M 17 75 HPT
5 0.103M 17 89 HPT
10 0.095M 17 82 HPT
16 0.077M 16 63 HPT+LPT
18 0.089M 17 71 HPT+LPT
20 0.077M 17 66 HPT+LPT

Test dataset - 𝑇 ∗

Unit (𝑢) 𝑚𝑗 𝑡𝑠 𝑡𝐸𝑂𝐿 Failure mode

11 0.066M 19 59 HPT+LPT
14 0.016M 36 76 HPT+LPT
15 0.043M 24 67 HPT+LPT

independent dataset generated with the CMAPSS simulator, is beyond
the scope of this case study, but the interested reader can find the
implementation details in Appendix B. It is worth pointing out that
the dynamic model 𝐷 is a noisy approximation of the CMAPSS model
dynamics. Therefore, predictions of the dynamic model 𝐷 at operating
conditions 𝑤 given some initial guess 𝜃(0) deviate from the observed
responses (𝑥𝑠) due to (1) model error of the DNN, (2) the different
initial health conditions of each unit, (3) sensor noise, and (4) the
increased degradation of each unit over time.

4.3. Pre-processing

The dimension of the input space (i.e., x ∈ 𝑅𝑚×𝑛) varies depending
on the selected solution strategy. The data-driven models are only
based on condition monitoring signals ([𝑤, 𝑥𝑠] and have 20 inputs
(i.e., 𝑛 = 20). The proposed hybrid method has 50 inputs (including
the addition of the model predictions, calibration parameters, and the
virtual sensors i.e., x = [𝑤, 𝑥𝑠, 𝑥̂𝑠, 𝑥̂𝑣, 𝜃̂]). Tables 2 to 4 provide a detailed
overview of the model variables included in the condition monitoring
signals [𝑤, 𝑥𝑠], virtual sensors 𝑥𝑣, and model parameters 𝜃. The variable
name corresponds to the internal variable name used in the CMAPSS
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Table 2
Condition monitoring signals - [𝑤, 𝑥𝑠]. The variable symbol corresponds to the internal
ariable name in CMAPSS. The descriptions and units are reported as in the model
ocumentation [22].
# Symbol Description Units

1 alt Altitude ft
2 XM Flight Mach number –
3 TRA Throttle-resolver angle %
4 Wf Fuel flow pps
5 Nf Physical fan speed rpm
6 Nc Physical core speed rpm
7 T2 Total temperature at fan inlet ◦R
8 T24 Total temperature at LPC outlet ◦R
9 T30 Total temperature at HPC outlet ◦R
10 T40 Total temp. at burner outlet ◦R
11 T48 Total temperature at HPT outlet ◦R
12 T50 Total temperature at LPT outlet ◦R
13 P15 Total pressure in bypass duct psia
14 P2 Total pressure at fan inlet psia
15 P21 Total pressure at fan outlet psia
16 P24 Total pressure at LPC outlet psia
17 Ps30 Static pressure at HPC outlet psia
18 P30 Total pressure at HPC outlet psia
19 P40 Total pressure at burner outlet psia
20 P50 Total pressure at LPT outlet psia

Table 3
Virtual sensors - [𝑥𝑣]. The variable symbol corresponds to the internal variable name
in CMAPSS. The descriptions and units are reported as in the model documentation
[22].

# Symbol Description Units

1 P45 Total pressure at HPT outlet psia
2 W21 Fan flow pps
3 W22 Flow out of LPC lbm/s
4 W25 Flow into HPC lbm/s
5 W31 HPT coolant bleed lbm/s
6 W32 HPT coolant bleed lbm/s
7 W48 Flow out of HPT lbm/s
8 W50 Flow out of LPT lbm/s
9 SmFan Fan stall margin –
10 SmLPC LPC stall margin –
11 SmHPC HPC stall margin –

Table 4
Model correcting parameters - [𝜃]. The variable symbol corresponds to the internal
variable name in CMAPSS. The descriptions and units are reported as in the model
documentation [22].

# Symbol Description Units

1 HPT_eff_mod HPT efficiency modifier –
2 LPT_eff_mod LPT efficiency modifier –
3 LPT_flow_mod LPT flow modifier –

model. The descriptions and units are reported as provided in the model
documentation [22].

The input space x to the models is normalized to a range [−1, 1] by
a min/max-normalization given the available dataset (). A validation
set 𝑉𝑇 ⊊  comprising 10% of the available data was chosen for early
stopping of the training process and hyperparameter tuning of the deep
learning prognostics model. For RNN and CNN models’ requirements,
the original dataset was pre-processed with a sliding time window
approach of size 𝑁𝑡𝑤 = 50 and stride of 1. The sliding window means
that the first input sample to the network takes measurements from
timestamps 1–50, the second 2–51, the third 3–52, and so on for each
unit of the fleet (i.e., each input has a time length of 500 s).

4.4. Deep learning prognostics model

As mentioned before, the main goal of this research study is to
8

evaluate the capability of the proposed hybrid framework to perform
prognostics and to compare this framework to the performance of
purely data-driven approaches.

In prognostics, the degradation mechanisms are often mapped to a
health index (HI). This health index can be defined as a normalized
margin to multiple health-related thresholds evaluated at specified
reference conditions. The end-of-life time of a mechanical system cor-
responds to the point in time at which HI = 0. Under this definition,
the health index is time-independent and consequently, a mapping from
the system state (represented by CM data and 𝜃̂) to HI exists. While the
evolution of the system state is a time-dependent process, the mapping
from the system state to the health indicator is not time-dependent.
Based on this reasoning, both time-independent and time-dependent
deep learning models are considered in this research. In particular, we
used three state-of-the-art deep neural networks as prognostics models:
a deep multilayer perceptron feed-forward neural network (FNN), a
recurrent neural network (RNN), and a convolutional neural network
(CNN).

Deep CNN architectures have been proven to provide excellent per-
formance on time series for predictive maintenance in recent works [6,
35,38–40]. Concretely, a solution based on 2D convolutions with 1D
filters and no pooling layers was proposed in [6] for the prognostics
benchmark problem [11]. Similarly, deep architectures based on 1D
convolutions (see Fig. 7) have also achieved excellent results in signal
processing applications [41]. Therefore, in light of the good results
achieved, we adopted a one-dimensional convolutional neural network
architecture as a CNN model.

Deep RNNs based on long short-term memory networks (LSTM)
have also shown excellent results with regard to the prognostics prob-
lem [7,8,10,36,42]. Therefore, we also adopted a deep LSTM architec-
ture as an RNN model.

To make the comparison for the proposed hybrid framework more
challenging, we deliberately provided the purely data-driven approach
an unfair advantage by selecting hyperparameters that maximize its
prognostics performance while we do not perform hyperparameter
tuning for the hybrid approach. We then train the same neural network
models with the enhanced inputs space of the hybrid approach. Since
the inputs space of the hybrid and purely data-driven approaches have
a different dimension, the different sizes of the input also change the
number of weights in the first layer and, as a result, such architecture
is sub-optimal for the hybrid approach. The network architectures of
the deep learning prognostics model are briefly described below.

Feed-forward neural network (FNN). The architecture of the feed-
forward neural network used here comprises five fully connected layers
(𝐿 = 5). The input layer has 𝑛 nodes, where 𝑛 denotes the size of
he input space x and varies depending on the considered solution
trategy. The first three hidden layers have 200 neurons each. The
ast hidden layer has 50 neurons. A single linear neuron was used in
he output layer. In compact notation, we refer to this architecture
s [𝑛, 200, 200, 200, 50, 1]. ReLU activation function was used
hroughout the entire network. It should be noted that RUL estimation
s a regression problem. Therefore, the last activation 𝜎𝐿 = 𝐼 is the
dentity. The network has 95k trainable parameters (). This final
rchitecture is the result of conducting a grid search wherein the search
pace over the hyperparameters includes: number of hidden layers
1-4], number of neurons at each hidden layer [50, 100, 200], and
ctivation function type [tanh, relu].
One-dimensional convolutional neural network (1D CNN). The

rchitecture of the CNN used in this research also comprises five layers
𝐿 = 5). The network has three initial convolutional layers with filters
f size 10. The first two convolutions have ten channels and the last
onvolution has only one channel. Zero padding is used to keep the
eature map through the network. The resulting 2D feature map is
lattened and the network ends with a 50-way fully connected layer
ollowed by a linear output neuron. The network uses ReLu as the

activation function. The network has 24k trainable parameters (). As

with the FNN, the final architecture is the result of conducting a grid
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Fig. 7. 1D convolution layer with convolution in the temporal direction.
search over the following hyperparameters: number of hidden layers [1-
4], number of channels [10, 20, 30] at each convolutional layer, filter
size [10, 20], number of neurons at the fully connected layer [50, 100],
activation function type [tanh, relu], and window size of the sliding
window [20, 50, 200].

Long short-term memory recurrent neural network (LSTM). Fol-
lowing the design philosophy from the 1D CNN model, the architecture
of the LSTM neural network used in this research also comprises five
layers (𝐿 = 5). The network has three initial LSTM layers followed by
a 50-way fully connected layer and ends with a linear output neuron.
The network uses ReLu as the activation function and a sliding window
of size 50. Through a grid search, we determined the optimal number
of cells in the hidden layers to be 20. The network has 24k trainable
parameters ().

4.5. Training set-up

The optimization of the network’s weights is carried out with mini-
batch stochastic gradient descent (SGD) and with the AMSgrad algo-
rithm [43]. The Xavier initializer [44] is used for the weight initializa-
tions. The batch size is set to 1024 and the learning rate to 0.001. The
maximum number of epochs (𝐸𝑠) was set to 60 for the FNN model and
30 for the CNN model. Early stopping with a patience of 5 epochs is
considered.

4.6. Evaluation metrics

The performance of the proposed framework is evaluated and com-
pared to the purely data-driven deep learning models on the selected
prognostics task. We apply two common evaluation metrics in CMAPSS
prognostics analysis [45]: root-mean-square error (RMSE) and NASA’s
scoring function (𝑠) [46], which are defined as:

𝑠 =
𝑚∗
∑

𝑗=1
𝑒𝑥𝑝(𝛼|𝛥(𝑗)

|) − 1 (7)

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑚∗

𝑚∗
∑

𝑗=1
(𝛥(𝑗))2 (8)

where 𝑚∗ denotes the total number of test data samples, 𝛥(𝑗) is the
difference between the estimated and the real RUL of the 𝑗 sample
(i.e., 𝑦(𝑗) − 𝑦̂(𝑗)), and 𝛼 is 1

13 if RUL is underestimated and 1
10 otherwise.

The resulting 𝑠 metric is not symmetric and penalizes overestimation
more than underestimation. It is worth noting that at test time, RUL
estimations (𝑦̂(𝑗)) are obtained at each point in time at which a new
sample is available. Therefore, unit-specific pointwise RUL estimation
(i.e., 𝑦̂(𝑗)𝑢 ) can show high variability within a flight cycle, indicating
that some parts of the flight are more informative for purposes of RUL
estimation as compared to others. In order to evaluate this effect, we
9

also define the average RUL estimation at cycle 𝑐 in unit 𝑢 (𝑦̂[𝑐]𝑢 ), which
is defined as follows:

𝑦̂[𝑐]𝑢 = 1
𝑚[𝑐]
𝑢

𝑚[𝑐]
𝑢

∑

𝑗=1
𝑦(𝑗)𝑢 (9)

where 𝑚[𝑐]
𝑢 is the length of the flight cycle 𝑐 for the uth unit, which is

formally defined using the indicator function, i.e., 𝟏{.}, as:

𝑚[𝑐]
𝑢 =

𝑚∗
∑

𝑗=1
𝟏{𝑈 (𝑗) = 𝑢 ∧ 𝐶 (𝑗) = 𝑐} (10)

where 𝑈 and 𝐶 are vectors with unit and cycle labels for each sample
of the test dataset.

In addition to these two popular performance metrics of CMAPSS
prognostics models, we also consider the prediction horizon with a
prediction error below 5 cycles (𝐻

|𝛥𝑦|≤5) and the inference time per
sample.1

The prediction horizon with a prediction error below 5 cycles is
computed as follows:

𝐻
|𝛥𝑦|≤5 = 𝑡EOL − 𝑡

|𝛥𝑦|≤5 (11)

where 𝑡
|𝛥𝑦|≤5 is the cycle time in which the prediction error is below 5

cycles for any future time (𝑡 ≥ 𝑐).

5. Experimental results

5.1. RUL estimation

The RUL estimation is performed based on the same neural network
models (i.e., FNN, LSTM, and CNN) and the same architectures for
both set-ups: the purely data-driven approach and the proposed hybrid
approach. In this section, the performance of the two approaches is
compared based on different metrics. Table 5 shows the failure time
prediction performance of both the proposed hybrid approach (x =
[𝑤, 𝑥𝑠, 𝑥̂𝑠, 𝑥̂𝑣, 𝜃̂]) and the baseline approach (purely data-driven with x =
[𝑤, 𝑥𝑠]). With a reduction ranging from 16% to 47% in RMSE and 21%
to 68% in 𝑠-score, depending on the neural network model, the hybrid
approach clearly outperforms the baseline. Since the 𝑠-score penalizes
overestimation more than underestimation, and RMSE is a symmetric
metric, the greater reduction of 𝑠 compared to RMSE indicates that
the proposed method handles RUL overestimation more effectively. The
three neural network architectures evaluated achieve nearly the same
performance with the hybrid approach. However, important differences
between time-dependent and time-independent models based on a

1 As computed with an average processor Intel(R) Core(TM) i7-8650U CPU
@1.90 GHz, 2112 Mhz, 4 Core(s).
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Table 5
Overview of the RMSE, 𝑠-score, and inference time metrics with hybrid and baseline
pproaches for complete degradation trajectories on test set (𝑇 ∗), comprising data

from the three test units. Mean and standard deviation results with FNN, LSTM and
CNN models over five runs.

FNN model

Metric Data-Driven Hybrid rel. Delta

RMSE [cycles] 7.89 ± 0.12 𝟒.𝟐𝟐 ± 0.10 −47%
𝑠 × 105 [–] 1.39 ± 0.04 𝟎.𝟒𝟒 ± 0.01 −68%
Time [s] 0.20e−04 1.02e−02 –

LSTM model

Metric Data-Driven Hybrid rel. Delta

RMSE [cycles] 5.02 ± 0.21 𝟒.𝟒𝟎 ± 0.14 −12%
𝑠 × 105 [–] 0.59 ± 0.06 𝟎.𝟒𝟕 ± 0.03 −20%
Time [s] 0.85e−04 1.03e−02 –

CNN model

Metric Data-Driven Hybrid rel. Delta

RMSE [cycles] 4.95 ± 0.15 𝟒.𝟏𝟒 ± 0.09 −16%
𝑠 × 105 [–] 0.56 ± 0.03 𝟎.𝟒𝟒 ± 0.02 −21%
Time [s] 5.41e−04 1.08e−02 –

Table 6
Prediction horizon [cycles] for 𝛥𝑦 ≤ 5 (i.e., 𝑡EOL−𝑡

|𝛥𝑦 |≤5) with data-driven
and hybrid approaches with CNN model.
𝑢 Data-Driven Hybrid rel.Delta

11 11 𝟑𝟏 195%
14 15 𝟒𝟑 197%
15 24 𝟑𝟕 54%

Fleet Avg. 16 𝟑𝟕 127%

purely data-driven approach are observed (i.e., −37% in RMSE between
FNN and CNN and −36% in RMSE between FNN and LSTM). Overall,
the hybrid approach with the CNN model is the best-performing model.
Inference with the hybrid approach is 20 to 524 times more time-
consuming than with a purely data-driven approach, depending on the
network architecture. This increased inference time is mainly driven
by the additional calibration step that takes 1.02e−02 s. Inference with
prognostics networks based on LSTM architectures is 20 times slower
than with those based on FNN. The inference time with the hybrid
approach is well below the sampling rate of the data, regardless of the
network architecture.

The improvement in prognostics performance is also observed for
individual test units. Fig. 8 shows the error between true and predicted
RUL (i.e., 𝛥𝑦𝑢 = 𝑦̂[𝑐]𝑢 − 𝑦[𝑐]𝑢 ) of the baseline approach (left) and the
roposed hybrid approach (right) for each of the test units with FNN
top), LSTM (middle), and CNN models (bottom). The shaded surface
hows the variability of the RUL predictions within each cycle. The
pper limit corresponds to max(𝛥𝑦𝑢 ) and the lower bound to min(𝛥𝑦𝑢 ).
UL estimates undertaken with the baseline approach at any point in

ime have a large variability and high bias (specifically, RUL over
stimation) as compared to the hybrid approach. We can also observe
hat the cycle time at which the prediction error is below 5 cycles for
ny future time (𝑡 ≥ 𝑐) decreases for all the test units. We denote this
ime as 𝑡

|𝛥𝑦|≤5. Table 6 reports the prediction horizon, i.e., 𝑡EOL − 𝑡
|𝛥𝑦|≤5,

or each unit and the average value for the whole fleet. Under this
etric, the proposed hybrid approach provides an average increase of
27% on the prediction horizon while maintaining a similar prediction
ccuracy.

.2. Ablation studies

This section extends the previous analysis with three ablation stud-
es to cover additional realistic prognostics scenarios and provide fur-
her insights into the proposed hybrid approach. Ablation study I
valuates both the hybrid and purely data-driven approaches under
10
able 7
verview of the RMSE and 𝑠-score metrics with hybrid and baseline approaches for
omplete degradation trajectories on the test set (𝑇 ∗), comprising data from the three
est units. Mean and standard deviation results with CNN model over five runs. The
raining dataset contains only units 16, 18, and 20.
Units 2, 5, 10, 16, 18, 20

Metric Data-Driven Hybrid rel. Delta

RMSE [cycles] 4.95 ± 0.15 𝟒.𝟏𝟒 ± 0.09 −16%
𝑠 × 105 [–] 0.56 ± 0.03 𝟎.𝟒𝟒 ± 0.02 −21%

Units 16, 18, 20

Metric Data-Driven Hybrid rel. Delta

RMSE [cycles] 5.97 ± 0.37 𝟒.𝟐𝟐 ± 0.12 −29%
𝑠 × 105 [–] 0.61 ± 0.05 𝟎.𝟒𝟑 ± 0.02 −29%
rel. Delta RMSE [%] 17% 2%
rel. Delta 𝑠 [%] 8% −2%

a variant of the case study with a smaller dataset. Ablation study II
evaluates the contribution of the physics-derived features to the overall
prediction performance. Finally, in ablation study III, we analyze the
impact of the calibration process quality on the hybrid approach’s
predictive performance.

5.2.1. Ablation study I: Impact of dataset size
The results in the previous section showed that the proposed hybrid

approach outperforms the purely data-driven approach regardless of
the neural network model used for the prognostics model. Moreover,
it is worth noting that the CNN model provided a clear (i.e., 38%) im-
provement in performance over the FNN model. These results indicate
that in presence of abundant representative data, a powerful neural
network model can serve as a competitive prognostics model. However,
abundant run-to-failure datasets are often unavailable in real applica-
tions due to the rarity of fault occurrences in safety-critical systems. In
scenarios of non-abundant CM data, we hypothesize that discovering
informative and representative features of degradation from raw CM
data is more challenging. As a result, the purely data-driven approach
will encounter more difficulties in achieving good performance. To
test this hypothesis, we consider an alternative dataset with a subset
containing 50% of the units. To decouple this analysis from the ef-
fect of dataset representatives (i.e., similar or dissimilar degradation
trajectories), we selected units 16, 18, and 20, as they are affected
by the same failure mode (i.e., HPT and LPT failure). The resulting
prognostics performance of the purely data-driven and hybrid CNN
models trained with training data from 50% of the units is shown in
Table 7. The dataset size reduction has a negligible impact on the
prognostics performance (2% increase in RMSE) of the proposed hybrid
approach. Contrarily, such a reduction of the dataset size leads to an
increase of 17% in the RMSE of the purely data-driven approach. The
relative delta between hybrid and purely data-driven increases to 29%
in RMSE. Therefore, enhancing the input space with additional features
from physical performance models yields a clear advantage in scenarios
of non-abundant CM data.

5.2.2. Ablation study II: Impact of physics-derived information
The proposed hybrid framework uses three types of features derived

from the calibrated physical model, i.e., 𝑥̂𝑠, 𝑥̂𝑣, 𝜃̂. To analyze the contri-
butions of each of these feature types to the prognostics performance,
we evaluated alternative hybrid models that increase the amount of
model-derived information used in the prognostics model. In order to
have full coverage, we evaluate the following combinations of input
signals: the purely data-driven [𝑤, 𝑥𝑠], those with added de-noised sen-
sor readings [𝑤, 𝑥𝑠, 𝑥̂𝑠], those with added virtual sensors [𝑤, 𝑥𝑠, 𝑥̂𝑠, 𝑥̂𝑣],
and finally those with added calibration factors [𝑤, 𝑥𝑠, 𝑥̂𝑠, 𝑥̂𝑣, 𝜃̂].

In order to decouple this analysis from the effect of uncertainty in
the calibration process (see next section), we assume that the model
information is obtained from a perfect calibration, i.e., 𝑥̂ , 𝑥̂ , 𝜃̂ are
𝑠 𝑣
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Fig. 8. RUL prediction error for each unit with FNN (top), LSTM (middle), and CNN models (bottom). The dotted lines are the average RUL estimate at each cycle, i.e., 𝛥𝑦𝑢 = 𝑦̂[𝑐]𝑢 −𝑦[𝑐]𝑢 ),
while the shaded surface represents the uncertainty bounds for RUL predictions within each cycle. The red dashed horizontal lines correspond to ±5 cycles error bars. The three
test units are shown: Unit 11 (blue), Unit 14 (orange), and Unit 15 (green).
therefore ground-truth values. The resulting prognostics performances
of the new hybrid models are shown in Table 8. We can observe
that adding physics-derived features always yields an improvement
in the prediction performance. However, optimal performance is only
achieved when the calibration factors are included in the prognostics
model. This result suggests a hierarchy of information whereby the
most informative features for RUL prediction, namely the calibration
parameters (i.e., 𝜃̂), are the most informative of the RUL. To verify this
hypothesis, Fig. 9 shows the normalized mutual information between
input features and the RUL target. The nine most informative input fea-
tures within the input space [𝑤, 𝑥𝑠, 𝑥̂𝑠, 𝑥̂𝑣, 𝜃̂] are shown. The calibration
parameters (𝜃̂) are the most informative features for predicting RUL,
followed by features representing operating conditions (i.e., 𝑤). The
de-noised sensor readings P50 and P2 (i.e., the total pressure at LPT
outlet and the total pressure at fan inlet, respectively) are the most
informative sensors.
11
Table 8
Overview of the RMSE and 𝑠-score results with CNN models given different levels of
physics information. Mean ± standard deviation over five runs.

Purely Data-driven

Model RMSE [cycles] 𝑠 × 105

[𝑤, 𝑥𝑠] 4.95 ± 0.15 0.56 ± 0.03

Hybrid

Model RMSE [cycles] 𝑠 × 105

[𝑤, 𝑥𝑠 , 𝑥̂𝑠] 4.90 ± 0.14 0.56 ± 0.03
[𝑤, 𝑥𝑠 , 𝑥̂𝑠 , 𝑥̂𝑣] 4.61 ± 0.18 0.49 ± 0.05
[𝑤, 𝑥𝑠 , 𝑥̂𝑠 , 𝑥̂𝑣 , 𝜃̂] 4.14 ± 0.08 0.44 ± 0.02

5.2.3. Ablation study III: Impact of the model calibration uncertainty
The quality of the calibration process has an impact on the prognos-

tic performance of the proposed hybrid framework. In order to quantify
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.

Fig. 9. Top nine features with higher normalized mutual information to the RUL label.

Table 9
Overview of the prognostics performance under model bias and noise with hybrid
approaches and 1D CNN model.

Bias

Intensity RMSE [cycles] 𝑠 × 105

𝛼 = +0.5 4.77 ± 0.24 0.47 ± 0.02
𝛼 = −0.5 4.66 ± 033 0.59 ± 0.07

Noise

Intensity RMSE [cycles] 𝑠 × 105

SNR𝑑𝑏 = 20 4.26 ± 0.13 0.47 ± 0.03
SNR𝑑𝑏 = 15 4.71 ± 0.17 0.52 ± 0.02

this impact, we evaluate the sensitivity of the proposed framework to
the calibration performance, i.e., the impact of low-quality estimates
of 𝜃 on the RUL prediction performance. Concretely, we consider hy-
pothetical situations where 𝜃̂ is noisy (see Fig. 10, left) and also where
𝜃̂ is affected by bias (see Fig. 10, right). To model the noisy calibrations
of different quality, white noise with signal-to-noise ratios (SNRdb) of
15 and 20 db are imposed on the calibration factors (i.e., HPT_Eff_mod,
LPT_Eff_mod and LPT_Flow_mod). To model the bias, we imposed an
increasing shift proportional to the nominal calibration factor values
(𝜃𝛼 = 𝜃(𝑡) + 𝛼(𝜃(0) − 𝜃(𝑡)). Two values of 𝛼 are evaluated (i.e., 𝛼 =
0.5 and 𝛼 = −0.5), representing a ±50% error in the estimation of
𝜃. Since 𝜃̂ is multidimensional and an infinite number of scenarios
are possible, we restricted the analysis to cases where the calibration
factors are affected equally by noise and bias. Fig. 10 (left) shows the
resulting noisy calibration parameters 𝜃̂. The right figure shows the
biased calibration factors. Table 9 reports the impact in RMSE and
𝑠 of the three SNR evaluated values. We can observe a decrease in
the accuracy as the noise increases. However, even with a very high
SNR of 15, the proposed hybrid framework is still able to achieve
a better prognostics performance than the purely data-driven model.
Therefore, these results demonstrate the robustness of the proposed
hybrid prognostics framework.

5.3. Validation of the proposed framework on a popular benchmark dataset

We validate the proposed framework and compare its performance
to other deep neural network architectures on the popular CMAPSS
dataset [46]. In particular, we focus on the CMAPSS subset FD002
since it contains data for six operating set-points and is, therefore, a
challenging prognostics dataset.2

2 To make this analysis reproducible, the input data used for training the
prognostics networks and the Python script implementing the models are
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Table 10
Condition monitoring signals - [𝑤, 𝑥𝑠]. The variable symbol corresponds to the internal
variable name in the CMAPSS model. The descriptions and units are reported as in the
model documentation [22]. The Id corresponds to the column index of each feature in
[46].

# Symbol Description Units Id

1 alt Altitude ft 3
2 XM Flight Mach number – 4
3 TRA Throttle-resolver angle % 5
4 T2 Total temperature at fan inlet ◦R 6
5 T24 Total temperature at LPC outlet ◦R 7
6 T30 Total temperature at HPC outlet ◦R 8
7 T50 Total temperature at LPT outlet ◦R 9
8 P2 Total pressure at fan inlet psia 10
9 P15 Total pressure in bypass duct psia 11
10 Ps30 Static pressure at HPC outlet psia 17
11 Nf Physical fan speed rpm 13
12 Nc Physical core speed rpm 14

Table 11
Virtual sensors - [𝑥𝑣]. The variable symbol corresponds to the internal variable name
in the CMAPSS model. The descriptions and units are reported as in the model
documentation [22]. The Id corresponds to the column index of each feature in [46]

# Symbol Description Units Id

1 epr Engine pressure ratio (P50/P2) – 15
2 phi Ratio of fuel flow to Ps30 – 16
3 P30 Total pressure at HPC outlet psia 12
4 NfR Corrected fan speed rpm 18
5 NcR Corrected core speed rpm 19
6 BPR Bypass ratio – 20
7 farB Burner fuel–air ratio – 21
8 hfBleed Bleed enthalpy – 22
9 Nfdmd Demanded corrected fan speed rpm 23
10 PCNfRdmd Percent corrected fan speed pct 24
11 W31 HPT coolant bleed lbm/s 25
12 W32 HPT coolant bleed lbm/s 26

5.3.1. CMAPSS dataset
The CMAPSS dataset FD002 [46] provides degradation trajectories

of 519 turbofan engines with unknown and different initial health con-
ditions for six operating set-points and one failure mode affecting the
high-pressure compressor (HPC). The dataset was synthetically gener-
ated with the Commercial Modular Aero-Propulsion System Simulation
(CMAPSS) dynamical model. The training data contains multivariate
sensor readings of the complete run-to-failure trajectories from 260
engines. The records stop at the cycle/time the engine failed. A total
number of 54k cycles is available for the training. For the test set,
truncated time series of various lengths prior to failure are provided
for 259 engines. While it is not specifically stated in [46], the CMAPSS
data also provides operating condition (𝑤), sensor readings (𝑥𝑠), and
virtual sensors (𝑥𝑣). Tables 10 and 11 provide an overview of the signals
contained in FD002 that belong to the measured condition monitoring
signals [𝑤, 𝑥𝑠] and virtual sensors 𝑥𝑣. So in fact, the dataset can already
be considered as a hybrid dataset containing not only information on
measured parameters but also a subset of parameters inferred from
the dynamical model. The proposed variable split follows the same
logic as in the main case study. The condition monitoring signals are
measured signals in turbofan engines, which are therefore used for
model calibration. The virtual sensors correspond to modeled variables
that are not directly measured.

5.3.2. Model calibration
As in the main study, we follow the framework process flow shown

in Fig. 4. However, since the dataset FD002 is ten times smaller
than the N-CMAPSS, model calibration (i.e., step 1) is performed with

made public. https://gitlab.ethz.ch/arimanue/Fusing-physics-based-and-deep-
learning-models-for-prognostics.

https://gitlab.ethz.ch/arimanue/Fusing-physics-based-and-deep-learning-models-for-prognostics
https://gitlab.ethz.ch/arimanue/Fusing-physics-based-and-deep-learning-models-for-prognostics
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Fig. 10. (Left) Noisy calibration factors for a noise level of SNR𝑑𝑏 = 20 (orange) and SNR𝑑𝑏 = 15 imposed on the high-pressure turbine (HPT) efficiency, low-pressure turbine (LPT)
efficiency, and flow. (Right) Biased calibration factors with increasing shift with 𝛼 = −0.5 and 𝛼 = 0.5. Both plots are the 𝜃 values for the three units stacked one after the other,
generating a single time sequence.
Table 12
Model correcting parameters - [𝜃]. The variable symbol corresponds to the internal
variable name in the CMAPSS model. The descriptions and units are reported as in the
model documentation [22].

# Symbol Description Units

1 HPC_eff_mod HPC efficiency modifier –
2 HPC_flow_mod HPC flow modifier –

the dynamical model F instead of a surrogate model D. Hence, the
formulation of the calibration problem corresponds to the state-space
formulation according to Eqs. (3) and (4). The estimation of the state
vector 𝜃 (see Table 12) and state covariance 𝑃 is carried out with the
UKF (see Algorithm 2).

5.3.3. Deep learning prognostics models
Pre-processing. The pre-processing of the input features to the prognos-
tics model follows a three-step process. First, the dataset is normalized
with a min/max-normalization to a range [0, 1]. Second (only LSTM
and CNN models), the dataset is processed with a sliding time window
approach of size 𝑁𝑡𝑤 = 21 and stride of 1. We use a window size of
21 cycles/times since the smallest test sample consists of 21 cycles.
The RUL label for a sample is then simply the total number of cycles
the engine is able to operate minus the cycle in which the window
ends. Lastly, the maximum horizon of prediction for RUL, i.e., 𝑅𝑒𝑎𝑟𝑙𝑦,
was limited to 125 cycles following the standard procedure adopted in
previous research studies, e.g., [6,47].

Neural network architectures. We tested the same types of deep neural
networks as proposed in Section 4.4: a deep feed-forward neural net-
work, a recurrent neural network (LSTM), and a convolutional neural
network.

Feed-forward neural network (FNN). The network architecture
comprises six fully connected layers. The first four hidden layers have
100 neurons each. The last hidden layer has 50 neurons. A single linear
neuron was used in the output layer. ReLu activation function was
used throughout the entire network. The network has 39k trainable
parameters. Motivated by the main study, this final architecture is the
result of conducting a grid search with the following search space:
number of hidden layers [5-6], number of neurons at each hidden layer
[50, 100], and activation function type [tanh, ReLu].
13
One-dimensional convolutional neural network (1D CNN). The
network uses five convolutional layers with filters of size three. The first
four convolutions have ten channels and the last convolution has only
one. Zero padding is used to keep the feature map through the network.
The resulting 2D feature map is flattened and the network ends with a
100-way fully connected layer followed by a linear output neuron. The
network uses ReLu as the activation function. The resulting network
has around 4.3k trainable parameters. Motivated by the main study,
this final architecture is the result of conducting a grid search with the
following search space: number of convolutional hidden layers [5-6],
number of channels at each hidden layer [5, 10], filter size [3, 5] and
number of neurons at the fully connected layer [50, 100].

Long short-term memory recurrent neural network (LSTM).
Following the same architecture as for the 1D CNN network, a five-layer
LSTM followed by one fully connected layer with ReLu as the activation
function was applied. Through grid search, we determined the optimal
number of cells in the hidden layers to be 10. The resulting network
has 6.4k trainable parameters.

Training set-up. The optimization of the network’s weights is carried
out with mini-batch stochastic gradient descent and with the Adam
algorithm [43]. The Xavier initializer [44] is used for the weight
initializations. The batch size is set to 512 and the learning rate to
0.001. The maximum number of epochs was set to 300. Early stopping
with a patience of 30 epochs is applied. A validation set containing 10%
of the training data was used for hyper-parameter tuning.

5.3.4. Results
Model Calibration. Fig. 11 shows the inferred unobserved model

parameters 𝜃̂ obtained for the 260 units within the training dataset.
The state estimates obtained with the UKF unveil the degradation of
the engine in the form of performance deficit in the high-pressure
compressor (HPC) flow and efficiency. Hence, we observe that the UKF
is able to identify and track degradation of the simulated failure mode.
The different training units have a different initial health state and
different evolution of the degradation over time. The UKF performance
on test and training units shows similar results.

Prognostics. Table 13 shows the performance of the FNN, LSTM, and
1D CNN models for purely data-driven and hybrid approaches and com-
pares them to the results reported in the latest, best-performing pub-
lished papers on this dataset. As in the main case study, the overview
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Fig. 11. Traces of HPC efficiency and flow scalers for the run-to-failure trajectories of 260 training units with the UKF.
Table 13
Overview of the RMSE metrics with hybrid, baseline approaches. Mean and standard
deviation results with FNN, LSTM, and CNN models over five runs.

Purely Data-driven with Input [𝑤, 𝑥𝑠]

Model RMSE

FNN model - This work 23.3 ± 0.5
LSTM model - This work 19.6 ± 0.2
CNN model - This work 19.5 ± 0.3

Hybrid with Input [𝑤, 𝑥𝑠 , 𝑥̂𝑣]

Dilated CNN [49] 24.5
GCU-Transformer [50] 22.8
Ensemble ResCNN [51] 20.9
GNMR [52] 20.9
RNN autoencoder [9] 19.6
FNN model - This work 18.3 ± 0.3
Attention LSTM [7] 17.7 ± 0.5
LSTM model - This work 17.7 ± 0.5
CNN model - This work 17.6 ± 0.3
CapNet [48] 16.3 ± 0.2

Hybrid with Input [𝑤, 𝑥𝑠 , 𝑥̂𝑣 , 𝑥̂𝑠 , 𝜃̂]

Model Name RMSE

FNN model - This work 17.6 ± 0.2
LSTM model - This work 16.9 ± 0.4
CNN model - This work 𝟏𝟔.𝟎 ± 0.2

shown in Table 13 is divided into three sections depending on the
input features used in the prognostics network (i.e., purely data-driven
[𝑤, 𝑥𝑠], hybrid with virtual sensors [𝑤, 𝑥𝑠, 𝑥𝑣], and the proposed hybrid
approach [𝑤, 𝑥𝑠, 𝑥𝑣, 𝑥̂𝑠, 𝜃̂]). It is worth noticing that the variable split
considered in the work has not been previously considered in the
literature. Previous works assume no difference between measured
sensor readings and virtual sensors. The proposed method scores an
RMSE value of 16.0, slightly below the best-performing solution in this
dataset [48]. With an improvement ranging from 18% to 24%, depend-
ing on the applied network architecture, the proposed hybrid approach
shows similar improvements to the purely data-driven approach as
those seen in the main case study.

Fig. 12 shows the actual (red) and predicted (blue) RUL of the 1D
CNN model. It can be observed that the predictions are very accurate
for engines close to failure (RUL < 40). The prediction error increases
for engines far from failure.

6. Discussion

The implementation of hybrid approaches requires a careful de-
sign to avoid inheriting drawbacks from the methods being combined
(i.e., data-driven and physics-based methods). As stated in the intro-
duction and demonstrated in the case studies, the proposed approach
is designed to minimize each method’s individual weaknesses and
leverage their advantages. In particular, this includes the selection of a
14
Fig. 12. True RUL (red) and the predicted RUL (blue) with 1D CNN model. The 𝑥-axis
corresponds to test units with decreasing RUL.

0D/1D system performance model as a physics-based model allows one
to infer informative features of the degradation without the need for a
detailed model of the physics of failure and a high computational load.
Instead, a deep learning model assumes the task of discovering the RUL
model from the physics-inferred features and CM data. The inferred
features are informative of the degradation and, as a result, increase
the accuracy and generalization error of the RUL model compared to a
purely data-driven model. In summary, the proposed hybrid methodol-
ogy provides the following advantages compared to purely data-driven
approaches:

• Ability to accurately predict the remaining useful lifetime, even
when available datasets to train data-driven approaches are
sparse.

• Interpretability of the model and the corresponding outputs in
terms of physically meaningful input features.

• Robustness to sensor faults that can be distinguished against
faulty conditions. A model calibration step acts as a noise filter
of the condition monitoring data. Therefore, it allows for the
identification of sensor readings that are inconsistent with oth-
ers given the prior uncertainty of the measurements and model
parameters [25].

• Reduction of the required size of the training dataset while yield-
ing similar or better performance. As shown in the ablation study
I, an improved generalization of the hybrid approach makes the
RUL model less dependent on the amount of data for accurate
RUL prediction.

• Ability to generate additional operating conditions to compensate
for the lacking CM data.
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However, to some extent, certain limitations persist. We list be-
low some limitations of the proposed framework and suggest future
research directions that might serve to mitigate these shortcomings.

• One anticipated limitation pertains to RUL prediction on degrada-
tion trajectories rooted in failure modes that are not covered in
the training dataset. For instance, vibration- or oil degradation-
related failure modes are not represented in the training dataset of
the case study and consequently cannot be accurately predicted.
This is a general issue for modes that do not model the physics of
failure.

• Another expected limitation applies to the prediction of RUL
on test data that involves distant extrapolations on the opera-
tive conditions (𝑤) or model parameters (𝜃) outside the training
distribution. This is a general limitation of data-driven models
and can potentially be partially mitigated with domain adap-
tation [36,37], self-learning techniques, tailoring [53], gener-
ating synthetic data with the physics-based model, or strong
physics-driven inductive bias.

• The interpretability of failure modes is limited to the represen-
tation provided by the physics-based model. For instance, in
the absence of vibration-specific instrumentation, a degradation
mode resulting in high vibrations can only be related to changes
in the health parameters 𝜃, virtual sensors 𝑥𝑣, or sensor readings
𝑥𝑠.

The proposed approach assumes that the system model represen-
tation is complete. That is, there is no substantial missing physical
representation of the dynamic system 𝐹 that would make the model
𝐹 (𝑤, 𝜃) unable to approximate the true system response closely for
some unknown 𝜃̂ function. This is a common situation when consider-
ing system performance models of critical systems and mature products
where the system model has been developed and validated based on
multiple field units or testbed units (such as those in which there is
sufficient CM data to attempt a data-driven RUL model). Moreover,
in mature products, the system performance is also expected to be an
accurate representation of the performance of a new/healthy system.
In this case, deviations in 𝜃 represent the degradation of the sub-
components that explains the degraded performance of the system. In
contrast, for cases with a certain degree of missing physical represen-
tation, the impact of model degradation becomes entangled with the
model correction rooted in an inadequate modeling of the physical
process. This entanglement has two consequences: (1) the information
that 𝜃̂ carries about degradation decreases and (2) the interpretability
of 𝜃̂ as the true causal factors of degradation is lost. However, as
demonstrated in the ablation study III, the proposed framework is
robust to uncertainly in the model calibration step as long as the
training dataset is representative of the test conditions (i.e., the same
missing physics also applies to the training units).

It is worth pointing out that, for complex system models that have
the structure shown in 2, the missing physics is generally only a concern
for the sub-components. In other words, since the overall system topol-
ogy and the physics coupling the sub-components are known, there
is no relevant structural uncertainty concerning the overall system.
In this case, the discrepancy between the system model response and
the true system is rooted in an inaccurate representation of the real
physical processes occurring at the level of its sub-components. An
approximation of the overall system performance is therefore possible
regardless of the fidelity level of the sub-component models. Model
calibration with structural model uncertainly could form the basis of
a future research question.

7. Conclusions

This paper proposes a hybrid framework fusing information from
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physics-based performance models with deep learning algorithms for
predicting the remaining useful lifetime of complex systems. Health-
related model parameters are inferred by solving a calibration problem.
Subsequently, this information is combined with sensor readings and
used as input to a deep neural network to develop a reliable hybrid
prognostics model.

The performance of the hybrid framework was evaluated on a syn-
thetic dataset comprising run-to-failure degradation trajectories from
a small fleet of nine turbofan engines operating under real flight
conditions. The dataset was generated with the Commercial Mod-
ular Aero-Propulsion System Simulation (CMAPSS) dynamic model.
The proposed hybrid framework clearly outperforms the alternative
data-driven prognostic model in which only sensor data is used as
input to the deep neural network. The hybrid framework provides
accurate and robust predictions of the failure time, 𝑡EOL (i.e., 𝜖 ± 5
cycles), while extending the prediction horizon by 127% on average
as compared to the pure data-driven methods. More importantly, the
proposed framework requires less training data compared to the purely
data-driven algorithms. The proposed framework has also been demon-
strated on the popular CMAPSS dataset [46] and compared to other
deep neural network architectures. The proposed hybrid approach
shows similar improvements over the purely data-driven methods as in
the main case study and similar predictive performance to the current
best-performing solution on this dataset.

As demonstrated in the experiments, the performance of the pro-
posed hybrid prognostics framework is robust to uncertainty imposed
by the quality of the model calibration. This research study has also
demonstrated the ability of the developed hybrid framework to provide
excellent prognostics performance for units that exhibited operating
conditions very dissimilar to those of units used for training the al-
gorithms (limited representativeness of the training dataset for the
testing dataset). Therefore, the proposed hybrid framework represents
a promising direction for further research in PHM applications.

Finally, a potential future research direction is evaluating the trans-
ferability of the proposed hybrid approach to other types of problems
that fulfill the same criteria: the availability of complete physics-
based models and access to sensor readings that provide information
about the system state. Furthermore, an additional avenue for future
research is developing approaches for which only limited physics-based
information is available.
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Fig. A.13. Schematic representation of the CMAPSS model. The CMAPSS model includes two types of models: (1) a transient thermodynamic performance engine model and (2) a
power-management model that allows the engine to be operated over a wide range of thrust levels spanning the full spectrum of flight conditions. The thermodynamic model has
the form of a coupled system of nonlinear equations resulting from energy, momentum, and mass conservation throughout the turbofan engine. The resulting model is nonlinear
and does not have an explicit formula. The thermodynamic model uses traditional off-design performance modeling approaches, common in gas turbines, that resort to ’component
maps’ of the rotating components. Refs. [54–56] provide the interested reader with a full description of the physics and an implementation close to that found in CMAPSS. The
power-management i.e., control, uses a discrete state-space formulation in combination with linear engine models.
Appendix A. CMAPSS engine model

Although most of the implementation details of the CMAPSS engine
model used in this work are not publicly available, the user man-
ual [22] and the documentation of the similar model C-MAPSS40k [57]
provide some details about the software and control implementation.
In brief, the CMAPSS engine model represents a generic, high-bypass,
twin-spool commercial turbofan engine. The engine consists of six
main components: fan, low-pressure compressor (LPC), high-pressure
compressor (HPC), combustor or burner, high-pressure turbine (HPT),
and low-pressure turbine (LPT). The HPC and HPT are connected
through the core shaft or high-speed shaft; the fan, LPC, and LPT are
all connected to the fan shaft or low-speed shaft [57]. In addition to
these turbo-machinery components and the combustor, the engine has
an inlet at the front, a nozzle at the rear, a bypass duct, a variable-
sized inter-stage bleed valve, a set of variable-angle stator or guide
vanes, and a number of cooling bleeds. A schematic of the engine is
shown in Fig. A.13. The CMAPSS model includes two types of models:
(1) a transient aero-thermodynamic engine model and (2) an engine
controller that allows the engine to be operated over a wide range of
thrust levels spanning the full spectrum of flight conditions.

Aero-thermodynamic Engine Model. The aero-thermodynamic engine
model is a physics-based, component-level model where each of the en-
gine components is represented as an infinitesimally small volume [57].
The engine is then balanced by mass flow rate continuity through the
components. The thermodynamic model uses traditional off-design per-
formance modeling approaches, common in gas turbines, that resort to
’component maps’ of the rotating components. Thereby, this modeling
strategy captures the gross characteristics of each engine component.
16
Refs. [54–56] provide for the interested reader a full description of the
physics and an implementation close to that found in CMAPSS.

Engine Controller. The controller converts the throttle command from
the pilot into thrust while providing safe operation. The controller
has two main components: the power management and protection
logic controllers. The power management controller determines an
engine pressure ratio (EPR), which is the ratio of turbine exit pressure
to inlet pressure (P50/P2), or fan speed (Nf) setpoint based on the
PLA, altitude, Mach number, and ambient temperature that, when
achieved, results in the desired linear thrust profile. Protection logic
aims at providing safe and smooth thrust transitions between distant
setpoints. Safe operation implies (1) the protection of physical com-
ponents by preventing overstress and (2) the avoidance of operability
limits (e.g., compressor surge, stall, combustor lean blow-out). This
protection is achieved through the use of controller limits on physical
variables including limits on the maximum fan speed (Nf), core speed
(Nc), and burner pressure (Ps3). The control model resorts to common
industry control theory and linear engine models.

Appendix B. Engine dynamic model - 𝑫

The system dynamics are approximated with an MLP with four
layers (𝐿 = 4). The hidden layers have 100 units (𝑛1 = 𝑛2 = 𝑛3 =
100). The output layer has the dimension of the sensor reading vector
(i.e., 𝑛𝐿 = 𝑛). ReLU activation function was used throughout the hidden
layers. For the output layer, 𝜎𝐿 = 𝐼 is the identity.
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Appendix C. The UKF algorithm

The solution of the calibration problem with the UKF requires a
state-update formulation where the state equation is modeled as a
random walk. However, the estimation of the state (mean vector 𝜃̂(𝑘)

nd covariance matrix 𝑃 (𝑘)) at each time step is obtained with the
KF. Concretely, it resorts to the standard UKF update process given
y Algorithm 2.

The UKF algorithm also requires the definition of the diagonal
ovariance matrices 𝑄 and 𝑅. We assumed the covariance matrices to
e diagonal matrices with normalized standard deviation 𝑟 = 0.01 and
= 0.01 (i.e., 𝑄 = 𝑞2𝐈𝐧 and 𝑅 = 𝑟2𝐈𝐝 where 𝐈𝐤 is the identity matrix of

dimension 𝑘 and 𝑑 is the dimension of 𝜃).

Algorithm 2: Unscented Kalman filter for health parameter
estimation
1 Estimation of health parameters

Input : {𝑤(𝑘), 𝑥(𝑘), }𝑚𝑘=1, 𝜃𝑟𝑒𝑓 , R and 𝑃 (0) = 𝑄 & F
Output: 𝑥̂(𝑘), 𝜃̂(𝑘), 𝑃 (𝑘)

2 for 𝑘 = 1 ∶ 𝑚 do
3 𝑃 (𝑘) = 𝑃 (𝑘−1) +𝑄(𝑘)

4  (𝑘−1) = [𝜃̂(𝑘−1), 𝜃̂(𝑘−1) + 𝛾
√

𝑃 (𝑘), 𝜃̂(𝑘−1) − 𝛾
√

𝑃 (𝑘)] i.e. Sigma
points (vectors)

5  (𝑘)
𝑖 = 𝐹 (𝑤(𝑘), (𝑘−1)

𝑖 ) for 𝑖 = 0, 1,… , 2𝑑 Propagate 
through the non-linear function 𝐹

6 𝑥̂(𝑘)𝑠 =
∑2𝑑

𝑖=0 𝑊
𝑚
𝑖  (𝑘)

𝑖
7 𝑟(𝑘) = 𝑥(𝑘)𝑠 − 𝑥̂(𝑘)𝑠

8 𝑃 (𝑘)
𝑦 =

∑2𝑑
𝑖=0 𝑊

𝑐
𝑖 (

(𝑘)
𝑖 − 𝑥̂(𝑘)𝑠 )( (𝑘)

𝑖 − 𝑥̂(𝑘)𝑠 )𝑇 + 𝑅
9 𝑃 (𝑘)

𝜃𝑦 =
∑2𝑑

𝑖=0 𝑊
𝑐
𝑖 (

(𝑘−1) − 𝜃̂(𝑘−1))( (𝑘)
𝑖 − 𝑥̂(𝑘)𝑠 )𝑇

0 𝐾 (𝑘) = 𝑃 (𝑘)
𝜃𝑦 𝑃 (𝑘)

𝑦
−1

1 𝜃̂(𝑘) = 𝜃̂(𝑘) −𝐾 (𝑘)𝑟(𝑘)

2 𝑃 (𝑘) = 𝑃 (𝑘) −𝐾 (𝑘)𝑃 (𝑘)
𝑦 𝐾 (𝑘)𝑇

3 end
4 end

The weight coefficients 𝑊 𝑚
0 , 𝑊 𝑐

0 and 𝑊 𝑐
𝑖 and the corresponding

caling parameters are given in Table C.14.
Table C.14
Weight coefficients and scaling parameters
Weight coefficients

Weights Expression

𝑊 𝑚
0

𝜆
𝑑+𝜆

𝑊 𝑐
0 𝑊 𝑚

0 + 1 − 𝛼2 + 𝛽
𝑊 𝑐

𝑖 = 𝑊 𝑚
𝑖

1
2(𝑑+𝜆)

∀𝑖 = 1,…2𝑛𝜃

Scaling parameters

Parameters Values

𝛾
√

𝑑 + 𝜆
𝜆 𝛼2(𝑑 + 𝜅) − 𝑑
𝛼 1e−3
𝛽 2
𝜅 0
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